xref: /f-stack/freebsd/netpfil/ipfw/ip_fw2.c (revision 8640edf1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * The FreeBSD IP packet firewall, main file
33  */
34 
35 #include "opt_ipfw.h"
36 #include "opt_ipdivert.h"
37 #include "opt_inet.h"
38 #ifndef INET
39 #error "IPFIREWALL requires INET"
40 #endif /* INET */
41 #include "opt_inet6.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/condvar.h>
46 #include <sys/counter.h>
47 #include <sys/eventhandler.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/kernel.h>
51 #include <sys/lock.h>
52 #include <sys/jail.h>
53 #include <sys/module.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/rwlock.h>
57 #include <sys/rmlock.h>
58 #include <sys/sdt.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sysctl.h>
62 #include <sys/syslog.h>
63 #include <sys/ucred.h>
64 #include <net/ethernet.h> /* for ETHERTYPE_IP */
65 #include <net/if.h>
66 #include <net/if_var.h>
67 #include <net/route.h>
68 #include <net/route/nhop.h>
69 #include <net/pfil.h>
70 #include <net/vnet.h>
71 
72 #include <netpfil/pf/pf_mtag.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/ip_icmp.h>
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_carp.h>
82 #include <netinet/pim.h>
83 #include <netinet/tcp_var.h>
84 #include <netinet/udp.h>
85 #include <netinet/udp_var.h>
86 #include <netinet/sctp.h>
87 #include <netinet/sctp_crc32.h>
88 #include <netinet/sctp_header.h>
89 
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet/in_fib.h>
93 #ifdef INET6
94 #include <netinet6/in6_fib.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/scope6_var.h>
97 #include <netinet6/ip6_var.h>
98 #endif
99 
100 #include <net/if_gre.h> /* for struct grehdr */
101 
102 #include <netpfil/ipfw/ip_fw_private.h>
103 
104 #include <machine/in_cksum.h>	/* XXX for in_cksum */
105 
106 #ifdef MAC
107 #include <security/mac/mac_framework.h>
108 #endif
109 
110 #define	IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5)		\
111     SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5)
112 
113 SDT_PROVIDER_DEFINE(ipfw);
114 SDT_PROBE_DEFINE6(ipfw, , , rule__matched,
115     "int",			/* retval */
116     "int",			/* af */
117     "void *",			/* src addr */
118     "void *",			/* dst addr */
119     "struct ip_fw_args *",	/* args */
120     "struct ip_fw *"		/* rule */);
121 
122 /*
123  * static variables followed by global ones.
124  * All ipfw global variables are here.
125  */
126 
127 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
128 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
129 
130 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
131 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
132 
133 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
134 static int default_to_accept = 1;
135 #else
136 static int default_to_accept;
137 #endif
138 
139 VNET_DEFINE(int, autoinc_step);
140 VNET_DEFINE(int, fw_one_pass) = 1;
141 
142 VNET_DEFINE(unsigned int, fw_tables_max);
143 VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
144 /* Use 128 tables by default */
145 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
146 
147 #ifndef LINEAR_SKIPTO
148 static int jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
149     int tablearg, int jump_backwards);
150 #define	JUMP(ch, f, num, targ, back)	jump_fast(ch, f, num, targ, back)
151 #else
152 static int jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
153     int tablearg, int jump_backwards);
154 #define	JUMP(ch, f, num, targ, back)	jump_linear(ch, f, num, targ, back)
155 #endif
156 
157 /*
158  * Each rule belongs to one of 32 different sets (0..31).
159  * The variable set_disable contains one bit per set.
160  * If the bit is set, all rules in the corresponding set
161  * are disabled. Set RESVD_SET(31) is reserved for the default rule
162  * and rules that are not deleted by the flush command,
163  * and CANNOT be disabled.
164  * Rules in set RESVD_SET can only be deleted individually.
165  */
166 VNET_DEFINE(u_int32_t, set_disable);
167 #define	V_set_disable			VNET(set_disable)
168 
169 VNET_DEFINE(int, fw_verbose);
170 /* counter for ipfw_log(NULL...) */
171 VNET_DEFINE(u_int64_t, norule_counter);
172 VNET_DEFINE(int, verbose_limit);
173 
174 /* layer3_chain contains the list of rules for layer 3 */
175 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
176 
177 /* ipfw_vnet_ready controls when we are open for business */
178 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
179 
180 VNET_DEFINE(int, ipfw_nat_ready) = 0;
181 
182 ipfw_nat_t *ipfw_nat_ptr = NULL;
183 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
184 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
185 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
186 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
187 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
188 
189 #ifdef SYSCTL_NODE
190 uint32_t dummy_def = IPFW_DEFAULT_RULE;
191 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
192 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
193 
194 SYSBEGIN(f3)
195 
196 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
197     "Firewall");
198 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
199     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
200     "Only do a single pass through ipfw when using dummynet(4)");
201 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
202     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
203     "Rule number auto-increment step");
204 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
205     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
206     "Log matches to ipfw rules");
207 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
208     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
209     "Set upper limit of matches of ipfw rules logged");
210 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
211     &dummy_def, 0,
212     "The default/max possible rule number.");
213 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
214     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
215     0, 0, sysctl_ipfw_table_num, "IU",
216     "Maximum number of concurrently used tables");
217 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
218     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
219     0, 0, sysctl_ipfw_tables_sets, "IU",
220     "Use per-set namespace for tables");
221 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
222     &default_to_accept, 0,
223     "Make the default rule accept all packets.");
224 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
225 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
226     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
227     "Number of static rules");
228 
229 #ifdef INET6
230 SYSCTL_DECL(_net_inet6_ip6);
231 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
232     "Firewall");
233 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
234     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
235     &VNET_NAME(fw_deny_unknown_exthdrs), 0,
236     "Deny packets with unknown IPv6 Extension Headers");
237 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
238     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
239     &VNET_NAME(fw_permit_single_frag6), 0,
240     "Permit single packet IPv6 fragments");
241 #endif /* INET6 */
242 
243 SYSEND
244 
245 #endif /* SYSCTL_NODE */
246 
247 /*
248  * Some macros used in the various matching options.
249  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
250  * Other macros just cast void * into the appropriate type
251  */
252 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
253 #define	TCP(p)		((struct tcphdr *)(p))
254 #define	SCTP(p)		((struct sctphdr *)(p))
255 #define	UDP(p)		((struct udphdr *)(p))
256 #define	ICMP(p)		((struct icmphdr *)(p))
257 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
258 
259 static __inline int
icmptype_match(struct icmphdr * icmp,ipfw_insn_u32 * cmd)260 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
261 {
262 	int type = icmp->icmp_type;
263 
264 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
265 }
266 
267 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
268     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
269 
270 static int
is_icmp_query(struct icmphdr * icmp)271 is_icmp_query(struct icmphdr *icmp)
272 {
273 	int type = icmp->icmp_type;
274 
275 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
276 }
277 #undef TT
278 
279 /*
280  * The following checks use two arrays of 8 or 16 bits to store the
281  * bits that we want set or clear, respectively. They are in the
282  * low and high half of cmd->arg1 or cmd->d[0].
283  *
284  * We scan options and store the bits we find set. We succeed if
285  *
286  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
287  *
288  * The code is sometimes optimized not to store additional variables.
289  */
290 
291 static int
flags_match(ipfw_insn * cmd,u_int8_t bits)292 flags_match(ipfw_insn *cmd, u_int8_t bits)
293 {
294 	u_char want_clear;
295 	bits = ~bits;
296 
297 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
298 		return 0; /* some bits we want set were clear */
299 	want_clear = (cmd->arg1 >> 8) & 0xff;
300 	if ( (want_clear & bits) != want_clear)
301 		return 0; /* some bits we want clear were set */
302 	return 1;
303 }
304 
305 static int
ipopts_match(struct ip * ip,ipfw_insn * cmd)306 ipopts_match(struct ip *ip, ipfw_insn *cmd)
307 {
308 	int optlen, bits = 0;
309 	u_char *cp = (u_char *)(ip + 1);
310 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
311 
312 	for (; x > 0; x -= optlen, cp += optlen) {
313 		int opt = cp[IPOPT_OPTVAL];
314 
315 		if (opt == IPOPT_EOL)
316 			break;
317 		if (opt == IPOPT_NOP)
318 			optlen = 1;
319 		else {
320 			optlen = cp[IPOPT_OLEN];
321 			if (optlen <= 0 || optlen > x)
322 				return 0; /* invalid or truncated */
323 		}
324 		switch (opt) {
325 		default:
326 			break;
327 
328 		case IPOPT_LSRR:
329 			bits |= IP_FW_IPOPT_LSRR;
330 			break;
331 
332 		case IPOPT_SSRR:
333 			bits |= IP_FW_IPOPT_SSRR;
334 			break;
335 
336 		case IPOPT_RR:
337 			bits |= IP_FW_IPOPT_RR;
338 			break;
339 
340 		case IPOPT_TS:
341 			bits |= IP_FW_IPOPT_TS;
342 			break;
343 		}
344 	}
345 	return (flags_match(cmd, bits));
346 }
347 
348 /*
349  * Parse TCP options. The logic copied from tcp_dooptions().
350  */
351 static int
tcpopts_parse(const struct tcphdr * tcp,uint16_t * mss)352 tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss)
353 {
354 	const u_char *cp = (const u_char *)(tcp + 1);
355 	int optlen, bits = 0;
356 	int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr);
357 
358 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
359 		int opt = cp[0];
360 		if (opt == TCPOPT_EOL)
361 			break;
362 		if (opt == TCPOPT_NOP)
363 			optlen = 1;
364 		else {
365 			if (cnt < 2)
366 				break;
367 			optlen = cp[1];
368 			if (optlen < 2 || optlen > cnt)
369 				break;
370 		}
371 
372 		switch (opt) {
373 		default:
374 			break;
375 
376 		case TCPOPT_MAXSEG:
377 			if (optlen != TCPOLEN_MAXSEG)
378 				break;
379 			bits |= IP_FW_TCPOPT_MSS;
380 			if (mss != NULL)
381 				*mss = be16dec(cp + 2);
382 			break;
383 
384 		case TCPOPT_WINDOW:
385 			if (optlen == TCPOLEN_WINDOW)
386 				bits |= IP_FW_TCPOPT_WINDOW;
387 			break;
388 
389 		case TCPOPT_SACK_PERMITTED:
390 			if (optlen == TCPOLEN_SACK_PERMITTED)
391 				bits |= IP_FW_TCPOPT_SACK;
392 			break;
393 
394 		case TCPOPT_SACK:
395 			if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0)
396 				bits |= IP_FW_TCPOPT_SACK;
397 			break;
398 
399 		case TCPOPT_TIMESTAMP:
400 			if (optlen == TCPOLEN_TIMESTAMP)
401 				bits |= IP_FW_TCPOPT_TS;
402 			break;
403 		}
404 	}
405 	return (bits);
406 }
407 
408 static int
tcpopts_match(struct tcphdr * tcp,ipfw_insn * cmd)409 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
410 {
411 
412 	return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
413 }
414 
415 static int
iface_match(struct ifnet * ifp,ipfw_insn_if * cmd,struct ip_fw_chain * chain,uint32_t * tablearg)416 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
417     uint32_t *tablearg)
418 {
419 
420 	if (ifp == NULL)	/* no iface with this packet, match fails */
421 		return (0);
422 
423 	/* Check by name or by IP address */
424 	if (cmd->name[0] != '\0') { /* match by name */
425 		if (cmd->name[0] == '\1') /* use tablearg to match */
426 			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
427 			    &ifp->if_index, tablearg);
428 		/* Check name */
429 		if (cmd->p.glob) {
430 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
431 				return(1);
432 		} else {
433 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
434 				return(1);
435 		}
436 	} else {
437 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
438 		struct ifaddr *ia;
439 
440 		NET_EPOCH_ASSERT();
441 
442 		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
443 			if (ia->ifa_addr->sa_family != AF_INET)
444 				continue;
445 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
446 			    (ia->ifa_addr))->sin_addr.s_addr)
447 				return (1);	/* match */
448 		}
449 #endif /* __FreeBSD__ */
450 	}
451 	return(0);	/* no match, fail ... */
452 }
453 
454 /*
455  * The verify_path function checks if a route to the src exists and
456  * if it is reachable via ifp (when provided).
457  *
458  * The 'verrevpath' option checks that the interface that an IP packet
459  * arrives on is the same interface that traffic destined for the
460  * packet's source address would be routed out of.
461  * The 'versrcreach' option just checks that the source address is
462  * reachable via any route (except default) in the routing table.
463  * These two are a measure to block forged packets. This is also
464  * commonly known as "anti-spoofing" or Unicast Reverse Path
465  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
466  * is purposely reminiscent of the Cisco IOS command,
467  *
468  *   ip verify unicast reverse-path
469  *   ip verify unicast source reachable-via any
470  *
471  * which implements the same functionality. But note that the syntax
472  * is misleading, and the check may be performed on all IP packets
473  * whether unicast, multicast, or broadcast.
474  */
475 static int
verify_path(struct in_addr src,struct ifnet * ifp,u_int fib)476 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
477 {
478 #if defined(USERSPACE) || !defined(__FreeBSD__)
479 	return 0;
480 #else
481 	struct nhop_object *nh;
482 
483 	nh = fib4_lookup(fib, src, 0, NHR_NONE, 0);
484 	if (nh == NULL)
485 		return (0);
486 
487 	/*
488 	 * If ifp is provided, check for equality with rtentry.
489 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
490 	 * in order to pass packets injected back by if_simloop():
491 	 * routing entry (via lo0) for our own address
492 	 * may exist, so we need to handle routing assymetry.
493 	 */
494 	if (ifp != NULL && ifp != nh->nh_aifp)
495 		return (0);
496 
497 	/* if no ifp provided, check if rtentry is not default route */
498 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
499 		return (0);
500 
501 	/* or if this is a blackhole/reject route */
502 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
503 		return (0);
504 
505 	/* found valid route */
506 	return 1;
507 #endif /* __FreeBSD__ */
508 }
509 
510 /*
511  * Generate an SCTP packet containing an ABORT chunk. The verification tag
512  * is given by vtag. The T-bit is set in the ABORT chunk if and only if
513  * reflected is not 0.
514  */
515 
516 static struct mbuf *
ipfw_send_abort(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t vtag,int reflected)517 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
518     int reflected)
519 {
520 	struct mbuf *m;
521 	struct ip *ip;
522 #ifdef INET6
523 	struct ip6_hdr *ip6;
524 #endif
525 	struct sctphdr *sctp;
526 	struct sctp_chunkhdr *chunk;
527 	u_int16_t hlen, plen, tlen;
528 
529 	MGETHDR(m, M_NOWAIT, MT_DATA);
530 	if (m == NULL)
531 		return (NULL);
532 
533 	M_SETFIB(m, id->fib);
534 #ifdef MAC
535 	if (replyto != NULL)
536 		mac_netinet_firewall_reply(replyto, m);
537 	else
538 		mac_netinet_firewall_send(m);
539 #else
540 	(void)replyto;		/* don't warn about unused arg */
541 #endif
542 
543 	switch (id->addr_type) {
544 	case 4:
545 		hlen = sizeof(struct ip);
546 		break;
547 #ifdef INET6
548 	case 6:
549 		hlen = sizeof(struct ip6_hdr);
550 		break;
551 #endif
552 	default:
553 		/* XXX: log me?!? */
554 		FREE_PKT(m);
555 		return (NULL);
556 	}
557 	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
558 	tlen = hlen + plen;
559 	m->m_data += max_linkhdr;
560 	m->m_flags |= M_SKIP_FIREWALL;
561 	m->m_pkthdr.len = m->m_len = tlen;
562 	m->m_pkthdr.rcvif = NULL;
563 	bzero(m->m_data, tlen);
564 
565 	switch (id->addr_type) {
566 	case 4:
567 		ip = mtod(m, struct ip *);
568 
569 		ip->ip_v = 4;
570 		ip->ip_hl = sizeof(struct ip) >> 2;
571 		ip->ip_tos = IPTOS_LOWDELAY;
572 		ip->ip_len = htons(tlen);
573 		ip->ip_id = htons(0);
574 		ip->ip_off = htons(0);
575 		ip->ip_ttl = V_ip_defttl;
576 		ip->ip_p = IPPROTO_SCTP;
577 		ip->ip_sum = 0;
578 		ip->ip_src.s_addr = htonl(id->dst_ip);
579 		ip->ip_dst.s_addr = htonl(id->src_ip);
580 
581 		sctp = (struct sctphdr *)(ip + 1);
582 		break;
583 #ifdef INET6
584 	case 6:
585 		ip6 = mtod(m, struct ip6_hdr *);
586 
587 		ip6->ip6_vfc = IPV6_VERSION;
588 		ip6->ip6_plen = htons(plen);
589 		ip6->ip6_nxt = IPPROTO_SCTP;
590 		ip6->ip6_hlim = IPV6_DEFHLIM;
591 		ip6->ip6_src = id->dst_ip6;
592 		ip6->ip6_dst = id->src_ip6;
593 
594 		sctp = (struct sctphdr *)(ip6 + 1);
595 		break;
596 #endif
597 	}
598 
599 	sctp->src_port = htons(id->dst_port);
600 	sctp->dest_port = htons(id->src_port);
601 	sctp->v_tag = htonl(vtag);
602 	sctp->checksum = htonl(0);
603 
604 	chunk = (struct sctp_chunkhdr *)(sctp + 1);
605 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
606 	chunk->chunk_flags = 0;
607 	if (reflected != 0) {
608 		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
609 	}
610 	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
611 
612 #ifndef FSTACK /* Not support sctp now */
613 	sctp->checksum = sctp_calculate_cksum(m, hlen);
614 #endif
615 
616 	return (m);
617 }
618 
619 /*
620  * Generate a TCP packet, containing either a RST or a keepalive.
621  * When flags & TH_RST, we are sending a RST packet, because of a
622  * "reset" action matched the packet.
623  * Otherwise we are sending a keepalive, and flags & TH_
624  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
625  * so that MAC can label the reply appropriately.
626  */
627 struct mbuf *
ipfw_send_pkt(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t seq,u_int32_t ack,int flags)628 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
629     u_int32_t ack, int flags)
630 {
631 	struct mbuf *m = NULL;		/* stupid compiler */
632 	struct ip *h = NULL;		/* stupid compiler */
633 #ifdef INET6
634 	struct ip6_hdr *h6 = NULL;
635 #endif
636 	struct tcphdr *th = NULL;
637 	int len, dir;
638 
639 	MGETHDR(m, M_NOWAIT, MT_DATA);
640 	if (m == NULL)
641 		return (NULL);
642 
643 	M_SETFIB(m, id->fib);
644 #ifdef MAC
645 	if (replyto != NULL)
646 		mac_netinet_firewall_reply(replyto, m);
647 	else
648 		mac_netinet_firewall_send(m);
649 #else
650 	(void)replyto;		/* don't warn about unused arg */
651 #endif
652 
653 	switch (id->addr_type) {
654 	case 4:
655 		len = sizeof(struct ip) + sizeof(struct tcphdr);
656 		break;
657 #ifdef INET6
658 	case 6:
659 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
660 		break;
661 #endif
662 	default:
663 		/* XXX: log me?!? */
664 		FREE_PKT(m);
665 		return (NULL);
666 	}
667 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
668 
669 	m->m_data += max_linkhdr;
670 	m->m_flags |= M_SKIP_FIREWALL;
671 	m->m_pkthdr.len = m->m_len = len;
672 	m->m_pkthdr.rcvif = NULL;
673 	bzero(m->m_data, len);
674 
675 	switch (id->addr_type) {
676 	case 4:
677 		h = mtod(m, struct ip *);
678 
679 		/* prepare for checksum */
680 		h->ip_p = IPPROTO_TCP;
681 		h->ip_len = htons(sizeof(struct tcphdr));
682 		if (dir) {
683 			h->ip_src.s_addr = htonl(id->src_ip);
684 			h->ip_dst.s_addr = htonl(id->dst_ip);
685 		} else {
686 			h->ip_src.s_addr = htonl(id->dst_ip);
687 			h->ip_dst.s_addr = htonl(id->src_ip);
688 		}
689 
690 		th = (struct tcphdr *)(h + 1);
691 		break;
692 #ifdef INET6
693 	case 6:
694 		h6 = mtod(m, struct ip6_hdr *);
695 
696 		/* prepare for checksum */
697 		h6->ip6_nxt = IPPROTO_TCP;
698 		h6->ip6_plen = htons(sizeof(struct tcphdr));
699 		if (dir) {
700 			h6->ip6_src = id->src_ip6;
701 			h6->ip6_dst = id->dst_ip6;
702 		} else {
703 			h6->ip6_src = id->dst_ip6;
704 			h6->ip6_dst = id->src_ip6;
705 		}
706 
707 		th = (struct tcphdr *)(h6 + 1);
708 		break;
709 #endif
710 	}
711 
712 	if (dir) {
713 		th->th_sport = htons(id->src_port);
714 		th->th_dport = htons(id->dst_port);
715 	} else {
716 		th->th_sport = htons(id->dst_port);
717 		th->th_dport = htons(id->src_port);
718 	}
719 	th->th_off = sizeof(struct tcphdr) >> 2;
720 
721 	if (flags & TH_RST) {
722 		if (flags & TH_ACK) {
723 			th->th_seq = htonl(ack);
724 			th->th_flags = TH_RST;
725 		} else {
726 			if (flags & TH_SYN)
727 				seq++;
728 			th->th_ack = htonl(seq);
729 			th->th_flags = TH_RST | TH_ACK;
730 		}
731 	} else {
732 		/*
733 		 * Keepalive - use caller provided sequence numbers
734 		 */
735 		th->th_seq = htonl(seq);
736 		th->th_ack = htonl(ack);
737 		th->th_flags = TH_ACK;
738 	}
739 
740 	switch (id->addr_type) {
741 	case 4:
742 		th->th_sum = in_cksum(m, len);
743 
744 		/* finish the ip header */
745 		h->ip_v = 4;
746 		h->ip_hl = sizeof(*h) >> 2;
747 		h->ip_tos = IPTOS_LOWDELAY;
748 		h->ip_off = htons(0);
749 		h->ip_len = htons(len);
750 		h->ip_ttl = V_ip_defttl;
751 		h->ip_sum = 0;
752 		break;
753 #ifdef INET6
754 	case 6:
755 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
756 		    sizeof(struct tcphdr));
757 
758 		/* finish the ip6 header */
759 		h6->ip6_vfc |= IPV6_VERSION;
760 		h6->ip6_hlim = IPV6_DEFHLIM;
761 		break;
762 #endif
763 	}
764 
765 	return (m);
766 }
767 
768 #ifdef INET6
769 /*
770  * ipv6 specific rules here...
771  */
772 static __inline int
icmp6type_match(int type,ipfw_insn_u32 * cmd)773 icmp6type_match(int type, ipfw_insn_u32 *cmd)
774 {
775 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
776 }
777 
778 static int
flow6id_match(int curr_flow,ipfw_insn_u32 * cmd)779 flow6id_match(int curr_flow, ipfw_insn_u32 *cmd)
780 {
781 	int i;
782 	for (i=0; i <= cmd->o.arg1; ++i)
783 		if (curr_flow == cmd->d[i])
784 			return 1;
785 	return 0;
786 }
787 
788 /* support for IP6_*_ME opcodes */
789 static const struct in6_addr lla_mask = {{{
790 	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
791 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
792 }}};
793 
794 static int
ipfw_localip6(struct in6_addr * in6)795 ipfw_localip6(struct in6_addr *in6)
796 {
797 	struct rm_priotracker in6_ifa_tracker;
798 	struct in6_ifaddr *ia;
799 
800 	if (IN6_IS_ADDR_MULTICAST(in6))
801 		return (0);
802 
803 	if (!IN6_IS_ADDR_LINKLOCAL(in6))
804 		return (in6_localip(in6));
805 
806 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
807 	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
808 		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
809 			continue;
810 		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
811 		    in6, &lla_mask)) {
812 			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
813 			return (1);
814 		}
815 	}
816 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
817 	return (0);
818 }
819 
820 static int
verify_path6(struct in6_addr * src,struct ifnet * ifp,u_int fib)821 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
822 {
823 	struct nhop_object *nh;
824 
825 	if (IN6_IS_SCOPE_LINKLOCAL(src))
826 		return (1);
827 
828 	nh = fib6_lookup(fib, src, 0, NHR_NONE, 0);
829 	if (nh == NULL)
830 		return (0);
831 
832 	/* If ifp is provided, check for equality with route table. */
833 	if (ifp != NULL && ifp != nh->nh_aifp)
834 		return (0);
835 
836 	/* if no ifp provided, check if rtentry is not default route */
837 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
838 		return (0);
839 
840 	/* or if this is a blackhole/reject route */
841 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
842 		return (0);
843 
844 	/* found valid route */
845 	return 1;
846 }
847 
848 static int
is_icmp6_query(int icmp6_type)849 is_icmp6_query(int icmp6_type)
850 {
851 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
852 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
853 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
854 	    icmp6_type == ICMP6_WRUREQUEST ||
855 	    icmp6_type == ICMP6_FQDN_QUERY ||
856 	    icmp6_type == ICMP6_NI_QUERY))
857 		return (1);
858 
859 	return (0);
860 }
861 
862 static int
map_icmp_unreach(int code)863 map_icmp_unreach(int code)
864 {
865 
866 	/* RFC 7915 p4.2 */
867 	switch (code) {
868 	case ICMP_UNREACH_NET:
869 	case ICMP_UNREACH_HOST:
870 	case ICMP_UNREACH_SRCFAIL:
871 	case ICMP_UNREACH_NET_UNKNOWN:
872 	case ICMP_UNREACH_HOST_UNKNOWN:
873 	case ICMP_UNREACH_TOSNET:
874 	case ICMP_UNREACH_TOSHOST:
875 		return (ICMP6_DST_UNREACH_NOROUTE);
876 	case ICMP_UNREACH_PORT:
877 		return (ICMP6_DST_UNREACH_NOPORT);
878 	default:
879 		/*
880 		 * Map the rest of codes into admit prohibited.
881 		 * XXX: unreach proto should be mapped into ICMPv6
882 		 * parameter problem, but we use only unreach type.
883 		 */
884 		return (ICMP6_DST_UNREACH_ADMIN);
885 	}
886 }
887 
888 static void
send_reject6(struct ip_fw_args * args,int code,u_int hlen,struct ip6_hdr * ip6)889 send_reject6(struct ip_fw_args *args, int code, u_int hlen, struct ip6_hdr *ip6)
890 {
891 	struct mbuf *m;
892 
893 	m = args->m;
894 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
895 		struct tcphdr *tcp;
896 		tcp = (struct tcphdr *)((char *)ip6 + hlen);
897 
898 		if ((tcp->th_flags & TH_RST) == 0) {
899 			struct mbuf *m0;
900 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
901 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
902 			    tcp->th_flags | TH_RST);
903 			if (m0 != NULL)
904 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
905 				    NULL);
906 		}
907 		FREE_PKT(m);
908 	} else if (code == ICMP6_UNREACH_ABORT &&
909 	    args->f_id.proto == IPPROTO_SCTP) {
910 		struct mbuf *m0;
911 		struct sctphdr *sctp;
912 		u_int32_t v_tag;
913 		int reflected;
914 
915 		sctp = (struct sctphdr *)((char *)ip6 + hlen);
916 		reflected = 1;
917 		v_tag = ntohl(sctp->v_tag);
918 		/* Investigate the first chunk header if available */
919 		if (m->m_len >= hlen + sizeof(struct sctphdr) +
920 		    sizeof(struct sctp_chunkhdr)) {
921 			struct sctp_chunkhdr *chunk;
922 
923 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
924 			switch (chunk->chunk_type) {
925 			case SCTP_INITIATION:
926 				/*
927 				 * Packets containing an INIT chunk MUST have
928 				 * a zero v-tag.
929 				 */
930 				if (v_tag != 0) {
931 					v_tag = 0;
932 					break;
933 				}
934 				/* INIT chunk MUST NOT be bundled */
935 				if (m->m_pkthdr.len >
936 				    hlen + sizeof(struct sctphdr) +
937 				    ntohs(chunk->chunk_length) + 3) {
938 					break;
939 				}
940 				/* Use the initiate tag if available */
941 				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
942 				    sizeof(struct sctp_chunkhdr) +
943 				    offsetof(struct sctp_init, a_rwnd))) {
944 					struct sctp_init *init;
945 
946 					init = (struct sctp_init *)(chunk + 1);
947 					v_tag = ntohl(init->initiate_tag);
948 					reflected = 0;
949 				}
950 				break;
951 			case SCTP_ABORT_ASSOCIATION:
952 				/*
953 				 * If the packet contains an ABORT chunk, don't
954 				 * reply.
955 				 * XXX: We should search through all chunks,
956 				 * but do not do that to avoid attacks.
957 				 */
958 				v_tag = 0;
959 				break;
960 			}
961 		}
962 		if (v_tag == 0) {
963 			m0 = NULL;
964 		} else {
965 			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
966 			    reflected);
967 		}
968 		if (m0 != NULL)
969 			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
970 		FREE_PKT(m);
971 	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
972 		/* Send an ICMPv6 unreach. */
973 #if 0
974 		/*
975 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
976 		 * as the contents are read. We need to m_adj() the
977 		 * needed amount.
978 		 * The mbuf will however be thrown away so we can adjust it.
979 		 * Remember we did an m_pullup on it already so we
980 		 * can make some assumptions about contiguousness.
981 		 */
982 		if (args->L3offset)
983 			m_adj(m, args->L3offset);
984 #endif
985 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
986 	} else
987 		FREE_PKT(m);
988 
989 	args->m = NULL;
990 }
991 
992 #endif /* INET6 */
993 
994 /*
995  * sends a reject message, consuming the mbuf passed as an argument.
996  */
997 static void
send_reject(struct ip_fw_args * args,int code,int iplen,struct ip * ip)998 send_reject(struct ip_fw_args *args, int code, int iplen, struct ip *ip)
999 {
1000 
1001 #if 0
1002 	/* XXX When ip is not guaranteed to be at mtod() we will
1003 	 * need to account for this */
1004 	 * The mbuf will however be thrown away so we can adjust it.
1005 	 * Remember we did an m_pullup on it already so we
1006 	 * can make some assumptions about contiguousness.
1007 	 */
1008 	if (args->L3offset)
1009 		m_adj(m, args->L3offset);
1010 #endif
1011 	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
1012 		/* Send an ICMP unreach */
1013 		icmp_error(args->m, ICMP_UNREACH, code, 0L, 0);
1014 	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
1015 		struct tcphdr *const tcp =
1016 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1017 		if ( (tcp->th_flags & TH_RST) == 0) {
1018 			struct mbuf *m;
1019 			m = ipfw_send_pkt(args->m, &(args->f_id),
1020 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1021 				tcp->th_flags | TH_RST);
1022 			if (m != NULL)
1023 				ip_output(m, NULL, NULL, 0, NULL, NULL);
1024 		}
1025 		FREE_PKT(args->m);
1026 	} else if (code == ICMP_REJECT_ABORT &&
1027 	    args->f_id.proto == IPPROTO_SCTP) {
1028 		struct mbuf *m;
1029 		struct sctphdr *sctp;
1030 		struct sctp_chunkhdr *chunk;
1031 		struct sctp_init *init;
1032 		u_int32_t v_tag;
1033 		int reflected;
1034 
1035 		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1036 		reflected = 1;
1037 		v_tag = ntohl(sctp->v_tag);
1038 		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1039 		    sizeof(struct sctp_chunkhdr)) {
1040 			/* Look at the first chunk header if available */
1041 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1042 			switch (chunk->chunk_type) {
1043 			case SCTP_INITIATION:
1044 				/*
1045 				 * Packets containing an INIT chunk MUST have
1046 				 * a zero v-tag.
1047 				 */
1048 				if (v_tag != 0) {
1049 					v_tag = 0;
1050 					break;
1051 				}
1052 				/* INIT chunk MUST NOT be bundled */
1053 				if (iplen >
1054 				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1055 				    ntohs(chunk->chunk_length) + 3) {
1056 					break;
1057 				}
1058 				/* Use the initiate tag if available */
1059 				if ((iplen >= (ip->ip_hl << 2) +
1060 				    sizeof(struct sctphdr) +
1061 				    sizeof(struct sctp_chunkhdr) +
1062 				    offsetof(struct sctp_init, a_rwnd))) {
1063 					init = (struct sctp_init *)(chunk + 1);
1064 					v_tag = ntohl(init->initiate_tag);
1065 					reflected = 0;
1066 				}
1067 				break;
1068 			case SCTP_ABORT_ASSOCIATION:
1069 				/*
1070 				 * If the packet contains an ABORT chunk, don't
1071 				 * reply.
1072 				 * XXX: We should search through all chunks,
1073 				 * but do not do that to avoid attacks.
1074 				 */
1075 				v_tag = 0;
1076 				break;
1077 			}
1078 		}
1079 		if (v_tag == 0) {
1080 			m = NULL;
1081 		} else {
1082 			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1083 			    reflected);
1084 		}
1085 		if (m != NULL)
1086 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1087 		FREE_PKT(args->m);
1088 	} else
1089 		FREE_PKT(args->m);
1090 	args->m = NULL;
1091 }
1092 
1093 /*
1094  * Support for uid/gid/jail lookup. These tests are expensive
1095  * (because we may need to look into the list of active sockets)
1096  * so we cache the results. ugid_lookupp is 0 if we have not
1097  * yet done a lookup, 1 if we succeeded, and -1 if we tried
1098  * and failed. The function always returns the match value.
1099  * We could actually spare the variable and use *uc, setting
1100  * it to '(void *)check_uidgid if we have no info, NULL if
1101  * we tried and failed, or any other value if successful.
1102  */
1103 static int
check_uidgid(ipfw_insn_u32 * insn,struct ip_fw_args * args,int * ugid_lookupp,struct ucred ** uc)1104 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1105     struct ucred **uc)
1106 {
1107 #if defined(USERSPACE)
1108 	return 0;	// not supported in userspace
1109 #else
1110 #ifndef __FreeBSD__
1111 	/* XXX */
1112 	return cred_check(insn, proto, oif,
1113 	    dst_ip, dst_port, src_ip, src_port,
1114 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1115 #else  /* FreeBSD */
1116 	struct in_addr src_ip, dst_ip;
1117 	struct inpcbinfo *pi;
1118 	struct ipfw_flow_id *id;
1119 	struct inpcb *pcb, *inp;
1120 	int lookupflags;
1121 	int match;
1122 
1123 	id = &args->f_id;
1124 	inp = args->inp;
1125 
1126 	/*
1127 	 * Check to see if the UDP or TCP stack supplied us with
1128 	 * the PCB. If so, rather then holding a lock and looking
1129 	 * up the PCB, we can use the one that was supplied.
1130 	 */
1131 	if (inp && *ugid_lookupp == 0) {
1132 		INP_LOCK_ASSERT(inp);
1133 		if (inp->inp_socket != NULL) {
1134 			*uc = crhold(inp->inp_cred);
1135 			*ugid_lookupp = 1;
1136 		} else
1137 			*ugid_lookupp = -1;
1138 	}
1139 	/*
1140 	 * If we have already been here and the packet has no
1141 	 * PCB entry associated with it, then we can safely
1142 	 * assume that this is a no match.
1143 	 */
1144 	if (*ugid_lookupp == -1)
1145 		return (0);
1146 	if (id->proto == IPPROTO_TCP) {
1147 		lookupflags = 0;
1148 		pi = &V_tcbinfo;
1149 	} else if (id->proto == IPPROTO_UDP) {
1150 		lookupflags = INPLOOKUP_WILDCARD;
1151 		pi = &V_udbinfo;
1152 	} else if (id->proto == IPPROTO_UDPLITE) {
1153 		lookupflags = INPLOOKUP_WILDCARD;
1154 		pi = &V_ulitecbinfo;
1155 	} else
1156 		return 0;
1157 	lookupflags |= INPLOOKUP_RLOCKPCB;
1158 	match = 0;
1159 	if (*ugid_lookupp == 0) {
1160 		if (id->addr_type == 6) {
1161 #ifdef INET6
1162 			if (args->flags & IPFW_ARGS_IN)
1163 				pcb = in6_pcblookup_mbuf(pi,
1164 				    &id->src_ip6, htons(id->src_port),
1165 				    &id->dst_ip6, htons(id->dst_port),
1166 				    lookupflags, NULL, args->m);
1167 			else
1168 				pcb = in6_pcblookup_mbuf(pi,
1169 				    &id->dst_ip6, htons(id->dst_port),
1170 				    &id->src_ip6, htons(id->src_port),
1171 				    lookupflags, args->ifp, args->m);
1172 #else
1173 			*ugid_lookupp = -1;
1174 			return (0);
1175 #endif
1176 		} else {
1177 			src_ip.s_addr = htonl(id->src_ip);
1178 			dst_ip.s_addr = htonl(id->dst_ip);
1179 			if (args->flags & IPFW_ARGS_IN)
1180 				pcb = in_pcblookup_mbuf(pi,
1181 				    src_ip, htons(id->src_port),
1182 				    dst_ip, htons(id->dst_port),
1183 				    lookupflags, NULL, args->m);
1184 			else
1185 				pcb = in_pcblookup_mbuf(pi,
1186 				    dst_ip, htons(id->dst_port),
1187 				    src_ip, htons(id->src_port),
1188 				    lookupflags, args->ifp, args->m);
1189 		}
1190 		if (pcb != NULL) {
1191 			INP_RLOCK_ASSERT(pcb);
1192 			*uc = crhold(pcb->inp_cred);
1193 			*ugid_lookupp = 1;
1194 			INP_RUNLOCK(pcb);
1195 		}
1196 		if (*ugid_lookupp == 0) {
1197 			/*
1198 			 * We tried and failed, set the variable to -1
1199 			 * so we will not try again on this packet.
1200 			 */
1201 			*ugid_lookupp = -1;
1202 			return (0);
1203 		}
1204 	}
1205 	if (insn->o.opcode == O_UID)
1206 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1207 	else if (insn->o.opcode == O_GID)
1208 		match = groupmember((gid_t)insn->d[0], *uc);
1209 	else if (insn->o.opcode == O_JAIL)
1210 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1211 	return (match);
1212 #endif /* __FreeBSD__ */
1213 #endif /* not supported in userspace */
1214 }
1215 
1216 /*
1217  * Helper function to set args with info on the rule after the matching
1218  * one. slot is precise, whereas we guess rule_id as they are
1219  * assigned sequentially.
1220  */
1221 static inline void
set_match(struct ip_fw_args * args,int slot,struct ip_fw_chain * chain)1222 set_match(struct ip_fw_args *args, int slot,
1223 	struct ip_fw_chain *chain)
1224 {
1225 	args->rule.chain_id = chain->id;
1226 	args->rule.slot = slot + 1; /* we use 0 as a marker */
1227 	args->rule.rule_id = 1 + chain->map[slot]->id;
1228 	args->rule.rulenum = chain->map[slot]->rulenum;
1229 	args->flags |= IPFW_ARGS_REF;
1230 }
1231 
1232 #ifndef LINEAR_SKIPTO
1233 /*
1234  * Helper function to enable cached rule lookups using
1235  * cached_id and cached_pos fields in ipfw rule.
1236  */
1237 static int
jump_fast(struct ip_fw_chain * chain,struct ip_fw * f,int num,int tablearg,int jump_backwards)1238 jump_fast(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1239     int tablearg, int jump_backwards)
1240 {
1241 	int f_pos;
1242 
1243 	/* If possible use cached f_pos (in f->cached_pos),
1244 	 * whose version is written in f->cached_id
1245 	 * (horrible hacks to avoid changing the ABI).
1246 	 */
1247 	if (num != IP_FW_TARG && f->cached_id == chain->id)
1248 		f_pos = f->cached_pos;
1249 	else {
1250 		int i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1251 		/* make sure we do not jump backward */
1252 		if (jump_backwards == 0 && i <= f->rulenum)
1253 			i = f->rulenum + 1;
1254 		if (chain->idxmap != NULL)
1255 			f_pos = chain->idxmap[i];
1256 		else
1257 			f_pos = ipfw_find_rule(chain, i, 0);
1258 		/* update the cache */
1259 		if (num != IP_FW_TARG) {
1260 			f->cached_id = chain->id;
1261 			f->cached_pos = f_pos;
1262 		}
1263 	}
1264 
1265 	return (f_pos);
1266 }
1267 #else
1268 /*
1269  * Helper function to enable real fast rule lookups.
1270  */
1271 static int
jump_linear(struct ip_fw_chain * chain,struct ip_fw * f,int num,int tablearg,int jump_backwards)1272 jump_linear(struct ip_fw_chain *chain, struct ip_fw *f, int num,
1273     int tablearg, int jump_backwards)
1274 {
1275 	int f_pos;
1276 
1277 	num = IP_FW_ARG_TABLEARG(chain, num, skipto);
1278 	/* make sure we do not jump backward */
1279 	if (jump_backwards == 0 && num <= f->rulenum)
1280 		num = f->rulenum + 1;
1281 	f_pos = chain->idxmap[num];
1282 
1283 	return (f_pos);
1284 }
1285 #endif
1286 
1287 #define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1288 /*
1289  * The main check routine for the firewall.
1290  *
1291  * All arguments are in args so we can modify them and return them
1292  * back to the caller.
1293  *
1294  * Parameters:
1295  *
1296  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1297  *		Starts with the IP header.
1298  *	args->L3offset	Number of bytes bypassed if we came from L2.
1299  *			e.g. often sizeof(eh)  ** NOTYET **
1300  *	args->ifp	Incoming or outgoing interface.
1301  *	args->divert_rule (in/out)
1302  *		Skip up to the first rule past this rule number;
1303  *		upon return, non-zero port number for divert or tee.
1304  *
1305  *	args->rule	Pointer to the last matching rule (in/out)
1306  *	args->next_hop	Socket we are forwarding to (out).
1307  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1308  *	args->f_id	Addresses grabbed from the packet (out)
1309  * 	args->rule.info	a cookie depending on rule action
1310  *
1311  * Return value:
1312  *
1313  *	IP_FW_PASS	the packet must be accepted
1314  *	IP_FW_DENY	the packet must be dropped
1315  *	IP_FW_DIVERT	divert packet, port in m_tag
1316  *	IP_FW_TEE	tee packet, port in m_tag
1317  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1318  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1319  *		args->rule contains the matching rule,
1320  *		args->rule.info has additional information.
1321  *
1322  */
1323 int
ipfw_chk(struct ip_fw_args * args)1324 ipfw_chk(struct ip_fw_args *args)
1325 {
1326 
1327 	/*
1328 	 * Local variables holding state while processing a packet:
1329 	 *
1330 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1331 	 * are some assumption on the values of the variables, which
1332 	 * are documented here. Should you change them, please check
1333 	 * the implementation of the various instructions to make sure
1334 	 * that they still work.
1335 	 *
1336 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1337 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1338 	 *	consumes the packet because it calls send_reject().
1339 	 *	XXX This has to change, so that ipfw_chk() never modifies
1340 	 *	or consumes the buffer.
1341 	 *	OR
1342 	 * args->mem	Pointer to contigous memory chunk.
1343 	 * ip	Is the beginning of the ip(4 or 6) header.
1344 	 * eh	Ethernet header in case if input is Layer2.
1345 	 */
1346 	struct mbuf *m;
1347 	struct ip *ip;
1348 	struct ether_header *eh;
1349 
1350 	/*
1351 	 * For rules which contain uid/gid or jail constraints, cache
1352 	 * a copy of the users credentials after the pcb lookup has been
1353 	 * executed. This will speed up the processing of rules with
1354 	 * these types of constraints, as well as decrease contention
1355 	 * on pcb related locks.
1356 	 */
1357 #ifndef __FreeBSD__
1358 	struct bsd_ucred ucred_cache;
1359 #else
1360 	struct ucred *ucred_cache = NULL;
1361 #endif
1362 	int ucred_lookup = 0;
1363 	int f_pos = 0;		/* index of current rule in the array */
1364 	int retval = 0;
1365 	struct ifnet *oif, *iif;
1366 
1367 	/*
1368 	 * hlen	The length of the IP header.
1369 	 */
1370 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1371 
1372 	/*
1373 	 * offset	The offset of a fragment. offset != 0 means that
1374 	 *	we have a fragment at this offset of an IPv4 packet.
1375 	 *	offset == 0 means that (if this is an IPv4 packet)
1376 	 *	this is the first or only fragment.
1377 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1378 	 *	or there is a single packet fragment (fragment header added
1379 	 *	without needed).  We will treat a single packet fragment as if
1380 	 *	there was no fragment header (or log/block depending on the
1381 	 *	V_fw_permit_single_frag6 sysctl setting).
1382 	 */
1383 	u_short offset = 0;
1384 	u_short ip6f_mf = 0;
1385 
1386 	/*
1387 	 * Local copies of addresses. They are only valid if we have
1388 	 * an IP packet.
1389 	 *
1390 	 * proto	The protocol. Set to 0 for non-ip packets,
1391 	 *	or to the protocol read from the packet otherwise.
1392 	 *	proto != 0 means that we have an IPv4 packet.
1393 	 *
1394 	 * src_port, dst_port	port numbers, in HOST format. Only
1395 	 *	valid for TCP and UDP packets.
1396 	 *
1397 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1398 	 *	Only valid for IPv4 packets.
1399 	 */
1400 	uint8_t proto;
1401 	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1402 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1403 	int iplen = 0;
1404 	int pktlen;
1405 
1406 	struct ipfw_dyn_info dyn_info;
1407 	struct ip_fw *q = NULL;
1408 	struct ip_fw_chain *chain = &V_layer3_chain;
1409 
1410 	/*
1411 	 * We store in ulp a pointer to the upper layer protocol header.
1412 	 * In the ipv4 case this is easy to determine from the header,
1413 	 * but for ipv6 we might have some additional headers in the middle.
1414 	 * ulp is NULL if not found.
1415 	 */
1416 	void *ulp = NULL;		/* upper layer protocol pointer. */
1417 
1418 	/* XXX ipv6 variables */
1419 	int is_ipv6 = 0;
1420 	uint8_t	icmp6_type = 0;
1421 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1422 	/* end of ipv6 variables */
1423 
1424 	int is_ipv4 = 0;
1425 
1426 	int done = 0;		/* flag to exit the outer loop */
1427 	IPFW_RLOCK_TRACKER;
1428 	bool mem;
1429 
1430 	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1431 		if (args->flags & IPFW_ARGS_ETHER) {
1432 			eh = (struct ether_header *)args->mem;
1433 			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1434 				ip = (struct ip *)
1435 				    ((struct ether_vlan_header *)eh + 1);
1436 			else
1437 				ip = (struct ip *)(eh + 1);
1438 		} else {
1439 			eh = NULL;
1440 			ip = (struct ip *)args->mem;
1441 		}
1442 		pktlen = IPFW_ARGS_LENGTH(args->flags);
1443 		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1444 	} else {
1445 		m = args->m;
1446 		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1447 			return (IP_FW_PASS);	/* accept */
1448 		if (args->flags & IPFW_ARGS_ETHER) {
1449 	                /* We need some amount of data to be contiguous. */
1450 			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1451 			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1452 			    max_protohdr))) == NULL)
1453 				goto pullup_failed;
1454 			eh = mtod(m, struct ether_header *);
1455 			ip = (struct ip *)(eh + 1);
1456 		} else {
1457 			eh = NULL;
1458 			ip = mtod(m, struct ip *);
1459 		}
1460 		pktlen = m->m_pkthdr.len;
1461 		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1462 	}
1463 
1464 	dst_ip.s_addr = 0;		/* make sure it is initialized */
1465 	src_ip.s_addr = 0;		/* make sure it is initialized */
1466 	src_port = dst_port = 0;
1467 
1468 	DYN_INFO_INIT(&dyn_info);
1469 /*
1470  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1471  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1472  * pointer might become stale after other pullups (but we never use it
1473  * this way).
1474  */
1475 #define	PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1476 #define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1477 #define	_PULLUP_LOCKED(_len, p, T, unlock)			\
1478 do {								\
1479 	int x = (_len) + T + EHLEN;				\
1480 	if (mem) {						\
1481 		if (__predict_false(pktlen < x)) {		\
1482 			unlock;					\
1483 			goto pullup_failed;			\
1484 		}						\
1485 		p = (char *)args->mem + (_len) + EHLEN;		\
1486 	} else {						\
1487 		if (__predict_false((m)->m_len < x)) {		\
1488 			args->m = m = m_pullup(m, x);		\
1489 			if (m == NULL) {			\
1490 				unlock;				\
1491 				goto pullup_failed;		\
1492 			}					\
1493 		}						\
1494 		p = mtod(m, char *) + (_len) + EHLEN;		\
1495 	}							\
1496 } while (0)
1497 
1498 #define	PULLUP_LEN(_len, p, T)	_PULLUP_LOCKED(_len, p, T, )
1499 #define	PULLUP_LEN_LOCKED(_len, p, T)	\
1500     _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain));	\
1501     UPDATE_POINTERS()
1502 /*
1503  * In case pointers got stale after pullups, update them.
1504  */
1505 #define	UPDATE_POINTERS()					\
1506 do {								\
1507 	if (!mem) {						\
1508 		if (eh != NULL) {				\
1509 			eh = mtod(m, struct ether_header *);	\
1510 			ip = (struct ip *)(eh + 1);		\
1511 		} else						\
1512 			ip = mtod(m, struct ip *);		\
1513 		args->m = m;					\
1514 	}							\
1515 } while (0)
1516 
1517 	/* Identify IP packets and fill up variables. */
1518 	if (pktlen >= sizeof(struct ip6_hdr) &&
1519 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1520 	    ip->ip_v == 6) {
1521 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1522 
1523 		is_ipv6 = 1;
1524 		args->flags |= IPFW_ARGS_IP6;
1525 		hlen = sizeof(struct ip6_hdr);
1526 		proto = ip6->ip6_nxt;
1527 		/* Search extension headers to find upper layer protocols */
1528 		while (ulp == NULL && offset == 0) {
1529 			switch (proto) {
1530 			case IPPROTO_ICMPV6:
1531 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1532 				icmp6_type = ICMP6(ulp)->icmp6_type;
1533 				break;
1534 
1535 			case IPPROTO_TCP:
1536 				PULLUP_TO(hlen, ulp, struct tcphdr);
1537 				dst_port = TCP(ulp)->th_dport;
1538 				src_port = TCP(ulp)->th_sport;
1539 				/* save flags for dynamic rules */
1540 				args->f_id._flags = TCP(ulp)->th_flags;
1541 				break;
1542 
1543 			case IPPROTO_SCTP:
1544 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1545 				    sizeof(struct sctp_chunkhdr) +
1546 				    offsetof(struct sctp_init, a_rwnd))
1547 					PULLUP_LEN(hlen, ulp,
1548 					    sizeof(struct sctphdr) +
1549 					    sizeof(struct sctp_chunkhdr) +
1550 					    offsetof(struct sctp_init, a_rwnd));
1551 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1552 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1553 				else
1554 					PULLUP_LEN(hlen, ulp,
1555 					    sizeof(struct sctphdr));
1556 				src_port = SCTP(ulp)->src_port;
1557 				dst_port = SCTP(ulp)->dest_port;
1558 				break;
1559 
1560 			case IPPROTO_UDP:
1561 			case IPPROTO_UDPLITE:
1562 				PULLUP_TO(hlen, ulp, struct udphdr);
1563 				dst_port = UDP(ulp)->uh_dport;
1564 				src_port = UDP(ulp)->uh_sport;
1565 				break;
1566 
1567 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1568 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1569 				ext_hd |= EXT_HOPOPTS;
1570 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1571 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1572 				ulp = NULL;
1573 				break;
1574 
1575 			case IPPROTO_ROUTING:	/* RFC 2460 */
1576 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1577 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1578 				case 0:
1579 					ext_hd |= EXT_RTHDR0;
1580 					break;
1581 				case 2:
1582 					ext_hd |= EXT_RTHDR2;
1583 					break;
1584 				default:
1585 					if (V_fw_verbose)
1586 						printf("IPFW2: IPV6 - Unknown "
1587 						    "Routing Header type(%d)\n",
1588 						    ((struct ip6_rthdr *)
1589 						    ulp)->ip6r_type);
1590 					if (V_fw_deny_unknown_exthdrs)
1591 					    return (IP_FW_DENY);
1592 					break;
1593 				}
1594 				ext_hd |= EXT_ROUTING;
1595 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1596 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1597 				ulp = NULL;
1598 				break;
1599 
1600 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1601 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1602 				ext_hd |= EXT_FRAGMENT;
1603 				hlen += sizeof (struct ip6_frag);
1604 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1605 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1606 					IP6F_OFF_MASK;
1607 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1608 					IP6F_MORE_FRAG;
1609 				if (V_fw_permit_single_frag6 == 0 &&
1610 				    offset == 0 && ip6f_mf == 0) {
1611 					if (V_fw_verbose)
1612 						printf("IPFW2: IPV6 - Invalid "
1613 						    "Fragment Header\n");
1614 					if (V_fw_deny_unknown_exthdrs)
1615 					    return (IP_FW_DENY);
1616 					break;
1617 				}
1618 				args->f_id.extra =
1619 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1620 				ulp = NULL;
1621 				break;
1622 
1623 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1624 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1625 				ext_hd |= EXT_DSTOPTS;
1626 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1627 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1628 				ulp = NULL;
1629 				break;
1630 
1631 			case IPPROTO_AH:	/* RFC 2402 */
1632 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1633 				ext_hd |= EXT_AH;
1634 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1635 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1636 				ulp = NULL;
1637 				break;
1638 
1639 			case IPPROTO_ESP:	/* RFC 2406 */
1640 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1641 				/* Anything past Seq# is variable length and
1642 				 * data past this ext. header is encrypted. */
1643 				ext_hd |= EXT_ESP;
1644 				break;
1645 
1646 			case IPPROTO_NONE:	/* RFC 2460 */
1647 				/*
1648 				 * Packet ends here, and IPv6 header has
1649 				 * already been pulled up. If ip6e_len!=0
1650 				 * then octets must be ignored.
1651 				 */
1652 				ulp = ip; /* non-NULL to get out of loop. */
1653 				break;
1654 
1655 			case IPPROTO_OSPFIGP:
1656 				/* XXX OSPF header check? */
1657 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1658 				break;
1659 
1660 			case IPPROTO_PIM:
1661 				/* XXX PIM header check? */
1662 				PULLUP_TO(hlen, ulp, struct pim);
1663 				break;
1664 
1665 			case IPPROTO_GRE:	/* RFC 1701 */
1666 				/* XXX GRE header check? */
1667 				PULLUP_TO(hlen, ulp, struct grehdr);
1668 				break;
1669 
1670 			case IPPROTO_CARP:
1671 				PULLUP_TO(hlen, ulp, offsetof(
1672 				    struct carp_header, carp_counter));
1673 				if (CARP_ADVERTISEMENT !=
1674 				    ((struct carp_header *)ulp)->carp_type)
1675 					return (IP_FW_DENY);
1676 				break;
1677 
1678 			case IPPROTO_IPV6:	/* RFC 2893 */
1679 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1680 				break;
1681 
1682 			case IPPROTO_IPV4:	/* RFC 2893 */
1683 				PULLUP_TO(hlen, ulp, struct ip);
1684 				break;
1685 
1686 			default:
1687 				if (V_fw_verbose)
1688 					printf("IPFW2: IPV6 - Unknown "
1689 					    "Extension Header(%d), ext_hd=%x\n",
1690 					     proto, ext_hd);
1691 				if (V_fw_deny_unknown_exthdrs)
1692 				    return (IP_FW_DENY);
1693 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1694 				break;
1695 			} /*switch */
1696 		}
1697 		UPDATE_POINTERS();
1698 		ip6 = (struct ip6_hdr *)ip;
1699 		args->f_id.addr_type = 6;
1700 		args->f_id.src_ip6 = ip6->ip6_src;
1701 		args->f_id.dst_ip6 = ip6->ip6_dst;
1702 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1703 		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1704 	} else if (pktlen >= sizeof(struct ip) &&
1705 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1706 	    ip->ip_v == 4) {
1707 		is_ipv4 = 1;
1708 		args->flags |= IPFW_ARGS_IP4;
1709 		hlen = ip->ip_hl << 2;
1710 		/*
1711 		 * Collect parameters into local variables for faster
1712 		 * matching.
1713 		 */
1714 		proto = ip->ip_p;
1715 		src_ip = ip->ip_src;
1716 		dst_ip = ip->ip_dst;
1717 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1718 		iplen = ntohs(ip->ip_len);
1719 
1720 		if (offset == 0) {
1721 			switch (proto) {
1722 			case IPPROTO_TCP:
1723 				PULLUP_TO(hlen, ulp, struct tcphdr);
1724 				dst_port = TCP(ulp)->th_dport;
1725 				src_port = TCP(ulp)->th_sport;
1726 				/* save flags for dynamic rules */
1727 				args->f_id._flags = TCP(ulp)->th_flags;
1728 				break;
1729 
1730 			case IPPROTO_SCTP:
1731 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1732 				    sizeof(struct sctp_chunkhdr) +
1733 				    offsetof(struct sctp_init, a_rwnd))
1734 					PULLUP_LEN(hlen, ulp,
1735 					    sizeof(struct sctphdr) +
1736 					    sizeof(struct sctp_chunkhdr) +
1737 					    offsetof(struct sctp_init, a_rwnd));
1738 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1739 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1740 				else
1741 					PULLUP_LEN(hlen, ulp,
1742 					    sizeof(struct sctphdr));
1743 				src_port = SCTP(ulp)->src_port;
1744 				dst_port = SCTP(ulp)->dest_port;
1745 				break;
1746 
1747 			case IPPROTO_UDP:
1748 			case IPPROTO_UDPLITE:
1749 				PULLUP_TO(hlen, ulp, struct udphdr);
1750 				dst_port = UDP(ulp)->uh_dport;
1751 				src_port = UDP(ulp)->uh_sport;
1752 				break;
1753 
1754 			case IPPROTO_ICMP:
1755 				PULLUP_TO(hlen, ulp, struct icmphdr);
1756 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1757 				break;
1758 
1759 			default:
1760 				break;
1761 			}
1762 		} else {
1763 			if (offset == 1 && proto == IPPROTO_TCP) {
1764 				/* RFC 3128 */
1765 				goto pullup_failed;
1766 			}
1767 		}
1768 
1769 		UPDATE_POINTERS();
1770 		args->f_id.addr_type = 4;
1771 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1772 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1773 	} else {
1774 		proto = 0;
1775 		dst_ip.s_addr = src_ip.s_addr = 0;
1776 
1777 		args->f_id.addr_type = 1; /* XXX */
1778 	}
1779 #undef PULLUP_TO
1780 	pktlen = iplen < pktlen ? iplen: pktlen;
1781 
1782 	/* Properly initialize the rest of f_id */
1783 	args->f_id.proto = proto;
1784 	args->f_id.src_port = src_port = ntohs(src_port);
1785 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1786 
1787 	IPFW_PF_RLOCK(chain);
1788 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1789 		IPFW_PF_RUNLOCK(chain);
1790 		return (IP_FW_PASS);	/* accept */
1791 	}
1792 	if (args->flags & IPFW_ARGS_REF) {
1793 		/*
1794 		 * Packet has already been tagged as a result of a previous
1795 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1796 		 * REASS, NETGRAPH, DIVERT/TEE...)
1797 		 * Validate the slot and continue from the next one
1798 		 * if still present, otherwise do a lookup.
1799 		 */
1800 		f_pos = (args->rule.chain_id == chain->id) ?
1801 		    args->rule.slot :
1802 		    ipfw_find_rule(chain, args->rule.rulenum,
1803 			args->rule.rule_id);
1804 	} else {
1805 		f_pos = 0;
1806 	}
1807 
1808 	if (args->flags & IPFW_ARGS_IN) {
1809 		iif = args->ifp;
1810 		oif = NULL;
1811 	} else {
1812 		MPASS(args->flags & IPFW_ARGS_OUT);
1813 		iif = mem ? NULL : m_rcvif(m);
1814 		oif = args->ifp;
1815 	}
1816 
1817 	/*
1818 	 * Now scan the rules, and parse microinstructions for each rule.
1819 	 * We have two nested loops and an inner switch. Sometimes we
1820 	 * need to break out of one or both loops, or re-enter one of
1821 	 * the loops with updated variables. Loop variables are:
1822 	 *
1823 	 *	f_pos (outer loop) points to the current rule.
1824 	 *		On output it points to the matching rule.
1825 	 *	done (outer loop) is used as a flag to break the loop.
1826 	 *	l (inner loop)	residual length of current rule.
1827 	 *		cmd points to the current microinstruction.
1828 	 *
1829 	 * We break the inner loop by setting l=0 and possibly
1830 	 * cmdlen=0 if we don't want to advance cmd.
1831 	 * We break the outer loop by setting done=1
1832 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1833 	 * as needed.
1834 	 */
1835 	for (; f_pos < chain->n_rules; f_pos++) {
1836 		ipfw_insn *cmd;
1837 		uint32_t tablearg = 0;
1838 		int l, cmdlen, skip_or; /* skip rest of OR block */
1839 		struct ip_fw *f;
1840 
1841 		f = chain->map[f_pos];
1842 		if (V_set_disable & (1 << f->set) )
1843 			continue;
1844 
1845 		skip_or = 0;
1846 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1847 		    l -= cmdlen, cmd += cmdlen) {
1848 			int match;
1849 
1850 			/*
1851 			 * check_body is a jump target used when we find a
1852 			 * CHECK_STATE, and need to jump to the body of
1853 			 * the target rule.
1854 			 */
1855 
1856 /* check_body: */
1857 			cmdlen = F_LEN(cmd);
1858 			/*
1859 			 * An OR block (insn_1 || .. || insn_n) has the
1860 			 * F_OR bit set in all but the last instruction.
1861 			 * The first match will set "skip_or", and cause
1862 			 * the following instructions to be skipped until
1863 			 * past the one with the F_OR bit clear.
1864 			 */
1865 			if (skip_or) {		/* skip this instruction */
1866 				if ((cmd->len & F_OR) == 0)
1867 					skip_or = 0;	/* next one is good */
1868 				continue;
1869 			}
1870 			match = 0; /* set to 1 if we succeed */
1871 
1872 			switch (cmd->opcode) {
1873 			/*
1874 			 * The first set of opcodes compares the packet's
1875 			 * fields with some pattern, setting 'match' if a
1876 			 * match is found. At the end of the loop there is
1877 			 * logic to deal with F_NOT and F_OR flags associated
1878 			 * with the opcode.
1879 			 */
1880 			case O_NOP:
1881 				match = 1;
1882 				break;
1883 
1884 			case O_FORWARD_MAC:
1885 				printf("ipfw: opcode %d unimplemented\n",
1886 				    cmd->opcode);
1887 				break;
1888 
1889 			case O_GID:
1890 			case O_UID:
1891 			case O_JAIL:
1892 				/*
1893 				 * We only check offset == 0 && proto != 0,
1894 				 * as this ensures that we have a
1895 				 * packet with the ports info.
1896 				 */
1897 				if (offset != 0)
1898 					break;
1899 				if (proto == IPPROTO_TCP ||
1900 				    proto == IPPROTO_UDP ||
1901 				    proto == IPPROTO_UDPLITE)
1902 					match = check_uidgid(
1903 						    (ipfw_insn_u32 *)cmd,
1904 						    args, &ucred_lookup,
1905 #ifdef __FreeBSD__
1906 						    &ucred_cache);
1907 #else
1908 						    (void *)&ucred_cache);
1909 #endif
1910 				break;
1911 
1912 			case O_RECV:
1913 				match = iface_match(iif, (ipfw_insn_if *)cmd,
1914 				    chain, &tablearg);
1915 				break;
1916 
1917 			case O_XMIT:
1918 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1919 				    chain, &tablearg);
1920 				break;
1921 
1922 			case O_VIA:
1923 				match = iface_match(args->ifp,
1924 				    (ipfw_insn_if *)cmd, chain, &tablearg);
1925 				break;
1926 
1927 			case O_MACADDR2:
1928 				if (args->flags & IPFW_ARGS_ETHER) {
1929 					u_int32_t *want = (u_int32_t *)
1930 						((ipfw_insn_mac *)cmd)->addr;
1931 					u_int32_t *mask = (u_int32_t *)
1932 						((ipfw_insn_mac *)cmd)->mask;
1933 					u_int32_t *hdr = (u_int32_t *)eh;
1934 
1935 					match =
1936 					    ( want[0] == (hdr[0] & mask[0]) &&
1937 					      want[1] == (hdr[1] & mask[1]) &&
1938 					      want[2] == (hdr[2] & mask[2]) );
1939 				}
1940 				break;
1941 
1942 			case O_MAC_TYPE:
1943 				if (args->flags & IPFW_ARGS_ETHER) {
1944 					u_int16_t *p =
1945 					    ((ipfw_insn_u16 *)cmd)->ports;
1946 					int i;
1947 
1948 					for (i = cmdlen - 1; !match && i>0;
1949 					    i--, p += 2)
1950 						match =
1951 						    (ntohs(eh->ether_type) >=
1952 						    p[0] &&
1953 						    ntohs(eh->ether_type) <=
1954 						    p[1]);
1955 				}
1956 				break;
1957 
1958 			case O_FRAG:
1959 				if (is_ipv4) {
1960 					/*
1961 					 * Since flags_match() works with
1962 					 * uint8_t we pack ip_off into 8 bits.
1963 					 * For this match offset is a boolean.
1964 					 */
1965 					match = flags_match(cmd,
1966 					    ((ntohs(ip->ip_off) & ~IP_OFFMASK)
1967 					    >> 8) | (offset != 0));
1968 				} else {
1969 					/*
1970 					 * Compatiblity: historically bare
1971 					 * "frag" would match IPv6 fragments.
1972 					 */
1973 					match = (cmd->arg1 == 0x1 &&
1974 					    (offset != 0));
1975 				}
1976 				break;
1977 
1978 			case O_IN:	/* "out" is "not in" */
1979 				match = (oif == NULL);
1980 				break;
1981 
1982 			case O_LAYER2:
1983 				match = (args->flags & IPFW_ARGS_ETHER);
1984 				break;
1985 
1986 			case O_DIVERTED:
1987 				if ((args->flags & IPFW_ARGS_REF) == 0)
1988 					break;
1989 				/*
1990 				 * For diverted packets, args->rule.info
1991 				 * contains the divert port (in host format)
1992 				 * reason and direction.
1993 				 */
1994 				match = ((args->rule.info & IPFW_IS_MASK) ==
1995 				    IPFW_IS_DIVERT) && (
1996 				    ((args->rule.info & IPFW_INFO_IN) ?
1997 					1: 2) & cmd->arg1);
1998 				break;
1999 
2000 			case O_PROTO:
2001 				/*
2002 				 * We do not allow an arg of 0 so the
2003 				 * check of "proto" only suffices.
2004 				 */
2005 				match = (proto == cmd->arg1);
2006 				break;
2007 
2008 			case O_IP_SRC:
2009 				match = is_ipv4 &&
2010 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2011 				    src_ip.s_addr);
2012 				break;
2013 
2014 			case O_IP_DST_LOOKUP:
2015 			{
2016 				void *pkey;
2017 				uint32_t vidx, key;
2018 				uint16_t keylen;
2019 
2020 				if (cmdlen > F_INSN_SIZE(ipfw_insn_u32)) {
2021 					/* Determine lookup key type */
2022 					vidx = ((ipfw_insn_u32 *)cmd)->d[1];
2023 					if (vidx != 4 /* uid */ &&
2024 					    vidx != 5 /* jail */ &&
2025 					    is_ipv6 == 0 && is_ipv4 == 0)
2026 						break;
2027 					/* Determine key length */
2028 					if (vidx == 0 /* dst-ip */ ||
2029 					    vidx == 1 /* src-ip */)
2030 						keylen = is_ipv6 ?
2031 						    sizeof(struct in6_addr):
2032 						    sizeof(in_addr_t);
2033 					else {
2034 						keylen = sizeof(key);
2035 						pkey = &key;
2036 					}
2037 					if (vidx == 0 /* dst-ip */)
2038 						pkey = is_ipv4 ? (void *)&dst_ip:
2039 						    (void *)&args->f_id.dst_ip6;
2040 					else if (vidx == 1 /* src-ip */)
2041 						pkey = is_ipv4 ? (void *)&src_ip:
2042 						    (void *)&args->f_id.src_ip6;
2043 					else if (vidx == 6 /* dscp */) {
2044 						if (is_ipv4)
2045 							key = ip->ip_tos >> 2;
2046 						else {
2047 							key = args->f_id.flow_id6;
2048 							key = (key & 0x0f) << 2 |
2049 							    (key & 0xf000) >> 14;
2050 						}
2051 						key &= 0x3f;
2052 					} else if (vidx == 2 /* dst-port */ ||
2053 					    vidx == 3 /* src-port */) {
2054 						/* Skip fragments */
2055 						if (offset != 0)
2056 							break;
2057 						/* Skip proto without ports */
2058 						if (proto != IPPROTO_TCP &&
2059 						    proto != IPPROTO_UDP &&
2060 						    proto != IPPROTO_UDPLITE &&
2061 						    proto != IPPROTO_SCTP)
2062 							break;
2063 						if (vidx == 2 /* dst-port */)
2064 							key = dst_port;
2065 						else
2066 							key = src_port;
2067 					}
2068 #ifndef USERSPACE
2069 					else if (vidx == 4 /* uid */ ||
2070 					    vidx == 5 /* jail */) {
2071 						check_uidgid(
2072 						    (ipfw_insn_u32 *)cmd,
2073 						    args, &ucred_lookup,
2074 #ifdef __FreeBSD__
2075 						    &ucred_cache);
2076 						if (vidx == 4 /* uid */)
2077 							key = ucred_cache->cr_uid;
2078 						else if (vidx == 5 /* jail */)
2079 							key = ucred_cache->cr_prison->pr_id;
2080 #else /* !__FreeBSD__ */
2081 						    (void *)&ucred_cache);
2082 						if (vidx == 4 /* uid */)
2083 							key = ucred_cache.uid;
2084 						else if (vidx == 5 /* jail */)
2085 							key = ucred_cache.xid;
2086 #endif /* !__FreeBSD__ */
2087 					}
2088 #endif /* !USERSPACE */
2089 					else
2090 						break;
2091 					match = ipfw_lookup_table(chain,
2092 					    cmd->arg1, keylen, pkey, &vidx);
2093 					if (!match)
2094 						break;
2095 					tablearg = vidx;
2096 					break;
2097 				}
2098 				/* cmdlen =< F_INSN_SIZE(ipfw_insn_u32) */
2099 				/* FALLTHROUGH */
2100 			}
2101 			case O_IP_SRC_LOOKUP:
2102 			{
2103 				void *pkey;
2104 				uint32_t vidx;
2105 				uint16_t keylen;
2106 
2107 				if (is_ipv4) {
2108 					keylen = sizeof(in_addr_t);
2109 					if (cmd->opcode == O_IP_DST_LOOKUP)
2110 						pkey = &dst_ip;
2111 					else
2112 						pkey = &src_ip;
2113 				} else if (is_ipv6) {
2114 					keylen = sizeof(struct in6_addr);
2115 					if (cmd->opcode == O_IP_DST_LOOKUP)
2116 						pkey = &args->f_id.dst_ip6;
2117 					else
2118 						pkey = &args->f_id.src_ip6;
2119 				} else
2120 					break;
2121 				match = ipfw_lookup_table(chain, cmd->arg1,
2122 				    keylen, pkey, &vidx);
2123 				if (!match)
2124 					break;
2125 				if (cmdlen == F_INSN_SIZE(ipfw_insn_u32)) {
2126 					match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2127 					    TARG_VAL(chain, vidx, tag);
2128 					if (!match)
2129 						break;
2130 				}
2131 				tablearg = vidx;
2132 				break;
2133 			}
2134 
2135 			case O_IP_FLOW_LOOKUP:
2136 				{
2137 					uint32_t v = 0;
2138 					match = ipfw_lookup_table(chain,
2139 					    cmd->arg1, 0, &args->f_id, &v);
2140 					if (!match)
2141 						break;
2142 					if (cmdlen == F_INSN_SIZE(ipfw_insn_u32))
2143 						match = ((ipfw_insn_u32 *)cmd)->d[0] ==
2144 						    TARG_VAL(chain, v, tag);
2145 					if (match)
2146 						tablearg = v;
2147 				}
2148 				break;
2149 			case O_IP_SRC_MASK:
2150 			case O_IP_DST_MASK:
2151 				if (is_ipv4) {
2152 				    uint32_t a =
2153 					(cmd->opcode == O_IP_DST_MASK) ?
2154 					    dst_ip.s_addr : src_ip.s_addr;
2155 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2156 				    int i = cmdlen-1;
2157 
2158 				    for (; !match && i>0; i-= 2, p+= 2)
2159 					match = (p[0] == (a & p[1]));
2160 				}
2161 				break;
2162 
2163 			case O_IP_SRC_ME:
2164 				if (is_ipv4) {
2165 					match = in_localip(src_ip);
2166 					break;
2167 				}
2168 #ifdef INET6
2169 				/* FALLTHROUGH */
2170 			case O_IP6_SRC_ME:
2171 				match = is_ipv6 &&
2172 				    ipfw_localip6(&args->f_id.src_ip6);
2173 #endif
2174 				break;
2175 
2176 			case O_IP_DST_SET:
2177 			case O_IP_SRC_SET:
2178 				if (is_ipv4) {
2179 					u_int32_t *d = (u_int32_t *)(cmd+1);
2180 					u_int32_t addr =
2181 					    cmd->opcode == O_IP_DST_SET ?
2182 						args->f_id.dst_ip :
2183 						args->f_id.src_ip;
2184 
2185 					    if (addr < d[0])
2186 						    break;
2187 					    addr -= d[0]; /* subtract base */
2188 					    match = (addr < cmd->arg1) &&
2189 						( d[ 1 + (addr>>5)] &
2190 						  (1<<(addr & 0x1f)) );
2191 				}
2192 				break;
2193 
2194 			case O_IP_DST:
2195 				match = is_ipv4 &&
2196 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2197 				    dst_ip.s_addr);
2198 				break;
2199 
2200 			case O_IP_DST_ME:
2201 				if (is_ipv4) {
2202 					match = in_localip(dst_ip);
2203 					break;
2204 				}
2205 #ifdef INET6
2206 				/* FALLTHROUGH */
2207 			case O_IP6_DST_ME:
2208 				match = is_ipv6 &&
2209 				    ipfw_localip6(&args->f_id.dst_ip6);
2210 #endif
2211 				break;
2212 
2213 			case O_IP_SRCPORT:
2214 			case O_IP_DSTPORT:
2215 				/*
2216 				 * offset == 0 && proto != 0 is enough
2217 				 * to guarantee that we have a
2218 				 * packet with port info.
2219 				 */
2220 				if ((proto == IPPROTO_UDP ||
2221 				    proto == IPPROTO_UDPLITE ||
2222 				    proto == IPPROTO_TCP ||
2223 				    proto == IPPROTO_SCTP) && offset == 0) {
2224 					u_int16_t x =
2225 					    (cmd->opcode == O_IP_SRCPORT) ?
2226 						src_port : dst_port ;
2227 					u_int16_t *p =
2228 					    ((ipfw_insn_u16 *)cmd)->ports;
2229 					int i;
2230 
2231 					for (i = cmdlen - 1; !match && i>0;
2232 					    i--, p += 2)
2233 						match = (x>=p[0] && x<=p[1]);
2234 				}
2235 				break;
2236 
2237 			case O_ICMPTYPE:
2238 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2239 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2240 				break;
2241 
2242 #ifdef INET6
2243 			case O_ICMP6TYPE:
2244 				match = is_ipv6 && offset == 0 &&
2245 				    proto==IPPROTO_ICMPV6 &&
2246 				    icmp6type_match(
2247 					ICMP6(ulp)->icmp6_type,
2248 					(ipfw_insn_u32 *)cmd);
2249 				break;
2250 #endif /* INET6 */
2251 
2252 			case O_IPOPT:
2253 				match = (is_ipv4 &&
2254 				    ipopts_match(ip, cmd) );
2255 				break;
2256 
2257 			case O_IPVER:
2258 				match = ((is_ipv4 || is_ipv6) &&
2259 				    cmd->arg1 == ip->ip_v);
2260 				break;
2261 
2262 			case O_IPID:
2263 			case O_IPTTL:
2264 				if (!is_ipv4)
2265 					break;
2266 			case O_IPLEN:
2267 				{	/* only for IP packets */
2268 				    uint16_t x;
2269 				    uint16_t *p;
2270 				    int i;
2271 
2272 				    if (cmd->opcode == O_IPLEN)
2273 					x = iplen;
2274 				    else if (cmd->opcode == O_IPTTL)
2275 					x = ip->ip_ttl;
2276 				    else /* must be IPID */
2277 					x = ntohs(ip->ip_id);
2278 				    if (cmdlen == 1) {
2279 					match = (cmd->arg1 == x);
2280 					break;
2281 				    }
2282 				    /* otherwise we have ranges */
2283 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2284 				    i = cmdlen - 1;
2285 				    for (; !match && i>0; i--, p += 2)
2286 					match = (x >= p[0] && x <= p[1]);
2287 				}
2288 				break;
2289 
2290 			case O_IPPRECEDENCE:
2291 				match = (is_ipv4 &&
2292 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2293 				break;
2294 
2295 			case O_IPTOS:
2296 				match = (is_ipv4 &&
2297 				    flags_match(cmd, ip->ip_tos));
2298 				break;
2299 
2300 			case O_DSCP:
2301 			    {
2302 				uint32_t *p;
2303 				uint16_t x;
2304 
2305 				p = ((ipfw_insn_u32 *)cmd)->d;
2306 
2307 				if (is_ipv4)
2308 					x = ip->ip_tos >> 2;
2309 				else if (is_ipv6) {
2310 					uint8_t *v;
2311 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
2312 					x = (*v & 0x0F) << 2;
2313 					v++;
2314 					x |= *v >> 6;
2315 				} else
2316 					break;
2317 
2318 				/* DSCP bitmask is stored as low_u32 high_u32 */
2319 				if (x >= 32)
2320 					match = *(p + 1) & (1 << (x - 32));
2321 				else
2322 					match = *p & (1 << x);
2323 			    }
2324 				break;
2325 
2326 			case O_TCPDATALEN:
2327 				if (proto == IPPROTO_TCP && offset == 0) {
2328 				    struct tcphdr *tcp;
2329 				    uint16_t x;
2330 				    uint16_t *p;
2331 				    int i;
2332 #ifdef INET6
2333 				    if (is_ipv6) {
2334 					    struct ip6_hdr *ip6;
2335 
2336 					    ip6 = (struct ip6_hdr *)ip;
2337 					    if (ip6->ip6_plen == 0) {
2338 						    /*
2339 						     * Jumbo payload is not
2340 						     * supported by this
2341 						     * opcode.
2342 						     */
2343 						    break;
2344 					    }
2345 					    x = iplen - hlen;
2346 				    } else
2347 #endif /* INET6 */
2348 					    x = iplen - (ip->ip_hl << 2);
2349 				    tcp = TCP(ulp);
2350 				    x -= tcp->th_off << 2;
2351 				    if (cmdlen == 1) {
2352 					match = (cmd->arg1 == x);
2353 					break;
2354 				    }
2355 				    /* otherwise we have ranges */
2356 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2357 				    i = cmdlen - 1;
2358 				    for (; !match && i>0; i--, p += 2)
2359 					match = (x >= p[0] && x <= p[1]);
2360 				}
2361 				break;
2362 
2363 			case O_TCPFLAGS:
2364 				match = (proto == IPPROTO_TCP && offset == 0 &&
2365 				    flags_match(cmd, TCP(ulp)->th_flags));
2366 				break;
2367 
2368 			case O_TCPOPTS:
2369 				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2370 					PULLUP_LEN_LOCKED(hlen, ulp,
2371 					    (TCP(ulp)->th_off << 2));
2372 					match = tcpopts_match(TCP(ulp), cmd);
2373 				}
2374 				break;
2375 
2376 			case O_TCPSEQ:
2377 				match = (proto == IPPROTO_TCP && offset == 0 &&
2378 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2379 					TCP(ulp)->th_seq);
2380 				break;
2381 
2382 			case O_TCPACK:
2383 				match = (proto == IPPROTO_TCP && offset == 0 &&
2384 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2385 					TCP(ulp)->th_ack);
2386 				break;
2387 
2388 			case O_TCPMSS:
2389 				if (proto == IPPROTO_TCP &&
2390 				    (args->f_id._flags & TH_SYN) != 0 &&
2391 				    ulp != NULL) {
2392 					uint16_t mss, *p;
2393 					int i;
2394 
2395 					PULLUP_LEN_LOCKED(hlen, ulp,
2396 					    (TCP(ulp)->th_off << 2));
2397 					if ((tcpopts_parse(TCP(ulp), &mss) &
2398 					    IP_FW_TCPOPT_MSS) == 0)
2399 						break;
2400 					if (cmdlen == 1) {
2401 						match = (cmd->arg1 == mss);
2402 						break;
2403 					}
2404 					/* Otherwise we have ranges. */
2405 					p = ((ipfw_insn_u16 *)cmd)->ports;
2406 					i = cmdlen - 1;
2407 					for (; !match && i > 0; i--, p += 2)
2408 						match = (mss >= p[0] &&
2409 						    mss <= p[1]);
2410 				}
2411 				break;
2412 
2413 			case O_TCPWIN:
2414 				if (proto == IPPROTO_TCP && offset == 0) {
2415 				    uint16_t x;
2416 				    uint16_t *p;
2417 				    int i;
2418 
2419 				    x = ntohs(TCP(ulp)->th_win);
2420 				    if (cmdlen == 1) {
2421 					match = (cmd->arg1 == x);
2422 					break;
2423 				    }
2424 				    /* Otherwise we have ranges. */
2425 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2426 				    i = cmdlen - 1;
2427 				    for (; !match && i > 0; i--, p += 2)
2428 					match = (x >= p[0] && x <= p[1]);
2429 				}
2430 				break;
2431 
2432 			case O_ESTAB:
2433 				/* reject packets which have SYN only */
2434 				/* XXX should i also check for TH_ACK ? */
2435 				match = (proto == IPPROTO_TCP && offset == 0 &&
2436 				    (TCP(ulp)->th_flags &
2437 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2438 				break;
2439 
2440 			case O_ALTQ: {
2441 				struct pf_mtag *at;
2442 				struct m_tag *mtag;
2443 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2444 
2445 				/*
2446 				 * ALTQ uses mbuf tags from another
2447 				 * packet filtering system - pf(4).
2448 				 * We allocate a tag in its format
2449 				 * and fill it in, pretending to be pf(4).
2450 				 */
2451 				match = 1;
2452 				at = pf_find_mtag(m);
2453 				if (at != NULL && at->qid != 0)
2454 					break;
2455 				mtag = m_tag_get(PACKET_TAG_PF,
2456 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2457 				if (mtag == NULL) {
2458 					/*
2459 					 * Let the packet fall back to the
2460 					 * default ALTQ.
2461 					 */
2462 					break;
2463 				}
2464 				m_tag_prepend(m, mtag);
2465 				at = (struct pf_mtag *)(mtag + 1);
2466 				at->qid = altq->qid;
2467 				at->hdr = ip;
2468 				break;
2469 			}
2470 
2471 			case O_LOG:
2472 				ipfw_log(chain, f, hlen, args,
2473 				    offset | ip6f_mf, tablearg, ip);
2474 				match = 1;
2475 				break;
2476 
2477 			case O_PROB:
2478 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2479 				break;
2480 
2481 			case O_VERREVPATH:
2482 				/* Outgoing packets automatically pass/match */
2483 				match = (args->flags & IPFW_ARGS_OUT ||
2484 				    (
2485 #ifdef INET6
2486 				    is_ipv6 ?
2487 					verify_path6(&(args->f_id.src_ip6),
2488 					    iif, args->f_id.fib) :
2489 #endif
2490 				    verify_path(src_ip, iif, args->f_id.fib)));
2491 				break;
2492 
2493 			case O_VERSRCREACH:
2494 				/* Outgoing packets automatically pass/match */
2495 				match = (hlen > 0 && ((oif != NULL) || (
2496 #ifdef INET6
2497 				    is_ipv6 ?
2498 				        verify_path6(&(args->f_id.src_ip6),
2499 				            NULL, args->f_id.fib) :
2500 #endif
2501 				    verify_path(src_ip, NULL, args->f_id.fib))));
2502 				break;
2503 
2504 			case O_ANTISPOOF:
2505 				/* Outgoing packets automatically pass/match */
2506 				if (oif == NULL && hlen > 0 &&
2507 				    (  (is_ipv4 && in_localaddr(src_ip))
2508 #ifdef INET6
2509 				    || (is_ipv6 &&
2510 				        in6_localaddr(&(args->f_id.src_ip6)))
2511 #endif
2512 				    ))
2513 					match =
2514 #ifdef INET6
2515 					    is_ipv6 ? verify_path6(
2516 					        &(args->f_id.src_ip6), iif,
2517 						args->f_id.fib) :
2518 #endif
2519 					    verify_path(src_ip, iif,
2520 					        args->f_id.fib);
2521 				else
2522 					match = 1;
2523 				break;
2524 
2525 			case O_IPSEC:
2526 				match = (m_tag_find(m,
2527 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2528 				/* otherwise no match */
2529 				break;
2530 
2531 #ifdef INET6
2532 			case O_IP6_SRC:
2533 				match = is_ipv6 &&
2534 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2535 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2536 				break;
2537 
2538 			case O_IP6_DST:
2539 				match = is_ipv6 &&
2540 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2541 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2542 				break;
2543 			case O_IP6_SRC_MASK:
2544 			case O_IP6_DST_MASK:
2545 				if (is_ipv6) {
2546 					int i = cmdlen - 1;
2547 					struct in6_addr p;
2548 					struct in6_addr *d =
2549 					    &((ipfw_insn_ip6 *)cmd)->addr6;
2550 
2551 					for (; !match && i > 0; d += 2,
2552 					    i -= F_INSN_SIZE(struct in6_addr)
2553 					    * 2) {
2554 						p = (cmd->opcode ==
2555 						    O_IP6_SRC_MASK) ?
2556 						    args->f_id.src_ip6:
2557 						    args->f_id.dst_ip6;
2558 						APPLY_MASK(&p, &d[1]);
2559 						match =
2560 						    IN6_ARE_ADDR_EQUAL(&d[0],
2561 						    &p);
2562 					}
2563 				}
2564 				break;
2565 
2566 			case O_FLOW6ID:
2567 				match = is_ipv6 &&
2568 				    flow6id_match(args->f_id.flow_id6,
2569 				    (ipfw_insn_u32 *) cmd);
2570 				break;
2571 
2572 			case O_EXT_HDR:
2573 				match = is_ipv6 &&
2574 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2575 				break;
2576 
2577 			case O_IP6:
2578 				match = is_ipv6;
2579 				break;
2580 #endif
2581 
2582 			case O_IP4:
2583 				match = is_ipv4;
2584 				break;
2585 
2586 			case O_TAG: {
2587 				struct m_tag *mtag;
2588 				uint32_t tag = TARG(cmd->arg1, tag);
2589 
2590 				/* Packet is already tagged with this tag? */
2591 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2592 
2593 				/* We have `untag' action when F_NOT flag is
2594 				 * present. And we must remove this mtag from
2595 				 * mbuf and reset `match' to zero (`match' will
2596 				 * be inversed later).
2597 				 * Otherwise we should allocate new mtag and
2598 				 * push it into mbuf.
2599 				 */
2600 				if (cmd->len & F_NOT) { /* `untag' action */
2601 					if (mtag != NULL)
2602 						m_tag_delete(m, mtag);
2603 					match = 0;
2604 				} else {
2605 					if (mtag == NULL) {
2606 						mtag = m_tag_alloc( MTAG_IPFW,
2607 						    tag, 0, M_NOWAIT);
2608 						if (mtag != NULL)
2609 							m_tag_prepend(m, mtag);
2610 					}
2611 					match = 1;
2612 				}
2613 				break;
2614 			}
2615 
2616 			case O_FIB: /* try match the specified fib */
2617 				if (args->f_id.fib == cmd->arg1)
2618 					match = 1;
2619 				break;
2620 
2621 			case O_SOCKARG:	{
2622 #ifndef USERSPACE	/* not supported in userspace */
2623 				struct inpcb *inp = args->inp;
2624 				struct inpcbinfo *pi;
2625 
2626 				if (is_ipv6) /* XXX can we remove this ? */
2627 					break;
2628 
2629 				if (proto == IPPROTO_TCP)
2630 					pi = &V_tcbinfo;
2631 				else if (proto == IPPROTO_UDP)
2632 					pi = &V_udbinfo;
2633 				else if (proto == IPPROTO_UDPLITE)
2634 					pi = &V_ulitecbinfo;
2635 				else
2636 					break;
2637 
2638 				/*
2639 				 * XXXRW: so_user_cookie should almost
2640 				 * certainly be inp_user_cookie?
2641 				 */
2642 
2643 				/* For incoming packet, lookup up the
2644 				inpcb using the src/dest ip/port tuple */
2645 				if (inp == NULL) {
2646 					inp = in_pcblookup(pi,
2647 						src_ip, htons(src_port),
2648 						dst_ip, htons(dst_port),
2649 						INPLOOKUP_RLOCKPCB, NULL);
2650 					if (inp != NULL) {
2651 						tablearg =
2652 						    inp->inp_socket->so_user_cookie;
2653 						if (tablearg)
2654 							match = 1;
2655 						INP_RUNLOCK(inp);
2656 					}
2657 				} else {
2658 					if (inp->inp_socket) {
2659 						tablearg =
2660 						    inp->inp_socket->so_user_cookie;
2661 						if (tablearg)
2662 							match = 1;
2663 					}
2664 				}
2665 #endif /* !USERSPACE */
2666 				break;
2667 			}
2668 
2669 			case O_TAGGED: {
2670 				struct m_tag *mtag;
2671 				uint32_t tag = TARG(cmd->arg1, tag);
2672 
2673 				if (cmdlen == 1) {
2674 					match = m_tag_locate(m, MTAG_IPFW,
2675 					    tag, NULL) != NULL;
2676 					break;
2677 				}
2678 
2679 				/* we have ranges */
2680 				for (mtag = m_tag_first(m);
2681 				    mtag != NULL && !match;
2682 				    mtag = m_tag_next(m, mtag)) {
2683 					uint16_t *p;
2684 					int i;
2685 
2686 					if (mtag->m_tag_cookie != MTAG_IPFW)
2687 						continue;
2688 
2689 					p = ((ipfw_insn_u16 *)cmd)->ports;
2690 					i = cmdlen - 1;
2691 					for(; !match && i > 0; i--, p += 2)
2692 						match =
2693 						    mtag->m_tag_id >= p[0] &&
2694 						    mtag->m_tag_id <= p[1];
2695 				}
2696 				break;
2697 			}
2698 
2699 			/*
2700 			 * The second set of opcodes represents 'actions',
2701 			 * i.e. the terminal part of a rule once the packet
2702 			 * matches all previous patterns.
2703 			 * Typically there is only one action for each rule,
2704 			 * and the opcode is stored at the end of the rule
2705 			 * (but there are exceptions -- see below).
2706 			 *
2707 			 * In general, here we set retval and terminate the
2708 			 * outer loop (would be a 'break 3' in some language,
2709 			 * but we need to set l=0, done=1)
2710 			 *
2711 			 * Exceptions:
2712 			 * O_COUNT and O_SKIPTO actions:
2713 			 *   instead of terminating, we jump to the next rule
2714 			 *   (setting l=0), or to the SKIPTO target (setting
2715 			 *   f/f_len, cmd and l as needed), respectively.
2716 			 *
2717 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2718 			 *   perform some action and set match = 1;
2719 			 *
2720 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2721 			 *   not real 'actions', and are stored right
2722 			 *   before the 'action' part of the rule (one
2723 			 *   exception is O_SKIP_ACTION which could be
2724 			 *   between these opcodes and 'action' one).
2725 			 *   These opcodes try to install an entry in the
2726 			 *   state tables; if successful, we continue with
2727 			 *   the next opcode (match=1; break;), otherwise
2728 			 *   the packet must be dropped (set retval,
2729 			 *   break loops with l=0, done=1)
2730 			 *
2731 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2732 			 *   cause a lookup of the state table, and a jump
2733 			 *   to the 'action' part of the parent rule
2734 			 *   if an entry is found, or
2735 			 *   (CHECK_STATE only) a jump to the next rule if
2736 			 *   the entry is not found.
2737 			 *   The result of the lookup is cached so that
2738 			 *   further instances of these opcodes become NOPs.
2739 			 *   The jump to the next rule is done by setting
2740 			 *   l=0, cmdlen=0.
2741 			 *
2742 			 * O_SKIP_ACTION: this opcode is not a real 'action'
2743 			 *  either, and is stored right before the 'action'
2744 			 *  part of the rule, right after the O_KEEP_STATE
2745 			 *  opcode. It causes match failure so the real
2746 			 *  'action' could be executed only if the rule
2747 			 *  is checked via dynamic rule from the state
2748 			 *  table, as in such case execution starts
2749 			 *  from the true 'action' opcode directly.
2750 			 *
2751 			 */
2752 			case O_LIMIT:
2753 			case O_KEEP_STATE:
2754 				if (ipfw_dyn_install_state(chain, f,
2755 				    (ipfw_insn_limit *)cmd, args, ulp,
2756 				    pktlen, &dyn_info, tablearg)) {
2757 					/* error or limit violation */
2758 					retval = IP_FW_DENY;
2759 					l = 0;	/* exit inner loop */
2760 					done = 1; /* exit outer loop */
2761 				}
2762 				match = 1;
2763 				break;
2764 
2765 			case O_PROBE_STATE:
2766 			case O_CHECK_STATE:
2767 				/*
2768 				 * dynamic rules are checked at the first
2769 				 * keep-state or check-state occurrence,
2770 				 * with the result being stored in dyn_info.
2771 				 * The compiler introduces a PROBE_STATE
2772 				 * instruction for us when we have a
2773 				 * KEEP_STATE (because PROBE_STATE needs
2774 				 * to be run first).
2775 				 */
2776 				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2777 				    (q = ipfw_dyn_lookup_state(args, ulp,
2778 				    pktlen, cmd, &dyn_info)) != NULL) {
2779 					/*
2780 					 * Found dynamic entry, jump to the
2781 					 * 'action' part of the parent rule
2782 					 * by setting f, cmd, l and clearing
2783 					 * cmdlen.
2784 					 */
2785 					f = q;
2786 					f_pos = dyn_info.f_pos;
2787 					cmd = ACTION_PTR(f);
2788 					l = f->cmd_len - f->act_ofs;
2789 					cmdlen = 0;
2790 					match = 1;
2791 					break;
2792 				}
2793 				/*
2794 				 * Dynamic entry not found. If CHECK_STATE,
2795 				 * skip to next rule, if PROBE_STATE just
2796 				 * ignore and continue with next opcode.
2797 				 */
2798 				if (cmd->opcode == O_CHECK_STATE)
2799 					l = 0;	/* exit inner loop */
2800 				match = 1;
2801 				break;
2802 
2803 			case O_SKIP_ACTION:
2804 				match = 0;	/* skip to the next rule */
2805 				l = 0;		/* exit inner loop */
2806 				break;
2807 
2808 			case O_ACCEPT:
2809 				retval = 0;	/* accept */
2810 				l = 0;		/* exit inner loop */
2811 				done = 1;	/* exit outer loop */
2812 				break;
2813 
2814 			case O_PIPE:
2815 			case O_QUEUE:
2816 				set_match(args, f_pos, chain);
2817 				args->rule.info = TARG(cmd->arg1, pipe);
2818 				if (cmd->opcode == O_PIPE)
2819 					args->rule.info |= IPFW_IS_PIPE;
2820 				if (V_fw_one_pass)
2821 					args->rule.info |= IPFW_ONEPASS;
2822 				retval = IP_FW_DUMMYNET;
2823 				l = 0;          /* exit inner loop */
2824 				done = 1;       /* exit outer loop */
2825 				break;
2826 
2827 			case O_DIVERT:
2828 			case O_TEE:
2829 				if (args->flags & IPFW_ARGS_ETHER)
2830 					break;	/* not on layer 2 */
2831 				/* otherwise this is terminal */
2832 				l = 0;		/* exit inner loop */
2833 				done = 1;	/* exit outer loop */
2834 				retval = (cmd->opcode == O_DIVERT) ?
2835 					IP_FW_DIVERT : IP_FW_TEE;
2836 				set_match(args, f_pos, chain);
2837 				args->rule.info = TARG(cmd->arg1, divert);
2838 				break;
2839 
2840 			case O_COUNT:
2841 				IPFW_INC_RULE_COUNTER(f, pktlen);
2842 				l = 0;		/* exit inner loop */
2843 				break;
2844 
2845 			case O_SKIPTO:
2846 			    IPFW_INC_RULE_COUNTER(f, pktlen);
2847 			    f_pos = JUMP(chain, f, cmd->arg1, tablearg, 0);
2848 			    /*
2849 			     * Skip disabled rules, and re-enter
2850 			     * the inner loop with the correct
2851 			     * f_pos, f, l and cmd.
2852 			     * Also clear cmdlen and skip_or
2853 			     */
2854 			    for (; f_pos < chain->n_rules - 1 &&
2855 				    (V_set_disable &
2856 				     (1 << chain->map[f_pos]->set));
2857 				    f_pos++)
2858 				;
2859 			    /* Re-enter the inner loop at the skipto rule. */
2860 			    f = chain->map[f_pos];
2861 			    l = f->cmd_len;
2862 			    cmd = f->cmd;
2863 			    match = 1;
2864 			    cmdlen = 0;
2865 			    skip_or = 0;
2866 			    continue;
2867 			    break;	/* not reached */
2868 
2869 			case O_CALLRETURN: {
2870 				/*
2871 				 * Implementation of `subroutine' call/return,
2872 				 * in the stack carried in an mbuf tag. This
2873 				 * is different from `skipto' in that any call
2874 				 * address is possible (`skipto' must prevent
2875 				 * backward jumps to avoid endless loops).
2876 				 * We have `return' action when F_NOT flag is
2877 				 * present. The `m_tag_id' field is used as
2878 				 * stack pointer.
2879 				 */
2880 				struct m_tag *mtag;
2881 				uint16_t jmpto, *stack;
2882 
2883 #define	IS_CALL		((cmd->len & F_NOT) == 0)
2884 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
2885 				/*
2886 				 * Hand-rolled version of m_tag_locate() with
2887 				 * wildcard `type'.
2888 				 * If not already tagged, allocate new tag.
2889 				 */
2890 				mtag = m_tag_first(m);
2891 				while (mtag != NULL) {
2892 					if (mtag->m_tag_cookie ==
2893 					    MTAG_IPFW_CALL)
2894 						break;
2895 					mtag = m_tag_next(m, mtag);
2896 				}
2897 				if (mtag == NULL && IS_CALL) {
2898 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
2899 					    IPFW_CALLSTACK_SIZE *
2900 					    sizeof(uint16_t), M_NOWAIT);
2901 					if (mtag != NULL)
2902 						m_tag_prepend(m, mtag);
2903 				}
2904 
2905 				/*
2906 				 * On error both `call' and `return' just
2907 				 * continue with next rule.
2908 				 */
2909 				if (IS_RETURN && (mtag == NULL ||
2910 				    mtag->m_tag_id == 0)) {
2911 					l = 0;		/* exit inner loop */
2912 					break;
2913 				}
2914 				if (IS_CALL && (mtag == NULL ||
2915 				    mtag->m_tag_id >= IPFW_CALLSTACK_SIZE)) {
2916 					printf("ipfw: call stack error, "
2917 					    "go to next rule\n");
2918 					l = 0;		/* exit inner loop */
2919 					break;
2920 				}
2921 
2922 				IPFW_INC_RULE_COUNTER(f, pktlen);
2923 				stack = (uint16_t *)(mtag + 1);
2924 
2925 				/*
2926 				 * The `call' action may use cached f_pos
2927 				 * (in f->next_rule), whose version is written
2928 				 * in f->next_rule.
2929 				 * The `return' action, however, doesn't have
2930 				 * fixed jump address in cmd->arg1 and can't use
2931 				 * cache.
2932 				 */
2933 				if (IS_CALL) {
2934 					stack[mtag->m_tag_id] = f->rulenum;
2935 					mtag->m_tag_id++;
2936 			    		f_pos = JUMP(chain, f, cmd->arg1,
2937 					    tablearg, 1);
2938 				} else {	/* `return' action */
2939 					mtag->m_tag_id--;
2940 					jmpto = stack[mtag->m_tag_id] + 1;
2941 					f_pos = ipfw_find_rule(chain, jmpto, 0);
2942 				}
2943 
2944 				/*
2945 				 * Skip disabled rules, and re-enter
2946 				 * the inner loop with the correct
2947 				 * f_pos, f, l and cmd.
2948 				 * Also clear cmdlen and skip_or
2949 				 */
2950 				for (; f_pos < chain->n_rules - 1 &&
2951 				    (V_set_disable &
2952 				    (1 << chain->map[f_pos]->set)); f_pos++)
2953 					;
2954 				/* Re-enter the inner loop at the dest rule. */
2955 				f = chain->map[f_pos];
2956 				l = f->cmd_len;
2957 				cmd = f->cmd;
2958 				cmdlen = 0;
2959 				skip_or = 0;
2960 				continue;
2961 				break;	/* NOTREACHED */
2962 			}
2963 #undef IS_CALL
2964 #undef IS_RETURN
2965 
2966 			case O_REJECT:
2967 				/*
2968 				 * Drop the packet and send a reject notice
2969 				 * if the packet is not ICMP (or is an ICMP
2970 				 * query), and it is not multicast/broadcast.
2971 				 */
2972 				if (hlen > 0 && is_ipv4 && offset == 0 &&
2973 				    (proto != IPPROTO_ICMP ||
2974 				     is_icmp_query(ICMP(ulp))) &&
2975 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2976 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
2977 					send_reject(args, cmd->arg1, iplen, ip);
2978 					m = args->m;
2979 				}
2980 				/* FALLTHROUGH */
2981 #ifdef INET6
2982 			case O_UNREACH6:
2983 				if (hlen > 0 && is_ipv6 &&
2984 				    ((offset & IP6F_OFF_MASK) == 0) &&
2985 				    (proto != IPPROTO_ICMPV6 ||
2986 				     (is_icmp6_query(icmp6_type) == 1)) &&
2987 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
2988 				    !IN6_IS_ADDR_MULTICAST(
2989 					&args->f_id.dst_ip6)) {
2990 					send_reject6(args,
2991 					    cmd->opcode == O_REJECT ?
2992 					    map_icmp_unreach(cmd->arg1):
2993 					    cmd->arg1, hlen,
2994 					    (struct ip6_hdr *)ip);
2995 					m = args->m;
2996 				}
2997 				/* FALLTHROUGH */
2998 #endif
2999 			case O_DENY:
3000 				retval = IP_FW_DENY;
3001 				l = 0;		/* exit inner loop */
3002 				done = 1;	/* exit outer loop */
3003 				break;
3004 
3005 			case O_FORWARD_IP:
3006 				if (args->flags & IPFW_ARGS_ETHER)
3007 					break;	/* not valid on layer2 pkts */
3008 				if (q != f ||
3009 				    dyn_info.direction == MATCH_FORWARD) {
3010 				    struct sockaddr_in *sa;
3011 
3012 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
3013 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
3014 #ifdef INET6
3015 					/*
3016 					 * We use O_FORWARD_IP opcode for
3017 					 * fwd rule with tablearg, but tables
3018 					 * now support IPv6 addresses. And
3019 					 * when we are inspecting IPv6 packet,
3020 					 * we can use nh6 field from
3021 					 * table_value as next_hop6 address.
3022 					 */
3023 					if (is_ipv6) {
3024 						struct ip_fw_nh6 *nh6;
3025 
3026 						args->flags |= IPFW_ARGS_NH6;
3027 						nh6 = &args->hopstore6;
3028 						nh6->sin6_addr = TARG_VAL(
3029 						    chain, tablearg, nh6);
3030 						nh6->sin6_port = sa->sin_port;
3031 						nh6->sin6_scope_id = TARG_VAL(
3032 						    chain, tablearg, zoneid);
3033 					} else
3034 #endif
3035 					{
3036 						args->flags |= IPFW_ARGS_NH4;
3037 						args->hopstore.sin_port =
3038 						    sa->sin_port;
3039 						sa = &args->hopstore;
3040 						sa->sin_family = AF_INET;
3041 						sa->sin_len = sizeof(*sa);
3042 						sa->sin_addr.s_addr = htonl(
3043 						    TARG_VAL(chain, tablearg,
3044 						    nh4));
3045 					}
3046 				    } else {
3047 					    args->flags |= IPFW_ARGS_NH4PTR;
3048 					    args->next_hop = sa;
3049 				    }
3050 				}
3051 				retval = IP_FW_PASS;
3052 				l = 0;          /* exit inner loop */
3053 				done = 1;       /* exit outer loop */
3054 				break;
3055 
3056 #ifdef INET6
3057 			case O_FORWARD_IP6:
3058 				if (args->flags & IPFW_ARGS_ETHER)
3059 					break;	/* not valid on layer2 pkts */
3060 				if (q != f ||
3061 				    dyn_info.direction == MATCH_FORWARD) {
3062 					struct sockaddr_in6 *sin6;
3063 
3064 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3065 					args->flags |= IPFW_ARGS_NH6PTR;
3066 					args->next_hop6 = sin6;
3067 				}
3068 				retval = IP_FW_PASS;
3069 				l = 0;		/* exit inner loop */
3070 				done = 1;	/* exit outer loop */
3071 				break;
3072 #endif
3073 
3074 			case O_NETGRAPH:
3075 			case O_NGTEE:
3076 				set_match(args, f_pos, chain);
3077 				args->rule.info = TARG(cmd->arg1, netgraph);
3078 				if (V_fw_one_pass)
3079 					args->rule.info |= IPFW_ONEPASS;
3080 				retval = (cmd->opcode == O_NETGRAPH) ?
3081 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3082 				l = 0;          /* exit inner loop */
3083 				done = 1;       /* exit outer loop */
3084 				break;
3085 
3086 			case O_SETFIB: {
3087 				uint32_t fib;
3088 
3089 				IPFW_INC_RULE_COUNTER(f, pktlen);
3090 				fib = TARG(cmd->arg1, fib) & 0x7FFF;
3091 				if (fib >= rt_numfibs)
3092 					fib = 0;
3093 				M_SETFIB(m, fib);
3094 				args->f_id.fib = fib; /* XXX */
3095 				l = 0;		/* exit inner loop */
3096 				break;
3097 		        }
3098 
3099 			case O_SETDSCP: {
3100 				uint16_t code;
3101 
3102 				code = TARG(cmd->arg1, dscp) & 0x3F;
3103 				l = 0;		/* exit inner loop */
3104 				if (is_ipv4) {
3105 					uint16_t old;
3106 
3107 					old = *(uint16_t *)ip;
3108 					ip->ip_tos = (code << 2) |
3109 					    (ip->ip_tos & 0x03);
3110 					ip->ip_sum = cksum_adjust(ip->ip_sum,
3111 					    old, *(uint16_t *)ip);
3112 				} else if (is_ipv6) {
3113 					uint8_t *v;
3114 
3115 					v = &((struct ip6_hdr *)ip)->ip6_vfc;
3116 					*v = (*v & 0xF0) | (code >> 2);
3117 					v++;
3118 					*v = (*v & 0x3F) | ((code & 0x03) << 6);
3119 				} else
3120 					break;
3121 
3122 				IPFW_INC_RULE_COUNTER(f, pktlen);
3123 				break;
3124 			}
3125 
3126 			case O_NAT:
3127 				l = 0;          /* exit inner loop */
3128 				done = 1;       /* exit outer loop */
3129 				/*
3130 				 * Ensure that we do not invoke NAT handler for
3131 				 * non IPv4 packets. Libalias expects only IPv4.
3132 				 */
3133 				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3134 				    retval = IP_FW_DENY;
3135 				    break;
3136 				}
3137 
3138 				struct cfg_nat *t;
3139 				int nat_id;
3140 
3141 				args->rule.info = 0;
3142 				set_match(args, f_pos, chain);
3143 				/* Check if this is 'global' nat rule */
3144 				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3145 					retval = ipfw_nat_ptr(args, NULL, m);
3146 					break;
3147 				}
3148 				t = ((ipfw_insn_nat *)cmd)->nat;
3149 				if (t == NULL) {
3150 					nat_id = TARG(cmd->arg1, nat);
3151 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3152 
3153 					if (t == NULL) {
3154 					    retval = IP_FW_DENY;
3155 					    break;
3156 					}
3157 					if (cmd->arg1 != IP_FW_TARG)
3158 					    ((ipfw_insn_nat *)cmd)->nat = t;
3159 				}
3160 				retval = ipfw_nat_ptr(args, t, m);
3161 				break;
3162 
3163 			case O_REASS: {
3164 				int ip_off;
3165 
3166 				l = 0;	/* in any case exit inner loop */
3167 				if (is_ipv6) /* IPv6 is not supported yet */
3168 					break;
3169 				IPFW_INC_RULE_COUNTER(f, pktlen);
3170 				ip_off = ntohs(ip->ip_off);
3171 
3172 				/* if not fragmented, go to next rule */
3173 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3174 				    break;
3175 
3176 				args->m = m = ip_reass(m);
3177 
3178 				/*
3179 				 * do IP header checksum fixup.
3180 				 */
3181 				if (m == NULL) { /* fragment got swallowed */
3182 				    retval = IP_FW_DENY;
3183 				} else { /* good, packet complete */
3184 				    int hlen;
3185 
3186 				    ip = mtod(m, struct ip *);
3187 				    hlen = ip->ip_hl << 2;
3188 				    ip->ip_sum = 0;
3189 				    if (hlen == sizeof(struct ip))
3190 					ip->ip_sum = in_cksum_hdr(ip);
3191 				    else
3192 					ip->ip_sum = in_cksum(m, hlen);
3193 				    retval = IP_FW_REASS;
3194 				    args->rule.info = 0;
3195 				    set_match(args, f_pos, chain);
3196 				}
3197 				done = 1;	/* exit outer loop */
3198 				break;
3199 			}
3200 			case O_EXTERNAL_ACTION:
3201 				l = 0; /* in any case exit inner loop */
3202 				retval = ipfw_run_eaction(chain, args,
3203 				    cmd, &done);
3204 				/*
3205 				 * If both @retval and @done are zero,
3206 				 * consider this as rule matching and
3207 				 * update counters.
3208 				 */
3209 				if (retval == 0 && done == 0) {
3210 					IPFW_INC_RULE_COUNTER(f, pktlen);
3211 					/*
3212 					 * Reset the result of the last
3213 					 * dynamic state lookup.
3214 					 * External action can change
3215 					 * @args content, and it may be
3216 					 * used for new state lookup later.
3217 					 */
3218 					DYN_INFO_INIT(&dyn_info);
3219 				}
3220 				break;
3221 
3222 			default:
3223 				panic("-- unknown opcode %d\n", cmd->opcode);
3224 			} /* end of switch() on opcodes */
3225 			/*
3226 			 * if we get here with l=0, then match is irrelevant.
3227 			 */
3228 
3229 			if (cmd->len & F_NOT)
3230 				match = !match;
3231 
3232 			if (match) {
3233 				if (cmd->len & F_OR)
3234 					skip_or = 1;
3235 			} else {
3236 				if (!(cmd->len & F_OR)) /* not an OR block, */
3237 					break;		/* try next rule    */
3238 			}
3239 
3240 		}	/* end of inner loop, scan opcodes */
3241 #undef PULLUP_LEN
3242 #undef PULLUP_LEN_LOCKED
3243 
3244 		if (done)
3245 			break;
3246 
3247 /* next_rule:; */	/* try next rule		*/
3248 
3249 	}		/* end of outer for, scan rules */
3250 
3251 	if (done) {
3252 		struct ip_fw *rule = chain->map[f_pos];
3253 		/* Update statistics */
3254 		IPFW_INC_RULE_COUNTER(rule, pktlen);
3255 		IPFW_PROBE(rule__matched, retval,
3256 		    is_ipv4 ? AF_INET : AF_INET6,
3257 		    is_ipv4 ? (uintptr_t)&src_ip :
3258 		        (uintptr_t)&args->f_id.src_ip6,
3259 		    is_ipv4 ? (uintptr_t)&dst_ip :
3260 		        (uintptr_t)&args->f_id.dst_ip6,
3261 		    args, rule);
3262 	} else {
3263 		retval = IP_FW_DENY;
3264 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3265 	}
3266 	IPFW_PF_RUNLOCK(chain);
3267 #ifdef __FreeBSD__
3268 	if (ucred_cache != NULL)
3269 		crfree(ucred_cache);
3270 #endif
3271 	return (retval);
3272 
3273 pullup_failed:
3274 	if (V_fw_verbose)
3275 		printf("ipfw: pullup failed\n");
3276 	return (IP_FW_DENY);
3277 }
3278 
3279 /*
3280  * Set maximum number of tables that can be used in given VNET ipfw instance.
3281  */
3282 #ifdef SYSCTL_NODE
3283 static int
sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)3284 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3285 {
3286 	int error;
3287 	unsigned int ntables;
3288 
3289 	ntables = V_fw_tables_max;
3290 
3291 	error = sysctl_handle_int(oidp, &ntables, 0, req);
3292 	/* Read operation or some error */
3293 	if ((error != 0) || (req->newptr == NULL))
3294 		return (error);
3295 
3296 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3297 }
3298 
3299 /*
3300  * Switches table namespace between global and per-set.
3301  */
3302 static int
sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)3303 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3304 {
3305 	int error;
3306 	unsigned int sets;
3307 
3308 	sets = V_fw_tables_sets;
3309 
3310 	error = sysctl_handle_int(oidp, &sets, 0, req);
3311 	/* Read operation or some error */
3312 	if ((error != 0) || (req->newptr == NULL))
3313 		return (error);
3314 
3315 	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3316 }
3317 #endif
3318 
3319 /*
3320  * Module and VNET glue
3321  */
3322 
3323 /*
3324  * Stuff that must be initialised only on boot or module load
3325  */
3326 static int
ipfw_init(void)3327 ipfw_init(void)
3328 {
3329 	int error = 0;
3330 
3331 	/*
3332  	 * Only print out this stuff the first time around,
3333 	 * when called from the sysinit code.
3334 	 */
3335 	printf("ipfw2 "
3336 #ifdef INET6
3337 		"(+ipv6) "
3338 #endif
3339 		"initialized, divert %s, nat %s, "
3340 		"default to %s, logging ",
3341 #ifdef IPDIVERT
3342 		"enabled",
3343 #else
3344 		"loadable",
3345 #endif
3346 #ifdef IPFIREWALL_NAT
3347 		"enabled",
3348 #else
3349 		"loadable",
3350 #endif
3351 		default_to_accept ? "accept" : "deny");
3352 
3353 	/*
3354 	 * Note: V_xxx variables can be accessed here but the vnet specific
3355 	 * initializer may not have been called yet for the VIMAGE case.
3356 	 * Tuneables will have been processed. We will print out values for
3357 	 * the default vnet.
3358 	 * XXX This should all be rationalized AFTER 8.0
3359 	 */
3360 	if (V_fw_verbose == 0)
3361 		printf("disabled\n");
3362 	else if (V_verbose_limit == 0)
3363 		printf("unlimited\n");
3364 	else
3365 		printf("limited to %d packets/entry by default\n",
3366 		    V_verbose_limit);
3367 
3368 	/* Check user-supplied table count for validness */
3369 	if (default_fw_tables > IPFW_TABLES_MAX)
3370 	  default_fw_tables = IPFW_TABLES_MAX;
3371 
3372 	ipfw_init_sopt_handler();
3373 	ipfw_init_obj_rewriter();
3374 	ipfw_iface_init();
3375 	return (error);
3376 }
3377 
3378 /*
3379  * Called for the removal of the last instance only on module unload.
3380  */
3381 static void
ipfw_destroy(void)3382 ipfw_destroy(void)
3383 {
3384 
3385 	ipfw_iface_destroy();
3386 	ipfw_destroy_sopt_handler();
3387 	ipfw_destroy_obj_rewriter();
3388 	printf("IP firewall unloaded\n");
3389 }
3390 
3391 /*
3392  * Stuff that must be initialized for every instance
3393  * (including the first of course).
3394  */
3395 static int
vnet_ipfw_init(const void * unused)3396 vnet_ipfw_init(const void *unused)
3397 {
3398 	int error, first;
3399 	struct ip_fw *rule = NULL;
3400 	struct ip_fw_chain *chain;
3401 
3402 	chain = &V_layer3_chain;
3403 
3404 	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3405 
3406 	/* First set up some values that are compile time options */
3407 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3408 	V_fw_deny_unknown_exthdrs = 1;
3409 #ifdef IPFIREWALL_VERBOSE
3410 	V_fw_verbose = 1;
3411 #endif
3412 #ifdef IPFIREWALL_VERBOSE_LIMIT
3413 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3414 #endif
3415 #ifdef IPFIREWALL_NAT
3416 	LIST_INIT(&chain->nat);
3417 #endif
3418 
3419 	/* Init shared services hash table */
3420 	ipfw_init_srv(chain);
3421 
3422 	ipfw_init_counters();
3423 	/* Set initial number of tables */
3424 	V_fw_tables_max = default_fw_tables;
3425 	error = ipfw_init_tables(chain, first);
3426 	if (error) {
3427 		printf("ipfw2: setting up tables failed\n");
3428 		free(chain->map, M_IPFW);
3429 		free(rule, M_IPFW);
3430 		return (ENOSPC);
3431 	}
3432 
3433 	IPFW_LOCK_INIT(chain);
3434 
3435 	/* fill and insert the default rule */
3436 	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3437 	rule->flags |= IPFW_RULE_NOOPT;
3438 	rule->cmd_len = 1;
3439 	rule->cmd[0].len = 1;
3440 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3441 	chain->default_rule = rule;
3442 	ipfw_add_protected_rule(chain, rule, 0);
3443 
3444 	ipfw_dyn_init(chain);
3445 	ipfw_eaction_init(chain, first);
3446 #ifdef LINEAR_SKIPTO
3447 	ipfw_init_skipto_cache(chain);
3448 #endif
3449 #ifndef FSTACK /* WITHOUT_BPF */
3450 	ipfw_bpf_init(first);
3451 #endif
3452 
3453 	/* First set up some values that are compile time options */
3454 	V_ipfw_vnet_ready = 1;		/* Open for business */
3455 
3456 	/*
3457 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3458 	 * Even if the latter two fail we still keep the module alive
3459 	 * because the sockopt and layer2 paths are still useful.
3460 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3461 	 * so we can ignore the exact return value and just set a flag.
3462 	 *
3463 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3464 	 * changes in the underlying (per-vnet) variables trigger
3465 	 * immediate hook()/unhook() calls.
3466 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3467 	 * is checked on each packet because there are no pfil hooks.
3468 	 */
3469 	V_ip_fw_ctl_ptr = ipfw_ctl3;
3470 	error = ipfw_attach_hooks();
3471 	return (error);
3472 }
3473 
3474 /*
3475  * Called for the removal of each instance.
3476  */
3477 static int
vnet_ipfw_uninit(const void * unused)3478 vnet_ipfw_uninit(const void *unused)
3479 {
3480 	struct ip_fw *reap;
3481 	struct ip_fw_chain *chain = &V_layer3_chain;
3482 	int i, last;
3483 
3484 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3485 	/*
3486 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3487 	 * Then grab, release and grab again the WLOCK so we make
3488 	 * sure the update is propagated and nobody will be in.
3489 	 */
3490 	ipfw_detach_hooks();
3491 	V_ip_fw_ctl_ptr = NULL;
3492 
3493 	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3494 
3495 	IPFW_UH_WLOCK(chain);
3496 	IPFW_UH_WUNLOCK(chain);
3497 
3498 	ipfw_dyn_uninit(0);	/* run the callout_drain */
3499 
3500 	IPFW_UH_WLOCK(chain);
3501 
3502 	reap = NULL;
3503 	IPFW_WLOCK(chain);
3504 	for (i = 0; i < chain->n_rules; i++)
3505 		ipfw_reap_add(chain, &reap, chain->map[i]);
3506 	free(chain->map, M_IPFW);
3507 #ifdef LINEAR_SKIPTO
3508 	ipfw_destroy_skipto_cache(chain);
3509 #endif
3510 	IPFW_WUNLOCK(chain);
3511 	IPFW_UH_WUNLOCK(chain);
3512 	ipfw_destroy_tables(chain, last);
3513 	ipfw_eaction_uninit(chain, last);
3514 	if (reap != NULL)
3515 		ipfw_reap_rules(reap);
3516 	vnet_ipfw_iface_destroy(chain);
3517 	ipfw_destroy_srv(chain);
3518 	IPFW_LOCK_DESTROY(chain);
3519 	ipfw_dyn_uninit(1);	/* free the remaining parts */
3520 	ipfw_destroy_counters();
3521 #ifndef FSTACK /* WITHOUT_BPF */
3522 	ipfw_bpf_uninit(last);
3523 #endif
3524 	return (0);
3525 }
3526 
3527 /*
3528  * Module event handler.
3529  * In general we have the choice of handling most of these events by the
3530  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3531  * use the SYSINIT handlers as they are more capable of expressing the
3532  * flow of control during module and vnet operations, so this is just
3533  * a skeleton. Note there is no SYSINIT equivalent of the module
3534  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3535  */
3536 static int
ipfw_modevent(module_t mod,int type,void * unused)3537 ipfw_modevent(module_t mod, int type, void *unused)
3538 {
3539 	int err = 0;
3540 
3541 	switch (type) {
3542 	case MOD_LOAD:
3543 		/* Called once at module load or
3544 	 	 * system boot if compiled in. */
3545 		break;
3546 	case MOD_QUIESCE:
3547 		/* Called before unload. May veto unloading. */
3548 		break;
3549 	case MOD_UNLOAD:
3550 		/* Called during unload. */
3551 		break;
3552 	case MOD_SHUTDOWN:
3553 		/* Called during system shutdown. */
3554 		break;
3555 	default:
3556 		err = EOPNOTSUPP;
3557 		break;
3558 	}
3559 	return err;
3560 }
3561 
3562 static moduledata_t ipfwmod = {
3563 	"ipfw",
3564 	ipfw_modevent,
3565 	0
3566 };
3567 
3568 /* Define startup order. */
3569 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3570 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3571 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3572 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3573 
3574 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3575 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3576 MODULE_VERSION(ipfw, 3);
3577 /* should declare some dependencies here */
3578 
3579 /*
3580  * Starting up. Done in order after ipfwmod() has been called.
3581  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3582  */
3583 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3584 	    ipfw_init, NULL);
3585 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3586 	    vnet_ipfw_init, NULL);
3587 
3588 /*
3589  * Closing up shop. These are done in REVERSE ORDER, but still
3590  * after ipfwmod() has been called. Not called on reboot.
3591  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3592  * or when the module is unloaded.
3593  */
3594 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3595 	    ipfw_destroy, NULL);
3596 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3597 	    vnet_ipfw_uninit, NULL);
3598 /* end of file */
3599