xref: /sqlite-3.40.0/src/fkey.c (revision 41ce47c4)
1 /*
2 **
3 ** The author disclaims copyright to this source code.  In place of
4 ** a legal notice, here is a blessing:
5 **
6 **    May you do good and not evil.
7 **    May you find forgiveness for yourself and forgive others.
8 **    May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
13 */
14 #include "sqliteInt.h"
15 
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
18 
19 /*
20 ** Deferred and Immediate FKs
21 ** --------------------------
22 **
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
30 **
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
39 **
40 **   * When a commit fails due to a deferred foreign key constraint,
41 **     there is no way to tell which foreign constraint is not satisfied,
42 **     or which row it is not satisfied for.
43 **
44 **   * If the database contains foreign key violations when the
45 **     transaction is opened, this may cause the mechanism to malfunction.
46 **
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
49 **
50 ** INSERT operations:
51 **
52 **   I.1) For each FK for which the table is the child table, search
53 **        the parent table for a match. If none is found increment the
54 **        constraint counter.
55 **
56 **   I.2) For each FK for which the table is the parent table,
57 **        search the child table for rows that correspond to the new
58 **        row in the parent table. Decrement the counter for each row
59 **        found (as the constraint is now satisfied).
60 **
61 ** DELETE operations:
62 **
63 **   D.1) For each FK for which the table is the child table,
64 **        search the parent table for a row that corresponds to the
65 **        deleted row in the child table. If such a row is not found,
66 **        decrement the counter.
67 **
68 **   D.2) For each FK for which the table is the parent table, search
69 **        the child table for rows that correspond to the deleted row
70 **        in the parent table. For each found increment the counter.
71 **
72 ** UPDATE operations:
73 **
74 **   An UPDATE command requires that all 4 steps above are taken, but only
75 **   for FK constraints for which the affected columns are actually
76 **   modified (values must be compared at runtime).
77 **
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
80 **
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
86 **
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
97 **
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
100 **
101 **
102 ** Query API Notes
103 ** ---------------
104 **
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
113 **
114 **   sqlite3FkRequired() - Test to see if FK processing is required.
115 **   sqlite3FkOldmask()  - Query for the set of required old.* columns.
116 **
117 **
118 ** Externally accessible module functions
119 ** --------------------------------------
120 **
121 **   sqlite3FkCheck()    - Check for foreign key violations.
122 **   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
123 **   sqlite3FkDelete()   - Delete an FKey structure.
124 */
125 
126 /*
127 ** VDBE Calling Convention
128 ** -----------------------
129 **
130 ** Example:
131 **
132 **   For the following INSERT statement:
133 **
134 **     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 **     INSERT INTO t1 VALUES(1, 2, 3.1);
136 **
137 **   Register (x):        2    (type integer)
138 **   Register (x+1):      1    (type integer)
139 **   Register (x+2):      NULL (type NULL)
140 **   Register (x+3):      3.1  (type real)
141 */
142 
143 /*
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
148 **
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
152 **
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
162 **
163 ** If the required index cannot be found, either because:
164 **
165 **   1) The named parent key columns do not exist, or
166 **
167 **   2) The named parent key columns do exist, but are not subject to a
168 **      UNIQUE or PRIMARY KEY constraint, or
169 **
170 **   3) No parent key columns were provided explicitly as part of the
171 **      foreign key definition, and the parent table does not have a
172 **      PRIMARY KEY, or
173 **
174 **   4) No parent key columns were provided explicitly as part of the
175 **      foreign key definition, and the PRIMARY KEY of the parent table
176 **      consists of a different number of columns to the child key in
177 **      the child table.
178 **
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
182 */
sqlite3FkLocateIndex(Parse * pParse,Table * pParent,FKey * pFKey,Index ** ppIdx,int ** paiCol)183 int sqlite3FkLocateIndex(
184   Parse *pParse,                  /* Parse context to store any error in */
185   Table *pParent,                 /* Parent table of FK constraint pFKey */
186   FKey *pFKey,                    /* Foreign key to find index for */
187   Index **ppIdx,                  /* OUT: Unique index on parent table */
188   int **paiCol                    /* OUT: Map of index columns in pFKey */
189 ){
190   Index *pIdx = 0;                    /* Value to return via *ppIdx */
191   int *aiCol = 0;                     /* Value to return via *paiCol */
192   int nCol = pFKey->nCol;             /* Number of columns in parent key */
193   char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
194 
195   /* The caller is responsible for zeroing output parameters. */
196   assert( ppIdx && *ppIdx==0 );
197   assert( !paiCol || *paiCol==0 );
198   assert( pParse );
199 
200   /* If this is a non-composite (single column) foreign key, check if it
201   ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202   ** and *paiCol set to zero and return early.
203   **
204   ** Otherwise, for a composite foreign key (more than one column), allocate
205   ** space for the aiCol array (returned via output parameter *paiCol).
206   ** Non-composite foreign keys do not require the aiCol array.
207   */
208   if( nCol==1 ){
209     /* The FK maps to the IPK if any of the following are true:
210     **
211     **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212     **      mapped to the primary key of table pParent, or
213     **   2) The FK is explicitly mapped to a column declared as INTEGER
214     **      PRIMARY KEY.
215     */
216     if( pParent->iPKey>=0 ){
217       if( !zKey ) return 0;
218       if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){
219         return 0;
220       }
221     }
222   }else if( paiCol ){
223     assert( nCol>1 );
224     aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
225     if( !aiCol ) return 1;
226     *paiCol = aiCol;
227   }
228 
229   for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
230     if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
231       /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
232       ** of columns. If each indexed column corresponds to a foreign key
233       ** column of pFKey, then this index is a winner.  */
234 
235       if( zKey==0 ){
236         /* If zKey is NULL, then this foreign key is implicitly mapped to
237         ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
238         ** identified by the test.  */
239         if( IsPrimaryKeyIndex(pIdx) ){
240           if( aiCol ){
241             int i;
242             for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
243           }
244           break;
245         }
246       }else{
247         /* If zKey is non-NULL, then this foreign key was declared to
248         ** map to an explicit list of columns in table pParent. Check if this
249         ** index matches those columns. Also, check that the index uses
250         ** the default collation sequences for each column. */
251         int i, j;
252         for(i=0; i<nCol; i++){
253           i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
254           const char *zDfltColl;            /* Def. collation for column */
255           char *zIdxCol;                    /* Name of indexed column */
256 
257           if( iCol<0 ) break; /* No foreign keys against expression indexes */
258 
259           /* If the index uses a collation sequence that is different from
260           ** the default collation sequence for the column, this index is
261           ** unusable. Bail out early in this case.  */
262           zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]);
263           if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
264           if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
265 
266           zIdxCol = pParent->aCol[iCol].zCnName;
267           for(j=0; j<nCol; j++){
268             if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
269               if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
270               break;
271             }
272           }
273           if( j==nCol ) break;
274         }
275         if( i==nCol ) break;      /* pIdx is usable */
276       }
277     }
278   }
279 
280   if( !pIdx ){
281     if( !pParse->disableTriggers ){
282       sqlite3ErrorMsg(pParse,
283            "foreign key mismatch - \"%w\" referencing \"%w\"",
284            pFKey->pFrom->zName, pFKey->zTo);
285     }
286     sqlite3DbFree(pParse->db, aiCol);
287     return 1;
288   }
289 
290   *ppIdx = pIdx;
291   return 0;
292 }
293 
294 /*
295 ** This function is called when a row is inserted into or deleted from the
296 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
297 ** on the child table of pFKey, this function is invoked twice for each row
298 ** affected - once to "delete" the old row, and then again to "insert" the
299 ** new row.
300 **
301 ** Each time it is called, this function generates VDBE code to locate the
302 ** row in the parent table that corresponds to the row being inserted into
303 ** or deleted from the child table. If the parent row can be found, no
304 ** special action is taken. Otherwise, if the parent row can *not* be
305 ** found in the parent table:
306 **
307 **   Operation | FK type   | Action taken
308 **   --------------------------------------------------------------------------
309 **   INSERT      immediate   Increment the "immediate constraint counter".
310 **
311 **   DELETE      immediate   Decrement the "immediate constraint counter".
312 **
313 **   INSERT      deferred    Increment the "deferred constraint counter".
314 **
315 **   DELETE      deferred    Decrement the "deferred constraint counter".
316 **
317 ** These operations are identified in the comment at the top of this file
318 ** (fkey.c) as "I.1" and "D.1".
319 */
fkLookupParent(Parse * pParse,int iDb,Table * pTab,Index * pIdx,FKey * pFKey,int * aiCol,int regData,int nIncr,int isIgnore)320 static void fkLookupParent(
321   Parse *pParse,        /* Parse context */
322   int iDb,              /* Index of database housing pTab */
323   Table *pTab,          /* Parent table of FK pFKey */
324   Index *pIdx,          /* Unique index on parent key columns in pTab */
325   FKey *pFKey,          /* Foreign key constraint */
326   int *aiCol,           /* Map from parent key columns to child table columns */
327   int regData,          /* Address of array containing child table row */
328   int nIncr,            /* Increment constraint counter by this */
329   int isIgnore          /* If true, pretend pTab contains all NULL values */
330 ){
331   int i;                                    /* Iterator variable */
332   Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
333   int iCur = pParse->nTab - 1;              /* Cursor number to use */
334   int iOk = sqlite3VdbeMakeLabel(pParse);   /* jump here if parent key found */
335 
336   sqlite3VdbeVerifyAbortable(v,
337     (!pFKey->isDeferred
338       && !(pParse->db->flags & SQLITE_DeferFKs)
339       && !pParse->pToplevel
340       && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore);
341 
342   /* If nIncr is less than zero, then check at runtime if there are any
343   ** outstanding constraints to resolve. If there are not, there is no need
344   ** to check if deleting this row resolves any outstanding violations.
345   **
346   ** Check if any of the key columns in the child table row are NULL. If
347   ** any are, then the constraint is considered satisfied. No need to
348   ** search for a matching row in the parent table.  */
349   if( nIncr<0 ){
350     sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
351     VdbeCoverage(v);
352   }
353   for(i=0; i<pFKey->nCol; i++){
354     int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1;
355     sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
356   }
357 
358   if( isIgnore==0 ){
359     if( pIdx==0 ){
360       /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
361       ** column of the parent table (table pTab).  */
362       int iMustBeInt;               /* Address of MustBeInt instruction */
363       int regTemp = sqlite3GetTempReg(pParse);
364 
365       /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
366       ** apply the affinity of the parent key). If this fails, then there
367       ** is no matching parent key. Before using MustBeInt, make a copy of
368       ** the value. Otherwise, the value inserted into the child key column
369       ** will have INTEGER affinity applied to it, which may not be correct.  */
370       sqlite3VdbeAddOp2(v, OP_SCopy,
371         sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp);
372       iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
373       VdbeCoverage(v);
374 
375       /* If the parent table is the same as the child table, and we are about
376       ** to increment the constraint-counter (i.e. this is an INSERT operation),
377       ** then check if the row being inserted matches itself. If so, do not
378       ** increment the constraint-counter.  */
379       if( pTab==pFKey->pFrom && nIncr==1 ){
380         sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
381         sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
382       }
383 
384       sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
385       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
386       sqlite3VdbeGoto(v, iOk);
387       sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
388       sqlite3VdbeJumpHere(v, iMustBeInt);
389       sqlite3ReleaseTempReg(pParse, regTemp);
390     }else{
391       int nCol = pFKey->nCol;
392       int regTemp = sqlite3GetTempRange(pParse, nCol);
393 
394       sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
395       sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
396       for(i=0; i<nCol; i++){
397         sqlite3VdbeAddOp2(v, OP_Copy,
398                sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData,
399                regTemp+i);
400       }
401 
402       /* If the parent table is the same as the child table, and we are about
403       ** to increment the constraint-counter (i.e. this is an INSERT operation),
404       ** then check if the row being inserted matches itself. If so, do not
405       ** increment the constraint-counter.
406       **
407       ** If any of the parent-key values are NULL, then the row cannot match
408       ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
409       ** of the parent-key values are NULL (at this point it is known that
410       ** none of the child key values are).
411       */
412       if( pTab==pFKey->pFrom && nIncr==1 ){
413         int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
414         for(i=0; i<nCol; i++){
415           int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i])
416                               +1+regData;
417           int iParent = 1+regData;
418           iParent += sqlite3TableColumnToStorage(pIdx->pTable,
419                                                  pIdx->aiColumn[i]);
420           assert( pIdx->aiColumn[i]>=0 );
421           assert( aiCol[i]!=pTab->iPKey );
422           if( pIdx->aiColumn[i]==pTab->iPKey ){
423             /* The parent key is a composite key that includes the IPK column */
424             iParent = regData;
425           }
426           sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
427           sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
428         }
429         sqlite3VdbeGoto(v, iOk);
430       }
431 
432       sqlite3VdbeAddOp4(v, OP_Affinity, regTemp, nCol, 0,
433                         sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
434       sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regTemp, nCol);
435       VdbeCoverage(v);
436       sqlite3ReleaseTempRange(pParse, regTemp, nCol);
437     }
438   }
439 
440   if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
441    && !pParse->pToplevel
442    && !pParse->isMultiWrite
443   ){
444     /* Special case: If this is an INSERT statement that will insert exactly
445     ** one row into the table, raise a constraint immediately instead of
446     ** incrementing a counter. This is necessary as the VM code is being
447     ** generated for will not open a statement transaction.  */
448     assert( nIncr==1 );
449     sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
450         OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
451   }else{
452     if( nIncr>0 && pFKey->isDeferred==0 ){
453       sqlite3MayAbort(pParse);
454     }
455     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
456   }
457 
458   sqlite3VdbeResolveLabel(v, iOk);
459   sqlite3VdbeAddOp1(v, OP_Close, iCur);
460 }
461 
462 
463 /*
464 ** Return an Expr object that refers to a memory register corresponding
465 ** to column iCol of table pTab.
466 **
467 ** regBase is the first of an array of register that contains the data
468 ** for pTab.  regBase itself holds the rowid.  regBase+1 holds the first
469 ** column.  regBase+2 holds the second column, and so forth.
470 */
exprTableRegister(Parse * pParse,Table * pTab,int regBase,i16 iCol)471 static Expr *exprTableRegister(
472   Parse *pParse,     /* Parsing and code generating context */
473   Table *pTab,       /* The table whose content is at r[regBase]... */
474   int regBase,       /* Contents of table pTab */
475   i16 iCol           /* Which column of pTab is desired */
476 ){
477   Expr *pExpr;
478   Column *pCol;
479   const char *zColl;
480   sqlite3 *db = pParse->db;
481 
482   pExpr = sqlite3Expr(db, TK_REGISTER, 0);
483   if( pExpr ){
484     if( iCol>=0 && iCol!=pTab->iPKey ){
485       pCol = &pTab->aCol[iCol];
486       pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1;
487       pExpr->affExpr = pCol->affinity;
488       zColl = sqlite3ColumnColl(pCol);
489       if( zColl==0 ) zColl = db->pDfltColl->zName;
490       pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
491     }else{
492       pExpr->iTable = regBase;
493       pExpr->affExpr = SQLITE_AFF_INTEGER;
494     }
495   }
496   return pExpr;
497 }
498 
499 /*
500 ** Return an Expr object that refers to column iCol of table pTab which
501 ** has cursor iCur.
502 */
exprTableColumn(sqlite3 * db,Table * pTab,int iCursor,i16 iCol)503 static Expr *exprTableColumn(
504   sqlite3 *db,      /* The database connection */
505   Table *pTab,      /* The table whose column is desired */
506   int iCursor,      /* The open cursor on the table */
507   i16 iCol          /* The column that is wanted */
508 ){
509   Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
510   if( pExpr ){
511     assert( ExprUseYTab(pExpr) );
512     pExpr->y.pTab = pTab;
513     pExpr->iTable = iCursor;
514     pExpr->iColumn = iCol;
515   }
516   return pExpr;
517 }
518 
519 /*
520 ** This function is called to generate code executed when a row is deleted
521 ** from the parent table of foreign key constraint pFKey and, if pFKey is
522 ** deferred, when a row is inserted into the same table. When generating
523 ** code for an SQL UPDATE operation, this function may be called twice -
524 ** once to "delete" the old row and once to "insert" the new row.
525 **
526 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
527 ** the number of FK violations in the db) or +1 when deleting one (as this
528 ** may increase the number of FK constraint problems).
529 **
530 ** The code generated by this function scans through the rows in the child
531 ** table that correspond to the parent table row being deleted or inserted.
532 ** For each child row found, one of the following actions is taken:
533 **
534 **   Operation | FK type   | Action taken
535 **   --------------------------------------------------------------------------
536 **   DELETE      immediate   Increment the "immediate constraint counter".
537 **
538 **   INSERT      immediate   Decrement the "immediate constraint counter".
539 **
540 **   DELETE      deferred    Increment the "deferred constraint counter".
541 **
542 **   INSERT      deferred    Decrement the "deferred constraint counter".
543 **
544 ** These operations are identified in the comment at the top of this file
545 ** (fkey.c) as "I.2" and "D.2".
546 */
fkScanChildren(Parse * pParse,SrcList * pSrc,Table * pTab,Index * pIdx,FKey * pFKey,int * aiCol,int regData,int nIncr)547 static void fkScanChildren(
548   Parse *pParse,                  /* Parse context */
549   SrcList *pSrc,                  /* The child table to be scanned */
550   Table *pTab,                    /* The parent table */
551   Index *pIdx,                    /* Index on parent covering the foreign key */
552   FKey *pFKey,                    /* The foreign key linking pSrc to pTab */
553   int *aiCol,                     /* Map from pIdx cols to child table cols */
554   int regData,                    /* Parent row data starts here */
555   int nIncr                       /* Amount to increment deferred counter by */
556 ){
557   sqlite3 *db = pParse->db;       /* Database handle */
558   int i;                          /* Iterator variable */
559   Expr *pWhere = 0;               /* WHERE clause to scan with */
560   NameContext sNameContext;       /* Context used to resolve WHERE clause */
561   WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
562   int iFkIfZero = 0;              /* Address of OP_FkIfZero */
563   Vdbe *v = sqlite3GetVdbe(pParse);
564 
565   assert( pIdx==0 || pIdx->pTable==pTab );
566   assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
567   assert( pIdx!=0 || pFKey->nCol==1 );
568   assert( pIdx!=0 || HasRowid(pTab) );
569 
570   if( nIncr<0 ){
571     iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
572     VdbeCoverage(v);
573   }
574 
575   /* Create an Expr object representing an SQL expression like:
576   **
577   **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
578   **
579   ** The collation sequence used for the comparison should be that of
580   ** the parent key columns. The affinity of the parent key column should
581   ** be applied to each child key value before the comparison takes place.
582   */
583   for(i=0; i<pFKey->nCol; i++){
584     Expr *pLeft;                  /* Value from parent table row */
585     Expr *pRight;                 /* Column ref to child table */
586     Expr *pEq;                    /* Expression (pLeft = pRight) */
587     i16 iCol;                     /* Index of column in child table */
588     const char *zCol;             /* Name of column in child table */
589 
590     iCol = pIdx ? pIdx->aiColumn[i] : -1;
591     pLeft = exprTableRegister(pParse, pTab, regData, iCol);
592     iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
593     assert( iCol>=0 );
594     zCol = pFKey->pFrom->aCol[iCol].zCnName;
595     pRight = sqlite3Expr(db, TK_ID, zCol);
596     pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
597     pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
598   }
599 
600   /* If the child table is the same as the parent table, then add terms
601   ** to the WHERE clause that prevent this entry from being scanned.
602   ** The added WHERE clause terms are like this:
603   **
604   **     $current_rowid!=rowid
605   **     NOT( $current_a==a AND $current_b==b AND ... )
606   **
607   ** The first form is used for rowid tables.  The second form is used
608   ** for WITHOUT ROWID tables. In the second form, the *parent* key is
609   ** (a,b,...). Either the parent or primary key could be used to
610   ** uniquely identify the current row, but the parent key is more convenient
611   ** as the required values have already been loaded into registers
612   ** by the caller.
613   */
614   if( pTab==pFKey->pFrom && nIncr>0 ){
615     Expr *pNe;                    /* Expression (pLeft != pRight) */
616     Expr *pLeft;                  /* Value from parent table row */
617     Expr *pRight;                 /* Column ref to child table */
618     if( HasRowid(pTab) ){
619       pLeft = exprTableRegister(pParse, pTab, regData, -1);
620       pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
621       pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
622     }else{
623       Expr *pEq, *pAll = 0;
624       assert( pIdx!=0 );
625       for(i=0; i<pIdx->nKeyCol; i++){
626         i16 iCol = pIdx->aiColumn[i];
627         assert( iCol>=0 );
628         pLeft = exprTableRegister(pParse, pTab, regData, iCol);
629         pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName);
630         pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight);
631         pAll = sqlite3ExprAnd(pParse, pAll, pEq);
632       }
633       pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
634     }
635     pWhere = sqlite3ExprAnd(pParse, pWhere, pNe);
636   }
637 
638   /* Resolve the references in the WHERE clause. */
639   memset(&sNameContext, 0, sizeof(NameContext));
640   sNameContext.pSrcList = pSrc;
641   sNameContext.pParse = pParse;
642   sqlite3ResolveExprNames(&sNameContext, pWhere);
643 
644   /* Create VDBE to loop through the entries in pSrc that match the WHERE
645   ** clause. For each row found, increment either the deferred or immediate
646   ** foreign key constraint counter. */
647   if( pParse->nErr==0 ){
648     pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0, 0);
649     sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
650     if( pWInfo ){
651       sqlite3WhereEnd(pWInfo);
652     }
653   }
654 
655   /* Clean up the WHERE clause constructed above. */
656   sqlite3ExprDelete(db, pWhere);
657   if( iFkIfZero ){
658     sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero);
659   }
660 }
661 
662 /*
663 ** This function returns a linked list of FKey objects (connected by
664 ** FKey.pNextTo) holding all children of table pTab.  For example,
665 ** given the following schema:
666 **
667 **   CREATE TABLE t1(a PRIMARY KEY);
668 **   CREATE TABLE t2(b REFERENCES t1(a);
669 **
670 ** Calling this function with table "t1" as an argument returns a pointer
671 ** to the FKey structure representing the foreign key constraint on table
672 ** "t2". Calling this function with "t2" as the argument would return a
673 ** NULL pointer (as there are no FK constraints for which t2 is the parent
674 ** table).
675 */
sqlite3FkReferences(Table * pTab)676 FKey *sqlite3FkReferences(Table *pTab){
677   return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
678 }
679 
680 /*
681 ** The second argument is a Trigger structure allocated by the
682 ** fkActionTrigger() routine. This function deletes the Trigger structure
683 ** and all of its sub-components.
684 **
685 ** The Trigger structure or any of its sub-components may be allocated from
686 ** the lookaside buffer belonging to database handle dbMem.
687 */
fkTriggerDelete(sqlite3 * dbMem,Trigger * p)688 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
689   if( p ){
690     TriggerStep *pStep = p->step_list;
691     sqlite3ExprDelete(dbMem, pStep->pWhere);
692     sqlite3ExprListDelete(dbMem, pStep->pExprList);
693     sqlite3SelectDelete(dbMem, pStep->pSelect);
694     sqlite3ExprDelete(dbMem, p->pWhen);
695     sqlite3DbFree(dbMem, p);
696   }
697 }
698 
699 /*
700 ** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys
701 ** in a particular database.  This needs to happen when the schema
702 ** changes.
703 */
sqlite3FkClearTriggerCache(sqlite3 * db,int iDb)704 void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){
705   HashElem *k;
706   Hash *pHash = &db->aDb[iDb].pSchema->tblHash;
707   for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){
708     Table *pTab = sqliteHashData(k);
709     FKey *pFKey;
710     if( !IsOrdinaryTable(pTab) ) continue;
711     for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
712       fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0;
713       fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0;
714     }
715   }
716 }
717 
718 /*
719 ** This function is called to generate code that runs when table pTab is
720 ** being dropped from the database. The SrcList passed as the second argument
721 ** to this function contains a single entry guaranteed to resolve to
722 ** table pTab.
723 **
724 ** Normally, no code is required. However, if either
725 **
726 **   (a) The table is the parent table of a FK constraint, or
727 **   (b) The table is the child table of a deferred FK constraint and it is
728 **       determined at runtime that there are outstanding deferred FK
729 **       constraint violations in the database,
730 **
731 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
732 ** the table from the database. Triggers are disabled while running this
733 ** DELETE, but foreign key actions are not.
734 */
sqlite3FkDropTable(Parse * pParse,SrcList * pName,Table * pTab)735 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
736   sqlite3 *db = pParse->db;
737   if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){
738     int iSkip = 0;
739     Vdbe *v = sqlite3GetVdbe(pParse);
740 
741     assert( v );                  /* VDBE has already been allocated */
742     assert( IsOrdinaryTable(pTab) );
743     if( sqlite3FkReferences(pTab)==0 ){
744       /* Search for a deferred foreign key constraint for which this table
745       ** is the child table. If one cannot be found, return without
746       ** generating any VDBE code. If one can be found, then jump over
747       ** the entire DELETE if there are no outstanding deferred constraints
748       ** when this statement is run.  */
749       FKey *p;
750       for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
751         if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
752       }
753       if( !p ) return;
754       iSkip = sqlite3VdbeMakeLabel(pParse);
755       sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
756     }
757 
758     pParse->disableTriggers = 1;
759     sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
760     pParse->disableTriggers = 0;
761 
762     /* If the DELETE has generated immediate foreign key constraint
763     ** violations, halt the VDBE and return an error at this point, before
764     ** any modifications to the schema are made. This is because statement
765     ** transactions are not able to rollback schema changes.
766     **
767     ** If the SQLITE_DeferFKs flag is set, then this is not required, as
768     ** the statement transaction will not be rolled back even if FK
769     ** constraints are violated.
770     */
771     if( (db->flags & SQLITE_DeferFKs)==0 ){
772       sqlite3VdbeVerifyAbortable(v, OE_Abort);
773       sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
774       VdbeCoverage(v);
775       sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
776           OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
777     }
778 
779     if( iSkip ){
780       sqlite3VdbeResolveLabel(v, iSkip);
781     }
782   }
783 }
784 
785 
786 /*
787 ** The second argument points to an FKey object representing a foreign key
788 ** for which pTab is the child table. An UPDATE statement against pTab
789 ** is currently being processed. For each column of the table that is
790 ** actually updated, the corresponding element in the aChange[] array
791 ** is zero or greater (if a column is unmodified the corresponding element
792 ** is set to -1). If the rowid column is modified by the UPDATE statement
793 ** the bChngRowid argument is non-zero.
794 **
795 ** This function returns true if any of the columns that are part of the
796 ** child key for FK constraint *p are modified.
797 */
fkChildIsModified(Table * pTab,FKey * p,int * aChange,int bChngRowid)798 static int fkChildIsModified(
799   Table *pTab,                    /* Table being updated */
800   FKey *p,                        /* Foreign key for which pTab is the child */
801   int *aChange,                   /* Array indicating modified columns */
802   int bChngRowid                  /* True if rowid is modified by this update */
803 ){
804   int i;
805   for(i=0; i<p->nCol; i++){
806     int iChildKey = p->aCol[i].iFrom;
807     if( aChange[iChildKey]>=0 ) return 1;
808     if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
809   }
810   return 0;
811 }
812 
813 /*
814 ** The second argument points to an FKey object representing a foreign key
815 ** for which pTab is the parent table. An UPDATE statement against pTab
816 ** is currently being processed. For each column of the table that is
817 ** actually updated, the corresponding element in the aChange[] array
818 ** is zero or greater (if a column is unmodified the corresponding element
819 ** is set to -1). If the rowid column is modified by the UPDATE statement
820 ** the bChngRowid argument is non-zero.
821 **
822 ** This function returns true if any of the columns that are part of the
823 ** parent key for FK constraint *p are modified.
824 */
fkParentIsModified(Table * pTab,FKey * p,int * aChange,int bChngRowid)825 static int fkParentIsModified(
826   Table *pTab,
827   FKey *p,
828   int *aChange,
829   int bChngRowid
830 ){
831   int i;
832   for(i=0; i<p->nCol; i++){
833     char *zKey = p->aCol[i].zCol;
834     int iKey;
835     for(iKey=0; iKey<pTab->nCol; iKey++){
836       if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
837         Column *pCol = &pTab->aCol[iKey];
838         if( zKey ){
839           if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1;
840         }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
841           return 1;
842         }
843       }
844     }
845   }
846   return 0;
847 }
848 
849 /*
850 ** Return true if the parser passed as the first argument is being
851 ** used to code a trigger that is really a "SET NULL" action belonging
852 ** to trigger pFKey.
853 */
isSetNullAction(Parse * pParse,FKey * pFKey)854 static int isSetNullAction(Parse *pParse, FKey *pFKey){
855   Parse *pTop = sqlite3ParseToplevel(pParse);
856   if( pTop->pTriggerPrg ){
857     Trigger *p = pTop->pTriggerPrg->pTrigger;
858     if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
859      || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
860     ){
861       return 1;
862     }
863   }
864   return 0;
865 }
866 
867 /*
868 ** This function is called when inserting, deleting or updating a row of
869 ** table pTab to generate VDBE code to perform foreign key constraint
870 ** processing for the operation.
871 **
872 ** For a DELETE operation, parameter regOld is passed the index of the
873 ** first register in an array of (pTab->nCol+1) registers containing the
874 ** rowid of the row being deleted, followed by each of the column values
875 ** of the row being deleted, from left to right. Parameter regNew is passed
876 ** zero in this case.
877 **
878 ** For an INSERT operation, regOld is passed zero and regNew is passed the
879 ** first register of an array of (pTab->nCol+1) registers containing the new
880 ** row data.
881 **
882 ** For an UPDATE operation, this function is called twice. Once before
883 ** the original record is deleted from the table using the calling convention
884 ** described for DELETE. Then again after the original record is deleted
885 ** but before the new record is inserted using the INSERT convention.
886 */
sqlite3FkCheck(Parse * pParse,Table * pTab,int regOld,int regNew,int * aChange,int bChngRowid)887 void sqlite3FkCheck(
888   Parse *pParse,                  /* Parse context */
889   Table *pTab,                    /* Row is being deleted from this table */
890   int regOld,                     /* Previous row data is stored here */
891   int regNew,                     /* New row data is stored here */
892   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
893   int bChngRowid                  /* True if rowid is UPDATEd */
894 ){
895   sqlite3 *db = pParse->db;       /* Database handle */
896   FKey *pFKey;                    /* Used to iterate through FKs */
897   int iDb;                        /* Index of database containing pTab */
898   const char *zDb;                /* Name of database containing pTab */
899   int isIgnoreErrors = pParse->disableTriggers;
900 
901   /* Exactly one of regOld and regNew should be non-zero. */
902   assert( (regOld==0)!=(regNew==0) );
903 
904   /* If foreign-keys are disabled, this function is a no-op. */
905   if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
906   if( !IsOrdinaryTable(pTab) ) return;
907 
908   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
909   zDb = db->aDb[iDb].zDbSName;
910 
911   /* Loop through all the foreign key constraints for which pTab is the
912   ** child table (the table that the foreign key definition is part of).  */
913   for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){
914     Table *pTo;                   /* Parent table of foreign key pFKey */
915     Index *pIdx = 0;              /* Index on key columns in pTo */
916     int *aiFree = 0;
917     int *aiCol;
918     int iCol;
919     int i;
920     int bIgnore = 0;
921 
922     if( aChange
923      && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
924      && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
925     ){
926       continue;
927     }
928 
929     /* Find the parent table of this foreign key. Also find a unique index
930     ** on the parent key columns in the parent table. If either of these
931     ** schema items cannot be located, set an error in pParse and return
932     ** early.  */
933     if( pParse->disableTriggers ){
934       pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
935     }else{
936       pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
937     }
938     if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
939       assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
940       if( !isIgnoreErrors || db->mallocFailed ) return;
941       if( pTo==0 ){
942         /* If isIgnoreErrors is true, then a table is being dropped. In this
943         ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
944         ** before actually dropping it in order to check FK constraints.
945         ** If the parent table of an FK constraint on the current table is
946         ** missing, behave as if it is empty. i.e. decrement the relevant
947         ** FK counter for each row of the current table with non-NULL keys.
948         */
949         Vdbe *v = sqlite3GetVdbe(pParse);
950         int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
951         for(i=0; i<pFKey->nCol; i++){
952           int iFromCol, iReg;
953           iFromCol = pFKey->aCol[i].iFrom;
954           iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1;
955           sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
956         }
957         sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
958       }
959       continue;
960     }
961     assert( pFKey->nCol==1 || (aiFree && pIdx) );
962 
963     if( aiFree ){
964       aiCol = aiFree;
965     }else{
966       iCol = pFKey->aCol[0].iFrom;
967       aiCol = &iCol;
968     }
969     for(i=0; i<pFKey->nCol; i++){
970       if( aiCol[i]==pTab->iPKey ){
971         aiCol[i] = -1;
972       }
973       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
974 #ifndef SQLITE_OMIT_AUTHORIZATION
975       /* Request permission to read the parent key columns. If the
976       ** authorization callback returns SQLITE_IGNORE, behave as if any
977       ** values read from the parent table are NULL. */
978       if( db->xAuth ){
979         int rcauth;
980         char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName;
981         rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
982         bIgnore = (rcauth==SQLITE_IGNORE);
983       }
984 #endif
985     }
986 
987     /* Take a shared-cache advisory read-lock on the parent table. Allocate
988     ** a cursor to use to search the unique index on the parent key columns
989     ** in the parent table.  */
990     sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
991     pParse->nTab++;
992 
993     if( regOld!=0 ){
994       /* A row is being removed from the child table. Search for the parent.
995       ** If the parent does not exist, removing the child row resolves an
996       ** outstanding foreign key constraint violation. */
997       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
998     }
999     if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
1000       /* A row is being added to the child table. If a parent row cannot
1001       ** be found, adding the child row has violated the FK constraint.
1002       **
1003       ** If this operation is being performed as part of a trigger program
1004       ** that is actually a "SET NULL" action belonging to this very
1005       ** foreign key, then omit this scan altogether. As all child key
1006       ** values are guaranteed to be NULL, it is not possible for adding
1007       ** this row to cause an FK violation.  */
1008       fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
1009     }
1010 
1011     sqlite3DbFree(db, aiFree);
1012   }
1013 
1014   /* Loop through all the foreign key constraints that refer to this table.
1015   ** (the "child" constraints) */
1016   for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1017     Index *pIdx = 0;              /* Foreign key index for pFKey */
1018     SrcList *pSrc;
1019     int *aiCol = 0;
1020 
1021     if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
1022       continue;
1023     }
1024 
1025     if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
1026      && !pParse->pToplevel && !pParse->isMultiWrite
1027     ){
1028       assert( regOld==0 && regNew!=0 );
1029       /* Inserting a single row into a parent table cannot cause (or fix)
1030       ** an immediate foreign key violation. So do nothing in this case.  */
1031       continue;
1032     }
1033 
1034     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
1035       if( !isIgnoreErrors || db->mallocFailed ) return;
1036       continue;
1037     }
1038     assert( aiCol || pFKey->nCol==1 );
1039 
1040     /* Create a SrcList structure containing the child table.  We need the
1041     ** child table as a SrcList for sqlite3WhereBegin() */
1042     pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1043     if( pSrc ){
1044       SrcItem *pItem = pSrc->a;
1045       pItem->pTab = pFKey->pFrom;
1046       pItem->zName = pFKey->pFrom->zName;
1047       pItem->pTab->nTabRef++;
1048       pItem->iCursor = pParse->nTab++;
1049 
1050       if( regNew!=0 ){
1051         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
1052       }
1053       if( regOld!=0 ){
1054         int eAction = pFKey->aAction[aChange!=0];
1055         fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
1056         /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1057         ** action applies, then any foreign key violations caused by
1058         ** removing the parent key will be rectified by the action trigger.
1059         ** So do not set the "may-abort" flag in this case.
1060         **
1061         ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1062         ** may-abort flag will eventually be set on this statement anyway
1063         ** (when this function is called as part of processing the UPDATE
1064         ** within the action trigger).
1065         **
1066         ** Note 2: At first glance it may seem like SQLite could simply omit
1067         ** all OP_FkCounter related scans when either CASCADE or SET NULL
1068         ** applies. The trouble starts if the CASCADE or SET NULL action
1069         ** trigger causes other triggers or action rules attached to the
1070         ** child table to fire. In these cases the fk constraint counters
1071         ** might be set incorrectly if any OP_FkCounter related scans are
1072         ** omitted.  */
1073         if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
1074           sqlite3MayAbort(pParse);
1075         }
1076       }
1077       pItem->zName = 0;
1078       sqlite3SrcListDelete(db, pSrc);
1079     }
1080     sqlite3DbFree(db, aiCol);
1081   }
1082 }
1083 
1084 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1085 
1086 /*
1087 ** This function is called before generating code to update or delete a
1088 ** row contained in table pTab.
1089 */
sqlite3FkOldmask(Parse * pParse,Table * pTab)1090 u32 sqlite3FkOldmask(
1091   Parse *pParse,                  /* Parse context */
1092   Table *pTab                     /* Table being modified */
1093 ){
1094   u32 mask = 0;
1095   if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){
1096     FKey *p;
1097     int i;
1098     for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
1099       for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1100     }
1101     for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1102       Index *pIdx = 0;
1103       sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1104       if( pIdx ){
1105         for(i=0; i<pIdx->nKeyCol; i++){
1106           assert( pIdx->aiColumn[i]>=0 );
1107           mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1108         }
1109       }
1110     }
1111   }
1112   return mask;
1113 }
1114 
1115 
1116 /*
1117 ** This function is called before generating code to update or delete a
1118 ** row contained in table pTab. If the operation is a DELETE, then
1119 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1120 ** to an array of size N, where N is the number of columns in table pTab.
1121 ** If the i'th column is not modified by the UPDATE, then the corresponding
1122 ** entry in the aChange[] array is set to -1. If the column is modified,
1123 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1124 ** UPDATE statement modifies the rowid fields of the table.
1125 **
1126 ** If any foreign key processing will be required, this function returns
1127 ** non-zero. If there is no foreign key related processing, this function
1128 ** returns zero.
1129 **
1130 ** For an UPDATE, this function returns 2 if:
1131 **
1132 **   * There are any FKs for which pTab is the child and the parent table
1133 **     and any FK processing at all is required (even of a different FK), or
1134 **
1135 **   * the UPDATE modifies one or more parent keys for which the action is
1136 **     not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1137 **
1138 ** Or, assuming some other foreign key processing is required, 1.
1139 */
sqlite3FkRequired(Parse * pParse,Table * pTab,int * aChange,int chngRowid)1140 int sqlite3FkRequired(
1141   Parse *pParse,                  /* Parse context */
1142   Table *pTab,                    /* Table being modified */
1143   int *aChange,                   /* Non-NULL for UPDATE operations */
1144   int chngRowid                   /* True for UPDATE that affects rowid */
1145 ){
1146   int eRet = 1;                   /* Value to return if bHaveFK is true */
1147   int bHaveFK = 0;                /* If FK processing is required */
1148   if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){
1149     if( !aChange ){
1150       /* A DELETE operation. Foreign key processing is required if the
1151       ** table in question is either the child or parent table for any
1152       ** foreign key constraint.  */
1153       bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey);
1154     }else{
1155       /* This is an UPDATE. Foreign key processing is only required if the
1156       ** operation modifies one or more child or parent key columns. */
1157       FKey *p;
1158 
1159       /* Check if any child key columns are being modified. */
1160       for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){
1161         if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
1162           if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2;
1163           bHaveFK = 1;
1164         }
1165       }
1166 
1167       /* Check if any parent key columns are being modified. */
1168       for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1169         if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
1170           if( p->aAction[1]!=OE_None ) return 2;
1171           bHaveFK = 1;
1172         }
1173       }
1174     }
1175   }
1176   return bHaveFK ? eRet : 0;
1177 }
1178 
1179 /*
1180 ** This function is called when an UPDATE or DELETE operation is being
1181 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1182 ** If the current operation is an UPDATE, then the pChanges parameter is
1183 ** passed a pointer to the list of columns being modified. If it is a
1184 ** DELETE, pChanges is passed a NULL pointer.
1185 **
1186 ** It returns a pointer to a Trigger structure containing a trigger
1187 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1188 ** If the action is "NO ACTION" then a NULL pointer is returned (these actions
1189 ** require no special handling by the triggers sub-system, code for them is
1190 ** created by fkScanChildren()).
1191 **
1192 ** For example, if pFKey is the foreign key and pTab is table "p" in
1193 ** the following schema:
1194 **
1195 **   CREATE TABLE p(pk PRIMARY KEY);
1196 **   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1197 **
1198 ** then the returned trigger structure is equivalent to:
1199 **
1200 **   CREATE TRIGGER ... DELETE ON p BEGIN
1201 **     DELETE FROM c WHERE ck = old.pk;
1202 **   END;
1203 **
1204 ** The returned pointer is cached as part of the foreign key object. It
1205 ** is eventually freed along with the rest of the foreign key object by
1206 ** sqlite3FkDelete().
1207 */
fkActionTrigger(Parse * pParse,Table * pTab,FKey * pFKey,ExprList * pChanges)1208 static Trigger *fkActionTrigger(
1209   Parse *pParse,                  /* Parse context */
1210   Table *pTab,                    /* Table being updated or deleted from */
1211   FKey *pFKey,                    /* Foreign key to get action for */
1212   ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
1213 ){
1214   sqlite3 *db = pParse->db;       /* Database handle */
1215   int action;                     /* One of OE_None, OE_Cascade etc. */
1216   Trigger *pTrigger;              /* Trigger definition to return */
1217   int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
1218 
1219   action = pFKey->aAction[iAction];
1220   if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
1221     return 0;
1222   }
1223   pTrigger = pFKey->apTrigger[iAction];
1224 
1225   if( action!=OE_None && !pTrigger ){
1226     char const *zFrom;            /* Name of child table */
1227     int nFrom;                    /* Length in bytes of zFrom */
1228     Index *pIdx = 0;              /* Parent key index for this FK */
1229     int *aiCol = 0;               /* child table cols -> parent key cols */
1230     TriggerStep *pStep = 0;        /* First (only) step of trigger program */
1231     Expr *pWhere = 0;             /* WHERE clause of trigger step */
1232     ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
1233     Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
1234     int i;                        /* Iterator variable */
1235     Expr *pWhen = 0;              /* WHEN clause for the trigger */
1236 
1237     if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1238     assert( aiCol || pFKey->nCol==1 );
1239 
1240     for(i=0; i<pFKey->nCol; i++){
1241       Token tOld = { "old", 3 };  /* Literal "old" token */
1242       Token tNew = { "new", 3 };  /* Literal "new" token */
1243       Token tFromCol;             /* Name of column in child table */
1244       Token tToCol;               /* Name of column in parent table */
1245       int iFromCol;               /* Idx of column in child table */
1246       Expr *pEq;                  /* tFromCol = OLD.tToCol */
1247 
1248       iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1249       assert( iFromCol>=0 );
1250       assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
1251       assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
1252       sqlite3TokenInit(&tToCol,
1253                    pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName);
1254       sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName);
1255 
1256       /* Create the expression "OLD.zToCol = zFromCol". It is important
1257       ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1258       ** that the affinity and collation sequence associated with the
1259       ** parent table are used for the comparison. */
1260       pEq = sqlite3PExpr(pParse, TK_EQ,
1261           sqlite3PExpr(pParse, TK_DOT,
1262             sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1263             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1264           sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
1265       );
1266       pWhere = sqlite3ExprAnd(pParse, pWhere, pEq);
1267 
1268       /* For ON UPDATE, construct the next term of the WHEN clause.
1269       ** The final WHEN clause will be like this:
1270       **
1271       **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1272       */
1273       if( pChanges ){
1274         pEq = sqlite3PExpr(pParse, TK_IS,
1275             sqlite3PExpr(pParse, TK_DOT,
1276               sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1277               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1278             sqlite3PExpr(pParse, TK_DOT,
1279               sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1280               sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
1281             );
1282         pWhen = sqlite3ExprAnd(pParse, pWhen, pEq);
1283       }
1284 
1285       if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1286         Expr *pNew;
1287         if( action==OE_Cascade ){
1288           pNew = sqlite3PExpr(pParse, TK_DOT,
1289             sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1290             sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
1291         }else if( action==OE_SetDflt ){
1292           Column *pCol = pFKey->pFrom->aCol + iFromCol;
1293           Expr *pDflt;
1294           if( pCol->colFlags & COLFLAG_GENERATED ){
1295             testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1296             testcase( pCol->colFlags & COLFLAG_STORED );
1297             pDflt = 0;
1298           }else{
1299             pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol);
1300           }
1301           if( pDflt ){
1302             pNew = sqlite3ExprDup(db, pDflt, 0);
1303           }else{
1304             pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1305           }
1306         }else{
1307           pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1308         }
1309         pList = sqlite3ExprListAppend(pParse, pList, pNew);
1310         sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1311       }
1312     }
1313     sqlite3DbFree(db, aiCol);
1314 
1315     zFrom = pFKey->pFrom->zName;
1316     nFrom = sqlite3Strlen30(zFrom);
1317 
1318     if( action==OE_Restrict ){
1319       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1320       Token tFrom;
1321       Token tDb;
1322       Expr *pRaise;
1323 
1324       tFrom.z = zFrom;
1325       tFrom.n = nFrom;
1326       tDb.z = db->aDb[iDb].zDbSName;
1327       tDb.n = sqlite3Strlen30(tDb.z);
1328 
1329       pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1330       if( pRaise ){
1331         pRaise->affExpr = OE_Abort;
1332       }
1333       pSelect = sqlite3SelectNew(pParse,
1334           sqlite3ExprListAppend(pParse, 0, pRaise),
1335           sqlite3SrcListAppend(pParse, 0, &tDb, &tFrom),
1336           pWhere,
1337           0, 0, 0, 0, 0
1338       );
1339       pWhere = 0;
1340     }
1341 
1342     /* Disable lookaside memory allocation */
1343     DisableLookaside;
1344 
1345     pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1346         sizeof(Trigger) +         /* struct Trigger */
1347         sizeof(TriggerStep) +     /* Single step in trigger program */
1348         nFrom + 1                 /* Space for pStep->zTarget */
1349     );
1350     if( pTrigger ){
1351       pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1352       pStep->zTarget = (char *)&pStep[1];
1353       memcpy((char *)pStep->zTarget, zFrom, nFrom);
1354 
1355       pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1356       pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1357       pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1358       if( pWhen ){
1359         pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
1360         pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1361       }
1362     }
1363 
1364     /* Re-enable the lookaside buffer, if it was disabled earlier. */
1365     EnableLookaside;
1366 
1367     sqlite3ExprDelete(db, pWhere);
1368     sqlite3ExprDelete(db, pWhen);
1369     sqlite3ExprListDelete(db, pList);
1370     sqlite3SelectDelete(db, pSelect);
1371     if( db->mallocFailed==1 ){
1372       fkTriggerDelete(db, pTrigger);
1373       return 0;
1374     }
1375     assert( pStep!=0 );
1376     assert( pTrigger!=0 );
1377 
1378     switch( action ){
1379       case OE_Restrict:
1380         pStep->op = TK_SELECT;
1381         break;
1382       case OE_Cascade:
1383         if( !pChanges ){
1384           pStep->op = TK_DELETE;
1385           break;
1386         }
1387         /* no break */ deliberate_fall_through
1388       default:
1389         pStep->op = TK_UPDATE;
1390     }
1391     pStep->pTrig = pTrigger;
1392     pTrigger->pSchema = pTab->pSchema;
1393     pTrigger->pTabSchema = pTab->pSchema;
1394     pFKey->apTrigger[iAction] = pTrigger;
1395     pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1396   }
1397 
1398   return pTrigger;
1399 }
1400 
1401 /*
1402 ** This function is called when deleting or updating a row to implement
1403 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1404 */
sqlite3FkActions(Parse * pParse,Table * pTab,ExprList * pChanges,int regOld,int * aChange,int bChngRowid)1405 void sqlite3FkActions(
1406   Parse *pParse,                  /* Parse context */
1407   Table *pTab,                    /* Table being updated or deleted from */
1408   ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1409   int regOld,                     /* Address of array containing old row */
1410   int *aChange,                   /* Array indicating UPDATEd columns (or 0) */
1411   int bChngRowid                  /* True if rowid is UPDATEd */
1412 ){
1413   /* If foreign-key support is enabled, iterate through all FKs that
1414   ** refer to table pTab. If there is an action associated with the FK
1415   ** for this operation (either update or delete), invoke the associated
1416   ** trigger sub-program.  */
1417   if( pParse->db->flags&SQLITE_ForeignKeys ){
1418     FKey *pFKey;                  /* Iterator variable */
1419     for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1420       if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1421         Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1422         if( pAct ){
1423           sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1424         }
1425       }
1426     }
1427   }
1428 }
1429 
1430 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1431 
1432 /*
1433 ** Free all memory associated with foreign key definitions attached to
1434 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1435 ** hash table.
1436 */
sqlite3FkDelete(sqlite3 * db,Table * pTab)1437 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1438   FKey *pFKey;                    /* Iterator variable */
1439   FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1440 
1441   assert( IsOrdinaryTable(pTab) );
1442   assert( db!=0 );
1443   for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){
1444     assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1445 
1446     /* Remove the FK from the fkeyHash hash table. */
1447     if( db->pnBytesFreed==0 ){
1448       if( pFKey->pPrevTo ){
1449         pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1450       }else{
1451         void *p = (void *)pFKey->pNextTo;
1452         const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1453         sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1454       }
1455       if( pFKey->pNextTo ){
1456         pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1457       }
1458     }
1459 
1460     /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1461     ** classified as either immediate or deferred.
1462     */
1463     assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1464 
1465     /* Delete any triggers created to implement actions for this FK. */
1466 #ifndef SQLITE_OMIT_TRIGGER
1467     fkTriggerDelete(db, pFKey->apTrigger[0]);
1468     fkTriggerDelete(db, pFKey->apTrigger[1]);
1469 #endif
1470 
1471     pNext = pFKey->pNextFrom;
1472     sqlite3DbFree(db, pFKey);
1473   }
1474 }
1475 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1476