xref: /f-stack/app/redis-5.0.5/src/hyperloglog.c (revision 572c4311)
1 /* hyperloglog.c - Redis HyperLogLog probabilistic cardinality approximation.
2  * This file implements the algorithm and the exported Redis commands.
3  *
4  * Copyright (c) 2014, Salvatore Sanfilippo <antirez at gmail dot com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  *   * Redistributions of source code must retain the above copyright notice,
11  *     this list of conditions and the following disclaimer.
12  *   * Redistributions in binary form must reproduce the above copyright
13  *     notice, this list of conditions and the following disclaimer in the
14  *     documentation and/or other materials provided with the distribution.
15  *   * Neither the name of Redis nor the names of its contributors may be used
16  *     to endorse or promote products derived from this software without
17  *     specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #include "server.h"
33 
34 #include <stdint.h>
35 #include <math.h>
36 
37 /* The Redis HyperLogLog implementation is based on the following ideas:
38  *
39  * * The use of a 64 bit hash function as proposed in [1], in order to don't
40  *   limited to cardinalities up to 10^9, at the cost of just 1 additional
41  *   bit per register.
42  * * The use of 16384 6-bit registers for a great level of accuracy, using
43  *   a total of 12k per key.
44  * * The use of the Redis string data type. No new type is introduced.
45  * * No attempt is made to compress the data structure as in [1]. Also the
46  *   algorithm used is the original HyperLogLog Algorithm as in [2], with
47  *   the only difference that a 64 bit hash function is used, so no correction
48  *   is performed for values near 2^32 as in [1].
49  *
50  * [1] Heule, Nunkesser, Hall: HyperLogLog in Practice: Algorithmic
51  *     Engineering of a State of The Art Cardinality Estimation Algorithm.
52  *
53  * [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
54  *     analysis of a near-optimal cardinality estimation algorithm.
55  *
56  * Redis uses two representations:
57  *
58  * 1) A "dense" representation where every entry is represented by
59  *    a 6-bit integer.
60  * 2) A "sparse" representation using run length compression suitable
61  *    for representing HyperLogLogs with many registers set to 0 in
62  *    a memory efficient way.
63  *
64  *
65  * HLL header
66  * ===
67  *
68  * Both the dense and sparse representation have a 16 byte header as follows:
69  *
70  * +------+---+-----+----------+
71  * | HYLL | E | N/U | Cardin.  |
72  * +------+---+-----+----------+
73  *
74  * The first 4 bytes are a magic string set to the bytes "HYLL".
75  * "E" is one byte encoding, currently set to HLL_DENSE or
76  * HLL_SPARSE. N/U are three not used bytes.
77  *
78  * The "Cardin." field is a 64 bit integer stored in little endian format
79  * with the latest cardinality computed that can be reused if the data
80  * structure was not modified since the last computation (this is useful
81  * because there are high probabilities that HLLADD operations don't
82  * modify the actual data structure and hence the approximated cardinality).
83  *
84  * When the most significant bit in the most significant byte of the cached
85  * cardinality is set, it means that the data structure was modified and
86  * we can't reuse the cached value that must be recomputed.
87  *
88  * Dense representation
89  * ===
90  *
91  * The dense representation used by Redis is the following:
92  *
93  * +--------+--------+--------+------//      //--+
94  * |11000000|22221111|33333322|55444444 ....     |
95  * +--------+--------+--------+------//      //--+
96  *
97  * The 6 bits counters are encoded one after the other starting from the
98  * LSB to the MSB, and using the next bytes as needed.
99  *
100  * Sparse representation
101  * ===
102  *
103  * The sparse representation encodes registers using a run length
104  * encoding composed of three opcodes, two using one byte, and one using
105  * of two bytes. The opcodes are called ZERO, XZERO and VAL.
106  *
107  * ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented
108  * by the six bits 'xxxxxx', plus 1, means that there are N registers set
109  * to 0. This opcode can represent from 1 to 64 contiguous registers set
110  * to the value of 0.
111  *
112  * XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit
113  * integer represented by the bits 'xxxxxx' as most significant bits and
114  * 'yyyyyyyy' as least significant bits, plus 1, means that there are N
115  * registers set to 0. This opcode can represent from 0 to 16384 contiguous
116  * registers set to the value of 0.
117  *
118  * VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer
119  * representing the value of a register, and a 2-bit integer representing
120  * the number of contiguous registers set to that value 'vvvvv'.
121  * To obtain the value and run length, the integers vvvvv and xx must be
122  * incremented by one. This opcode can represent values from 1 to 32,
123  * repeated from 1 to 4 times.
124  *
125  * The sparse representation can't represent registers with a value greater
126  * than 32, however it is very unlikely that we find such a register in an
127  * HLL with a cardinality where the sparse representation is still more
128  * memory efficient than the dense representation. When this happens the
129  * HLL is converted to the dense representation.
130  *
131  * The sparse representation is purely positional. For example a sparse
132  * representation of an empty HLL is just: XZERO:16384.
133  *
134  * An HLL having only 3 non-zero registers at position 1000, 1020, 1021
135  * respectively set to 2, 3, 3, is represented by the following three
136  * opcodes:
137  *
138  * XZERO:1000 (Registers 0-999 are set to 0)
139  * VAL:2,1    (1 register set to value 2, that is register 1000)
140  * ZERO:19    (Registers 1001-1019 set to 0)
141  * VAL:3,2    (2 registers set to value 3, that is registers 1020,1021)
142  * XZERO:15362 (Registers 1022-16383 set to 0)
143  *
144  * In the example the sparse representation used just 7 bytes instead
145  * of 12k in order to represent the HLL registers. In general for low
146  * cardinality there is a big win in terms of space efficiency, traded
147  * with CPU time since the sparse representation is slower to access:
148  *
149  * The following table shows average cardinality vs bytes used, 100
150  * samples per cardinality (when the set was not representable because
151  * of registers with too big value, the dense representation size was used
152  * as a sample).
153  *
154  * 100 267
155  * 200 485
156  * 300 678
157  * 400 859
158  * 500 1033
159  * 600 1205
160  * 700 1375
161  * 800 1544
162  * 900 1713
163  * 1000 1882
164  * 2000 3480
165  * 3000 4879
166  * 4000 6089
167  * 5000 7138
168  * 6000 8042
169  * 7000 8823
170  * 8000 9500
171  * 9000 10088
172  * 10000 10591
173  *
174  * The dense representation uses 12288 bytes, so there is a big win up to
175  * a cardinality of ~2000-3000. For bigger cardinalities the constant times
176  * involved in updating the sparse representation is not justified by the
177  * memory savings. The exact maximum length of the sparse representation
178  * when this implementation switches to the dense representation is
179  * configured via the define server.hll_sparse_max_bytes.
180  */
181 
182 struct hllhdr {
183     char magic[4];      /* "HYLL" */
184     uint8_t encoding;   /* HLL_DENSE or HLL_SPARSE. */
185     uint8_t notused[3]; /* Reserved for future use, must be zero. */
186     uint8_t card[8];    /* Cached cardinality, little endian. */
187     uint8_t registers[]; /* Data bytes. */
188 };
189 
190 /* The cached cardinality MSB is used to signal validity of the cached value. */
191 #define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[7] |= (1<<7)
192 #define HLL_VALID_CACHE(hdr) (((hdr)->card[7] & (1<<7)) == 0)
193 
194 #define HLL_P 14 /* The greater is P, the smaller the error. */
195 #define HLL_Q (64-HLL_P) /* The number of bits of the hash value used for
196                             determining the number of leading zeros. */
197 #define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */
198 #define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */
199 #define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
200 #define HLL_REGISTER_MAX ((1<<HLL_BITS)-1)
201 #define HLL_HDR_SIZE sizeof(struct hllhdr)
202 #define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8))
203 #define HLL_DENSE 0 /* Dense encoding. */
204 #define HLL_SPARSE 1 /* Sparse encoding. */
205 #define HLL_RAW 255 /* Only used internally, never exposed. */
206 #define HLL_MAX_ENCODING 1
207 
208 static char *invalid_hll_err = "-INVALIDOBJ Corrupted HLL object detected\r\n";
209 
210 /* =========================== Low level bit macros ========================= */
211 
212 /* Macros to access the dense representation.
213  *
214  * We need to get and set 6 bit counters in an array of 8 bit bytes.
215  * We use macros to make sure the code is inlined since speed is critical
216  * especially in order to compute the approximated cardinality in
217  * HLLCOUNT where we need to access all the registers at once.
218  * For the same reason we also want to avoid conditionals in this code path.
219  *
220  * +--------+--------+--------+------//
221  * |11000000|22221111|33333322|55444444
222  * +--------+--------+--------+------//
223  *
224  * Note: in the above representation the most significant bit (MSB)
225  * of every byte is on the left. We start using bits from the LSB to MSB,
226  * and so forth passing to the next byte.
227  *
228  * Example, we want to access to counter at pos = 1 ("111111" in the
229  * illustration above).
230  *
231  * The index of the first byte b0 containing our data is:
232  *
233  *  b0 = 6 * pos / 8 = 0
234  *
235  *   +--------+
236  *   |11000000|  <- Our byte at b0
237  *   +--------+
238  *
239  * The position of the first bit (counting from the LSB = 0) in the byte
240  * is given by:
241  *
242  *  fb = 6 * pos % 8 -> 6
243  *
244  * Right shift b0 of 'fb' bits.
245  *
246  *   +--------+
247  *   |11000000|  <- Initial value of b0
248  *   |00000011|  <- After right shift of 6 pos.
249  *   +--------+
250  *
251  * Left shift b1 of bits 8-fb bits (2 bits)
252  *
253  *   +--------+
254  *   |22221111|  <- Initial value of b1
255  *   |22111100|  <- After left shift of 2 bits.
256  *   +--------+
257  *
258  * OR the two bits, and finally AND with 111111 (63 in decimal) to
259  * clean the higher order bits we are not interested in:
260  *
261  *   +--------+
262  *   |00000011|  <- b0 right shifted
263  *   |22111100|  <- b1 left shifted
264  *   |22111111|  <- b0 OR b1
265  *   |  111111|  <- (b0 OR b1) AND 63, our value.
266  *   +--------+
267  *
268  * We can try with a different example, like pos = 0. In this case
269  * the 6-bit counter is actually contained in a single byte.
270  *
271  *  b0 = 6 * pos / 8 = 0
272  *
273  *   +--------+
274  *   |11000000|  <- Our byte at b0
275  *   +--------+
276  *
277  *  fb = 6 * pos % 8 = 0
278  *
279  *  So we right shift of 0 bits (no shift in practice) and
280  *  left shift the next byte of 8 bits, even if we don't use it,
281  *  but this has the effect of clearing the bits so the result
282  *  will not be affacted after the OR.
283  *
284  * -------------------------------------------------------------------------
285  *
286  * Setting the register is a bit more complex, let's assume that 'val'
287  * is the value we want to set, already in the right range.
288  *
289  * We need two steps, in one we need to clear the bits, and in the other
290  * we need to bitwise-OR the new bits.
291  *
292  * Let's try with 'pos' = 1, so our first byte at 'b' is 0,
293  *
294  * "fb" is 6 in this case.
295  *
296  *   +--------+
297  *   |11000000|  <- Our byte at b0
298  *   +--------+
299  *
300  * To create a AND-mask to clear the bits about this position, we just
301  * initialize the mask with the value 63, left shift it of "fs" bits,
302  * and finally invert the result.
303  *
304  *   +--------+
305  *   |00111111|  <- "mask" starts at 63
306  *   |11000000|  <- "mask" after left shift of "ls" bits.
307  *   |00111111|  <- "mask" after invert.
308  *   +--------+
309  *
310  * Now we can bitwise-AND the byte at "b" with the mask, and bitwise-OR
311  * it with "val" left-shifted of "ls" bits to set the new bits.
312  *
313  * Now let's focus on the next byte b1:
314  *
315  *   +--------+
316  *   |22221111|  <- Initial value of b1
317  *   +--------+
318  *
319  * To build the AND mask we start again with the 63 value, right shift
320  * it by 8-fb bits, and invert it.
321  *
322  *   +--------+
323  *   |00111111|  <- "mask" set at 2&6-1
324  *   |00001111|  <- "mask" after the right shift by 8-fb = 2 bits
325  *   |11110000|  <- "mask" after bitwise not.
326  *   +--------+
327  *
328  * Now we can mask it with b+1 to clear the old bits, and bitwise-OR
329  * with "val" left-shifted by "rs" bits to set the new value.
330  */
331 
332 /* Note: if we access the last counter, we will also access the b+1 byte
333  * that is out of the array, but sds strings always have an implicit null
334  * term, so the byte exists, and we can skip the conditional (or the need
335  * to allocate 1 byte more explicitly). */
336 
337 /* Store the value of the register at position 'regnum' into variable 'target'.
338  * 'p' is an array of unsigned bytes. */
339 #define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \
340     uint8_t *_p = (uint8_t*) p; \
341     unsigned long _byte = regnum*HLL_BITS/8; \
342     unsigned long _fb = regnum*HLL_BITS&7; \
343     unsigned long _fb8 = 8 - _fb; \
344     unsigned long b0 = _p[_byte]; \
345     unsigned long b1 = _p[_byte+1]; \
346     target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \
347 } while(0)
348 
349 /* Set the value of the register at position 'regnum' to 'val'.
350  * 'p' is an array of unsigned bytes. */
351 #define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \
352     uint8_t *_p = (uint8_t*) p; \
353     unsigned long _byte = regnum*HLL_BITS/8; \
354     unsigned long _fb = regnum*HLL_BITS&7; \
355     unsigned long _fb8 = 8 - _fb; \
356     unsigned long _v = val; \
357     _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \
358     _p[_byte] |= _v << _fb; \
359     _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \
360     _p[_byte+1] |= _v >> _fb8; \
361 } while(0)
362 
363 /* Macros to access the sparse representation.
364  * The macros parameter is expected to be an uint8_t pointer. */
365 #define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */
366 #define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */
367 #define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */
368 #define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT)
369 #define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT)
370 #define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1)
371 #define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1)
372 #define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1)
373 #define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1)
374 #define HLL_SPARSE_VAL_MAX_VALUE 32
375 #define HLL_SPARSE_VAL_MAX_LEN 4
376 #define HLL_SPARSE_ZERO_MAX_LEN 64
377 #define HLL_SPARSE_XZERO_MAX_LEN 16384
378 #define HLL_SPARSE_VAL_SET(p,val,len) do { \
379     *(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \
380 } while(0)
381 #define HLL_SPARSE_ZERO_SET(p,len) do { \
382     *(p) = (len)-1; \
383 } while(0)
384 #define HLL_SPARSE_XZERO_SET(p,len) do { \
385     int _l = (len)-1; \
386     *(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \
387     *((p)+1) = (_l&0xff); \
388 } while(0)
389 #define HLL_ALPHA_INF 0.721347520444481703680 /* constant for 0.5/ln(2) */
390 
391 /* ========================= HyperLogLog algorithm  ========================= */
392 
393 /* Our hash function is MurmurHash2, 64 bit version.
394  * It was modified for Redis in order to provide the same result in
395  * big and little endian archs (endian neutral). */
MurmurHash64A(const void * key,int len,unsigned int seed)396 uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) {
397     const uint64_t m = 0xc6a4a7935bd1e995;
398     const int r = 47;
399     uint64_t h = seed ^ (len * m);
400     const uint8_t *data = (const uint8_t *)key;
401     const uint8_t *end = data + (len-(len&7));
402 
403     while(data != end) {
404         uint64_t k;
405 
406 #if (BYTE_ORDER == LITTLE_ENDIAN)
407     #ifdef USE_ALIGNED_ACCESS
408         memcpy(&k,data,sizeof(uint64_t));
409     #else
410         k = *((uint64_t*)data);
411     #endif
412 #else
413         k = (uint64_t) data[0];
414         k |= (uint64_t) data[1] << 8;
415         k |= (uint64_t) data[2] << 16;
416         k |= (uint64_t) data[3] << 24;
417         k |= (uint64_t) data[4] << 32;
418         k |= (uint64_t) data[5] << 40;
419         k |= (uint64_t) data[6] << 48;
420         k |= (uint64_t) data[7] << 56;
421 #endif
422 
423         k *= m;
424         k ^= k >> r;
425         k *= m;
426         h ^= k;
427         h *= m;
428         data += 8;
429     }
430 
431     switch(len & 7) {
432     case 7: h ^= (uint64_t)data[6] << 48; /* fall-thru */
433     case 6: h ^= (uint64_t)data[5] << 40; /* fall-thru */
434     case 5: h ^= (uint64_t)data[4] << 32; /* fall-thru */
435     case 4: h ^= (uint64_t)data[3] << 24; /* fall-thru */
436     case 3: h ^= (uint64_t)data[2] << 16; /* fall-thru */
437     case 2: h ^= (uint64_t)data[1] << 8; /* fall-thru */
438     case 1: h ^= (uint64_t)data[0];
439             h *= m; /* fall-thru */
440     };
441 
442     h ^= h >> r;
443     h *= m;
444     h ^= h >> r;
445     return h;
446 }
447 
448 /* Given a string element to add to the HyperLogLog, returns the length
449  * of the pattern 000..1 of the element hash. As a side effect 'regp' is
450  * set to the register index this element hashes to. */
hllPatLen(unsigned char * ele,size_t elesize,long * regp)451 int hllPatLen(unsigned char *ele, size_t elesize, long *regp) {
452     uint64_t hash, bit, index;
453     int count;
454 
455     /* Count the number of zeroes starting from bit HLL_REGISTERS
456      * (that is a power of two corresponding to the first bit we don't use
457      * as index). The max run can be 64-P+1 = Q+1 bits.
458      *
459      * Note that the final "1" ending the sequence of zeroes must be
460      * included in the count, so if we find "001" the count is 3, and
461      * the smallest count possible is no zeroes at all, just a 1 bit
462      * at the first position, that is a count of 1.
463      *
464      * This may sound like inefficient, but actually in the average case
465      * there are high probabilities to find a 1 after a few iterations. */
466     hash = MurmurHash64A(ele,elesize,0xadc83b19ULL);
467     index = hash & HLL_P_MASK; /* Register index. */
468     hash >>= HLL_P; /* Remove bits used to address the register. */
469     hash |= ((uint64_t)1<<HLL_Q); /* Make sure the loop terminates
470                                      and count will be <= Q+1. */
471     bit = 1;
472     count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */
473     while((hash & bit) == 0) {
474         count++;
475         bit <<= 1;
476     }
477     *regp = (int) index;
478     return count;
479 }
480 
481 /* ================== Dense representation implementation  ================== */
482 
483 /* Low level function to set the dense HLL register at 'index' to the
484  * specified value if the current value is smaller than 'count'.
485  *
486  * 'registers' is expected to have room for HLL_REGISTERS plus an
487  * additional byte on the right. This requirement is met by sds strings
488  * automatically since they are implicitly null terminated.
489  *
490  * The function always succeed, however if as a result of the operation
491  * the approximated cardinality changed, 1 is returned. Otherwise 0
492  * is returned. */
hllDenseSet(uint8_t * registers,long index,uint8_t count)493 int hllDenseSet(uint8_t *registers, long index, uint8_t count) {
494     uint8_t oldcount;
495 
496     HLL_DENSE_GET_REGISTER(oldcount,registers,index);
497     if (count > oldcount) {
498         HLL_DENSE_SET_REGISTER(registers,index,count);
499         return 1;
500     } else {
501         return 0;
502     }
503 }
504 
505 /* "Add" the element in the dense hyperloglog data structure.
506  * Actually nothing is added, but the max 0 pattern counter of the subset
507  * the element belongs to is incremented if needed.
508  *
509  * This is just a wrapper to hllDenseSet(), performing the hashing of the
510  * element in order to retrieve the index and zero-run count. */
hllDenseAdd(uint8_t * registers,unsigned char * ele,size_t elesize)511 int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
512     long index;
513     uint8_t count = hllPatLen(ele,elesize,&index);
514     /* Update the register if this element produced a longer run of zeroes. */
515     return hllDenseSet(registers,index,count);
516 }
517 
518 /* Compute the register histogram in the dense representation. */
hllDenseRegHisto(uint8_t * registers,int * reghisto)519 void hllDenseRegHisto(uint8_t *registers, int* reghisto) {
520     int j;
521 
522     /* Redis default is to use 16384 registers 6 bits each. The code works
523      * with other values by modifying the defines, but for our target value
524      * we take a faster path with unrolled loops. */
525     if (HLL_REGISTERS == 16384 && HLL_BITS == 6) {
526         uint8_t *r = registers;
527         unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9,
528                       r10, r11, r12, r13, r14, r15;
529         for (j = 0; j < 1024; j++) {
530             /* Handle 16 registers per iteration. */
531             r0 = r[0] & 63;
532             r1 = (r[0] >> 6 | r[1] << 2) & 63;
533             r2 = (r[1] >> 4 | r[2] << 4) & 63;
534             r3 = (r[2] >> 2) & 63;
535             r4 = r[3] & 63;
536             r5 = (r[3] >> 6 | r[4] << 2) & 63;
537             r6 = (r[4] >> 4 | r[5] << 4) & 63;
538             r7 = (r[5] >> 2) & 63;
539             r8 = r[6] & 63;
540             r9 = (r[6] >> 6 | r[7] << 2) & 63;
541             r10 = (r[7] >> 4 | r[8] << 4) & 63;
542             r11 = (r[8] >> 2) & 63;
543             r12 = r[9] & 63;
544             r13 = (r[9] >> 6 | r[10] << 2) & 63;
545             r14 = (r[10] >> 4 | r[11] << 4) & 63;
546             r15 = (r[11] >> 2) & 63;
547 
548             reghisto[r0]++;
549             reghisto[r1]++;
550             reghisto[r2]++;
551             reghisto[r3]++;
552             reghisto[r4]++;
553             reghisto[r5]++;
554             reghisto[r6]++;
555             reghisto[r7]++;
556             reghisto[r8]++;
557             reghisto[r9]++;
558             reghisto[r10]++;
559             reghisto[r11]++;
560             reghisto[r12]++;
561             reghisto[r13]++;
562             reghisto[r14]++;
563             reghisto[r15]++;
564 
565             r += 12;
566         }
567     } else {
568         for(j = 0; j < HLL_REGISTERS; j++) {
569             unsigned long reg;
570             HLL_DENSE_GET_REGISTER(reg,registers,j);
571             reghisto[reg]++;
572         }
573     }
574 }
575 
576 /* ================== Sparse representation implementation  ================= */
577 
578 /* Convert the HLL with sparse representation given as input in its dense
579  * representation. Both representations are represented by SDS strings, and
580  * the input representation is freed as a side effect.
581  *
582  * The function returns C_OK if the sparse representation was valid,
583  * otherwise C_ERR is returned if the representation was corrupted. */
hllSparseToDense(robj * o)584 int hllSparseToDense(robj *o) {
585     sds sparse = o->ptr, dense;
586     struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse;
587     int idx = 0, runlen, regval;
588     uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse);
589 
590     /* If the representation is already the right one return ASAP. */
591     hdr = (struct hllhdr*) sparse;
592     if (hdr->encoding == HLL_DENSE) return C_OK;
593 
594     /* Create a string of the right size filled with zero bytes.
595      * Note that the cached cardinality is set to 0 as a side effect
596      * that is exactly the cardinality of an empty HLL. */
597     dense = sdsnewlen(NULL,HLL_DENSE_SIZE);
598     hdr = (struct hllhdr*) dense;
599     *hdr = *oldhdr; /* This will copy the magic and cached cardinality. */
600     hdr->encoding = HLL_DENSE;
601 
602     /* Now read the sparse representation and set non-zero registers
603      * accordingly. */
604     p += HLL_HDR_SIZE;
605     while(p < end) {
606         if (HLL_SPARSE_IS_ZERO(p)) {
607             runlen = HLL_SPARSE_ZERO_LEN(p);
608             idx += runlen;
609             p++;
610         } else if (HLL_SPARSE_IS_XZERO(p)) {
611             runlen = HLL_SPARSE_XZERO_LEN(p);
612             idx += runlen;
613             p += 2;
614         } else {
615             runlen = HLL_SPARSE_VAL_LEN(p);
616             regval = HLL_SPARSE_VAL_VALUE(p);
617             if ((runlen + idx) > HLL_REGISTERS) break; /* Overflow. */
618             while(runlen--) {
619                 HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval);
620                 idx++;
621             }
622             p++;
623         }
624     }
625 
626     /* If the sparse representation was valid, we expect to find idx
627      * set to HLL_REGISTERS. */
628     if (idx != HLL_REGISTERS) {
629         sdsfree(dense);
630         return C_ERR;
631     }
632 
633     /* Free the old representation and set the new one. */
634     sdsfree(o->ptr);
635     o->ptr = dense;
636     return C_OK;
637 }
638 
639 /* Low level function to set the sparse HLL register at 'index' to the
640  * specified value if the current value is smaller than 'count'.
641  *
642  * The object 'o' is the String object holding the HLL. The function requires
643  * a reference to the object in order to be able to enlarge the string if
644  * needed.
645  *
646  * On success, the function returns 1 if the cardinality changed, or 0
647  * if the register for this element was not updated.
648  * On error (if the representation is invalid) -1 is returned.
649  *
650  * As a side effect the function may promote the HLL representation from
651  * sparse to dense: this happens when a register requires to be set to a value
652  * not representable with the sparse representation, or when the resulting
653  * size would be greater than server.hll_sparse_max_bytes. */
hllSparseSet(robj * o,long index,uint8_t count)654 int hllSparseSet(robj *o, long index, uint8_t count) {
655     struct hllhdr *hdr;
656     uint8_t oldcount, *sparse, *end, *p, *prev, *next;
657     long first, span;
658     long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0;
659 
660     /* If the count is too big to be representable by the sparse representation
661      * switch to dense representation. */
662     if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote;
663 
664     /* When updating a sparse representation, sometimes we may need to
665      * enlarge the buffer for up to 3 bytes in the worst case (XZERO split
666      * into XZERO-VAL-XZERO). Make sure there is enough space right now
667      * so that the pointers we take during the execution of the function
668      * will be valid all the time. */
669     o->ptr = sdsMakeRoomFor(o->ptr,3);
670 
671     /* Step 1: we need to locate the opcode we need to modify to check
672      * if a value update is actually needed. */
673     sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE;
674     end = p + sdslen(o->ptr) - HLL_HDR_SIZE;
675 
676     first = 0;
677     prev = NULL; /* Points to previous opcode at the end of the loop. */
678     next = NULL; /* Points to the next opcode at the end of the loop. */
679     span = 0;
680     while(p < end) {
681         long oplen;
682 
683         /* Set span to the number of registers covered by this opcode.
684          *
685          * This is the most performance critical loop of the sparse
686          * representation. Sorting the conditionals from the most to the
687          * least frequent opcode in many-bytes sparse HLLs is faster. */
688         oplen = 1;
689         if (HLL_SPARSE_IS_ZERO(p)) {
690             span = HLL_SPARSE_ZERO_LEN(p);
691         } else if (HLL_SPARSE_IS_VAL(p)) {
692             span = HLL_SPARSE_VAL_LEN(p);
693         } else { /* XZERO. */
694             span = HLL_SPARSE_XZERO_LEN(p);
695             oplen = 2;
696         }
697         /* Break if this opcode covers the register as 'index'. */
698         if (index <= first+span-1) break;
699         prev = p;
700         p += oplen;
701         first += span;
702     }
703     if (span == 0) return -1; /* Invalid format. */
704 
705     next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1;
706     if (next >= end) next = NULL;
707 
708     /* Cache current opcode type to avoid using the macro again and
709      * again for something that will not change.
710      * Also cache the run-length of the opcode. */
711     if (HLL_SPARSE_IS_ZERO(p)) {
712         is_zero = 1;
713         runlen = HLL_SPARSE_ZERO_LEN(p);
714     } else if (HLL_SPARSE_IS_XZERO(p)) {
715         is_xzero = 1;
716         runlen = HLL_SPARSE_XZERO_LEN(p);
717     } else {
718         is_val = 1;
719         runlen = HLL_SPARSE_VAL_LEN(p);
720     }
721 
722     /* Step 2: After the loop:
723      *
724      * 'first' stores to the index of the first register covered
725      *  by the current opcode, which is pointed by 'p'.
726      *
727      * 'next' ad 'prev' store respectively the next and previous opcode,
728      *  or NULL if the opcode at 'p' is respectively the last or first.
729      *
730      * 'span' is set to the number of registers covered by the current
731      *  opcode.
732      *
733      * There are different cases in order to update the data structure
734      * in place without generating it from scratch:
735      *
736      * A) If it is a VAL opcode already set to a value >= our 'count'
737      *    no update is needed, regardless of the VAL run-length field.
738      *    In this case PFADD returns 0 since no changes are performed.
739      *
740      * B) If it is a VAL opcode with len = 1 (representing only our
741      *    register) and the value is less than 'count', we just update it
742      *    since this is a trivial case. */
743     if (is_val) {
744         oldcount = HLL_SPARSE_VAL_VALUE(p);
745         /* Case A. */
746         if (oldcount >= count) return 0;
747 
748         /* Case B. */
749         if (runlen == 1) {
750             HLL_SPARSE_VAL_SET(p,count,1);
751             goto updated;
752         }
753     }
754 
755     /* C) Another trivial to handle case is a ZERO opcode with a len of 1.
756      * We can just replace it with a VAL opcode with our value and len of 1. */
757     if (is_zero && runlen == 1) {
758         HLL_SPARSE_VAL_SET(p,count,1);
759         goto updated;
760     }
761 
762     /* D) General case.
763      *
764      * The other cases are more complex: our register requires to be updated
765      * and is either currently represented by a VAL opcode with len > 1,
766      * by a ZERO opcode with len > 1, or by an XZERO opcode.
767      *
768      * In those cases the original opcode must be split into multiple
769      * opcodes. The worst case is an XZERO split in the middle resuling into
770      * XZERO - VAL - XZERO, so the resulting sequence max length is
771      * 5 bytes.
772      *
773      * We perform the split writing the new sequence into the 'new' buffer
774      * with 'newlen' as length. Later the new sequence is inserted in place
775      * of the old one, possibly moving what is on the right a few bytes
776      * if the new sequence is longer than the older one. */
777     uint8_t seq[5], *n = seq;
778     int last = first+span-1; /* Last register covered by the sequence. */
779     int len;
780 
781     if (is_zero || is_xzero) {
782         /* Handle splitting of ZERO / XZERO. */
783         if (index != first) {
784             len = index-first;
785             if (len > HLL_SPARSE_ZERO_MAX_LEN) {
786                 HLL_SPARSE_XZERO_SET(n,len);
787                 n += 2;
788             } else {
789                 HLL_SPARSE_ZERO_SET(n,len);
790                 n++;
791             }
792         }
793         HLL_SPARSE_VAL_SET(n,count,1);
794         n++;
795         if (index != last) {
796             len = last-index;
797             if (len > HLL_SPARSE_ZERO_MAX_LEN) {
798                 HLL_SPARSE_XZERO_SET(n,len);
799                 n += 2;
800             } else {
801                 HLL_SPARSE_ZERO_SET(n,len);
802                 n++;
803             }
804         }
805     } else {
806         /* Handle splitting of VAL. */
807         int curval = HLL_SPARSE_VAL_VALUE(p);
808 
809         if (index != first) {
810             len = index-first;
811             HLL_SPARSE_VAL_SET(n,curval,len);
812             n++;
813         }
814         HLL_SPARSE_VAL_SET(n,count,1);
815         n++;
816         if (index != last) {
817             len = last-index;
818             HLL_SPARSE_VAL_SET(n,curval,len);
819             n++;
820         }
821     }
822 
823     /* Step 3: substitute the new sequence with the old one.
824      *
825      * Note that we already allocated space on the sds string
826      * calling sdsMakeRoomFor(). */
827      int seqlen = n-seq;
828      int oldlen = is_xzero ? 2 : 1;
829      int deltalen = seqlen-oldlen;
830 
831      if (deltalen > 0 &&
832          sdslen(o->ptr)+deltalen > server.hll_sparse_max_bytes) goto promote;
833      if (deltalen && next) memmove(next+deltalen,next,end-next);
834      sdsIncrLen(o->ptr,deltalen);
835      memcpy(p,seq,seqlen);
836      end += deltalen;
837 
838 updated:
839     /* Step 4: Merge adjacent values if possible.
840      *
841      * The representation was updated, however the resulting representation
842      * may not be optimal: adjacent VAL opcodes can sometimes be merged into
843      * a single one. */
844     p = prev ? prev : sparse;
845     int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */
846     while (p < end && scanlen--) {
847         if (HLL_SPARSE_IS_XZERO(p)) {
848             p += 2;
849             continue;
850         } else if (HLL_SPARSE_IS_ZERO(p)) {
851             p++;
852             continue;
853         }
854         /* We need two adjacent VAL opcodes to try a merge, having
855          * the same value, and a len that fits the VAL opcode max len. */
856         if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) {
857             int v1 = HLL_SPARSE_VAL_VALUE(p);
858             int v2 = HLL_SPARSE_VAL_VALUE(p+1);
859             if (v1 == v2) {
860                 int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1);
861                 if (len <= HLL_SPARSE_VAL_MAX_LEN) {
862                     HLL_SPARSE_VAL_SET(p+1,v1,len);
863                     memmove(p,p+1,end-p);
864                     sdsIncrLen(o->ptr,-1);
865                     end--;
866                     /* After a merge we reiterate without incrementing 'p'
867                      * in order to try to merge the just merged value with
868                      * a value on its right. */
869                     continue;
870                 }
871             }
872         }
873         p++;
874     }
875 
876     /* Invalidate the cached cardinality. */
877     hdr = o->ptr;
878     HLL_INVALIDATE_CACHE(hdr);
879     return 1;
880 
881 promote: /* Promote to dense representation. */
882     if (hllSparseToDense(o) == C_ERR) return -1; /* Corrupted HLL. */
883     hdr = o->ptr;
884 
885     /* We need to call hllDenseAdd() to perform the operation after the
886      * conversion. However the result must be 1, since if we need to
887      * convert from sparse to dense a register requires to be updated.
888      *
889      * Note that this in turn means that PFADD will make sure the command
890      * is propagated to slaves / AOF, so if there is a sparse -> dense
891      * conversion, it will be performed in all the slaves as well. */
892     int dense_retval = hllDenseSet(hdr->registers,index,count);
893     serverAssert(dense_retval == 1);
894     return dense_retval;
895 }
896 
897 /* "Add" the element in the sparse hyperloglog data structure.
898  * Actually nothing is added, but the max 0 pattern counter of the subset
899  * the element belongs to is incremented if needed.
900  *
901  * This function is actually a wrapper for hllSparseSet(), it only performs
902  * the hashshing of the elmenet to obtain the index and zeros run length. */
hllSparseAdd(robj * o,unsigned char * ele,size_t elesize)903 int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) {
904     long index;
905     uint8_t count = hllPatLen(ele,elesize,&index);
906     /* Update the register if this element produced a longer run of zeroes. */
907     return hllSparseSet(o,index,count);
908 }
909 
910 /* Compute the register histogram in the sparse representation. */
hllSparseRegHisto(uint8_t * sparse,int sparselen,int * invalid,int * reghisto)911 void hllSparseRegHisto(uint8_t *sparse, int sparselen, int *invalid, int* reghisto) {
912     int idx = 0, runlen, regval;
913     uint8_t *end = sparse+sparselen, *p = sparse;
914 
915     while(p < end) {
916         if (HLL_SPARSE_IS_ZERO(p)) {
917             runlen = HLL_SPARSE_ZERO_LEN(p);
918             idx += runlen;
919             reghisto[0] += runlen;
920             p++;
921         } else if (HLL_SPARSE_IS_XZERO(p)) {
922             runlen = HLL_SPARSE_XZERO_LEN(p);
923             idx += runlen;
924             reghisto[0] += runlen;
925             p += 2;
926         } else {
927             runlen = HLL_SPARSE_VAL_LEN(p);
928             regval = HLL_SPARSE_VAL_VALUE(p);
929             idx += runlen;
930             reghisto[regval] += runlen;
931             p++;
932         }
933     }
934     if (idx != HLL_REGISTERS && invalid) *invalid = 1;
935 }
936 
937 /* ========================= HyperLogLog Count ==============================
938  * This is the core of the algorithm where the approximated count is computed.
939  * The function uses the lower level hllDenseRegHisto() and hllSparseRegHisto()
940  * functions as helpers to compute histogram of register values part of the
941  * computation, which is representation-specific, while all the rest is common. */
942 
943 /* Implements the register histogram calculation for uint8_t data type
944  * which is only used internally as speedup for PFCOUNT with multiple keys. */
hllRawRegHisto(uint8_t * registers,int * reghisto)945 void hllRawRegHisto(uint8_t *registers, int* reghisto) {
946     uint64_t *word = (uint64_t*) registers;
947     uint8_t *bytes;
948     int j;
949 
950     for (j = 0; j < HLL_REGISTERS/8; j++) {
951         if (*word == 0) {
952             reghisto[0] += 8;
953         } else {
954             bytes = (uint8_t*) word;
955             reghisto[bytes[0]]++;
956             reghisto[bytes[1]]++;
957             reghisto[bytes[2]]++;
958             reghisto[bytes[3]]++;
959             reghisto[bytes[4]]++;
960             reghisto[bytes[5]]++;
961             reghisto[bytes[6]]++;
962             reghisto[bytes[7]]++;
963         }
964         word++;
965     }
966 }
967 
968 /* Helper function sigma as defined in
969  * "New cardinality estimation algorithms for HyperLogLog sketches"
970  * Otmar Ertl, arXiv:1702.01284 */
hllSigma(double x)971 double hllSigma(double x) {
972     if (x == 1.) return INFINITY;
973     double zPrime;
974     double y = 1;
975     double z = x;
976     do {
977         x *= x;
978         zPrime = z;
979         z += x * y;
980         y += y;
981     } while(zPrime != z);
982     return z;
983 }
984 
985 /* Helper function tau as defined in
986  * "New cardinality estimation algorithms for HyperLogLog sketches"
987  * Otmar Ertl, arXiv:1702.01284 */
hllTau(double x)988 double hllTau(double x) {
989     if (x == 0. || x == 1.) return 0.;
990     double zPrime;
991     double y = 1.0;
992     double z = 1 - x;
993     do {
994         x = sqrt(x);
995         zPrime = z;
996         y *= 0.5;
997         z -= pow(1 - x, 2)*y;
998     } while(zPrime != z);
999     return z / 3;
1000 }
1001 
1002 /* Return the approximated cardinality of the set based on the harmonic
1003  * mean of the registers values. 'hdr' points to the start of the SDS
1004  * representing the String object holding the HLL representation.
1005  *
1006  * If the sparse representation of the HLL object is not valid, the integer
1007  * pointed by 'invalid' is set to non-zero, otherwise it is left untouched.
1008  *
1009  * hllCount() supports a special internal-only encoding of HLL_RAW, that
1010  * is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element.
1011  * This is useful in order to speedup PFCOUNT when called against multiple
1012  * keys (no need to work with 6-bit integers encoding). */
hllCount(struct hllhdr * hdr,int * invalid)1013 uint64_t hllCount(struct hllhdr *hdr, int *invalid) {
1014     double m = HLL_REGISTERS;
1015     double E;
1016     int j;
1017     /* Note that reghisto size could be just HLL_Q+2, becuase HLL_Q+1 is
1018      * the maximum frequency of the "000...1" sequence the hash function is
1019      * able to return. However it is slow to check for sanity of the
1020      * input: instead we history array at a safe size: overflows will
1021      * just write data to wrong, but correctly allocated, places. */
1022     int reghisto[64] = {0};
1023 
1024     /* Compute register histogram */
1025     if (hdr->encoding == HLL_DENSE) {
1026         hllDenseRegHisto(hdr->registers,reghisto);
1027     } else if (hdr->encoding == HLL_SPARSE) {
1028         hllSparseRegHisto(hdr->registers,
1029                          sdslen((sds)hdr)-HLL_HDR_SIZE,invalid,reghisto);
1030     } else if (hdr->encoding == HLL_RAW) {
1031         hllRawRegHisto(hdr->registers,reghisto);
1032     } else {
1033         serverPanic("Unknown HyperLogLog encoding in hllCount()");
1034     }
1035 
1036     /* Estimate cardinality form register histogram. See:
1037      * "New cardinality estimation algorithms for HyperLogLog sketches"
1038      * Otmar Ertl, arXiv:1702.01284 */
1039     double z = m * hllTau((m-reghisto[HLL_Q+1])/(double)m);
1040     for (j = HLL_Q; j >= 1; --j) {
1041         z += reghisto[j];
1042         z *= 0.5;
1043     }
1044     z += m * hllSigma(reghisto[0]/(double)m);
1045     E = llroundl(HLL_ALPHA_INF*m*m/z);
1046 
1047     return (uint64_t) E;
1048 }
1049 
1050 /* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */
hllAdd(robj * o,unsigned char * ele,size_t elesize)1051 int hllAdd(robj *o, unsigned char *ele, size_t elesize) {
1052     struct hllhdr *hdr = o->ptr;
1053     switch(hdr->encoding) {
1054     case HLL_DENSE: return hllDenseAdd(hdr->registers,ele,elesize);
1055     case HLL_SPARSE: return hllSparseAdd(o,ele,elesize);
1056     default: return -1; /* Invalid representation. */
1057     }
1058 }
1059 
1060 /* Merge by computing MAX(registers[i],hll[i]) the HyperLogLog 'hll'
1061  * with an array of uint8_t HLL_REGISTERS registers pointed by 'max'.
1062  *
1063  * The hll object must be already validated via isHLLObjectOrReply()
1064  * or in some other way.
1065  *
1066  * If the HyperLogLog is sparse and is found to be invalid, C_ERR
1067  * is returned, otherwise the function always succeeds. */
hllMerge(uint8_t * max,robj * hll)1068 int hllMerge(uint8_t *max, robj *hll) {
1069     struct hllhdr *hdr = hll->ptr;
1070     int i;
1071 
1072     if (hdr->encoding == HLL_DENSE) {
1073         uint8_t val;
1074 
1075         for (i = 0; i < HLL_REGISTERS; i++) {
1076             HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
1077             if (val > max[i]) max[i] = val;
1078         }
1079     } else {
1080         uint8_t *p = hll->ptr, *end = p + sdslen(hll->ptr);
1081         long runlen, regval;
1082 
1083         p += HLL_HDR_SIZE;
1084         i = 0;
1085         while(p < end) {
1086             if (HLL_SPARSE_IS_ZERO(p)) {
1087                 runlen = HLL_SPARSE_ZERO_LEN(p);
1088                 i += runlen;
1089                 p++;
1090             } else if (HLL_SPARSE_IS_XZERO(p)) {
1091                 runlen = HLL_SPARSE_XZERO_LEN(p);
1092                 i += runlen;
1093                 p += 2;
1094             } else {
1095                 runlen = HLL_SPARSE_VAL_LEN(p);
1096                 regval = HLL_SPARSE_VAL_VALUE(p);
1097                 if ((runlen + i) > HLL_REGISTERS) break; /* Overflow. */
1098                 while(runlen--) {
1099                     if (regval > max[i]) max[i] = regval;
1100                     i++;
1101                 }
1102                 p++;
1103             }
1104         }
1105         if (i != HLL_REGISTERS) return C_ERR;
1106     }
1107     return C_OK;
1108 }
1109 
1110 /* ========================== HyperLogLog commands ========================== */
1111 
1112 /* Create an HLL object. We always create the HLL using sparse encoding.
1113  * This will be upgraded to the dense representation as needed. */
createHLLObject(void)1114 robj *createHLLObject(void) {
1115     robj *o;
1116     struct hllhdr *hdr;
1117     sds s;
1118     uint8_t *p;
1119     int sparselen = HLL_HDR_SIZE +
1120                     (((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) /
1121                      HLL_SPARSE_XZERO_MAX_LEN)*2);
1122     int aux;
1123 
1124     /* Populate the sparse representation with as many XZERO opcodes as
1125      * needed to represent all the registers. */
1126     aux = HLL_REGISTERS;
1127     s = sdsnewlen(NULL,sparselen);
1128     p = (uint8_t*)s + HLL_HDR_SIZE;
1129     while(aux) {
1130         int xzero = HLL_SPARSE_XZERO_MAX_LEN;
1131         if (xzero > aux) xzero = aux;
1132         HLL_SPARSE_XZERO_SET(p,xzero);
1133         p += 2;
1134         aux -= xzero;
1135     }
1136     serverAssert((p-(uint8_t*)s) == sparselen);
1137 
1138     /* Create the actual object. */
1139     o = createObject(OBJ_STRING,s);
1140     hdr = o->ptr;
1141     memcpy(hdr->magic,"HYLL",4);
1142     hdr->encoding = HLL_SPARSE;
1143     return o;
1144 }
1145 
1146 /* Check if the object is a String with a valid HLL representation.
1147  * Return C_OK if this is true, otherwise reply to the client
1148  * with an error and return C_ERR. */
isHLLObjectOrReply(client * c,robj * o)1149 int isHLLObjectOrReply(client *c, robj *o) {
1150     struct hllhdr *hdr;
1151 
1152     /* Key exists, check type */
1153     if (checkType(c,o,OBJ_STRING))
1154         return C_ERR; /* Error already sent. */
1155 
1156     if (!sdsEncodedObject(o)) goto invalid;
1157     if (stringObjectLen(o) < sizeof(*hdr)) goto invalid;
1158     hdr = o->ptr;
1159 
1160     /* Magic should be "HYLL". */
1161     if (hdr->magic[0] != 'H' || hdr->magic[1] != 'Y' ||
1162         hdr->magic[2] != 'L' || hdr->magic[3] != 'L') goto invalid;
1163 
1164     if (hdr->encoding > HLL_MAX_ENCODING) goto invalid;
1165 
1166     /* Dense representation string length should match exactly. */
1167     if (hdr->encoding == HLL_DENSE &&
1168         stringObjectLen(o) != HLL_DENSE_SIZE) goto invalid;
1169 
1170     /* All tests passed. */
1171     return C_OK;
1172 
1173 invalid:
1174     addReplySds(c,
1175         sdsnew("-WRONGTYPE Key is not a valid "
1176                "HyperLogLog string value.\r\n"));
1177     return C_ERR;
1178 }
1179 
1180 /* PFADD var ele ele ele ... ele => :0 or :1 */
pfaddCommand(client * c)1181 void pfaddCommand(client *c) {
1182     robj *o = lookupKeyWrite(c->db,c->argv[1]);
1183     struct hllhdr *hdr;
1184     int updated = 0, j;
1185 
1186     if (o == NULL) {
1187         /* Create the key with a string value of the exact length to
1188          * hold our HLL data structure. sdsnewlen() when NULL is passed
1189          * is guaranteed to return bytes initialized to zero. */
1190         o = createHLLObject();
1191         dbAdd(c->db,c->argv[1],o);
1192         updated++;
1193     } else {
1194         if (isHLLObjectOrReply(c,o) != C_OK) return;
1195         o = dbUnshareStringValue(c->db,c->argv[1],o);
1196     }
1197     /* Perform the low level ADD operation for every element. */
1198     for (j = 2; j < c->argc; j++) {
1199         int retval = hllAdd(o, (unsigned char*)c->argv[j]->ptr,
1200                                sdslen(c->argv[j]->ptr));
1201         switch(retval) {
1202         case 1:
1203             updated++;
1204             break;
1205         case -1:
1206             addReplySds(c,sdsnew(invalid_hll_err));
1207             return;
1208         }
1209     }
1210     hdr = o->ptr;
1211     if (updated) {
1212         signalModifiedKey(c->db,c->argv[1]);
1213         notifyKeyspaceEvent(NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
1214         server.dirty++;
1215         HLL_INVALIDATE_CACHE(hdr);
1216     }
1217     addReply(c, updated ? shared.cone : shared.czero);
1218 }
1219 
1220 /* PFCOUNT var -> approximated cardinality of set. */
pfcountCommand(client * c)1221 void pfcountCommand(client *c) {
1222     robj *o;
1223     struct hllhdr *hdr;
1224     uint64_t card;
1225 
1226     /* Case 1: multi-key keys, cardinality of the union.
1227      *
1228      * When multiple keys are specified, PFCOUNT actually computes
1229      * the cardinality of the merge of the N HLLs specified. */
1230     if (c->argc > 2) {
1231         uint8_t max[HLL_HDR_SIZE+HLL_REGISTERS], *registers;
1232         int j;
1233 
1234         /* Compute an HLL with M[i] = MAX(M[i]_j). */
1235         memset(max,0,sizeof(max));
1236         hdr = (struct hllhdr*) max;
1237         hdr->encoding = HLL_RAW; /* Special internal-only encoding. */
1238         registers = max + HLL_HDR_SIZE;
1239         for (j = 1; j < c->argc; j++) {
1240             /* Check type and size. */
1241             robj *o = lookupKeyRead(c->db,c->argv[j]);
1242             if (o == NULL) continue; /* Assume empty HLL for non existing var.*/
1243             if (isHLLObjectOrReply(c,o) != C_OK) return;
1244 
1245             /* Merge with this HLL with our 'max' HHL by setting max[i]
1246              * to MAX(max[i],hll[i]). */
1247             if (hllMerge(registers,o) == C_ERR) {
1248                 addReplySds(c,sdsnew(invalid_hll_err));
1249                 return;
1250             }
1251         }
1252 
1253         /* Compute cardinality of the resulting set. */
1254         addReplyLongLong(c,hllCount(hdr,NULL));
1255         return;
1256     }
1257 
1258     /* Case 2: cardinality of the single HLL.
1259      *
1260      * The user specified a single key. Either return the cached value
1261      * or compute one and update the cache. */
1262     o = lookupKeyWrite(c->db,c->argv[1]);
1263     if (o == NULL) {
1264         /* No key? Cardinality is zero since no element was added, otherwise
1265          * we would have a key as HLLADD creates it as a side effect. */
1266         addReply(c,shared.czero);
1267     } else {
1268         if (isHLLObjectOrReply(c,o) != C_OK) return;
1269         o = dbUnshareStringValue(c->db,c->argv[1],o);
1270 
1271         /* Check if the cached cardinality is valid. */
1272         hdr = o->ptr;
1273         if (HLL_VALID_CACHE(hdr)) {
1274             /* Just return the cached value. */
1275             card = (uint64_t)hdr->card[0];
1276             card |= (uint64_t)hdr->card[1] << 8;
1277             card |= (uint64_t)hdr->card[2] << 16;
1278             card |= (uint64_t)hdr->card[3] << 24;
1279             card |= (uint64_t)hdr->card[4] << 32;
1280             card |= (uint64_t)hdr->card[5] << 40;
1281             card |= (uint64_t)hdr->card[6] << 48;
1282             card |= (uint64_t)hdr->card[7] << 56;
1283         } else {
1284             int invalid = 0;
1285             /* Recompute it and update the cached value. */
1286             card = hllCount(hdr,&invalid);
1287             if (invalid) {
1288                 addReplySds(c,sdsnew(invalid_hll_err));
1289                 return;
1290             }
1291             hdr->card[0] = card & 0xff;
1292             hdr->card[1] = (card >> 8) & 0xff;
1293             hdr->card[2] = (card >> 16) & 0xff;
1294             hdr->card[3] = (card >> 24) & 0xff;
1295             hdr->card[4] = (card >> 32) & 0xff;
1296             hdr->card[5] = (card >> 40) & 0xff;
1297             hdr->card[6] = (card >> 48) & 0xff;
1298             hdr->card[7] = (card >> 56) & 0xff;
1299             /* This is not considered a read-only command even if the
1300              * data structure is not modified, since the cached value
1301              * may be modified and given that the HLL is a Redis string
1302              * we need to propagate the change. */
1303             signalModifiedKey(c->db,c->argv[1]);
1304             server.dirty++;
1305         }
1306         addReplyLongLong(c,card);
1307     }
1308 }
1309 
1310 /* PFMERGE dest src1 src2 src3 ... srcN => OK */
pfmergeCommand(client * c)1311 void pfmergeCommand(client *c) {
1312     uint8_t max[HLL_REGISTERS];
1313     struct hllhdr *hdr;
1314     int j;
1315     int use_dense = 0; /* Use dense representation as target? */
1316 
1317     /* Compute an HLL with M[i] = MAX(M[i]_j).
1318      * We store the maximum into the max array of registers. We'll write
1319      * it to the target variable later. */
1320     memset(max,0,sizeof(max));
1321     for (j = 1; j < c->argc; j++) {
1322         /* Check type and size. */
1323         robj *o = lookupKeyRead(c->db,c->argv[j]);
1324         if (o == NULL) continue; /* Assume empty HLL for non existing var. */
1325         if (isHLLObjectOrReply(c,o) != C_OK) return;
1326 
1327         /* If at least one involved HLL is dense, use the dense representation
1328          * as target ASAP to save time and avoid the conversion step. */
1329         hdr = o->ptr;
1330         if (hdr->encoding == HLL_DENSE) use_dense = 1;
1331 
1332         /* Merge with this HLL with our 'max' HHL by setting max[i]
1333          * to MAX(max[i],hll[i]). */
1334         if (hllMerge(max,o) == C_ERR) {
1335             addReplySds(c,sdsnew(invalid_hll_err));
1336             return;
1337         }
1338     }
1339 
1340     /* Create / unshare the destination key's value if needed. */
1341     robj *o = lookupKeyWrite(c->db,c->argv[1]);
1342     if (o == NULL) {
1343         /* Create the key with a string value of the exact length to
1344          * hold our HLL data structure. sdsnewlen() when NULL is passed
1345          * is guaranteed to return bytes initialized to zero. */
1346         o = createHLLObject();
1347         dbAdd(c->db,c->argv[1],o);
1348     } else {
1349         /* If key exists we are sure it's of the right type/size
1350          * since we checked when merging the different HLLs, so we
1351          * don't check again. */
1352         o = dbUnshareStringValue(c->db,c->argv[1],o);
1353     }
1354 
1355     /* Convert the destination object to dense representation if at least
1356      * one of the inputs was dense. */
1357     if (use_dense && hllSparseToDense(o) == C_ERR) {
1358         addReplySds(c,sdsnew(invalid_hll_err));
1359         return;
1360     }
1361 
1362     /* Write the resulting HLL to the destination HLL registers and
1363      * invalidate the cached value. */
1364     for (j = 0; j < HLL_REGISTERS; j++) {
1365         if (max[j] == 0) continue;
1366         hdr = o->ptr;
1367         switch(hdr->encoding) {
1368         case HLL_DENSE: hllDenseSet(hdr->registers,j,max[j]); break;
1369         case HLL_SPARSE: hllSparseSet(o,j,max[j]); break;
1370         }
1371     }
1372     hdr = o->ptr; /* o->ptr may be different now, as a side effect of
1373                      last hllSparseSet() call. */
1374     HLL_INVALIDATE_CACHE(hdr);
1375 
1376     signalModifiedKey(c->db,c->argv[1]);
1377     /* We generate a PFADD event for PFMERGE for semantical simplicity
1378      * since in theory this is a mass-add of elements. */
1379     notifyKeyspaceEvent(NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
1380     server.dirty++;
1381     addReply(c,shared.ok);
1382 }
1383 
1384 /* ========================== Testing / Debugging  ========================== */
1385 
1386 /* PFSELFTEST
1387  * This command performs a self-test of the HLL registers implementation.
1388  * Something that is not easy to test from within the outside. */
1389 #define HLL_TEST_CYCLES 1000
pfselftestCommand(client * c)1390 void pfselftestCommand(client *c) {
1391     unsigned int j, i;
1392     sds bitcounters = sdsnewlen(NULL,HLL_DENSE_SIZE);
1393     struct hllhdr *hdr = (struct hllhdr*) bitcounters, *hdr2;
1394     robj *o = NULL;
1395     uint8_t bytecounters[HLL_REGISTERS];
1396 
1397     /* Test 1: access registers.
1398      * The test is conceived to test that the different counters of our data
1399      * structure are accessible and that setting their values both result in
1400      * the correct value to be retained and not affect adjacent values. */
1401     for (j = 0; j < HLL_TEST_CYCLES; j++) {
1402         /* Set the HLL counters and an array of unsigned byes of the
1403          * same size to the same set of random values. */
1404         for (i = 0; i < HLL_REGISTERS; i++) {
1405             unsigned int r = rand() & HLL_REGISTER_MAX;
1406 
1407             bytecounters[i] = r;
1408             HLL_DENSE_SET_REGISTER(hdr->registers,i,r);
1409         }
1410         /* Check that we are able to retrieve the same values. */
1411         for (i = 0; i < HLL_REGISTERS; i++) {
1412             unsigned int val;
1413 
1414             HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
1415             if (val != bytecounters[i]) {
1416                 addReplyErrorFormat(c,
1417                     "TESTFAILED Register %d should be %d but is %d",
1418                     i, (int) bytecounters[i], (int) val);
1419                 goto cleanup;
1420             }
1421         }
1422     }
1423 
1424     /* Test 2: approximation error.
1425      * The test adds unique elements and check that the estimated value
1426      * is always reasonable bounds.
1427      *
1428      * We check that the error is smaller than a few times than the expected
1429      * standard error, to make it very unlikely for the test to fail because
1430      * of a "bad" run.
1431      *
1432      * The test is performed with both dense and sparse HLLs at the same
1433      * time also verifying that the computed cardinality is the same. */
1434     memset(hdr->registers,0,HLL_DENSE_SIZE-HLL_HDR_SIZE);
1435     o = createHLLObject();
1436     double relerr = 1.04/sqrt(HLL_REGISTERS);
1437     int64_t checkpoint = 1;
1438     uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32;
1439     uint64_t ele;
1440     for (j = 1; j <= 10000000; j++) {
1441         ele = j ^ seed;
1442         hllDenseAdd(hdr->registers,(unsigned char*)&ele,sizeof(ele));
1443         hllAdd(o,(unsigned char*)&ele,sizeof(ele));
1444 
1445         /* Make sure that for small cardinalities we use sparse
1446          * encoding. */
1447         if (j == checkpoint && j < server.hll_sparse_max_bytes/2) {
1448             hdr2 = o->ptr;
1449             if (hdr2->encoding != HLL_SPARSE) {
1450                 addReplyError(c, "TESTFAILED sparse encoding not used");
1451                 goto cleanup;
1452             }
1453         }
1454 
1455         /* Check that dense and sparse representations agree. */
1456         if (j == checkpoint && hllCount(hdr,NULL) != hllCount(o->ptr,NULL)) {
1457                 addReplyError(c, "TESTFAILED dense/sparse disagree");
1458                 goto cleanup;
1459         }
1460 
1461         /* Check error. */
1462         if (j == checkpoint) {
1463             int64_t abserr = checkpoint - (int64_t)hllCount(hdr,NULL);
1464             uint64_t maxerr = ceil(relerr*6*checkpoint);
1465 
1466             /* Adjust the max error we expect for cardinality 10
1467              * since from time to time it is statistically likely to get
1468              * much higher error due to collision, resulting into a false
1469              * positive. */
1470             if (j == 10) maxerr = 1;
1471 
1472             if (abserr < 0) abserr = -abserr;
1473             if (abserr > (int64_t)maxerr) {
1474                 addReplyErrorFormat(c,
1475                     "TESTFAILED Too big error. card:%llu abserr:%llu",
1476                     (unsigned long long) checkpoint,
1477                     (unsigned long long) abserr);
1478                 goto cleanup;
1479             }
1480             checkpoint *= 10;
1481         }
1482     }
1483 
1484     /* Success! */
1485     addReply(c,shared.ok);
1486 
1487 cleanup:
1488     sdsfree(bitcounters);
1489     if (o) decrRefCount(o);
1490 }
1491 
1492 /* PFDEBUG <subcommand> <key> ... args ...
1493  * Different debugging related operations about the HLL implementation. */
pfdebugCommand(client * c)1494 void pfdebugCommand(client *c) {
1495     char *cmd = c->argv[1]->ptr;
1496     struct hllhdr *hdr;
1497     robj *o;
1498     int j;
1499 
1500     o = lookupKeyWrite(c->db,c->argv[2]);
1501     if (o == NULL) {
1502         addReplyError(c,"The specified key does not exist");
1503         return;
1504     }
1505     if (isHLLObjectOrReply(c,o) != C_OK) return;
1506     o = dbUnshareStringValue(c->db,c->argv[2],o);
1507     hdr = o->ptr;
1508 
1509     /* PFDEBUG GETREG <key> */
1510     if (!strcasecmp(cmd,"getreg")) {
1511         if (c->argc != 3) goto arityerr;
1512 
1513         if (hdr->encoding == HLL_SPARSE) {
1514             if (hllSparseToDense(o) == C_ERR) {
1515                 addReplySds(c,sdsnew(invalid_hll_err));
1516                 return;
1517             }
1518             server.dirty++; /* Force propagation on encoding change. */
1519         }
1520 
1521         hdr = o->ptr;
1522         addReplyMultiBulkLen(c,HLL_REGISTERS);
1523         for (j = 0; j < HLL_REGISTERS; j++) {
1524             uint8_t val;
1525 
1526             HLL_DENSE_GET_REGISTER(val,hdr->registers,j);
1527             addReplyLongLong(c,val);
1528         }
1529     }
1530     /* PFDEBUG DECODE <key> */
1531     else if (!strcasecmp(cmd,"decode")) {
1532         if (c->argc != 3) goto arityerr;
1533 
1534         uint8_t *p = o->ptr, *end = p+sdslen(o->ptr);
1535         sds decoded = sdsempty();
1536 
1537         if (hdr->encoding != HLL_SPARSE) {
1538             addReplyError(c,"HLL encoding is not sparse");
1539             return;
1540         }
1541 
1542         p += HLL_HDR_SIZE;
1543         while(p < end) {
1544             int runlen, regval;
1545 
1546             if (HLL_SPARSE_IS_ZERO(p)) {
1547                 runlen = HLL_SPARSE_ZERO_LEN(p);
1548                 p++;
1549                 decoded = sdscatprintf(decoded,"z:%d ",runlen);
1550             } else if (HLL_SPARSE_IS_XZERO(p)) {
1551                 runlen = HLL_SPARSE_XZERO_LEN(p);
1552                 p += 2;
1553                 decoded = sdscatprintf(decoded,"Z:%d ",runlen);
1554             } else {
1555                 runlen = HLL_SPARSE_VAL_LEN(p);
1556                 regval = HLL_SPARSE_VAL_VALUE(p);
1557                 p++;
1558                 decoded = sdscatprintf(decoded,"v:%d,%d ",regval,runlen);
1559             }
1560         }
1561         decoded = sdstrim(decoded," ");
1562         addReplyBulkCBuffer(c,decoded,sdslen(decoded));
1563         sdsfree(decoded);
1564     }
1565     /* PFDEBUG ENCODING <key> */
1566     else if (!strcasecmp(cmd,"encoding")) {
1567         char *encodingstr[2] = {"dense","sparse"};
1568         if (c->argc != 3) goto arityerr;
1569 
1570         addReplyStatus(c,encodingstr[hdr->encoding]);
1571     }
1572     /* PFDEBUG TODENSE <key> */
1573     else if (!strcasecmp(cmd,"todense")) {
1574         int conv = 0;
1575         if (c->argc != 3) goto arityerr;
1576 
1577         if (hdr->encoding == HLL_SPARSE) {
1578             if (hllSparseToDense(o) == C_ERR) {
1579                 addReplySds(c,sdsnew(invalid_hll_err));
1580                 return;
1581             }
1582             conv = 1;
1583             server.dirty++; /* Force propagation on encoding change. */
1584         }
1585         addReply(c,conv ? shared.cone : shared.czero);
1586     } else {
1587         addReplyErrorFormat(c,"Unknown PFDEBUG subcommand '%s'", cmd);
1588     }
1589     return;
1590 
1591 arityerr:
1592     addReplyErrorFormat(c,
1593         "Wrong number of arguments for the '%s' subcommand",cmd);
1594 }
1595 
1596