1 /* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process depends on being able to identify portions
10 * of the input text which are identical to earlier input (within a
11 * sliding window trailing behind the input currently being processed).
12 *
13 * The most straightforward technique turns out to be the fastest for
14 * most input files: try all possible matches and select the longest.
15 * The key feature of this algorithm is that insertions into the string
16 * dictionary are very simple and thus fast, and deletions are avoided
17 * completely. Insertions are performed at each input character, whereas
18 * string matches are performed only when the previous match ends. So it
19 * is preferable to spend more time in matches to allow very fast string
20 * insertions and avoid deletions. The matching algorithm for small
21 * strings is inspired from that of Rabin & Karp. A brute force approach
22 * is used to find longer strings when a small match has been found.
23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 * (by Leonid Broukhis).
25 * A previous version of this file used a more sophisticated algorithm
26 * (by Fiala and Greene) which is guaranteed to run in linear amortized
27 * time, but has a larger average cost, uses more memory and is patented.
28 * However the F&G algorithm may be faster for some highly redundant
29 * files if the parameter max_chain_length (described below) is too large.
30 *
31 * ACKNOWLEDGEMENTS
32 *
33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 * I found it in 'freeze' written by Leonid Broukhis.
35 * Thanks to many people for bug reports and testing.
36 *
37 * REFERENCES
38 *
39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 * Available in http://tools.ietf.org/html/rfc1951
41 *
42 * A description of the Rabin and Karp algorithm is given in the book
43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 * Fiala,E.R., and Greene,D.H.
46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50 /* @(#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55 " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
56 /*
57 If you use the zlib library in a product, an acknowledgment is welcome
58 in the documentation of your product. If for some reason you cannot
59 include such an acknowledgment, I would appreciate that you keep this
60 copyright string in the executable of your product.
61 */
62
63 /* ===========================================================================
64 * Function prototypes.
65 */
66 typedef enum {
67 need_more, /* block not completed, need more input or more output */
68 block_done, /* block flush performed */
69 finish_started, /* finish started, need only more output at next deflate */
70 finish_done /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local int deflateStateCheck OF((z_streamp strm));
77 local void slide_hash OF((deflate_state *s));
78 local void fill_window OF((deflate_state *s));
79 local block_state deflate_stored OF((deflate_state *s, int flush));
80 local block_state deflate_fast OF((deflate_state *s, int flush));
81 #ifndef FASTEST
82 local block_state deflate_slow OF((deflate_state *s, int flush));
83 #endif
84 local block_state deflate_rle OF((deflate_state *s, int flush));
85 local block_state deflate_huff OF((deflate_state *s, int flush));
86 local void lm_init OF((deflate_state *s));
87 local void putShortMSB OF((deflate_state *s, uInt b));
88 local void flush_pending OF((z_streamp strm));
89 local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
90 #ifdef ASMV
91 # pragma message("Assembler code may have bugs -- use at your own risk")
92 void match_init OF((void)); /* asm code initialization */
93 uInt longest_match OF((deflate_state *s, IPos cur_match));
94 #else
95 local uInt longest_match OF((deflate_state *s, IPos cur_match));
96 #endif
97
98 #ifdef ZLIB_DEBUG
99 local void check_match OF((deflate_state *s, IPos start, IPos match,
100 int length));
101 #endif
102
103 /* ===========================================================================
104 * Local data
105 */
106
107 #define NIL 0
108 /* Tail of hash chains */
109
110 #ifndef TOO_FAR
111 # define TOO_FAR 4096
112 #endif
113 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115 /* Values for max_lazy_match, good_match and max_chain_length, depending on
116 * the desired pack level (0..9). The values given below have been tuned to
117 * exclude worst case performance for pathological files. Better values may be
118 * found for specific files.
119 */
120 typedef struct config_s {
121 ush good_length; /* reduce lazy search above this match length */
122 ush max_lazy; /* do not perform lazy search above this match length */
123 ush nice_length; /* quit search above this match length */
124 ush max_chain;
125 compress_func func;
126 } config;
127
128 #ifdef FASTEST
129 local const config configuration_table[2] = {
130 /* good lazy nice chain */
131 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
132 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
133 #else
134 local const config configuration_table[10] = {
135 /* good lazy nice chain */
136 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
137 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
138 /* 2 */ {4, 5, 16, 8, deflate_fast},
139 /* 3 */ {4, 6, 32, 32, deflate_fast},
140
141 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
142 /* 5 */ {8, 16, 32, 32, deflate_slow},
143 /* 6 */ {8, 16, 128, 128, deflate_slow},
144 /* 7 */ {8, 32, 128, 256, deflate_slow},
145 /* 8 */ {32, 128, 258, 1024, deflate_slow},
146 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
147 #endif
148
149 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
150 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
151 * meaning.
152 */
153
154 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
155 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
156
157 /* ===========================================================================
158 * Update a hash value with the given input byte
159 * IN assertion: all calls to UPDATE_HASH are made with consecutive input
160 * characters, so that a running hash key can be computed from the previous
161 * key instead of complete recalculation each time.
162 */
163 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
164
165
166 /* ===========================================================================
167 * Insert string str in the dictionary and set match_head to the previous head
168 * of the hash chain (the most recent string with same hash key). Return
169 * the previous length of the hash chain.
170 * If this file is compiled with -DFASTEST, the compression level is forced
171 * to 1, and no hash chains are maintained.
172 * IN assertion: all calls to INSERT_STRING are made with consecutive input
173 * characters and the first MIN_MATCH bytes of str are valid (except for
174 * the last MIN_MATCH-1 bytes of the input file).
175 */
176 #ifdef FASTEST
177 #define INSERT_STRING(s, str, match_head) \
178 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
179 match_head = s->head[s->ins_h], \
180 s->head[s->ins_h] = (Pos)(str))
181 #else
182 #define INSERT_STRING(s, str, match_head) \
183 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
184 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
185 s->head[s->ins_h] = (Pos)(str))
186 #endif
187
188 /* ===========================================================================
189 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
190 * prev[] will be initialized on the fly.
191 */
192 #define CLEAR_HASH(s) \
193 do { \
194 s->head[s->hash_size-1] = NIL; \
195 zmemzero((Bytef *)s->head, \
196 (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
197 } while (0)
198
199 /* ===========================================================================
200 * Slide the hash table when sliding the window down (could be avoided with 32
201 * bit values at the expense of memory usage). We slide even when level == 0 to
202 * keep the hash table consistent if we switch back to level > 0 later.
203 */
slide_hash(s)204 local void slide_hash(s)
205 deflate_state *s;
206 {
207 unsigned n, m;
208 Posf *p;
209 uInt wsize = s->w_size;
210
211 n = s->hash_size;
212 p = &s->head[n];
213 do {
214 m = *--p;
215 *p = (Pos)(m >= wsize ? m - wsize : NIL);
216 } while (--n);
217 n = wsize;
218 #ifndef FASTEST
219 p = &s->prev[n];
220 do {
221 m = *--p;
222 *p = (Pos)(m >= wsize ? m - wsize : NIL);
223 /* If n is not on any hash chain, prev[n] is garbage but
224 * its value will never be used.
225 */
226 } while (--n);
227 #endif
228 }
229
230 /* ========================================================================= */
deflateInit_(strm,level,version,stream_size)231 int ZEXPORT deflateInit_(strm, level, version, stream_size)
232 z_streamp strm;
233 int level;
234 const char *version;
235 int stream_size;
236 {
237 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
238 Z_DEFAULT_STRATEGY, version, stream_size);
239 /* To do: ignore strm->next_in if we use it as window */
240 }
241
242 /* ========================================================================= */
deflateInit2_(strm,level,method,windowBits,memLevel,strategy,version,stream_size)243 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
244 version, stream_size)
245 z_streamp strm;
246 int level;
247 int method;
248 int windowBits;
249 int memLevel;
250 int strategy;
251 const char *version;
252 int stream_size;
253 {
254 deflate_state *s;
255 int wrap = 1;
256 static const char my_version[] = ZLIB_VERSION;
257
258 ushf *overlay;
259 /* We overlay pending_buf and d_buf+l_buf. This works since the average
260 * output size for (length,distance) codes is <= 24 bits.
261 */
262
263 if (version == Z_NULL || version[0] != my_version[0] ||
264 stream_size != sizeof(z_stream)) {
265 return Z_VERSION_ERROR;
266 }
267 if (strm == Z_NULL) return Z_STREAM_ERROR;
268
269 strm->msg = Z_NULL;
270 if (strm->zalloc == (alloc_func)0) {
271 #if defined(Z_SOLO) && !defined(_KERNEL)
272 return Z_STREAM_ERROR;
273 #else
274 strm->zalloc = zcalloc;
275 strm->opaque = (voidpf)0;
276 #endif
277 }
278 if (strm->zfree == (free_func)0)
279 #if defined(Z_SOLO) && !defined(_KERNEL)
280 return Z_STREAM_ERROR;
281 #else
282 strm->zfree = zcfree;
283 #endif
284
285 #ifdef FASTEST
286 if (level != 0) level = 1;
287 #else
288 if (level == Z_DEFAULT_COMPRESSION) level = 6;
289 #endif
290
291 if (windowBits < 0) { /* suppress zlib wrapper */
292 wrap = 0;
293 windowBits = -windowBits;
294 }
295 #ifdef GZIP
296 else if (windowBits > 15) {
297 wrap = 2; /* write gzip wrapper instead */
298 windowBits -= 16;
299 }
300 #endif
301 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
302 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
303 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
304 return Z_STREAM_ERROR;
305 }
306 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
307 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
308 if (s == Z_NULL) return Z_MEM_ERROR;
309 strm->state = (struct internal_state FAR *)s;
310 s->strm = strm;
311 s->status = INIT_STATE; /* to pass state test in deflateReset() */
312
313 s->wrap = wrap;
314 s->gzhead = Z_NULL;
315 s->w_bits = (uInt)windowBits;
316 s->w_size = 1 << s->w_bits;
317 s->w_mask = s->w_size - 1;
318
319 s->hash_bits = (uInt)memLevel + 7;
320 s->hash_size = 1 << s->hash_bits;
321 s->hash_mask = s->hash_size - 1;
322 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
323
324 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
325 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
326 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
327
328 s->high_water = 0; /* nothing written to s->window yet */
329
330 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
331
332 overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
333 s->pending_buf = (uchf *) overlay;
334 s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
335
336 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
337 s->pending_buf == Z_NULL) {
338 s->status = FINISH_STATE;
339 strm->msg = ERR_MSG(Z_MEM_ERROR);
340 deflateEnd (strm);
341 return Z_MEM_ERROR;
342 }
343 s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
344 s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
345
346 s->level = level;
347 s->strategy = strategy;
348 s->method = (Byte)method;
349
350 return deflateReset(strm);
351 }
352
353 /* =========================================================================
354 * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
355 */
deflateStateCheck(strm)356 local int deflateStateCheck (strm)
357 z_streamp strm;
358 {
359 deflate_state *s;
360 if (strm == Z_NULL ||
361 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
362 return 1;
363 s = strm->state;
364 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
365 #ifdef GZIP
366 s->status != GZIP_STATE &&
367 #endif
368 s->status != EXTRA_STATE &&
369 s->status != NAME_STATE &&
370 s->status != COMMENT_STATE &&
371 s->status != HCRC_STATE &&
372 s->status != BUSY_STATE &&
373 s->status != FINISH_STATE))
374 return 1;
375 return 0;
376 }
377
378 /* ========================================================================= */
deflateSetDictionary(strm,dictionary,dictLength)379 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
380 z_streamp strm;
381 const Bytef *dictionary;
382 uInt dictLength;
383 {
384 deflate_state *s;
385 uInt str, n;
386 int wrap;
387 unsigned avail;
388 z_const unsigned char *next;
389
390 if (deflateStateCheck(strm) || dictionary == Z_NULL)
391 return Z_STREAM_ERROR;
392 s = strm->state;
393 wrap = s->wrap;
394 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
395 return Z_STREAM_ERROR;
396
397 /* when using zlib wrappers, compute Adler-32 for provided dictionary */
398 if (wrap == 1)
399 strm->adler = adler32(strm->adler, dictionary, dictLength);
400 s->wrap = 0; /* avoid computing Adler-32 in read_buf */
401
402 /* if dictionary would fill window, just replace the history */
403 if (dictLength >= s->w_size) {
404 if (wrap == 0) { /* already empty otherwise */
405 CLEAR_HASH(s);
406 s->strstart = 0;
407 s->block_start = 0L;
408 s->insert = 0;
409 }
410 dictionary += dictLength - s->w_size; /* use the tail */
411 dictLength = s->w_size;
412 }
413
414 /* insert dictionary into window and hash */
415 avail = strm->avail_in;
416 next = strm->next_in;
417 strm->avail_in = dictLength;
418 strm->next_in = (z_const Bytef *)dictionary;
419 fill_window(s);
420 while (s->lookahead >= MIN_MATCH) {
421 str = s->strstart;
422 n = s->lookahead - (MIN_MATCH-1);
423 do {
424 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
425 #ifndef FASTEST
426 s->prev[str & s->w_mask] = s->head[s->ins_h];
427 #endif
428 s->head[s->ins_h] = (Pos)str;
429 str++;
430 } while (--n);
431 s->strstart = str;
432 s->lookahead = MIN_MATCH-1;
433 fill_window(s);
434 }
435 s->strstart += s->lookahead;
436 s->block_start = (long)s->strstart;
437 s->insert = s->lookahead;
438 s->lookahead = 0;
439 s->match_length = s->prev_length = MIN_MATCH-1;
440 s->match_available = 0;
441 strm->next_in = next;
442 strm->avail_in = avail;
443 s->wrap = wrap;
444 return Z_OK;
445 }
446
447 /* ========================================================================= */
deflateGetDictionary(strm,dictionary,dictLength)448 int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
449 z_streamp strm;
450 Bytef *dictionary;
451 uInt *dictLength;
452 {
453 deflate_state *s;
454 uInt len;
455
456 if (deflateStateCheck(strm))
457 return Z_STREAM_ERROR;
458 s = strm->state;
459 len = s->strstart + s->lookahead;
460 if (len > s->w_size)
461 len = s->w_size;
462 if (dictionary != Z_NULL && len)
463 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
464 if (dictLength != Z_NULL)
465 *dictLength = len;
466 return Z_OK;
467 }
468
469 /* ========================================================================= */
deflateResetKeep(strm)470 int ZEXPORT deflateResetKeep (strm)
471 z_streamp strm;
472 {
473 deflate_state *s;
474
475 if (deflateStateCheck(strm)) {
476 return Z_STREAM_ERROR;
477 }
478
479 strm->total_in = strm->total_out = 0;
480 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
481 strm->data_type = Z_UNKNOWN;
482
483 s = (deflate_state *)strm->state;
484 s->pending = 0;
485 s->pending_out = s->pending_buf;
486
487 if (s->wrap < 0) {
488 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
489 }
490 s->status =
491 #ifdef GZIP
492 s->wrap == 2 ? GZIP_STATE :
493 #endif
494 s->wrap ? INIT_STATE : BUSY_STATE;
495 strm->adler =
496 #ifdef GZIP
497 s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
498 #endif
499 adler32(0L, Z_NULL, 0);
500 s->last_flush = -2;
501
502 _tr_init(s);
503
504 return Z_OK;
505 }
506
507 /* ========================================================================= */
deflateReset(strm)508 int ZEXPORT deflateReset (strm)
509 z_streamp strm;
510 {
511 int ret;
512
513 ret = deflateResetKeep(strm);
514 if (ret == Z_OK)
515 lm_init(strm->state);
516 return ret;
517 }
518
519 /* ========================================================================= */
deflateSetHeader(strm,head)520 int ZEXPORT deflateSetHeader (strm, head)
521 z_streamp strm;
522 gz_headerp head;
523 {
524 if (deflateStateCheck(strm) || strm->state->wrap != 2)
525 return Z_STREAM_ERROR;
526 strm->state->gzhead = head;
527 return Z_OK;
528 }
529
530 /* ========================================================================= */
deflatePending(strm,pending,bits)531 int ZEXPORT deflatePending (strm, pending, bits)
532 unsigned *pending;
533 int *bits;
534 z_streamp strm;
535 {
536 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
537 if (pending != Z_NULL)
538 *pending = strm->state->pending;
539 if (bits != Z_NULL)
540 *bits = strm->state->bi_valid;
541 return Z_OK;
542 }
543
544 /* ========================================================================= */
deflatePrime(strm,bits,value)545 int ZEXPORT deflatePrime (strm, bits, value)
546 z_streamp strm;
547 int bits;
548 int value;
549 {
550 deflate_state *s;
551 int put;
552
553 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
554 s = strm->state;
555 if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
556 return Z_BUF_ERROR;
557 do {
558 put = Buf_size - s->bi_valid;
559 if (put > bits)
560 put = bits;
561 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
562 s->bi_valid += put;
563 _tr_flush_bits(s);
564 value >>= put;
565 bits -= put;
566 } while (bits);
567 return Z_OK;
568 }
569
570 /* ========================================================================= */
deflateParams(strm,level,strategy)571 int ZEXPORT deflateParams(strm, level, strategy)
572 z_streamp strm;
573 int level;
574 int strategy;
575 {
576 deflate_state *s;
577 compress_func func;
578
579 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
580 s = strm->state;
581
582 #ifdef FASTEST
583 if (level != 0) level = 1;
584 #else
585 if (level == Z_DEFAULT_COMPRESSION) level = 6;
586 #endif
587 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
588 return Z_STREAM_ERROR;
589 }
590 func = configuration_table[s->level].func;
591
592 if ((strategy != s->strategy || func != configuration_table[level].func) &&
593 s->last_flush != -2) {
594 /* Flush the last buffer: */
595 int err = deflate(strm, Z_BLOCK);
596 if (err == Z_STREAM_ERROR)
597 return err;
598 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
599 return Z_BUF_ERROR;
600 }
601 if (s->level != level) {
602 if (s->level == 0 && s->matches != 0) {
603 if (s->matches == 1)
604 slide_hash(s);
605 else
606 CLEAR_HASH(s);
607 s->matches = 0;
608 }
609 s->level = level;
610 s->max_lazy_match = configuration_table[level].max_lazy;
611 s->good_match = configuration_table[level].good_length;
612 s->nice_match = configuration_table[level].nice_length;
613 s->max_chain_length = configuration_table[level].max_chain;
614 }
615 s->strategy = strategy;
616 return Z_OK;
617 }
618
619 /* ========================================================================= */
deflateTune(strm,good_length,max_lazy,nice_length,max_chain)620 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
621 z_streamp strm;
622 int good_length;
623 int max_lazy;
624 int nice_length;
625 int max_chain;
626 {
627 deflate_state *s;
628
629 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
630 s = strm->state;
631 s->good_match = (uInt)good_length;
632 s->max_lazy_match = (uInt)max_lazy;
633 s->nice_match = nice_length;
634 s->max_chain_length = (uInt)max_chain;
635 return Z_OK;
636 }
637
638 /* =========================================================================
639 * For the default windowBits of 15 and memLevel of 8, this function returns
640 * a close to exact, as well as small, upper bound on the compressed size.
641 * They are coded as constants here for a reason--if the #define's are
642 * changed, then this function needs to be changed as well. The return
643 * value for 15 and 8 only works for those exact settings.
644 *
645 * For any setting other than those defaults for windowBits and memLevel,
646 * the value returned is a conservative worst case for the maximum expansion
647 * resulting from using fixed blocks instead of stored blocks, which deflate
648 * can emit on compressed data for some combinations of the parameters.
649 *
650 * This function could be more sophisticated to provide closer upper bounds for
651 * every combination of windowBits and memLevel. But even the conservative
652 * upper bound of about 14% expansion does not seem onerous for output buffer
653 * allocation.
654 */
deflateBound(strm,sourceLen)655 uLong ZEXPORT deflateBound(strm, sourceLen)
656 z_streamp strm;
657 uLong sourceLen;
658 {
659 deflate_state *s;
660 uLong complen, wraplen;
661
662 /* conservative upper bound for compressed data */
663 complen = sourceLen +
664 ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
665
666 /* if can't get parameters, return conservative bound plus zlib wrapper */
667 if (deflateStateCheck(strm))
668 return complen + 6;
669
670 /* compute wrapper length */
671 s = strm->state;
672 switch (s->wrap) {
673 case 0: /* raw deflate */
674 wraplen = 0;
675 break;
676 case 1: /* zlib wrapper */
677 wraplen = 6 + (s->strstart ? 4 : 0);
678 break;
679 #ifdef GZIP
680 case 2: /* gzip wrapper */
681 wraplen = 18;
682 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
683 Bytef *str;
684 if (s->gzhead->extra != Z_NULL)
685 wraplen += 2 + s->gzhead->extra_len;
686 str = s->gzhead->name;
687 if (str != Z_NULL)
688 do {
689 wraplen++;
690 } while (*str++);
691 str = s->gzhead->comment;
692 if (str != Z_NULL)
693 do {
694 wraplen++;
695 } while (*str++);
696 if (s->gzhead->hcrc)
697 wraplen += 2;
698 }
699 break;
700 #endif
701 default: /* for compiler happiness */
702 wraplen = 6;
703 }
704
705 /* if not default parameters, return conservative bound */
706 if (s->w_bits != 15 || s->hash_bits != 8 + 7)
707 return complen + wraplen;
708
709 /* default settings: return tight bound for that case */
710 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
711 (sourceLen >> 25) + 13 - 6 + wraplen;
712 }
713
714 /* =========================================================================
715 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
716 * IN assertion: the stream state is correct and there is enough room in
717 * pending_buf.
718 */
putShortMSB(s,b)719 local void putShortMSB (s, b)
720 deflate_state *s;
721 uInt b;
722 {
723 put_byte(s, (Byte)(b >> 8));
724 put_byte(s, (Byte)(b & 0xff));
725 }
726
727 /* =========================================================================
728 * Flush as much pending output as possible. All deflate() output, except for
729 * some deflate_stored() output, goes through this function so some
730 * applications may wish to modify it to avoid allocating a large
731 * strm->next_out buffer and copying into it. (See also read_buf()).
732 */
flush_pending(strm)733 local void flush_pending(strm)
734 z_streamp strm;
735 {
736 unsigned len;
737 deflate_state *s = strm->state;
738
739 _tr_flush_bits(s);
740 len = s->pending;
741 if (len > strm->avail_out) len = strm->avail_out;
742 if (len == 0) return;
743
744 zmemcpy(strm->next_out, s->pending_out, len);
745 strm->next_out += len;
746 s->pending_out += len;
747 strm->total_out += len;
748 strm->avail_out -= len;
749 s->pending -= len;
750 if (s->pending == 0) {
751 s->pending_out = s->pending_buf;
752 }
753 }
754
755 /* ===========================================================================
756 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
757 */
758 #define HCRC_UPDATE(beg) \
759 do { \
760 if (s->gzhead->hcrc && s->pending > (beg)) \
761 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
762 s->pending - (beg)); \
763 } while (0)
764
765 /* ========================================================================= */
deflate(strm,flush)766 int ZEXPORT deflate (strm, flush)
767 z_streamp strm;
768 int flush;
769 {
770 int old_flush; /* value of flush param for previous deflate call */
771 deflate_state *s;
772
773 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
774 return Z_STREAM_ERROR;
775 }
776 s = strm->state;
777
778 if (strm->next_out == Z_NULL ||
779 (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
780 (s->status == FINISH_STATE && flush != Z_FINISH)) {
781 ERR_RETURN(strm, Z_STREAM_ERROR);
782 }
783 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
784
785 old_flush = s->last_flush;
786 s->last_flush = flush;
787
788 /* Flush as much pending output as possible */
789 if (s->pending != 0) {
790 flush_pending(strm);
791 if (strm->avail_out == 0) {
792 /* Since avail_out is 0, deflate will be called again with
793 * more output space, but possibly with both pending and
794 * avail_in equal to zero. There won't be anything to do,
795 * but this is not an error situation so make sure we
796 * return OK instead of BUF_ERROR at next call of deflate:
797 */
798 s->last_flush = -1;
799 return Z_OK;
800 }
801
802 /* Make sure there is something to do and avoid duplicate consecutive
803 * flushes. For repeated and useless calls with Z_FINISH, we keep
804 * returning Z_STREAM_END instead of Z_BUF_ERROR.
805 */
806 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
807 flush != Z_FINISH) {
808 ERR_RETURN(strm, Z_BUF_ERROR);
809 }
810
811 /* User must not provide more input after the first FINISH: */
812 if (s->status == FINISH_STATE && strm->avail_in != 0) {
813 ERR_RETURN(strm, Z_BUF_ERROR);
814 }
815
816 /* Write the header */
817 if (s->status == INIT_STATE) {
818 /* zlib header */
819 uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
820 uInt level_flags;
821
822 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
823 level_flags = 0;
824 else if (s->level < 6)
825 level_flags = 1;
826 else if (s->level == 6)
827 level_flags = 2;
828 else
829 level_flags = 3;
830 header |= (level_flags << 6);
831 if (s->strstart != 0) header |= PRESET_DICT;
832 header += 31 - (header % 31);
833
834 putShortMSB(s, header);
835
836 /* Save the adler32 of the preset dictionary: */
837 if (s->strstart != 0) {
838 putShortMSB(s, (uInt)(strm->adler >> 16));
839 putShortMSB(s, (uInt)(strm->adler & 0xffff));
840 }
841 strm->adler = adler32(0L, Z_NULL, 0);
842 s->status = BUSY_STATE;
843
844 /* Compression must start with an empty pending buffer */
845 flush_pending(strm);
846 if (s->pending != 0) {
847 s->last_flush = -1;
848 return Z_OK;
849 }
850 }
851 #ifdef GZIP
852 if (s->status == GZIP_STATE) {
853 /* gzip header */
854 strm->adler = crc32(0L, Z_NULL, 0);
855 put_byte(s, 31);
856 put_byte(s, 139);
857 put_byte(s, 8);
858 if (s->gzhead == Z_NULL) {
859 put_byte(s, 0);
860 put_byte(s, 0);
861 put_byte(s, 0);
862 put_byte(s, 0);
863 put_byte(s, 0);
864 put_byte(s, s->level == 9 ? 2 :
865 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
866 4 : 0));
867 put_byte(s, OS_CODE);
868 s->status = BUSY_STATE;
869
870 /* Compression must start with an empty pending buffer */
871 flush_pending(strm);
872 if (s->pending != 0) {
873 s->last_flush = -1;
874 return Z_OK;
875 }
876 }
877 else {
878 put_byte(s, (s->gzhead->text ? 1 : 0) +
879 (s->gzhead->hcrc ? 2 : 0) +
880 (s->gzhead->extra == Z_NULL ? 0 : 4) +
881 (s->gzhead->name == Z_NULL ? 0 : 8) +
882 (s->gzhead->comment == Z_NULL ? 0 : 16)
883 );
884 put_byte(s, (Byte)(s->gzhead->time & 0xff));
885 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
886 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
887 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
888 put_byte(s, s->level == 9 ? 2 :
889 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
890 4 : 0));
891 put_byte(s, s->gzhead->os & 0xff);
892 if (s->gzhead->extra != Z_NULL) {
893 put_byte(s, s->gzhead->extra_len & 0xff);
894 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
895 }
896 if (s->gzhead->hcrc)
897 strm->adler = crc32(strm->adler, s->pending_buf,
898 s->pending);
899 s->gzindex = 0;
900 s->status = EXTRA_STATE;
901 }
902 }
903 if (s->status == EXTRA_STATE) {
904 if (s->gzhead->extra != Z_NULL) {
905 ulg beg = s->pending; /* start of bytes to update crc */
906 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
907 while (s->pending + left > s->pending_buf_size) {
908 uInt copy = s->pending_buf_size - s->pending;
909 zmemcpy(s->pending_buf + s->pending,
910 s->gzhead->extra + s->gzindex, copy);
911 s->pending = s->pending_buf_size;
912 HCRC_UPDATE(beg);
913 s->gzindex += copy;
914 flush_pending(strm);
915 if (s->pending != 0) {
916 s->last_flush = -1;
917 return Z_OK;
918 }
919 beg = 0;
920 left -= copy;
921 }
922 zmemcpy(s->pending_buf + s->pending,
923 s->gzhead->extra + s->gzindex, left);
924 s->pending += left;
925 HCRC_UPDATE(beg);
926 s->gzindex = 0;
927 }
928 s->status = NAME_STATE;
929 }
930 if (s->status == NAME_STATE) {
931 if (s->gzhead->name != Z_NULL) {
932 ulg beg = s->pending; /* start of bytes to update crc */
933 int val;
934 do {
935 if (s->pending == s->pending_buf_size) {
936 HCRC_UPDATE(beg);
937 flush_pending(strm);
938 if (s->pending != 0) {
939 s->last_flush = -1;
940 return Z_OK;
941 }
942 beg = 0;
943 }
944 val = s->gzhead->name[s->gzindex++];
945 put_byte(s, val);
946 } while (val != 0);
947 HCRC_UPDATE(beg);
948 s->gzindex = 0;
949 }
950 s->status = COMMENT_STATE;
951 }
952 if (s->status == COMMENT_STATE) {
953 if (s->gzhead->comment != Z_NULL) {
954 ulg beg = s->pending; /* start of bytes to update crc */
955 int val;
956 do {
957 if (s->pending == s->pending_buf_size) {
958 HCRC_UPDATE(beg);
959 flush_pending(strm);
960 if (s->pending != 0) {
961 s->last_flush = -1;
962 return Z_OK;
963 }
964 beg = 0;
965 }
966 val = s->gzhead->comment[s->gzindex++];
967 put_byte(s, val);
968 } while (val != 0);
969 HCRC_UPDATE(beg);
970 }
971 s->status = HCRC_STATE;
972 }
973 if (s->status == HCRC_STATE) {
974 if (s->gzhead->hcrc) {
975 if (s->pending + 2 > s->pending_buf_size) {
976 flush_pending(strm);
977 if (s->pending != 0) {
978 s->last_flush = -1;
979 return Z_OK;
980 }
981 }
982 put_byte(s, (Byte)(strm->adler & 0xff));
983 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
984 strm->adler = crc32(0L, Z_NULL, 0);
985 }
986 s->status = BUSY_STATE;
987
988 /* Compression must start with an empty pending buffer */
989 flush_pending(strm);
990 if (s->pending != 0) {
991 s->last_flush = -1;
992 return Z_OK;
993 }
994 }
995 #endif
996
997 /* Start a new block or continue the current one.
998 */
999 if (strm->avail_in != 0 || s->lookahead != 0 ||
1000 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1001 block_state bstate;
1002
1003 bstate = s->level == 0 ? deflate_stored(s, flush) :
1004 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1005 s->strategy == Z_RLE ? deflate_rle(s, flush) :
1006 (*(configuration_table[s->level].func))(s, flush);
1007
1008 if (bstate == finish_started || bstate == finish_done) {
1009 s->status = FINISH_STATE;
1010 }
1011 if (bstate == need_more || bstate == finish_started) {
1012 if (strm->avail_out == 0) {
1013 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1014 }
1015 return Z_OK;
1016 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1017 * of deflate should use the same flush parameter to make sure
1018 * that the flush is complete. So we don't have to output an
1019 * empty block here, this will be done at next call. This also
1020 * ensures that for a very small output buffer, we emit at most
1021 * one empty block.
1022 */
1023 }
1024 if (bstate == block_done) {
1025 if (flush == Z_PARTIAL_FLUSH) {
1026 _tr_align(s);
1027 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1028 _tr_stored_block(s, (char*)0, 0L, 0);
1029 /* For a full flush, this empty block will be recognized
1030 * as a special marker by inflate_sync().
1031 */
1032 if (flush == Z_FULL_FLUSH) {
1033 CLEAR_HASH(s); /* forget history */
1034 if (s->lookahead == 0) {
1035 s->strstart = 0;
1036 s->block_start = 0L;
1037 s->insert = 0;
1038 }
1039 }
1040 }
1041 flush_pending(strm);
1042 if (strm->avail_out == 0) {
1043 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1044 return Z_OK;
1045 }
1046 }
1047 }
1048
1049 if (flush != Z_FINISH) return Z_OK;
1050 if (s->wrap <= 0) return Z_STREAM_END;
1051
1052 /* Write the trailer */
1053 #ifdef GZIP
1054 if (s->wrap == 2) {
1055 put_byte(s, (Byte)(strm->adler & 0xff));
1056 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1057 put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1058 put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1059 put_byte(s, (Byte)(strm->total_in & 0xff));
1060 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1061 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1062 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1063 }
1064 else
1065 #endif
1066 {
1067 putShortMSB(s, (uInt)(strm->adler >> 16));
1068 putShortMSB(s, (uInt)(strm->adler & 0xffff));
1069 }
1070 flush_pending(strm);
1071 /* If avail_out is zero, the application will call deflate again
1072 * to flush the rest.
1073 */
1074 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1075 return s->pending != 0 ? Z_OK : Z_STREAM_END;
1076 }
1077
1078 /* ========================================================================= */
deflateEnd(strm)1079 int ZEXPORT deflateEnd (strm)
1080 z_streamp strm;
1081 {
1082 int status;
1083
1084 if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1085
1086 status = strm->state->status;
1087
1088 /* Deallocate in reverse order of allocations: */
1089 TRY_FREE(strm, strm->state->pending_buf);
1090 TRY_FREE(strm, strm->state->head);
1091 TRY_FREE(strm, strm->state->prev);
1092 TRY_FREE(strm, strm->state->window);
1093
1094 ZFREE(strm, strm->state);
1095 strm->state = Z_NULL;
1096
1097 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1098 }
1099
1100 /* =========================================================================
1101 * Copy the source state to the destination state.
1102 * To simplify the source, this is not supported for 16-bit MSDOS (which
1103 * doesn't have enough memory anyway to duplicate compression states).
1104 */
deflateCopy(dest,source)1105 int ZEXPORT deflateCopy (dest, source)
1106 z_streamp dest;
1107 z_streamp source;
1108 {
1109 #ifdef MAXSEG_64K
1110 return Z_STREAM_ERROR;
1111 #else
1112 deflate_state *ds;
1113 deflate_state *ss;
1114 ushf *overlay;
1115
1116
1117 if (deflateStateCheck(source) || dest == Z_NULL) {
1118 return Z_STREAM_ERROR;
1119 }
1120
1121 ss = source->state;
1122
1123 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1124
1125 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1126 if (ds == Z_NULL) return Z_MEM_ERROR;
1127 dest->state = (struct internal_state FAR *) ds;
1128 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1129 ds->strm = dest;
1130
1131 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1132 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1133 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1134 overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1135 ds->pending_buf = (uchf *) overlay;
1136
1137 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1138 ds->pending_buf == Z_NULL) {
1139 deflateEnd (dest);
1140 return Z_MEM_ERROR;
1141 }
1142 /* following zmemcpy do not work for 16-bit MSDOS */
1143 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1144 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1145 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1146 zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1147
1148 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1149 ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1150 ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1151
1152 ds->l_desc.dyn_tree = ds->dyn_ltree;
1153 ds->d_desc.dyn_tree = ds->dyn_dtree;
1154 ds->bl_desc.dyn_tree = ds->bl_tree;
1155
1156 return Z_OK;
1157 #endif /* MAXSEG_64K */
1158 }
1159
1160 /* ===========================================================================
1161 * Read a new buffer from the current input stream, update the adler32
1162 * and total number of bytes read. All deflate() input goes through
1163 * this function so some applications may wish to modify it to avoid
1164 * allocating a large strm->next_in buffer and copying from it.
1165 * (See also flush_pending()).
1166 */
read_buf(strm,buf,size)1167 local unsigned read_buf(strm, buf, size)
1168 z_streamp strm;
1169 Bytef *buf;
1170 unsigned size;
1171 {
1172 unsigned len = strm->avail_in;
1173
1174 if (len > size) len = size;
1175 if (len == 0) return 0;
1176
1177 strm->avail_in -= len;
1178
1179 zmemcpy(buf, strm->next_in, len);
1180 if (strm->state->wrap == 1) {
1181 strm->adler = adler32(strm->adler, buf, len);
1182 }
1183 #ifdef GZIP
1184 else if (strm->state->wrap == 2) {
1185 strm->adler = crc32(strm->adler, buf, len);
1186 }
1187 #endif
1188 strm->next_in += len;
1189 strm->total_in += len;
1190
1191 return len;
1192 }
1193
1194 /* ===========================================================================
1195 * Initialize the "longest match" routines for a new zlib stream
1196 */
lm_init(s)1197 local void lm_init (s)
1198 deflate_state *s;
1199 {
1200 s->window_size = (ulg)2L*s->w_size;
1201
1202 CLEAR_HASH(s);
1203
1204 /* Set the default configuration parameters:
1205 */
1206 s->max_lazy_match = configuration_table[s->level].max_lazy;
1207 s->good_match = configuration_table[s->level].good_length;
1208 s->nice_match = configuration_table[s->level].nice_length;
1209 s->max_chain_length = configuration_table[s->level].max_chain;
1210
1211 s->strstart = 0;
1212 s->block_start = 0L;
1213 s->lookahead = 0;
1214 s->insert = 0;
1215 s->match_length = s->prev_length = MIN_MATCH-1;
1216 s->match_available = 0;
1217 s->ins_h = 0;
1218 #ifndef FASTEST
1219 #ifdef ASMV
1220 match_init(); /* initialize the asm code */
1221 #endif
1222 #endif
1223 }
1224
1225 #ifndef FASTEST
1226 /* ===========================================================================
1227 * Set match_start to the longest match starting at the given string and
1228 * return its length. Matches shorter or equal to prev_length are discarded,
1229 * in which case the result is equal to prev_length and match_start is
1230 * garbage.
1231 * IN assertions: cur_match is the head of the hash chain for the current
1232 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1233 * OUT assertion: the match length is not greater than s->lookahead.
1234 */
1235 #ifndef ASMV
1236 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1237 * match.S. The code will be functionally equivalent.
1238 */
longest_match(s,cur_match)1239 local uInt longest_match(s, cur_match)
1240 deflate_state *s;
1241 IPos cur_match; /* current match */
1242 {
1243 unsigned chain_length = s->max_chain_length;/* max hash chain length */
1244 register Bytef *scan = s->window + s->strstart; /* current string */
1245 register Bytef *match; /* matched string */
1246 register int len; /* length of current match */
1247 int best_len = (int)s->prev_length; /* best match length so far */
1248 int nice_match = s->nice_match; /* stop if match long enough */
1249 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1250 s->strstart - (IPos)MAX_DIST(s) : NIL;
1251 /* Stop when cur_match becomes <= limit. To simplify the code,
1252 * we prevent matches with the string of window index 0.
1253 */
1254 Posf *prev = s->prev;
1255 uInt wmask = s->w_mask;
1256
1257 #ifdef UNALIGNED_OK
1258 /* Compare two bytes at a time. Note: this is not always beneficial.
1259 * Try with and without -DUNALIGNED_OK to check.
1260 */
1261 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1262 register ush scan_start = *(ushf*)scan;
1263 register ush scan_end = *(ushf*)(scan+best_len-1);
1264 #else
1265 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1266 register Byte scan_end1 = scan[best_len-1];
1267 register Byte scan_end = scan[best_len];
1268 #endif
1269
1270 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1271 * It is easy to get rid of this optimization if necessary.
1272 */
1273 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1274
1275 /* Do not waste too much time if we already have a good match: */
1276 if (s->prev_length >= s->good_match) {
1277 chain_length >>= 2;
1278 }
1279 /* Do not look for matches beyond the end of the input. This is necessary
1280 * to make deflate deterministic.
1281 */
1282 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1283
1284 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1285
1286 do {
1287 Assert(cur_match < s->strstart, "no future");
1288 match = s->window + cur_match;
1289
1290 /* Skip to next match if the match length cannot increase
1291 * or if the match length is less than 2. Note that the checks below
1292 * for insufficient lookahead only occur occasionally for performance
1293 * reasons. Therefore uninitialized memory will be accessed, and
1294 * conditional jumps will be made that depend on those values.
1295 * However the length of the match is limited to the lookahead, so
1296 * the output of deflate is not affected by the uninitialized values.
1297 */
1298 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1299 /* This code assumes sizeof(unsigned short) == 2. Do not use
1300 * UNALIGNED_OK if your compiler uses a different size.
1301 */
1302 if (*(ushf*)(match+best_len-1) != scan_end ||
1303 *(ushf*)match != scan_start) continue;
1304
1305 /* It is not necessary to compare scan[2] and match[2] since they are
1306 * always equal when the other bytes match, given that the hash keys
1307 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1308 * strstart+3, +5, ... up to strstart+257. We check for insufficient
1309 * lookahead only every 4th comparison; the 128th check will be made
1310 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1311 * necessary to put more guard bytes at the end of the window, or
1312 * to check more often for insufficient lookahead.
1313 */
1314 Assert(scan[2] == match[2], "scan[2]?");
1315 scan++, match++;
1316 do {
1317 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1318 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1319 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1320 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1321 scan < strend);
1322 /* The funny "do {}" generates better code on most compilers */
1323
1324 /* Here, scan <= window+strstart+257 */
1325 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1326 if (*scan == *match) scan++;
1327
1328 len = (MAX_MATCH - 1) - (int)(strend-scan);
1329 scan = strend - (MAX_MATCH-1);
1330
1331 #else /* UNALIGNED_OK */
1332
1333 if (match[best_len] != scan_end ||
1334 match[best_len-1] != scan_end1 ||
1335 *match != *scan ||
1336 *++match != scan[1]) continue;
1337
1338 /* The check at best_len-1 can be removed because it will be made
1339 * again later. (This heuristic is not always a win.)
1340 * It is not necessary to compare scan[2] and match[2] since they
1341 * are always equal when the other bytes match, given that
1342 * the hash keys are equal and that HASH_BITS >= 8.
1343 */
1344 scan += 2, match++;
1345 Assert(*scan == *match, "match[2]?");
1346
1347 /* We check for insufficient lookahead only every 8th comparison;
1348 * the 256th check will be made at strstart+258.
1349 */
1350 do {
1351 } while (*++scan == *++match && *++scan == *++match &&
1352 *++scan == *++match && *++scan == *++match &&
1353 *++scan == *++match && *++scan == *++match &&
1354 *++scan == *++match && *++scan == *++match &&
1355 scan < strend);
1356
1357 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1358
1359 len = MAX_MATCH - (int)(strend - scan);
1360 scan = strend - MAX_MATCH;
1361
1362 #endif /* UNALIGNED_OK */
1363
1364 if (len > best_len) {
1365 s->match_start = cur_match;
1366 best_len = len;
1367 if (len >= nice_match) break;
1368 #ifdef UNALIGNED_OK
1369 scan_end = *(ushf*)(scan+best_len-1);
1370 #else
1371 scan_end1 = scan[best_len-1];
1372 scan_end = scan[best_len];
1373 #endif
1374 }
1375 } while ((cur_match = prev[cur_match & wmask]) > limit
1376 && --chain_length != 0);
1377
1378 if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1379 return s->lookahead;
1380 }
1381 #endif /* ASMV */
1382
1383 #else /* FASTEST */
1384
1385 /* ---------------------------------------------------------------------------
1386 * Optimized version for FASTEST only
1387 */
longest_match(s,cur_match)1388 local uInt longest_match(s, cur_match)
1389 deflate_state *s;
1390 IPos cur_match; /* current match */
1391 {
1392 register Bytef *scan = s->window + s->strstart; /* current string */
1393 register Bytef *match; /* matched string */
1394 register int len; /* length of current match */
1395 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1396
1397 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1398 * It is easy to get rid of this optimization if necessary.
1399 */
1400 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1401
1402 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1403
1404 Assert(cur_match < s->strstart, "no future");
1405
1406 match = s->window + cur_match;
1407
1408 /* Return failure if the match length is less than 2:
1409 */
1410 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1411
1412 /* The check at best_len-1 can be removed because it will be made
1413 * again later. (This heuristic is not always a win.)
1414 * It is not necessary to compare scan[2] and match[2] since they
1415 * are always equal when the other bytes match, given that
1416 * the hash keys are equal and that HASH_BITS >= 8.
1417 */
1418 scan += 2, match += 2;
1419 Assert(*scan == *match, "match[2]?");
1420
1421 /* We check for insufficient lookahead only every 8th comparison;
1422 * the 256th check will be made at strstart+258.
1423 */
1424 do {
1425 } while (*++scan == *++match && *++scan == *++match &&
1426 *++scan == *++match && *++scan == *++match &&
1427 *++scan == *++match && *++scan == *++match &&
1428 *++scan == *++match && *++scan == *++match &&
1429 scan < strend);
1430
1431 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1432
1433 len = MAX_MATCH - (int)(strend - scan);
1434
1435 if (len < MIN_MATCH) return MIN_MATCH - 1;
1436
1437 s->match_start = cur_match;
1438 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1439 }
1440
1441 #endif /* FASTEST */
1442
1443 #ifdef ZLIB_DEBUG
1444
1445 #define EQUAL 0
1446 /* result of memcmp for equal strings */
1447
1448 /* ===========================================================================
1449 * Check that the match at match_start is indeed a match.
1450 */
check_match(s,start,match,length)1451 local void check_match(s, start, match, length)
1452 deflate_state *s;
1453 IPos start, match;
1454 int length;
1455 {
1456 /* check that the match is indeed a match */
1457 if (zmemcmp(s->window + match,
1458 s->window + start, length) != EQUAL) {
1459 fprintf(stderr, " start %u, match %u, length %d\n",
1460 start, match, length);
1461 do {
1462 fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1463 } while (--length != 0);
1464 z_error("invalid match");
1465 }
1466 if (z_verbose > 1) {
1467 fprintf(stderr,"\\[%d,%d]", start-match, length);
1468 do { putc(s->window[start++], stderr); } while (--length != 0);
1469 }
1470 }
1471 #else
1472 # define check_match(s, start, match, length)
1473 #endif /* ZLIB_DEBUG */
1474
1475 /* ===========================================================================
1476 * Fill the window when the lookahead becomes insufficient.
1477 * Updates strstart and lookahead.
1478 *
1479 * IN assertion: lookahead < MIN_LOOKAHEAD
1480 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1481 * At least one byte has been read, or avail_in == 0; reads are
1482 * performed for at least two bytes (required for the zip translate_eol
1483 * option -- not supported here).
1484 */
fill_window(s)1485 local void fill_window(s)
1486 deflate_state *s;
1487 {
1488 unsigned n;
1489 unsigned more; /* Amount of free space at the end of the window. */
1490 uInt wsize = s->w_size;
1491
1492 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1493
1494 do {
1495 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1496
1497 /* Deal with !@#$% 64K limit: */
1498 if (sizeof(int) <= 2) {
1499 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1500 more = wsize;
1501
1502 } else if (more == (unsigned)(-1)) {
1503 /* Very unlikely, but possible on 16 bit machine if
1504 * strstart == 0 && lookahead == 1 (input done a byte at time)
1505 */
1506 more--;
1507 }
1508 }
1509
1510 /* If the window is almost full and there is insufficient lookahead,
1511 * move the upper half to the lower one to make room in the upper half.
1512 */
1513 if (s->strstart >= wsize+MAX_DIST(s)) {
1514
1515 zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1516 s->match_start -= wsize;
1517 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1518 s->block_start -= (long) wsize;
1519 slide_hash(s);
1520 more += wsize;
1521 }
1522 if (s->strm->avail_in == 0) break;
1523
1524 /* If there was no sliding:
1525 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1526 * more == window_size - lookahead - strstart
1527 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1528 * => more >= window_size - 2*WSIZE + 2
1529 * In the BIG_MEM or MMAP case (not yet supported),
1530 * window_size == input_size + MIN_LOOKAHEAD &&
1531 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1532 * Otherwise, window_size == 2*WSIZE so more >= 2.
1533 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1534 */
1535 Assert(more >= 2, "more < 2");
1536
1537 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1538 s->lookahead += n;
1539
1540 /* Initialize the hash value now that we have some input: */
1541 if (s->lookahead + s->insert >= MIN_MATCH) {
1542 uInt str = s->strstart - s->insert;
1543 s->ins_h = s->window[str];
1544 UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1545 #if MIN_MATCH != 3
1546 Call UPDATE_HASH() MIN_MATCH-3 more times
1547 #endif
1548 while (s->insert) {
1549 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1550 #ifndef FASTEST
1551 s->prev[str & s->w_mask] = s->head[s->ins_h];
1552 #endif
1553 s->head[s->ins_h] = (Pos)str;
1554 str++;
1555 s->insert--;
1556 if (s->lookahead + s->insert < MIN_MATCH)
1557 break;
1558 }
1559 }
1560 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1561 * but this is not important since only literal bytes will be emitted.
1562 */
1563
1564 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1565
1566 /* If the WIN_INIT bytes after the end of the current data have never been
1567 * written, then zero those bytes in order to avoid memory check reports of
1568 * the use of uninitialized (or uninitialised as Julian writes) bytes by
1569 * the longest match routines. Update the high water mark for the next
1570 * time through here. WIN_INIT is set to MAX_MATCH since the longest match
1571 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1572 */
1573 if (s->high_water < s->window_size) {
1574 ulg curr = s->strstart + (ulg)(s->lookahead);
1575 ulg init;
1576
1577 if (s->high_water < curr) {
1578 /* Previous high water mark below current data -- zero WIN_INIT
1579 * bytes or up to end of window, whichever is less.
1580 */
1581 init = s->window_size - curr;
1582 if (init > WIN_INIT)
1583 init = WIN_INIT;
1584 zmemzero(s->window + curr, (unsigned)init);
1585 s->high_water = curr + init;
1586 }
1587 else if (s->high_water < (ulg)curr + WIN_INIT) {
1588 /* High water mark at or above current data, but below current data
1589 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1590 * to end of window, whichever is less.
1591 */
1592 init = (ulg)curr + WIN_INIT - s->high_water;
1593 if (init > s->window_size - s->high_water)
1594 init = s->window_size - s->high_water;
1595 zmemzero(s->window + s->high_water, (unsigned)init);
1596 s->high_water += init;
1597 }
1598 }
1599
1600 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1601 "not enough room for search");
1602 }
1603
1604 /* ===========================================================================
1605 * Flush the current block, with given end-of-file flag.
1606 * IN assertion: strstart is set to the end of the current match.
1607 */
1608 #define FLUSH_BLOCK_ONLY(s, last) { \
1609 _tr_flush_block(s, (s->block_start >= 0L ? \
1610 (charf *)&s->window[(unsigned)s->block_start] : \
1611 (charf *)Z_NULL), \
1612 (ulg)((long)s->strstart - s->block_start), \
1613 (last)); \
1614 s->block_start = s->strstart; \
1615 flush_pending(s->strm); \
1616 Tracev((stderr,"[FLUSH]")); \
1617 }
1618
1619 /* Same but force premature exit if necessary. */
1620 #define FLUSH_BLOCK(s, last) { \
1621 FLUSH_BLOCK_ONLY(s, last); \
1622 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1623 }
1624
1625 /* Maximum stored block length in deflate format (not including header). */
1626 #define MAX_STORED 65535
1627
1628 #if !defined(MIN)
1629 /* Minimum of a and b. */
1630 #define MIN(a, b) ((a) > (b) ? (b) : (a))
1631 #endif
1632
1633 /* ===========================================================================
1634 * Copy without compression as much as possible from the input stream, return
1635 * the current block state.
1636 *
1637 * In case deflateParams() is used to later switch to a non-zero compression
1638 * level, s->matches (otherwise unused when storing) keeps track of the number
1639 * of hash table slides to perform. If s->matches is 1, then one hash table
1640 * slide will be done when switching. If s->matches is 2, the maximum value
1641 * allowed here, then the hash table will be cleared, since two or more slides
1642 * is the same as a clear.
1643 *
1644 * deflate_stored() is written to minimize the number of times an input byte is
1645 * copied. It is most efficient with large input and output buffers, which
1646 * maximizes the opportunites to have a single copy from next_in to next_out.
1647 */
deflate_stored(s,flush)1648 local block_state deflate_stored(s, flush)
1649 deflate_state *s;
1650 int flush;
1651 {
1652 /* Smallest worthy block size when not flushing or finishing. By default
1653 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1654 * large input and output buffers, the stored block size will be larger.
1655 */
1656 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1657
1658 /* Copy as many min_block or larger stored blocks directly to next_out as
1659 * possible. If flushing, copy the remaining available input to next_out as
1660 * stored blocks, if there is enough space.
1661 */
1662 unsigned len, left, have, last = 0;
1663 unsigned used = s->strm->avail_in;
1664 do {
1665 /* Set len to the maximum size block that we can copy directly with the
1666 * available input data and output space. Set left to how much of that
1667 * would be copied from what's left in the window.
1668 */
1669 len = MAX_STORED; /* maximum deflate stored block length */
1670 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1671 if (s->strm->avail_out < have) /* need room for header */
1672 break;
1673 /* maximum stored block length that will fit in avail_out: */
1674 have = s->strm->avail_out - have;
1675 left = s->strstart - s->block_start; /* bytes left in window */
1676 if (len > (ulg)left + s->strm->avail_in)
1677 len = left + s->strm->avail_in; /* limit len to the input */
1678 if (len > have)
1679 len = have; /* limit len to the output */
1680
1681 /* If the stored block would be less than min_block in length, or if
1682 * unable to copy all of the available input when flushing, then try
1683 * copying to the window and the pending buffer instead. Also don't
1684 * write an empty block when flushing -- deflate() does that.
1685 */
1686 if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1687 flush == Z_NO_FLUSH ||
1688 len != left + s->strm->avail_in))
1689 break;
1690
1691 /* Make a dummy stored block in pending to get the header bytes,
1692 * including any pending bits. This also updates the debugging counts.
1693 */
1694 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1695 _tr_stored_block(s, (char *)0, 0L, last);
1696
1697 /* Replace the lengths in the dummy stored block with len. */
1698 s->pending_buf[s->pending - 4] = len;
1699 s->pending_buf[s->pending - 3] = len >> 8;
1700 s->pending_buf[s->pending - 2] = ~len;
1701 s->pending_buf[s->pending - 1] = ~len >> 8;
1702
1703 /* Write the stored block header bytes. */
1704 flush_pending(s->strm);
1705
1706 #ifdef ZLIB_DEBUG
1707 /* Update debugging counts for the data about to be copied. */
1708 s->compressed_len += len << 3;
1709 s->bits_sent += len << 3;
1710 #endif
1711
1712 /* Copy uncompressed bytes from the window to next_out. */
1713 if (left) {
1714 if (left > len)
1715 left = len;
1716 zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1717 s->strm->next_out += left;
1718 s->strm->avail_out -= left;
1719 s->strm->total_out += left;
1720 s->block_start += left;
1721 len -= left;
1722 }
1723
1724 /* Copy uncompressed bytes directly from next_in to next_out, updating
1725 * the check value.
1726 */
1727 if (len) {
1728 read_buf(s->strm, s->strm->next_out, len);
1729 s->strm->next_out += len;
1730 s->strm->avail_out -= len;
1731 s->strm->total_out += len;
1732 }
1733 } while (last == 0);
1734
1735 /* Update the sliding window with the last s->w_size bytes of the copied
1736 * data, or append all of the copied data to the existing window if less
1737 * than s->w_size bytes were copied. Also update the number of bytes to
1738 * insert in the hash tables, in the event that deflateParams() switches to
1739 * a non-zero compression level.
1740 */
1741 used -= s->strm->avail_in; /* number of input bytes directly copied */
1742 if (used) {
1743 /* If any input was used, then no unused input remains in the window,
1744 * therefore s->block_start == s->strstart.
1745 */
1746 if (used >= s->w_size) { /* supplant the previous history */
1747 s->matches = 2; /* clear hash */
1748 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1749 s->strstart = s->w_size;
1750 }
1751 else {
1752 if (s->window_size - s->strstart <= used) {
1753 /* Slide the window down. */
1754 s->strstart -= s->w_size;
1755 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1756 if (s->matches < 2)
1757 s->matches++; /* add a pending slide_hash() */
1758 }
1759 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1760 s->strstart += used;
1761 }
1762 s->block_start = s->strstart;
1763 s->insert += MIN(used, s->w_size - s->insert);
1764 }
1765 if (s->high_water < s->strstart)
1766 s->high_water = s->strstart;
1767
1768 /* If the last block was written to next_out, then done. */
1769 if (last)
1770 return finish_done;
1771
1772 /* If flushing and all input has been consumed, then done. */
1773 if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1774 s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1775 return block_done;
1776
1777 /* Fill the window with any remaining input. */
1778 have = s->window_size - s->strstart - 1;
1779 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1780 /* Slide the window down. */
1781 s->block_start -= s->w_size;
1782 s->strstart -= s->w_size;
1783 zmemcpy(s->window, s->window + s->w_size, s->strstart);
1784 if (s->matches < 2)
1785 s->matches++; /* add a pending slide_hash() */
1786 have += s->w_size; /* more space now */
1787 }
1788 if (have > s->strm->avail_in)
1789 have = s->strm->avail_in;
1790 if (have) {
1791 read_buf(s->strm, s->window + s->strstart, have);
1792 s->strstart += have;
1793 }
1794 if (s->high_water < s->strstart)
1795 s->high_water = s->strstart;
1796
1797 /* There was not enough avail_out to write a complete worthy or flushed
1798 * stored block to next_out. Write a stored block to pending instead, if we
1799 * have enough input for a worthy block, or if flushing and there is enough
1800 * room for the remaining input as a stored block in the pending buffer.
1801 */
1802 have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1803 /* maximum stored block length that will fit in pending: */
1804 have = MIN(s->pending_buf_size - have, MAX_STORED);
1805 min_block = MIN(have, s->w_size);
1806 left = s->strstart - s->block_start;
1807 if (left >= min_block ||
1808 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1809 s->strm->avail_in == 0 && left <= have)) {
1810 len = MIN(left, have);
1811 last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1812 len == left ? 1 : 0;
1813 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1814 s->block_start += len;
1815 flush_pending(s->strm);
1816 }
1817
1818 /* We've done all we can with the available input and output. */
1819 return last ? finish_started : need_more;
1820 }
1821
1822 /* ===========================================================================
1823 * Compress as much as possible from the input stream, return the current
1824 * block state.
1825 * This function does not perform lazy evaluation of matches and inserts
1826 * new strings in the dictionary only for unmatched strings or for short
1827 * matches. It is used only for the fast compression options.
1828 */
deflate_fast(s,flush)1829 local block_state deflate_fast(s, flush)
1830 deflate_state *s;
1831 int flush;
1832 {
1833 IPos hash_head; /* head of the hash chain */
1834 int bflush; /* set if current block must be flushed */
1835
1836 for (;;) {
1837 /* Make sure that we always have enough lookahead, except
1838 * at the end of the input file. We need MAX_MATCH bytes
1839 * for the next match, plus MIN_MATCH bytes to insert the
1840 * string following the next match.
1841 */
1842 if (s->lookahead < MIN_LOOKAHEAD) {
1843 fill_window(s);
1844 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1845 return need_more;
1846 }
1847 if (s->lookahead == 0) break; /* flush the current block */
1848 }
1849
1850 /* Insert the string window[strstart .. strstart+2] in the
1851 * dictionary, and set hash_head to the head of the hash chain:
1852 */
1853 hash_head = NIL;
1854 if (s->lookahead >= MIN_MATCH) {
1855 INSERT_STRING(s, s->strstart, hash_head);
1856 }
1857
1858 /* Find the longest match, discarding those <= prev_length.
1859 * At this point we have always match_length < MIN_MATCH
1860 */
1861 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1862 /* To simplify the code, we prevent matches with the string
1863 * of window index 0 (in particular we have to avoid a match
1864 * of the string with itself at the start of the input file).
1865 */
1866 s->match_length = longest_match (s, hash_head);
1867 /* longest_match() sets match_start */
1868 }
1869 if (s->match_length >= MIN_MATCH) {
1870 check_match(s, s->strstart, s->match_start, s->match_length);
1871
1872 _tr_tally_dist(s, s->strstart - s->match_start,
1873 s->match_length - MIN_MATCH, bflush);
1874
1875 s->lookahead -= s->match_length;
1876
1877 /* Insert new strings in the hash table only if the match length
1878 * is not too large. This saves time but degrades compression.
1879 */
1880 #ifndef FASTEST
1881 if (s->match_length <= s->max_insert_length &&
1882 s->lookahead >= MIN_MATCH) {
1883 s->match_length--; /* string at strstart already in table */
1884 do {
1885 s->strstart++;
1886 INSERT_STRING(s, s->strstart, hash_head);
1887 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1888 * always MIN_MATCH bytes ahead.
1889 */
1890 } while (--s->match_length != 0);
1891 s->strstart++;
1892 } else
1893 #endif
1894 {
1895 s->strstart += s->match_length;
1896 s->match_length = 0;
1897 s->ins_h = s->window[s->strstart];
1898 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1899 #if MIN_MATCH != 3
1900 Call UPDATE_HASH() MIN_MATCH-3 more times
1901 #endif
1902 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1903 * matter since it will be recomputed at next deflate call.
1904 */
1905 }
1906 } else {
1907 /* No match, output a literal byte */
1908 Tracevv((stderr,"%c", s->window[s->strstart]));
1909 _tr_tally_lit (s, s->window[s->strstart], bflush);
1910 s->lookahead--;
1911 s->strstart++;
1912 }
1913 if (bflush) FLUSH_BLOCK(s, 0);
1914 }
1915 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1916 if (flush == Z_FINISH) {
1917 FLUSH_BLOCK(s, 1);
1918 return finish_done;
1919 }
1920 if (s->last_lit)
1921 FLUSH_BLOCK(s, 0);
1922 return block_done;
1923 }
1924
1925 #ifndef FASTEST
1926 /* ===========================================================================
1927 * Same as above, but achieves better compression. We use a lazy
1928 * evaluation for matches: a match is finally adopted only if there is
1929 * no better match at the next window position.
1930 */
deflate_slow(s,flush)1931 local block_state deflate_slow(s, flush)
1932 deflate_state *s;
1933 int flush;
1934 {
1935 IPos hash_head; /* head of hash chain */
1936 int bflush; /* set if current block must be flushed */
1937
1938 /* Process the input block. */
1939 for (;;) {
1940 /* Make sure that we always have enough lookahead, except
1941 * at the end of the input file. We need MAX_MATCH bytes
1942 * for the next match, plus MIN_MATCH bytes to insert the
1943 * string following the next match.
1944 */
1945 if (s->lookahead < MIN_LOOKAHEAD) {
1946 fill_window(s);
1947 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1948 return need_more;
1949 }
1950 if (s->lookahead == 0) break; /* flush the current block */
1951 }
1952
1953 /* Insert the string window[strstart .. strstart+2] in the
1954 * dictionary, and set hash_head to the head of the hash chain:
1955 */
1956 hash_head = NIL;
1957 if (s->lookahead >= MIN_MATCH) {
1958 INSERT_STRING(s, s->strstart, hash_head);
1959 }
1960
1961 /* Find the longest match, discarding those <= prev_length.
1962 */
1963 s->prev_length = s->match_length, s->prev_match = s->match_start;
1964 s->match_length = MIN_MATCH-1;
1965
1966 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1967 s->strstart - hash_head <= MAX_DIST(s)) {
1968 /* To simplify the code, we prevent matches with the string
1969 * of window index 0 (in particular we have to avoid a match
1970 * of the string with itself at the start of the input file).
1971 */
1972 s->match_length = longest_match (s, hash_head);
1973 /* longest_match() sets match_start */
1974
1975 if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1976 #if TOO_FAR <= 32767
1977 || (s->match_length == MIN_MATCH &&
1978 s->strstart - s->match_start > TOO_FAR)
1979 #endif
1980 )) {
1981
1982 /* If prev_match is also MIN_MATCH, match_start is garbage
1983 * but we will ignore the current match anyway.
1984 */
1985 s->match_length = MIN_MATCH-1;
1986 }
1987 }
1988 /* If there was a match at the previous step and the current
1989 * match is not better, output the previous match:
1990 */
1991 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1992 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1993 /* Do not insert strings in hash table beyond this. */
1994
1995 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1996
1997 _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1998 s->prev_length - MIN_MATCH, bflush);
1999
2000 /* Insert in hash table all strings up to the end of the match.
2001 * strstart-1 and strstart are already inserted. If there is not
2002 * enough lookahead, the last two strings are not inserted in
2003 * the hash table.
2004 */
2005 s->lookahead -= s->prev_length-1;
2006 s->prev_length -= 2;
2007 do {
2008 if (++s->strstart <= max_insert) {
2009 INSERT_STRING(s, s->strstart, hash_head);
2010 }
2011 } while (--s->prev_length != 0);
2012 s->match_available = 0;
2013 s->match_length = MIN_MATCH-1;
2014 s->strstart++;
2015
2016 if (bflush) FLUSH_BLOCK(s, 0);
2017
2018 } else if (s->match_available) {
2019 /* If there was no match at the previous position, output a
2020 * single literal. If there was a match but the current match
2021 * is longer, truncate the previous match to a single literal.
2022 */
2023 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2024 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2025 if (bflush) {
2026 FLUSH_BLOCK_ONLY(s, 0);
2027 }
2028 s->strstart++;
2029 s->lookahead--;
2030 if (s->strm->avail_out == 0) return need_more;
2031 } else {
2032 /* There is no previous match to compare with, wait for
2033 * the next step to decide.
2034 */
2035 s->match_available = 1;
2036 s->strstart++;
2037 s->lookahead--;
2038 }
2039 }
2040 Assert (flush != Z_NO_FLUSH, "no flush?");
2041 if (s->match_available) {
2042 Tracevv((stderr,"%c", s->window[s->strstart-1]));
2043 _tr_tally_lit(s, s->window[s->strstart-1], bflush);
2044 s->match_available = 0;
2045 }
2046 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2047 if (flush == Z_FINISH) {
2048 FLUSH_BLOCK(s, 1);
2049 return finish_done;
2050 }
2051 if (s->last_lit)
2052 FLUSH_BLOCK(s, 0);
2053 return block_done;
2054 }
2055 #endif /* FASTEST */
2056
2057 /* ===========================================================================
2058 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
2059 * one. Do not maintain a hash table. (It will be regenerated if this run of
2060 * deflate switches away from Z_RLE.)
2061 */
deflate_rle(s,flush)2062 local block_state deflate_rle(s, flush)
2063 deflate_state *s;
2064 int flush;
2065 {
2066 int bflush; /* set if current block must be flushed */
2067 uInt prev; /* byte at distance one to match */
2068 Bytef *scan, *strend; /* scan goes up to strend for length of run */
2069
2070 for (;;) {
2071 /* Make sure that we always have enough lookahead, except
2072 * at the end of the input file. We need MAX_MATCH bytes
2073 * for the longest run, plus one for the unrolled loop.
2074 */
2075 if (s->lookahead <= MAX_MATCH) {
2076 fill_window(s);
2077 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2078 return need_more;
2079 }
2080 if (s->lookahead == 0) break; /* flush the current block */
2081 }
2082
2083 /* See how many times the previous byte repeats */
2084 s->match_length = 0;
2085 if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2086 scan = s->window + s->strstart - 1;
2087 prev = *scan;
2088 if (prev == *++scan && prev == *++scan && prev == *++scan) {
2089 strend = s->window + s->strstart + MAX_MATCH;
2090 do {
2091 } while (prev == *++scan && prev == *++scan &&
2092 prev == *++scan && prev == *++scan &&
2093 prev == *++scan && prev == *++scan &&
2094 prev == *++scan && prev == *++scan &&
2095 scan < strend);
2096 s->match_length = MAX_MATCH - (uInt)(strend - scan);
2097 if (s->match_length > s->lookahead)
2098 s->match_length = s->lookahead;
2099 }
2100 Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2101 }
2102
2103 /* Emit match if have run of MIN_MATCH or longer, else emit literal */
2104 if (s->match_length >= MIN_MATCH) {
2105 check_match(s, s->strstart, s->strstart - 1, s->match_length);
2106
2107 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2108
2109 s->lookahead -= s->match_length;
2110 s->strstart += s->match_length;
2111 s->match_length = 0;
2112 } else {
2113 /* No match, output a literal byte */
2114 Tracevv((stderr,"%c", s->window[s->strstart]));
2115 _tr_tally_lit (s, s->window[s->strstart], bflush);
2116 s->lookahead--;
2117 s->strstart++;
2118 }
2119 if (bflush) FLUSH_BLOCK(s, 0);
2120 }
2121 s->insert = 0;
2122 if (flush == Z_FINISH) {
2123 FLUSH_BLOCK(s, 1);
2124 return finish_done;
2125 }
2126 if (s->last_lit)
2127 FLUSH_BLOCK(s, 0);
2128 return block_done;
2129 }
2130
2131 /* ===========================================================================
2132 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2133 * (It will be regenerated if this run of deflate switches away from Huffman.)
2134 */
deflate_huff(s,flush)2135 local block_state deflate_huff(s, flush)
2136 deflate_state *s;
2137 int flush;
2138 {
2139 int bflush; /* set if current block must be flushed */
2140
2141 for (;;) {
2142 /* Make sure that we have a literal to write. */
2143 if (s->lookahead == 0) {
2144 fill_window(s);
2145 if (s->lookahead == 0) {
2146 if (flush == Z_NO_FLUSH)
2147 return need_more;
2148 break; /* flush the current block */
2149 }
2150 }
2151
2152 /* Output a literal byte */
2153 s->match_length = 0;
2154 Tracevv((stderr,"%c", s->window[s->strstart]));
2155 _tr_tally_lit (s, s->window[s->strstart], bflush);
2156 s->lookahead--;
2157 s->strstart++;
2158 if (bflush) FLUSH_BLOCK(s, 0);
2159 }
2160 s->insert = 0;
2161 if (flush == Z_FINISH) {
2162 FLUSH_BLOCK(s, 1);
2163 return finish_done;
2164 }
2165 if (s->last_lit)
2166 FLUSH_BLOCK(s, 0);
2167 return block_done;
2168 }
2169