1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclGroup.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/OperationKinds.h"
23 #include "clang/AST/Stmt.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
26 #include "clang/Analysis/CFG.h"
27 #include "clang/Basic/LLVM.h"
28 #include "clang/Basic/OperatorKinds.h"
29 #include "clang/Basic/Specifiers.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/Casting.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <string>
35 #include <utility>
36 
37 using namespace clang;
38 using namespace threadSafety;
39 
40 // From ThreadSafetyUtil.h
getSourceLiteralString(const Expr * CE)41 std::string threadSafety::getSourceLiteralString(const Expr *CE) {
42   switch (CE->getStmtClass()) {
43     case Stmt::IntegerLiteralClass:
44       return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
45     case Stmt::StringLiteralClass: {
46       std::string ret("\"");
47       ret += cast<StringLiteral>(CE)->getString();
48       ret += "\"";
49       return ret;
50     }
51     case Stmt::CharacterLiteralClass:
52     case Stmt::CXXNullPtrLiteralExprClass:
53     case Stmt::GNUNullExprClass:
54     case Stmt::CXXBoolLiteralExprClass:
55     case Stmt::FloatingLiteralClass:
56     case Stmt::ImaginaryLiteralClass:
57     case Stmt::ObjCStringLiteralClass:
58     default:
59       return "#lit";
60   }
61 }
62 
63 // Return true if E is a variable that points to an incomplete Phi node.
isIncompletePhi(const til::SExpr * E)64 static bool isIncompletePhi(const til::SExpr *E) {
65   if (const auto *Ph = dyn_cast<til::Phi>(E))
66     return Ph->status() == til::Phi::PH_Incomplete;
67   return false;
68 }
69 
70 using CallingContext = SExprBuilder::CallingContext;
71 
lookupStmt(const Stmt * S)72 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
73   auto It = SMap.find(S);
74   if (It != SMap.end())
75     return It->second;
76   return nullptr;
77 }
78 
buildCFG(CFGWalker & Walker)79 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
80   Walker.walk(*this);
81   return Scfg;
82 }
83 
isCalleeArrow(const Expr * E)84 static bool isCalleeArrow(const Expr *E) {
85   const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
86   return ME ? ME->isArrow() : false;
87 }
88 
89 /// Translate a clang expression in an attribute to a til::SExpr.
90 /// Constructs the context from D, DeclExp, and SelfDecl.
91 ///
92 /// \param AttrExp The expression to translate.
93 /// \param D       The declaration to which the attribute is attached.
94 /// \param DeclExp An expression involving the Decl to which the attribute
95 ///                is attached.  E.g. the call to a function.
translateAttrExpr(const Expr * AttrExp,const NamedDecl * D,const Expr * DeclExp,VarDecl * SelfDecl)96 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
97                                                const NamedDecl *D,
98                                                const Expr *DeclExp,
99                                                VarDecl *SelfDecl) {
100   // If we are processing a raw attribute expression, with no substitutions.
101   if (!DeclExp)
102     return translateAttrExpr(AttrExp, nullptr);
103 
104   CallingContext Ctx(nullptr, D);
105 
106   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
107   // for formal parameters when we call buildMutexID later.
108   if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
109     Ctx.SelfArg   = ME->getBase();
110     Ctx.SelfArrow = ME->isArrow();
111   } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
112     Ctx.SelfArg   = CE->getImplicitObjectArgument();
113     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
114     Ctx.NumArgs   = CE->getNumArgs();
115     Ctx.FunArgs   = CE->getArgs();
116   } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
117     Ctx.NumArgs = CE->getNumArgs();
118     Ctx.FunArgs = CE->getArgs();
119   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
120     Ctx.SelfArg = nullptr;  // Will be set below
121     Ctx.NumArgs = CE->getNumArgs();
122     Ctx.FunArgs = CE->getArgs();
123   } else if (D && isa<CXXDestructorDecl>(D)) {
124     // There's no such thing as a "destructor call" in the AST.
125     Ctx.SelfArg = DeclExp;
126   }
127 
128   // Hack to handle constructors, where self cannot be recovered from
129   // the expression.
130   if (SelfDecl && !Ctx.SelfArg) {
131     DeclRefExpr SelfDRE(SelfDecl->getASTContext(), SelfDecl, false,
132                         SelfDecl->getType(), VK_LValue,
133                         SelfDecl->getLocation());
134     Ctx.SelfArg = &SelfDRE;
135 
136     // If the attribute has no arguments, then assume the argument is "this".
137     if (!AttrExp)
138       return translateAttrExpr(Ctx.SelfArg, nullptr);
139     else  // For most attributes.
140       return translateAttrExpr(AttrExp, &Ctx);
141   }
142 
143   // If the attribute has no arguments, then assume the argument is "this".
144   if (!AttrExp)
145     return translateAttrExpr(Ctx.SelfArg, nullptr);
146   else  // For most attributes.
147     return translateAttrExpr(AttrExp, &Ctx);
148 }
149 
150 /// Translate a clang expression in an attribute to a til::SExpr.
151 // This assumes a CallingContext has already been created.
translateAttrExpr(const Expr * AttrExp,CallingContext * Ctx)152 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
153                                                CallingContext *Ctx) {
154   if (!AttrExp)
155     return CapabilityExpr(nullptr, false);
156 
157   if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
158     if (SLit->getString() == StringRef("*"))
159       // The "*" expr is a universal lock, which essentially turns off
160       // checks until it is removed from the lockset.
161       return CapabilityExpr(new (Arena) til::Wildcard(), false);
162     else
163       // Ignore other string literals for now.
164       return CapabilityExpr(nullptr, false);
165   }
166 
167   bool Neg = false;
168   if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
169     if (OE->getOperator() == OO_Exclaim) {
170       Neg = true;
171       AttrExp = OE->getArg(0);
172     }
173   }
174   else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
175     if (UO->getOpcode() == UO_LNot) {
176       Neg = true;
177       AttrExp = UO->getSubExpr();
178     }
179   }
180 
181   til::SExpr *E = translate(AttrExp, Ctx);
182 
183   // Trap mutex expressions like nullptr, or 0.
184   // Any literal value is nonsense.
185   if (!E || isa<til::Literal>(E))
186     return CapabilityExpr(nullptr, false);
187 
188   // Hack to deal with smart pointers -- strip off top-level pointer casts.
189   if (const auto *CE = dyn_cast_or_null<til::Cast>(E)) {
190     if (CE->castOpcode() == til::CAST_objToPtr)
191       return CapabilityExpr(CE->expr(), Neg);
192   }
193   return CapabilityExpr(E, Neg);
194 }
195 
196 // Translate a clang statement or expression to a TIL expression.
197 // Also performs substitution of variables; Ctx provides the context.
198 // Dispatches on the type of S.
translate(const Stmt * S,CallingContext * Ctx)199 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
200   if (!S)
201     return nullptr;
202 
203   // Check if S has already been translated and cached.
204   // This handles the lookup of SSA names for DeclRefExprs here.
205   if (til::SExpr *E = lookupStmt(S))
206     return E;
207 
208   switch (S->getStmtClass()) {
209   case Stmt::DeclRefExprClass:
210     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
211   case Stmt::CXXThisExprClass:
212     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
213   case Stmt::MemberExprClass:
214     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
215   case Stmt::ObjCIvarRefExprClass:
216     return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
217   case Stmt::CallExprClass:
218     return translateCallExpr(cast<CallExpr>(S), Ctx);
219   case Stmt::CXXMemberCallExprClass:
220     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
221   case Stmt::CXXOperatorCallExprClass:
222     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
223   case Stmt::UnaryOperatorClass:
224     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
225   case Stmt::BinaryOperatorClass:
226   case Stmt::CompoundAssignOperatorClass:
227     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
228 
229   case Stmt::ArraySubscriptExprClass:
230     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
231   case Stmt::ConditionalOperatorClass:
232     return translateAbstractConditionalOperator(
233              cast<ConditionalOperator>(S), Ctx);
234   case Stmt::BinaryConditionalOperatorClass:
235     return translateAbstractConditionalOperator(
236              cast<BinaryConditionalOperator>(S), Ctx);
237 
238   // We treat these as no-ops
239   case Stmt::ConstantExprClass:
240     return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
241   case Stmt::ParenExprClass:
242     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
243   case Stmt::ExprWithCleanupsClass:
244     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
245   case Stmt::CXXBindTemporaryExprClass:
246     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
247   case Stmt::MaterializeTemporaryExprClass:
248     return translate(cast<MaterializeTemporaryExpr>(S)->GetTemporaryExpr(),
249                      Ctx);
250 
251   // Collect all literals
252   case Stmt::CharacterLiteralClass:
253   case Stmt::CXXNullPtrLiteralExprClass:
254   case Stmt::GNUNullExprClass:
255   case Stmt::CXXBoolLiteralExprClass:
256   case Stmt::FloatingLiteralClass:
257   case Stmt::ImaginaryLiteralClass:
258   case Stmt::IntegerLiteralClass:
259   case Stmt::StringLiteralClass:
260   case Stmt::ObjCStringLiteralClass:
261     return new (Arena) til::Literal(cast<Expr>(S));
262 
263   case Stmt::DeclStmtClass:
264     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
265   default:
266     break;
267   }
268   if (const auto *CE = dyn_cast<CastExpr>(S))
269     return translateCastExpr(CE, Ctx);
270 
271   return new (Arena) til::Undefined(S);
272 }
273 
translateDeclRefExpr(const DeclRefExpr * DRE,CallingContext * Ctx)274 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
275                                                CallingContext *Ctx) {
276   const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
277 
278   // Function parameters require substitution and/or renaming.
279   if (const auto *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
280     const auto *FD =
281         cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
282     unsigned I = PV->getFunctionScopeIndex();
283 
284     if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
285       // Substitute call arguments for references to function parameters
286       assert(I < Ctx->NumArgs);
287       return translate(Ctx->FunArgs[I], Ctx->Prev);
288     }
289     // Map the param back to the param of the original function declaration
290     // for consistent comparisons.
291     VD = FD->getParamDecl(I);
292   }
293 
294   // For non-local variables, treat it as a reference to a named object.
295   return new (Arena) til::LiteralPtr(VD);
296 }
297 
translateCXXThisExpr(const CXXThisExpr * TE,CallingContext * Ctx)298 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
299                                                CallingContext *Ctx) {
300   // Substitute for 'this'
301   if (Ctx && Ctx->SelfArg)
302     return translate(Ctx->SelfArg, Ctx->Prev);
303   assert(SelfVar && "We have no variable for 'this'!");
304   return SelfVar;
305 }
306 
getValueDeclFromSExpr(const til::SExpr * E)307 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
308   if (const auto *V = dyn_cast<til::Variable>(E))
309     return V->clangDecl();
310   if (const auto *Ph = dyn_cast<til::Phi>(E))
311     return Ph->clangDecl();
312   if (const auto *P = dyn_cast<til::Project>(E))
313     return P->clangDecl();
314   if (const auto *L = dyn_cast<til::LiteralPtr>(E))
315     return L->clangDecl();
316   return nullptr;
317 }
318 
hasAnyPointerType(const til::SExpr * E)319 static bool hasAnyPointerType(const til::SExpr *E) {
320   auto *VD = getValueDeclFromSExpr(E);
321   if (VD && VD->getType()->isAnyPointerType())
322     return true;
323   if (const auto *C = dyn_cast<til::Cast>(E))
324     return C->castOpcode() == til::CAST_objToPtr;
325 
326   return false;
327 }
328 
329 // Grab the very first declaration of virtual method D
getFirstVirtualDecl(const CXXMethodDecl * D)330 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
331   while (true) {
332     D = D->getCanonicalDecl();
333     auto OverriddenMethods = D->overridden_methods();
334     if (OverriddenMethods.begin() == OverriddenMethods.end())
335       return D;  // Method does not override anything
336     // FIXME: this does not work with multiple inheritance.
337     D = *OverriddenMethods.begin();
338   }
339   return nullptr;
340 }
341 
translateMemberExpr(const MemberExpr * ME,CallingContext * Ctx)342 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
343                                               CallingContext *Ctx) {
344   til::SExpr *BE = translate(ME->getBase(), Ctx);
345   til::SExpr *E  = new (Arena) til::SApply(BE);
346 
347   const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
348   if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
349     D = getFirstVirtualDecl(VD);
350 
351   til::Project *P = new (Arena) til::Project(E, D);
352   if (hasAnyPointerType(BE))
353     P->setArrow(true);
354   return P;
355 }
356 
translateObjCIVarRefExpr(const ObjCIvarRefExpr * IVRE,CallingContext * Ctx)357 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
358                                                    CallingContext *Ctx) {
359   til::SExpr *BE = translate(IVRE->getBase(), Ctx);
360   til::SExpr *E = new (Arena) til::SApply(BE);
361 
362   const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
363 
364   til::Project *P = new (Arena) til::Project(E, D);
365   if (hasAnyPointerType(BE))
366     P->setArrow(true);
367   return P;
368 }
369 
translateCallExpr(const CallExpr * CE,CallingContext * Ctx,const Expr * SelfE)370 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
371                                             CallingContext *Ctx,
372                                             const Expr *SelfE) {
373   if (CapabilityExprMode) {
374     // Handle LOCK_RETURNED
375     if (const FunctionDecl *FD = CE->getDirectCallee()) {
376       FD = FD->getMostRecentDecl();
377       if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
378         CallingContext LRCallCtx(Ctx);
379         LRCallCtx.AttrDecl = CE->getDirectCallee();
380         LRCallCtx.SelfArg = SelfE;
381         LRCallCtx.NumArgs = CE->getNumArgs();
382         LRCallCtx.FunArgs = CE->getArgs();
383         return const_cast<til::SExpr *>(
384             translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
385       }
386     }
387   }
388 
389   til::SExpr *E = translate(CE->getCallee(), Ctx);
390   for (const auto *Arg : CE->arguments()) {
391     til::SExpr *A = translate(Arg, Ctx);
392     E = new (Arena) til::Apply(E, A);
393   }
394   return new (Arena) til::Call(E, CE);
395 }
396 
translateCXXMemberCallExpr(const CXXMemberCallExpr * ME,CallingContext * Ctx)397 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
398     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
399   if (CapabilityExprMode) {
400     // Ignore calls to get() on smart pointers.
401     if (ME->getMethodDecl()->getNameAsString() == "get" &&
402         ME->getNumArgs() == 0) {
403       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
404       return new (Arena) til::Cast(til::CAST_objToPtr, E);
405       // return E;
406     }
407   }
408   return translateCallExpr(cast<CallExpr>(ME), Ctx,
409                            ME->getImplicitObjectArgument());
410 }
411 
translateCXXOperatorCallExpr(const CXXOperatorCallExpr * OCE,CallingContext * Ctx)412 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
413     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
414   if (CapabilityExprMode) {
415     // Ignore operator * and operator -> on smart pointers.
416     OverloadedOperatorKind k = OCE->getOperator();
417     if (k == OO_Star || k == OO_Arrow) {
418       auto *E = translate(OCE->getArg(0), Ctx);
419       return new (Arena) til::Cast(til::CAST_objToPtr, E);
420       // return E;
421     }
422   }
423   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
424 }
425 
translateUnaryOperator(const UnaryOperator * UO,CallingContext * Ctx)426 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
427                                                  CallingContext *Ctx) {
428   switch (UO->getOpcode()) {
429   case UO_PostInc:
430   case UO_PostDec:
431   case UO_PreInc:
432   case UO_PreDec:
433     return new (Arena) til::Undefined(UO);
434 
435   case UO_AddrOf:
436     if (CapabilityExprMode) {
437       // interpret &Graph::mu_ as an existential.
438       if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
439         if (DRE->getDecl()->isCXXInstanceMember()) {
440           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
441           // We interpret this syntax specially, as a wildcard.
442           auto *W = new (Arena) til::Wildcard();
443           return new (Arena) til::Project(W, DRE->getDecl());
444         }
445       }
446     }
447     // otherwise, & is a no-op
448     return translate(UO->getSubExpr(), Ctx);
449 
450   // We treat these as no-ops
451   case UO_Deref:
452   case UO_Plus:
453     return translate(UO->getSubExpr(), Ctx);
454 
455   case UO_Minus:
456     return new (Arena)
457       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
458   case UO_Not:
459     return new (Arena)
460       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
461   case UO_LNot:
462     return new (Arena)
463       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
464 
465   // Currently unsupported
466   case UO_Real:
467   case UO_Imag:
468   case UO_Extension:
469   case UO_Coawait:
470     return new (Arena) til::Undefined(UO);
471   }
472   return new (Arena) til::Undefined(UO);
473 }
474 
translateBinOp(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Reverse)475 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
476                                          const BinaryOperator *BO,
477                                          CallingContext *Ctx, bool Reverse) {
478    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
479    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
480    if (Reverse)
481      return new (Arena) til::BinaryOp(Op, E1, E0);
482    else
483      return new (Arena) til::BinaryOp(Op, E0, E1);
484 }
485 
translateBinAssign(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Assign)486 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
487                                              const BinaryOperator *BO,
488                                              CallingContext *Ctx,
489                                              bool Assign) {
490   const Expr *LHS = BO->getLHS();
491   const Expr *RHS = BO->getRHS();
492   til::SExpr *E0 = translate(LHS, Ctx);
493   til::SExpr *E1 = translate(RHS, Ctx);
494 
495   const ValueDecl *VD = nullptr;
496   til::SExpr *CV = nullptr;
497   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
498     VD = DRE->getDecl();
499     CV = lookupVarDecl(VD);
500   }
501 
502   if (!Assign) {
503     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
504     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
505     E1 = addStatement(E1, nullptr, VD);
506   }
507   if (VD && CV)
508     return updateVarDecl(VD, E1);
509   return new (Arena) til::Store(E0, E1);
510 }
511 
translateBinaryOperator(const BinaryOperator * BO,CallingContext * Ctx)512 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
513                                                   CallingContext *Ctx) {
514   switch (BO->getOpcode()) {
515   case BO_PtrMemD:
516   case BO_PtrMemI:
517     return new (Arena) til::Undefined(BO);
518 
519   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
520   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
521   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
522   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
523   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
524   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
525   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
526   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
527   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
528   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
529   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
530   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
531   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
532   case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
533   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
534   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
535   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
536   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
537   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
538 
539   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
540   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
541   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
542   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
543   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
544   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
545   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
546   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
547   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
548   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
549   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
550 
551   case BO_Comma:
552     // The clang CFG should have already processed both sides.
553     return translate(BO->getRHS(), Ctx);
554   }
555   return new (Arena) til::Undefined(BO);
556 }
557 
translateCastExpr(const CastExpr * CE,CallingContext * Ctx)558 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
559                                             CallingContext *Ctx) {
560   CastKind K = CE->getCastKind();
561   switch (K) {
562   case CK_LValueToRValue: {
563     if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
564       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
565       if (E0)
566         return E0;
567     }
568     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
569     return E0;
570     // FIXME!! -- get Load working properly
571     // return new (Arena) til::Load(E0);
572   }
573   case CK_NoOp:
574   case CK_DerivedToBase:
575   case CK_UncheckedDerivedToBase:
576   case CK_ArrayToPointerDecay:
577   case CK_FunctionToPointerDecay: {
578     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
579     return E0;
580   }
581   default: {
582     // FIXME: handle different kinds of casts.
583     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
584     if (CapabilityExprMode)
585       return E0;
586     return new (Arena) til::Cast(til::CAST_none, E0);
587   }
588   }
589 }
590 
591 til::SExpr *
translateArraySubscriptExpr(const ArraySubscriptExpr * E,CallingContext * Ctx)592 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
593                                           CallingContext *Ctx) {
594   til::SExpr *E0 = translate(E->getBase(), Ctx);
595   til::SExpr *E1 = translate(E->getIdx(), Ctx);
596   return new (Arena) til::ArrayIndex(E0, E1);
597 }
598 
599 til::SExpr *
translateAbstractConditionalOperator(const AbstractConditionalOperator * CO,CallingContext * Ctx)600 SExprBuilder::translateAbstractConditionalOperator(
601     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
602   auto *C = translate(CO->getCond(), Ctx);
603   auto *T = translate(CO->getTrueExpr(), Ctx);
604   auto *E = translate(CO->getFalseExpr(), Ctx);
605   return new (Arena) til::IfThenElse(C, T, E);
606 }
607 
608 til::SExpr *
translateDeclStmt(const DeclStmt * S,CallingContext * Ctx)609 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
610   DeclGroupRef DGrp = S->getDeclGroup();
611   for (auto I : DGrp) {
612     if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
613       Expr *E = VD->getInit();
614       til::SExpr* SE = translate(E, Ctx);
615 
616       // Add local variables with trivial type to the variable map
617       QualType T = VD->getType();
618       if (T.isTrivialType(VD->getASTContext()))
619         return addVarDecl(VD, SE);
620       else {
621         // TODO: add alloca
622       }
623     }
624   }
625   return nullptr;
626 }
627 
628 // If (E) is non-trivial, then add it to the current basic block, and
629 // update the statement map so that S refers to E.  Returns a new variable
630 // that refers to E.
631 // If E is trivial returns E.
addStatement(til::SExpr * E,const Stmt * S,const ValueDecl * VD)632 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
633                                        const ValueDecl *VD) {
634   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
635     return E;
636   if (VD)
637     E = new (Arena) til::Variable(E, VD);
638   CurrentInstructions.push_back(E);
639   if (S)
640     insertStmt(S, E);
641   return E;
642 }
643 
644 // Returns the current value of VD, if known, and nullptr otherwise.
lookupVarDecl(const ValueDecl * VD)645 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
646   auto It = LVarIdxMap.find(VD);
647   if (It != LVarIdxMap.end()) {
648     assert(CurrentLVarMap[It->second].first == VD);
649     return CurrentLVarMap[It->second].second;
650   }
651   return nullptr;
652 }
653 
654 // if E is a til::Variable, update its clangDecl.
maybeUpdateVD(til::SExpr * E,const ValueDecl * VD)655 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
656   if (!E)
657     return;
658   if (auto *V = dyn_cast<til::Variable>(E)) {
659     if (!V->clangDecl())
660       V->setClangDecl(VD);
661   }
662 }
663 
664 // Adds a new variable declaration.
addVarDecl(const ValueDecl * VD,til::SExpr * E)665 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
666   maybeUpdateVD(E, VD);
667   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
668   CurrentLVarMap.makeWritable();
669   CurrentLVarMap.push_back(std::make_pair(VD, E));
670   return E;
671 }
672 
673 // Updates a current variable declaration.  (E.g. by assignment)
updateVarDecl(const ValueDecl * VD,til::SExpr * E)674 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
675   maybeUpdateVD(E, VD);
676   auto It = LVarIdxMap.find(VD);
677   if (It == LVarIdxMap.end()) {
678     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
679     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
680     return St;
681   }
682   CurrentLVarMap.makeWritable();
683   CurrentLVarMap.elem(It->second).second = E;
684   return E;
685 }
686 
687 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
688 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
689 // If E == null, this is a backedge and will be set later.
makePhiNodeVar(unsigned i,unsigned NPreds,til::SExpr * E)690 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
691   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
692   assert(ArgIndex > 0 && ArgIndex < NPreds);
693 
694   til::SExpr *CurrE = CurrentLVarMap[i].second;
695   if (CurrE->block() == CurrentBB) {
696     // We already have a Phi node in the current block,
697     // so just add the new variable to the Phi node.
698     auto *Ph = dyn_cast<til::Phi>(CurrE);
699     assert(Ph && "Expecting Phi node.");
700     if (E)
701       Ph->values()[ArgIndex] = E;
702     return;
703   }
704 
705   // Make a new phi node: phi(..., E)
706   // All phi args up to the current index are set to the current value.
707   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
708   Ph->values().setValues(NPreds, nullptr);
709   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
710     Ph->values()[PIdx] = CurrE;
711   if (E)
712     Ph->values()[ArgIndex] = E;
713   Ph->setClangDecl(CurrentLVarMap[i].first);
714   // If E is from a back-edge, or either E or CurrE are incomplete, then
715   // mark this node as incomplete; we may need to remove it later.
716   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
717     Ph->setStatus(til::Phi::PH_Incomplete);
718 
719   // Add Phi node to current block, and update CurrentLVarMap[i]
720   CurrentArguments.push_back(Ph);
721   if (Ph->status() == til::Phi::PH_Incomplete)
722     IncompleteArgs.push_back(Ph);
723 
724   CurrentLVarMap.makeWritable();
725   CurrentLVarMap.elem(i).second = Ph;
726 }
727 
728 // Merge values from Map into the current variable map.
729 // This will construct Phi nodes in the current basic block as necessary.
mergeEntryMap(LVarDefinitionMap Map)730 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
731   assert(CurrentBlockInfo && "Not processing a block!");
732 
733   if (!CurrentLVarMap.valid()) {
734     // Steal Map, using copy-on-write.
735     CurrentLVarMap = std::move(Map);
736     return;
737   }
738   if (CurrentLVarMap.sameAs(Map))
739     return;  // Easy merge: maps from different predecessors are unchanged.
740 
741   unsigned NPreds = CurrentBB->numPredecessors();
742   unsigned ESz = CurrentLVarMap.size();
743   unsigned MSz = Map.size();
744   unsigned Sz  = std::min(ESz, MSz);
745 
746   for (unsigned i = 0; i < Sz; ++i) {
747     if (CurrentLVarMap[i].first != Map[i].first) {
748       // We've reached the end of variables in common.
749       CurrentLVarMap.makeWritable();
750       CurrentLVarMap.downsize(i);
751       break;
752     }
753     if (CurrentLVarMap[i].second != Map[i].second)
754       makePhiNodeVar(i, NPreds, Map[i].second);
755   }
756   if (ESz > MSz) {
757     CurrentLVarMap.makeWritable();
758     CurrentLVarMap.downsize(Map.size());
759   }
760 }
761 
762 // Merge a back edge into the current variable map.
763 // This will create phi nodes for all variables in the variable map.
mergeEntryMapBackEdge()764 void SExprBuilder::mergeEntryMapBackEdge() {
765   // We don't have definitions for variables on the backedge, because we
766   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
767   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
768   // nodes will be marked as incomplete, and stripped out at the end.
769   //
770   // An Phi node is unnecessary if it only refers to itself and one other
771   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
772 
773   assert(CurrentBlockInfo && "Not processing a block!");
774 
775   if (CurrentBlockInfo->HasBackEdges)
776     return;
777   CurrentBlockInfo->HasBackEdges = true;
778 
779   CurrentLVarMap.makeWritable();
780   unsigned Sz = CurrentLVarMap.size();
781   unsigned NPreds = CurrentBB->numPredecessors();
782 
783   for (unsigned i = 0; i < Sz; ++i)
784     makePhiNodeVar(i, NPreds, nullptr);
785 }
786 
787 // Update the phi nodes that were initially created for a back edge
788 // once the variable definitions have been computed.
789 // I.e., merge the current variable map into the phi nodes for Blk.
mergePhiNodesBackEdge(const CFGBlock * Blk)790 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
791   til::BasicBlock *BB = lookupBlock(Blk);
792   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
793   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
794 
795   for (til::SExpr *PE : BB->arguments()) {
796     auto *Ph = dyn_cast_or_null<til::Phi>(PE);
797     assert(Ph && "Expecting Phi Node.");
798     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
799 
800     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
801     assert(E && "Couldn't find local variable for Phi node.");
802     Ph->values()[ArgIndex] = E;
803   }
804 }
805 
enterCFG(CFG * Cfg,const NamedDecl * D,const CFGBlock * First)806 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
807                             const CFGBlock *First) {
808   // Perform initial setup operations.
809   unsigned NBlocks = Cfg->getNumBlockIDs();
810   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
811 
812   // allocate all basic blocks immediately, to handle forward references.
813   BBInfo.resize(NBlocks);
814   BlockMap.resize(NBlocks, nullptr);
815   // create map from clang blockID to til::BasicBlocks
816   for (auto *B : *Cfg) {
817     auto *BB = new (Arena) til::BasicBlock(Arena);
818     BB->reserveInstructions(B->size());
819     BlockMap[B->getBlockID()] = BB;
820   }
821 
822   CurrentBB = lookupBlock(&Cfg->getEntry());
823   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
824                                       : cast<FunctionDecl>(D)->parameters();
825   for (auto *Pm : Parms) {
826     QualType T = Pm->getType();
827     if (!T.isTrivialType(Pm->getASTContext()))
828       continue;
829 
830     // Add parameters to local variable map.
831     // FIXME: right now we emulate params with loads; that should be fixed.
832     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
833     til::SExpr *Ld = new (Arena) til::Load(Lp);
834     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
835     addVarDecl(Pm, V);
836   }
837 }
838 
enterCFGBlock(const CFGBlock * B)839 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
840   // Initialize TIL basic block and add it to the CFG.
841   CurrentBB = lookupBlock(B);
842   CurrentBB->reservePredecessors(B->pred_size());
843   Scfg->add(CurrentBB);
844 
845   CurrentBlockInfo = &BBInfo[B->getBlockID()];
846 
847   // CurrentLVarMap is moved to ExitMap on block exit.
848   // FIXME: the entry block will hold function parameters.
849   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
850 }
851 
handlePredecessor(const CFGBlock * Pred)852 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
853   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
854 
855   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
856   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
857   assert(PredInfo->UnprocessedSuccessors > 0);
858 
859   if (--PredInfo->UnprocessedSuccessors == 0)
860     mergeEntryMap(std::move(PredInfo->ExitMap));
861   else
862     mergeEntryMap(PredInfo->ExitMap.clone());
863 
864   ++CurrentBlockInfo->ProcessedPredecessors;
865 }
866 
handlePredecessorBackEdge(const CFGBlock * Pred)867 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
868   mergeEntryMapBackEdge();
869 }
870 
enterCFGBlockBody(const CFGBlock * B)871 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
872   // The merge*() methods have created arguments.
873   // Push those arguments onto the basic block.
874   CurrentBB->arguments().reserve(
875     static_cast<unsigned>(CurrentArguments.size()), Arena);
876   for (auto *A : CurrentArguments)
877     CurrentBB->addArgument(A);
878 }
879 
handleStatement(const Stmt * S)880 void SExprBuilder::handleStatement(const Stmt *S) {
881   til::SExpr *E = translate(S, nullptr);
882   addStatement(E, S);
883 }
884 
handleDestructorCall(const VarDecl * VD,const CXXDestructorDecl * DD)885 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
886                                         const CXXDestructorDecl *DD) {
887   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
888   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
889   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
890   til::SExpr *E = new (Arena) til::Call(Ap);
891   addStatement(E, nullptr);
892 }
893 
exitCFGBlockBody(const CFGBlock * B)894 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
895   CurrentBB->instructions().reserve(
896     static_cast<unsigned>(CurrentInstructions.size()), Arena);
897   for (auto *V : CurrentInstructions)
898     CurrentBB->addInstruction(V);
899 
900   // Create an appropriate terminator
901   unsigned N = B->succ_size();
902   auto It = B->succ_begin();
903   if (N == 1) {
904     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
905     // TODO: set index
906     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
907     auto *Tm = new (Arena) til::Goto(BB, Idx);
908     CurrentBB->setTerminator(Tm);
909   }
910   else if (N == 2) {
911     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
912     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
913     ++It;
914     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
915     // FIXME: make sure these aren't critical edges.
916     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
917     CurrentBB->setTerminator(Tm);
918   }
919 }
920 
handleSuccessor(const CFGBlock * Succ)921 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
922   ++CurrentBlockInfo->UnprocessedSuccessors;
923 }
924 
handleSuccessorBackEdge(const CFGBlock * Succ)925 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
926   mergePhiNodesBackEdge(Succ);
927   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
928 }
929 
exitCFGBlock(const CFGBlock * B)930 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
931   CurrentArguments.clear();
932   CurrentInstructions.clear();
933   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
934   CurrentBB = nullptr;
935   CurrentBlockInfo = nullptr;
936 }
937 
exitCFG(const CFGBlock * Last)938 void SExprBuilder::exitCFG(const CFGBlock *Last) {
939   for (auto *Ph : IncompleteArgs) {
940     if (Ph->status() == til::Phi::PH_Incomplete)
941       simplifyIncompleteArg(Ph);
942   }
943 
944   CurrentArguments.clear();
945   CurrentInstructions.clear();
946   IncompleteArgs.clear();
947 }
948 
949 /*
950 namespace {
951 
952 class TILPrinter :
953     public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
954 
955 } // namespace
956 
957 namespace clang {
958 namespace threadSafety {
959 
960 void printSCFG(CFGWalker &Walker) {
961   llvm::BumpPtrAllocator Bpa;
962   til::MemRegionRef Arena(&Bpa);
963   SExprBuilder SxBuilder(Arena);
964   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
965   TILPrinter::print(Scfg, llvm::errs());
966 }
967 
968 } // namespace threadSafety
969 } // namespace clang
970 */
971