1 //===-- VEInstrInfo.cpp - VE Instruction Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the VE implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "VEInstrInfo.h"
14 #include "VE.h"
15 #include "VEMachineFunctionInfo.h"
16 #include "VESubtarget.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/MC/TargetRegistry.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27
28 #define DEBUG_TYPE "ve-instr-info"
29
30 using namespace llvm;
31
32 #define GET_INSTRINFO_CTOR_DTOR
33 #include "VEGenInstrInfo.inc"
34
35 // Pin the vtable to this file.
anchor()36 void VEInstrInfo::anchor() {}
37
VEInstrInfo(VESubtarget & ST)38 VEInstrInfo::VEInstrInfo(VESubtarget &ST)
39 : VEGenInstrInfo(VE::ADJCALLSTACKDOWN, VE::ADJCALLSTACKUP), RI() {}
40
IsIntegerCC(unsigned CC)41 static bool IsIntegerCC(unsigned CC) { return (CC < VECC::CC_AF); }
42
GetOppositeBranchCondition(VECC::CondCode CC)43 static VECC::CondCode GetOppositeBranchCondition(VECC::CondCode CC) {
44 switch (CC) {
45 case VECC::CC_IG:
46 return VECC::CC_ILE;
47 case VECC::CC_IL:
48 return VECC::CC_IGE;
49 case VECC::CC_INE:
50 return VECC::CC_IEQ;
51 case VECC::CC_IEQ:
52 return VECC::CC_INE;
53 case VECC::CC_IGE:
54 return VECC::CC_IL;
55 case VECC::CC_ILE:
56 return VECC::CC_IG;
57 case VECC::CC_AF:
58 return VECC::CC_AT;
59 case VECC::CC_G:
60 return VECC::CC_LENAN;
61 case VECC::CC_L:
62 return VECC::CC_GENAN;
63 case VECC::CC_NE:
64 return VECC::CC_EQNAN;
65 case VECC::CC_EQ:
66 return VECC::CC_NENAN;
67 case VECC::CC_GE:
68 return VECC::CC_LNAN;
69 case VECC::CC_LE:
70 return VECC::CC_GNAN;
71 case VECC::CC_NUM:
72 return VECC::CC_NAN;
73 case VECC::CC_NAN:
74 return VECC::CC_NUM;
75 case VECC::CC_GNAN:
76 return VECC::CC_LE;
77 case VECC::CC_LNAN:
78 return VECC::CC_GE;
79 case VECC::CC_NENAN:
80 return VECC::CC_EQ;
81 case VECC::CC_EQNAN:
82 return VECC::CC_NE;
83 case VECC::CC_GENAN:
84 return VECC::CC_L;
85 case VECC::CC_LENAN:
86 return VECC::CC_G;
87 case VECC::CC_AT:
88 return VECC::CC_AF;
89 case VECC::UNKNOWN:
90 return VECC::UNKNOWN;
91 }
92 llvm_unreachable("Invalid cond code");
93 }
94
95 // Treat a branch relative long always instruction as unconditional branch.
96 // For example, br.l.t and br.l.
isUncondBranchOpcode(int Opc)97 static bool isUncondBranchOpcode(int Opc) {
98 using namespace llvm::VE;
99
100 #define BRKIND(NAME) (Opc == NAME##a || Opc == NAME##a_nt || Opc == NAME##a_t)
101 // VE has other branch relative always instructions for word/double/float,
102 // but we use only long branches in our lower. So, check it here.
103 assert(!BRKIND(BRCFW) && !BRKIND(BRCFD) && !BRKIND(BRCFS) &&
104 "Branch relative word/double/float always instructions should not be "
105 "used!");
106 return BRKIND(BRCFL);
107 #undef BRKIND
108 }
109
110 // Treat branch relative conditional as conditional branch instructions.
111 // For example, brgt.l.t and brle.s.nt.
isCondBranchOpcode(int Opc)112 static bool isCondBranchOpcode(int Opc) {
113 using namespace llvm::VE;
114
115 #define BRKIND(NAME) \
116 (Opc == NAME##rr || Opc == NAME##rr_nt || Opc == NAME##rr_t || \
117 Opc == NAME##ir || Opc == NAME##ir_nt || Opc == NAME##ir_t)
118 return BRKIND(BRCFL) || BRKIND(BRCFW) || BRKIND(BRCFD) || BRKIND(BRCFS);
119 #undef BRKIND
120 }
121
122 // Treat branch long always instructions as indirect branch.
123 // For example, b.l.t and b.l.
isIndirectBranchOpcode(int Opc)124 static bool isIndirectBranchOpcode(int Opc) {
125 using namespace llvm::VE;
126
127 #define BRKIND(NAME) \
128 (Opc == NAME##ari || Opc == NAME##ari_nt || Opc == NAME##ari_t)
129 // VE has other branch always instructions for word/double/float, but
130 // we use only long branches in our lower. So, check it here.
131 assert(!BRKIND(BCFW) && !BRKIND(BCFD) && !BRKIND(BCFS) &&
132 "Branch word/double/float always instructions should not be used!");
133 return BRKIND(BCFL);
134 #undef BRKIND
135 }
136
parseCondBranch(MachineInstr * LastInst,MachineBasicBlock * & Target,SmallVectorImpl<MachineOperand> & Cond)137 static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target,
138 SmallVectorImpl<MachineOperand> &Cond) {
139 Cond.push_back(MachineOperand::CreateImm(LastInst->getOperand(0).getImm()));
140 Cond.push_back(LastInst->getOperand(1));
141 Cond.push_back(LastInst->getOperand(2));
142 Target = LastInst->getOperand(3).getMBB();
143 }
144
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const145 bool VEInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
146 MachineBasicBlock *&FBB,
147 SmallVectorImpl<MachineOperand> &Cond,
148 bool AllowModify) const {
149 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
150 if (I == MBB.end())
151 return false;
152
153 if (!isUnpredicatedTerminator(*I))
154 return false;
155
156 // Get the last instruction in the block.
157 MachineInstr *LastInst = &*I;
158 unsigned LastOpc = LastInst->getOpcode();
159
160 // If there is only one terminator instruction, process it.
161 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
162 if (isUncondBranchOpcode(LastOpc)) {
163 TBB = LastInst->getOperand(0).getMBB();
164 return false;
165 }
166 if (isCondBranchOpcode(LastOpc)) {
167 // Block ends with fall-through condbranch.
168 parseCondBranch(LastInst, TBB, Cond);
169 return false;
170 }
171 return true; // Can't handle indirect branch.
172 }
173
174 // Get the instruction before it if it is a terminator.
175 MachineInstr *SecondLastInst = &*I;
176 unsigned SecondLastOpc = SecondLastInst->getOpcode();
177
178 // If AllowModify is true and the block ends with two or more unconditional
179 // branches, delete all but the first unconditional branch.
180 if (AllowModify && isUncondBranchOpcode(LastOpc)) {
181 while (isUncondBranchOpcode(SecondLastOpc)) {
182 LastInst->eraseFromParent();
183 LastInst = SecondLastInst;
184 LastOpc = LastInst->getOpcode();
185 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
186 // Return now the only terminator is an unconditional branch.
187 TBB = LastInst->getOperand(0).getMBB();
188 return false;
189 }
190 SecondLastInst = &*I;
191 SecondLastOpc = SecondLastInst->getOpcode();
192 }
193 }
194
195 // If there are three terminators, we don't know what sort of block this is.
196 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(*--I))
197 return true;
198
199 // If the block ends with a B and a Bcc, handle it.
200 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
201 parseCondBranch(SecondLastInst, TBB, Cond);
202 FBB = LastInst->getOperand(0).getMBB();
203 return false;
204 }
205
206 // If the block ends with two unconditional branches, handle it. The second
207 // one is not executed.
208 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
209 TBB = SecondLastInst->getOperand(0).getMBB();
210 return false;
211 }
212
213 // ...likewise if it ends with an indirect branch followed by an unconditional
214 // branch.
215 if (isIndirectBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
216 I = LastInst;
217 if (AllowModify)
218 I->eraseFromParent();
219 return true;
220 }
221
222 // Otherwise, can't handle this.
223 return true;
224 }
225
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const226 unsigned VEInstrInfo::insertBranch(MachineBasicBlock &MBB,
227 MachineBasicBlock *TBB,
228 MachineBasicBlock *FBB,
229 ArrayRef<MachineOperand> Cond,
230 const DebugLoc &DL, int *BytesAdded) const {
231 assert(TBB && "insertBranch must not be told to insert a fallthrough");
232 assert((Cond.size() == 3 || Cond.size() == 0) &&
233 "VE branch conditions should have three component!");
234 assert(!BytesAdded && "code size not handled");
235 if (Cond.empty()) {
236 // Uncondition branch
237 assert(!FBB && "Unconditional branch with multiple successors!");
238 BuildMI(&MBB, DL, get(VE::BRCFLa_t))
239 .addMBB(TBB);
240 return 1;
241 }
242
243 // Conditional branch
244 // (BRCFir CC sy sz addr)
245 assert(Cond[0].isImm() && Cond[2].isReg() && "not implemented");
246
247 unsigned opc[2];
248 const TargetRegisterInfo *TRI = &getRegisterInfo();
249 MachineFunction *MF = MBB.getParent();
250 const MachineRegisterInfo &MRI = MF->getRegInfo();
251 Register Reg = Cond[2].getReg();
252 if (IsIntegerCC(Cond[0].getImm())) {
253 if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
254 opc[0] = VE::BRCFWir;
255 opc[1] = VE::BRCFWrr;
256 } else {
257 opc[0] = VE::BRCFLir;
258 opc[1] = VE::BRCFLrr;
259 }
260 } else {
261 if (TRI->getRegSizeInBits(Reg, MRI) == 32) {
262 opc[0] = VE::BRCFSir;
263 opc[1] = VE::BRCFSrr;
264 } else {
265 opc[0] = VE::BRCFDir;
266 opc[1] = VE::BRCFDrr;
267 }
268 }
269 if (Cond[1].isImm()) {
270 BuildMI(&MBB, DL, get(opc[0]))
271 .add(Cond[0]) // condition code
272 .add(Cond[1]) // lhs
273 .add(Cond[2]) // rhs
274 .addMBB(TBB);
275 } else {
276 BuildMI(&MBB, DL, get(opc[1]))
277 .add(Cond[0])
278 .add(Cond[1])
279 .add(Cond[2])
280 .addMBB(TBB);
281 }
282
283 if (!FBB)
284 return 1;
285
286 BuildMI(&MBB, DL, get(VE::BRCFLa_t))
287 .addMBB(FBB);
288 return 2;
289 }
290
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const291 unsigned VEInstrInfo::removeBranch(MachineBasicBlock &MBB,
292 int *BytesRemoved) const {
293 assert(!BytesRemoved && "code size not handled");
294
295 MachineBasicBlock::iterator I = MBB.end();
296 unsigned Count = 0;
297 while (I != MBB.begin()) {
298 --I;
299
300 if (I->isDebugValue())
301 continue;
302
303 if (!isUncondBranchOpcode(I->getOpcode()) &&
304 !isCondBranchOpcode(I->getOpcode()))
305 break; // Not a branch
306
307 I->eraseFromParent();
308 I = MBB.end();
309 ++Count;
310 }
311 return Count;
312 }
313
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const314 bool VEInstrInfo::reverseBranchCondition(
315 SmallVectorImpl<MachineOperand> &Cond) const {
316 VECC::CondCode CC = static_cast<VECC::CondCode>(Cond[0].getImm());
317 Cond[0].setImm(GetOppositeBranchCondition(CC));
318 return false;
319 }
320
IsAliasOfSX(Register Reg)321 static bool IsAliasOfSX(Register Reg) {
322 return VE::I32RegClass.contains(Reg) || VE::I64RegClass.contains(Reg) ||
323 VE::F32RegClass.contains(Reg);
324 }
325
copyPhysSubRegs(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc,const MCInstrDesc & MCID,unsigned int NumSubRegs,const unsigned * SubRegIdx,const TargetRegisterInfo * TRI)326 static void copyPhysSubRegs(MachineBasicBlock &MBB,
327 MachineBasicBlock::iterator I, const DebugLoc &DL,
328 MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
329 const MCInstrDesc &MCID, unsigned int NumSubRegs,
330 const unsigned *SubRegIdx,
331 const TargetRegisterInfo *TRI) {
332 MachineInstr *MovMI = nullptr;
333
334 for (unsigned Idx = 0; Idx != NumSubRegs; ++Idx) {
335 Register SubDest = TRI->getSubReg(DestReg, SubRegIdx[Idx]);
336 Register SubSrc = TRI->getSubReg(SrcReg, SubRegIdx[Idx]);
337 assert(SubDest && SubSrc && "Bad sub-register");
338
339 if (MCID.getOpcode() == VE::ORri) {
340 // generate "ORri, dest, src, 0" instruction.
341 MachineInstrBuilder MIB =
342 BuildMI(MBB, I, DL, MCID, SubDest).addReg(SubSrc).addImm(0);
343 MovMI = MIB.getInstr();
344 } else if (MCID.getOpcode() == VE::ANDMmm) {
345 // generate "ANDM, dest, vm0, src" instruction.
346 MachineInstrBuilder MIB =
347 BuildMI(MBB, I, DL, MCID, SubDest).addReg(VE::VM0).addReg(SubSrc);
348 MovMI = MIB.getInstr();
349 } else {
350 llvm_unreachable("Unexpected reg-to-reg copy instruction");
351 }
352 }
353 // Add implicit super-register defs and kills to the last MovMI.
354 MovMI->addRegisterDefined(DestReg, TRI);
355 if (KillSrc)
356 MovMI->addRegisterKilled(SrcReg, TRI, true);
357 }
358
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const359 void VEInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
360 MachineBasicBlock::iterator I, const DebugLoc &DL,
361 MCRegister DestReg, MCRegister SrcReg,
362 bool KillSrc) const {
363
364 if (IsAliasOfSX(SrcReg) && IsAliasOfSX(DestReg)) {
365 BuildMI(MBB, I, DL, get(VE::ORri), DestReg)
366 .addReg(SrcReg, getKillRegState(KillSrc))
367 .addImm(0);
368 } else if (VE::V64RegClass.contains(DestReg, SrcReg)) {
369 // Generate following instructions
370 // %sw16 = LEA32zii 256
371 // VORmvl %dest, (0)1, %src, %sw16
372 // TODO: reuse a register if vl is already assigned to a register
373 // FIXME: it would be better to scavenge a register here instead of
374 // reserving SX16 all of the time.
375 const TargetRegisterInfo *TRI = &getRegisterInfo();
376 Register TmpReg = VE::SX16;
377 Register SubTmp = TRI->getSubReg(TmpReg, VE::sub_i32);
378 BuildMI(MBB, I, DL, get(VE::LEAzii), TmpReg)
379 .addImm(0)
380 .addImm(0)
381 .addImm(256);
382 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(VE::VORmvl), DestReg)
383 .addImm(M1(0)) // Represent (0)1.
384 .addReg(SrcReg, getKillRegState(KillSrc))
385 .addReg(SubTmp, getKillRegState(true));
386 MIB.getInstr()->addRegisterKilled(TmpReg, TRI, true);
387 } else if (VE::VMRegClass.contains(DestReg, SrcReg)) {
388 BuildMI(MBB, I, DL, get(VE::ANDMmm), DestReg)
389 .addReg(VE::VM0)
390 .addReg(SrcReg, getKillRegState(KillSrc));
391 } else if (VE::VM512RegClass.contains(DestReg, SrcReg)) {
392 // Use two instructions.
393 const unsigned SubRegIdx[] = {VE::sub_vm_even, VE::sub_vm_odd};
394 unsigned int NumSubRegs = 2;
395 copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ANDMmm),
396 NumSubRegs, SubRegIdx, &getRegisterInfo());
397 } else if (VE::F128RegClass.contains(DestReg, SrcReg)) {
398 // Use two instructions.
399 const unsigned SubRegIdx[] = {VE::sub_even, VE::sub_odd};
400 unsigned int NumSubRegs = 2;
401 copyPhysSubRegs(MBB, I, DL, DestReg, SrcReg, KillSrc, get(VE::ORri),
402 NumSubRegs, SubRegIdx, &getRegisterInfo());
403 } else {
404 const TargetRegisterInfo *TRI = &getRegisterInfo();
405 dbgs() << "Impossible reg-to-reg copy from " << printReg(SrcReg, TRI)
406 << " to " << printReg(DestReg, TRI) << "\n";
407 llvm_unreachable("Impossible reg-to-reg copy");
408 }
409 }
410
411 /// isLoadFromStackSlot - If the specified machine instruction is a direct
412 /// load from a stack slot, return the virtual or physical register number of
413 /// the destination along with the FrameIndex of the loaded stack slot. If
414 /// not, return 0. This predicate must return 0 if the instruction has
415 /// any side effects other than loading from the stack slot.
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const416 unsigned VEInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
417 int &FrameIndex) const {
418 if (MI.getOpcode() == VE::LDrii || // I64
419 MI.getOpcode() == VE::LDLSXrii || // I32
420 MI.getOpcode() == VE::LDUrii || // F32
421 MI.getOpcode() == VE::LDQrii || // F128 (pseudo)
422 MI.getOpcode() == VE::LDVMrii || // VM (pseudo)
423 MI.getOpcode() == VE::LDVM512rii // VM512 (pseudo)
424 ) {
425 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
426 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).isImm() &&
427 MI.getOperand(3).getImm() == 0) {
428 FrameIndex = MI.getOperand(1).getIndex();
429 return MI.getOperand(0).getReg();
430 }
431 }
432 return 0;
433 }
434
435 /// isStoreToStackSlot - If the specified machine instruction is a direct
436 /// store to a stack slot, return the virtual or physical register number of
437 /// the source reg along with the FrameIndex of the loaded stack slot. If
438 /// not, return 0. This predicate must return 0 if the instruction has
439 /// any side effects other than storing to the stack slot.
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const440 unsigned VEInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
441 int &FrameIndex) const {
442 if (MI.getOpcode() == VE::STrii || // I64
443 MI.getOpcode() == VE::STLrii || // I32
444 MI.getOpcode() == VE::STUrii || // F32
445 MI.getOpcode() == VE::STQrii || // F128 (pseudo)
446 MI.getOpcode() == VE::STVMrii || // VM (pseudo)
447 MI.getOpcode() == VE::STVM512rii // VM512 (pseudo)
448 ) {
449 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
450 MI.getOperand(1).getImm() == 0 && MI.getOperand(2).isImm() &&
451 MI.getOperand(2).getImm() == 0) {
452 FrameIndex = MI.getOperand(0).getIndex();
453 return MI.getOperand(3).getReg();
454 }
455 }
456 return 0;
457 }
458
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const459 void VEInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
460 MachineBasicBlock::iterator I,
461 Register SrcReg, bool isKill, int FI,
462 const TargetRegisterClass *RC,
463 const TargetRegisterInfo *TRI) const {
464 DebugLoc DL;
465 if (I != MBB.end())
466 DL = I->getDebugLoc();
467
468 MachineFunction *MF = MBB.getParent();
469 const MachineFrameInfo &MFI = MF->getFrameInfo();
470 MachineMemOperand *MMO = MF->getMachineMemOperand(
471 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
472 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
473
474 // On the order of operands here: think "[FrameIdx + 0] = SrcReg".
475 if (RC == &VE::I64RegClass) {
476 BuildMI(MBB, I, DL, get(VE::STrii))
477 .addFrameIndex(FI)
478 .addImm(0)
479 .addImm(0)
480 .addReg(SrcReg, getKillRegState(isKill))
481 .addMemOperand(MMO);
482 } else if (RC == &VE::I32RegClass) {
483 BuildMI(MBB, I, DL, get(VE::STLrii))
484 .addFrameIndex(FI)
485 .addImm(0)
486 .addImm(0)
487 .addReg(SrcReg, getKillRegState(isKill))
488 .addMemOperand(MMO);
489 } else if (RC == &VE::F32RegClass) {
490 BuildMI(MBB, I, DL, get(VE::STUrii))
491 .addFrameIndex(FI)
492 .addImm(0)
493 .addImm(0)
494 .addReg(SrcReg, getKillRegState(isKill))
495 .addMemOperand(MMO);
496 } else if (VE::F128RegClass.hasSubClassEq(RC)) {
497 BuildMI(MBB, I, DL, get(VE::STQrii))
498 .addFrameIndex(FI)
499 .addImm(0)
500 .addImm(0)
501 .addReg(SrcReg, getKillRegState(isKill))
502 .addMemOperand(MMO);
503 } else if (RC == &VE::VMRegClass) {
504 BuildMI(MBB, I, DL, get(VE::STVMrii))
505 .addFrameIndex(FI)
506 .addImm(0)
507 .addImm(0)
508 .addReg(SrcReg, getKillRegState(isKill))
509 .addMemOperand(MMO);
510 } else if (VE::VM512RegClass.hasSubClassEq(RC)) {
511 BuildMI(MBB, I, DL, get(VE::STVM512rii))
512 .addFrameIndex(FI)
513 .addImm(0)
514 .addImm(0)
515 .addReg(SrcReg, getKillRegState(isKill))
516 .addMemOperand(MMO);
517 } else
518 report_fatal_error("Can't store this register to stack slot");
519 }
520
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const521 void VEInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
522 MachineBasicBlock::iterator I,
523 Register DestReg, int FI,
524 const TargetRegisterClass *RC,
525 const TargetRegisterInfo *TRI) const {
526 DebugLoc DL;
527 if (I != MBB.end())
528 DL = I->getDebugLoc();
529
530 MachineFunction *MF = MBB.getParent();
531 const MachineFrameInfo &MFI = MF->getFrameInfo();
532 MachineMemOperand *MMO = MF->getMachineMemOperand(
533 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
534 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
535
536 if (RC == &VE::I64RegClass) {
537 BuildMI(MBB, I, DL, get(VE::LDrii), DestReg)
538 .addFrameIndex(FI)
539 .addImm(0)
540 .addImm(0)
541 .addMemOperand(MMO);
542 } else if (RC == &VE::I32RegClass) {
543 BuildMI(MBB, I, DL, get(VE::LDLSXrii), DestReg)
544 .addFrameIndex(FI)
545 .addImm(0)
546 .addImm(0)
547 .addMemOperand(MMO);
548 } else if (RC == &VE::F32RegClass) {
549 BuildMI(MBB, I, DL, get(VE::LDUrii), DestReg)
550 .addFrameIndex(FI)
551 .addImm(0)
552 .addImm(0)
553 .addMemOperand(MMO);
554 } else if (VE::F128RegClass.hasSubClassEq(RC)) {
555 BuildMI(MBB, I, DL, get(VE::LDQrii), DestReg)
556 .addFrameIndex(FI)
557 .addImm(0)
558 .addImm(0)
559 .addMemOperand(MMO);
560 } else if (RC == &VE::VMRegClass) {
561 BuildMI(MBB, I, DL, get(VE::LDVMrii), DestReg)
562 .addFrameIndex(FI)
563 .addImm(0)
564 .addImm(0)
565 .addMemOperand(MMO);
566 } else if (VE::VM512RegClass.hasSubClassEq(RC)) {
567 BuildMI(MBB, I, DL, get(VE::LDVM512rii), DestReg)
568 .addFrameIndex(FI)
569 .addImm(0)
570 .addImm(0)
571 .addMemOperand(MMO);
572 } else
573 report_fatal_error("Can't load this register from stack slot");
574 }
575
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI) const576 bool VEInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
577 Register Reg, MachineRegisterInfo *MRI) const {
578 LLVM_DEBUG(dbgs() << "FoldImmediate\n");
579
580 LLVM_DEBUG(dbgs() << "checking DefMI\n");
581 int64_t ImmVal;
582 switch (DefMI.getOpcode()) {
583 default:
584 return false;
585 case VE::ORim:
586 // General move small immediate instruction on VE.
587 LLVM_DEBUG(dbgs() << "checking ORim\n");
588 LLVM_DEBUG(DefMI.dump());
589 // FIXME: We may need to support FPImm too.
590 assert(DefMI.getOperand(1).isImm());
591 assert(DefMI.getOperand(2).isImm());
592 ImmVal =
593 DefMI.getOperand(1).getImm() + mimm2Val(DefMI.getOperand(2).getImm());
594 LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n");
595 break;
596 case VE::LEAzii:
597 // General move immediate instruction on VE.
598 LLVM_DEBUG(dbgs() << "checking LEAzii\n");
599 LLVM_DEBUG(DefMI.dump());
600 // FIXME: We may need to support FPImm too.
601 assert(DefMI.getOperand(2).isImm());
602 if (!DefMI.getOperand(3).isImm())
603 // LEAzii may refer label
604 return false;
605 ImmVal = DefMI.getOperand(2).getImm() + DefMI.getOperand(3).getImm();
606 LLVM_DEBUG(dbgs() << "ImmVal is " << ImmVal << "\n");
607 break;
608 }
609
610 // Try to fold like below:
611 // %1:i64 = ORim 0, 0(1)
612 // %2:i64 = CMPSLrr %0, %1
613 // To
614 // %2:i64 = CMPSLrm %0, 0(1)
615 //
616 // Another example:
617 // %1:i64 = ORim 6, 0(1)
618 // %2:i64 = CMPSLrr %1, %0
619 // To
620 // %2:i64 = CMPSLir 6, %0
621 //
622 // Support commutable instructions like below:
623 // %1:i64 = ORim 6, 0(1)
624 // %2:i64 = ADDSLrr %1, %0
625 // To
626 // %2:i64 = ADDSLri %0, 6
627 //
628 // FIXME: Need to support i32. Current implementtation requires
629 // EXTRACT_SUBREG, so input has following COPY and it avoids folding:
630 // %1:i64 = ORim 6, 0(1)
631 // %2:i32 = COPY %1.sub_i32
632 // %3:i32 = ADDSWSXrr %0, %2
633 // FIXME: Need to support shift, cmov, and more instructions.
634 // FIXME: Need to support lvl too, but LVLGen runs after peephole-opt.
635
636 LLVM_DEBUG(dbgs() << "checking UseMI\n");
637 LLVM_DEBUG(UseMI.dump());
638 unsigned NewUseOpcSImm7;
639 unsigned NewUseOpcMImm;
640 enum InstType {
641 rr2ri_rm, // rr -> ri or rm, commutable
642 rr2ir_rm, // rr -> ir or rm
643 } InstType;
644
645 using namespace llvm::VE;
646 #define INSTRKIND(NAME) \
647 case NAME##rr: \
648 NewUseOpcSImm7 = NAME##ri; \
649 NewUseOpcMImm = NAME##rm; \
650 InstType = rr2ri_rm; \
651 break
652 #define NCINSTRKIND(NAME) \
653 case NAME##rr: \
654 NewUseOpcSImm7 = NAME##ir; \
655 NewUseOpcMImm = NAME##rm; \
656 InstType = rr2ir_rm; \
657 break
658
659 switch (UseMI.getOpcode()) {
660 default:
661 return false;
662
663 INSTRKIND(ADDUL);
664 INSTRKIND(ADDSWSX);
665 INSTRKIND(ADDSWZX);
666 INSTRKIND(ADDSL);
667 NCINSTRKIND(SUBUL);
668 NCINSTRKIND(SUBSWSX);
669 NCINSTRKIND(SUBSWZX);
670 NCINSTRKIND(SUBSL);
671 INSTRKIND(MULUL);
672 INSTRKIND(MULSWSX);
673 INSTRKIND(MULSWZX);
674 INSTRKIND(MULSL);
675 NCINSTRKIND(DIVUL);
676 NCINSTRKIND(DIVSWSX);
677 NCINSTRKIND(DIVSWZX);
678 NCINSTRKIND(DIVSL);
679 NCINSTRKIND(CMPUL);
680 NCINSTRKIND(CMPSWSX);
681 NCINSTRKIND(CMPSWZX);
682 NCINSTRKIND(CMPSL);
683 INSTRKIND(MAXSWSX);
684 INSTRKIND(MAXSWZX);
685 INSTRKIND(MAXSL);
686 INSTRKIND(MINSWSX);
687 INSTRKIND(MINSWZX);
688 INSTRKIND(MINSL);
689 INSTRKIND(AND);
690 INSTRKIND(OR);
691 INSTRKIND(XOR);
692 INSTRKIND(EQV);
693 NCINSTRKIND(NND);
694 NCINSTRKIND(MRG);
695 }
696
697 #undef INSTRKIND
698
699 unsigned NewUseOpc;
700 unsigned UseIdx;
701 bool Commute = false;
702 LLVM_DEBUG(dbgs() << "checking UseMI operands\n");
703 switch (InstType) {
704 case rr2ri_rm:
705 UseIdx = 2;
706 if (UseMI.getOperand(1).getReg() == Reg) {
707 Commute = true;
708 } else {
709 assert(UseMI.getOperand(2).getReg() == Reg);
710 }
711 if (isInt<7>(ImmVal)) {
712 // This ImmVal matches to SImm7 slot, so change UseOpc to an instruction
713 // holds a simm7 slot.
714 NewUseOpc = NewUseOpcSImm7;
715 } else if (isMImmVal(ImmVal)) {
716 // Similarly, change UseOpc to an instruction holds a mimm slot.
717 NewUseOpc = NewUseOpcMImm;
718 ImmVal = val2MImm(ImmVal);
719 } else
720 return false;
721 break;
722 case rr2ir_rm:
723 if (UseMI.getOperand(1).getReg() == Reg) {
724 // Check immediate value whether it matchs to the UseMI instruction.
725 if (!isInt<7>(ImmVal))
726 return false;
727 NewUseOpc = NewUseOpcSImm7;
728 UseIdx = 1;
729 } else {
730 assert(UseMI.getOperand(2).getReg() == Reg);
731 // Check immediate value whether it matchs to the UseMI instruction.
732 if (!isMImmVal(ImmVal))
733 return false;
734 NewUseOpc = NewUseOpcMImm;
735 ImmVal = val2MImm(ImmVal);
736 UseIdx = 2;
737 }
738 break;
739 }
740
741 LLVM_DEBUG(dbgs() << "modifying UseMI\n");
742 bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
743 UseMI.setDesc(get(NewUseOpc));
744 if (Commute) {
745 UseMI.getOperand(1).setReg(UseMI.getOperand(UseIdx).getReg());
746 }
747 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
748 if (DeleteDef)
749 DefMI.eraseFromParent();
750
751 return true;
752 }
753
getGlobalBaseReg(MachineFunction * MF) const754 Register VEInstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
755 VEMachineFunctionInfo *VEFI = MF->getInfo<VEMachineFunctionInfo>();
756 Register GlobalBaseReg = VEFI->getGlobalBaseReg();
757 if (GlobalBaseReg != 0)
758 return GlobalBaseReg;
759
760 // We use %s15 (%got) as a global base register
761 GlobalBaseReg = VE::SX15;
762
763 // Insert a pseudo instruction to set the GlobalBaseReg into the first
764 // MBB of the function
765 MachineBasicBlock &FirstMBB = MF->front();
766 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
767 DebugLoc dl;
768 BuildMI(FirstMBB, MBBI, dl, get(VE::GETGOT), GlobalBaseReg);
769 VEFI->setGlobalBaseReg(GlobalBaseReg);
770 return GlobalBaseReg;
771 }
772
getVM512Upper(Register reg)773 static Register getVM512Upper(Register reg) {
774 return (reg - VE::VMP0) * 2 + VE::VM0;
775 }
776
getVM512Lower(Register reg)777 static Register getVM512Lower(Register reg) { return getVM512Upper(reg) + 1; }
778
779 // Expand pseudo logical vector instructions for VM512 registers.
expandPseudoLogM(MachineInstr & MI,const MCInstrDesc & MCID)780 static void expandPseudoLogM(MachineInstr &MI, const MCInstrDesc &MCID) {
781 MachineBasicBlock *MBB = MI.getParent();
782 DebugLoc DL = MI.getDebugLoc();
783
784 Register VMXu = getVM512Upper(MI.getOperand(0).getReg());
785 Register VMXl = getVM512Lower(MI.getOperand(0).getReg());
786 Register VMYu = getVM512Upper(MI.getOperand(1).getReg());
787 Register VMYl = getVM512Lower(MI.getOperand(1).getReg());
788
789 switch (MI.getOpcode()) {
790 default: {
791 Register VMZu = getVM512Upper(MI.getOperand(2).getReg());
792 Register VMZl = getVM512Lower(MI.getOperand(2).getReg());
793 BuildMI(*MBB, MI, DL, MCID).addDef(VMXu).addUse(VMYu).addUse(VMZu);
794 BuildMI(*MBB, MI, DL, MCID).addDef(VMXl).addUse(VMYl).addUse(VMZl);
795 break;
796 }
797 case VE::NEGMy:
798 BuildMI(*MBB, MI, DL, MCID).addDef(VMXu).addUse(VMYu);
799 BuildMI(*MBB, MI, DL, MCID).addDef(VMXl).addUse(VMYl);
800 break;
801 }
802 MI.eraseFromParent();
803 }
804
addOperandsForVFMK(MachineInstrBuilder & MIB,MachineInstr & MI,bool Upper)805 static void addOperandsForVFMK(MachineInstrBuilder &MIB, MachineInstr &MI,
806 bool Upper) {
807 // VM512
808 MIB.addReg(Upper ? getVM512Upper(MI.getOperand(0).getReg())
809 : getVM512Lower(MI.getOperand(0).getReg()));
810
811 switch (MI.getNumExplicitOperands()) {
812 default:
813 report_fatal_error("unexpected number of operands for pvfmk");
814 case 2: // _Ml: VM512, VL
815 // VL
816 MIB.addReg(MI.getOperand(1).getReg());
817 break;
818 case 4: // _Mvl: VM512, CC, VR, VL
819 // CC
820 MIB.addImm(MI.getOperand(1).getImm());
821 // VR
822 MIB.addReg(MI.getOperand(2).getReg());
823 // VL
824 MIB.addReg(MI.getOperand(3).getReg());
825 break;
826 case 5: // _MvMl: VM512, CC, VR, VM512, VL
827 // CC
828 MIB.addImm(MI.getOperand(1).getImm());
829 // VR
830 MIB.addReg(MI.getOperand(2).getReg());
831 // VM512
832 MIB.addReg(Upper ? getVM512Upper(MI.getOperand(3).getReg())
833 : getVM512Lower(MI.getOperand(3).getReg()));
834 // VL
835 MIB.addReg(MI.getOperand(4).getReg());
836 break;
837 }
838 }
839
expandPseudoVFMK(const TargetInstrInfo & TI,MachineInstr & MI)840 static void expandPseudoVFMK(const TargetInstrInfo &TI, MachineInstr &MI) {
841 // replace to pvfmk.w.up and pvfmk.w.lo
842 // replace to pvfmk.s.up and pvfmk.s.lo
843
844 static const std::pair<unsigned, std::pair<unsigned, unsigned>> VFMKMap[] = {
845 {VE::VFMKyal, {VE::VFMKLal, VE::VFMKLal}},
846 {VE::VFMKynal, {VE::VFMKLnal, VE::VFMKLnal}},
847 {VE::VFMKWyvl, {VE::PVFMKWUPvl, VE::PVFMKWLOvl}},
848 {VE::VFMKWyvyl, {VE::PVFMKWUPvml, VE::PVFMKWLOvml}},
849 {VE::VFMKSyvl, {VE::PVFMKSUPvl, VE::PVFMKSLOvl}},
850 {VE::VFMKSyvyl, {VE::PVFMKSUPvml, VE::PVFMKSLOvml}},
851 };
852
853 unsigned Opcode = MI.getOpcode();
854
855 const auto *Found =
856 llvm::find_if(VFMKMap, [&](auto P) { return P.first == Opcode; });
857 if (Found == std::end(VFMKMap))
858 report_fatal_error("unexpected opcode for pseudo vfmk");
859
860 unsigned OpcodeUpper = (*Found).second.first;
861 unsigned OpcodeLower = (*Found).second.second;
862
863 MachineBasicBlock *MBB = MI.getParent();
864 DebugLoc DL = MI.getDebugLoc();
865
866 MachineInstrBuilder Bu = BuildMI(*MBB, MI, DL, TI.get(OpcodeUpper));
867 addOperandsForVFMK(Bu, MI, /* Upper */ true);
868 MachineInstrBuilder Bl = BuildMI(*MBB, MI, DL, TI.get(OpcodeLower));
869 addOperandsForVFMK(Bl, MI, /* Upper */ false);
870
871 MI.eraseFromParent();
872 }
873
expandPostRAPseudo(MachineInstr & MI) const874 bool VEInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
875 switch (MI.getOpcode()) {
876 case VE::EXTEND_STACK: {
877 return expandExtendStackPseudo(MI);
878 }
879 case VE::EXTEND_STACK_GUARD: {
880 MI.eraseFromParent(); // The pseudo instruction is gone now.
881 return true;
882 }
883 case VE::GETSTACKTOP: {
884 return expandGetStackTopPseudo(MI);
885 }
886
887 case VE::ANDMyy:
888 expandPseudoLogM(MI, get(VE::ANDMmm));
889 return true;
890 case VE::ORMyy:
891 expandPseudoLogM(MI, get(VE::ORMmm));
892 return true;
893 case VE::XORMyy:
894 expandPseudoLogM(MI, get(VE::XORMmm));
895 return true;
896 case VE::EQVMyy:
897 expandPseudoLogM(MI, get(VE::EQVMmm));
898 return true;
899 case VE::NNDMyy:
900 expandPseudoLogM(MI, get(VE::NNDMmm));
901 return true;
902 case VE::NEGMy:
903 expandPseudoLogM(MI, get(VE::NEGMm));
904 return true;
905
906 case VE::LVMyir:
907 case VE::LVMyim:
908 case VE::LVMyir_y:
909 case VE::LVMyim_y: {
910 Register VMXu = getVM512Upper(MI.getOperand(0).getReg());
911 Register VMXl = getVM512Lower(MI.getOperand(0).getReg());
912 int64_t Imm = MI.getOperand(1).getImm();
913 bool IsSrcReg =
914 MI.getOpcode() == VE::LVMyir || MI.getOpcode() == VE::LVMyir_y;
915 Register Src = IsSrcReg ? MI.getOperand(2).getReg() : VE::NoRegister;
916 int64_t MImm = IsSrcReg ? 0 : MI.getOperand(2).getImm();
917 bool KillSrc = IsSrcReg ? MI.getOperand(2).isKill() : false;
918 Register VMX = VMXl;
919 if (Imm >= 4) {
920 VMX = VMXu;
921 Imm -= 4;
922 }
923 MachineBasicBlock *MBB = MI.getParent();
924 DebugLoc DL = MI.getDebugLoc();
925 switch (MI.getOpcode()) {
926 case VE::LVMyir:
927 BuildMI(*MBB, MI, DL, get(VE::LVMir))
928 .addDef(VMX)
929 .addImm(Imm)
930 .addReg(Src, getKillRegState(KillSrc));
931 break;
932 case VE::LVMyim:
933 BuildMI(*MBB, MI, DL, get(VE::LVMim))
934 .addDef(VMX)
935 .addImm(Imm)
936 .addImm(MImm);
937 break;
938 case VE::LVMyir_y:
939 assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() &&
940 "LVMyir_y has different register in 3rd operand");
941 BuildMI(*MBB, MI, DL, get(VE::LVMir_m))
942 .addDef(VMX)
943 .addImm(Imm)
944 .addReg(Src, getKillRegState(KillSrc))
945 .addReg(VMX);
946 break;
947 case VE::LVMyim_y:
948 assert(MI.getOperand(0).getReg() == MI.getOperand(3).getReg() &&
949 "LVMyim_y has different register in 3rd operand");
950 BuildMI(*MBB, MI, DL, get(VE::LVMim_m))
951 .addDef(VMX)
952 .addImm(Imm)
953 .addImm(MImm)
954 .addReg(VMX);
955 break;
956 }
957 MI.eraseFromParent();
958 return true;
959 }
960 case VE::SVMyi: {
961 Register Dest = MI.getOperand(0).getReg();
962 Register VMZu = getVM512Upper(MI.getOperand(1).getReg());
963 Register VMZl = getVM512Lower(MI.getOperand(1).getReg());
964 bool KillSrc = MI.getOperand(1).isKill();
965 int64_t Imm = MI.getOperand(2).getImm();
966 Register VMZ = VMZl;
967 if (Imm >= 4) {
968 VMZ = VMZu;
969 Imm -= 4;
970 }
971 MachineBasicBlock *MBB = MI.getParent();
972 DebugLoc DL = MI.getDebugLoc();
973 MachineInstrBuilder MIB =
974 BuildMI(*MBB, MI, DL, get(VE::SVMmi), Dest).addReg(VMZ).addImm(Imm);
975 MachineInstr *Inst = MIB.getInstr();
976 if (KillSrc) {
977 const TargetRegisterInfo *TRI = &getRegisterInfo();
978 Inst->addRegisterKilled(MI.getOperand(1).getReg(), TRI, true);
979 }
980 MI.eraseFromParent();
981 return true;
982 }
983 case VE::VFMKyal:
984 case VE::VFMKynal:
985 case VE::VFMKWyvl:
986 case VE::VFMKWyvyl:
987 case VE::VFMKSyvl:
988 case VE::VFMKSyvyl:
989 expandPseudoVFMK(*this, MI);
990 return true;
991 }
992 return false;
993 }
994
expandExtendStackPseudo(MachineInstr & MI) const995 bool VEInstrInfo::expandExtendStackPseudo(MachineInstr &MI) const {
996 MachineBasicBlock &MBB = *MI.getParent();
997 MachineFunction &MF = *MBB.getParent();
998 const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
999 const VEInstrInfo &TII = *STI.getInstrInfo();
1000 DebugLoc dl = MBB.findDebugLoc(MI);
1001
1002 // Create following instructions and multiple basic blocks.
1003 //
1004 // thisBB:
1005 // brge.l.t %sp, %sl, sinkBB
1006 // syscallBB:
1007 // ld %s61, 0x18(, %tp) // load param area
1008 // or %s62, 0, %s0 // spill the value of %s0
1009 // lea %s63, 0x13b // syscall # of grow
1010 // shm.l %s63, 0x0(%s61) // store syscall # at addr:0
1011 // shm.l %sl, 0x8(%s61) // store old limit at addr:8
1012 // shm.l %sp, 0x10(%s61) // store new limit at addr:16
1013 // monc // call monitor
1014 // or %s0, 0, %s62 // restore the value of %s0
1015 // sinkBB:
1016
1017 // Create new MBB
1018 MachineBasicBlock *BB = &MBB;
1019 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1020 MachineBasicBlock *syscallMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1021 MachineBasicBlock *sinkMBB = MF.CreateMachineBasicBlock(LLVM_BB);
1022 MachineFunction::iterator It = ++(BB->getIterator());
1023 MF.insert(It, syscallMBB);
1024 MF.insert(It, sinkMBB);
1025
1026 // Transfer the remainder of BB and its successor edges to sinkMBB.
1027 sinkMBB->splice(sinkMBB->begin(), BB,
1028 std::next(std::next(MachineBasicBlock::iterator(MI))),
1029 BB->end());
1030 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1031
1032 // Next, add the true and fallthrough blocks as its successors.
1033 BB->addSuccessor(syscallMBB);
1034 BB->addSuccessor(sinkMBB);
1035 BuildMI(BB, dl, TII.get(VE::BRCFLrr_t))
1036 .addImm(VECC::CC_IGE)
1037 .addReg(VE::SX11) // %sp
1038 .addReg(VE::SX8) // %sl
1039 .addMBB(sinkMBB);
1040
1041 BB = syscallMBB;
1042
1043 // Update machine-CFG edges
1044 BB->addSuccessor(sinkMBB);
1045
1046 BuildMI(BB, dl, TII.get(VE::LDrii), VE::SX61)
1047 .addReg(VE::SX14)
1048 .addImm(0)
1049 .addImm(0x18);
1050 BuildMI(BB, dl, TII.get(VE::ORri), VE::SX62)
1051 .addReg(VE::SX0)
1052 .addImm(0);
1053 BuildMI(BB, dl, TII.get(VE::LEAzii), VE::SX63)
1054 .addImm(0)
1055 .addImm(0)
1056 .addImm(0x13b);
1057 BuildMI(BB, dl, TII.get(VE::SHMLri))
1058 .addReg(VE::SX61)
1059 .addImm(0)
1060 .addReg(VE::SX63);
1061 BuildMI(BB, dl, TII.get(VE::SHMLri))
1062 .addReg(VE::SX61)
1063 .addImm(8)
1064 .addReg(VE::SX8);
1065 BuildMI(BB, dl, TII.get(VE::SHMLri))
1066 .addReg(VE::SX61)
1067 .addImm(16)
1068 .addReg(VE::SX11);
1069 BuildMI(BB, dl, TII.get(VE::MONC));
1070
1071 BuildMI(BB, dl, TII.get(VE::ORri), VE::SX0)
1072 .addReg(VE::SX62)
1073 .addImm(0);
1074
1075 MI.eraseFromParent(); // The pseudo instruction is gone now.
1076 return true;
1077 }
1078
expandGetStackTopPseudo(MachineInstr & MI) const1079 bool VEInstrInfo::expandGetStackTopPseudo(MachineInstr &MI) const {
1080 MachineBasicBlock *MBB = MI.getParent();
1081 MachineFunction &MF = *MBB->getParent();
1082 const VESubtarget &STI = MF.getSubtarget<VESubtarget>();
1083 const VEInstrInfo &TII = *STI.getInstrInfo();
1084 DebugLoc DL = MBB->findDebugLoc(MI);
1085
1086 // Create following instruction
1087 //
1088 // dst = %sp + target specific frame + the size of parameter area
1089
1090 const MachineFrameInfo &MFI = MF.getFrameInfo();
1091 const VEFrameLowering &TFL = *STI.getFrameLowering();
1092
1093 // The VE ABI requires a reserved area at the top of stack as described
1094 // in VEFrameLowering.cpp. So, we adjust it here.
1095 unsigned NumBytes = STI.getAdjustedFrameSize(0);
1096
1097 // Also adds the size of parameter area.
1098 if (MFI.adjustsStack() && TFL.hasReservedCallFrame(MF))
1099 NumBytes += MFI.getMaxCallFrameSize();
1100
1101 BuildMI(*MBB, MI, DL, TII.get(VE::LEArii))
1102 .addDef(MI.getOperand(0).getReg())
1103 .addReg(VE::SX11)
1104 .addImm(0)
1105 .addImm(NumBytes);
1106
1107 MI.eraseFromParent(); // The pseudo instruction is gone now.
1108 return true;
1109 }
1110