xref: /f-stack/freebsd/net/if_vlan.c (revision 22ce4aff)
1 /*-
2  * Copyright 1998 Massachusetts Institute of Technology
3  * Copyright 2012 ADARA Networks, Inc.
4  * Copyright 2017 Dell EMC Isilon
5  *
6  * Portions of this software were developed by Robert N. M. Watson under
7  * contract to ADARA Networks, Inc.
8  *
9  * Permission to use, copy, modify, and distribute this software and
10  * its documentation for any purpose and without fee is hereby
11  * granted, provided that both the above copyright notice and this
12  * permission notice appear in all copies, that both the above
13  * copyright notice and this permission notice appear in all
14  * supporting documentation, and that the name of M.I.T. not be used
15  * in advertising or publicity pertaining to distribution of the
16  * software without specific, written prior permission.  M.I.T. makes
17  * no representations about the suitability of this software for any
18  * purpose.  It is provided "as is" without express or implied
19  * warranty.
20  *
21  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
22  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
23  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
25  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
28  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
29  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
37  * This is sort of sneaky in the implementation, since
38  * we need to pretend to be enough of an Ethernet implementation
39  * to make arp work.  The way we do this is by telling everyone
40  * that we are an Ethernet, and then catch the packets that
41  * ether_output() sends to us via if_transmit(), rewrite them for
42  * use by the real outgoing interface, and ask it to send them.
43  */
44 
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47 
48 #include "opt_inet.h"
49 #include "opt_inet6.h"
50 #include "opt_kern_tls.h"
51 #include "opt_vlan.h"
52 #include "opt_ratelimit.h"
53 
54 #include <sys/param.h>
55 #include <sys/eventhandler.h>
56 #include <sys/kernel.h>
57 #include <sys/lock.h>
58 #include <sys/malloc.h>
59 #include <sys/mbuf.h>
60 #include <sys/module.h>
61 #include <sys/rmlock.h>
62 #include <sys/priv.h>
63 #include <sys/queue.h>
64 #include <sys/socket.h>
65 #include <sys/sockio.h>
66 #include <sys/sysctl.h>
67 #include <sys/systm.h>
68 #include <sys/sx.h>
69 #include <sys/taskqueue.h>
70 
71 #include <net/bpf.h>
72 #include <net/ethernet.h>
73 #include <net/if.h>
74 #include <net/if_var.h>
75 #include <net/if_clone.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78 #include <net/if_vlan_var.h>
79 #include <net/route.h>
80 #include <net/vnet.h>
81 
82 #ifdef INET
83 #include <netinet/in.h>
84 #include <netinet/if_ether.h>
85 #endif
86 
87 #ifdef INET6
88 /*
89  * XXX: declare here to avoid to include many inet6 related files..
90  * should be more generalized?
91  */
92 extern void	nd6_setmtu(struct ifnet *);
93 #endif
94 
95 #define	VLAN_DEF_HWIDTH	4
96 #define	VLAN_IFFLAGS	(IFF_BROADCAST | IFF_MULTICAST)
97 
98 #define	UP_AND_RUNNING(ifp) \
99     ((ifp)->if_flags & IFF_UP && (ifp)->if_drv_flags & IFF_DRV_RUNNING)
100 
101 CK_SLIST_HEAD(ifvlanhead, ifvlan);
102 
103 struct ifvlantrunk {
104 	struct	ifnet   *parent;	/* parent interface of this trunk */
105 	struct	mtx	lock;
106 #ifdef VLAN_ARRAY
107 #define	VLAN_ARRAY_SIZE	(EVL_VLID_MASK + 1)
108 	struct	ifvlan	*vlans[VLAN_ARRAY_SIZE]; /* static table */
109 #else
110 	struct	ifvlanhead *hash;	/* dynamic hash-list table */
111 	uint16_t	hmask;
112 	uint16_t	hwidth;
113 #endif
114 	int		refcnt;
115 };
116 
117 #if defined(KERN_TLS) || defined(RATELIMIT)
118 struct vlan_snd_tag {
119 	struct m_snd_tag com;
120 	struct m_snd_tag *tag;
121 };
122 
123 static inline struct vlan_snd_tag *
mst_to_vst(struct m_snd_tag * mst)124 mst_to_vst(struct m_snd_tag *mst)
125 {
126 
127 	return (__containerof(mst, struct vlan_snd_tag, com));
128 }
129 #endif
130 
131 /*
132  * This macro provides a facility to iterate over every vlan on a trunk with
133  * the assumption that none will be added/removed during iteration.
134  */
135 #ifdef VLAN_ARRAY
136 #define VLAN_FOREACH(_ifv, _trunk) \
137 	size_t _i; \
138 	for (_i = 0; _i < VLAN_ARRAY_SIZE; _i++) \
139 		if (((_ifv) = (_trunk)->vlans[_i]) != NULL)
140 #else /* VLAN_ARRAY */
141 #define VLAN_FOREACH(_ifv, _trunk) \
142 	struct ifvlan *_next; \
143 	size_t _i; \
144 	for (_i = 0; _i < (1 << (_trunk)->hwidth); _i++) \
145 		CK_SLIST_FOREACH_SAFE((_ifv), &(_trunk)->hash[_i], ifv_list, _next)
146 #endif /* VLAN_ARRAY */
147 
148 /*
149  * This macro provides a facility to iterate over every vlan on a trunk while
150  * also modifying the number of vlans on the trunk. The iteration continues
151  * until some condition is met or there are no more vlans on the trunk.
152  */
153 #ifdef VLAN_ARRAY
154 /* The VLAN_ARRAY case is simple -- just a for loop using the condition. */
155 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
156 	size_t _i; \
157 	for (_i = 0; !(_cond) && _i < VLAN_ARRAY_SIZE; _i++) \
158 		if (((_ifv) = (_trunk)->vlans[_i]))
159 #else /* VLAN_ARRAY */
160 /*
161  * The hash table case is more complicated. We allow for the hash table to be
162  * modified (i.e. vlans removed) while we are iterating over it. To allow for
163  * this we must restart the iteration every time we "touch" something during
164  * the iteration, since removal will resize the hash table and invalidate our
165  * current position. If acting on the touched element causes the trunk to be
166  * emptied, then iteration also stops.
167  */
168 #define VLAN_FOREACH_UNTIL_SAFE(_ifv, _trunk, _cond) \
169 	size_t _i; \
170 	bool _touch = false; \
171 	for (_i = 0; \
172 	    !(_cond) && _i < (1 << (_trunk)->hwidth); \
173 	    _i = (_touch && ((_trunk) != NULL) ? 0 : _i + 1), _touch = false) \
174 		if (((_ifv) = CK_SLIST_FIRST(&(_trunk)->hash[_i])) != NULL && \
175 		    (_touch = true))
176 #endif /* VLAN_ARRAY */
177 
178 struct vlan_mc_entry {
179 	struct sockaddr_dl		mc_addr;
180 	CK_SLIST_ENTRY(vlan_mc_entry)	mc_entries;
181 	struct epoch_context		mc_epoch_ctx;
182 };
183 
184 struct ifvlan {
185 	struct	ifvlantrunk *ifv_trunk;
186 	struct	ifnet *ifv_ifp;
187 #define	TRUNK(ifv)	((ifv)->ifv_trunk)
188 #define	PARENT(ifv)	(TRUNK(ifv)->parent)
189 	void	*ifv_cookie;
190 	int	ifv_pflags;	/* special flags we have set on parent */
191 	int	ifv_capenable;
192 	int	ifv_encaplen;	/* encapsulation length */
193 	int	ifv_mtufudge;	/* MTU fudged by this much */
194 	int	ifv_mintu;	/* min transmission unit */
195 	struct  ether_8021q_tag ifv_qtag;
196 #define ifv_proto	ifv_qtag.proto
197 #define ifv_vid		ifv_qtag.vid
198 #define ifv_pcp		ifv_qtag.pcp
199 	struct task lladdr_task;
200 	CK_SLIST_HEAD(, vlan_mc_entry) vlan_mc_listhead;
201 #ifndef VLAN_ARRAY
202 	CK_SLIST_ENTRY(ifvlan) ifv_list;
203 #endif
204 };
205 
206 /* Special flags we should propagate to parent. */
207 static struct {
208 	int flag;
209 	int (*func)(struct ifnet *, int);
210 } vlan_pflags[] = {
211 	{IFF_PROMISC, ifpromisc},
212 	{IFF_ALLMULTI, if_allmulti},
213 	{0, NULL}
214 };
215 
216 extern int vlan_mtag_pcp;
217 
218 static const char vlanname[] = "vlan";
219 static MALLOC_DEFINE(M_VLAN, vlanname, "802.1Q Virtual LAN Interface");
220 
221 static eventhandler_tag ifdetach_tag;
222 static eventhandler_tag iflladdr_tag;
223 
224 /*
225  * if_vlan uses two module-level synchronizations primitives to allow concurrent
226  * modification of vlan interfaces and (mostly) allow for vlans to be destroyed
227  * while they are being used for tx/rx. To accomplish this in a way that has
228  * acceptable performance and cooperation with other parts of the network stack
229  * there is a non-sleepable epoch(9) and an sx(9).
230  *
231  * The performance-sensitive paths that warrant using the epoch(9) are
232  * vlan_transmit and vlan_input. Both have to check for the vlan interface's
233  * existence using if_vlantrunk, and being in the network tx/rx paths the use
234  * of an epoch(9) gives a measureable improvement in performance.
235  *
236  * The reason for having an sx(9) is mostly because there are still areas that
237  * must be sleepable and also have safe concurrent access to a vlan interface.
238  * Since the sx(9) exists, it is used by default in most paths unless sleeping
239  * is not permitted, or if it is not clear whether sleeping is permitted.
240  *
241  */
242 #define _VLAN_SX_ID ifv_sx
243 
244 static struct sx _VLAN_SX_ID;
245 
246 #define VLAN_LOCKING_INIT() \
247 	sx_init_flags(&_VLAN_SX_ID, "vlan_sx", SX_RECURSE)
248 
249 #define VLAN_LOCKING_DESTROY() \
250 	sx_destroy(&_VLAN_SX_ID)
251 
252 #define	VLAN_SLOCK()			sx_slock(&_VLAN_SX_ID)
253 #define	VLAN_SUNLOCK()			sx_sunlock(&_VLAN_SX_ID)
254 #define	VLAN_XLOCK()			sx_xlock(&_VLAN_SX_ID)
255 #define	VLAN_XUNLOCK()			sx_xunlock(&_VLAN_SX_ID)
256 #define	VLAN_SLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_SLOCKED)
257 #define	VLAN_XLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_XLOCKED)
258 #define	VLAN_SXLOCK_ASSERT()		sx_assert(&_VLAN_SX_ID, SA_LOCKED)
259 
260 /*
261  * We also have a per-trunk mutex that should be acquired when changing
262  * its state.
263  */
264 #define	TRUNK_LOCK_INIT(trunk)		mtx_init(&(trunk)->lock, vlanname, NULL, MTX_DEF)
265 #define	TRUNK_LOCK_DESTROY(trunk)	mtx_destroy(&(trunk)->lock)
266 #define	TRUNK_WLOCK(trunk)		mtx_lock(&(trunk)->lock)
267 #define	TRUNK_WUNLOCK(trunk)		mtx_unlock(&(trunk)->lock)
268 #define	TRUNK_WLOCK_ASSERT(trunk)	mtx_assert(&(trunk)->lock, MA_OWNED);
269 
270 /*
271  * The VLAN_ARRAY substitutes the dynamic hash with a static array
272  * with 4096 entries. In theory this can give a boost in processing,
273  * however in practice it does not. Probably this is because the array
274  * is too big to fit into CPU cache.
275  */
276 #ifndef VLAN_ARRAY
277 static	void vlan_inithash(struct ifvlantrunk *trunk);
278 static	void vlan_freehash(struct ifvlantrunk *trunk);
279 static	int vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
280 static	int vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv);
281 static	void vlan_growhash(struct ifvlantrunk *trunk, int howmuch);
282 static __inline struct ifvlan * vlan_gethash(struct ifvlantrunk *trunk,
283 	uint16_t vid);
284 #endif
285 static	void trunk_destroy(struct ifvlantrunk *trunk);
286 
287 static	void vlan_init(void *foo);
288 static	void vlan_input(struct ifnet *ifp, struct mbuf *m);
289 static	int vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr);
290 #if defined(KERN_TLS) || defined(RATELIMIT)
291 static	int vlan_snd_tag_alloc(struct ifnet *,
292     union if_snd_tag_alloc_params *, struct m_snd_tag **);
293 static	int vlan_snd_tag_modify(struct m_snd_tag *,
294     union if_snd_tag_modify_params *);
295 static	int vlan_snd_tag_query(struct m_snd_tag *,
296     union if_snd_tag_query_params *);
297 static	void vlan_snd_tag_free(struct m_snd_tag *);
298 #endif
299 static	void vlan_qflush(struct ifnet *ifp);
300 static	int vlan_setflag(struct ifnet *ifp, int flag, int status,
301     int (*func)(struct ifnet *, int));
302 static	int vlan_setflags(struct ifnet *ifp, int status);
303 static	int vlan_setmulti(struct ifnet *ifp);
304 static	int vlan_transmit(struct ifnet *ifp, struct mbuf *m);
305 static	int vlan_output(struct ifnet *ifp, struct mbuf *m,
306     const struct sockaddr *dst, struct route *ro);
307 static	void vlan_unconfig(struct ifnet *ifp);
308 static	void vlan_unconfig_locked(struct ifnet *ifp, int departing);
309 static	int vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag,
310 	uint16_t proto);
311 static	void vlan_link_state(struct ifnet *ifp);
312 static	void vlan_capabilities(struct ifvlan *ifv);
313 static	void vlan_trunk_capabilities(struct ifnet *ifp);
314 
315 static	struct ifnet *vlan_clone_match_ethervid(const char *, int *);
316 static	int vlan_clone_match(struct if_clone *, const char *);
317 static	int vlan_clone_create(struct if_clone *, char *, size_t, caddr_t);
318 static	int vlan_clone_destroy(struct if_clone *, struct ifnet *);
319 
320 static	void vlan_ifdetach(void *arg, struct ifnet *ifp);
321 static  void vlan_iflladdr(void *arg, struct ifnet *ifp);
322 
323 static  void vlan_lladdr_fn(void *arg, int pending);
324 
325 static struct if_clone *vlan_cloner;
326 
327 #ifdef VIMAGE
328 VNET_DEFINE_STATIC(struct if_clone *, vlan_cloner);
329 #define	V_vlan_cloner	VNET(vlan_cloner)
330 #endif
331 
332 static void
vlan_mc_free(struct epoch_context * ctx)333 vlan_mc_free(struct epoch_context *ctx)
334 {
335 	struct vlan_mc_entry *mc = __containerof(ctx, struct vlan_mc_entry, mc_epoch_ctx);
336 	free(mc, M_VLAN);
337 }
338 
339 #ifndef VLAN_ARRAY
340 #define HASH(n, m)	((((n) >> 8) ^ ((n) >> 4) ^ (n)) & (m))
341 
342 static void
vlan_inithash(struct ifvlantrunk * trunk)343 vlan_inithash(struct ifvlantrunk *trunk)
344 {
345 	int i, n;
346 
347 	/*
348 	 * The trunk must not be locked here since we call malloc(M_WAITOK).
349 	 * It is OK in case this function is called before the trunk struct
350 	 * gets hooked up and becomes visible from other threads.
351 	 */
352 
353 	KASSERT(trunk->hwidth == 0 && trunk->hash == NULL,
354 	    ("%s: hash already initialized", __func__));
355 
356 	trunk->hwidth = VLAN_DEF_HWIDTH;
357 	n = 1 << trunk->hwidth;
358 	trunk->hmask = n - 1;
359 	trunk->hash = malloc(sizeof(struct ifvlanhead) * n, M_VLAN, M_WAITOK);
360 	for (i = 0; i < n; i++)
361 		CK_SLIST_INIT(&trunk->hash[i]);
362 }
363 
364 static void
vlan_freehash(struct ifvlantrunk * trunk)365 vlan_freehash(struct ifvlantrunk *trunk)
366 {
367 #ifdef INVARIANTS
368 	int i;
369 
370 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
371 	for (i = 0; i < (1 << trunk->hwidth); i++)
372 		KASSERT(CK_SLIST_EMPTY(&trunk->hash[i]),
373 		    ("%s: hash table not empty", __func__));
374 #endif
375 	free(trunk->hash, M_VLAN);
376 	trunk->hash = NULL;
377 	trunk->hwidth = trunk->hmask = 0;
378 }
379 
380 static int
vlan_inshash(struct ifvlantrunk * trunk,struct ifvlan * ifv)381 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
382 {
383 	int i, b;
384 	struct ifvlan *ifv2;
385 
386 	VLAN_XLOCK_ASSERT();
387 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
388 
389 	b = 1 << trunk->hwidth;
390 	i = HASH(ifv->ifv_vid, trunk->hmask);
391 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
392 		if (ifv->ifv_vid == ifv2->ifv_vid)
393 			return (EEXIST);
394 
395 	/*
396 	 * Grow the hash when the number of vlans exceeds half of the number of
397 	 * hash buckets squared. This will make the average linked-list length
398 	 * buckets/2.
399 	 */
400 	if (trunk->refcnt > (b * b) / 2) {
401 		vlan_growhash(trunk, 1);
402 		i = HASH(ifv->ifv_vid, trunk->hmask);
403 	}
404 	CK_SLIST_INSERT_HEAD(&trunk->hash[i], ifv, ifv_list);
405 	trunk->refcnt++;
406 
407 	return (0);
408 }
409 
410 static int
vlan_remhash(struct ifvlantrunk * trunk,struct ifvlan * ifv)411 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
412 {
413 	int i, b;
414 	struct ifvlan *ifv2;
415 
416 	VLAN_XLOCK_ASSERT();
417 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
418 
419 	b = 1 << trunk->hwidth;
420 	i = HASH(ifv->ifv_vid, trunk->hmask);
421 	CK_SLIST_FOREACH(ifv2, &trunk->hash[i], ifv_list)
422 		if (ifv2 == ifv) {
423 			trunk->refcnt--;
424 			CK_SLIST_REMOVE(&trunk->hash[i], ifv2, ifvlan, ifv_list);
425 			if (trunk->refcnt < (b * b) / 2)
426 				vlan_growhash(trunk, -1);
427 			return (0);
428 		}
429 
430 	panic("%s: vlan not found\n", __func__);
431 	return (ENOENT); /*NOTREACHED*/
432 }
433 
434 /*
435  * Grow the hash larger or smaller if memory permits.
436  */
437 static void
vlan_growhash(struct ifvlantrunk * trunk,int howmuch)438 vlan_growhash(struct ifvlantrunk *trunk, int howmuch)
439 {
440 	struct ifvlan *ifv;
441 	struct ifvlanhead *hash2;
442 	int hwidth2, i, j, n, n2;
443 
444 	VLAN_XLOCK_ASSERT();
445 	KASSERT(trunk->hwidth > 0, ("%s: hwidth not positive", __func__));
446 
447 	if (howmuch == 0) {
448 		/* Harmless yet obvious coding error */
449 		printf("%s: howmuch is 0\n", __func__);
450 		return;
451 	}
452 
453 	hwidth2 = trunk->hwidth + howmuch;
454 	n = 1 << trunk->hwidth;
455 	n2 = 1 << hwidth2;
456 	/* Do not shrink the table below the default */
457 	if (hwidth2 < VLAN_DEF_HWIDTH)
458 		return;
459 
460 	hash2 = malloc(sizeof(struct ifvlanhead) * n2, M_VLAN, M_WAITOK);
461 	if (hash2 == NULL) {
462 		printf("%s: out of memory -- hash size not changed\n",
463 		    __func__);
464 		return;		/* We can live with the old hash table */
465 	}
466 	for (j = 0; j < n2; j++)
467 		CK_SLIST_INIT(&hash2[j]);
468 	for (i = 0; i < n; i++)
469 		while ((ifv = CK_SLIST_FIRST(&trunk->hash[i])) != NULL) {
470 			CK_SLIST_REMOVE(&trunk->hash[i], ifv, ifvlan, ifv_list);
471 			j = HASH(ifv->ifv_vid, n2 - 1);
472 			CK_SLIST_INSERT_HEAD(&hash2[j], ifv, ifv_list);
473 		}
474 	NET_EPOCH_WAIT();
475 	free(trunk->hash, M_VLAN);
476 	trunk->hash = hash2;
477 	trunk->hwidth = hwidth2;
478 	trunk->hmask = n2 - 1;
479 
480 	if (bootverbose)
481 		if_printf(trunk->parent,
482 		    "VLAN hash table resized from %d to %d buckets\n", n, n2);
483 }
484 
485 static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk * trunk,uint16_t vid)486 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
487 {
488 	struct ifvlan *ifv;
489 
490 	NET_EPOCH_ASSERT();
491 
492 	CK_SLIST_FOREACH(ifv, &trunk->hash[HASH(vid, trunk->hmask)], ifv_list)
493 		if (ifv->ifv_vid == vid)
494 			return (ifv);
495 	return (NULL);
496 }
497 
498 #if 0
499 /* Debugging code to view the hashtables. */
500 static void
501 vlan_dumphash(struct ifvlantrunk *trunk)
502 {
503 	int i;
504 	struct ifvlan *ifv;
505 
506 	for (i = 0; i < (1 << trunk->hwidth); i++) {
507 		printf("%d: ", i);
508 		CK_SLIST_FOREACH(ifv, &trunk->hash[i], ifv_list)
509 			printf("%s ", ifv->ifv_ifp->if_xname);
510 		printf("\n");
511 	}
512 }
513 #endif /* 0 */
514 #else
515 
516 static __inline struct ifvlan *
vlan_gethash(struct ifvlantrunk * trunk,uint16_t vid)517 vlan_gethash(struct ifvlantrunk *trunk, uint16_t vid)
518 {
519 
520 	return trunk->vlans[vid];
521 }
522 
523 static __inline int
vlan_inshash(struct ifvlantrunk * trunk,struct ifvlan * ifv)524 vlan_inshash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
525 {
526 
527 	if (trunk->vlans[ifv->ifv_vid] != NULL)
528 		return EEXIST;
529 	trunk->vlans[ifv->ifv_vid] = ifv;
530 	trunk->refcnt++;
531 
532 	return (0);
533 }
534 
535 static __inline int
vlan_remhash(struct ifvlantrunk * trunk,struct ifvlan * ifv)536 vlan_remhash(struct ifvlantrunk *trunk, struct ifvlan *ifv)
537 {
538 
539 	trunk->vlans[ifv->ifv_vid] = NULL;
540 	trunk->refcnt--;
541 
542 	return (0);
543 }
544 
545 static __inline void
vlan_freehash(struct ifvlantrunk * trunk)546 vlan_freehash(struct ifvlantrunk *trunk)
547 {
548 }
549 
550 static __inline void
vlan_inithash(struct ifvlantrunk * trunk)551 vlan_inithash(struct ifvlantrunk *trunk)
552 {
553 }
554 
555 #endif /* !VLAN_ARRAY */
556 
557 static void
trunk_destroy(struct ifvlantrunk * trunk)558 trunk_destroy(struct ifvlantrunk *trunk)
559 {
560 	VLAN_XLOCK_ASSERT();
561 
562 	vlan_freehash(trunk);
563 	trunk->parent->if_vlantrunk = NULL;
564 	TRUNK_LOCK_DESTROY(trunk);
565 	if_rele(trunk->parent);
566 	free(trunk, M_VLAN);
567 }
568 
569 /*
570  * Program our multicast filter. What we're actually doing is
571  * programming the multicast filter of the parent. This has the
572  * side effect of causing the parent interface to receive multicast
573  * traffic that it doesn't really want, which ends up being discarded
574  * later by the upper protocol layers. Unfortunately, there's no way
575  * to avoid this: there really is only one physical interface.
576  */
577 static int
vlan_setmulti(struct ifnet * ifp)578 vlan_setmulti(struct ifnet *ifp)
579 {
580 	struct ifnet		*ifp_p;
581 	struct ifmultiaddr	*ifma;
582 	struct ifvlan		*sc;
583 	struct vlan_mc_entry	*mc;
584 	int			error;
585 
586 	VLAN_XLOCK_ASSERT();
587 
588 	/* Find the parent. */
589 	sc = ifp->if_softc;
590 	ifp_p = PARENT(sc);
591 
592 	CURVNET_SET_QUIET(ifp_p->if_vnet);
593 
594 	/* First, remove any existing filter entries. */
595 	while ((mc = CK_SLIST_FIRST(&sc->vlan_mc_listhead)) != NULL) {
596 		CK_SLIST_REMOVE_HEAD(&sc->vlan_mc_listhead, mc_entries);
597 		(void)if_delmulti(ifp_p, (struct sockaddr *)&mc->mc_addr);
598 		NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
599 	}
600 
601 	/* Now program new ones. */
602 	IF_ADDR_WLOCK(ifp);
603 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
604 		if (ifma->ifma_addr->sa_family != AF_LINK)
605 			continue;
606 		mc = malloc(sizeof(struct vlan_mc_entry), M_VLAN, M_NOWAIT);
607 		if (mc == NULL) {
608 			IF_ADDR_WUNLOCK(ifp);
609 			return (ENOMEM);
610 		}
611 		bcopy(ifma->ifma_addr, &mc->mc_addr, ifma->ifma_addr->sa_len);
612 		mc->mc_addr.sdl_index = ifp_p->if_index;
613 		CK_SLIST_INSERT_HEAD(&sc->vlan_mc_listhead, mc, mc_entries);
614 	}
615 	IF_ADDR_WUNLOCK(ifp);
616 	CK_SLIST_FOREACH (mc, &sc->vlan_mc_listhead, mc_entries) {
617 		error = if_addmulti(ifp_p, (struct sockaddr *)&mc->mc_addr,
618 		    NULL);
619 		if (error)
620 			return (error);
621 	}
622 
623 	CURVNET_RESTORE();
624 	return (0);
625 }
626 
627 /*
628  * A handler for parent interface link layer address changes.
629  * If the parent interface link layer address is changed we
630  * should also change it on all children vlans.
631  */
632 static void
vlan_iflladdr(void * arg __unused,struct ifnet * ifp)633 vlan_iflladdr(void *arg __unused, struct ifnet *ifp)
634 {
635 	struct epoch_tracker et;
636 	struct ifvlan *ifv;
637 	struct ifnet *ifv_ifp;
638 	struct ifvlantrunk *trunk;
639 	struct sockaddr_dl *sdl;
640 
641 	/* Need the epoch since this is run on taskqueue_swi. */
642 	NET_EPOCH_ENTER(et);
643 	trunk = ifp->if_vlantrunk;
644 	if (trunk == NULL) {
645 		NET_EPOCH_EXIT(et);
646 		return;
647 	}
648 
649 	/*
650 	 * OK, it's a trunk.  Loop over and change all vlan's lladdrs on it.
651 	 * We need an exclusive lock here to prevent concurrent SIOCSIFLLADDR
652 	 * ioctl calls on the parent garbling the lladdr of the child vlan.
653 	 */
654 	TRUNK_WLOCK(trunk);
655 	VLAN_FOREACH(ifv, trunk) {
656 		/*
657 		 * Copy new new lladdr into the ifv_ifp, enqueue a task
658 		 * to actually call if_setlladdr. if_setlladdr needs to
659 		 * be deferred to a taskqueue because it will call into
660 		 * the if_vlan ioctl path and try to acquire the global
661 		 * lock.
662 		 */
663 		ifv_ifp = ifv->ifv_ifp;
664 		bcopy(IF_LLADDR(ifp), IF_LLADDR(ifv_ifp),
665 		    ifp->if_addrlen);
666 		sdl = (struct sockaddr_dl *)ifv_ifp->if_addr->ifa_addr;
667 		sdl->sdl_alen = ifp->if_addrlen;
668 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
669 	}
670 	TRUNK_WUNLOCK(trunk);
671 	NET_EPOCH_EXIT(et);
672 }
673 
674 /*
675  * A handler for network interface departure events.
676  * Track departure of trunks here so that we don't access invalid
677  * pointers or whatever if a trunk is ripped from under us, e.g.,
678  * by ejecting its hot-plug card.  However, if an ifnet is simply
679  * being renamed, then there's no need to tear down the state.
680  */
681 static void
vlan_ifdetach(void * arg __unused,struct ifnet * ifp)682 vlan_ifdetach(void *arg __unused, struct ifnet *ifp)
683 {
684 	struct ifvlan *ifv;
685 	struct ifvlantrunk *trunk;
686 
687 	/* If the ifnet is just being renamed, don't do anything. */
688 	if (ifp->if_flags & IFF_RENAMING)
689 		return;
690 	VLAN_XLOCK();
691 	trunk = ifp->if_vlantrunk;
692 	if (trunk == NULL) {
693 		VLAN_XUNLOCK();
694 		return;
695 	}
696 
697 	/*
698 	 * OK, it's a trunk.  Loop over and detach all vlan's on it.
699 	 * Check trunk pointer after each vlan_unconfig() as it will
700 	 * free it and set to NULL after the last vlan was detached.
701 	 */
702 	VLAN_FOREACH_UNTIL_SAFE(ifv, ifp->if_vlantrunk,
703 	    ifp->if_vlantrunk == NULL)
704 		vlan_unconfig_locked(ifv->ifv_ifp, 1);
705 
706 	/* Trunk should have been destroyed in vlan_unconfig(). */
707 	KASSERT(ifp->if_vlantrunk == NULL, ("%s: purge failed", __func__));
708 	VLAN_XUNLOCK();
709 }
710 
711 /*
712  * Return the trunk device for a virtual interface.
713  */
714 static struct ifnet  *
vlan_trunkdev(struct ifnet * ifp)715 vlan_trunkdev(struct ifnet *ifp)
716 {
717 	struct ifvlan *ifv;
718 
719 	NET_EPOCH_ASSERT();
720 
721 	if (ifp->if_type != IFT_L2VLAN)
722 		return (NULL);
723 
724 	ifv = ifp->if_softc;
725 	ifp = NULL;
726 	if (ifv->ifv_trunk)
727 		ifp = PARENT(ifv);
728 	return (ifp);
729 }
730 
731 /*
732  * Return the 12-bit VLAN VID for this interface, for use by external
733  * components such as Infiniband.
734  *
735  * XXXRW: Note that the function name here is historical; it should be named
736  * vlan_vid().
737  */
738 static int
vlan_tag(struct ifnet * ifp,uint16_t * vidp)739 vlan_tag(struct ifnet *ifp, uint16_t *vidp)
740 {
741 	struct ifvlan *ifv;
742 
743 	if (ifp->if_type != IFT_L2VLAN)
744 		return (EINVAL);
745 	ifv = ifp->if_softc;
746 	*vidp = ifv->ifv_vid;
747 	return (0);
748 }
749 
750 static int
vlan_pcp(struct ifnet * ifp,uint16_t * pcpp)751 vlan_pcp(struct ifnet *ifp, uint16_t *pcpp)
752 {
753 	struct ifvlan *ifv;
754 
755 	if (ifp->if_type != IFT_L2VLAN)
756 		return (EINVAL);
757 	ifv = ifp->if_softc;
758 	*pcpp = ifv->ifv_pcp;
759 	return (0);
760 }
761 
762 /*
763  * Return a driver specific cookie for this interface.  Synchronization
764  * with setcookie must be provided by the driver.
765  */
766 static void *
vlan_cookie(struct ifnet * ifp)767 vlan_cookie(struct ifnet *ifp)
768 {
769 	struct ifvlan *ifv;
770 
771 	if (ifp->if_type != IFT_L2VLAN)
772 		return (NULL);
773 	ifv = ifp->if_softc;
774 	return (ifv->ifv_cookie);
775 }
776 
777 /*
778  * Store a cookie in our softc that drivers can use to store driver
779  * private per-instance data in.
780  */
781 static int
vlan_setcookie(struct ifnet * ifp,void * cookie)782 vlan_setcookie(struct ifnet *ifp, void *cookie)
783 {
784 	struct ifvlan *ifv;
785 
786 	if (ifp->if_type != IFT_L2VLAN)
787 		return (EINVAL);
788 	ifv = ifp->if_softc;
789 	ifv->ifv_cookie = cookie;
790 	return (0);
791 }
792 
793 /*
794  * Return the vlan device present at the specific VID.
795  */
796 static struct ifnet *
vlan_devat(struct ifnet * ifp,uint16_t vid)797 vlan_devat(struct ifnet *ifp, uint16_t vid)
798 {
799 	struct ifvlantrunk *trunk;
800 	struct ifvlan *ifv;
801 
802 	NET_EPOCH_ASSERT();
803 
804 	trunk = ifp->if_vlantrunk;
805 	if (trunk == NULL)
806 		return (NULL);
807 	ifp = NULL;
808 	ifv = vlan_gethash(trunk, vid);
809 	if (ifv)
810 		ifp = ifv->ifv_ifp;
811 	return (ifp);
812 }
813 
814 /*
815  * VLAN support can be loaded as a module.  The only place in the
816  * system that's intimately aware of this is ether_input.  We hook
817  * into this code through vlan_input_p which is defined there and
818  * set here.  No one else in the system should be aware of this so
819  * we use an explicit reference here.
820  */
821 extern	void (*vlan_input_p)(struct ifnet *, struct mbuf *);
822 
823 /* For if_link_state_change() eyes only... */
824 extern	void (*vlan_link_state_p)(struct ifnet *);
825 
826 static int
vlan_modevent(module_t mod,int type,void * data)827 vlan_modevent(module_t mod, int type, void *data)
828 {
829 
830 	switch (type) {
831 	case MOD_LOAD:
832 		ifdetach_tag = EVENTHANDLER_REGISTER(ifnet_departure_event,
833 		    vlan_ifdetach, NULL, EVENTHANDLER_PRI_ANY);
834 		if (ifdetach_tag == NULL)
835 			return (ENOMEM);
836 		iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event,
837 		    vlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
838 		if (iflladdr_tag == NULL)
839 			return (ENOMEM);
840 		VLAN_LOCKING_INIT();
841 		vlan_input_p = vlan_input;
842 		vlan_link_state_p = vlan_link_state;
843 		vlan_trunk_cap_p = vlan_trunk_capabilities;
844 		vlan_trunkdev_p = vlan_trunkdev;
845 		vlan_cookie_p = vlan_cookie;
846 		vlan_setcookie_p = vlan_setcookie;
847 		vlan_tag_p = vlan_tag;
848 		vlan_pcp_p = vlan_pcp;
849 		vlan_devat_p = vlan_devat;
850 #ifndef VIMAGE
851 		vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
852 		    vlan_clone_create, vlan_clone_destroy);
853 #endif
854 		if (bootverbose)
855 			printf("vlan: initialized, using "
856 #ifdef VLAN_ARRAY
857 			       "full-size arrays"
858 #else
859 			       "hash tables with chaining"
860 #endif
861 
862 			       "\n");
863 		break;
864 	case MOD_UNLOAD:
865 #ifndef VIMAGE
866 		if_clone_detach(vlan_cloner);
867 #endif
868 		EVENTHANDLER_DEREGISTER(ifnet_departure_event, ifdetach_tag);
869 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_tag);
870 		vlan_input_p = NULL;
871 		vlan_link_state_p = NULL;
872 		vlan_trunk_cap_p = NULL;
873 		vlan_trunkdev_p = NULL;
874 		vlan_tag_p = NULL;
875 		vlan_cookie_p = NULL;
876 		vlan_setcookie_p = NULL;
877 		vlan_devat_p = NULL;
878 		VLAN_LOCKING_DESTROY();
879 		if (bootverbose)
880 			printf("vlan: unloaded\n");
881 		break;
882 	default:
883 		return (EOPNOTSUPP);
884 	}
885 	return (0);
886 }
887 
888 static moduledata_t vlan_mod = {
889 	"if_vlan",
890 	vlan_modevent,
891 	0
892 };
893 
894 DECLARE_MODULE(if_vlan, vlan_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
895 MODULE_VERSION(if_vlan, 3);
896 
897 #ifdef VIMAGE
898 static void
vnet_vlan_init(const void * unused __unused)899 vnet_vlan_init(const void *unused __unused)
900 {
901 
902 	vlan_cloner = if_clone_advanced(vlanname, 0, vlan_clone_match,
903 		    vlan_clone_create, vlan_clone_destroy);
904 	V_vlan_cloner = vlan_cloner;
905 }
906 VNET_SYSINIT(vnet_vlan_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
907     vnet_vlan_init, NULL);
908 
909 static void
vnet_vlan_uninit(const void * unused __unused)910 vnet_vlan_uninit(const void *unused __unused)
911 {
912 
913 	if_clone_detach(V_vlan_cloner);
914 }
915 VNET_SYSUNINIT(vnet_vlan_uninit, SI_SUB_INIT_IF, SI_ORDER_ANY,
916     vnet_vlan_uninit, NULL);
917 #endif
918 
919 /*
920  * Check for <etherif>.<vlan>[.<vlan> ...] style interface names.
921  */
922 static struct ifnet *
vlan_clone_match_ethervid(const char * name,int * vidp)923 vlan_clone_match_ethervid(const char *name, int *vidp)
924 {
925 	char ifname[IFNAMSIZ];
926 	char *cp;
927 	struct ifnet *ifp;
928 	int vid;
929 
930 	strlcpy(ifname, name, IFNAMSIZ);
931 	if ((cp = strrchr(ifname, '.')) == NULL)
932 		return (NULL);
933 	*cp = '\0';
934 	if ((ifp = ifunit_ref(ifname)) == NULL)
935 		return (NULL);
936 	/* Parse VID. */
937 	if (*++cp == '\0') {
938 		if_rele(ifp);
939 		return (NULL);
940 	}
941 	vid = 0;
942 	for(; *cp >= '0' && *cp <= '9'; cp++)
943 		vid = (vid * 10) + (*cp - '0');
944 	if (*cp != '\0') {
945 		if_rele(ifp);
946 		return (NULL);
947 	}
948 	if (vidp != NULL)
949 		*vidp = vid;
950 
951 	return (ifp);
952 }
953 
954 static int
vlan_clone_match(struct if_clone * ifc,const char * name)955 vlan_clone_match(struct if_clone *ifc, const char *name)
956 {
957 	struct ifnet *ifp;
958 	const char *cp;
959 
960 	ifp = vlan_clone_match_ethervid(name, NULL);
961 	if (ifp != NULL) {
962 		if_rele(ifp);
963 		return (1);
964 	}
965 
966 	if (strncmp(vlanname, name, strlen(vlanname)) != 0)
967 		return (0);
968 	for (cp = name + 4; *cp != '\0'; cp++) {
969 		if (*cp < '0' || *cp > '9')
970 			return (0);
971 	}
972 
973 	return (1);
974 }
975 
976 static int
vlan_clone_create(struct if_clone * ifc,char * name,size_t len,caddr_t params)977 vlan_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
978 {
979 	char *dp;
980 	bool wildcard = false;
981 	bool subinterface = false;
982 	int unit;
983 	int error;
984 	int vid = 0;
985 	uint16_t proto = ETHERTYPE_VLAN;
986 	struct ifvlan *ifv;
987 	struct ifnet *ifp;
988 	struct ifnet *p = NULL;
989 	struct ifaddr *ifa;
990 	struct sockaddr_dl *sdl;
991 	struct vlanreq vlr;
992 	static const u_char eaddr[ETHER_ADDR_LEN];	/* 00:00:00:00:00:00 */
993 
994 
995 	/*
996 	 * There are three ways to specify the cloned device:
997 	 * o pass a parameter block with the clone request.
998 	 * o specify parameters in the text of the clone device name
999 	 * o specify no parameters and get an unattached device that
1000 	 *   must be configured separately.
1001 	 * The first technique is preferred; the latter two are supported
1002 	 * for backwards compatibility.
1003 	 *
1004 	 * XXXRW: Note historic use of the word "tag" here.  New ioctls may be
1005 	 * called for.
1006 	 */
1007 
1008 	if (params) {
1009 		error = copyin(params, &vlr, sizeof(vlr));
1010 		if (error)
1011 			return error;
1012 		vid = vlr.vlr_tag;
1013 		proto = vlr.vlr_proto;
1014 
1015 		p = ifunit_ref(vlr.vlr_parent);
1016 		if (p == NULL)
1017 			return (ENXIO);
1018 	}
1019 
1020 	if ((error = ifc_name2unit(name, &unit)) == 0) {
1021 
1022 		/*
1023 		 * vlanX interface. Set wildcard to true if the unit number
1024 		 * is not fixed (-1)
1025 		 */
1026 		wildcard = (unit < 0);
1027 	} else {
1028 		struct ifnet *p_tmp = vlan_clone_match_ethervid(name, &vid);
1029 		if (p_tmp != NULL) {
1030 			error = 0;
1031 			subinterface = true;
1032 			unit = IF_DUNIT_NONE;
1033 			wildcard = false;
1034 			if (p != NULL) {
1035 				if_rele(p_tmp);
1036 				if (p != p_tmp)
1037 					error = EINVAL;
1038 			} else
1039 				p = p_tmp;
1040 		} else
1041 			error = ENXIO;
1042 	}
1043 
1044 	if (error != 0) {
1045 		if (p != NULL)
1046 			if_rele(p);
1047 		return (error);
1048 	}
1049 
1050 	if (!subinterface) {
1051 		/* vlanX interface, mark X as busy or allocate new unit # */
1052 		error = ifc_alloc_unit(ifc, &unit);
1053 		if (error != 0) {
1054 			if (p != NULL)
1055 				if_rele(p);
1056 			return (error);
1057 		}
1058 	}
1059 
1060 	/* In the wildcard case, we need to update the name. */
1061 	if (wildcard) {
1062 		for (dp = name; *dp != '\0'; dp++);
1063 		if (snprintf(dp, len - (dp-name), "%d", unit) >
1064 		    len - (dp-name) - 1) {
1065 			panic("%s: interface name too long", __func__);
1066 		}
1067 	}
1068 
1069 	ifv = malloc(sizeof(struct ifvlan), M_VLAN, M_WAITOK | M_ZERO);
1070 	ifp = ifv->ifv_ifp = if_alloc(IFT_ETHER);
1071 	if (ifp == NULL) {
1072 		if (!subinterface)
1073 			ifc_free_unit(ifc, unit);
1074 		free(ifv, M_VLAN);
1075 		if (p != NULL)
1076 			if_rele(p);
1077 		return (ENOSPC);
1078 	}
1079 	CK_SLIST_INIT(&ifv->vlan_mc_listhead);
1080 	ifp->if_softc = ifv;
1081 	/*
1082 	 * Set the name manually rather than using if_initname because
1083 	 * we don't conform to the default naming convention for interfaces.
1084 	 */
1085 	strlcpy(ifp->if_xname, name, IFNAMSIZ);
1086 	ifp->if_dname = vlanname;
1087 	ifp->if_dunit = unit;
1088 
1089 	ifp->if_init = vlan_init;
1090 	ifp->if_transmit = vlan_transmit;
1091 	ifp->if_qflush = vlan_qflush;
1092 	ifp->if_ioctl = vlan_ioctl;
1093 #if defined(KERN_TLS) || defined(RATELIMIT)
1094 	ifp->if_snd_tag_alloc = vlan_snd_tag_alloc;
1095 	ifp->if_snd_tag_modify = vlan_snd_tag_modify;
1096 	ifp->if_snd_tag_query = vlan_snd_tag_query;
1097 	ifp->if_snd_tag_free = vlan_snd_tag_free;
1098 #endif
1099 	ifp->if_flags = VLAN_IFFLAGS;
1100 	ether_ifattach(ifp, eaddr);
1101 	/* Now undo some of the damage... */
1102 	ifp->if_baudrate = 0;
1103 	ifp->if_type = IFT_L2VLAN;
1104 	ifp->if_hdrlen = ETHER_VLAN_ENCAP_LEN;
1105 	ifa = ifp->if_addr;
1106 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1107 	sdl->sdl_type = IFT_L2VLAN;
1108 
1109 	if (p != NULL) {
1110 		error = vlan_config(ifv, p, vid, proto);
1111 		if_rele(p);
1112 		if (error != 0) {
1113 			/*
1114 			 * Since we've partially failed, we need to back
1115 			 * out all the way, otherwise userland could get
1116 			 * confused.  Thus, we destroy the interface.
1117 			 */
1118 			ether_ifdetach(ifp);
1119 			vlan_unconfig(ifp);
1120 			if_free(ifp);
1121 			if (!subinterface)
1122 				ifc_free_unit(ifc, unit);
1123 			free(ifv, M_VLAN);
1124 
1125 			return (error);
1126 		}
1127 	}
1128 
1129 	return (0);
1130 }
1131 
1132 static int
vlan_clone_destroy(struct if_clone * ifc,struct ifnet * ifp)1133 vlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
1134 {
1135 	struct ifvlan *ifv = ifp->if_softc;
1136 	int unit = ifp->if_dunit;
1137 
1138 	if (ifp->if_vlantrunk)
1139 		return (EBUSY);
1140 
1141 	ether_ifdetach(ifp);	/* first, remove it from system-wide lists */
1142 	vlan_unconfig(ifp);	/* now it can be unconfigured and freed */
1143 	/*
1144 	 * We should have the only reference to the ifv now, so we can now
1145 	 * drain any remaining lladdr task before freeing the ifnet and the
1146 	 * ifvlan.
1147 	 */
1148 	taskqueue_drain(taskqueue_thread, &ifv->lladdr_task);
1149 	NET_EPOCH_WAIT();
1150 	if_free(ifp);
1151 	free(ifv, M_VLAN);
1152 	if (unit != IF_DUNIT_NONE)
1153 		ifc_free_unit(ifc, unit);
1154 
1155 	return (0);
1156 }
1157 
1158 /*
1159  * The ifp->if_init entry point for vlan(4) is a no-op.
1160  */
1161 static void
vlan_init(void * foo __unused)1162 vlan_init(void *foo __unused)
1163 {
1164 }
1165 
1166 /*
1167  * The if_transmit method for vlan(4) interface.
1168  */
1169 static int
vlan_transmit(struct ifnet * ifp,struct mbuf * m)1170 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1171 {
1172 	struct ifvlan *ifv;
1173 	struct ifnet *p;
1174 	int error, len, mcast;
1175 
1176 	NET_EPOCH_ASSERT();
1177 
1178 	ifv = ifp->if_softc;
1179 	if (TRUNK(ifv) == NULL) {
1180 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1181 		m_freem(m);
1182 		return (ENETDOWN);
1183 	}
1184 	p = PARENT(ifv);
1185 	len = m->m_pkthdr.len;
1186 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1 : 0;
1187 
1188 	BPF_MTAP(ifp, m);
1189 
1190 #if defined(KERN_TLS) || defined(RATELIMIT)
1191 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
1192 		struct vlan_snd_tag *vst;
1193 		struct m_snd_tag *mst;
1194 
1195 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
1196 		mst = m->m_pkthdr.snd_tag;
1197 		vst = mst_to_vst(mst);
1198 		if (vst->tag->ifp != p) {
1199 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1200 			m_freem(m);
1201 			return (EAGAIN);
1202 		}
1203 
1204 		m->m_pkthdr.snd_tag = m_snd_tag_ref(vst->tag);
1205 		m_snd_tag_rele(mst);
1206 	}
1207 #endif
1208 
1209 	/*
1210 	 * Do not run parent's if_transmit() if the parent is not up,
1211 	 * or parent's driver will cause a system crash.
1212 	 */
1213 	if (!UP_AND_RUNNING(p)) {
1214 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1215 		m_freem(m);
1216 		return (ENETDOWN);
1217 	}
1218 
1219 	if (!ether_8021q_frame(&m, ifp, p, &ifv->ifv_qtag)) {
1220 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1221 		return (0);
1222 	}
1223 
1224 	/*
1225 	 * Send it, precisely as ether_output() would have.
1226 	 */
1227 	error = (p->if_transmit)(p, m);
1228 	if (error == 0) {
1229 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1230 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
1231 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
1232 	} else
1233 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1234 	return (error);
1235 }
1236 
1237 static int
vlan_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)1238 vlan_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
1239     struct route *ro)
1240 {
1241 	struct ifvlan *ifv;
1242 	struct ifnet *p;
1243 
1244 	NET_EPOCH_ASSERT();
1245 
1246 	/*
1247 	 * Find the first non-VLAN parent interface.
1248 	 */
1249 	ifv = ifp->if_softc;
1250 	do {
1251 		if (TRUNK(ifv) == NULL) {
1252 			m_freem(m);
1253 			return (ENETDOWN);
1254 		}
1255 		p = PARENT(ifv);
1256 		ifv = p->if_softc;
1257 	} while (p->if_type == IFT_L2VLAN);
1258 
1259 	return p->if_output(ifp, m, dst, ro);
1260 }
1261 
1262 /*
1263  * The ifp->if_qflush entry point for vlan(4) is a no-op.
1264  */
1265 static void
vlan_qflush(struct ifnet * ifp __unused)1266 vlan_qflush(struct ifnet *ifp __unused)
1267 {
1268 }
1269 
1270 static void
vlan_input(struct ifnet * ifp,struct mbuf * m)1271 vlan_input(struct ifnet *ifp, struct mbuf *m)
1272 {
1273 	struct ifvlantrunk *trunk;
1274 	struct ifvlan *ifv;
1275 	struct m_tag *mtag;
1276 	uint16_t vid, tag;
1277 
1278 	NET_EPOCH_ASSERT();
1279 
1280 	trunk = ifp->if_vlantrunk;
1281 	if (trunk == NULL) {
1282 		m_freem(m);
1283 		return;
1284 	}
1285 
1286 	if (m->m_flags & M_VLANTAG) {
1287 		/*
1288 		 * Packet is tagged, but m contains a normal
1289 		 * Ethernet frame; the tag is stored out-of-band.
1290 		 */
1291 		tag = m->m_pkthdr.ether_vtag;
1292 		m->m_flags &= ~M_VLANTAG;
1293 	} else {
1294 		struct ether_vlan_header *evl;
1295 
1296 		/*
1297 		 * Packet is tagged in-band as specified by 802.1q.
1298 		 */
1299 		switch (ifp->if_type) {
1300 		case IFT_ETHER:
1301 			if (m->m_len < sizeof(*evl) &&
1302 			    (m = m_pullup(m, sizeof(*evl))) == NULL) {
1303 				if_printf(ifp, "cannot pullup VLAN header\n");
1304 				return;
1305 			}
1306 			evl = mtod(m, struct ether_vlan_header *);
1307 			tag = ntohs(evl->evl_tag);
1308 
1309 			/*
1310 			 * Remove the 802.1q header by copying the Ethernet
1311 			 * addresses over it and adjusting the beginning of
1312 			 * the data in the mbuf.  The encapsulated Ethernet
1313 			 * type field is already in place.
1314 			 */
1315 			bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
1316 			      ETHER_HDR_LEN - ETHER_TYPE_LEN);
1317 			m_adj(m, ETHER_VLAN_ENCAP_LEN);
1318 			break;
1319 
1320 		default:
1321 #ifdef INVARIANTS
1322 			panic("%s: %s has unsupported if_type %u",
1323 			      __func__, ifp->if_xname, ifp->if_type);
1324 #endif
1325 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1326 			m_freem(m);
1327 			return;
1328 		}
1329 	}
1330 
1331 	vid = EVL_VLANOFTAG(tag);
1332 
1333 	ifv = vlan_gethash(trunk, vid);
1334 	if (ifv == NULL || !UP_AND_RUNNING(ifv->ifv_ifp)) {
1335 		if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
1336 		m_freem(m);
1337 		return;
1338 	}
1339 
1340 	if (vlan_mtag_pcp) {
1341 		/*
1342 		 * While uncommon, it is possible that we will find a 802.1q
1343 		 * packet encapsulated inside another packet that also had an
1344 		 * 802.1q header.  For example, ethernet tunneled over IPSEC
1345 		 * arriving over ethernet.  In that case, we replace the
1346 		 * existing 802.1q PCP m_tag value.
1347 		 */
1348 		mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL);
1349 		if (mtag == NULL) {
1350 			mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_IN,
1351 			    sizeof(uint8_t), M_NOWAIT);
1352 			if (mtag == NULL) {
1353 				if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1354 				m_freem(m);
1355 				return;
1356 			}
1357 			m_tag_prepend(m, mtag);
1358 		}
1359 		*(uint8_t *)(mtag + 1) = EVL_PRIOFTAG(tag);
1360 	}
1361 
1362 	m->m_pkthdr.rcvif = ifv->ifv_ifp;
1363 	if_inc_counter(ifv->ifv_ifp, IFCOUNTER_IPACKETS, 1);
1364 
1365 	/* Pass it back through the parent's input routine. */
1366 	(*ifv->ifv_ifp->if_input)(ifv->ifv_ifp, m);
1367 }
1368 
1369 static void
vlan_lladdr_fn(void * arg,int pending __unused)1370 vlan_lladdr_fn(void *arg, int pending __unused)
1371 {
1372 	struct ifvlan *ifv;
1373 	struct ifnet *ifp;
1374 
1375 	ifv = (struct ifvlan *)arg;
1376 	ifp = ifv->ifv_ifp;
1377 
1378 	CURVNET_SET(ifp->if_vnet);
1379 
1380 	/* The ifv_ifp already has the lladdr copied in. */
1381 	if_setlladdr(ifp, IF_LLADDR(ifp), ifp->if_addrlen);
1382 
1383 	CURVNET_RESTORE();
1384 }
1385 
1386 static int
vlan_config(struct ifvlan * ifv,struct ifnet * p,uint16_t vid,uint16_t proto)1387 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t vid,
1388 	uint16_t proto)
1389 {
1390 	struct epoch_tracker et;
1391 	struct ifvlantrunk *trunk;
1392 	struct ifnet *ifp;
1393 	int error = 0;
1394 
1395 	/*
1396 	 * We can handle non-ethernet hardware types as long as
1397 	 * they handle the tagging and headers themselves.
1398 	 */
1399 	if (p->if_type != IFT_ETHER &&
1400 	    p->if_type != IFT_L2VLAN &&
1401 	    (p->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1402 		return (EPROTONOSUPPORT);
1403 	if ((p->if_flags & VLAN_IFFLAGS) != VLAN_IFFLAGS)
1404 		return (EPROTONOSUPPORT);
1405 	/*
1406 	 * Don't let the caller set up a VLAN VID with
1407 	 * anything except VLID bits.
1408 	 * VID numbers 0x0 and 0xFFF are reserved.
1409 	 */
1410 	if (vid == 0 || vid == 0xFFF || (vid & ~EVL_VLID_MASK))
1411 		return (EINVAL);
1412 	if (ifv->ifv_trunk)
1413 		return (EBUSY);
1414 
1415 	VLAN_XLOCK();
1416 	if (p->if_vlantrunk == NULL) {
1417 		trunk = malloc(sizeof(struct ifvlantrunk),
1418 		    M_VLAN, M_WAITOK | M_ZERO);
1419 		vlan_inithash(trunk);
1420 		TRUNK_LOCK_INIT(trunk);
1421 		TRUNK_WLOCK(trunk);
1422 		p->if_vlantrunk = trunk;
1423 		trunk->parent = p;
1424 		if_ref(trunk->parent);
1425 		TRUNK_WUNLOCK(trunk);
1426 	} else {
1427 		trunk = p->if_vlantrunk;
1428 	}
1429 
1430 	ifv->ifv_vid = vid;	/* must set this before vlan_inshash() */
1431 	ifv->ifv_pcp = 0;       /* Default: best effort delivery. */
1432 	error = vlan_inshash(trunk, ifv);
1433 	if (error)
1434 		goto done;
1435 	ifv->ifv_proto = proto;
1436 	ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1437 	ifv->ifv_mintu = ETHERMIN;
1438 	ifv->ifv_pflags = 0;
1439 	ifv->ifv_capenable = -1;
1440 
1441 	/*
1442 	 * If the parent supports the VLAN_MTU capability,
1443 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames,
1444 	 * use it.
1445 	 */
1446 	if (p->if_capenable & IFCAP_VLAN_MTU) {
1447 		/*
1448 		 * No need to fudge the MTU since the parent can
1449 		 * handle extended frames.
1450 		 */
1451 		ifv->ifv_mtufudge = 0;
1452 	} else {
1453 		/*
1454 		 * Fudge the MTU by the encapsulation size.  This
1455 		 * makes us incompatible with strictly compliant
1456 		 * 802.1Q implementations, but allows us to use
1457 		 * the feature with other NetBSD implementations,
1458 		 * which might still be useful.
1459 		 */
1460 		ifv->ifv_mtufudge = ifv->ifv_encaplen;
1461 	}
1462 
1463 	ifv->ifv_trunk = trunk;
1464 	ifp = ifv->ifv_ifp;
1465 	/*
1466 	 * Initialize fields from our parent.  This duplicates some
1467 	 * work with ether_ifattach() but allows for non-ethernet
1468 	 * interfaces to also work.
1469 	 */
1470 	ifp->if_mtu = p->if_mtu - ifv->ifv_mtufudge;
1471 	ifp->if_baudrate = p->if_baudrate;
1472 	ifp->if_input = p->if_input;
1473 	ifp->if_resolvemulti = p->if_resolvemulti;
1474 	ifp->if_addrlen = p->if_addrlen;
1475 	ifp->if_broadcastaddr = p->if_broadcastaddr;
1476 	ifp->if_pcp = ifv->ifv_pcp;
1477 
1478 	/*
1479 	 * We wrap the parent's if_output using vlan_output to ensure that it
1480 	 * can't become stale.
1481 	 */
1482 	ifp->if_output = vlan_output;
1483 
1484 	/*
1485 	 * Copy only a selected subset of flags from the parent.
1486 	 * Other flags are none of our business.
1487 	 */
1488 #define VLAN_COPY_FLAGS (IFF_SIMPLEX)
1489 	ifp->if_flags &= ~VLAN_COPY_FLAGS;
1490 	ifp->if_flags |= p->if_flags & VLAN_COPY_FLAGS;
1491 #undef VLAN_COPY_FLAGS
1492 
1493 	ifp->if_link_state = p->if_link_state;
1494 
1495 	NET_EPOCH_ENTER(et);
1496 	vlan_capabilities(ifv);
1497 	NET_EPOCH_EXIT(et);
1498 
1499 	/*
1500 	 * Set up our interface address to reflect the underlying
1501 	 * physical interface's.
1502 	 */
1503 	TASK_INIT(&ifv->lladdr_task, 0, vlan_lladdr_fn, ifv);
1504 	((struct sockaddr_dl *)ifp->if_addr->ifa_addr)->sdl_alen =
1505 	    p->if_addrlen;
1506 
1507 	/*
1508 	 * Do not schedule link address update if it was the same
1509 	 * as previous parent's. This helps avoid updating for each
1510 	 * associated llentry.
1511 	 */
1512 	if (memcmp(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen) != 0) {
1513 		bcopy(IF_LLADDR(p), IF_LLADDR(ifp), p->if_addrlen);
1514 		taskqueue_enqueue(taskqueue_thread, &ifv->lladdr_task);
1515 	}
1516 
1517 	/* We are ready for operation now. */
1518 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1519 
1520 	/* Update flags on the parent, if necessary. */
1521 	vlan_setflags(ifp, 1);
1522 
1523 	/*
1524 	 * Configure multicast addresses that may already be
1525 	 * joined on the vlan device.
1526 	 */
1527 	(void)vlan_setmulti(ifp);
1528 
1529 done:
1530 	if (error == 0)
1531 		EVENTHANDLER_INVOKE(vlan_config, p, ifv->ifv_vid);
1532 	VLAN_XUNLOCK();
1533 
1534 	return (error);
1535 }
1536 
1537 static void
vlan_unconfig(struct ifnet * ifp)1538 vlan_unconfig(struct ifnet *ifp)
1539 {
1540 
1541 	VLAN_XLOCK();
1542 	vlan_unconfig_locked(ifp, 0);
1543 	VLAN_XUNLOCK();
1544 }
1545 
1546 static void
vlan_unconfig_locked(struct ifnet * ifp,int departing)1547 vlan_unconfig_locked(struct ifnet *ifp, int departing)
1548 {
1549 	struct ifvlantrunk *trunk;
1550 	struct vlan_mc_entry *mc;
1551 	struct ifvlan *ifv;
1552 	struct ifnet  *parent;
1553 	int error;
1554 
1555 	VLAN_XLOCK_ASSERT();
1556 
1557 	ifv = ifp->if_softc;
1558 	trunk = ifv->ifv_trunk;
1559 	parent = NULL;
1560 
1561 	if (trunk != NULL) {
1562 		parent = trunk->parent;
1563 
1564 		/*
1565 		 * Since the interface is being unconfigured, we need to
1566 		 * empty the list of multicast groups that we may have joined
1567 		 * while we were alive from the parent's list.
1568 		 */
1569 		while ((mc = CK_SLIST_FIRST(&ifv->vlan_mc_listhead)) != NULL) {
1570 			/*
1571 			 * If the parent interface is being detached,
1572 			 * all its multicast addresses have already
1573 			 * been removed.  Warn about errors if
1574 			 * if_delmulti() does fail, but don't abort as
1575 			 * all callers expect vlan destruction to
1576 			 * succeed.
1577 			 */
1578 			if (!departing) {
1579 				error = if_delmulti(parent,
1580 				    (struct sockaddr *)&mc->mc_addr);
1581 				if (error)
1582 					if_printf(ifp,
1583 		    "Failed to delete multicast address from parent: %d\n",
1584 					    error);
1585 			}
1586 			CK_SLIST_REMOVE_HEAD(&ifv->vlan_mc_listhead, mc_entries);
1587 			NET_EPOCH_CALL(vlan_mc_free, &mc->mc_epoch_ctx);
1588 		}
1589 
1590 		vlan_setflags(ifp, 0); /* clear special flags on parent */
1591 
1592 		vlan_remhash(trunk, ifv);
1593 		ifv->ifv_trunk = NULL;
1594 
1595 		/*
1596 		 * Check if we were the last.
1597 		 */
1598 		if (trunk->refcnt == 0) {
1599 			parent->if_vlantrunk = NULL;
1600 			NET_EPOCH_WAIT();
1601 			trunk_destroy(trunk);
1602 		}
1603 	}
1604 
1605 	/* Disconnect from parent. */
1606 	if (ifv->ifv_pflags)
1607 		if_printf(ifp, "%s: ifv_pflags unclean\n", __func__);
1608 	ifp->if_mtu = ETHERMTU;
1609 	ifp->if_link_state = LINK_STATE_UNKNOWN;
1610 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1611 
1612 	/*
1613 	 * Only dispatch an event if vlan was
1614 	 * attached, otherwise there is nothing
1615 	 * to cleanup anyway.
1616 	 */
1617 	if (parent != NULL)
1618 		EVENTHANDLER_INVOKE(vlan_unconfig, parent, ifv->ifv_vid);
1619 }
1620 
1621 /* Handle a reference counted flag that should be set on the parent as well */
1622 static int
vlan_setflag(struct ifnet * ifp,int flag,int status,int (* func)(struct ifnet *,int))1623 vlan_setflag(struct ifnet *ifp, int flag, int status,
1624 	     int (*func)(struct ifnet *, int))
1625 {
1626 	struct ifvlan *ifv;
1627 	int error;
1628 
1629 	VLAN_SXLOCK_ASSERT();
1630 
1631 	ifv = ifp->if_softc;
1632 	status = status ? (ifp->if_flags & flag) : 0;
1633 	/* Now "status" contains the flag value or 0 */
1634 
1635 	/*
1636 	 * See if recorded parent's status is different from what
1637 	 * we want it to be.  If it is, flip it.  We record parent's
1638 	 * status in ifv_pflags so that we won't clear parent's flag
1639 	 * we haven't set.  In fact, we don't clear or set parent's
1640 	 * flags directly, but get or release references to them.
1641 	 * That's why we can be sure that recorded flags still are
1642 	 * in accord with actual parent's flags.
1643 	 */
1644 	if (status != (ifv->ifv_pflags & flag)) {
1645 		error = (*func)(PARENT(ifv), status);
1646 		if (error)
1647 			return (error);
1648 		ifv->ifv_pflags &= ~flag;
1649 		ifv->ifv_pflags |= status;
1650 	}
1651 	return (0);
1652 }
1653 
1654 /*
1655  * Handle IFF_* flags that require certain changes on the parent:
1656  * if "status" is true, update parent's flags respective to our if_flags;
1657  * if "status" is false, forcedly clear the flags set on parent.
1658  */
1659 static int
vlan_setflags(struct ifnet * ifp,int status)1660 vlan_setflags(struct ifnet *ifp, int status)
1661 {
1662 	int error, i;
1663 
1664 	for (i = 0; vlan_pflags[i].flag; i++) {
1665 		error = vlan_setflag(ifp, vlan_pflags[i].flag,
1666 				     status, vlan_pflags[i].func);
1667 		if (error)
1668 			return (error);
1669 	}
1670 	return (0);
1671 }
1672 
1673 /* Inform all vlans that their parent has changed link state */
1674 static void
vlan_link_state(struct ifnet * ifp)1675 vlan_link_state(struct ifnet *ifp)
1676 {
1677 	struct epoch_tracker et;
1678 	struct ifvlantrunk *trunk;
1679 	struct ifvlan *ifv;
1680 
1681 	NET_EPOCH_ENTER(et);
1682 	trunk = ifp->if_vlantrunk;
1683 	if (trunk == NULL) {
1684 		NET_EPOCH_EXIT(et);
1685 		return;
1686 	}
1687 
1688 	TRUNK_WLOCK(trunk);
1689 	VLAN_FOREACH(ifv, trunk) {
1690 		ifv->ifv_ifp->if_baudrate = trunk->parent->if_baudrate;
1691 		if_link_state_change(ifv->ifv_ifp,
1692 		    trunk->parent->if_link_state);
1693 	}
1694 	TRUNK_WUNLOCK(trunk);
1695 	NET_EPOCH_EXIT(et);
1696 }
1697 
1698 static void
vlan_capabilities(struct ifvlan * ifv)1699 vlan_capabilities(struct ifvlan *ifv)
1700 {
1701 	struct ifnet *p;
1702 	struct ifnet *ifp;
1703 	struct ifnet_hw_tsomax hw_tsomax;
1704 	int cap = 0, ena = 0, mena;
1705 	u_long hwa = 0;
1706 
1707 	NET_EPOCH_ASSERT();
1708 	VLAN_SXLOCK_ASSERT();
1709 
1710 	p = PARENT(ifv);
1711 	ifp = ifv->ifv_ifp;
1712 
1713 	/* Mask parent interface enabled capabilities disabled by user. */
1714 	mena = p->if_capenable & ifv->ifv_capenable;
1715 
1716 	/*
1717 	 * If the parent interface can do checksum offloading
1718 	 * on VLANs, then propagate its hardware-assisted
1719 	 * checksumming flags. Also assert that checksum
1720 	 * offloading requires hardware VLAN tagging.
1721 	 */
1722 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1723 		cap |= p->if_capabilities & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1724 	if (p->if_capenable & IFCAP_VLAN_HWCSUM &&
1725 	    p->if_capenable & IFCAP_VLAN_HWTAGGING) {
1726 		ena |= mena & (IFCAP_HWCSUM | IFCAP_HWCSUM_IPV6);
1727 		if (ena & IFCAP_TXCSUM)
1728 			hwa |= p->if_hwassist & (CSUM_IP | CSUM_TCP |
1729 			    CSUM_UDP | CSUM_SCTP);
1730 		if (ena & IFCAP_TXCSUM_IPV6)
1731 			hwa |= p->if_hwassist & (CSUM_TCP_IPV6 |
1732 			    CSUM_UDP_IPV6 | CSUM_SCTP_IPV6);
1733 	}
1734 
1735 	/*
1736 	 * If the parent interface can do TSO on VLANs then
1737 	 * propagate the hardware-assisted flag. TSO on VLANs
1738 	 * does not necessarily require hardware VLAN tagging.
1739 	 */
1740 	memset(&hw_tsomax, 0, sizeof(hw_tsomax));
1741 	if_hw_tsomax_common(p, &hw_tsomax);
1742 	if_hw_tsomax_update(ifp, &hw_tsomax);
1743 	if (p->if_capabilities & IFCAP_VLAN_HWTSO)
1744 		cap |= p->if_capabilities & IFCAP_TSO;
1745 	if (p->if_capenable & IFCAP_VLAN_HWTSO) {
1746 		ena |= mena & IFCAP_TSO;
1747 		if (ena & IFCAP_TSO)
1748 			hwa |= p->if_hwassist & CSUM_TSO;
1749 	}
1750 
1751 	/*
1752 	 * If the parent interface can do LRO and checksum offloading on
1753 	 * VLANs, then guess it may do LRO on VLANs.  False positive here
1754 	 * cost nothing, while false negative may lead to some confusions.
1755 	 */
1756 	if (p->if_capabilities & IFCAP_VLAN_HWCSUM)
1757 		cap |= p->if_capabilities & IFCAP_LRO;
1758 	if (p->if_capenable & IFCAP_VLAN_HWCSUM)
1759 		ena |= p->if_capenable & IFCAP_LRO;
1760 
1761 	/*
1762 	 * If the parent interface can offload TCP connections over VLANs then
1763 	 * propagate its TOE capability to the VLAN interface.
1764 	 *
1765 	 * All TOE drivers in the tree today can deal with VLANs.  If this
1766 	 * changes then IFCAP_VLAN_TOE should be promoted to a full capability
1767 	 * with its own bit.
1768 	 */
1769 #define	IFCAP_VLAN_TOE IFCAP_TOE
1770 	if (p->if_capabilities & IFCAP_VLAN_TOE)
1771 		cap |= p->if_capabilities & IFCAP_TOE;
1772 	if (p->if_capenable & IFCAP_VLAN_TOE) {
1773 		TOEDEV(ifp) = TOEDEV(p);
1774 		ena |= mena & IFCAP_TOE;
1775 	}
1776 
1777 	/*
1778 	 * If the parent interface supports dynamic link state, so does the
1779 	 * VLAN interface.
1780 	 */
1781 	cap |= (p->if_capabilities & IFCAP_LINKSTATE);
1782 	ena |= (mena & IFCAP_LINKSTATE);
1783 
1784 #ifdef RATELIMIT
1785 	/*
1786 	 * If the parent interface supports ratelimiting, so does the
1787 	 * VLAN interface.
1788 	 */
1789 	cap |= (p->if_capabilities & IFCAP_TXRTLMT);
1790 	ena |= (mena & IFCAP_TXRTLMT);
1791 #endif
1792 
1793 	/*
1794 	 * If the parent interface supports unmapped mbufs, so does
1795 	 * the VLAN interface.  Note that this should be fine even for
1796 	 * interfaces that don't support hardware tagging as headers
1797 	 * are prepended in normal mbufs to unmapped mbufs holding
1798 	 * payload data.
1799 	 */
1800 	cap |= (p->if_capabilities & IFCAP_NOMAP);
1801 	ena |= (mena & IFCAP_NOMAP);
1802 
1803 	/*
1804 	 * If the parent interface can offload encryption and segmentation
1805 	 * of TLS records over TCP, propagate it's capability to the VLAN
1806 	 * interface.
1807 	 *
1808 	 * All TLS drivers in the tree today can deal with VLANs.  If
1809 	 * this ever changes, then a new IFCAP_VLAN_TXTLS can be
1810 	 * defined.
1811 	 */
1812 	if (p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1813 		cap |= p->if_capabilities & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1814 	if (p->if_capenable & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT))
1815 		ena |= mena & (IFCAP_TXTLS | IFCAP_TXTLS_RTLMT);
1816 
1817 	ifp->if_capabilities = cap;
1818 	ifp->if_capenable = ena;
1819 	ifp->if_hwassist = hwa;
1820 }
1821 
1822 static void
vlan_trunk_capabilities(struct ifnet * ifp)1823 vlan_trunk_capabilities(struct ifnet *ifp)
1824 {
1825 	struct epoch_tracker et;
1826 	struct ifvlantrunk *trunk;
1827 	struct ifvlan *ifv;
1828 
1829 	VLAN_SLOCK();
1830 	trunk = ifp->if_vlantrunk;
1831 	if (trunk == NULL) {
1832 		VLAN_SUNLOCK();
1833 		return;
1834 	}
1835 	NET_EPOCH_ENTER(et);
1836 	VLAN_FOREACH(ifv, trunk)
1837 		vlan_capabilities(ifv);
1838 	NET_EPOCH_EXIT(et);
1839 	VLAN_SUNLOCK();
1840 }
1841 
1842 static int
vlan_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)1843 vlan_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1844 {
1845 	struct ifnet *p;
1846 	struct ifreq *ifr;
1847 	struct ifaddr *ifa;
1848 	struct ifvlan *ifv;
1849 	struct ifvlantrunk *trunk;
1850 	struct vlanreq vlr;
1851 	int error = 0, oldmtu;
1852 
1853 	ifr = (struct ifreq *)data;
1854 	ifa = (struct ifaddr *) data;
1855 	ifv = ifp->if_softc;
1856 
1857 	switch (cmd) {
1858 	case SIOCSIFADDR:
1859 		ifp->if_flags |= IFF_UP;
1860 #ifdef INET
1861 		if (ifa->ifa_addr->sa_family == AF_INET)
1862 			arp_ifinit(ifp, ifa);
1863 #endif
1864 		break;
1865 	case SIOCGIFADDR:
1866 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1867 		    ifp->if_addrlen);
1868 		break;
1869 	case SIOCGIFMEDIA:
1870 		VLAN_SLOCK();
1871 		if (TRUNK(ifv) != NULL) {
1872 			p = PARENT(ifv);
1873 			if_ref(p);
1874 			error = (*p->if_ioctl)(p, SIOCGIFMEDIA, data);
1875 			if_rele(p);
1876 			/* Limit the result to the parent's current config. */
1877 			if (error == 0) {
1878 				struct ifmediareq *ifmr;
1879 
1880 				ifmr = (struct ifmediareq *)data;
1881 				if (ifmr->ifm_count >= 1 && ifmr->ifm_ulist) {
1882 					ifmr->ifm_count = 1;
1883 					error = copyout(&ifmr->ifm_current,
1884 						ifmr->ifm_ulist,
1885 						sizeof(int));
1886 				}
1887 			}
1888 		} else {
1889 			error = EINVAL;
1890 		}
1891 		VLAN_SUNLOCK();
1892 		break;
1893 
1894 	case SIOCSIFMEDIA:
1895 		error = EINVAL;
1896 		break;
1897 
1898 	case SIOCSIFMTU:
1899 		/*
1900 		 * Set the interface MTU.
1901 		 */
1902 		VLAN_SLOCK();
1903 		trunk = TRUNK(ifv);
1904 		if (trunk != NULL) {
1905 			TRUNK_WLOCK(trunk);
1906 			if (ifr->ifr_mtu >
1907 			     (PARENT(ifv)->if_mtu - ifv->ifv_mtufudge) ||
1908 			    ifr->ifr_mtu <
1909 			     (ifv->ifv_mintu - ifv->ifv_mtufudge))
1910 				error = EINVAL;
1911 			else
1912 				ifp->if_mtu = ifr->ifr_mtu;
1913 			TRUNK_WUNLOCK(trunk);
1914 		} else
1915 			error = EINVAL;
1916 		VLAN_SUNLOCK();
1917 		break;
1918 
1919 	case SIOCSETVLAN:
1920 #ifdef VIMAGE
1921 		/*
1922 		 * XXXRW/XXXBZ: The goal in these checks is to allow a VLAN
1923 		 * interface to be delegated to a jail without allowing the
1924 		 * jail to change what underlying interface/VID it is
1925 		 * associated with.  We are not entirely convinced that this
1926 		 * is the right way to accomplish that policy goal.
1927 		 */
1928 		if (ifp->if_vnet != ifp->if_home_vnet) {
1929 			error = EPERM;
1930 			break;
1931 		}
1932 #endif
1933 		error = copyin(ifr_data_get_ptr(ifr), &vlr, sizeof(vlr));
1934 		if (error)
1935 			break;
1936 		if (vlr.vlr_parent[0] == '\0') {
1937 			vlan_unconfig(ifp);
1938 			break;
1939 		}
1940 		p = ifunit_ref(vlr.vlr_parent);
1941 		if (p == NULL) {
1942 			error = ENOENT;
1943 			break;
1944 		}
1945 		oldmtu = ifp->if_mtu;
1946 		error = vlan_config(ifv, p, vlr.vlr_tag, vlr.vlr_proto);
1947 		if_rele(p);
1948 
1949 		/*
1950 		 * VLAN MTU may change during addition of the vlandev.
1951 		 * If it did, do network layer specific procedure.
1952 		 */
1953 		if (ifp->if_mtu != oldmtu) {
1954 #ifdef INET6
1955 			nd6_setmtu(ifp);
1956 #endif
1957 			rt_updatemtu(ifp);
1958 		}
1959 		break;
1960 
1961 	case SIOCGETVLAN:
1962 #ifdef VIMAGE
1963 		if (ifp->if_vnet != ifp->if_home_vnet) {
1964 			error = EPERM;
1965 			break;
1966 		}
1967 #endif
1968 		bzero(&vlr, sizeof(vlr));
1969 		VLAN_SLOCK();
1970 		if (TRUNK(ifv) != NULL) {
1971 			strlcpy(vlr.vlr_parent, PARENT(ifv)->if_xname,
1972 			    sizeof(vlr.vlr_parent));
1973 			vlr.vlr_tag = ifv->ifv_vid;
1974 			vlr.vlr_proto = ifv->ifv_proto;
1975 		}
1976 		VLAN_SUNLOCK();
1977 		error = copyout(&vlr, ifr_data_get_ptr(ifr), sizeof(vlr));
1978 		break;
1979 
1980 	case SIOCSIFFLAGS:
1981 		/*
1982 		 * We should propagate selected flags to the parent,
1983 		 * e.g., promiscuous mode.
1984 		 */
1985 		VLAN_XLOCK();
1986 		if (TRUNK(ifv) != NULL)
1987 			error = vlan_setflags(ifp, 1);
1988 		VLAN_XUNLOCK();
1989 		break;
1990 
1991 	case SIOCADDMULTI:
1992 	case SIOCDELMULTI:
1993 		/*
1994 		 * If we don't have a parent, just remember the membership for
1995 		 * when we do.
1996 		 *
1997 		 * XXX We need the rmlock here to avoid sleeping while
1998 		 * holding in6_multi_mtx.
1999 		 */
2000 		VLAN_XLOCK();
2001 		trunk = TRUNK(ifv);
2002 		if (trunk != NULL)
2003 			error = vlan_setmulti(ifp);
2004 		VLAN_XUNLOCK();
2005 
2006 		break;
2007 	case SIOCGVLANPCP:
2008 #ifdef VIMAGE
2009 		if (ifp->if_vnet != ifp->if_home_vnet) {
2010 			error = EPERM;
2011 			break;
2012 		}
2013 #endif
2014 		ifr->ifr_vlan_pcp = ifv->ifv_pcp;
2015 		break;
2016 
2017 	case SIOCSVLANPCP:
2018 #ifdef VIMAGE
2019 		if (ifp->if_vnet != ifp->if_home_vnet) {
2020 			error = EPERM;
2021 			break;
2022 		}
2023 #endif
2024 		error = priv_check(curthread, PRIV_NET_SETVLANPCP);
2025 		if (error)
2026 			break;
2027 		if (ifr->ifr_vlan_pcp > 7) {
2028 			error = EINVAL;
2029 			break;
2030 		}
2031 		ifv->ifv_pcp = ifr->ifr_vlan_pcp;
2032 		ifp->if_pcp = ifv->ifv_pcp;
2033 		/* broadcast event about PCP change */
2034 		EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
2035 		break;
2036 
2037 	case SIOCSIFCAP:
2038 		VLAN_SLOCK();
2039 		ifv->ifv_capenable = ifr->ifr_reqcap;
2040 		trunk = TRUNK(ifv);
2041 		if (trunk != NULL) {
2042 			struct epoch_tracker et;
2043 
2044 			NET_EPOCH_ENTER(et);
2045 			vlan_capabilities(ifv);
2046 			NET_EPOCH_EXIT(et);
2047 		}
2048 		VLAN_SUNLOCK();
2049 		break;
2050 
2051 	default:
2052 		error = EINVAL;
2053 		break;
2054 	}
2055 
2056 	return (error);
2057 }
2058 
2059 #if defined(KERN_TLS) || defined(RATELIMIT)
2060 static int
vlan_snd_tag_alloc(struct ifnet * ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** ppmt)2061 vlan_snd_tag_alloc(struct ifnet *ifp,
2062     union if_snd_tag_alloc_params *params,
2063     struct m_snd_tag **ppmt)
2064 {
2065 	struct epoch_tracker et;
2066 	struct vlan_snd_tag *vst;
2067 	struct ifvlan *ifv;
2068 	struct ifnet *parent;
2069 	int error;
2070 
2071 	NET_EPOCH_ENTER(et);
2072 	ifv = ifp->if_softc;
2073 	if (ifv->ifv_trunk != NULL)
2074 		parent = PARENT(ifv);
2075 	else
2076 		parent = NULL;
2077 	if (parent == NULL) {
2078 		NET_EPOCH_EXIT(et);
2079 		return (EOPNOTSUPP);
2080 	}
2081 	if_ref(parent);
2082 	NET_EPOCH_EXIT(et);
2083 
2084 	vst = malloc(sizeof(*vst), M_VLAN, M_NOWAIT);
2085 	if (vst == NULL) {
2086 		if_rele(parent);
2087 		return (ENOMEM);
2088 	}
2089 
2090 	error = m_snd_tag_alloc(parent, params, &vst->tag);
2091 	if_rele(parent);
2092 	if (error) {
2093 		free(vst, M_VLAN);
2094 		return (error);
2095 	}
2096 
2097 	m_snd_tag_init(&vst->com, ifp, vst->tag->type);
2098 
2099 	*ppmt = &vst->com;
2100 	return (0);
2101 }
2102 
2103 static int
vlan_snd_tag_modify(struct m_snd_tag * mst,union if_snd_tag_modify_params * params)2104 vlan_snd_tag_modify(struct m_snd_tag *mst,
2105     union if_snd_tag_modify_params *params)
2106 {
2107 	struct vlan_snd_tag *vst;
2108 
2109 	vst = mst_to_vst(mst);
2110 	return (vst->tag->ifp->if_snd_tag_modify(vst->tag, params));
2111 }
2112 
2113 static int
vlan_snd_tag_query(struct m_snd_tag * mst,union if_snd_tag_query_params * params)2114 vlan_snd_tag_query(struct m_snd_tag *mst,
2115     union if_snd_tag_query_params *params)
2116 {
2117 	struct vlan_snd_tag *vst;
2118 
2119 	vst = mst_to_vst(mst);
2120 	return (vst->tag->ifp->if_snd_tag_query(vst->tag, params));
2121 }
2122 
2123 static void
vlan_snd_tag_free(struct m_snd_tag * mst)2124 vlan_snd_tag_free(struct m_snd_tag *mst)
2125 {
2126 	struct vlan_snd_tag *vst;
2127 
2128 	vst = mst_to_vst(mst);
2129 	m_snd_tag_rele(vst->tag);
2130 	free(vst, M_VLAN);
2131 }
2132 #endif
2133