1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "Utils/WebAssemblyUtilities.h"
24 #include "WebAssembly.h"
25 #include "WebAssemblyDebugValueManager.h"
26 #include "WebAssemblyMachineFunctionInfo.h"
27 #include "WebAssemblySubtarget.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <iterator>
40 using namespace llvm;
41
42 #define DEBUG_TYPE "wasm-reg-stackify"
43
44 namespace {
45 class WebAssemblyRegStackify final : public MachineFunctionPass {
getPassName() const46 StringRef getPassName() const override {
47 return "WebAssembly Register Stackify";
48 }
49
getAnalysisUsage(AnalysisUsage & AU) const50 void getAnalysisUsage(AnalysisUsage &AU) const override {
51 AU.setPreservesCFG();
52 AU.addRequired<MachineDominatorTree>();
53 AU.addRequired<LiveIntervals>();
54 AU.addPreserved<MachineBlockFrequencyInfo>();
55 AU.addPreserved<SlotIndexes>();
56 AU.addPreserved<LiveIntervals>();
57 AU.addPreservedID(LiveVariablesID);
58 AU.addPreserved<MachineDominatorTree>();
59 MachineFunctionPass::getAnalysisUsage(AU);
60 }
61
62 bool runOnMachineFunction(MachineFunction &MF) override;
63
64 public:
65 static char ID; // Pass identification, replacement for typeid
WebAssemblyRegStackify()66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
67 };
68 } // end anonymous namespace
69
70 char WebAssemblyRegStackify::ID = 0;
71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
72 "Reorder instructions to use the WebAssembly value stack",
73 false, false)
74
createWebAssemblyRegStackify()75 FunctionPass *llvm::createWebAssemblyRegStackify() {
76 return new WebAssemblyRegStackify();
77 }
78
79 // Decorate the given instruction with implicit operands that enforce the
80 // expression stack ordering constraints for an instruction which is on
81 // the expression stack.
imposeStackOrdering(MachineInstr * MI)82 static void imposeStackOrdering(MachineInstr *MI) {
83 // Write the opaque VALUE_STACK register.
84 if (!MI->definesRegister(WebAssembly::VALUE_STACK))
85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
86 /*isDef=*/true,
87 /*isImp=*/true));
88
89 // Also read the opaque VALUE_STACK register.
90 if (!MI->readsRegister(WebAssembly::VALUE_STACK))
91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
92 /*isDef=*/false,
93 /*isImp=*/true));
94 }
95
96 // Convert an IMPLICIT_DEF instruction into an instruction which defines
97 // a constant zero value.
convertImplicitDefToConstZero(MachineInstr * MI,MachineRegisterInfo & MRI,const TargetInstrInfo * TII,MachineFunction & MF,LiveIntervals & LIS)98 static void convertImplicitDefToConstZero(MachineInstr *MI,
99 MachineRegisterInfo &MRI,
100 const TargetInstrInfo *TII,
101 MachineFunction &MF,
102 LiveIntervals &LIS) {
103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
104
105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
106 if (RegClass == &WebAssembly::I32RegClass) {
107 MI->setDesc(TII->get(WebAssembly::CONST_I32));
108 MI->addOperand(MachineOperand::CreateImm(0));
109 } else if (RegClass == &WebAssembly::I64RegClass) {
110 MI->setDesc(TII->get(WebAssembly::CONST_I64));
111 MI->addOperand(MachineOperand::CreateImm(0));
112 } else if (RegClass == &WebAssembly::F32RegClass) {
113 MI->setDesc(TII->get(WebAssembly::CONST_F32));
114 auto *Val = cast<ConstantFP>(Constant::getNullValue(
115 Type::getFloatTy(MF.getFunction().getContext())));
116 MI->addOperand(MachineOperand::CreateFPImm(Val));
117 } else if (RegClass == &WebAssembly::F64RegClass) {
118 MI->setDesc(TII->get(WebAssembly::CONST_F64));
119 auto *Val = cast<ConstantFP>(Constant::getNullValue(
120 Type::getDoubleTy(MF.getFunction().getContext())));
121 MI->addOperand(MachineOperand::CreateFPImm(Val));
122 } else if (RegClass == &WebAssembly::V128RegClass) {
123 MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
124 MI->addOperand(MachineOperand::CreateImm(0));
125 MI->addOperand(MachineOperand::CreateImm(0));
126 } else {
127 llvm_unreachable("Unexpected reg class");
128 }
129 }
130
131 // Determine whether a call to the callee referenced by
132 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
133 // effects.
queryCallee(const MachineInstr & MI,bool & Read,bool & Write,bool & Effects,bool & StackPointer)134 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
135 bool &Effects, bool &StackPointer) {
136 // All calls can use the stack pointer.
137 StackPointer = true;
138
139 const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
140 if (MO.isGlobal()) {
141 const Constant *GV = MO.getGlobal();
142 if (const auto *GA = dyn_cast<GlobalAlias>(GV))
143 if (!GA->isInterposable())
144 GV = GA->getAliasee();
145
146 if (const auto *F = dyn_cast<Function>(GV)) {
147 if (!F->doesNotThrow())
148 Effects = true;
149 if (F->doesNotAccessMemory())
150 return;
151 if (F->onlyReadsMemory()) {
152 Read = true;
153 return;
154 }
155 }
156 }
157
158 // Assume the worst.
159 Write = true;
160 Read = true;
161 Effects = true;
162 }
163
164 // Determine whether MI reads memory, writes memory, has side effects,
165 // and/or uses the stack pointer value.
query(const MachineInstr & MI,bool & Read,bool & Write,bool & Effects,bool & StackPointer)166 static void query(const MachineInstr &MI, bool &Read, bool &Write,
167 bool &Effects, bool &StackPointer) {
168 assert(!MI.isTerminator());
169
170 if (MI.isDebugInstr() || MI.isPosition())
171 return;
172
173 // Check for loads.
174 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
175 Read = true;
176
177 // Check for stores.
178 if (MI.mayStore()) {
179 Write = true;
180 } else if (MI.hasOrderedMemoryRef()) {
181 switch (MI.getOpcode()) {
182 case WebAssembly::DIV_S_I32:
183 case WebAssembly::DIV_S_I64:
184 case WebAssembly::REM_S_I32:
185 case WebAssembly::REM_S_I64:
186 case WebAssembly::DIV_U_I32:
187 case WebAssembly::DIV_U_I64:
188 case WebAssembly::REM_U_I32:
189 case WebAssembly::REM_U_I64:
190 case WebAssembly::I32_TRUNC_S_F32:
191 case WebAssembly::I64_TRUNC_S_F32:
192 case WebAssembly::I32_TRUNC_S_F64:
193 case WebAssembly::I64_TRUNC_S_F64:
194 case WebAssembly::I32_TRUNC_U_F32:
195 case WebAssembly::I64_TRUNC_U_F32:
196 case WebAssembly::I32_TRUNC_U_F64:
197 case WebAssembly::I64_TRUNC_U_F64:
198 // These instruction have hasUnmodeledSideEffects() returning true
199 // because they trap on overflow and invalid so they can't be arbitrarily
200 // moved, however hasOrderedMemoryRef() interprets this plus their lack
201 // of memoperands as having a potential unknown memory reference.
202 break;
203 default:
204 // Record volatile accesses, unless it's a call, as calls are handled
205 // specially below.
206 if (!MI.isCall()) {
207 Write = true;
208 Effects = true;
209 }
210 break;
211 }
212 }
213
214 // Check for side effects.
215 if (MI.hasUnmodeledSideEffects()) {
216 switch (MI.getOpcode()) {
217 case WebAssembly::DIV_S_I32:
218 case WebAssembly::DIV_S_I64:
219 case WebAssembly::REM_S_I32:
220 case WebAssembly::REM_S_I64:
221 case WebAssembly::DIV_U_I32:
222 case WebAssembly::DIV_U_I64:
223 case WebAssembly::REM_U_I32:
224 case WebAssembly::REM_U_I64:
225 case WebAssembly::I32_TRUNC_S_F32:
226 case WebAssembly::I64_TRUNC_S_F32:
227 case WebAssembly::I32_TRUNC_S_F64:
228 case WebAssembly::I64_TRUNC_S_F64:
229 case WebAssembly::I32_TRUNC_U_F32:
230 case WebAssembly::I64_TRUNC_U_F32:
231 case WebAssembly::I32_TRUNC_U_F64:
232 case WebAssembly::I64_TRUNC_U_F64:
233 // These instructions have hasUnmodeledSideEffects() returning true
234 // because they trap on overflow and invalid so they can't be arbitrarily
235 // moved, however in the specific case of register stackifying, it is safe
236 // to move them because overflow and invalid are Undefined Behavior.
237 break;
238 default:
239 Effects = true;
240 break;
241 }
242 }
243
244 // Check for writes to __stack_pointer global.
245 if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
246 MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
247 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
248 StackPointer = true;
249
250 // Analyze calls.
251 if (MI.isCall()) {
252 queryCallee(MI, Read, Write, Effects, StackPointer);
253 }
254 }
255
256 // Test whether Def is safe and profitable to rematerialize.
shouldRematerialize(const MachineInstr & Def,const WebAssemblyInstrInfo * TII)257 static bool shouldRematerialize(const MachineInstr &Def,
258 const WebAssemblyInstrInfo *TII) {
259 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def);
260 }
261
262 // Identify the definition for this register at this point. This is a
263 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
264 // LiveIntervals to handle complex cases.
getVRegDef(unsigned Reg,const MachineInstr * Insert,const MachineRegisterInfo & MRI,const LiveIntervals & LIS)265 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
266 const MachineRegisterInfo &MRI,
267 const LiveIntervals &LIS) {
268 // Most registers are in SSA form here so we try a quick MRI query first.
269 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
270 return Def;
271
272 // MRI doesn't know what the Def is. Try asking LIS.
273 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
274 LIS.getInstructionIndex(*Insert)))
275 return LIS.getInstructionFromIndex(ValNo->def);
276
277 return nullptr;
278 }
279
280 // Test whether Reg, as defined at Def, has exactly one use. This is a
281 // generalization of MachineRegisterInfo::hasOneUse that uses LiveIntervals
282 // to handle complex cases.
hasOneUse(unsigned Reg,MachineInstr * Def,MachineRegisterInfo & MRI,MachineDominatorTree & MDT,LiveIntervals & LIS)283 static bool hasOneUse(unsigned Reg, MachineInstr *Def, MachineRegisterInfo &MRI,
284 MachineDominatorTree &MDT, LiveIntervals &LIS) {
285 // Most registers are in SSA form here so we try a quick MRI query first.
286 if (MRI.hasOneUse(Reg))
287 return true;
288
289 bool HasOne = false;
290 const LiveInterval &LI = LIS.getInterval(Reg);
291 const VNInfo *DefVNI =
292 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
293 assert(DefVNI);
294 for (auto &I : MRI.use_nodbg_operands(Reg)) {
295 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
296 if (Result.valueIn() == DefVNI) {
297 if (!Result.isKill())
298 return false;
299 if (HasOne)
300 return false;
301 HasOne = true;
302 }
303 }
304 return HasOne;
305 }
306
307 // Test whether it's safe to move Def to just before Insert.
308 // TODO: Compute memory dependencies in a way that doesn't require always
309 // walking the block.
310 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
311 // more precise.
isSafeToMove(const MachineOperand * Def,const MachineOperand * Use,const MachineInstr * Insert,const WebAssemblyFunctionInfo & MFI,const MachineRegisterInfo & MRI)312 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
313 const MachineInstr *Insert,
314 const WebAssemblyFunctionInfo &MFI,
315 const MachineRegisterInfo &MRI) {
316 const MachineInstr *DefI = Def->getParent();
317 const MachineInstr *UseI = Use->getParent();
318 assert(DefI->getParent() == Insert->getParent());
319 assert(UseI->getParent() == Insert->getParent());
320
321 // The first def of a multivalue instruction can be stackified by moving,
322 // since the later defs can always be placed into locals if necessary. Later
323 // defs can only be stackified if all previous defs are already stackified
324 // since ExplicitLocals will not know how to place a def in a local if a
325 // subsequent def is stackified. But only one def can be stackified by moving
326 // the instruction, so it must be the first one.
327 //
328 // TODO: This could be loosened to be the first *live* def, but care would
329 // have to be taken to ensure the drops of the initial dead defs can be
330 // placed. This would require checking that no previous defs are used in the
331 // same instruction as subsequent defs.
332 if (Def != DefI->defs().begin())
333 return false;
334
335 // If any subsequent def is used prior to the current value by the same
336 // instruction in which the current value is used, we cannot
337 // stackify. Stackifying in this case would require that def moving below the
338 // current def in the stack, which cannot be achieved, even with locals.
339 for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
340 for (const auto &PriorUse : UseI->uses()) {
341 if (&PriorUse == Use)
342 break;
343 if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
344 return false;
345 }
346 }
347
348 // If moving is a semantic nop, it is always allowed
349 const MachineBasicBlock *MBB = DefI->getParent();
350 auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
351 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
352 ;
353 if (NextI == Insert)
354 return true;
355
356 // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
357 // move.
358 if (WebAssembly::isCatch(DefI->getOpcode()))
359 return false;
360
361 // Check for register dependencies.
362 SmallVector<unsigned, 4> MutableRegisters;
363 for (const MachineOperand &MO : DefI->operands()) {
364 if (!MO.isReg() || MO.isUndef())
365 continue;
366 Register Reg = MO.getReg();
367
368 // If the register is dead here and at Insert, ignore it.
369 if (MO.isDead() && Insert->definesRegister(Reg) &&
370 !Insert->readsRegister(Reg))
371 continue;
372
373 if (Register::isPhysicalRegister(Reg)) {
374 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
375 // from moving down, and we've already checked for that.
376 if (Reg == WebAssembly::ARGUMENTS)
377 continue;
378 // If the physical register is never modified, ignore it.
379 if (!MRI.isPhysRegModified(Reg))
380 continue;
381 // Otherwise, it's a physical register with unknown liveness.
382 return false;
383 }
384
385 // If one of the operands isn't in SSA form, it has different values at
386 // different times, and we need to make sure we don't move our use across
387 // a different def.
388 if (!MO.isDef() && !MRI.hasOneDef(Reg))
389 MutableRegisters.push_back(Reg);
390 }
391
392 bool Read = false, Write = false, Effects = false, StackPointer = false;
393 query(*DefI, Read, Write, Effects, StackPointer);
394
395 // If the instruction does not access memory and has no side effects, it has
396 // no additional dependencies.
397 bool HasMutableRegisters = !MutableRegisters.empty();
398 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
399 return true;
400
401 // Scan through the intervening instructions between DefI and Insert.
402 MachineBasicBlock::const_iterator D(DefI), I(Insert);
403 for (--I; I != D; --I) {
404 bool InterveningRead = false;
405 bool InterveningWrite = false;
406 bool InterveningEffects = false;
407 bool InterveningStackPointer = false;
408 query(*I, InterveningRead, InterveningWrite, InterveningEffects,
409 InterveningStackPointer);
410 if (Effects && InterveningEffects)
411 return false;
412 if (Read && InterveningWrite)
413 return false;
414 if (Write && (InterveningRead || InterveningWrite))
415 return false;
416 if (StackPointer && InterveningStackPointer)
417 return false;
418
419 for (unsigned Reg : MutableRegisters)
420 for (const MachineOperand &MO : I->operands())
421 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
422 return false;
423 }
424
425 return true;
426 }
427
428 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
oneUseDominatesOtherUses(unsigned Reg,const MachineOperand & OneUse,const MachineBasicBlock & MBB,const MachineRegisterInfo & MRI,const MachineDominatorTree & MDT,LiveIntervals & LIS,WebAssemblyFunctionInfo & MFI)429 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
430 const MachineBasicBlock &MBB,
431 const MachineRegisterInfo &MRI,
432 const MachineDominatorTree &MDT,
433 LiveIntervals &LIS,
434 WebAssemblyFunctionInfo &MFI) {
435 const LiveInterval &LI = LIS.getInterval(Reg);
436
437 const MachineInstr *OneUseInst = OneUse.getParent();
438 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
439
440 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
441 if (&Use == &OneUse)
442 continue;
443
444 const MachineInstr *UseInst = Use.getParent();
445 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
446
447 if (UseVNI != OneUseVNI)
448 continue;
449
450 if (UseInst == OneUseInst) {
451 // Another use in the same instruction. We need to ensure that the one
452 // selected use happens "before" it.
453 if (&OneUse > &Use)
454 return false;
455 } else {
456 // Test that the use is dominated by the one selected use.
457 while (!MDT.dominates(OneUseInst, UseInst)) {
458 // Actually, dominating is over-conservative. Test that the use would
459 // happen after the one selected use in the stack evaluation order.
460 //
461 // This is needed as a consequence of using implicit local.gets for
462 // uses and implicit local.sets for defs.
463 if (UseInst->getDesc().getNumDefs() == 0)
464 return false;
465 const MachineOperand &MO = UseInst->getOperand(0);
466 if (!MO.isReg())
467 return false;
468 Register DefReg = MO.getReg();
469 if (!Register::isVirtualRegister(DefReg) ||
470 !MFI.isVRegStackified(DefReg))
471 return false;
472 assert(MRI.hasOneNonDBGUse(DefReg));
473 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
474 const MachineInstr *NewUseInst = NewUse.getParent();
475 if (NewUseInst == OneUseInst) {
476 if (&OneUse > &NewUse)
477 return false;
478 break;
479 }
480 UseInst = NewUseInst;
481 }
482 }
483 }
484 return true;
485 }
486
487 /// Get the appropriate tee opcode for the given register class.
getTeeOpcode(const TargetRegisterClass * RC)488 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
489 if (RC == &WebAssembly::I32RegClass)
490 return WebAssembly::TEE_I32;
491 if (RC == &WebAssembly::I64RegClass)
492 return WebAssembly::TEE_I64;
493 if (RC == &WebAssembly::F32RegClass)
494 return WebAssembly::TEE_F32;
495 if (RC == &WebAssembly::F64RegClass)
496 return WebAssembly::TEE_F64;
497 if (RC == &WebAssembly::V128RegClass)
498 return WebAssembly::TEE_V128;
499 if (RC == &WebAssembly::EXTERNREFRegClass)
500 return WebAssembly::TEE_EXTERNREF;
501 if (RC == &WebAssembly::FUNCREFRegClass)
502 return WebAssembly::TEE_FUNCREF;
503 llvm_unreachable("Unexpected register class");
504 }
505
506 // Shrink LI to its uses, cleaning up LI.
shrinkToUses(LiveInterval & LI,LiveIntervals & LIS)507 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
508 if (LIS.shrinkToUses(&LI)) {
509 SmallVector<LiveInterval *, 4> SplitLIs;
510 LIS.splitSeparateComponents(LI, SplitLIs);
511 }
512 }
513
514 /// A single-use def in the same block with no intervening memory or register
515 /// dependencies; move the def down and nest it with the current instruction.
moveForSingleUse(unsigned Reg,MachineOperand & Op,MachineInstr * Def,MachineBasicBlock & MBB,MachineInstr * Insert,LiveIntervals & LIS,WebAssemblyFunctionInfo & MFI,MachineRegisterInfo & MRI)516 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
517 MachineInstr *Def, MachineBasicBlock &MBB,
518 MachineInstr *Insert, LiveIntervals &LIS,
519 WebAssemblyFunctionInfo &MFI,
520 MachineRegisterInfo &MRI) {
521 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
522
523 WebAssemblyDebugValueManager DefDIs(Def);
524 MBB.splice(Insert, &MBB, Def);
525 DefDIs.move(Insert);
526 LIS.handleMove(*Def);
527
528 if (MRI.hasOneDef(Reg) && MRI.hasOneUse(Reg)) {
529 // No one else is using this register for anything so we can just stackify
530 // it in place.
531 MFI.stackifyVReg(MRI, Reg);
532 } else {
533 // The register may have unrelated uses or defs; create a new register for
534 // just our one def and use so that we can stackify it.
535 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
536 Def->getOperand(0).setReg(NewReg);
537 Op.setReg(NewReg);
538
539 // Tell LiveIntervals about the new register.
540 LIS.createAndComputeVirtRegInterval(NewReg);
541
542 // Tell LiveIntervals about the changes to the old register.
543 LiveInterval &LI = LIS.getInterval(Reg);
544 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
545 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
546 /*RemoveDeadValNo=*/true);
547
548 MFI.stackifyVReg(MRI, NewReg);
549
550 DefDIs.updateReg(NewReg);
551
552 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
553 }
554
555 imposeStackOrdering(Def);
556 return Def;
557 }
558
559 /// A trivially cloneable instruction; clone it and nest the new copy with the
560 /// current instruction.
rematerializeCheapDef(unsigned Reg,MachineOperand & Op,MachineInstr & Def,MachineBasicBlock & MBB,MachineBasicBlock::instr_iterator Insert,LiveIntervals & LIS,WebAssemblyFunctionInfo & MFI,MachineRegisterInfo & MRI,const WebAssemblyInstrInfo * TII,const WebAssemblyRegisterInfo * TRI)561 static MachineInstr *rematerializeCheapDef(
562 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
563 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
564 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
565 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
566 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
567 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
568
569 WebAssemblyDebugValueManager DefDIs(&Def);
570
571 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
572 TII->reMaterialize(MBB, Insert, NewReg, 0, Def, *TRI);
573 Op.setReg(NewReg);
574 MachineInstr *Clone = &*std::prev(Insert);
575 LIS.InsertMachineInstrInMaps(*Clone);
576 LIS.createAndComputeVirtRegInterval(NewReg);
577 MFI.stackifyVReg(MRI, NewReg);
578 imposeStackOrdering(Clone);
579
580 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
581
582 // Shrink the interval.
583 bool IsDead = MRI.use_empty(Reg);
584 if (!IsDead) {
585 LiveInterval &LI = LIS.getInterval(Reg);
586 shrinkToUses(LI, LIS);
587 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
588 }
589
590 // If that was the last use of the original, delete the original.
591 // Move or clone corresponding DBG_VALUEs to the 'Insert' location.
592 if (IsDead) {
593 LLVM_DEBUG(dbgs() << " - Deleting original\n");
594 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
595 LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
596 LIS.removeInterval(Reg);
597 LIS.RemoveMachineInstrFromMaps(Def);
598 Def.eraseFromParent();
599
600 DefDIs.move(&*Insert);
601 DefDIs.updateReg(NewReg);
602 } else {
603 DefDIs.clone(&*Insert, NewReg);
604 }
605
606 return Clone;
607 }
608
609 /// A multiple-use def in the same block with no intervening memory or register
610 /// dependencies; move the def down, nest it with the current instruction, and
611 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
612 /// this:
613 ///
614 /// Reg = INST ... // Def
615 /// INST ..., Reg, ... // Insert
616 /// INST ..., Reg, ...
617 /// INST ..., Reg, ...
618 ///
619 /// to this:
620 ///
621 /// DefReg = INST ... // Def (to become the new Insert)
622 /// TeeReg, Reg = TEE_... DefReg
623 /// INST ..., TeeReg, ... // Insert
624 /// INST ..., Reg, ...
625 /// INST ..., Reg, ...
626 ///
627 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
628 /// resulting code.
moveAndTeeForMultiUse(unsigned Reg,MachineOperand & Op,MachineInstr * Def,MachineBasicBlock & MBB,MachineInstr * Insert,LiveIntervals & LIS,WebAssemblyFunctionInfo & MFI,MachineRegisterInfo & MRI,const WebAssemblyInstrInfo * TII)629 static MachineInstr *moveAndTeeForMultiUse(
630 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
631 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
632 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
633 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
634
635 WebAssemblyDebugValueManager DefDIs(Def);
636
637 // Move Def into place.
638 MBB.splice(Insert, &MBB, Def);
639 LIS.handleMove(*Def);
640
641 // Create the Tee and attach the registers.
642 const auto *RegClass = MRI.getRegClass(Reg);
643 Register TeeReg = MRI.createVirtualRegister(RegClass);
644 Register DefReg = MRI.createVirtualRegister(RegClass);
645 MachineOperand &DefMO = Def->getOperand(0);
646 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
647 TII->get(getTeeOpcode(RegClass)), TeeReg)
648 .addReg(Reg, RegState::Define)
649 .addReg(DefReg, getUndefRegState(DefMO.isDead()));
650 Op.setReg(TeeReg);
651 DefMO.setReg(DefReg);
652 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
653 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
654
655 DefDIs.move(Insert);
656
657 // Tell LiveIntervals we moved the original vreg def from Def to Tee.
658 LiveInterval &LI = LIS.getInterval(Reg);
659 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
660 VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
661 I->start = TeeIdx;
662 ValNo->def = TeeIdx;
663 shrinkToUses(LI, LIS);
664
665 // Finish stackifying the new regs.
666 LIS.createAndComputeVirtRegInterval(TeeReg);
667 LIS.createAndComputeVirtRegInterval(DefReg);
668 MFI.stackifyVReg(MRI, DefReg);
669 MFI.stackifyVReg(MRI, TeeReg);
670 imposeStackOrdering(Def);
671 imposeStackOrdering(Tee);
672
673 DefDIs.clone(Tee, DefReg);
674 DefDIs.clone(Insert, TeeReg);
675
676 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
677 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
678 return Def;
679 }
680
681 namespace {
682 /// A stack for walking the tree of instructions being built, visiting the
683 /// MachineOperands in DFS order.
684 class TreeWalkerState {
685 using mop_iterator = MachineInstr::mop_iterator;
686 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
687 using RangeTy = iterator_range<mop_reverse_iterator>;
688 SmallVector<RangeTy, 4> Worklist;
689
690 public:
TreeWalkerState(MachineInstr * Insert)691 explicit TreeWalkerState(MachineInstr *Insert) {
692 const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
693 if (!Range.empty())
694 Worklist.push_back(reverse(Range));
695 }
696
done() const697 bool done() const { return Worklist.empty(); }
698
pop()699 MachineOperand &pop() {
700 RangeTy &Range = Worklist.back();
701 MachineOperand &Op = *Range.begin();
702 Range = drop_begin(Range);
703 if (Range.empty())
704 Worklist.pop_back();
705 assert((Worklist.empty() || !Worklist.back().empty()) &&
706 "Empty ranges shouldn't remain in the worklist");
707 return Op;
708 }
709
710 /// Push Instr's operands onto the stack to be visited.
pushOperands(MachineInstr * Instr)711 void pushOperands(MachineInstr *Instr) {
712 const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
713 if (!Range.empty())
714 Worklist.push_back(reverse(Range));
715 }
716
717 /// Some of Instr's operands are on the top of the stack; remove them and
718 /// re-insert them starting from the beginning (because we've commuted them).
resetTopOperands(MachineInstr * Instr)719 void resetTopOperands(MachineInstr *Instr) {
720 assert(hasRemainingOperands(Instr) &&
721 "Reseting operands should only be done when the instruction has "
722 "an operand still on the stack");
723 Worklist.back() = reverse(Instr->explicit_uses());
724 }
725
726 /// Test whether Instr has operands remaining to be visited at the top of
727 /// the stack.
hasRemainingOperands(const MachineInstr * Instr) const728 bool hasRemainingOperands(const MachineInstr *Instr) const {
729 if (Worklist.empty())
730 return false;
731 const RangeTy &Range = Worklist.back();
732 return !Range.empty() && Range.begin()->getParent() == Instr;
733 }
734
735 /// Test whether the given register is present on the stack, indicating an
736 /// operand in the tree that we haven't visited yet. Moving a definition of
737 /// Reg to a point in the tree after that would change its value.
738 ///
739 /// This is needed as a consequence of using implicit local.gets for
740 /// uses and implicit local.sets for defs.
isOnStack(unsigned Reg) const741 bool isOnStack(unsigned Reg) const {
742 for (const RangeTy &Range : Worklist)
743 for (const MachineOperand &MO : Range)
744 if (MO.isReg() && MO.getReg() == Reg)
745 return true;
746 return false;
747 }
748 };
749
750 /// State to keep track of whether commuting is in flight or whether it's been
751 /// tried for the current instruction and didn't work.
752 class CommutingState {
753 /// There are effectively three states: the initial state where we haven't
754 /// started commuting anything and we don't know anything yet, the tentative
755 /// state where we've commuted the operands of the current instruction and are
756 /// revisiting it, and the declined state where we've reverted the operands
757 /// back to their original order and will no longer commute it further.
758 bool TentativelyCommuting = false;
759 bool Declined = false;
760
761 /// During the tentative state, these hold the operand indices of the commuted
762 /// operands.
763 unsigned Operand0, Operand1;
764
765 public:
766 /// Stackification for an operand was not successful due to ordering
767 /// constraints. If possible, and if we haven't already tried it and declined
768 /// it, commute Insert's operands and prepare to revisit it.
maybeCommute(MachineInstr * Insert,TreeWalkerState & TreeWalker,const WebAssemblyInstrInfo * TII)769 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
770 const WebAssemblyInstrInfo *TII) {
771 if (TentativelyCommuting) {
772 assert(!Declined &&
773 "Don't decline commuting until you've finished trying it");
774 // Commuting didn't help. Revert it.
775 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
776 TentativelyCommuting = false;
777 Declined = true;
778 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
779 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
780 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
781 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
782 // Tentatively commute the operands and try again.
783 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
784 TreeWalker.resetTopOperands(Insert);
785 TentativelyCommuting = true;
786 Declined = false;
787 }
788 }
789 }
790
791 /// Stackification for some operand was successful. Reset to the default
792 /// state.
reset()793 void reset() {
794 TentativelyCommuting = false;
795 Declined = false;
796 }
797 };
798 } // end anonymous namespace
799
runOnMachineFunction(MachineFunction & MF)800 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
801 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
802 "********** Function: "
803 << MF.getName() << '\n');
804
805 bool Changed = false;
806 MachineRegisterInfo &MRI = MF.getRegInfo();
807 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
808 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
809 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
810 auto &MDT = getAnalysis<MachineDominatorTree>();
811 auto &LIS = getAnalysis<LiveIntervals>();
812
813 // Walk the instructions from the bottom up. Currently we don't look past
814 // block boundaries, and the blocks aren't ordered so the block visitation
815 // order isn't significant, but we may want to change this in the future.
816 for (MachineBasicBlock &MBB : MF) {
817 // Don't use a range-based for loop, because we modify the list as we're
818 // iterating over it and the end iterator may change.
819 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
820 MachineInstr *Insert = &*MII;
821 // Don't nest anything inside an inline asm, because we don't have
822 // constraints for $push inputs.
823 if (Insert->isInlineAsm())
824 continue;
825
826 // Ignore debugging intrinsics.
827 if (Insert->isDebugValue())
828 continue;
829
830 // Iterate through the inputs in reverse order, since we'll be pulling
831 // operands off the stack in LIFO order.
832 CommutingState Commuting;
833 TreeWalkerState TreeWalker(Insert);
834 while (!TreeWalker.done()) {
835 MachineOperand &Use = TreeWalker.pop();
836
837 // We're only interested in explicit virtual register operands.
838 if (!Use.isReg())
839 continue;
840
841 Register Reg = Use.getReg();
842 assert(Use.isUse() && "explicit_uses() should only iterate over uses");
843 assert(!Use.isImplicit() &&
844 "explicit_uses() should only iterate over explicit operands");
845 if (Register::isPhysicalRegister(Reg))
846 continue;
847
848 // Identify the definition for this register at this point.
849 MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
850 if (!DefI)
851 continue;
852
853 // Don't nest an INLINE_ASM def into anything, because we don't have
854 // constraints for $pop outputs.
855 if (DefI->isInlineAsm())
856 continue;
857
858 // Argument instructions represent live-in registers and not real
859 // instructions.
860 if (WebAssembly::isArgument(DefI->getOpcode()))
861 continue;
862
863 MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
864 assert(Def != nullptr);
865
866 // Decide which strategy to take. Prefer to move a single-use value
867 // over cloning it, and prefer cloning over introducing a tee.
868 // For moving, we require the def to be in the same block as the use;
869 // this makes things simpler (LiveIntervals' handleMove function only
870 // supports intra-block moves) and it's MachineSink's job to catch all
871 // the sinking opportunities anyway.
872 bool SameBlock = DefI->getParent() == &MBB;
873 bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) &&
874 !TreeWalker.isOnStack(Reg);
875 if (CanMove && hasOneUse(Reg, DefI, MRI, MDT, LIS)) {
876 Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
877
878 // If we are removing the frame base reg completely, remove the debug
879 // info as well.
880 // TODO: Encode this properly as a stackified value.
881 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
882 MFI.clearFrameBaseVreg();
883 } else if (shouldRematerialize(*DefI, TII)) {
884 Insert =
885 rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
886 LIS, MFI, MRI, TII, TRI);
887 } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
888 LIS, MFI)) {
889 Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
890 MRI, TII);
891 } else {
892 // We failed to stackify the operand. If the problem was ordering
893 // constraints, Commuting may be able to help.
894 if (!CanMove && SameBlock)
895 Commuting.maybeCommute(Insert, TreeWalker, TII);
896 // Proceed to the next operand.
897 continue;
898 }
899
900 // Stackifying a multivalue def may unlock in-place stackification of
901 // subsequent defs. TODO: Handle the case where the consecutive uses are
902 // not all in the same instruction.
903 auto *SubsequentDef = Insert->defs().begin();
904 auto *SubsequentUse = &Use;
905 while (SubsequentDef != Insert->defs().end() &&
906 SubsequentUse != Use.getParent()->uses().end()) {
907 if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
908 break;
909 Register DefReg = SubsequentDef->getReg();
910 Register UseReg = SubsequentUse->getReg();
911 // TODO: This single-use restriction could be relaxed by using tees
912 if (DefReg != UseReg || !MRI.hasOneUse(DefReg))
913 break;
914 MFI.stackifyVReg(MRI, DefReg);
915 ++SubsequentDef;
916 ++SubsequentUse;
917 }
918
919 // If the instruction we just stackified is an IMPLICIT_DEF, convert it
920 // to a constant 0 so that the def is explicit, and the push/pop
921 // correspondence is maintained.
922 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
923 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
924
925 // We stackified an operand. Add the defining instruction's operands to
926 // the worklist stack now to continue to build an ever deeper tree.
927 Commuting.reset();
928 TreeWalker.pushOperands(Insert);
929 }
930
931 // If we stackified any operands, skip over the tree to start looking for
932 // the next instruction we can build a tree on.
933 if (Insert != &*MII) {
934 imposeStackOrdering(&*MII);
935 MII = MachineBasicBlock::iterator(Insert).getReverse();
936 Changed = true;
937 }
938 }
939 }
940
941 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
942 // that it never looks like a use-before-def.
943 if (Changed) {
944 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
945 for (MachineBasicBlock &MBB : MF)
946 MBB.addLiveIn(WebAssembly::VALUE_STACK);
947 }
948
949 #ifndef NDEBUG
950 // Verify that pushes and pops are performed in LIFO order.
951 SmallVector<unsigned, 0> Stack;
952 for (MachineBasicBlock &MBB : MF) {
953 for (MachineInstr &MI : MBB) {
954 if (MI.isDebugInstr())
955 continue;
956 for (MachineOperand &MO : reverse(MI.explicit_uses())) {
957 if (!MO.isReg())
958 continue;
959 Register Reg = MO.getReg();
960 if (MFI.isVRegStackified(Reg))
961 assert(Stack.pop_back_val() == Reg &&
962 "Register stack pop should be paired with a push");
963 }
964 for (MachineOperand &MO : MI.defs()) {
965 if (!MO.isReg())
966 continue;
967 Register Reg = MO.getReg();
968 if (MFI.isVRegStackified(Reg))
969 Stack.push_back(MO.getReg());
970 }
971 }
972 // TODO: Generalize this code to support keeping values on the stack across
973 // basic block boundaries.
974 assert(Stack.empty() &&
975 "Register stack pushes and pops should be balanced");
976 }
977 #endif
978
979 return Changed;
980 }
981