1 //===- Tiling.cpp - Implementation of linalg Tiling -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the linalg dialect Tiling pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <utility>
14 
15 #include "PassDetail.h"
16 #include "mlir/Dialect/Arithmetic/Utils/Utils.h"
17 #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
18 #include "mlir/Dialect/Linalg/IR/Linalg.h"
19 #include "mlir/Dialect/Linalg/Passes.h"
20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h"
21 #include "mlir/Dialect/Linalg/Utils/Utils.h"
22 #include "mlir/Dialect/MemRef/IR/MemRef.h"
23 #include "mlir/Dialect/SCF/Transforms/Transforms.h"
24 #include "mlir/Dialect/Tensor/IR/Tensor.h"
25 #include "mlir/Dialect/Utils/IndexingUtils.h"
26 #include "mlir/IR/AffineExpr.h"
27 #include "mlir/IR/AffineMap.h"
28 #include "mlir/Transforms/FoldUtils.h"
29 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
30 
31 #include "llvm/Support/CommandLine.h"
32 
33 using namespace mlir;
34 using namespace mlir::linalg;
35 using namespace mlir::scf;
36 
37 #define DEBUG_TYPE "linalg-tiling"
38 
isZero(Value v)39 static bool isZero(Value v) {
40   if (auto cst = v.getDefiningOp<arith::ConstantIndexOp>())
41     return cst.value() == 0;
42   return false;
43 }
44 
45 std::tuple<SmallVector<Range, 4>, LoopIndexToRangeIndexMap>
makeTiledLoopRanges(RewriterBase & b,Location loc,AffineMap map,ValueRange allShapeSizes,ValueRange allTileSizes)46 mlir::linalg::makeTiledLoopRanges(RewriterBase &b, Location loc, AffineMap map,
47                                   ValueRange allShapeSizes,
48                                   ValueRange allTileSizes) {
49   assert(allTileSizes.size() == map.getNumResults());
50   // Apply `map` to get shape sizes in loop order.
51   auto shapeSizes = applyMapToValues(b, loc, map, allShapeSizes);
52   SmallVector<Value, 4> tileSizes(allTileSizes.begin(), allTileSizes.end());
53 
54   // Traverse the tile sizes, which are in loop order, erase zeros everywhere.
55   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
56   for (int idx = 0, e = tileSizes.size(), zerosCount = 0; idx < e; ++idx) {
57     if (isZero(tileSizes[idx - zerosCount])) {
58       shapeSizes.erase(shapeSizes.begin() + idx - zerosCount);
59       tileSizes.erase(tileSizes.begin() + idx - zerosCount);
60       ++zerosCount;
61       continue;
62     }
63     loopIndexToRangeIndex[idx] = idx - zerosCount;
64   }
65 
66   // Create a new range with the applied tile sizes.
67   SmallVector<Range, 4> res;
68   for (unsigned idx = 0, e = tileSizes.size(); idx < e; ++idx)
69     res.push_back(Range{b.create<arith::ConstantIndexOp>(loc, 0),
70                         shapeSizes[idx], tileSizes[idx]});
71   return std::make_tuple(res, loopIndexToRangeIndex);
72 }
73 
transformIndexOps(RewriterBase & b,LinalgOp op,SmallVectorImpl<Value> & ivs,const LoopIndexToRangeIndexMap & loopIndexToRangeIndex)74 void mlir::linalg::transformIndexOps(
75     RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
76     const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
77   SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
78   for (auto &en : enumerate(allIvs)) {
79     auto rangeIndex = loopIndexToRangeIndex.find(en.index());
80     if (rangeIndex == loopIndexToRangeIndex.end())
81       continue;
82     en.value() = ivs[rangeIndex->second];
83   }
84   offsetIndices(b, op, allIvs);
85 }
86 
87 /// Asserts that the given index-typed value is strictly positive. If the value
88 /// is an attribute, asserts at compile time, otherwise emits an assertion
89 /// checked at runtime.
emitIsPositiveIndexAssertion(ImplicitLocOpBuilder & b,OpFoldResult value)90 static void emitIsPositiveIndexAssertion(ImplicitLocOpBuilder &b,
91                                          OpFoldResult value) {
92   if (auto attr = value.dyn_cast<Attribute>()) {
93     assert(attr.cast<IntegerAttr>().getValue().isStrictlyPositive() &&
94            "expected strictly positive tile size and divisor");
95     return;
96   }
97 
98   Value zero = b.create<arith::ConstantIndexOp>(0);
99   Value condition = b.create<arith::CmpIOp>(arith::CmpIPredicate::sgt,
100                                             value.get<Value>(), zero);
101   b.create<cf::AssertOp>(
102       condition,
103       b.getStringAttr("expected strictly positive tile size and divisor"));
104 }
105 
106 FailureOr<MultiSizeSpecification>
computeMultiTileSizes(OpBuilder & builder,LinalgOp op,unsigned dimension,OpFoldResult targetSize,OpFoldResult divisor,bool emitAssertions)107 mlir::linalg::computeMultiTileSizes(OpBuilder &builder, LinalgOp op,
108                                     unsigned dimension, OpFoldResult targetSize,
109                                     OpFoldResult divisor, bool emitAssertions) {
110   // Bail out on dimension overflow.
111   if (dimension >= op.getNumLoops())
112     return failure();
113 
114   // The code below works only on values.
115   ImplicitLocOpBuilder b(op.getLoc(), builder);
116   if (emitAssertions) {
117     emitIsPositiveIndexAssertion(b, targetSize);
118     emitIsPositiveIndexAssertion(b, divisor);
119   }
120   Value targetSizeValue = materializeOpFoldResult(b, targetSize);
121   Value divisorValue = materializeOpFoldResult(b, divisor);
122 
123   // Find the trip count of the iteration space dimension for which the tile
124   // sizes are computed.
125   // TODO: update createFlatListOfOperandDims to return OpFoldResults and avoid
126   // littering by useless constant materialization.
127   SmallVector<Value, 4> allShapes =
128       op.createFlatListOfOperandDims(b, b.getLoc());
129   AffineMap shapesToLoops = op.getShapesToLoopsMap();
130   SmallVector<Value, 4> loopRanges =
131       applyMapToValues(b, op.getLoc(), shapesToLoops, allShapes);
132   Value tripCount = loopRanges[dimension];
133 
134   // Compute the tile sizes and the respective numbers of tiles.
135   AffineExpr s0 = b.getAffineSymbolExpr(0);
136   AffineExpr s1 = b.getAffineSymbolExpr(1);
137   AffineExpr s2 = b.getAffineSymbolExpr(2);
138   auto apply = [&](AffineExpr expr, ValueRange values) -> Value {
139     return makeComposedAffineApply(b, b.getLoc(), expr, values);
140   };
141   Value a = apply(s0.floorDiv(s1), {tripCount, divisorValue});
142   Value t = apply((s0 + s1 - 1).floorDiv(s1), {targetSizeValue, divisorValue});
143   Value d = apply((s0 + s1 - 1).floorDiv(s1), {a, t});
144   Value s = apply(s0.floorDiv(s1) * s2, {a, d, divisorValue});
145   Value v = apply(s0 % s1, {a, d});
146   Value u = apply(s0 - s1, {d, v});
147 
148   MultiSizeSpecification spec;
149   spec.lowTileSize = s;
150   spec.highTileSize = apply(s0 + s1, {s, divisorValue});
151   spec.lowTripCount = u;
152   spec.highTripCount = v;
153 
154   // If requested, emit the check that the tile sizes are computed correctly.
155   // For example, for iteration dimension size of 15 and the target size 8 it is
156   // impossible to find two tile sizes both divisible by 8 that fully cover the
157   // original space dimension.
158   if (emitAssertions) {
159     AffineExpr s3 = builder.getAffineSymbolExpr(3);
160     Value coveredSize =
161         apply(s0 * s1 + s2 * s3, {spec.lowTileSize, spec.lowTripCount,
162                                   spec.highTileSize, spec.highTripCount});
163     Value equals = b.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
164                                            coveredSize, tripCount);
165     b.create<cf::AssertOp>(
166         equals, builder.getStringAttr(
167                     "could not compute dynamic multi-size tile shapes"));
168   }
169 
170   return spec;
171 }
172 
173 /// Given a `subsetExtractOp`, a `source` and a `dest`, create a new
174 /// `ParallelInsertSlice` op of `source` into `dest` at the same subset location
175 /// as `subsetExtractOp`.
176 static void
createMatchingParallelSubsetInsertOp(OpBuilder & b,Location loc,tensor::ExtractSliceOp subsetExtractOp,Value source,Value dest)177 createMatchingParallelSubsetInsertOp(OpBuilder &b, Location loc,
178                                      tensor::ExtractSliceOp subsetExtractOp,
179                                      Value source, Value dest) {
180   b.create<tensor::ParallelInsertSliceOp>(
181       loc, source, dest, subsetExtractOp.getMixedOffsets(),
182       subsetExtractOp.getMixedSizes(), subsetExtractOp.getMixedStrides());
183 }
184 
185 /// Build an `affine_max` of all the `vals`.
buildMax(OpBuilder & b,Location loc,ArrayRef<OpFoldResult> vals)186 static OpFoldResult buildMax(OpBuilder &b, Location loc,
187                              ArrayRef<OpFoldResult> vals) {
188   SmallVector<Value> args = getValueOrCreateConstantIndexOp(b, loc, vals);
189   return b.createOrFold<AffineMaxOp>(
190       loc, AffineMap::getMultiDimIdentityMap(vals.size(), loc.getContext()),
191       args);
192 }
193 
194 /// Returns true if the maximum tile offset `tileSize * numThreads-1` is less
195 /// than `iterationSize`.
canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize,OpFoldResult numThreads,OpFoldResult iterationSize)196 static bool canOmitTileOffsetInBoundsCheck(OpFoldResult tileSize,
197                                            OpFoldResult numThreads,
198                                            OpFoldResult iterationSize) {
199   Optional<int64_t> tileSizeConst = getConstantIntValue(tileSize);
200   Optional<int64_t> numThreadsConst = getConstantIntValue(numThreads);
201   Optional<int64_t> iterSizeConst = getConstantIntValue(iterationSize);
202   if (!tileSizeConst || !numThreadsConst || !iterSizeConst)
203     return false;
204   return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst;
205 }
206 
207 /// Rewrite a TilingInterface `op` to a tiled `scf.foreach_thread`. The
208 /// tiling is specified by the number of tiles/threads `numThreads` and the
209 /// optional nominal tile size `nominalTileSizes`. If `nominalTilSizes` is
210 /// not specified, then  it is derived from `numThreads` as `ceilDiv(dimSize[i],
211 /// numThreads[i])`. If non-empty, the `threadDimMapping` is added as an
212 /// attribute to the resulting `scf.foreach_thread`. A zero tile sizes indicate
213 /// that the dimension is not tiled, and can be thought of as tiling by the full
214 /// size of data.
215 /// It is the user's responsibility to ensure that `numThreads` is a valid
216 /// tiling specification (i.e. that only tiles parallel dimensions, e.g. in the
217 /// Linalg case). If `omitTileOffsetBoundsCheck` is true, then the function will
218 /// assume that `tileSize[i] * (numThread[i] -1) <= dimSize[i]` holds.
tileToForeachThreadOpImpl(RewriterBase & b,TilingInterface op,ArrayRef<OpFoldResult> numThreads,Optional<ArrayRef<OpFoldResult>> nominalTileSizes,ArrayRef<int64_t> threadDimMapping,bool omitTileOffsetBoundsCheck)219 static FailureOr<ForeachThreadTilingResult> tileToForeachThreadOpImpl(
220     RewriterBase &b, TilingInterface op, ArrayRef<OpFoldResult> numThreads,
221     Optional<ArrayRef<OpFoldResult>> nominalTileSizes,
222     ArrayRef<int64_t> threadDimMapping, bool omitTileOffsetBoundsCheck) {
223   Location loc = op->getLoc();
224   OpBuilder::InsertionGuard g(b);
225   SmallVector<Range> loopRanges = op.getIterationDomain(b);
226   if (loopRanges.empty())
227     return op->emitOpError("expected non-empty loop ranges");
228   auto hasStrideOne = [](Range r) { return !isConstantIntValue(r.stride, 1); };
229   if (llvm::any_of(loopRanges, hasStrideOne))
230     return op->emitOpError("only stride-1 supported atm");
231   // TODO: support `getTiledImplementation` with >1 produced tiled ops.
232   auto destOperands = op.getDestinationOperands(b);
233   if (destOperands.size() != 1)
234     return op->emitOpError("only single dest operand supported atm");
235 
236   SmallVector<OpFoldResult> nonZeroNumThreads =
237       llvm::to_vector(llvm::make_filter_range(numThreads, [](OpFoldResult ofr) {
238         return !isConstantIntValue(ofr, 0);
239       }));
240   SmallVector<Value> materializedNonZeroNumThreads =
241       llvm::to_vector(llvm::map_range(nonZeroNumThreads, [&](OpFoldResult ofr) {
242         ImplicitLocOpBuilder ilocb(loc, b);
243         return materializeOpFoldResult(ilocb, ofr);
244       }));
245 
246   Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
247   Operation *tiledOp = nullptr;
248 
249   // Create the ForeachThreadOp. We don't use the lambda body-builder
250   // version because we require the use of RewriterBase in the body, so we
251   // manually move the insertion point to the body below.
252   scf::ForeachThreadOp foreachThreadOp = b.create<scf::ForeachThreadOp>(
253       loc, op->getResultTypes(), ValueRange(materializedNonZeroNumThreads),
254       threadDimMapping);
255 
256   // Fill out the ForeachThreadOp body.
257   b.setInsertionPointToStart(foreachThreadOp.getBody(0));
258   ValueRange threadIds = foreachThreadOp.getThreadIndices();
259   int64_t nLoops = loopRanges.size();
260   SmallVector<OpFoldResult> tiledOffsets, tiledSizes;
261   tiledOffsets.reserve(nLoops);
262   tiledSizes.reserve(nLoops);
263   for (unsigned loopIdx = 0, threadIdIdx = 0; loopIdx < nLoops; ++loopIdx) {
264     bool overflow = loopIdx >= numThreads.size();
265     bool isZero = !overflow && isConstantIntValue(numThreads[loopIdx], 0);
266     // Degenerate case: take the whole domain.
267     if (overflow || isZero) {
268       tiledOffsets.push_back(loopRanges[loopIdx].offset);
269       tiledSizes.push_back(loopRanges[loopIdx].size);
270       continue;
271     }
272 
273     // Tiled case: compute the offset and size.
274     AffineExpr i, j, M, N, O;
275     bindDims(b.getContext(), i, j);
276     bindSymbols(b.getContext(), M, N, O);
277     Value size = loopRanges[loopIdx].size;
278     Value offset = loopRanges[loopIdx].offset;
279     Value threadId = threadIds[threadIdIdx];
280     // Symbolic fixed max size per thread.
281     // TODO: floor + 0/1 depending on case for better load-balancing.
282     OpFoldResult tileSizePerThread =
283         nominalTileSizes.has_value()
284             ? (*nominalTileSizes)[loopIdx]
285             : makeComposedFoldedAffineApply(
286                   b, loc, M.ceilDiv(N),
287                   ArrayRef<OpFoldResult>{size, nonZeroNumThreads[threadIdIdx]});
288 
289     // Dynamic offset shifted by threadId * maxSizePerThread.
290     OpFoldResult offsetPerThread = makeComposedFoldedAffineApply(
291         b, loc, i + j * M, {offset, threadId, tileSizePerThread});
292     // Dynamic upper-bound depending on the threadId.
293     OpFoldResult residualTileSize = makeComposedFoldedAffineApply(
294         b, loc, i + j * M - N,
295         {offset, nonZeroNumThreads[threadIdIdx], tileSizePerThread, size});
296     if (!isConstantIntValue(residualTileSize, 0)) {
297       OpFoldResult sizeMinusOffsetPerThread = makeComposedFoldedAffineApply(
298           b, loc, -i + M, {offsetPerThread, size});
299       tileSizePerThread = makeComposedFoldedAffineMin(
300           b, loc, AffineMap::getMultiDimIdentityMap(2, b.getContext()),
301           ArrayRef<OpFoldResult>{sizeMinusOffsetPerThread, tileSizePerThread});
302     }
303 
304     tiledOffsets.push_back(offsetPerThread);
305     // TODO: if tileSizePerThread <= 0 early exit.
306     if (!omitTileOffsetBoundsCheck &&
307         !canOmitTileOffsetInBoundsCheck(tileSizePerThread,
308                                         nonZeroNumThreads[threadIdIdx], size))
309       tileSizePerThread = buildMax(b, loc, {zero, tileSizePerThread});
310 
311     tiledSizes.push_back(tileSizePerThread);
312     ++threadIdIdx;
313   }
314 
315   SmallVector<Operation *> tiledOps =
316       op.getTiledImplementation(b, destOperands, tiledOffsets, tiledSizes,
317                                 /*tileDestOperands=*/true);
318   assert(tiledOps.size() == 1 && "expected a single produced tiled op");
319   tiledOp = tiledOps.front();
320 
321   auto tilingInterfaceOp = dyn_cast<TilingInterface>(tiledOp);
322   assert(tilingInterfaceOp && "Tiled op does not implement TilingInterface");
323 
324   auto tiledDestOperands = tilingInterfaceOp.getDestinationOperands(b);
325 
326   // Create terminator with parallel subset insert operations.
327   b.setInsertionPointToStart(foreachThreadOp.getTerminator().getBody());
328   for (auto it : llvm::zip(tiledDestOperands, tilingInterfaceOp->getResults(),
329                            destOperands)) {
330     createMatchingParallelSubsetInsertOp(
331         b, loc, cast<tensor::ExtractSliceOp>(std::get<0>(it).getDefiningOp()),
332         std::get<1>(it), std::get<2>(it));
333   }
334   return ForeachThreadTilingResult{foreachThreadOp, tiledOp};
335 }
336 
337 FailureOr<ForeachThreadTilingResult>
tileToForeachThreadOp(RewriterBase & b,TilingInterface op,ArrayRef<OpFoldResult> numThreads,ArrayRef<int64_t> threadDimMapping)338 linalg::tileToForeachThreadOp(RewriterBase &b, TilingInterface op,
339                               ArrayRef<OpFoldResult> numThreads,
340                               ArrayRef<int64_t> threadDimMapping) {
341   return tileToForeachThreadOpImpl(b, op, numThreads, /*nominalTileSizes=*/None,
342                                    threadDimMapping,
343                                    /*omitTileOffsetBoundsCheck=*/false);
344 }
345 
346 FailureOr<ForeachThreadTilingResult>
tileToForeachThreadOpUsingTileSizes(RewriterBase & b,TilingInterface op,ArrayRef<OpFoldResult> tileSizes,ArrayRef<int64_t> threadDimMapping)347 linalg::tileToForeachThreadOpUsingTileSizes(
348     RewriterBase &b, TilingInterface op, ArrayRef<OpFoldResult> tileSizes,
349     ArrayRef<int64_t> threadDimMapping) {
350   SmallVector<Range> loopRanges = op.getIterationDomain(b);
351   unsigned nLoops = loopRanges.size();
352   SmallVector<OpFoldResult> numThreads;
353   numThreads.reserve(nLoops);
354   AffineExpr s0, s1;
355   bindSymbols(b.getContext(), s0, s1);
356   AffineExpr divExpr = s0.ceilDiv(s1);
357   for (const auto &it : llvm::zip(tileSizes, loopRanges)) {
358     OpFoldResult numTiles = std::get<0>(it);
359     if (!isConstantIntValue(numTiles, 0))
360       numTiles = makeComposedFoldedAffineApply(
361           b, op.getLoc(), divExpr, {std::get<1>(it).size, std::get<0>(it)});
362     numThreads.push_back(numTiles);
363   }
364   return tileToForeachThreadOpImpl(b, op, numThreads,
365                                    /*nominalTileSizes=*/tileSizes,
366                                    threadDimMapping,
367                                    /*omitTileOffsetBoundsCheck=*/true);
368 }
369 
370 // Insert a tile `source` into the destination tensor `dest`. The position at
371 // which the tile is inserted (as well as size of tile) is taken from a given
372 // ExtractSliceOp `sliceOp`.
insertSliceIntoTensor(RewriterBase & b,Location loc,tensor::ExtractSliceOp sliceOp,Value source,Value dest)373 static Value insertSliceIntoTensor(RewriterBase &b, Location loc,
374                                    tensor::ExtractSliceOp sliceOp, Value source,
375                                    Value dest) {
376   return b.create<tensor::InsertSliceOp>(
377       loc, sliceOp.getSource().getType(), source, dest, sliceOp.getOffsets(),
378       sliceOp.getSizes(), sliceOp.getStrides(), sliceOp.getStaticOffsets(),
379       sliceOp.getStaticSizes(), sliceOp.getStaticStrides());
380 }
381 
382 template <typename LoopTy>
383 static FailureOr<TiledLinalgOp>
tileLinalgOpImpl(RewriterBase & b,LinalgOp op,ValueRange tileSizes,const LinalgTilingOptions & options)384 tileLinalgOpImpl(RewriterBase &b, LinalgOp op, ValueRange tileSizes,
385                  const LinalgTilingOptions &options) {
386   auto nLoops = op.getNumLoops();
387   // Initial tile sizes may be too big, only take the first nLoops.
388   tileSizes = tileSizes.take_front(nLoops);
389 
390   if (llvm::all_of(tileSizes, isZero)) {
391     TiledLinalgOp tiledOp;
392     tiledOp.op = cast<LinalgOp>(b.clone(*op.getOperation()));
393     tiledOp.tensorResults.assign(tiledOp.op->result_begin(),
394                                  tiledOp.op->result_end());
395     return tiledOp;
396   }
397 
398   // 1. Build the tiled loop ranges.
399   auto allShapeSizes = op.createFlatListOfOperandDims(b, op.getLoc());
400   AffineMap shapeSizesToLoopsMap = op.getShapesToLoopsMap();
401   if (!shapeSizesToLoopsMap)
402     return failure();
403 
404   SmallVector<Range, 4> loopRanges;
405   LoopIndexToRangeIndexMap loopIndexToRangeIndex;
406   std::tie(loopRanges, loopIndexToRangeIndex) = makeTiledLoopRanges(
407       b, op.getLoc(), shapeSizesToLoopsMap, allShapeSizes, tileSizes);
408 
409   SmallVector<Attribute, 4> iteratorTypes;
410   for (const auto &attr :
411        enumerate(op.iterator_types().cast<ArrayAttr>().getValue())) {
412     if (loopIndexToRangeIndex.count(attr.index()))
413       iteratorTypes.push_back(attr.value());
414   }
415   // If interchangeVector is empty, use the identity. Build the permutation map
416   // otherwise.
417   auto invPermutationMap =
418       AffineMap::getMultiDimIdentityMap(tileSizes.size(), b.getContext());
419   if (!options.interchangeVector.empty()) {
420     // Based on the pruned iterations (due to zero tile size), recompute the
421     // interchange vector.
422     SmallVector<unsigned, 4> interchangeVector;
423     interchangeVector.reserve(options.interchangeVector.size());
424     for (auto pos : options.interchangeVector) {
425       auto it = loopIndexToRangeIndex.find(pos);
426       if (it == loopIndexToRangeIndex.end())
427         continue;
428       interchangeVector.push_back(it->second);
429     }
430     // Interchange vector is guaranteed to be a permutation,
431     // `inversePermutation` must succeed.
432     invPermutationMap = inversePermutation(
433         AffineMap::getPermutationMap(interchangeVector, b.getContext()));
434     assert(invPermutationMap);
435     SmallVector<int64_t> permutation(interchangeVector.begin(),
436                                      interchangeVector.end());
437     applyPermutationToVector(loopRanges, permutation);
438     applyPermutationToVector(iteratorTypes, permutation);
439   }
440 
441   // 2. Create the tiled loops.
442   LinalgOp res = op;
443   SmallVector<Value, 4> ivs, tensorResults;
444   auto tiledLoopBodyBuilder =
445       [&](OpBuilder &builder, Location loc, ValueRange localIvs,
446           ValueRange operandValuesToUse) -> scf::ValueVector {
447     ivs.assign(localIvs.begin(), localIvs.end());
448 
449     // When an `interchangeVector` is present, it has been applied to the
450     // loop ranges and the iterator types. Apply its inverse to the
451     // resulting loop `ivs` to match the op definition.
452     SmallVector<Value, 4> interchangedIvs;
453     if (!options.interchangeVector.empty())
454       interchangedIvs = applyMapToValues(b, loc, invPermutationMap, ivs);
455     else
456       interchangedIvs.assign(ivs.begin(), ivs.end());
457 
458     // Tile the `operandValuesToUse` that either match the `op` operands
459     // themselves or the tile loop arguments forwarding them.
460     assert(operandValuesToUse.size() ==
461                static_cast<size_t>(op.getNumInputsAndOutputs()) &&
462            "expect the number of operands and inputs and outputs to match");
463     SmallVector<Value> valuesToTile = operandValuesToUse;
464     auto sizeBounds =
465         applyMapToValues(b, loc, shapeSizesToLoopsMap, allShapeSizes);
466     SmallVector<Value, 4> tiledOperands =
467         makeTiledShapes(b, loc, op, valuesToTile, interchangedIvs, tileSizes,
468                         sizeBounds, /*omitPartialTileCheck=*/false);
469 
470     SmallVector<Type> resultTensorTypes =
471         getTensorOutputTypes(op, tiledOperands);
472     res = op.clone(b, loc, resultTensorTypes, tiledOperands);
473     tensorResults =
474         insertSlicesBack(builder, loc, op, tiledOperands, res->getResults());
475     return scf::ValueVector(tensorResults.begin(), tensorResults.end());
476   };
477   GenerateLoopNest<LoopTy>::doit(b, op.getLoc(), loopRanges, op, iteratorTypes,
478                                  tiledLoopBodyBuilder, options.distribution,
479                                  options.distributionTypes);
480 
481   // 3. Transform IndexOp results w.r.t. the tiling.
482   transformIndexOps(b, res, ivs, loopIndexToRangeIndex);
483 
484   // 4. Gather the newly created loops and return them with the new op.
485   SmallVector<Operation *, 8> loops;
486   loops.reserve(ivs.size());
487   for (auto iv : ivs) {
488     if (iv.isa<BlockArgument>()) {
489       loops.push_back(iv.cast<BlockArgument>().getOwner()->getParentOp());
490       assert(loops.back() && "no owner found for induction variable!");
491     } else {
492       // TODO: Instead of doing this, try to recover the ops used instead of the
493       // loop.
494       loops.push_back(nullptr);
495     }
496   }
497 
498   // 5. Get the tensor results from the outermost loop if available. Otherwise
499   // use the previously captured `tensorResults`.
500   Operation *outermostLoop = nullptr;
501   for (Operation *loop : loops)
502     if ((outermostLoop = loop))
503       break;
504 
505   return TiledLinalgOp{
506       res, loops, outermostLoop ? outermostLoop->getResults() : tensorResults};
507 }
508 
509 template <typename LoopTy>
tileLinalgOpImpl(RewriterBase & b,LinalgOp op,const LinalgTilingOptions & options)510 FailureOr<TiledLinalgOp> static tileLinalgOpImpl(
511     RewriterBase &b, LinalgOp op, const LinalgTilingOptions &options) {
512   OpBuilder::InsertionGuard g(b);
513   b.setInsertionPoint(op);
514 
515   if (!options.tileSizeComputationFunction)
516     return failure();
517 
518   // Enforce the convention that "tiling by zero" skips tiling a particular
519   // dimension. This convention is significantly simpler to handle instead of
520   // adjusting affine maps to account for missing dimensions.
521   auto nLoops = op.getNumLoops();
522   SmallVector<Value, 4> tileSizeVector =
523       options.tileSizeComputationFunction(b, op);
524   if (tileSizeVector.size() < nLoops) {
525     auto zero = b.create<arith::ConstantIndexOp>(op.getLoc(), 0);
526     tileSizeVector.append(nLoops - tileSizeVector.size(), zero);
527   }
528 
529   return tileLinalgOpImpl<LoopTy>(b, op, tileSizeVector, options);
530 }
531 
532 FailureOr<TiledLinalgOp>
tileLinalgOp(RewriterBase & b,LinalgOp op,const LinalgTilingOptions & options)533 mlir::linalg::tileLinalgOp(RewriterBase &b, LinalgOp op,
534                            const LinalgTilingOptions &options) {
535   switch (options.loopType) {
536   case LinalgTilingLoopType::Loops:
537     return tileLinalgOpImpl<scf::ForOp>(b, op, options);
538   case LinalgTilingLoopType::ParallelLoops:
539     return tileLinalgOpImpl<scf::ParallelOp>(b, op, options);
540   default:;
541   }
542   return failure();
543 }
544 
545 /// Generate a loop nest around a given tensor::PadOp (for tiling). `newPadOp`
546 /// and `loopNest` are output parameters that return the new (tiled)
547 /// tensor::PadOp and the loop nest.
tilePadOp(RewriterBase & builder,tensor::PadOp op,tensor::PadOp & newPadOp,LoopNest & loopNest,const LinalgTilingOptions & options)548 static LogicalResult tilePadOp(RewriterBase &builder, tensor::PadOp op,
549                                tensor::PadOp &newPadOp, LoopNest &loopNest,
550                                const LinalgTilingOptions &options) {
551   Location loc = op.getLoc();
552   OpBuilder::InsertionGuard g(builder);
553   builder.setInsertionPoint(op);
554 
555   // Clone tensor::PadOp so that the existing op can be replaced more easily.
556   newPadOp = cast<tensor::PadOp>(builder.clone(*op.getOperation()));
557   // Get rank and tile sizes.
558   int64_t rank = op.getResultType().getRank();
559   SmallVector<Value> tileSizes =
560       options.tileSizeComputationFunction(builder, op);
561   // Normalize untiled padding dimensions to 0.
562   Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
563   tileSizes.append(rank - tileSizes.size(), zero);
564   // Compute lower and upper bounds of the loop nest.
565   TilingInterface tilingInterface =
566       dyn_cast<TilingInterface>(op.getOperation());
567   SmallVector<Range> ranges = tilingInterface.getIterationDomain(builder);
568   SmallVector<Value> lbs, dims, allDims, steps;
569   for (int64_t i = 0; i < rank; ++i) {
570     allDims.push_back(ranges[i].size);
571     if (!isZero(tileSizes[i])) {
572       lbs.push_back(ranges[i].offset);
573       dims.push_back(ranges[i].size);
574       steps.push_back(tileSizes[i]);
575     }
576   }
577   // Generate loop nest: One loop per dimension.
578   SmallVector<Value> destOperand =
579       tilingInterface.getDestinationOperands(builder);
580   loopNest = mlir::scf::buildLoopNest(
581       builder, loc, lbs, /*ubs=*/dims, steps, ValueRange(destOperand),
582       [&](OpBuilder &b, Location loc, ValueRange localIvs,
583           ValueRange iterArgs) -> scf::ValueVector {
584         // Compute offsets and sizes of ExtractSliceOp.
585         SmallVector<Value> offsets =
586             computeTileOffsets(b, loc, localIvs, tileSizes);
587         SmallVector<Value> sizes = computeTileSizes(b, loc, tileSizes, allDims);
588         // Create ExtractSliceOp: Extract a tile from the tensor::PadOp.
589         // Note: The tensor::PadOp is located outside of the loop nest. It is
590         // later moved inside by ExtractSliceOfPadTensorSwapPattern.
591         auto map = AffineMap::getMultiDimIdentityMap(rank, b.getContext());
592         Value tiledOutput = makeTiledShape(
593             b, loc, newPadOp->getResult(0), tileSizes, map, offsets, allDims,
594             sizes, /*omitPartialTileCheck=*/false);
595         auto sliceOp = tiledOutput.getDefiningOp<tensor::ExtractSliceOp>();
596         assert(sliceOp && "expected ExtractSliceOp");
597         // Insert the tile into the output tensor.
598         // TODO: Propagate RewriterBase everywhere.
599         IRRewriter rewriter(b);
600         Value yieldValue =
601             insertSliceIntoTensor(rewriter, loc, sliceOp, sliceOp, iterArgs[0]);
602         return scf::ValueVector({yieldValue});
603       });
604   return success();
605 }
606 
607 namespace {
608 struct PadOpTilingPattern : public OpRewritePattern<tensor::PadOp> {
PadOpTilingPattern__anon3f60ba290711::PadOpTilingPattern609   PadOpTilingPattern(MLIRContext *ctx, LinalgTilingOptions opt)
610       : OpRewritePattern<tensor::PadOp>(ctx), options(std::move(opt)) {}
611 
matchAndRewrite__anon3f60ba290711::PadOpTilingPattern612   LogicalResult matchAndRewrite(tensor::PadOp op,
613                                 PatternRewriter &rewriter) const override {
614     if (op->hasAttr(LinalgTransforms::kLinalgTransformMarker))
615       return failure();
616     tensor::PadOp newPadOp;
617     LoopNest loopNest;
618     if (failed(tilePadOp(rewriter, op, newPadOp, loopNest, options)))
619       return failure();
620     newPadOp->setAttr(LinalgTransforms::kLinalgTransformMarker,
621                       rewriter.getUnitAttr());
622     // Replace all uses of the original tensor::PadOp.
623     rewriter.replaceOp(op, loopNest.getResults()[0]);
624     return success();
625   }
626 
627   LinalgTilingOptions options;
628 };
629 } // namespace
630 
631 namespace {
632 /// Helper classes for type list expansion.
633 template <typename... OpTypes>
634 class CanonicalizationPatternList;
635 
636 template <>
637 class CanonicalizationPatternList<> {
638 public:
insert(RewritePatternSet & patterns)639   static void insert(RewritePatternSet &patterns) {}
640 };
641 
642 template <typename OpTy, typename... OpTypes>
643 class CanonicalizationPatternList<OpTy, OpTypes...> {
644 public:
insert(RewritePatternSet & patterns)645   static void insert(RewritePatternSet &patterns) {
646     OpTy::getCanonicalizationPatterns(patterns, patterns.getContext());
647     CanonicalizationPatternList<OpTypes...>::insert(patterns);
648   }
649 };
650 } // namespace
651 
652 RewritePatternSet
getLinalgTilingCanonicalizationPatterns(MLIRContext * ctx)653 mlir::linalg::getLinalgTilingCanonicalizationPatterns(MLIRContext *ctx) {
654   RewritePatternSet patterns(ctx);
655   populateLinalgTilingCanonicalizationPatterns(patterns);
656   return patterns;
657 }
658 
populateLinalgTilingCanonicalizationPatterns(RewritePatternSet & patterns)659 void mlir::linalg::populateLinalgTilingCanonicalizationPatterns(
660     RewritePatternSet &patterns) {
661   auto *ctx = patterns.getContext();
662   AffineApplyOp::getCanonicalizationPatterns(patterns, ctx);
663   AffineForOp::getCanonicalizationPatterns(patterns, ctx);
664   AffineMinOp::getCanonicalizationPatterns(patterns, ctx);
665   AffineMaxOp::getCanonicalizationPatterns(patterns, ctx);
666   arith::ConstantIndexOp::getCanonicalizationPatterns(patterns, ctx);
667 
668   memref::SubViewOp::getCanonicalizationPatterns(patterns, ctx);
669   memref::ViewOp::getCanonicalizationPatterns(patterns, ctx);
670 
671   scf::ForOp::getCanonicalizationPatterns(patterns, ctx);
672   scf::ParallelOp::getCanonicalizationPatterns(patterns, ctx);
673 
674   tensor::CastOp::getCanonicalizationPatterns(patterns, ctx);
675   tensor::ExtractSliceOp::getCanonicalizationPatterns(patterns, ctx);
676   tensor::InsertSliceOp::getCanonicalizationPatterns(patterns, ctx);
677 
678   InitTensorOp::getCanonicalizationPatterns(patterns, ctx);
679   tensor::PadOp::getCanonicalizationPatterns(patterns, ctx);
680   ctx->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(patterns);
681 
682   CanonicalizationPatternList<
683 #define GET_OP_LIST
684 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
685       >::insert(patterns);
686 }
687 
688 /// Populate the given list with patterns that apply Linalg tiling.
insertTilingPatterns(RewritePatternSet & patterns,const LinalgTilingOptions & options)689 static void insertTilingPatterns(RewritePatternSet &patterns,
690                                  const LinalgTilingOptions &options) {
691   auto *ctx = patterns.getContext();
692   LinalgTransformationFilter f(ArrayRef<StringAttr>{},
693                                StringAttr::get(ctx, "tiled"));
694   TilingPatterns<GenericOp,
695 #define GET_OP_LIST
696 #include "mlir/Dialect/Linalg/IR/LinalgStructuredOps.cpp.inc"
697                  >::insert(patterns, options, f);
698   patterns.add<PadOpTilingPattern>(ctx, options);
699 }
700 
populatePadTensorTilingPatterns(RewritePatternSet & patterns,const LinalgTilingOptions & options)701 void mlir::linalg::populatePadTensorTilingPatterns(
702     RewritePatternSet &patterns, const LinalgTilingOptions &options) {
703   auto *ctx = patterns.getContext();
704   patterns.add<PadOpTilingPattern>(ctx, options);
705 }
706 
applyExtractSliceOfPadTensorSwapPattern(func::FuncOp funcOp)707 static void applyExtractSliceOfPadTensorSwapPattern(func::FuncOp funcOp) {
708   MLIRContext *ctx = funcOp.getContext();
709   RewritePatternSet patterns(ctx);
710   patterns.add<ExtractSliceOfPadTensorSwapPattern>(patterns.getContext());
711   (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
712   (void)applyPatternsAndFoldGreedily(
713       funcOp, getLinalgTilingCanonicalizationPatterns(ctx));
714 }
715 
716 namespace {
717 struct LinalgTilingPass : public LinalgTilingBase<LinalgTilingPass> {
718   LinalgTilingPass() = default;
LinalgTilingPass__anon3f60ba290911::LinalgTilingPass719   LinalgTilingPass(ArrayRef<int64_t> tileSizes, LinalgTilingLoopType loopType) {
720     this->tileSizes = tileSizes;
721     this->loopType = "";
722     this->loopTypeEnum = loopType;
723   }
724 
runOnOperation__anon3f60ba290911::LinalgTilingPass725   void runOnOperation() override {
726     func::FuncOp funcOp = getOperation();
727     LinalgTilingLoopType type =
728         llvm::StringSwitch<LinalgTilingLoopType>(loopType)
729             .Case("for", LinalgTilingLoopType::Loops)
730             .Case("affine", LinalgTilingLoopType::AffineLoops)
731             .Case("parallel", LinalgTilingLoopType::ParallelLoops)
732             .Default(loopTypeEnum);
733     auto options =
734         LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(type);
735     MLIRContext *ctx = funcOp.getContext();
736     RewritePatternSet patterns(ctx);
737     insertTilingPatterns(patterns, options);
738     scf::populateSCFForLoopCanonicalizationPatterns(patterns);
739     (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
740     (void)applyPatternsAndFoldGreedily(
741         funcOp, getLinalgTilingCanonicalizationPatterns(ctx));
742     // Drop the marker.
743     funcOp.walk([](LinalgOp op) {
744       op->removeAttr(LinalgTransforms::kLinalgTransformMarker);
745     });
746 
747     // Apply swap pattern after generating loop nest and running
748     // canonicalizations.
749     applyExtractSliceOfPadTensorSwapPattern(funcOp);
750   }
751 
752   LinalgTilingLoopType loopTypeEnum;
753 };
754 
755 } // namespace
756 
757 std::unique_ptr<OperationPass<func::FuncOp>>
createLinalgTilingPass(ArrayRef<int64_t> tileSizes,linalg::LinalgTilingLoopType loopType)758 mlir::createLinalgTilingPass(ArrayRef<int64_t> tileSizes,
759                              linalg::LinalgTilingLoopType loopType) {
760   return std::make_unique<LinalgTilingPass>(tileSizes, loopType);
761 }
762