1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/mmp.h>
53
54 /*
55 * ZFS Write Throttle
56 * ------------------
57 *
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
67 *
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
74 *
75 * Implementation
76 *
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
84 *
85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
88 *
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
92 *
93 * The delay is also calculated based on the amount of dirty data. See the
94 * comment above dmu_tx_delay() for details.
95 */
96
97 /*
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
100 * parameter.
101 */
102 unsigned long zfs_dirty_data_max = 0;
103 unsigned long zfs_dirty_data_max_max = 0;
104 int zfs_dirty_data_max_percent = 10;
105 int zfs_dirty_data_max_max_percent = 25;
106
107 /*
108 * If there's at least this much dirty data (as a percentage of
109 * zfs_dirty_data_max), push out a txg. This should be less than
110 * zfs_vdev_async_write_active_min_dirty_percent.
111 */
112 int zfs_dirty_data_sync_percent = 20;
113
114 /*
115 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
116 * and delay each transaction.
117 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
118 */
119 int zfs_delay_min_dirty_percent = 60;
120
121 /*
122 * This controls how quickly the delay approaches infinity.
123 * Larger values cause it to delay more for a given amount of dirty data.
124 * Therefore larger values will cause there to be less dirty data for a
125 * given throughput.
126 *
127 * For the smoothest delay, this value should be about 1 billion divided
128 * by the maximum number of operations per second. This will smoothly
129 * handle between 10x and 1/10th this number.
130 *
131 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
132 * multiply in dmu_tx_delay().
133 */
134 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
135
136 /*
137 * This determines the number of threads used by the dp_sync_taskq.
138 */
139 int zfs_sync_taskq_batch_pct = 75;
140
141 /*
142 * These tunables determine the behavior of how zil_itxg_clean() is
143 * called via zil_clean() in the context of spa_sync(). When an itxg
144 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
145 * If the dispatch fails, the call to zil_itxg_clean() will occur
146 * synchronously in the context of spa_sync(), which can negatively
147 * impact the performance of spa_sync() (e.g. in the case of the itxg
148 * list having a large number of itxs that needs to be cleaned).
149 *
150 * Thus, these tunables can be used to manipulate the behavior of the
151 * taskq used by zil_clean(); they determine the number of taskq entries
152 * that are pre-populated when the taskq is first created (via the
153 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
154 * taskq entries that are cached after an on-demand allocation (via the
155 * "zfs_zil_clean_taskq_maxalloc").
156 *
157 * The idea being, we want to try reasonably hard to ensure there will
158 * already be a taskq entry pre-allocated by the time that it is needed
159 * by zil_clean(). This way, we can avoid the possibility of an
160 * on-demand allocation of a new taskq entry from failing, which would
161 * result in zil_itxg_clean() being called synchronously from zil_clean()
162 * (which can adversely affect performance of spa_sync()).
163 *
164 * Additionally, the number of threads used by the taskq can be
165 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
166 */
167 int zfs_zil_clean_taskq_nthr_pct = 100;
168 int zfs_zil_clean_taskq_minalloc = 1024;
169 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
170
171 int
dsl_pool_open_special_dir(dsl_pool_t * dp,const char * name,dsl_dir_t ** ddp)172 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
173 {
174 uint64_t obj;
175 int err;
176
177 err = zap_lookup(dp->dp_meta_objset,
178 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
179 name, sizeof (obj), 1, &obj);
180 if (err)
181 return (err);
182
183 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
184 }
185
186 static dsl_pool_t *
dsl_pool_open_impl(spa_t * spa,uint64_t txg)187 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
188 {
189 dsl_pool_t *dp;
190 blkptr_t *bp = spa_get_rootblkptr(spa);
191
192 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
193 dp->dp_spa = spa;
194 dp->dp_meta_rootbp = *bp;
195 rrw_init(&dp->dp_config_rwlock, B_TRUE);
196 txg_init(dp, txg);
197 mmp_init(spa);
198
199 txg_list_create(&dp->dp_dirty_datasets, spa,
200 offsetof(dsl_dataset_t, ds_dirty_link));
201 txg_list_create(&dp->dp_dirty_zilogs, spa,
202 offsetof(zilog_t, zl_dirty_link));
203 txg_list_create(&dp->dp_dirty_dirs, spa,
204 offsetof(dsl_dir_t, dd_dirty_link));
205 txg_list_create(&dp->dp_sync_tasks, spa,
206 offsetof(dsl_sync_task_t, dst_node));
207 txg_list_create(&dp->dp_early_sync_tasks, spa,
208 offsetof(dsl_sync_task_t, dst_node));
209
210 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
211 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
212 TASKQ_THREADS_CPU_PCT);
213
214 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
215 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
216 zfs_zil_clean_taskq_minalloc,
217 zfs_zil_clean_taskq_maxalloc,
218 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
219
220 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
221 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
222
223 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
224 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
225 TASKQ_THREADS_CPU_PCT);
226 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
227 100, defclsyspri, boot_ncpus, INT_MAX,
228 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
229
230 return (dp);
231 }
232
233 int
dsl_pool_init(spa_t * spa,uint64_t txg,dsl_pool_t ** dpp)234 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
235 {
236 int err;
237 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
238
239 /*
240 * Initialize the caller's dsl_pool_t structure before we actually open
241 * the meta objset. This is done because a self-healing write zio may
242 * be issued as part of dmu_objset_open_impl() and the spa needs its
243 * dsl_pool_t initialized in order to handle the write.
244 */
245 *dpp = dp;
246
247 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
248 &dp->dp_meta_objset);
249 if (err != 0) {
250 dsl_pool_close(dp);
251 *dpp = NULL;
252 }
253
254 return (err);
255 }
256
257 int
dsl_pool_open(dsl_pool_t * dp)258 dsl_pool_open(dsl_pool_t *dp)
259 {
260 int err;
261 dsl_dir_t *dd;
262 dsl_dataset_t *ds;
263 uint64_t obj;
264
265 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
266 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
267 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
268 &dp->dp_root_dir_obj);
269 if (err)
270 goto out;
271
272 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
273 NULL, dp, &dp->dp_root_dir);
274 if (err)
275 goto out;
276
277 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
278 if (err)
279 goto out;
280
281 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
282 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
283 if (err)
284 goto out;
285 err = dsl_dataset_hold_obj(dp,
286 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
287 if (err == 0) {
288 err = dsl_dataset_hold_obj(dp,
289 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
290 &dp->dp_origin_snap);
291 dsl_dataset_rele(ds, FTAG);
292 }
293 dsl_dir_rele(dd, dp);
294 if (err)
295 goto out;
296 }
297
298 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
299 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
300 &dp->dp_free_dir);
301 if (err)
302 goto out;
303
304 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
305 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
306 if (err)
307 goto out;
308 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
309 dp->dp_meta_objset, obj));
310 }
311
312 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
313 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
314 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
315 if (err == 0) {
316 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
317 dp->dp_meta_objset, obj));
318 } else if (err == ENOENT) {
319 /*
320 * We might not have created the remap bpobj yet.
321 */
322 err = 0;
323 } else {
324 goto out;
325 }
326 }
327
328 /*
329 * Note: errors ignored, because the these special dirs, used for
330 * space accounting, are only created on demand.
331 */
332 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
333 &dp->dp_leak_dir);
334
335 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
336 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
337 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
338 &dp->dp_bptree_obj);
339 if (err != 0)
340 goto out;
341 }
342
343 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
344 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
345 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
346 &dp->dp_empty_bpobj);
347 if (err != 0)
348 goto out;
349 }
350
351 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
352 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
353 &dp->dp_tmp_userrefs_obj);
354 if (err == ENOENT)
355 err = 0;
356 if (err)
357 goto out;
358
359 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
360
361 out:
362 rrw_exit(&dp->dp_config_rwlock, FTAG);
363 return (err);
364 }
365
366 void
dsl_pool_close(dsl_pool_t * dp)367 dsl_pool_close(dsl_pool_t *dp)
368 {
369 /*
370 * Drop our references from dsl_pool_open().
371 *
372 * Since we held the origin_snap from "syncing" context (which
373 * includes pool-opening context), it actually only got a "ref"
374 * and not a hold, so just drop that here.
375 */
376 if (dp->dp_origin_snap != NULL)
377 dsl_dataset_rele(dp->dp_origin_snap, dp);
378 if (dp->dp_mos_dir != NULL)
379 dsl_dir_rele(dp->dp_mos_dir, dp);
380 if (dp->dp_free_dir != NULL)
381 dsl_dir_rele(dp->dp_free_dir, dp);
382 if (dp->dp_leak_dir != NULL)
383 dsl_dir_rele(dp->dp_leak_dir, dp);
384 if (dp->dp_root_dir != NULL)
385 dsl_dir_rele(dp->dp_root_dir, dp);
386
387 bpobj_close(&dp->dp_free_bpobj);
388 bpobj_close(&dp->dp_obsolete_bpobj);
389
390 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
391 if (dp->dp_meta_objset != NULL)
392 dmu_objset_evict(dp->dp_meta_objset);
393
394 txg_list_destroy(&dp->dp_dirty_datasets);
395 txg_list_destroy(&dp->dp_dirty_zilogs);
396 txg_list_destroy(&dp->dp_sync_tasks);
397 txg_list_destroy(&dp->dp_early_sync_tasks);
398 txg_list_destroy(&dp->dp_dirty_dirs);
399
400 taskq_destroy(dp->dp_zil_clean_taskq);
401 taskq_destroy(dp->dp_sync_taskq);
402
403 /*
404 * We can't set retry to TRUE since we're explicitly specifying
405 * a spa to flush. This is good enough; any missed buffers for
406 * this spa won't cause trouble, and they'll eventually fall
407 * out of the ARC just like any other unused buffer.
408 */
409 arc_flush(dp->dp_spa, FALSE);
410
411 mmp_fini(dp->dp_spa);
412 txg_fini(dp);
413 dsl_scan_fini(dp);
414 dmu_buf_user_evict_wait();
415
416 rrw_destroy(&dp->dp_config_rwlock);
417 mutex_destroy(&dp->dp_lock);
418 cv_destroy(&dp->dp_spaceavail_cv);
419 taskq_destroy(dp->dp_unlinked_drain_taskq);
420 taskq_destroy(dp->dp_zrele_taskq);
421 if (dp->dp_blkstats != NULL) {
422 mutex_destroy(&dp->dp_blkstats->zab_lock);
423 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
424 }
425 kmem_free(dp, sizeof (dsl_pool_t));
426 }
427
428 void
dsl_pool_create_obsolete_bpobj(dsl_pool_t * dp,dmu_tx_t * tx)429 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
430 {
431 uint64_t obj;
432 /*
433 * Currently, we only create the obsolete_bpobj where there are
434 * indirect vdevs with referenced mappings.
435 */
436 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
437 /* create and open the obsolete_bpobj */
438 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
439 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
440 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
441 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
442 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
443 }
444
445 void
dsl_pool_destroy_obsolete_bpobj(dsl_pool_t * dp,dmu_tx_t * tx)446 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
447 {
448 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
449 VERIFY0(zap_remove(dp->dp_meta_objset,
450 DMU_POOL_DIRECTORY_OBJECT,
451 DMU_POOL_OBSOLETE_BPOBJ, tx));
452 bpobj_free(dp->dp_meta_objset,
453 dp->dp_obsolete_bpobj.bpo_object, tx);
454 bpobj_close(&dp->dp_obsolete_bpobj);
455 }
456
457 dsl_pool_t *
dsl_pool_create(spa_t * spa,nvlist_t * zplprops,dsl_crypto_params_t * dcp,uint64_t txg)458 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
459 uint64_t txg)
460 {
461 int err;
462 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
463 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
464 #ifdef _KERNEL
465 objset_t *os;
466 #else
467 objset_t *os __attribute__((unused));
468 #endif
469 dsl_dataset_t *ds;
470 uint64_t obj;
471
472 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
473
474 /* create and open the MOS (meta-objset) */
475 dp->dp_meta_objset = dmu_objset_create_impl(spa,
476 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
477 spa->spa_meta_objset = dp->dp_meta_objset;
478
479 /* create the pool directory */
480 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
481 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
482 ASSERT0(err);
483
484 /* Initialize scan structures */
485 VERIFY0(dsl_scan_init(dp, txg));
486
487 /* create and open the root dir */
488 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
489 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
490 NULL, dp, &dp->dp_root_dir));
491
492 /* create and open the meta-objset dir */
493 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
494 VERIFY0(dsl_pool_open_special_dir(dp,
495 MOS_DIR_NAME, &dp->dp_mos_dir));
496
497 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
498 /* create and open the free dir */
499 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
500 FREE_DIR_NAME, tx);
501 VERIFY0(dsl_pool_open_special_dir(dp,
502 FREE_DIR_NAME, &dp->dp_free_dir));
503
504 /* create and open the free_bplist */
505 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
506 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
507 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
508 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
509 dp->dp_meta_objset, obj));
510 }
511
512 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
513 dsl_pool_create_origin(dp, tx);
514
515 /*
516 * Some features may be needed when creating the root dataset, so we
517 * create the feature objects here.
518 */
519 if (spa_version(spa) >= SPA_VERSION_FEATURES)
520 spa_feature_create_zap_objects(spa, tx);
521
522 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
523 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
524 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
525
526 /* create the root dataset */
527 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
528
529 /* create the root objset */
530 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
531 DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
532 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
533 os = dmu_objset_create_impl(dp->dp_spa, ds,
534 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
535 rrw_exit(&ds->ds_bp_rwlock, FTAG);
536 #ifdef _KERNEL
537 zfs_create_fs(os, kcred, zplprops, tx);
538 #endif
539 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
540
541 dmu_tx_commit(tx);
542
543 rrw_exit(&dp->dp_config_rwlock, FTAG);
544
545 return (dp);
546 }
547
548 /*
549 * Account for the meta-objset space in its placeholder dsl_dir.
550 */
551 void
dsl_pool_mos_diduse_space(dsl_pool_t * dp,int64_t used,int64_t comp,int64_t uncomp)552 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
553 int64_t used, int64_t comp, int64_t uncomp)
554 {
555 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
556 mutex_enter(&dp->dp_lock);
557 dp->dp_mos_used_delta += used;
558 dp->dp_mos_compressed_delta += comp;
559 dp->dp_mos_uncompressed_delta += uncomp;
560 mutex_exit(&dp->dp_lock);
561 }
562
563 static void
dsl_pool_sync_mos(dsl_pool_t * dp,dmu_tx_t * tx)564 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
565 {
566 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
567 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
568 VERIFY0(zio_wait(zio));
569 dmu_objset_sync_done(dp->dp_meta_objset, tx);
570 taskq_wait(dp->dp_sync_taskq);
571 multilist_destroy(dp->dp_meta_objset->os_synced_dnodes);
572 dp->dp_meta_objset->os_synced_dnodes = NULL;
573
574 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
575 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
576 }
577
578 static void
dsl_pool_dirty_delta(dsl_pool_t * dp,int64_t delta)579 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
580 {
581 ASSERT(MUTEX_HELD(&dp->dp_lock));
582
583 if (delta < 0)
584 ASSERT3U(-delta, <=, dp->dp_dirty_total);
585
586 dp->dp_dirty_total += delta;
587
588 /*
589 * Note: we signal even when increasing dp_dirty_total.
590 * This ensures forward progress -- each thread wakes the next waiter.
591 */
592 if (dp->dp_dirty_total < zfs_dirty_data_max)
593 cv_signal(&dp->dp_spaceavail_cv);
594 }
595
596 #ifdef ZFS_DEBUG
597 static boolean_t
dsl_early_sync_task_verify(dsl_pool_t * dp,uint64_t txg)598 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
599 {
600 spa_t *spa = dp->dp_spa;
601 vdev_t *rvd = spa->spa_root_vdev;
602
603 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
604 vdev_t *vd = rvd->vdev_child[c];
605 txg_list_t *tl = &vd->vdev_ms_list;
606 metaslab_t *ms;
607
608 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
609 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
610 VERIFY(range_tree_is_empty(ms->ms_freeing));
611 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
612 }
613 }
614
615 return (B_TRUE);
616 }
617 #endif
618
619 void
dsl_pool_sync(dsl_pool_t * dp,uint64_t txg)620 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
621 {
622 zio_t *zio;
623 dmu_tx_t *tx;
624 dsl_dir_t *dd;
625 dsl_dataset_t *ds;
626 objset_t *mos = dp->dp_meta_objset;
627 list_t synced_datasets;
628
629 list_create(&synced_datasets, sizeof (dsl_dataset_t),
630 offsetof(dsl_dataset_t, ds_synced_link));
631
632 tx = dmu_tx_create_assigned(dp, txg);
633
634 /*
635 * Run all early sync tasks before writing out any dirty blocks.
636 * For more info on early sync tasks see block comment in
637 * dsl_early_sync_task().
638 */
639 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
640 dsl_sync_task_t *dst;
641
642 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
643 while ((dst =
644 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
645 ASSERT(dsl_early_sync_task_verify(dp, txg));
646 dsl_sync_task_sync(dst, tx);
647 }
648 ASSERT(dsl_early_sync_task_verify(dp, txg));
649 }
650
651 /*
652 * Write out all dirty blocks of dirty datasets.
653 */
654 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
655 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
656 /*
657 * We must not sync any non-MOS datasets twice, because
658 * we may have taken a snapshot of them. However, we
659 * may sync newly-created datasets on pass 2.
660 */
661 ASSERT(!list_link_active(&ds->ds_synced_link));
662 list_insert_tail(&synced_datasets, ds);
663 dsl_dataset_sync(ds, zio, tx);
664 }
665 VERIFY0(zio_wait(zio));
666
667 /*
668 * Update the long range free counter after
669 * we're done syncing user data
670 */
671 mutex_enter(&dp->dp_lock);
672 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
673 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
674 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
675 mutex_exit(&dp->dp_lock);
676
677 /*
678 * After the data blocks have been written (ensured by the zio_wait()
679 * above), update the user/group/project space accounting. This happens
680 * in tasks dispatched to dp_sync_taskq, so wait for them before
681 * continuing.
682 */
683 for (ds = list_head(&synced_datasets); ds != NULL;
684 ds = list_next(&synced_datasets, ds)) {
685 dmu_objset_sync_done(ds->ds_objset, tx);
686 }
687 taskq_wait(dp->dp_sync_taskq);
688
689 /*
690 * Sync the datasets again to push out the changes due to
691 * userspace updates. This must be done before we process the
692 * sync tasks, so that any snapshots will have the correct
693 * user accounting information (and we won't get confused
694 * about which blocks are part of the snapshot).
695 */
696 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
697 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
698 objset_t *os = ds->ds_objset;
699
700 ASSERT(list_link_active(&ds->ds_synced_link));
701 dmu_buf_rele(ds->ds_dbuf, ds);
702 dsl_dataset_sync(ds, zio, tx);
703
704 /*
705 * Release any key mappings created by calls to
706 * dsl_dataset_dirty() from the userquota accounting
707 * code paths.
708 */
709 if (os->os_encrypted && !os->os_raw_receive &&
710 !os->os_next_write_raw[txg & TXG_MASK]) {
711 ASSERT3P(ds->ds_key_mapping, !=, NULL);
712 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
713 }
714 }
715 VERIFY0(zio_wait(zio));
716
717 /*
718 * Now that the datasets have been completely synced, we can
719 * clean up our in-memory structures accumulated while syncing:
720 *
721 * - move dead blocks from the pending deadlist and livelists
722 * to the on-disk versions
723 * - release hold from dsl_dataset_dirty()
724 * - release key mapping hold from dsl_dataset_dirty()
725 */
726 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
727 objset_t *os = ds->ds_objset;
728
729 if (os->os_encrypted && !os->os_raw_receive &&
730 !os->os_next_write_raw[txg & TXG_MASK]) {
731 ASSERT3P(ds->ds_key_mapping, !=, NULL);
732 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
733 }
734
735 dsl_dataset_sync_done(ds, tx);
736 }
737
738 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
739 dsl_dir_sync(dd, tx);
740 }
741
742 /*
743 * The MOS's space is accounted for in the pool/$MOS
744 * (dp_mos_dir). We can't modify the mos while we're syncing
745 * it, so we remember the deltas and apply them here.
746 */
747 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
748 dp->dp_mos_uncompressed_delta != 0) {
749 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
750 dp->dp_mos_used_delta,
751 dp->dp_mos_compressed_delta,
752 dp->dp_mos_uncompressed_delta, tx);
753 dp->dp_mos_used_delta = 0;
754 dp->dp_mos_compressed_delta = 0;
755 dp->dp_mos_uncompressed_delta = 0;
756 }
757
758 if (dmu_objset_is_dirty(mos, txg)) {
759 dsl_pool_sync_mos(dp, tx);
760 }
761
762 /*
763 * We have written all of the accounted dirty data, so our
764 * dp_space_towrite should now be zero. However, some seldom-used
765 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
766 * the accounting of any dirtied space now.
767 *
768 * Note that, besides any dirty data from datasets, the amount of
769 * dirty data in the MOS is also accounted by the pool. Therefore,
770 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
771 * attempt to update the accounting for the same dirty data twice.
772 * (i.e. at this point we only update the accounting for the space
773 * that we know that we "leaked").
774 */
775 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
776
777 /*
778 * If we modify a dataset in the same txg that we want to destroy it,
779 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
780 * dsl_dir_destroy_check() will fail if there are unexpected holds.
781 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
782 * and clearing the hold on it) before we process the sync_tasks.
783 * The MOS data dirtied by the sync_tasks will be synced on the next
784 * pass.
785 */
786 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
787 dsl_sync_task_t *dst;
788 /*
789 * No more sync tasks should have been added while we
790 * were syncing.
791 */
792 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
793 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
794 dsl_sync_task_sync(dst, tx);
795 }
796
797 dmu_tx_commit(tx);
798
799 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
800 }
801
802 void
dsl_pool_sync_done(dsl_pool_t * dp,uint64_t txg)803 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
804 {
805 zilog_t *zilog;
806
807 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
808 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
809 /*
810 * We don't remove the zilog from the dp_dirty_zilogs
811 * list until after we've cleaned it. This ensures that
812 * callers of zilog_is_dirty() receive an accurate
813 * answer when they are racing with the spa sync thread.
814 */
815 zil_clean(zilog, txg);
816 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
817 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
818 dmu_buf_rele(ds->ds_dbuf, zilog);
819 }
820 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
821 }
822
823 /*
824 * TRUE if the current thread is the tx_sync_thread or if we
825 * are being called from SPA context during pool initialization.
826 */
827 int
dsl_pool_sync_context(dsl_pool_t * dp)828 dsl_pool_sync_context(dsl_pool_t *dp)
829 {
830 return (curthread == dp->dp_tx.tx_sync_thread ||
831 spa_is_initializing(dp->dp_spa) ||
832 taskq_member(dp->dp_sync_taskq, curthread));
833 }
834
835 /*
836 * This function returns the amount of allocatable space in the pool
837 * minus whatever space is currently reserved by ZFS for specific
838 * purposes. Specifically:
839 *
840 * 1] Any reserved SLOP space
841 * 2] Any space used by the checkpoint
842 * 3] Any space used for deferred frees
843 *
844 * The latter 2 are especially important because they are needed to
845 * rectify the SPA's and DMU's different understanding of how much space
846 * is used. Now the DMU is aware of that extra space tracked by the SPA
847 * without having to maintain a separate special dir (e.g similar to
848 * $MOS, $FREEING, and $LEAKED).
849 *
850 * Note: By deferred frees here, we mean the frees that were deferred
851 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
852 * segments placed in ms_defer trees during metaslab_sync_done().
853 */
854 uint64_t
dsl_pool_adjustedsize(dsl_pool_t * dp,zfs_space_check_t slop_policy)855 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
856 {
857 spa_t *spa = dp->dp_spa;
858 uint64_t space, resv, adjustedsize;
859 uint64_t spa_deferred_frees =
860 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
861
862 space = spa_get_dspace(spa)
863 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
864 resv = spa_get_slop_space(spa);
865
866 switch (slop_policy) {
867 case ZFS_SPACE_CHECK_NORMAL:
868 break;
869 case ZFS_SPACE_CHECK_RESERVED:
870 resv >>= 1;
871 break;
872 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
873 resv >>= 2;
874 break;
875 case ZFS_SPACE_CHECK_NONE:
876 resv = 0;
877 break;
878 default:
879 panic("invalid slop policy value: %d", slop_policy);
880 break;
881 }
882 adjustedsize = (space >= resv) ? (space - resv) : 0;
883
884 return (adjustedsize);
885 }
886
887 uint64_t
dsl_pool_unreserved_space(dsl_pool_t * dp,zfs_space_check_t slop_policy)888 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
889 {
890 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
891 uint64_t deferred =
892 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
893 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
894 return (quota);
895 }
896
897 boolean_t
dsl_pool_need_dirty_delay(dsl_pool_t * dp)898 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
899 {
900 uint64_t delay_min_bytes =
901 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
902 uint64_t dirty_min_bytes =
903 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
904 uint64_t dirty;
905
906 mutex_enter(&dp->dp_lock);
907 dirty = dp->dp_dirty_total;
908 mutex_exit(&dp->dp_lock);
909 if (dirty > dirty_min_bytes)
910 txg_kick(dp);
911 return (dirty > delay_min_bytes);
912 }
913
914 void
dsl_pool_dirty_space(dsl_pool_t * dp,int64_t space,dmu_tx_t * tx)915 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
916 {
917 if (space > 0) {
918 mutex_enter(&dp->dp_lock);
919 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
920 dsl_pool_dirty_delta(dp, space);
921 mutex_exit(&dp->dp_lock);
922 }
923 }
924
925 void
dsl_pool_undirty_space(dsl_pool_t * dp,int64_t space,uint64_t txg)926 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
927 {
928 ASSERT3S(space, >=, 0);
929 if (space == 0)
930 return;
931
932 mutex_enter(&dp->dp_lock);
933 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
934 /* XXX writing something we didn't dirty? */
935 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
936 }
937 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
938 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
939 ASSERT3U(dp->dp_dirty_total, >=, space);
940 dsl_pool_dirty_delta(dp, -space);
941 mutex_exit(&dp->dp_lock);
942 }
943
944 /* ARGSUSED */
945 static int
upgrade_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)946 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
947 {
948 dmu_tx_t *tx = arg;
949 dsl_dataset_t *ds, *prev = NULL;
950 int err;
951
952 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
953 if (err)
954 return (err);
955
956 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
957 err = dsl_dataset_hold_obj(dp,
958 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
959 if (err) {
960 dsl_dataset_rele(ds, FTAG);
961 return (err);
962 }
963
964 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
965 break;
966 dsl_dataset_rele(ds, FTAG);
967 ds = prev;
968 prev = NULL;
969 }
970
971 if (prev == NULL) {
972 prev = dp->dp_origin_snap;
973
974 /*
975 * The $ORIGIN can't have any data, or the accounting
976 * will be wrong.
977 */
978 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
979 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
980 rrw_exit(&ds->ds_bp_rwlock, FTAG);
981
982 /* The origin doesn't get attached to itself */
983 if (ds->ds_object == prev->ds_object) {
984 dsl_dataset_rele(ds, FTAG);
985 return (0);
986 }
987
988 dmu_buf_will_dirty(ds->ds_dbuf, tx);
989 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
990 dsl_dataset_phys(ds)->ds_prev_snap_txg =
991 dsl_dataset_phys(prev)->ds_creation_txg;
992
993 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
994 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
995
996 dmu_buf_will_dirty(prev->ds_dbuf, tx);
997 dsl_dataset_phys(prev)->ds_num_children++;
998
999 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1000 ASSERT(ds->ds_prev == NULL);
1001 VERIFY0(dsl_dataset_hold_obj(dp,
1002 dsl_dataset_phys(ds)->ds_prev_snap_obj,
1003 ds, &ds->ds_prev));
1004 }
1005 }
1006
1007 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1008 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1009
1010 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1011 dmu_buf_will_dirty(prev->ds_dbuf, tx);
1012 dsl_dataset_phys(prev)->ds_next_clones_obj =
1013 zap_create(dp->dp_meta_objset,
1014 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1015 }
1016 VERIFY0(zap_add_int(dp->dp_meta_objset,
1017 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1018
1019 dsl_dataset_rele(ds, FTAG);
1020 if (prev != dp->dp_origin_snap)
1021 dsl_dataset_rele(prev, FTAG);
1022 return (0);
1023 }
1024
1025 void
dsl_pool_upgrade_clones(dsl_pool_t * dp,dmu_tx_t * tx)1026 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1027 {
1028 ASSERT(dmu_tx_is_syncing(tx));
1029 ASSERT(dp->dp_origin_snap != NULL);
1030
1031 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1032 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1033 }
1034
1035 /* ARGSUSED */
1036 static int
upgrade_dir_clones_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1037 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1038 {
1039 dmu_tx_t *tx = arg;
1040 objset_t *mos = dp->dp_meta_objset;
1041
1042 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1043 dsl_dataset_t *origin;
1044
1045 VERIFY0(dsl_dataset_hold_obj(dp,
1046 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1047
1048 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1049 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1050 dsl_dir_phys(origin->ds_dir)->dd_clones =
1051 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1052 0, tx);
1053 }
1054
1055 VERIFY0(zap_add_int(dp->dp_meta_objset,
1056 dsl_dir_phys(origin->ds_dir)->dd_clones,
1057 ds->ds_object, tx));
1058
1059 dsl_dataset_rele(origin, FTAG);
1060 }
1061 return (0);
1062 }
1063
1064 void
dsl_pool_upgrade_dir_clones(dsl_pool_t * dp,dmu_tx_t * tx)1065 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1066 {
1067 uint64_t obj;
1068
1069 ASSERT(dmu_tx_is_syncing(tx));
1070
1071 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1072 VERIFY0(dsl_pool_open_special_dir(dp,
1073 FREE_DIR_NAME, &dp->dp_free_dir));
1074
1075 /*
1076 * We can't use bpobj_alloc(), because spa_version() still
1077 * returns the old version, and we need a new-version bpobj with
1078 * subobj support. So call dmu_object_alloc() directly.
1079 */
1080 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1081 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1082 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1083 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1084 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1085
1086 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1087 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1088 }
1089
1090 void
dsl_pool_create_origin(dsl_pool_t * dp,dmu_tx_t * tx)1091 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1092 {
1093 uint64_t dsobj;
1094 dsl_dataset_t *ds;
1095
1096 ASSERT(dmu_tx_is_syncing(tx));
1097 ASSERT(dp->dp_origin_snap == NULL);
1098 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1099
1100 /* create the origin dir, ds, & snap-ds */
1101 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1102 NULL, 0, kcred, NULL, tx);
1103 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1104 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1105 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1106 dp, &dp->dp_origin_snap));
1107 dsl_dataset_rele(ds, FTAG);
1108 }
1109
1110 taskq_t *
dsl_pool_zrele_taskq(dsl_pool_t * dp)1111 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1112 {
1113 return (dp->dp_zrele_taskq);
1114 }
1115
1116 taskq_t *
dsl_pool_unlinked_drain_taskq(dsl_pool_t * dp)1117 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1118 {
1119 return (dp->dp_unlinked_drain_taskq);
1120 }
1121
1122 /*
1123 * Walk through the pool-wide zap object of temporary snapshot user holds
1124 * and release them.
1125 */
1126 void
dsl_pool_clean_tmp_userrefs(dsl_pool_t * dp)1127 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1128 {
1129 zap_attribute_t za;
1130 zap_cursor_t zc;
1131 objset_t *mos = dp->dp_meta_objset;
1132 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1133 nvlist_t *holds;
1134
1135 if (zapobj == 0)
1136 return;
1137 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1138
1139 holds = fnvlist_alloc();
1140
1141 for (zap_cursor_init(&zc, mos, zapobj);
1142 zap_cursor_retrieve(&zc, &za) == 0;
1143 zap_cursor_advance(&zc)) {
1144 char *htag;
1145 nvlist_t *tags;
1146
1147 htag = strchr(za.za_name, '-');
1148 *htag = '\0';
1149 ++htag;
1150 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1151 tags = fnvlist_alloc();
1152 fnvlist_add_boolean(tags, htag);
1153 fnvlist_add_nvlist(holds, za.za_name, tags);
1154 fnvlist_free(tags);
1155 } else {
1156 fnvlist_add_boolean(tags, htag);
1157 }
1158 }
1159 dsl_dataset_user_release_tmp(dp, holds);
1160 fnvlist_free(holds);
1161 zap_cursor_fini(&zc);
1162 }
1163
1164 /*
1165 * Create the pool-wide zap object for storing temporary snapshot holds.
1166 */
1167 static void
dsl_pool_user_hold_create_obj(dsl_pool_t * dp,dmu_tx_t * tx)1168 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1169 {
1170 objset_t *mos = dp->dp_meta_objset;
1171
1172 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1173 ASSERT(dmu_tx_is_syncing(tx));
1174
1175 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1176 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1177 }
1178
1179 static int
dsl_pool_user_hold_rele_impl(dsl_pool_t * dp,uint64_t dsobj,const char * tag,uint64_t now,dmu_tx_t * tx,boolean_t holding)1180 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1181 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1182 {
1183 objset_t *mos = dp->dp_meta_objset;
1184 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1185 char *name;
1186 int error;
1187
1188 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1189 ASSERT(dmu_tx_is_syncing(tx));
1190
1191 /*
1192 * If the pool was created prior to SPA_VERSION_USERREFS, the
1193 * zap object for temporary holds might not exist yet.
1194 */
1195 if (zapobj == 0) {
1196 if (holding) {
1197 dsl_pool_user_hold_create_obj(dp, tx);
1198 zapobj = dp->dp_tmp_userrefs_obj;
1199 } else {
1200 return (SET_ERROR(ENOENT));
1201 }
1202 }
1203
1204 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1205 if (holding)
1206 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1207 else
1208 error = zap_remove(mos, zapobj, name, tx);
1209 kmem_strfree(name);
1210
1211 return (error);
1212 }
1213
1214 /*
1215 * Add a temporary hold for the given dataset object and tag.
1216 */
1217 int
dsl_pool_user_hold(dsl_pool_t * dp,uint64_t dsobj,const char * tag,uint64_t now,dmu_tx_t * tx)1218 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1219 uint64_t now, dmu_tx_t *tx)
1220 {
1221 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1222 }
1223
1224 /*
1225 * Release a temporary hold for the given dataset object and tag.
1226 */
1227 int
dsl_pool_user_release(dsl_pool_t * dp,uint64_t dsobj,const char * tag,dmu_tx_t * tx)1228 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1229 dmu_tx_t *tx)
1230 {
1231 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1232 tx, B_FALSE));
1233 }
1234
1235 /*
1236 * DSL Pool Configuration Lock
1237 *
1238 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1239 * creation / destruction / rename / property setting). It must be held for
1240 * read to hold a dataset or dsl_dir. I.e. you must call
1241 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1242 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1243 * must be held continuously until all datasets and dsl_dirs are released.
1244 *
1245 * The only exception to this rule is that if a "long hold" is placed on
1246 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1247 * is still held. The long hold will prevent the dataset from being
1248 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1249 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1250 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1251 *
1252 * Legitimate long-holders (including owners) should be long-running, cancelable
1253 * tasks that should cause "zfs destroy" to fail. This includes DMU
1254 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1255 * "zfs send", and "zfs diff". There are several other long-holders whose
1256 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1257 *
1258 * The usual formula for long-holding would be:
1259 * dsl_pool_hold()
1260 * dsl_dataset_hold()
1261 * ... perform checks ...
1262 * dsl_dataset_long_hold()
1263 * dsl_pool_rele()
1264 * ... perform long-running task ...
1265 * dsl_dataset_long_rele()
1266 * dsl_dataset_rele()
1267 *
1268 * Note that when the long hold is released, the dataset is still held but
1269 * the pool is not held. The dataset may change arbitrarily during this time
1270 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1271 * dataset except release it.
1272 *
1273 * Operations generally fall somewhere into the following taxonomy:
1274 *
1275 * Read-Only Modifying
1276 *
1277 * Dataset Layer / MOS zfs get zfs destroy
1278 *
1279 * Individual Dataset read() write()
1280 *
1281 *
1282 * Dataset Layer Operations
1283 *
1284 * Modifying operations should generally use dsl_sync_task(). The synctask
1285 * infrastructure enforces proper locking strategy with respect to the
1286 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1287 *
1288 * Read-only operations will manually hold the pool, then the dataset, obtain
1289 * information from the dataset, then release the pool and dataset.
1290 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1291 * hold/rele.
1292 *
1293 *
1294 * Operations On Individual Datasets
1295 *
1296 * Objects _within_ an objset should only be modified by the current 'owner'
1297 * of the objset to prevent incorrect concurrent modification. Thus, use
1298 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1299 * and fail with EBUSY if there is already an owner. The owner can then
1300 * implement its own locking strategy, independent of the dataset layer's
1301 * locking infrastructure.
1302 * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1303 * vnop will not reach into the dataset layer).
1304 *
1305 * Ideally, objects would also only be read by the objset’s owner, so that we
1306 * don’t observe state mid-modification.
1307 * (E.g. the ZPL is creating a new object and linking it into a directory; if
1308 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1309 * intermediate state. The ioctl level violates this but in pretty benign
1310 * ways, e.g. reading the zpl props object.)
1311 */
1312
1313 int
dsl_pool_hold(const char * name,void * tag,dsl_pool_t ** dp)1314 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1315 {
1316 spa_t *spa;
1317 int error;
1318
1319 error = spa_open(name, &spa, tag);
1320 if (error == 0) {
1321 *dp = spa_get_dsl(spa);
1322 dsl_pool_config_enter(*dp, tag);
1323 }
1324 return (error);
1325 }
1326
1327 void
dsl_pool_rele(dsl_pool_t * dp,void * tag)1328 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1329 {
1330 dsl_pool_config_exit(dp, tag);
1331 spa_close(dp->dp_spa, tag);
1332 }
1333
1334 void
dsl_pool_config_enter(dsl_pool_t * dp,void * tag)1335 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1336 {
1337 /*
1338 * We use a "reentrant" reader-writer lock, but not reentrantly.
1339 *
1340 * The rrwlock can (with the track_all flag) track all reading threads,
1341 * which is very useful for debugging which code path failed to release
1342 * the lock, and for verifying that the *current* thread does hold
1343 * the lock.
1344 *
1345 * (Unlike a rwlock, which knows that N threads hold it for
1346 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1347 * if any thread holds it for read, even if this thread doesn't).
1348 */
1349 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1350 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1351 }
1352
1353 void
dsl_pool_config_enter_prio(dsl_pool_t * dp,void * tag)1354 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1355 {
1356 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1357 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1358 }
1359
1360 void
dsl_pool_config_exit(dsl_pool_t * dp,void * tag)1361 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1362 {
1363 rrw_exit(&dp->dp_config_rwlock, tag);
1364 }
1365
1366 boolean_t
dsl_pool_config_held(dsl_pool_t * dp)1367 dsl_pool_config_held(dsl_pool_t *dp)
1368 {
1369 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1370 }
1371
1372 boolean_t
dsl_pool_config_held_writer(dsl_pool_t * dp)1373 dsl_pool_config_held_writer(dsl_pool_t *dp)
1374 {
1375 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1376 }
1377
1378 EXPORT_SYMBOL(dsl_pool_config_enter);
1379 EXPORT_SYMBOL(dsl_pool_config_exit);
1380
1381 /* BEGIN CSTYLED */
1382 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1383 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD,
1384 "Max percent of RAM allowed to be dirty");
1385
1386 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1387 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD,
1388 "zfs_dirty_data_max upper bound as % of RAM");
1389
1390 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW,
1391 "Transaction delay threshold");
1392
1393 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW,
1394 "Determines the dirty space limit");
1395
1396 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1397 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD,
1398 "zfs_dirty_data_max upper bound in bytes");
1399
1400 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW,
1401 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1402
1403 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW,
1404 "How quickly delay approaches infinity");
1405
1406 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
1407 "Max percent of CPUs that are used to sync dirty data");
1408
1409 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1410 "Max percent of CPUs that are used per dp_sync_taskq");
1411
1412 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1413 "Number of taskq entries that are pre-populated");
1414
1415 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1416 "Max number of taskq entries that are cached");
1417 /* END CSTYLED */
1418