1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013-2015 Intel Corporation
3  */
4 
5 #include <inttypes.h>
6 
7 #include <rte_ethdev_driver.h>
8 #include <rte_common.h>
9 #include "fm10k.h"
10 #include "base/fm10k_type.h"
11 
12 #include <tmmintrin.h>
13 
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
16 #endif
17 
18 static void
19 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
20 
21 /* Handling the offload flags (olflags) field takes computation
22  * time when receiving packets. Therefore we provide a flag to disable
23  * the processing of the olflags field when they are not needed. This
24  * gives improved performance, at the cost of losing the offload info
25  * in the received packet
26  */
27 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
28 
29 /* Vlan present flag shift */
30 #define VP_SHIFT     (2)
31 /* L3 type shift */
32 #define L3TYPE_SHIFT     (4)
33 /* L4 type shift */
34 #define L4TYPE_SHIFT     (7)
35 /* HBO flag shift */
36 #define HBOFLAG_SHIFT     (10)
37 /* RXE flag shift */
38 #define RXEFLAG_SHIFT     (13)
39 /* IPE/L4E flag shift */
40 #define L3L4EFLAG_SHIFT     (14)
41 /* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
42 #define CKSUM_SHIFT     (1)
43 
44 static inline void
fm10k_desc_to_olflags_v(__m128i descs[4],struct rte_mbuf ** rx_pkts)45 fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
46 {
47 	__m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
48 	union {
49 		uint16_t e[4];
50 		uint64_t dword;
51 	} vol;
52 
53 	const __m128i pkttype_msk = _mm_set_epi16(
54 			0x0000, 0x0000, 0x0000, 0x0000,
55 			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
56 			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
57 			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
58 			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
59 
60 	/* mask everything except rss type */
61 	const __m128i rsstype_msk = _mm_set_epi16(
62 			0x0000, 0x0000, 0x0000, 0x0000,
63 			0x000F, 0x000F, 0x000F, 0x000F);
64 
65 	/* mask for HBO and RXE flag flags */
66 	const __m128i rxe_msk = _mm_set_epi16(
67 			0x0000, 0x0000, 0x0000, 0x0000,
68 			0x0001, 0x0001, 0x0001, 0x0001);
69 
70 	/* mask the lower byte of ol_flags */
71 	const __m128i ol_flags_msk = _mm_set_epi16(
72 			0x0000, 0x0000, 0x0000, 0x0000,
73 			0x00FF, 0x00FF, 0x00FF, 0x00FF);
74 
75 	const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
76 			0, 0, 0, 0,
77 			0, 0, 0, 0,
78 			(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
79 			(PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
80 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
81 			(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
82 
83 	const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
84 			0, 0, 0, 0,
85 			0, 0, 0, 0,
86 			0, 0, 0, 0);
87 
88 	/* map rss type to rss hash flag */
89 	const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
90 			0, 0, 0, PKT_RX_RSS_HASH,
91 			PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
92 			PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
93 
94 	/* Calculate RSS_hash and Vlan fields */
95 	ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
96 	ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
97 	vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
98 	vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
99 
100 	ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
101 	ptype0 = _mm_and_si128(ptype0, rsstype_msk);
102 	ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
103 
104 	vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
105 	eflag0 = vtag1;
106 	cksumflag = vtag1;
107 	vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
108 	vtag1 = _mm_and_si128(vtag1, pkttype_msk);
109 
110 	vtag1 = _mm_or_si128(ptype0, vtag1);
111 
112 	/* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
113 	eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
114 	eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
115 	eflag0 = _mm_or_si128(eflag0, eflag1);
116 	eflag0 = _mm_and_si128(eflag0, rxe_msk);
117 	eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
118 
119 	vtag1 = _mm_or_si128(eflag0, vtag1);
120 
121 	/* Process L4/L3 checksum error flags */
122 	cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
123 	cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
124 
125 	/* clean the higher byte and shift back the flag bits */
126 	cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
127 	cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
128 	vtag1 = _mm_or_si128(cksumflag, vtag1);
129 
130 	vol.dword = _mm_cvtsi128_si64(vtag1);
131 
132 	rx_pkts[0]->ol_flags = vol.e[0];
133 	rx_pkts[1]->ol_flags = vol.e[1];
134 	rx_pkts[2]->ol_flags = vol.e[2];
135 	rx_pkts[3]->ol_flags = vol.e[3];
136 }
137 
138 /* @note: When this function is changed, make corresponding change to
139  * fm10k_dev_supported_ptypes_get().
140  */
141 static inline void
fm10k_desc_to_pktype_v(__m128i descs[4],struct rte_mbuf ** rx_pkts)142 fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
143 {
144 	__m128i l3l4type0, l3l4type1, l3type, l4type;
145 	union {
146 		uint16_t e[4];
147 		uint64_t dword;
148 	} vol;
149 
150 	/* L3 pkt type mask  Bit4 to Bit6 */
151 	const __m128i l3type_msk = _mm_set_epi16(
152 			0x0000, 0x0000, 0x0000, 0x0000,
153 			0x0070, 0x0070, 0x0070, 0x0070);
154 
155 	/* L4 pkt type mask  Bit7 to Bit9 */
156 	const __m128i l4type_msk = _mm_set_epi16(
157 			0x0000, 0x0000, 0x0000, 0x0000,
158 			0x0380, 0x0380, 0x0380, 0x0380);
159 
160 	/* convert RRC l3 type to mbuf format */
161 	const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
162 			0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
163 			RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
164 			RTE_PTYPE_L3_IPV4, 0);
165 
166 	/* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
167 	 * to fill into8 bits length.
168 	 */
169 	const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
170 			RTE_PTYPE_TUNNEL_GENEVE >> 8,
171 			RTE_PTYPE_TUNNEL_NVGRE >> 8,
172 			RTE_PTYPE_TUNNEL_VXLAN >> 8,
173 			RTE_PTYPE_TUNNEL_GRE >> 8,
174 			RTE_PTYPE_L4_UDP >> 8,
175 			RTE_PTYPE_L4_TCP >> 8,
176 			0);
177 
178 	l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
179 	l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
180 	l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
181 
182 	l3type = _mm_and_si128(l3l4type0, l3type_msk);
183 	l4type = _mm_and_si128(l3l4type0, l4type_msk);
184 
185 	l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
186 	l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
187 
188 	l3type = _mm_shuffle_epi8(l3type_flags, l3type);
189 	/* l4type_flags shift-left for 8 bits, need shift-right back */
190 	l4type = _mm_shuffle_epi8(l4type_flags, l4type);
191 
192 	l4type = _mm_slli_epi16(l4type, 8);
193 	l3l4type0 = _mm_or_si128(l3type, l4type);
194 	vol.dword = _mm_cvtsi128_si64(l3l4type0);
195 
196 	rx_pkts[0]->packet_type = vol.e[0];
197 	rx_pkts[1]->packet_type = vol.e[1];
198 	rx_pkts[2]->packet_type = vol.e[2];
199 	rx_pkts[3]->packet_type = vol.e[3];
200 }
201 #else
202 #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
203 #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
204 #endif
205 
206 int __rte_cold
fm10k_rx_vec_condition_check(struct rte_eth_dev * dev)207 fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
208 {
209 #ifndef RTE_LIBRTE_IEEE1588
210 	struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
211 	struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
212 
213 #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
214 	/* whithout rx ol_flags, no VP flag report */
215 	if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
216 		return -1;
217 #endif
218 
219 	/* no fdir support */
220 	if (fconf->mode != RTE_FDIR_MODE_NONE)
221 		return -1;
222 
223 	/* no header split support */
224 	if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
225 		return -1;
226 
227 	return 0;
228 #else
229 	RTE_SET_USED(dev);
230 	return -1;
231 #endif
232 }
233 
234 int __rte_cold
fm10k_rxq_vec_setup(struct fm10k_rx_queue * rxq)235 fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
236 {
237 	uintptr_t p;
238 	struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
239 
240 	mb_def.nb_segs = 1;
241 	/* data_off will be ajusted after new mbuf allocated for 512-byte
242 	 * alignment.
243 	 */
244 	mb_def.data_off = RTE_PKTMBUF_HEADROOM;
245 	mb_def.port = rxq->port_id;
246 	rte_mbuf_refcnt_set(&mb_def, 1);
247 
248 	/* prevent compiler reordering: rearm_data covers previous fields */
249 	rte_compiler_barrier();
250 	p = (uintptr_t)&mb_def.rearm_data;
251 	rxq->mbuf_initializer = *(uint64_t *)p;
252 	return 0;
253 }
254 
255 static inline void
fm10k_rxq_rearm(struct fm10k_rx_queue * rxq)256 fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
257 {
258 	int i;
259 	uint16_t rx_id;
260 	volatile union fm10k_rx_desc *rxdp;
261 	struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
262 	struct rte_mbuf *mb0, *mb1;
263 	__m128i head_off = _mm_set_epi64x(
264 			RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
265 			RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
266 	__m128i dma_addr0, dma_addr1;
267 	/* Rx buffer need to be aligned with 512 byte */
268 	const __m128i hba_msk = _mm_set_epi64x(0,
269 				UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
270 
271 	rxdp = rxq->hw_ring + rxq->rxrearm_start;
272 
273 	/* Pull 'n' more MBUFs into the software ring */
274 	if (rte_mempool_get_bulk(rxq->mp,
275 				 (void *)mb_alloc,
276 				 RTE_FM10K_RXQ_REARM_THRESH) < 0) {
277 		dma_addr0 = _mm_setzero_si128();
278 		/* Clean up all the HW/SW ring content */
279 		for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
280 			mb_alloc[i] = &rxq->fake_mbuf;
281 			_mm_store_si128((__m128i *)&rxdp[i].q,
282 						dma_addr0);
283 		}
284 
285 		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
286 			RTE_FM10K_RXQ_REARM_THRESH;
287 		return;
288 	}
289 
290 	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
291 	for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
292 		__m128i vaddr0, vaddr1;
293 		uintptr_t p0, p1;
294 
295 		mb0 = mb_alloc[0];
296 		mb1 = mb_alloc[1];
297 
298 		/* Flush mbuf with pkt template.
299 		 * Data to be rearmed is 6 bytes long.
300 		 */
301 		p0 = (uintptr_t)&mb0->rearm_data;
302 		*(uint64_t *)p0 = rxq->mbuf_initializer;
303 		p1 = (uintptr_t)&mb1->rearm_data;
304 		*(uint64_t *)p1 = rxq->mbuf_initializer;
305 
306 		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
307 		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
308 				offsetof(struct rte_mbuf, buf_addr) + 8);
309 		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
310 		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
311 
312 		/* convert pa to dma_addr hdr/data */
313 		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
314 		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
315 
316 		/* add headroom to pa values */
317 		dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
318 		dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
319 
320 		/* Do 512 byte alignment to satisfy HW requirement, in the
321 		 * meanwhile, set Header Buffer Address to zero.
322 		 */
323 		dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
324 		dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
325 
326 		/* flush desc with pa dma_addr */
327 		_mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
328 		_mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
329 
330 		/* enforce 512B alignment on default Rx virtual addresses */
331 		mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
332 				+ RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
333 				- (char *)mb0->buf_addr);
334 		mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
335 				+ RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
336 				- (char *)mb1->buf_addr);
337 	}
338 
339 	rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
340 	if (rxq->rxrearm_start >= rxq->nb_desc)
341 		rxq->rxrearm_start = 0;
342 
343 	rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
344 
345 	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
346 			(rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
347 
348 	/* Update the tail pointer on the NIC */
349 	FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
350 }
351 
352 void __rte_cold
fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue * rxq)353 fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
354 {
355 	const unsigned mask = rxq->nb_desc - 1;
356 	unsigned i;
357 
358 	if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
359 		return;
360 
361 	/* free all mbufs that are valid in the ring */
362 	if (rxq->rxrearm_nb == 0) {
363 		for (i = 0; i < rxq->nb_desc; i++)
364 			if (rxq->sw_ring[i] != NULL)
365 				rte_pktmbuf_free_seg(rxq->sw_ring[i]);
366 	} else {
367 		for (i = rxq->next_dd; i != rxq->rxrearm_start;
368 				i = (i + 1) & mask)
369 			rte_pktmbuf_free_seg(rxq->sw_ring[i]);
370 	}
371 	rxq->rxrearm_nb = rxq->nb_desc;
372 
373 	/* set all entries to NULL */
374 	memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
375 }
376 
377 static inline uint16_t
fm10k_recv_raw_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts,uint8_t * split_packet)378 fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
379 		uint16_t nb_pkts, uint8_t *split_packet)
380 {
381 	volatile union fm10k_rx_desc *rxdp;
382 	struct rte_mbuf **mbufp;
383 	uint16_t nb_pkts_recd;
384 	int pos;
385 	struct fm10k_rx_queue *rxq = rx_queue;
386 	uint64_t var;
387 	__m128i shuf_msk;
388 	__m128i dd_check, eop_check;
389 	uint16_t next_dd;
390 
391 	next_dd = rxq->next_dd;
392 
393 	/* Just the act of getting into the function from the application is
394 	 * going to cost about 7 cycles
395 	 */
396 	rxdp = rxq->hw_ring + next_dd;
397 
398 	rte_prefetch0(rxdp);
399 
400 	/* See if we need to rearm the RX queue - gives the prefetch a bit
401 	 * of time to act
402 	 */
403 	if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
404 		fm10k_rxq_rearm(rxq);
405 
406 	/* Before we start moving massive data around, check to see if
407 	 * there is actually a packet available
408 	 */
409 	if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
410 		return 0;
411 
412 	/* Vecotr RX will process 4 packets at a time, strip the unaligned
413 	 * tails in case it's not multiple of 4.
414 	 */
415 	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
416 
417 	/* 4 packets DD mask */
418 	dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
419 
420 	/* 4 packets EOP mask */
421 	eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
422 
423 	/* mask to shuffle from desc. to mbuf */
424 	shuf_msk = _mm_set_epi8(
425 		7, 6, 5, 4,  /* octet 4~7, 32bits rss */
426 		15, 14,      /* octet 14~15, low 16 bits vlan_macip */
427 		13, 12,      /* octet 12~13, 16 bits data_len */
428 		0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
429 		13, 12,      /* octet 12~13, low 16 bits pkt_len */
430 		0xFF, 0xFF,  /* skip high 16 bits pkt_type */
431 		0xFF, 0xFF   /* Skip pkt_type field in shuffle operation */
432 		);
433 	/*
434 	 * Compile-time verify the shuffle mask
435 	 * NOTE: some field positions already verified above, but duplicated
436 	 * here for completeness in case of future modifications.
437 	 */
438 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
439 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
440 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
441 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
442 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
443 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
444 	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
445 			offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
446 
447 	/* Cache is empty -> need to scan the buffer rings, but first move
448 	 * the next 'n' mbufs into the cache
449 	 */
450 	mbufp = &rxq->sw_ring[next_dd];
451 
452 	/* A. load 4 packet in one loop
453 	 * [A*. mask out 4 unused dirty field in desc]
454 	 * B. copy 4 mbuf point from swring to rx_pkts
455 	 * C. calc the number of DD bits among the 4 packets
456 	 * [C*. extract the end-of-packet bit, if requested]
457 	 * D. fill info. from desc to mbuf
458 	 */
459 	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
460 			pos += RTE_FM10K_DESCS_PER_LOOP,
461 			rxdp += RTE_FM10K_DESCS_PER_LOOP) {
462 		__m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
463 		__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
464 		__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
465 		__m128i mbp1;
466 		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
467 #if defined(RTE_ARCH_X86_64)
468 		__m128i mbp2;
469 #endif
470 
471 		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
472 		mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
473 
474 		/* Read desc statuses backwards to avoid race condition */
475 		/* A.1 load 4 pkts desc */
476 		descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
477 		rte_compiler_barrier();
478 
479 		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
480 		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
481 
482 #if defined(RTE_ARCH_X86_64)
483 		/* B.1 load 2 64 bit mbuf poitns */
484 		mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
485 #endif
486 
487 		descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
488 		rte_compiler_barrier();
489 		/* B.1 load 2 mbuf point */
490 		descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
491 		rte_compiler_barrier();
492 		descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
493 
494 #if defined(RTE_ARCH_X86_64)
495 		/* B.2 copy 2 mbuf point into rx_pkts  */
496 		_mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
497 #endif
498 
499 		/* avoid compiler reorder optimization */
500 		rte_compiler_barrier();
501 
502 		if (split_packet) {
503 			rte_mbuf_prefetch_part2(rx_pkts[pos]);
504 			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
505 			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
506 			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
507 		}
508 
509 		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
510 		pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
511 		pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
512 
513 		/* C.1 4=>2 filter staterr info only */
514 		sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
515 		/* C.1 4=>2 filter staterr info only */
516 		sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
517 
518 		/* set ol_flags with vlan packet type */
519 		fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
520 
521 		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
522 		pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
523 		pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
524 
525 		/* C.2 get 4 pkts staterr value  */
526 		zero = _mm_xor_si128(dd_check, dd_check);
527 		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
528 
529 		/* D.3 copy final 3,4 data to rx_pkts */
530 		_mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
531 				pkt_mb4);
532 		_mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
533 				pkt_mb3);
534 
535 		/* C* extract and record EOP bit */
536 		if (split_packet) {
537 			__m128i eop_shuf_mask = _mm_set_epi8(
538 					0xFF, 0xFF, 0xFF, 0xFF,
539 					0xFF, 0xFF, 0xFF, 0xFF,
540 					0xFF, 0xFF, 0xFF, 0xFF,
541 					0x04, 0x0C, 0x00, 0x08
542 					);
543 
544 			/* and with mask to extract bits, flipping 1-0 */
545 			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
546 			/* the staterr values are not in order, as the count
547 			 * count of dd bits doesn't care. However, for end of
548 			 * packet tracking, we do care, so shuffle. This also
549 			 * compresses the 32-bit values to 8-bit
550 			 */
551 			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
552 			/* store the resulting 32-bit value */
553 			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
554 			split_packet += RTE_FM10K_DESCS_PER_LOOP;
555 
556 			/* zero-out next pointers */
557 			rx_pkts[pos]->next = NULL;
558 			rx_pkts[pos + 1]->next = NULL;
559 			rx_pkts[pos + 2]->next = NULL;
560 			rx_pkts[pos + 3]->next = NULL;
561 		}
562 
563 		/* C.3 calc available number of desc */
564 		staterr = _mm_and_si128(staterr, dd_check);
565 		staterr = _mm_packs_epi32(staterr, zero);
566 
567 		/* D.3 copy final 1,2 data to rx_pkts */
568 		_mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
569 				pkt_mb2);
570 		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
571 				pkt_mb1);
572 
573 		fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
574 
575 		/* C.4 calc avaialbe number of desc */
576 		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
577 		nb_pkts_recd += var;
578 		if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
579 			break;
580 	}
581 
582 	/* Update our internal tail pointer */
583 	rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
584 	rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
585 	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
586 
587 	return nb_pkts_recd;
588 }
589 
590 /* vPMD receive routine
591  *
592  * Notice:
593  * - don't support ol_flags for rss and csum err
594  */
595 uint16_t
fm10k_recv_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)596 fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
597 		uint16_t nb_pkts)
598 {
599 	return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
600 }
601 
602 static inline uint16_t
fm10k_reassemble_packets(struct fm10k_rx_queue * rxq,struct rte_mbuf ** rx_bufs,uint16_t nb_bufs,uint8_t * split_flags)603 fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
604 		struct rte_mbuf **rx_bufs,
605 		uint16_t nb_bufs, uint8_t *split_flags)
606 {
607 	struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
608 	struct rte_mbuf *start = rxq->pkt_first_seg;
609 	struct rte_mbuf *end =  rxq->pkt_last_seg;
610 	unsigned pkt_idx, buf_idx;
611 
612 	for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
613 		if (end != NULL) {
614 			/* processing a split packet */
615 			end->next = rx_bufs[buf_idx];
616 			start->nb_segs++;
617 			start->pkt_len += rx_bufs[buf_idx]->data_len;
618 			end = end->next;
619 
620 			if (!split_flags[buf_idx]) {
621 				/* it's the last packet of the set */
622 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
623 				start->hash = end->hash;
624 				start->ol_flags = end->ol_flags;
625 				start->packet_type = end->packet_type;
626 #endif
627 				pkts[pkt_idx++] = start;
628 				start = end = NULL;
629 			}
630 		} else {
631 			/* not processing a split packet */
632 			if (!split_flags[buf_idx]) {
633 				/* not a split packet, save and skip */
634 				pkts[pkt_idx++] = rx_bufs[buf_idx];
635 				continue;
636 			}
637 			end = start = rx_bufs[buf_idx];
638 		}
639 	}
640 
641 	/* save the partial packet for next time */
642 	rxq->pkt_first_seg = start;
643 	rxq->pkt_last_seg = end;
644 	memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
645 	return pkt_idx;
646 }
647 
648 /**
649  * vPMD receive routine that reassembles single burst of 32 scattered packets
650  *
651  * Notice:
652  * - don't support ol_flags for rss and csum err
653  */
654 static uint16_t
fm10k_recv_scattered_burst_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)655 fm10k_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
656 			       uint16_t nb_pkts)
657 {
658 	struct fm10k_rx_queue *rxq = rx_queue;
659 	uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
660 	unsigned i = 0;
661 
662 	/* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
663 	nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
664 	/* get some new buffers */
665 	uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
666 			split_flags);
667 	if (nb_bufs == 0)
668 		return 0;
669 
670 	/* happy day case, full burst + no packets to be joined */
671 	const uint64_t *split_fl64 = (uint64_t *)split_flags;
672 
673 	if (rxq->pkt_first_seg == NULL &&
674 			split_fl64[0] == 0 && split_fl64[1] == 0 &&
675 			split_fl64[2] == 0 && split_fl64[3] == 0)
676 		return nb_bufs;
677 
678 	/* reassemble any packets that need reassembly*/
679 	if (rxq->pkt_first_seg == NULL) {
680 		/* find the first split flag, and only reassemble then*/
681 		while (i < nb_bufs && !split_flags[i])
682 			i++;
683 		if (i == nb_bufs)
684 			return nb_bufs;
685 		rxq->pkt_first_seg = rx_pkts[i];
686 	}
687 	return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
688 		&split_flags[i]);
689 }
690 
691 /**
692  * vPMD receive routine that reassembles scattered packets.
693  */
694 uint16_t
fm10k_recv_scattered_pkts_vec(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)695 fm10k_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
696 			      uint16_t nb_pkts)
697 {
698 	uint16_t retval = 0;
699 
700 	while (nb_pkts > RTE_FM10K_MAX_RX_BURST) {
701 		uint16_t burst;
702 
703 		burst = fm10k_recv_scattered_burst_vec(rx_queue,
704 						       rx_pkts + retval,
705 						       RTE_FM10K_MAX_RX_BURST);
706 		retval += burst;
707 		nb_pkts -= burst;
708 		if (burst < RTE_FM10K_MAX_RX_BURST)
709 			return retval;
710 	}
711 
712 	return retval + fm10k_recv_scattered_burst_vec(rx_queue,
713 						       rx_pkts + retval,
714 						       nb_pkts);
715 }
716 
717 static const struct fm10k_txq_ops vec_txq_ops = {
718 	.reset = fm10k_reset_tx_queue,
719 };
720 
721 void __rte_cold
fm10k_txq_vec_setup(struct fm10k_tx_queue * txq)722 fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
723 {
724 	txq->ops = &vec_txq_ops;
725 }
726 
727 int __rte_cold
fm10k_tx_vec_condition_check(struct fm10k_tx_queue * txq)728 fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
729 {
730 	/* Vector TX can't offload any features yet */
731 	if (txq->offloads != 0)
732 		return -1;
733 
734 	if (txq->tx_ftag_en)
735 		return -1;
736 
737 	return 0;
738 }
739 
740 static inline void
vtx1(volatile struct fm10k_tx_desc * txdp,struct rte_mbuf * pkt,uint64_t flags)741 vtx1(volatile struct fm10k_tx_desc *txdp,
742 		struct rte_mbuf *pkt, uint64_t flags)
743 {
744 	__m128i descriptor = _mm_set_epi64x(flags << 56 |
745 			(uint64_t)pkt->vlan_tci << 16 | (uint64_t)pkt->data_len,
746 			MBUF_DMA_ADDR(pkt));
747 	_mm_store_si128((__m128i *)txdp, descriptor);
748 }
749 
750 static inline void
vtx(volatile struct fm10k_tx_desc * txdp,struct rte_mbuf ** pkt,uint16_t nb_pkts,uint64_t flags)751 vtx(volatile struct fm10k_tx_desc *txdp,
752 		struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
753 {
754 	int i;
755 
756 	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
757 		vtx1(txdp, *pkt, flags);
758 }
759 
760 static __rte_always_inline int
fm10k_tx_free_bufs(struct fm10k_tx_queue * txq)761 fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
762 {
763 	struct rte_mbuf **txep;
764 	uint8_t flags;
765 	uint32_t n;
766 	uint32_t i;
767 	int nb_free = 0;
768 	struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
769 
770 	/* check DD bit on threshold descriptor */
771 	flags = txq->hw_ring[txq->next_dd].flags;
772 	if (!(flags & FM10K_TXD_FLAG_DONE))
773 		return 0;
774 
775 	n = txq->rs_thresh;
776 
777 	/* First buffer to free from S/W ring is at index
778 	 * next_dd - (rs_thresh-1)
779 	 */
780 	txep = &txq->sw_ring[txq->next_dd - (n - 1)];
781 	m = rte_pktmbuf_prefree_seg(txep[0]);
782 	if (likely(m != NULL)) {
783 		free[0] = m;
784 		nb_free = 1;
785 		for (i = 1; i < n; i++) {
786 			m = rte_pktmbuf_prefree_seg(txep[i]);
787 			if (likely(m != NULL)) {
788 				if (likely(m->pool == free[0]->pool))
789 					free[nb_free++] = m;
790 				else {
791 					rte_mempool_put_bulk(free[0]->pool,
792 							(void *)free, nb_free);
793 					free[0] = m;
794 					nb_free = 1;
795 				}
796 			}
797 		}
798 		rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
799 	} else {
800 		for (i = 1; i < n; i++) {
801 			m = rte_pktmbuf_prefree_seg(txep[i]);
802 			if (m != NULL)
803 				rte_mempool_put(m->pool, m);
804 		}
805 	}
806 
807 	/* buffers were freed, update counters */
808 	txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
809 	txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
810 	if (txq->next_dd >= txq->nb_desc)
811 		txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
812 
813 	return txq->rs_thresh;
814 }
815 
816 static __rte_always_inline void
tx_backlog_entry(struct rte_mbuf ** txep,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)817 tx_backlog_entry(struct rte_mbuf **txep,
818 		 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
819 {
820 	int i;
821 
822 	for (i = 0; i < (int)nb_pkts; ++i)
823 		txep[i] = tx_pkts[i];
824 }
825 
826 uint16_t
fm10k_xmit_fixed_burst_vec(void * tx_queue,struct rte_mbuf ** tx_pkts,uint16_t nb_pkts)827 fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
828 			   uint16_t nb_pkts)
829 {
830 	struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
831 	volatile struct fm10k_tx_desc *txdp;
832 	struct rte_mbuf **txep;
833 	uint16_t n, nb_commit, tx_id;
834 	uint64_t flags = FM10K_TXD_FLAG_LAST;
835 	uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
836 	int i;
837 
838 	/* cross rx_thresh boundary is not allowed */
839 	nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
840 
841 	if (txq->nb_free < txq->free_thresh)
842 		fm10k_tx_free_bufs(txq);
843 
844 	nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
845 	if (unlikely(nb_pkts == 0))
846 		return 0;
847 
848 	tx_id = txq->next_free;
849 	txdp = &txq->hw_ring[tx_id];
850 	txep = &txq->sw_ring[tx_id];
851 
852 	txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
853 
854 	n = (uint16_t)(txq->nb_desc - tx_id);
855 	if (nb_commit >= n) {
856 		tx_backlog_entry(txep, tx_pkts, n);
857 
858 		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
859 			vtx1(txdp, *tx_pkts, flags);
860 
861 		vtx1(txdp, *tx_pkts++, rs);
862 
863 		nb_commit = (uint16_t)(nb_commit - n);
864 
865 		tx_id = 0;
866 		txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
867 
868 		/* avoid reach the end of ring */
869 		txdp = &(txq->hw_ring[tx_id]);
870 		txep = &txq->sw_ring[tx_id];
871 	}
872 
873 	tx_backlog_entry(txep, tx_pkts, nb_commit);
874 
875 	vtx(txdp, tx_pkts, nb_commit, flags);
876 
877 	tx_id = (uint16_t)(tx_id + nb_commit);
878 	if (tx_id > txq->next_rs) {
879 		txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
880 		txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
881 	}
882 
883 	txq->next_free = tx_id;
884 
885 	FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
886 
887 	return nb_pkts;
888 }
889 
890 static void __rte_cold
fm10k_reset_tx_queue(struct fm10k_tx_queue * txq)891 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
892 {
893 	static const struct fm10k_tx_desc zeroed_desc = {0};
894 	struct rte_mbuf **txe = txq->sw_ring;
895 	uint16_t i;
896 
897 	/* Zero out HW ring memory */
898 	for (i = 0; i < txq->nb_desc; i++)
899 		txq->hw_ring[i] = zeroed_desc;
900 
901 	/* Initialize SW ring entries */
902 	for (i = 0; i < txq->nb_desc; i++)
903 		txe[i] = NULL;
904 
905 	txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
906 	txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
907 
908 	txq->next_free = 0;
909 	txq->nb_used = 0;
910 	/* Always allow 1 descriptor to be un-allocated to avoid
911 	 * a H/W race condition
912 	 */
913 	txq->nb_free = (uint16_t)(txq->nb_desc - 1);
914 	FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);
915 }
916