1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains the implementation of the instruction decoder.
12 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include <cstdarg> /* for va_*()       */
17 #include <cstdio>  /* for vsnprintf()  */
18 #include <cstdlib> /* for exit()       */
19 #include <cstring> /* for memset()     */
20 
21 #include "X86DisassemblerDecoder.h"
22 
23 using namespace llvm::X86Disassembler;
24 
25 /// Specifies whether a ModR/M byte is needed and (if so) which
26 /// instruction each possible value of the ModR/M byte corresponds to.  Once
27 /// this information is known, we have narrowed down to a single instruction.
28 struct ModRMDecision {
29   uint8_t modrm_type;
30   uint16_t instructionIDs;
31 };
32 
33 /// Specifies which set of ModR/M->instruction tables to look at
34 /// given a particular opcode.
35 struct OpcodeDecision {
36   ModRMDecision modRMDecisions[256];
37 };
38 
39 /// Specifies which opcode->instruction tables to look at given
40 /// a particular context (set of attributes).  Since there are many possible
41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
42 /// applies given a specific set of attributes.  Hence there are only IC_max
43 /// entries in this table, rather than 2^(ATTR_max).
44 struct ContextDecision {
45   OpcodeDecision opcodeDecisions[IC_max];
46 };
47 
48 #include "X86GenDisassemblerTables.inc"
49 
50 #ifndef NDEBUG
51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
52 #else
53 #define debug(s) do { } while (0)
54 #endif
55 
56 /*
57  * contextForAttrs - Client for the instruction context table.  Takes a set of
58  *   attributes and returns the appropriate decode context.
59  *
60  * @param attrMask  - Attributes, from the enumeration attributeBits.
61  * @return          - The InstructionContext to use when looking up an
62  *                    an instruction with these attributes.
63  */
contextForAttrs(uint16_t attrMask)64 static InstructionContext contextForAttrs(uint16_t attrMask) {
65   return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
66 }
67 
68 /*
69  * modRMRequired - Reads the appropriate instruction table to determine whether
70  *   the ModR/M byte is required to decode a particular instruction.
71  *
72  * @param type        - The opcode type (i.e., how many bytes it has).
73  * @param insnContext - The context for the instruction, as returned by
74  *                      contextForAttrs.
75  * @param opcode      - The last byte of the instruction's opcode, not counting
76  *                      ModR/M extensions and escapes.
77  * @return            - true if the ModR/M byte is required, false otherwise.
78  */
modRMRequired(OpcodeType type,InstructionContext insnContext,uint16_t opcode)79 static int modRMRequired(OpcodeType type,
80                          InstructionContext insnContext,
81                          uint16_t opcode) {
82   const struct ContextDecision* decision = nullptr;
83 
84   switch (type) {
85   case ONEBYTE:
86     decision = &ONEBYTE_SYM;
87     break;
88   case TWOBYTE:
89     decision = &TWOBYTE_SYM;
90     break;
91   case THREEBYTE_38:
92     decision = &THREEBYTE38_SYM;
93     break;
94   case THREEBYTE_3A:
95     decision = &THREEBYTE3A_SYM;
96     break;
97   case XOP8_MAP:
98     decision = &XOP8_MAP_SYM;
99     break;
100   case XOP9_MAP:
101     decision = &XOP9_MAP_SYM;
102     break;
103   case XOPA_MAP:
104     decision = &XOPA_MAP_SYM;
105     break;
106   case THREEDNOW_MAP:
107     decision = &THREEDNOW_MAP_SYM;
108     break;
109   }
110 
111   return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
112     modrm_type != MODRM_ONEENTRY;
113 }
114 
115 /*
116  * decode - Reads the appropriate instruction table to obtain the unique ID of
117  *   an instruction.
118  *
119  * @param type        - See modRMRequired().
120  * @param insnContext - See modRMRequired().
121  * @param opcode      - See modRMRequired().
122  * @param modRM       - The ModR/M byte if required, or any value if not.
123  * @return            - The UID of the instruction, or 0 on failure.
124  */
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)125 static InstrUID decode(OpcodeType type,
126                        InstructionContext insnContext,
127                        uint8_t opcode,
128                        uint8_t modRM) {
129   const struct ModRMDecision* dec = nullptr;
130 
131   switch (type) {
132   case ONEBYTE:
133     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
134     break;
135   case TWOBYTE:
136     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
137     break;
138   case THREEBYTE_38:
139     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
140     break;
141   case THREEBYTE_3A:
142     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
143     break;
144   case XOP8_MAP:
145     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
146     break;
147   case XOP9_MAP:
148     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
149     break;
150   case XOPA_MAP:
151     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case THREEDNOW_MAP:
154     dec = &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   }
157 
158   switch (dec->modrm_type) {
159   default:
160     debug("Corrupt table!  Unknown modrm_type");
161     return 0;
162   case MODRM_ONEENTRY:
163     return modRMTable[dec->instructionIDs];
164   case MODRM_SPLITRM:
165     if (modFromModRM(modRM) == 0x3)
166       return modRMTable[dec->instructionIDs+1];
167     return modRMTable[dec->instructionIDs];
168   case MODRM_SPLITREG:
169     if (modFromModRM(modRM) == 0x3)
170       return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
171     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
172   case MODRM_SPLITMISC:
173     if (modFromModRM(modRM) == 0x3)
174       return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
175     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
176   case MODRM_FULL:
177     return modRMTable[dec->instructionIDs+modRM];
178   }
179 }
180 
181 /*
182  * specifierForUID - Given a UID, returns the name and operand specification for
183  *   that instruction.
184  *
185  * @param uid - The unique ID for the instruction.  This should be returned by
186  *              decode(); specifierForUID will not check bounds.
187  * @return    - A pointer to the specification for that instruction.
188  */
specifierForUID(InstrUID uid)189 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
190   return &INSTRUCTIONS_SYM[uid];
191 }
192 
193 /*
194  * consumeByte - Uses the reader function provided by the user to consume one
195  *   byte from the instruction's memory and advance the cursor.
196  *
197  * @param insn  - The instruction with the reader function to use.  The cursor
198  *                for this instruction is advanced.
199  * @param byte  - A pointer to a pre-allocated memory buffer to be populated
200  *                with the data read.
201  * @return      - 0 if the read was successful; nonzero otherwise.
202  */
consumeByte(struct InternalInstruction * insn,uint8_t * byte)203 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
204   int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
205 
206   if (!ret)
207     ++(insn->readerCursor);
208 
209   return ret;
210 }
211 
212 /*
213  * lookAtByte - Like consumeByte, but does not advance the cursor.
214  *
215  * @param insn  - See consumeByte().
216  * @param byte  - See consumeByte().
217  * @return      - See consumeByte().
218  */
lookAtByte(struct InternalInstruction * insn,uint8_t * byte)219 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
220   return insn->reader(insn->readerArg, byte, insn->readerCursor);
221 }
222 
unconsumeByte(struct InternalInstruction * insn)223 static void unconsumeByte(struct InternalInstruction* insn) {
224   insn->readerCursor--;
225 }
226 
227 #define CONSUME_FUNC(name, type)                                  \
228   static int name(struct InternalInstruction* insn, type* ptr) {  \
229     type combined = 0;                                            \
230     unsigned offset;                                              \
231     for (offset = 0; offset < sizeof(type); ++offset) {           \
232       uint8_t byte;                                               \
233       int ret = insn->reader(insn->readerArg,                     \
234                              &byte,                               \
235                              insn->readerCursor + offset);        \
236       if (ret)                                                    \
237         return ret;                                               \
238       combined = combined | ((uint64_t)byte << (offset * 8));     \
239     }                                                             \
240     *ptr = combined;                                              \
241     insn->readerCursor += sizeof(type);                           \
242     return 0;                                                     \
243   }
244 
245 /*
246  * consume* - Use the reader function provided by the user to consume data
247  *   values of various sizes from the instruction's memory and advance the
248  *   cursor appropriately.  These readers perform endian conversion.
249  *
250  * @param insn    - See consumeByte().
251  * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
252  *                  be populated with the data read.
253  * @return        - See consumeByte().
254  */
CONSUME_FUNC(consumeInt8,int8_t)255 CONSUME_FUNC(consumeInt8, int8_t)
256 CONSUME_FUNC(consumeInt16, int16_t)
257 CONSUME_FUNC(consumeInt32, int32_t)
258 CONSUME_FUNC(consumeUInt16, uint16_t)
259 CONSUME_FUNC(consumeUInt32, uint32_t)
260 CONSUME_FUNC(consumeUInt64, uint64_t)
261 
262 /*
263  * dbgprintf - Uses the logging function provided by the user to log a single
264  *   message, typically without a carriage-return.
265  *
266  * @param insn    - The instruction containing the logging function.
267  * @param format  - See printf().
268  * @param ...     - See printf().
269  */
270 static void dbgprintf(struct InternalInstruction* insn,
271                       const char* format,
272                       ...) {
273   char buffer[256];
274   va_list ap;
275 
276   if (!insn->dlog)
277     return;
278 
279   va_start(ap, format);
280   (void)vsnprintf(buffer, sizeof(buffer), format, ap);
281   va_end(ap);
282 
283   insn->dlog(insn->dlogArg, buffer);
284 }
285 
isREX(struct InternalInstruction * insn,uint8_t prefix)286 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
287   if (insn->mode == MODE_64BIT)
288     return prefix >= 0x40 && prefix <= 0x4f;
289   return false;
290 }
291 
292 /*
293  * setPrefixPresent - Marks that a particular prefix is present as mandatory
294  *
295  * @param insn      - The instruction to be marked as having the prefix.
296  * @param prefix    - The prefix that is present.
297  */
setPrefixPresent(struct InternalInstruction * insn,uint8_t prefix)298 static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix) {
299   uint8_t nextByte;
300   switch (prefix) {
301   case 0xf0:
302     insn->hasLockPrefix = true;
303     break;
304   case 0xf2:
305   case 0xf3:
306     if (lookAtByte(insn, &nextByte))
307       break;
308     // TODO:
309     //  1. There could be several 0x66
310     //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
311     //      it's not mandatory prefix
312     //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
313     //     0x0f exactly after it to be mandatory prefix
314     if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66)
315       // The last of 0xf2 /0xf3 is mandatory prefix
316       insn->mandatoryPrefix = prefix;
317     insn->repeatPrefix = prefix;
318     break;
319   case 0x66:
320     if (lookAtByte(insn, &nextByte))
321       break;
322     // 0x66 can't overwrite existing mandatory prefix and should be ignored
323     if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
324       insn->mandatoryPrefix = prefix;
325     break;
326   }
327 }
328 
329 /*
330  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
331  *   instruction as having them.  Also sets the instruction's default operand,
332  *   address, and other relevant data sizes to report operands correctly.
333  *
334  * @param insn  - The instruction whose prefixes are to be read.
335  * @return      - 0 if the instruction could be read until the end of the prefix
336  *                bytes, and no prefixes conflicted; nonzero otherwise.
337  */
readPrefixes(struct InternalInstruction * insn)338 static int readPrefixes(struct InternalInstruction* insn) {
339   bool isPrefix = true;
340   uint8_t byte = 0;
341   uint8_t nextByte;
342 
343   dbgprintf(insn, "readPrefixes()");
344 
345   while (isPrefix) {
346     /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
347     if (consumeByte(insn, &byte))
348       break;
349 
350     /*
351      * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
352      * break and let it be disassembled as a normal "instruction".
353      */
354     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
355       break;
356 
357     if ((byte == 0xf2 || byte == 0xf3) && !lookAtByte(insn, &nextByte)) {
358       /*
359        * If the byte is 0xf2 or 0xf3, and any of the following conditions are
360        * met:
361        * - it is followed by a LOCK (0xf0) prefix
362        * - it is followed by an xchg instruction
363        * then it should be disassembled as a xacquire/xrelease not repne/rep.
364        */
365       if (((nextByte == 0xf0) ||
366            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
367         insn->xAcquireRelease = true;
368         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
369           break;
370       }
371       /*
372        * Also if the byte is 0xf3, and the following condition is met:
373        * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
374        *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
375        * then it should be disassembled as an xrelease not rep.
376        */
377       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
378                            nextByte == 0xc6 || nextByte == 0xc7)) {
379         insn->xAcquireRelease = true;
380         if (nextByte != 0x90) // PAUSE instruction support
381           break;
382       }
383       if (isREX(insn, nextByte)) {
384         uint8_t nnextByte;
385         // Go to REX prefix after the current one
386         if (consumeByte(insn, &nnextByte))
387           return -1;
388         // We should be able to read next byte after REX prefix
389         if (lookAtByte(insn, &nnextByte))
390           return -1;
391         unconsumeByte(insn);
392       }
393     }
394 
395     switch (byte) {
396     case 0xf0:  /* LOCK */
397     case 0xf2:  /* REPNE/REPNZ */
398     case 0xf3:  /* REP or REPE/REPZ */
399       setPrefixPresent(insn, byte);
400       break;
401     case 0x2e:  /* CS segment override -OR- Branch not taken */
402     case 0x36:  /* SS segment override -OR- Branch taken */
403     case 0x3e:  /* DS segment override */
404     case 0x26:  /* ES segment override */
405     case 0x64:  /* FS segment override */
406     case 0x65:  /* GS segment override */
407       switch (byte) {
408       case 0x2e:
409         insn->segmentOverride = SEG_OVERRIDE_CS;
410         break;
411       case 0x36:
412         insn->segmentOverride = SEG_OVERRIDE_SS;
413         break;
414       case 0x3e:
415         insn->segmentOverride = SEG_OVERRIDE_DS;
416         break;
417       case 0x26:
418         insn->segmentOverride = SEG_OVERRIDE_ES;
419         break;
420       case 0x64:
421         insn->segmentOverride = SEG_OVERRIDE_FS;
422         break;
423       case 0x65:
424         insn->segmentOverride = SEG_OVERRIDE_GS;
425         break;
426       default:
427         debug("Unhandled override");
428         return -1;
429       }
430       setPrefixPresent(insn, byte);
431       break;
432     case 0x66:  /* Operand-size override */
433       insn->hasOpSize = true;
434       setPrefixPresent(insn, byte);
435       break;
436     case 0x67:  /* Address-size override */
437       insn->hasAdSize = true;
438       setPrefixPresent(insn, byte);
439       break;
440     default:    /* Not a prefix byte */
441       isPrefix = false;
442       break;
443     }
444 
445     if (isPrefix)
446       dbgprintf(insn, "Found prefix 0x%hhx", byte);
447   }
448 
449   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
450 
451   if (byte == 0x62) {
452     uint8_t byte1, byte2;
453 
454     if (consumeByte(insn, &byte1)) {
455       dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
456       return -1;
457     }
458 
459     if (lookAtByte(insn, &byte2)) {
460       dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
461       return -1;
462     }
463 
464     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
465        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
466       insn->vectorExtensionType = TYPE_EVEX;
467     } else {
468       unconsumeByte(insn); /* unconsume byte1 */
469       unconsumeByte(insn); /* unconsume byte  */
470     }
471 
472     if (insn->vectorExtensionType == TYPE_EVEX) {
473       insn->vectorExtensionPrefix[0] = byte;
474       insn->vectorExtensionPrefix[1] = byte1;
475       if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
476         dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
477         return -1;
478       }
479       if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
480         dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
481         return -1;
482       }
483 
484       /* We simulate the REX prefix for simplicity's sake */
485       if (insn->mode == MODE_64BIT) {
486         insn->rexPrefix = 0x40
487                         | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
488                         | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
489                         | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
490                         | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
491       }
492 
493       dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
494               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
495               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
496     }
497   } else if (byte == 0xc4) {
498     uint8_t byte1;
499 
500     if (lookAtByte(insn, &byte1)) {
501       dbgprintf(insn, "Couldn't read second byte of VEX");
502       return -1;
503     }
504 
505     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
506       insn->vectorExtensionType = TYPE_VEX_3B;
507     else
508       unconsumeByte(insn);
509 
510     if (insn->vectorExtensionType == TYPE_VEX_3B) {
511       insn->vectorExtensionPrefix[0] = byte;
512       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
513       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
514 
515       /* We simulate the REX prefix for simplicity's sake */
516 
517       if (insn->mode == MODE_64BIT)
518         insn->rexPrefix = 0x40
519                         | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
520                         | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
521                         | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
522                         | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
523 
524       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
525                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
526                 insn->vectorExtensionPrefix[2]);
527     }
528   } else if (byte == 0xc5) {
529     uint8_t byte1;
530 
531     if (lookAtByte(insn, &byte1)) {
532       dbgprintf(insn, "Couldn't read second byte of VEX");
533       return -1;
534     }
535 
536     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
537       insn->vectorExtensionType = TYPE_VEX_2B;
538     else
539       unconsumeByte(insn);
540 
541     if (insn->vectorExtensionType == TYPE_VEX_2B) {
542       insn->vectorExtensionPrefix[0] = byte;
543       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
544 
545       if (insn->mode == MODE_64BIT)
546         insn->rexPrefix = 0x40
547                         | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
548 
549       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
550       default:
551         break;
552       case VEX_PREFIX_66:
553         insn->hasOpSize = true;
554         break;
555       }
556 
557       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
558                 insn->vectorExtensionPrefix[0],
559                 insn->vectorExtensionPrefix[1]);
560     }
561   } else if (byte == 0x8f) {
562     uint8_t byte1;
563 
564     if (lookAtByte(insn, &byte1)) {
565       dbgprintf(insn, "Couldn't read second byte of XOP");
566       return -1;
567     }
568 
569     if ((byte1 & 0x38) != 0x0) /* 0 in these 3 bits is a POP instruction. */
570       insn->vectorExtensionType = TYPE_XOP;
571     else
572       unconsumeByte(insn);
573 
574     if (insn->vectorExtensionType == TYPE_XOP) {
575       insn->vectorExtensionPrefix[0] = byte;
576       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
577       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
578 
579       /* We simulate the REX prefix for simplicity's sake */
580 
581       if (insn->mode == MODE_64BIT)
582         insn->rexPrefix = 0x40
583                         | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
584                         | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
585                         | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
586                         | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
587 
588       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
589       default:
590         break;
591       case VEX_PREFIX_66:
592         insn->hasOpSize = true;
593         break;
594       }
595 
596       dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
597                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
598                 insn->vectorExtensionPrefix[2]);
599     }
600   } else if (isREX(insn, byte)) {
601     if (lookAtByte(insn, &nextByte))
602       return -1;
603     insn->rexPrefix = byte;
604     dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
605   } else
606     unconsumeByte(insn);
607 
608   if (insn->mode == MODE_16BIT) {
609     insn->registerSize = (insn->hasOpSize ? 4 : 2);
610     insn->addressSize = (insn->hasAdSize ? 4 : 2);
611     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
612     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
613   } else if (insn->mode == MODE_32BIT) {
614     insn->registerSize = (insn->hasOpSize ? 2 : 4);
615     insn->addressSize = (insn->hasAdSize ? 2 : 4);
616     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
617     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
618   } else if (insn->mode == MODE_64BIT) {
619     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
620       insn->registerSize       = 8;
621       insn->addressSize = (insn->hasAdSize ? 4 : 8);
622       insn->displacementSize   = 4;
623       insn->immediateSize      = 4;
624     } else {
625       insn->registerSize = (insn->hasOpSize ? 2 : 4);
626       insn->addressSize = (insn->hasAdSize ? 4 : 8);
627       insn->displacementSize = (insn->hasOpSize ? 2 : 4);
628       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
629     }
630   }
631 
632   return 0;
633 }
634 
635 static int readModRM(struct InternalInstruction* insn);
636 
637 /*
638  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
639  *   extended or escape opcodes).
640  *
641  * @param insn  - The instruction whose opcode is to be read.
642  * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
643  */
readOpcode(struct InternalInstruction * insn)644 static int readOpcode(struct InternalInstruction* insn) {
645   /* Determine the length of the primary opcode */
646 
647   uint8_t current;
648 
649   dbgprintf(insn, "readOpcode()");
650 
651   insn->opcodeType = ONEBYTE;
652 
653   if (insn->vectorExtensionType == TYPE_EVEX) {
654     switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
655     default:
656       dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
657                 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
658       return -1;
659     case VEX_LOB_0F:
660       insn->opcodeType = TWOBYTE;
661       return consumeByte(insn, &insn->opcode);
662     case VEX_LOB_0F38:
663       insn->opcodeType = THREEBYTE_38;
664       return consumeByte(insn, &insn->opcode);
665     case VEX_LOB_0F3A:
666       insn->opcodeType = THREEBYTE_3A;
667       return consumeByte(insn, &insn->opcode);
668     }
669   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
670     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
671     default:
672       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
673                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
674       return -1;
675     case VEX_LOB_0F:
676       insn->opcodeType = TWOBYTE;
677       return consumeByte(insn, &insn->opcode);
678     case VEX_LOB_0F38:
679       insn->opcodeType = THREEBYTE_38;
680       return consumeByte(insn, &insn->opcode);
681     case VEX_LOB_0F3A:
682       insn->opcodeType = THREEBYTE_3A;
683       return consumeByte(insn, &insn->opcode);
684     }
685   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
686     insn->opcodeType = TWOBYTE;
687     return consumeByte(insn, &insn->opcode);
688   } else if (insn->vectorExtensionType == TYPE_XOP) {
689     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
690     default:
691       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
692                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
693       return -1;
694     case XOP_MAP_SELECT_8:
695       insn->opcodeType = XOP8_MAP;
696       return consumeByte(insn, &insn->opcode);
697     case XOP_MAP_SELECT_9:
698       insn->opcodeType = XOP9_MAP;
699       return consumeByte(insn, &insn->opcode);
700     case XOP_MAP_SELECT_A:
701       insn->opcodeType = XOPA_MAP;
702       return consumeByte(insn, &insn->opcode);
703     }
704   }
705 
706   if (consumeByte(insn, &current))
707     return -1;
708 
709   if (current == 0x0f) {
710     dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
711 
712     if (consumeByte(insn, &current))
713       return -1;
714 
715     if (current == 0x38) {
716       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
717 
718       if (consumeByte(insn, &current))
719         return -1;
720 
721       insn->opcodeType = THREEBYTE_38;
722     } else if (current == 0x3a) {
723       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
724 
725       if (consumeByte(insn, &current))
726         return -1;
727 
728       insn->opcodeType = THREEBYTE_3A;
729     } else if (current == 0x0f) {
730       dbgprintf(insn, "Found a 3dnow escape prefix (0x%hhx)", current);
731 
732       // Consume operands before the opcode to comply with the 3DNow encoding
733       if (readModRM(insn))
734         return -1;
735 
736       if (consumeByte(insn, &current))
737         return -1;
738 
739       insn->opcodeType = THREEDNOW_MAP;
740     } else {
741       dbgprintf(insn, "Didn't find a three-byte escape prefix");
742 
743       insn->opcodeType = TWOBYTE;
744     }
745   } else if (insn->mandatoryPrefix)
746     // The opcode with mandatory prefix must start with opcode escape.
747     // If not it's legacy repeat prefix
748     insn->mandatoryPrefix = 0;
749 
750   /*
751    * At this point we have consumed the full opcode.
752    * Anything we consume from here on must be unconsumed.
753    */
754 
755   insn->opcode = current;
756 
757   return 0;
758 }
759 
760 /*
761  * getIDWithAttrMask - Determines the ID of an instruction, consuming
762  *   the ModR/M byte as appropriate for extended and escape opcodes,
763  *   and using a supplied attribute mask.
764  *
765  * @param instructionID - A pointer whose target is filled in with the ID of the
766  *                        instruction.
767  * @param insn          - The instruction whose ID is to be determined.
768  * @param attrMask      - The attribute mask to search.
769  * @return              - 0 if the ModR/M could be read when needed or was not
770  *                        needed; nonzero otherwise.
771  */
getIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint16_t attrMask)772 static int getIDWithAttrMask(uint16_t* instructionID,
773                              struct InternalInstruction* insn,
774                              uint16_t attrMask) {
775   bool hasModRMExtension;
776 
777   InstructionContext instructionClass = contextForAttrs(attrMask);
778 
779   hasModRMExtension = modRMRequired(insn->opcodeType,
780                                     instructionClass,
781                                     insn->opcode);
782 
783   if (hasModRMExtension) {
784     if (readModRM(insn))
785       return -1;
786 
787     *instructionID = decode(insn->opcodeType,
788                             instructionClass,
789                             insn->opcode,
790                             insn->modRM);
791   } else {
792     *instructionID = decode(insn->opcodeType,
793                             instructionClass,
794                             insn->opcode,
795                             0);
796   }
797 
798   return 0;
799 }
800 
801 /*
802  * is16BitEquivalent - Determines whether two instruction names refer to
803  * equivalent instructions but one is 16-bit whereas the other is not.
804  *
805  * @param orig  - The instruction that is not 16-bit
806  * @param equiv - The instruction that is 16-bit
807  */
is16BitEquivalent(const char * orig,const char * equiv)808 static bool is16BitEquivalent(const char *orig, const char *equiv) {
809   off_t i;
810 
811   for (i = 0;; i++) {
812     if (orig[i] == '\0' && equiv[i] == '\0')
813       return true;
814     if (orig[i] == '\0' || equiv[i] == '\0')
815       return false;
816     if (orig[i] != equiv[i]) {
817       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
818         continue;
819       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
820         continue;
821       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
822         continue;
823       return false;
824     }
825   }
826 }
827 
828 /*
829  * is64Bit - Determines whether this instruction is a 64-bit instruction.
830  *
831  * @param name - The instruction that is not 16-bit
832  */
is64Bit(const char * name)833 static bool is64Bit(const char *name) {
834   off_t i;
835 
836   for (i = 0;; ++i) {
837     if (name[i] == '\0')
838       return false;
839     if (name[i] == '6' && name[i+1] == '4')
840       return true;
841   }
842 }
843 
844 /*
845  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
846  *   appropriate for extended and escape opcodes.  Determines the attributes and
847  *   context for the instruction before doing so.
848  *
849  * @param insn  - The instruction whose ID is to be determined.
850  * @return      - 0 if the ModR/M could be read when needed or was not needed;
851  *                nonzero otherwise.
852  */
getID(struct InternalInstruction * insn,const void * miiArg)853 static int getID(struct InternalInstruction* insn, const void *miiArg) {
854   uint16_t attrMask;
855   uint16_t instructionID;
856 
857   dbgprintf(insn, "getID()");
858 
859   attrMask = ATTR_NONE;
860 
861   if (insn->mode == MODE_64BIT)
862     attrMask |= ATTR_64BIT;
863 
864   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
865     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
866 
867     if (insn->vectorExtensionType == TYPE_EVEX) {
868       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
869       case VEX_PREFIX_66:
870         attrMask |= ATTR_OPSIZE;
871         break;
872       case VEX_PREFIX_F3:
873         attrMask |= ATTR_XS;
874         break;
875       case VEX_PREFIX_F2:
876         attrMask |= ATTR_XD;
877         break;
878       }
879 
880       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
881         attrMask |= ATTR_EVEXKZ;
882       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
883         attrMask |= ATTR_EVEXB;
884       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
885         attrMask |= ATTR_EVEXK;
886       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
887         attrMask |= ATTR_EVEXL;
888       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
889         attrMask |= ATTR_EVEXL2;
890     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
891       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
892       case VEX_PREFIX_66:
893         attrMask |= ATTR_OPSIZE;
894         break;
895       case VEX_PREFIX_F3:
896         attrMask |= ATTR_XS;
897         break;
898       case VEX_PREFIX_F2:
899         attrMask |= ATTR_XD;
900         break;
901       }
902 
903       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
904         attrMask |= ATTR_VEXL;
905     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
906       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
907       case VEX_PREFIX_66:
908         attrMask |= ATTR_OPSIZE;
909         break;
910       case VEX_PREFIX_F3:
911         attrMask |= ATTR_XS;
912         break;
913       case VEX_PREFIX_F2:
914         attrMask |= ATTR_XD;
915         break;
916       }
917 
918       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
919         attrMask |= ATTR_VEXL;
920     } else if (insn->vectorExtensionType == TYPE_XOP) {
921       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
922       case VEX_PREFIX_66:
923         attrMask |= ATTR_OPSIZE;
924         break;
925       case VEX_PREFIX_F3:
926         attrMask |= ATTR_XS;
927         break;
928       case VEX_PREFIX_F2:
929         attrMask |= ATTR_XD;
930         break;
931       }
932 
933       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
934         attrMask |= ATTR_VEXL;
935     } else {
936       return -1;
937     }
938   } else if (!insn->mandatoryPrefix) {
939     // If we don't have mandatory prefix we should use legacy prefixes here
940     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
941       attrMask |= ATTR_OPSIZE;
942     if (insn->hasAdSize)
943       attrMask |= ATTR_ADSIZE;
944     if (insn->opcodeType == ONEBYTE) {
945       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
946         // Special support for PAUSE
947         attrMask |= ATTR_XS;
948     } else {
949       if (insn->repeatPrefix == 0xf2)
950         attrMask |= ATTR_XD;
951       else if (insn->repeatPrefix == 0xf3)
952         attrMask |= ATTR_XS;
953     }
954   } else {
955     switch (insn->mandatoryPrefix) {
956     case 0xf2:
957       attrMask |= ATTR_XD;
958       break;
959     case 0xf3:
960       attrMask |= ATTR_XS;
961       break;
962     case 0x66:
963       if (insn->mode != MODE_16BIT)
964         attrMask |= ATTR_OPSIZE;
965       break;
966     case 0x67:
967       attrMask |= ATTR_ADSIZE;
968       break;
969     }
970 
971   }
972 
973   if (insn->rexPrefix & 0x08) {
974     attrMask |= ATTR_REXW;
975     attrMask &= ~ATTR_ADSIZE;
976   }
977 
978   /*
979    * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
980    * of the AdSize prefix is inverted w.r.t. 32-bit mode.
981    */
982   if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
983       insn->opcode == 0xE3)
984     attrMask ^= ATTR_ADSIZE;
985 
986   // If we're in 16-bit mode and this is one of the relative jumps and opsize
987   // prefix isn't present, we need to force the opsize attribute since the
988   // prefix is inverted relative to 32-bit mode.
989   if (insn->mode == MODE_16BIT && !insn->hasOpSize &&
990       insn->opcodeType == ONEBYTE &&
991       (insn->opcode == 0xE8 || insn->opcode == 0xE9))
992     attrMask |= ATTR_OPSIZE;
993 
994   if (insn->mode == MODE_16BIT && !insn->hasOpSize &&
995       insn->opcodeType == TWOBYTE &&
996       insn->opcode >= 0x80 && insn->opcode <= 0x8F)
997     attrMask |= ATTR_OPSIZE;
998 
999   if (getIDWithAttrMask(&instructionID, insn, attrMask))
1000     return -1;
1001 
1002   /* The following clauses compensate for limitations of the tables. */
1003 
1004   if (insn->mode != MODE_64BIT &&
1005       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1006     /*
1007      * The tables can't distinquish between cases where the W-bit is used to
1008      * select register size and cases where its a required part of the opcode.
1009      */
1010     if ((insn->vectorExtensionType == TYPE_EVEX &&
1011          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1012         (insn->vectorExtensionType == TYPE_VEX_3B &&
1013          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1014         (insn->vectorExtensionType == TYPE_XOP &&
1015          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1016 
1017       uint16_t instructionIDWithREXW;
1018       if (getIDWithAttrMask(&instructionIDWithREXW,
1019                             insn, attrMask | ATTR_REXW)) {
1020         insn->instructionID = instructionID;
1021         insn->spec = specifierForUID(instructionID);
1022         return 0;
1023       }
1024 
1025       auto SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1026       // If not a 64-bit instruction. Switch the opcode.
1027       if (!is64Bit(SpecName.data())) {
1028         insn->instructionID = instructionIDWithREXW;
1029         insn->spec = specifierForUID(instructionIDWithREXW);
1030         return 0;
1031       }
1032     }
1033   }
1034 
1035   /*
1036    * Absolute moves, umonitor, and movdir64b need special handling.
1037    * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1038    *  inverted w.r.t.
1039    * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1040    *  any position.
1041    */
1042   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1043       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1044       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) {
1045     /* Make sure we observed the prefixes in any position. */
1046     if (insn->hasAdSize)
1047       attrMask |= ATTR_ADSIZE;
1048     if (insn->hasOpSize)
1049       attrMask |= ATTR_OPSIZE;
1050 
1051     /* In 16-bit, invert the attributes. */
1052     if (insn->mode == MODE_16BIT) {
1053       attrMask ^= ATTR_ADSIZE;
1054 
1055       /* The OpSize attribute is only valid with the absolute moves. */
1056       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1057         attrMask ^= ATTR_OPSIZE;
1058     }
1059 
1060     if (getIDWithAttrMask(&instructionID, insn, attrMask))
1061       return -1;
1062 
1063     insn->instructionID = instructionID;
1064     insn->spec = specifierForUID(instructionID);
1065     return 0;
1066   }
1067 
1068   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1069       !(attrMask & ATTR_OPSIZE)) {
1070     /*
1071      * The instruction tables make no distinction between instructions that
1072      * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1073      * particular spot (i.e., many MMX operations).  In general we're
1074      * conservative, but in the specific case where OpSize is present but not
1075      * in the right place we check if there's a 16-bit operation.
1076      */
1077 
1078     const struct InstructionSpecifier *spec;
1079     uint16_t instructionIDWithOpsize;
1080     llvm::StringRef specName, specWithOpSizeName;
1081 
1082     spec = specifierForUID(instructionID);
1083 
1084     if (getIDWithAttrMask(&instructionIDWithOpsize,
1085                           insn,
1086                           attrMask | ATTR_OPSIZE)) {
1087       /*
1088        * ModRM required with OpSize but not present; give up and return version
1089        * without OpSize set
1090        */
1091 
1092       insn->instructionID = instructionID;
1093       insn->spec = spec;
1094       return 0;
1095     }
1096 
1097     specName = GetInstrName(instructionID, miiArg);
1098     specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1099 
1100     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1101         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1102       insn->instructionID = instructionIDWithOpsize;
1103       insn->spec = specifierForUID(instructionIDWithOpsize);
1104     } else {
1105       insn->instructionID = instructionID;
1106       insn->spec = spec;
1107     }
1108     return 0;
1109   }
1110 
1111   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1112       insn->rexPrefix & 0x01) {
1113     /*
1114      * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1115      * it should decode as XCHG %r8, %eax.
1116      */
1117 
1118     const struct InstructionSpecifier *spec;
1119     uint16_t instructionIDWithNewOpcode;
1120     const struct InstructionSpecifier *specWithNewOpcode;
1121 
1122     spec = specifierForUID(instructionID);
1123 
1124     /* Borrow opcode from one of the other XCHGar opcodes */
1125     insn->opcode = 0x91;
1126 
1127     if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1128                           insn,
1129                           attrMask)) {
1130       insn->opcode = 0x90;
1131 
1132       insn->instructionID = instructionID;
1133       insn->spec = spec;
1134       return 0;
1135     }
1136 
1137     specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1138 
1139     /* Change back */
1140     insn->opcode = 0x90;
1141 
1142     insn->instructionID = instructionIDWithNewOpcode;
1143     insn->spec = specWithNewOpcode;
1144 
1145     return 0;
1146   }
1147 
1148   insn->instructionID = instructionID;
1149   insn->spec = specifierForUID(insn->instructionID);
1150 
1151   return 0;
1152 }
1153 
1154 /*
1155  * readSIB - Consumes the SIB byte to determine addressing information for an
1156  *   instruction.
1157  *
1158  * @param insn  - The instruction whose SIB byte is to be read.
1159  * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
1160  */
readSIB(struct InternalInstruction * insn)1161 static int readSIB(struct InternalInstruction* insn) {
1162   SIBBase sibBaseBase = SIB_BASE_NONE;
1163   uint8_t index, base;
1164 
1165   dbgprintf(insn, "readSIB()");
1166 
1167   if (insn->consumedSIB)
1168     return 0;
1169 
1170   insn->consumedSIB = true;
1171 
1172   switch (insn->addressSize) {
1173   case 2:
1174     dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1175     return -1;
1176   case 4:
1177     insn->sibIndexBase = SIB_INDEX_EAX;
1178     sibBaseBase = SIB_BASE_EAX;
1179     break;
1180   case 8:
1181     insn->sibIndexBase = SIB_INDEX_RAX;
1182     sibBaseBase = SIB_BASE_RAX;
1183     break;
1184   }
1185 
1186   if (consumeByte(insn, &insn->sib))
1187     return -1;
1188 
1189   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1190 
1191   if (index == 0x4) {
1192     insn->sibIndex = SIB_INDEX_NONE;
1193   } else {
1194     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
1195   }
1196 
1197   insn->sibScale = 1 << scaleFromSIB(insn->sib);
1198 
1199   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1200 
1201   switch (base) {
1202   case 0x5:
1203   case 0xd:
1204     switch (modFromModRM(insn->modRM)) {
1205     case 0x0:
1206       insn->eaDisplacement = EA_DISP_32;
1207       insn->sibBase = SIB_BASE_NONE;
1208       break;
1209     case 0x1:
1210       insn->eaDisplacement = EA_DISP_8;
1211       insn->sibBase = (SIBBase)(sibBaseBase + base);
1212       break;
1213     case 0x2:
1214       insn->eaDisplacement = EA_DISP_32;
1215       insn->sibBase = (SIBBase)(sibBaseBase + base);
1216       break;
1217     case 0x3:
1218       debug("Cannot have Mod = 0b11 and a SIB byte");
1219       return -1;
1220     }
1221     break;
1222   default:
1223     insn->sibBase = (SIBBase)(sibBaseBase + base);
1224     break;
1225   }
1226 
1227   return 0;
1228 }
1229 
1230 /*
1231  * readDisplacement - Consumes the displacement of an instruction.
1232  *
1233  * @param insn  - The instruction whose displacement is to be read.
1234  * @return      - 0 if the displacement byte was successfully read; nonzero
1235  *                otherwise.
1236  */
readDisplacement(struct InternalInstruction * insn)1237 static int readDisplacement(struct InternalInstruction* insn) {
1238   int8_t d8;
1239   int16_t d16;
1240   int32_t d32;
1241 
1242   dbgprintf(insn, "readDisplacement()");
1243 
1244   if (insn->consumedDisplacement)
1245     return 0;
1246 
1247   insn->consumedDisplacement = true;
1248   insn->displacementOffset = insn->readerCursor - insn->startLocation;
1249 
1250   switch (insn->eaDisplacement) {
1251   case EA_DISP_NONE:
1252     insn->consumedDisplacement = false;
1253     break;
1254   case EA_DISP_8:
1255     if (consumeInt8(insn, &d8))
1256       return -1;
1257     insn->displacement = d8;
1258     break;
1259   case EA_DISP_16:
1260     if (consumeInt16(insn, &d16))
1261       return -1;
1262     insn->displacement = d16;
1263     break;
1264   case EA_DISP_32:
1265     if (consumeInt32(insn, &d32))
1266       return -1;
1267     insn->displacement = d32;
1268     break;
1269   }
1270 
1271   insn->consumedDisplacement = true;
1272   return 0;
1273 }
1274 
1275 /*
1276  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1277  *   displacement) for an instruction and interprets it.
1278  *
1279  * @param insn  - The instruction whose addressing information is to be read.
1280  * @return      - 0 if the information was successfully read; nonzero otherwise.
1281  */
readModRM(struct InternalInstruction * insn)1282 static int readModRM(struct InternalInstruction* insn) {
1283   uint8_t mod, rm, reg, evexrm;
1284 
1285   dbgprintf(insn, "readModRM()");
1286 
1287   if (insn->consumedModRM)
1288     return 0;
1289 
1290   if (consumeByte(insn, &insn->modRM))
1291     return -1;
1292   insn->consumedModRM = true;
1293 
1294   mod     = modFromModRM(insn->modRM);
1295   rm      = rmFromModRM(insn->modRM);
1296   reg     = regFromModRM(insn->modRM);
1297 
1298   /*
1299    * This goes by insn->registerSize to pick the correct register, which messes
1300    * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1301    * fixupReg().
1302    */
1303   switch (insn->registerSize) {
1304   case 2:
1305     insn->regBase = MODRM_REG_AX;
1306     insn->eaRegBase = EA_REG_AX;
1307     break;
1308   case 4:
1309     insn->regBase = MODRM_REG_EAX;
1310     insn->eaRegBase = EA_REG_EAX;
1311     break;
1312   case 8:
1313     insn->regBase = MODRM_REG_RAX;
1314     insn->eaRegBase = EA_REG_RAX;
1315     break;
1316   }
1317 
1318   reg |= rFromREX(insn->rexPrefix) << 3;
1319   rm  |= bFromREX(insn->rexPrefix) << 3;
1320 
1321   evexrm = 0;
1322   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) {
1323     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1324     evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1325   }
1326 
1327   insn->reg = (Reg)(insn->regBase + reg);
1328 
1329   switch (insn->addressSize) {
1330   case 2: {
1331     EABase eaBaseBase = EA_BASE_BX_SI;
1332 
1333     switch (mod) {
1334     case 0x0:
1335       if (rm == 0x6) {
1336         insn->eaBase = EA_BASE_NONE;
1337         insn->eaDisplacement = EA_DISP_16;
1338         if (readDisplacement(insn))
1339           return -1;
1340       } else {
1341         insn->eaBase = (EABase)(eaBaseBase + rm);
1342         insn->eaDisplacement = EA_DISP_NONE;
1343       }
1344       break;
1345     case 0x1:
1346       insn->eaBase = (EABase)(eaBaseBase + rm);
1347       insn->eaDisplacement = EA_DISP_8;
1348       insn->displacementSize = 1;
1349       if (readDisplacement(insn))
1350         return -1;
1351       break;
1352     case 0x2:
1353       insn->eaBase = (EABase)(eaBaseBase + rm);
1354       insn->eaDisplacement = EA_DISP_16;
1355       if (readDisplacement(insn))
1356         return -1;
1357       break;
1358     case 0x3:
1359       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1360       if (readDisplacement(insn))
1361         return -1;
1362       break;
1363     }
1364     break;
1365   }
1366   case 4:
1367   case 8: {
1368     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1369 
1370     switch (mod) {
1371     case 0x0:
1372       insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1373       // In determining whether RIP-relative mode is used (rm=5),
1374       // or whether a SIB byte is present (rm=4),
1375       // the extension bits (REX.b and EVEX.x) are ignored.
1376       switch (rm & 7) {
1377       case 0x4: // SIB byte is present
1378         insn->eaBase = (insn->addressSize == 4 ?
1379                         EA_BASE_sib : EA_BASE_sib64);
1380         if (readSIB(insn) || readDisplacement(insn))
1381           return -1;
1382         break;
1383       case 0x5: // RIP-relative
1384         insn->eaBase = EA_BASE_NONE;
1385         insn->eaDisplacement = EA_DISP_32;
1386         if (readDisplacement(insn))
1387           return -1;
1388         break;
1389       default:
1390         insn->eaBase = (EABase)(eaBaseBase + rm);
1391         break;
1392       }
1393       break;
1394     case 0x1:
1395       insn->displacementSize = 1;
1396       LLVM_FALLTHROUGH;
1397     case 0x2:
1398       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1399       switch (rm & 7) {
1400       case 0x4: // SIB byte is present
1401         insn->eaBase = EA_BASE_sib;
1402         if (readSIB(insn) || readDisplacement(insn))
1403           return -1;
1404         break;
1405       default:
1406         insn->eaBase = (EABase)(eaBaseBase + rm);
1407         if (readDisplacement(insn))
1408           return -1;
1409         break;
1410       }
1411       break;
1412     case 0x3:
1413       insn->eaDisplacement = EA_DISP_NONE;
1414       insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm);
1415       break;
1416     }
1417     break;
1418   }
1419   } /* switch (insn->addressSize) */
1420 
1421   return 0;
1422 }
1423 
1424 #define GENERIC_FIXUP_FUNC(name, base, prefix, mask)      \
1425   static uint16_t name(struct InternalInstruction *insn,  \
1426                        OperandType type,                  \
1427                        uint8_t index,                     \
1428                        uint8_t *valid) {                  \
1429     *valid = 1;                                           \
1430     switch (type) {                                       \
1431     default:                                              \
1432       debug("Unhandled register type");                   \
1433       *valid = 0;                                         \
1434       return 0;                                           \
1435     case TYPE_Rv:                                         \
1436       return base + index;                                \
1437     case TYPE_R8:                                         \
1438       index &= mask;                                      \
1439       if (index > 0xf)                                    \
1440         *valid = 0;                                       \
1441       if (insn->rexPrefix &&                              \
1442          index >= 4 && index <= 7) {                      \
1443         return prefix##_SPL + (index - 4);                \
1444       } else {                                            \
1445         return prefix##_AL + index;                       \
1446       }                                                   \
1447     case TYPE_R16:                                        \
1448       index &= mask;                                      \
1449       if (index > 0xf)                                    \
1450         *valid = 0;                                       \
1451       return prefix##_AX + index;                         \
1452     case TYPE_R32:                                        \
1453       index &= mask;                                      \
1454       if (index > 0xf)                                    \
1455         *valid = 0;                                       \
1456       return prefix##_EAX + index;                        \
1457     case TYPE_R64:                                        \
1458       index &= mask;                                      \
1459       if (index > 0xf)                                    \
1460         *valid = 0;                                       \
1461       return prefix##_RAX + index;                        \
1462     case TYPE_ZMM:                                        \
1463       return prefix##_ZMM0 + index;                       \
1464     case TYPE_YMM:                                        \
1465       return prefix##_YMM0 + index;                       \
1466     case TYPE_XMM:                                        \
1467       return prefix##_XMM0 + index;                       \
1468     case TYPE_VK:                                         \
1469       index &= 0xf;                                       \
1470       if (index > 7)                                      \
1471         *valid = 0;                                       \
1472       return prefix##_K0 + index;                         \
1473     case TYPE_MM64:                                       \
1474       return prefix##_MM0 + (index & 0x7);                \
1475     case TYPE_SEGMENTREG:                                 \
1476       if ((index & 7) > 5)                                \
1477         *valid = 0;                                       \
1478       return prefix##_ES + (index & 7);                   \
1479     case TYPE_DEBUGREG:                                   \
1480       return prefix##_DR0 + index;                        \
1481     case TYPE_CONTROLREG:                                 \
1482       return prefix##_CR0 + index;                        \
1483     case TYPE_BNDR:                                       \
1484       if (index > 3)                                      \
1485         *valid = 0;                                       \
1486       return prefix##_BND0 + index;                       \
1487     case TYPE_MVSIBX:                                     \
1488       return prefix##_XMM0 + index;                       \
1489     case TYPE_MVSIBY:                                     \
1490       return prefix##_YMM0 + index;                       \
1491     case TYPE_MVSIBZ:                                     \
1492       return prefix##_ZMM0 + index;                       \
1493     }                                                     \
1494   }
1495 
1496 /*
1497  * fixup*Value - Consults an operand type to determine the meaning of the
1498  *   reg or R/M field.  If the operand is an XMM operand, for example, an
1499  *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1500  *   misinterpret it as.
1501  *
1502  * @param insn  - The instruction containing the operand.
1503  * @param type  - The operand type.
1504  * @param index - The existing value of the field as reported by readModRM().
1505  * @param valid - The address of a uint8_t.  The target is set to 1 if the
1506  *                field is valid for the register class; 0 if not.
1507  * @return      - The proper value.
1508  */
1509 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG, 0x1f)
1510 GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG,    0xf)
1511 
1512 /*
1513  * fixupReg - Consults an operand specifier to determine which of the
1514  *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1515  *
1516  * @param insn  - See fixup*Value().
1517  * @param op    - The operand specifier.
1518  * @return      - 0 if fixup was successful; -1 if the register returned was
1519  *                invalid for its class.
1520  */
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)1521 static int fixupReg(struct InternalInstruction *insn,
1522                     const struct OperandSpecifier *op) {
1523   uint8_t valid;
1524 
1525   dbgprintf(insn, "fixupReg()");
1526 
1527   switch ((OperandEncoding)op->encoding) {
1528   default:
1529     debug("Expected a REG or R/M encoding in fixupReg");
1530     return -1;
1531   case ENCODING_VVVV:
1532     insn->vvvv = (Reg)fixupRegValue(insn,
1533                                     (OperandType)op->type,
1534                                     insn->vvvv,
1535                                     &valid);
1536     if (!valid)
1537       return -1;
1538     break;
1539   case ENCODING_REG:
1540     insn->reg = (Reg)fixupRegValue(insn,
1541                                    (OperandType)op->type,
1542                                    insn->reg - insn->regBase,
1543                                    &valid);
1544     if (!valid)
1545       return -1;
1546     break;
1547   CASE_ENCODING_RM:
1548     if (insn->eaBase >= insn->eaRegBase) {
1549       insn->eaBase = (EABase)fixupRMValue(insn,
1550                                           (OperandType)op->type,
1551                                           insn->eaBase - insn->eaRegBase,
1552                                           &valid);
1553       if (!valid)
1554         return -1;
1555     }
1556     break;
1557   }
1558 
1559   return 0;
1560 }
1561 
1562 /*
1563  * readOpcodeRegister - Reads an operand from the opcode field of an
1564  *   instruction and interprets it appropriately given the operand width.
1565  *   Handles AddRegFrm instructions.
1566  *
1567  * @param insn  - the instruction whose opcode field is to be read.
1568  * @param size  - The width (in bytes) of the register being specified.
1569  *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1570  *                RAX.
1571  * @return      - 0 on success; nonzero otherwise.
1572  */
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1573 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1574   dbgprintf(insn, "readOpcodeRegister()");
1575 
1576   if (size == 0)
1577     size = insn->registerSize;
1578 
1579   switch (size) {
1580   case 1:
1581     insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1582                                                   | (insn->opcode & 7)));
1583     if (insn->rexPrefix &&
1584         insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1585         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1586       insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1587                                    + (insn->opcodeRegister - MODRM_REG_AL - 4));
1588     }
1589 
1590     break;
1591   case 2:
1592     insn->opcodeRegister = (Reg)(MODRM_REG_AX
1593                                  + ((bFromREX(insn->rexPrefix) << 3)
1594                                     | (insn->opcode & 7)));
1595     break;
1596   case 4:
1597     insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1598                                  + ((bFromREX(insn->rexPrefix) << 3)
1599                                     | (insn->opcode & 7)));
1600     break;
1601   case 8:
1602     insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1603                                  + ((bFromREX(insn->rexPrefix) << 3)
1604                                     | (insn->opcode & 7)));
1605     break;
1606   }
1607 
1608   return 0;
1609 }
1610 
1611 /*
1612  * readImmediate - Consumes an immediate operand from an instruction, given the
1613  *   desired operand size.
1614  *
1615  * @param insn  - The instruction whose operand is to be read.
1616  * @param size  - The width (in bytes) of the operand.
1617  * @return      - 0 if the immediate was successfully consumed; nonzero
1618  *                otherwise.
1619  */
readImmediate(struct InternalInstruction * insn,uint8_t size)1620 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1621   uint8_t imm8;
1622   uint16_t imm16;
1623   uint32_t imm32;
1624   uint64_t imm64;
1625 
1626   dbgprintf(insn, "readImmediate()");
1627 
1628   if (insn->numImmediatesConsumed == 2) {
1629     debug("Already consumed two immediates");
1630     return -1;
1631   }
1632 
1633   if (size == 0)
1634     size = insn->immediateSize;
1635   else
1636     insn->immediateSize = size;
1637   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1638 
1639   switch (size) {
1640   case 1:
1641     if (consumeByte(insn, &imm8))
1642       return -1;
1643     insn->immediates[insn->numImmediatesConsumed] = imm8;
1644     break;
1645   case 2:
1646     if (consumeUInt16(insn, &imm16))
1647       return -1;
1648     insn->immediates[insn->numImmediatesConsumed] = imm16;
1649     break;
1650   case 4:
1651     if (consumeUInt32(insn, &imm32))
1652       return -1;
1653     insn->immediates[insn->numImmediatesConsumed] = imm32;
1654     break;
1655   case 8:
1656     if (consumeUInt64(insn, &imm64))
1657       return -1;
1658     insn->immediates[insn->numImmediatesConsumed] = imm64;
1659     break;
1660   }
1661 
1662   insn->numImmediatesConsumed++;
1663 
1664   return 0;
1665 }
1666 
1667 /*
1668  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1669  *
1670  * @param insn  - The instruction whose operand is to be read.
1671  * @return      - 0 if the vvvv was successfully consumed; nonzero
1672  *                otherwise.
1673  */
readVVVV(struct InternalInstruction * insn)1674 static int readVVVV(struct InternalInstruction* insn) {
1675   dbgprintf(insn, "readVVVV()");
1676 
1677   int vvvv;
1678   if (insn->vectorExtensionType == TYPE_EVEX)
1679     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1680             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1681   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1682     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1683   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1684     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1685   else if (insn->vectorExtensionType == TYPE_XOP)
1686     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1687   else
1688     return -1;
1689 
1690   if (insn->mode != MODE_64BIT)
1691     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1692 
1693   insn->vvvv = static_cast<Reg>(vvvv);
1694   return 0;
1695 }
1696 
1697 /*
1698  * readMaskRegister - Reads an mask register from the opcode field of an
1699  *   instruction.
1700  *
1701  * @param insn    - The instruction whose opcode field is to be read.
1702  * @return        - 0 on success; nonzero otherwise.
1703  */
readMaskRegister(struct InternalInstruction * insn)1704 static int readMaskRegister(struct InternalInstruction* insn) {
1705   dbgprintf(insn, "readMaskRegister()");
1706 
1707   if (insn->vectorExtensionType != TYPE_EVEX)
1708     return -1;
1709 
1710   insn->writemask =
1711       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1712   return 0;
1713 }
1714 
1715 /*
1716  * readOperands - Consults the specifier for an instruction and consumes all
1717  *   operands for that instruction, interpreting them as it goes.
1718  *
1719  * @param insn  - The instruction whose operands are to be read and interpreted.
1720  * @return      - 0 if all operands could be read; nonzero otherwise.
1721  */
readOperands(struct InternalInstruction * insn)1722 static int readOperands(struct InternalInstruction* insn) {
1723   int hasVVVV, needVVVV;
1724   int sawRegImm = 0;
1725 
1726   dbgprintf(insn, "readOperands()");
1727 
1728   /* If non-zero vvvv specified, need to make sure one of the operands
1729      uses it. */
1730   hasVVVV = !readVVVV(insn);
1731   needVVVV = hasVVVV && (insn->vvvv != 0);
1732 
1733   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1734     switch (Op.encoding) {
1735     case ENCODING_NONE:
1736     case ENCODING_SI:
1737     case ENCODING_DI:
1738       break;
1739     CASE_ENCODING_VSIB:
1740       // VSIB can use the V2 bit so check only the other bits.
1741       if (needVVVV)
1742         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1743       if (readModRM(insn))
1744         return -1;
1745 
1746       // Reject if SIB wasn't used.
1747       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1748         return -1;
1749 
1750       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1751       if (insn->sibIndex == SIB_INDEX_NONE)
1752         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1753 
1754       // If EVEX.v2 is set this is one of the 16-31 registers.
1755       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1756           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1757         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1758 
1759       // Adjust the index register to the correct size.
1760       switch ((OperandType)Op.type) {
1761       default:
1762         debug("Unhandled VSIB index type");
1763         return -1;
1764       case TYPE_MVSIBX:
1765         insn->sibIndex = (SIBIndex)(SIB_INDEX_XMM0 +
1766                                     (insn->sibIndex - insn->sibIndexBase));
1767         break;
1768       case TYPE_MVSIBY:
1769         insn->sibIndex = (SIBIndex)(SIB_INDEX_YMM0 +
1770                                     (insn->sibIndex - insn->sibIndexBase));
1771         break;
1772       case TYPE_MVSIBZ:
1773         insn->sibIndex = (SIBIndex)(SIB_INDEX_ZMM0 +
1774                                     (insn->sibIndex - insn->sibIndexBase));
1775         break;
1776       }
1777 
1778       // Apply the AVX512 compressed displacement scaling factor.
1779       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1780         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1781       break;
1782     case ENCODING_REG:
1783     CASE_ENCODING_RM:
1784       if (readModRM(insn))
1785         return -1;
1786       if (fixupReg(insn, &Op))
1787         return -1;
1788       // Apply the AVX512 compressed displacement scaling factor.
1789       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1790         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1791       break;
1792     case ENCODING_IB:
1793       if (sawRegImm) {
1794         /* Saw a register immediate so don't read again and instead split the
1795            previous immediate.  FIXME: This is a hack. */
1796         insn->immediates[insn->numImmediatesConsumed] =
1797           insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1798         ++insn->numImmediatesConsumed;
1799         break;
1800       }
1801       if (readImmediate(insn, 1))
1802         return -1;
1803       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1804         sawRegImm = 1;
1805       break;
1806     case ENCODING_IW:
1807       if (readImmediate(insn, 2))
1808         return -1;
1809       break;
1810     case ENCODING_ID:
1811       if (readImmediate(insn, 4))
1812         return -1;
1813       break;
1814     case ENCODING_IO:
1815       if (readImmediate(insn, 8))
1816         return -1;
1817       break;
1818     case ENCODING_Iv:
1819       if (readImmediate(insn, insn->immediateSize))
1820         return -1;
1821       break;
1822     case ENCODING_Ia:
1823       if (readImmediate(insn, insn->addressSize))
1824         return -1;
1825       break;
1826     case ENCODING_IRC:
1827       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1828                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1829       break;
1830     case ENCODING_RB:
1831       if (readOpcodeRegister(insn, 1))
1832         return -1;
1833       break;
1834     case ENCODING_RW:
1835       if (readOpcodeRegister(insn, 2))
1836         return -1;
1837       break;
1838     case ENCODING_RD:
1839       if (readOpcodeRegister(insn, 4))
1840         return -1;
1841       break;
1842     case ENCODING_RO:
1843       if (readOpcodeRegister(insn, 8))
1844         return -1;
1845       break;
1846     case ENCODING_Rv:
1847       if (readOpcodeRegister(insn, 0))
1848         return -1;
1849       break;
1850     case ENCODING_FP:
1851       break;
1852     case ENCODING_VVVV:
1853       needVVVV = 0; /* Mark that we have found a VVVV operand. */
1854       if (!hasVVVV)
1855         return -1;
1856       if (insn->mode != MODE_64BIT)
1857         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1858       if (fixupReg(insn, &Op))
1859         return -1;
1860       break;
1861     case ENCODING_WRITEMASK:
1862       if (readMaskRegister(insn))
1863         return -1;
1864       break;
1865     case ENCODING_DUP:
1866       break;
1867     default:
1868       dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1869       return -1;
1870     }
1871   }
1872 
1873   /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1874   if (needVVVV) return -1;
1875 
1876   return 0;
1877 }
1878 
1879 /*
1880  * decodeInstruction - Reads and interprets a full instruction provided by the
1881  *   user.
1882  *
1883  * @param insn      - A pointer to the instruction to be populated.  Must be
1884  *                    pre-allocated.
1885  * @param reader    - The function to be used to read the instruction's bytes.
1886  * @param readerArg - A generic argument to be passed to the reader to store
1887  *                    any internal state.
1888  * @param logger    - If non-NULL, the function to be used to write log messages
1889  *                    and warnings.
1890  * @param loggerArg - A generic argument to be passed to the logger to store
1891  *                    any internal state.
1892  * @param startLoc  - The address (in the reader's address space) of the first
1893  *                    byte in the instruction.
1894  * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1895  *                    decode the instruction in.
1896  * @return          - 0 if the instruction's memory could be read; nonzero if
1897  *                    not.
1898  */
decodeInstruction(struct InternalInstruction * insn,byteReader_t reader,const void * readerArg,dlog_t logger,void * loggerArg,const void * miiArg,uint64_t startLoc,DisassemblerMode mode)1899 int llvm::X86Disassembler::decodeInstruction(
1900     struct InternalInstruction *insn, byteReader_t reader,
1901     const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1902     uint64_t startLoc, DisassemblerMode mode) {
1903   memset(insn, 0, sizeof(struct InternalInstruction));
1904 
1905   insn->reader = reader;
1906   insn->readerArg = readerArg;
1907   insn->dlog = logger;
1908   insn->dlogArg = loggerArg;
1909   insn->startLocation = startLoc;
1910   insn->readerCursor = startLoc;
1911   insn->mode = mode;
1912   insn->numImmediatesConsumed = 0;
1913 
1914   if (readPrefixes(insn)       ||
1915       readOpcode(insn)         ||
1916       getID(insn, miiArg)      ||
1917       insn->instructionID == 0 ||
1918       readOperands(insn))
1919     return -1;
1920 
1921   insn->operands = x86OperandSets[insn->spec->operands];
1922 
1923   insn->length = insn->readerCursor - insn->startLocation;
1924 
1925   dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1926             startLoc, insn->readerCursor, insn->length);
1927 
1928   if (insn->length > 15)
1929     dbgprintf(insn, "Instruction exceeds 15-byte limit");
1930 
1931   return 0;
1932 }
1933