xref: /f-stack/dpdk/drivers/event/dsw/dsw_evdev.h (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Ericsson AB
3  */
4 
5 #ifndef _DSW_EVDEV_H_
6 #define _DSW_EVDEV_H_
7 
8 #include <rte_event_ring.h>
9 #include <rte_eventdev.h>
10 
11 #define DSW_PMD_NAME RTE_STR(event_dsw)
12 
13 #define DSW_MAX_PORTS (64)
14 #define DSW_MAX_PORT_DEQUEUE_DEPTH (128)
15 #define DSW_MAX_PORT_ENQUEUE_DEPTH (128)
16 #define DSW_MAX_PORT_OUT_BUFFER (32)
17 
18 #define DSW_MAX_QUEUES (16)
19 
20 #define DSW_MAX_EVENTS (16384)
21 
22 /* Multiple 24-bit flow ids will map to the same DSW-level flow. The
23  * number of DSW flows should be high enough make it unlikely that
24  * flow ids of several large flows hash to the same DSW-level flow.
25  * Such collisions will limit parallism and thus the number of cores
26  * that may be utilized. However, configuring a large number of DSW
27  * flows might potentially, depending on traffic and actual
28  * application flow id value range, result in each such DSW-level flow
29  * being very small. The effect of migrating such flows will be small,
30  * in terms amount of processing load redistributed. This will in turn
31  * reduce the load balancing speed, since flow migration rate has an
32  * upper limit. Code changes are required to allow > 32k DSW-level
33  * flows.
34  */
35 #define DSW_MAX_FLOWS_BITS (13)
36 #define DSW_MAX_FLOWS (1<<(DSW_MAX_FLOWS_BITS))
37 #define DSW_MAX_FLOWS_MASK (DSW_MAX_FLOWS-1)
38 
39 /* Eventdev RTE_SCHED_TYPE_PARALLEL doesn't have a concept of flows,
40  * but the 'dsw' scheduler (more or less) randomly assign flow id to
41  * events on parallel queues, to be able to reuse some of the
42  * migration mechanism and scheduling logic from
43  * RTE_SCHED_TYPE_ATOMIC. By moving one of the parallel "flows" from a
44  * particular port, the likely-hood of events being scheduled to this
45  * port is reduced, and thus a kind of statistical load balancing is
46  * achieved.
47  */
48 #define DSW_PARALLEL_FLOWS (1024)
49 
50 /* 'Background tasks' are polling the control rings for *
51  *  migration-related messages, or flush the output buffer (so
52  *  buffered events doesn't linger too long). Shouldn't be too low,
53  *  since the system won't benefit from the 'batching' effects from
54  *  the output buffer, and shouldn't be too high, since it will make
55  *  buffered events linger too long in case the port goes idle.
56  */
57 #define DSW_MAX_PORT_OPS_PER_BG_TASK (128)
58 
59 /* Avoid making small 'loans' from the central in-flight event credit
60  * pool, to improve efficiency.
61  */
62 #define DSW_MIN_CREDIT_LOAN (64)
63 #define DSW_PORT_MAX_CREDITS (2*DSW_MIN_CREDIT_LOAN)
64 #define DSW_PORT_MIN_CREDITS (DSW_MIN_CREDIT_LOAN)
65 
66 /* The rings are dimensioned so that all in-flight events can reside
67  * on any one of the port rings, to avoid the trouble of having to
68  * care about the case where there's no room on the destination port's
69  * input ring.
70  */
71 #define DSW_IN_RING_SIZE (DSW_MAX_EVENTS)
72 
73 #define DSW_MAX_LOAD (INT16_MAX)
74 #define DSW_LOAD_FROM_PERCENT(x) ((int16_t)(((x)*DSW_MAX_LOAD)/100))
75 #define DSW_LOAD_TO_PERCENT(x) ((100*x)/DSW_MAX_LOAD)
76 
77 /* The thought behind keeping the load update interval shorter than
78  * the migration interval is that the load from newly migrated flows
79  * should 'show up' on the load measurement before new migrations are
80  * considered. This is to avoid having too many flows, from too many
81  * source ports, to be migrated too quickly to a lightly loaded port -
82  * in particular since this might cause the system to oscillate.
83  */
84 #define DSW_LOAD_UPDATE_INTERVAL (DSW_MIGRATION_INTERVAL/4)
85 #define DSW_OLD_LOAD_WEIGHT (1)
86 
87 /* The minimum time (in us) between two flow migrations. What puts an
88  * upper limit on the actual migration rate is primarily the pace in
89  * which the ports send and receive control messages, which in turn is
90  * largely a function of how much cycles are spent the processing of
91  * an event burst.
92  */
93 #define DSW_MIGRATION_INTERVAL (1000)
94 #define DSW_MIN_SOURCE_LOAD_FOR_MIGRATION (DSW_LOAD_FROM_PERCENT(70))
95 #define DSW_MAX_TARGET_LOAD_FOR_MIGRATION (DSW_LOAD_FROM_PERCENT(95))
96 #define DSW_REBALANCE_THRESHOLD (DSW_LOAD_FROM_PERCENT(3))
97 
98 #define DSW_MAX_EVENTS_RECORDED (128)
99 
100 #define DSW_MAX_FLOWS_PER_MIGRATION (8)
101 
102 /* Only one outstanding migration per port is allowed */
103 #define DSW_MAX_PAUSED_FLOWS (DSW_MAX_PORTS*DSW_MAX_FLOWS_PER_MIGRATION)
104 
105 /* Enough room for paus request/confirm and unpaus request/confirm for
106  * all possible senders.
107  */
108 #define DSW_CTL_IN_RING_SIZE ((DSW_MAX_PORTS-1)*4)
109 
110 /* With DSW_SORT_DEQUEUED enabled, the scheduler will, at the point of
111  * dequeue(), arrange events so that events with the same flow id on
112  * the same queue forms a back-to-back "burst", and also so that such
113  * bursts of different flow ids, but on the same queue, also come
114  * consecutively. All this in an attempt to improve data and
115  * instruction cache usage for the application, at the cost of a
116  * scheduler overhead increase.
117  */
118 
119 /* #define DSW_SORT_DEQUEUED */
120 
121 struct dsw_queue_flow {
122 	uint8_t queue_id;
123 	uint16_t flow_hash;
124 };
125 
126 enum dsw_migration_state {
127 	DSW_MIGRATION_STATE_IDLE,
128 	DSW_MIGRATION_STATE_PAUSING,
129 	DSW_MIGRATION_STATE_FORWARDING,
130 	DSW_MIGRATION_STATE_UNPAUSING
131 };
132 
133 struct dsw_port {
134 	uint16_t id;
135 
136 	/* Keeping a pointer here to avoid container_of() calls, which
137 	 * are expensive since they are very frequent and will result
138 	 * in an integer multiplication (since the port id is an index
139 	 * into the dsw_evdev port array).
140 	 */
141 	struct dsw_evdev *dsw;
142 
143 	uint16_t dequeue_depth;
144 	uint16_t enqueue_depth;
145 
146 	int32_t inflight_credits;
147 
148 	int32_t new_event_threshold;
149 
150 	uint16_t pending_releases;
151 
152 	uint16_t next_parallel_flow_id;
153 
154 	uint16_t ops_since_bg_task;
155 
156 	/* most recent 'background' processing */
157 	uint64_t last_bg;
158 
159 	/* For port load measurement. */
160 	uint64_t next_load_update;
161 	uint64_t load_update_interval;
162 	uint64_t measurement_start;
163 	uint64_t busy_start;
164 	uint64_t busy_cycles;
165 	uint64_t total_busy_cycles;
166 
167 	/* For the ctl interface and flow migration mechanism. */
168 	uint64_t next_emigration;
169 	uint64_t migration_interval;
170 	enum dsw_migration_state migration_state;
171 
172 	uint64_t emigration_start;
173 	uint64_t emigrations;
174 	uint64_t emigration_latency;
175 
176 	uint8_t emigration_target_port_ids[DSW_MAX_FLOWS_PER_MIGRATION];
177 	struct dsw_queue_flow
178 		emigration_target_qfs[DSW_MAX_FLOWS_PER_MIGRATION];
179 	uint8_t emigration_targets_len;
180 	uint8_t cfm_cnt;
181 
182 	uint64_t immigrations;
183 
184 	uint16_t paused_flows_len;
185 	struct dsw_queue_flow paused_flows[DSW_MAX_PAUSED_FLOWS];
186 
187 	/* In a very contrived worst case all inflight events can be
188 	 * laying around paused here.
189 	 */
190 	uint16_t paused_events_len;
191 	struct rte_event paused_events[DSW_MAX_EVENTS];
192 
193 	uint16_t seen_events_len;
194 	uint16_t seen_events_idx;
195 	struct dsw_queue_flow seen_events[DSW_MAX_EVENTS_RECORDED];
196 
197 	uint64_t enqueue_calls;
198 	uint64_t new_enqueued;
199 	uint64_t forward_enqueued;
200 	uint64_t release_enqueued;
201 	uint64_t queue_enqueued[DSW_MAX_QUEUES];
202 
203 	uint64_t dequeue_calls;
204 	uint64_t dequeued;
205 	uint64_t queue_dequeued[DSW_MAX_QUEUES];
206 
207 	uint16_t out_buffer_len[DSW_MAX_PORTS];
208 	struct rte_event out_buffer[DSW_MAX_PORTS][DSW_MAX_PORT_OUT_BUFFER];
209 
210 	uint16_t in_buffer_len;
211 	uint16_t in_buffer_start;
212 	/* This buffer may contain events that were read up from the
213 	 * in_ring during the flow migration process.
214 	 */
215 	struct rte_event in_buffer[DSW_MAX_EVENTS];
216 
217 	struct rte_event_ring *in_ring __rte_cache_aligned;
218 
219 	struct rte_ring *ctl_in_ring __rte_cache_aligned;
220 
221 	/* Estimate of current port load. */
222 	rte_atomic16_t load __rte_cache_aligned;
223 	/* Estimate of flows currently migrating to this port. */
224 	rte_atomic32_t immigration_load __rte_cache_aligned;
225 } __rte_cache_aligned;
226 
227 struct dsw_queue {
228 	uint8_t schedule_type;
229 	uint8_t serving_ports[DSW_MAX_PORTS];
230 	uint16_t num_serving_ports;
231 
232 	uint8_t flow_to_port_map[DSW_MAX_FLOWS] __rte_cache_aligned;
233 };
234 
235 struct dsw_evdev {
236 	struct rte_eventdev_data *data;
237 
238 	struct dsw_port ports[DSW_MAX_PORTS];
239 	uint16_t num_ports;
240 	struct dsw_queue queues[DSW_MAX_QUEUES];
241 	uint8_t num_queues;
242 	int32_t max_inflight;
243 
244 	rte_atomic32_t credits_on_loan __rte_cache_aligned;
245 };
246 
247 #define DSW_CTL_PAUS_REQ (0)
248 #define DSW_CTL_UNPAUS_REQ (1)
249 #define DSW_CTL_CFM (2)
250 
251 struct dsw_ctl_msg {
252 	uint8_t type;
253 	uint8_t originating_port_id;
254 	uint8_t qfs_len;
255 	struct dsw_queue_flow qfs[DSW_MAX_FLOWS_PER_MIGRATION];
256 } __rte_aligned(4);
257 
258 uint16_t dsw_event_enqueue(void *port, const struct rte_event *event);
259 uint16_t dsw_event_enqueue_burst(void *port,
260 				 const struct rte_event events[],
261 				 uint16_t events_len);
262 uint16_t dsw_event_enqueue_new_burst(void *port,
263 				     const struct rte_event events[],
264 				     uint16_t events_len);
265 uint16_t dsw_event_enqueue_forward_burst(void *port,
266 					 const struct rte_event events[],
267 					 uint16_t events_len);
268 
269 uint16_t dsw_event_dequeue(void *port, struct rte_event *ev, uint64_t wait);
270 uint16_t dsw_event_dequeue_burst(void *port, struct rte_event *events,
271 				 uint16_t num, uint64_t wait);
272 
273 int dsw_xstats_get_names(const struct rte_eventdev *dev,
274 			 enum rte_event_dev_xstats_mode mode,
275 			 uint8_t queue_port_id,
276 			 struct rte_event_dev_xstats_name *xstats_names,
277 			 unsigned int *ids, unsigned int size);
278 int dsw_xstats_get(const struct rte_eventdev *dev,
279 		   enum rte_event_dev_xstats_mode mode, uint8_t queue_port_id,
280 		   const unsigned int ids[], uint64_t values[], unsigned int n);
281 uint64_t dsw_xstats_get_by_name(const struct rte_eventdev *dev,
282 				const char *name, unsigned int *id);
283 
284 static inline struct dsw_evdev *
dsw_pmd_priv(const struct rte_eventdev * eventdev)285 dsw_pmd_priv(const struct rte_eventdev *eventdev)
286 {
287 	return eventdev->data->dev_private;
288 }
289 
290 #define DSW_LOG_DP(level, fmt, args...)					\
291 	RTE_LOG_DP(level, EVENTDEV, "[%s] %s() line %u: " fmt,		\
292 		   DSW_PMD_NAME,					\
293 		   __func__, __LINE__, ## args)
294 
295 #define DSW_LOG_DP_PORT(level, port_id, fmt, args...)		\
296 	DSW_LOG_DP(level, "<Port %d> " fmt, port_id, ## args)
297 
298 #endif
299