1 //===-- TargetRewrite.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target rewrite: rewriting of ops to make target-specific lowerings manifest.
10 // LLVM expects different lowering idioms to be used for distinct target
11 // triples. These distinctions are handled by this pass.
12 //
13 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "PassDetail.h"
18 #include "Target.h"
19 #include "flang/Optimizer/Builder/Character.h"
20 #include "flang/Optimizer/Builder/FIRBuilder.h"
21 #include "flang/Optimizer/Builder/Todo.h"
22 #include "flang/Optimizer/CodeGen/CodeGen.h"
23 #include "flang/Optimizer/Dialect/FIRDialect.h"
24 #include "flang/Optimizer/Dialect/FIROps.h"
25 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
26 #include "flang/Optimizer/Dialect/FIRType.h"
27 #include "flang/Optimizer/Support/FIRContext.h"
28 #include "mlir/Transforms/DialectConversion.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/TypeSwitch.h"
31 #include "llvm/Support/Debug.h"
32
33 #define DEBUG_TYPE "flang-target-rewrite"
34
35 namespace {
36
37 /// Fixups for updating a FuncOp's arguments and return values.
38 struct FixupTy {
39 enum class Codes {
40 ArgumentAsLoad,
41 ArgumentType,
42 CharPair,
43 ReturnAsStore,
44 ReturnType,
45 Split,
46 Trailing,
47 TrailingCharProc
48 };
49
FixupTy__anon5e619a4c0111::FixupTy50 FixupTy(Codes code, std::size_t index, std::size_t second = 0)
51 : code{code}, index{index}, second{second} {}
FixupTy__anon5e619a4c0111::FixupTy52 FixupTy(Codes code, std::size_t index,
53 std::function<void(mlir::func::FuncOp)> &&finalizer)
54 : code{code}, index{index}, finalizer{finalizer} {}
FixupTy__anon5e619a4c0111::FixupTy55 FixupTy(Codes code, std::size_t index, std::size_t second,
56 std::function<void(mlir::func::FuncOp)> &&finalizer)
57 : code{code}, index{index}, second{second}, finalizer{finalizer} {}
58
59 Codes code;
60 std::size_t index;
61 std::size_t second{};
62 llvm::Optional<std::function<void(mlir::func::FuncOp)>> finalizer{};
63 }; // namespace
64
65 /// Target-specific rewriting of the FIR. This is a prerequisite pass to code
66 /// generation that traverses the FIR and modifies types and operations to a
67 /// form that is appropriate for the specific target. LLVM IR has specific
68 /// idioms that are used for distinct target processor and ABI combinations.
69 class TargetRewrite : public fir::TargetRewriteBase<TargetRewrite> {
70 public:
TargetRewrite(const fir::TargetRewriteOptions & options)71 TargetRewrite(const fir::TargetRewriteOptions &options) {
72 noCharacterConversion = options.noCharacterConversion;
73 noComplexConversion = options.noComplexConversion;
74 }
75
runOnOperation()76 void runOnOperation() override final {
77 auto &context = getContext();
78 mlir::OpBuilder rewriter(&context);
79
80 auto mod = getModule();
81 if (!forcedTargetTriple.empty())
82 fir::setTargetTriple(mod, forcedTargetTriple);
83
84 auto specifics = fir::CodeGenSpecifics::get(
85 mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod));
86 setMembers(specifics.get(), &rewriter);
87
88 // Perform type conversion on signatures and call sites.
89 if (mlir::failed(convertTypes(mod))) {
90 mlir::emitError(mlir::UnknownLoc::get(&context),
91 "error in converting types to target abi");
92 signalPassFailure();
93 }
94
95 // Convert ops in target-specific patterns.
96 mod.walk([&](mlir::Operation *op) {
97 if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
98 if (!hasPortableSignature(call.getFunctionType()))
99 convertCallOp(call);
100 } else if (auto dispatch = mlir::dyn_cast<fir::DispatchOp>(op)) {
101 if (!hasPortableSignature(dispatch.getFunctionType()))
102 convertCallOp(dispatch);
103 } else if (auto addr = mlir::dyn_cast<fir::AddrOfOp>(op)) {
104 if (addr.getType().isa<mlir::FunctionType>() &&
105 !hasPortableSignature(addr.getType()))
106 convertAddrOp(addr);
107 }
108 });
109
110 clearMembers();
111 }
112
getModule()113 mlir::ModuleOp getModule() { return getOperation(); }
114
115 template <typename A, typename B, typename C>
116 std::function<mlir::Value(mlir::Operation *)>
rewriteCallComplexResultType(mlir::Location loc,A ty,B & newResTys,B & newInTys,C & newOpers)117 rewriteCallComplexResultType(mlir::Location loc, A ty, B &newResTys,
118 B &newInTys, C &newOpers) {
119 auto m = specifics->complexReturnType(loc, ty.getElementType());
120 // Currently targets mandate COMPLEX is a single aggregate or packed
121 // scalar, including the sret case.
122 assert(m.size() == 1 && "target of complex return not supported");
123 auto resTy = std::get<mlir::Type>(m[0]);
124 auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
125 if (attr.isSRet()) {
126 assert(fir::isa_ref_type(resTy) && "must be a memory reference type");
127 mlir::Value stack =
128 rewriter->create<fir::AllocaOp>(loc, fir::dyn_cast_ptrEleTy(resTy));
129 newInTys.push_back(resTy);
130 newOpers.push_back(stack);
131 return [=](mlir::Operation *) -> mlir::Value {
132 auto memTy = fir::ReferenceType::get(ty);
133 auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, stack);
134 return rewriter->create<fir::LoadOp>(loc, cast);
135 };
136 }
137 newResTys.push_back(resTy);
138 return [=](mlir::Operation *call) -> mlir::Value {
139 auto mem = rewriter->create<fir::AllocaOp>(loc, resTy);
140 rewriter->create<fir::StoreOp>(loc, call->getResult(0), mem);
141 auto memTy = fir::ReferenceType::get(ty);
142 auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, mem);
143 return rewriter->create<fir::LoadOp>(loc, cast);
144 };
145 }
146
147 template <typename A, typename B, typename C>
rewriteCallComplexInputType(A ty,mlir::Value oper,B & newInTys,C & newOpers)148 void rewriteCallComplexInputType(A ty, mlir::Value oper, B &newInTys,
149 C &newOpers) {
150 auto *ctx = ty.getContext();
151 mlir::Location loc = mlir::UnknownLoc::get(ctx);
152 if (auto *op = oper.getDefiningOp())
153 loc = op->getLoc();
154 auto m = specifics->complexArgumentType(loc, ty.getElementType());
155 if (m.size() == 1) {
156 // COMPLEX is a single aggregate
157 auto resTy = std::get<mlir::Type>(m[0]);
158 auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
159 auto oldRefTy = fir::ReferenceType::get(ty);
160 if (attr.isByVal()) {
161 auto mem = rewriter->create<fir::AllocaOp>(loc, ty);
162 rewriter->create<fir::StoreOp>(loc, oper, mem);
163 newOpers.push_back(rewriter->create<fir::ConvertOp>(loc, resTy, mem));
164 } else {
165 auto mem = rewriter->create<fir::AllocaOp>(loc, resTy);
166 auto cast = rewriter->create<fir::ConvertOp>(loc, oldRefTy, mem);
167 rewriter->create<fir::StoreOp>(loc, oper, cast);
168 newOpers.push_back(rewriter->create<fir::LoadOp>(loc, mem));
169 }
170 newInTys.push_back(resTy);
171 } else {
172 assert(m.size() == 2);
173 // COMPLEX is split into 2 separate arguments
174 auto iTy = rewriter->getIntegerType(32);
175 for (auto e : llvm::enumerate(m)) {
176 auto &tup = e.value();
177 auto ty = std::get<mlir::Type>(tup);
178 auto index = e.index();
179 auto idx = rewriter->getIntegerAttr(iTy, index);
180 auto val = rewriter->create<fir::ExtractValueOp>(
181 loc, ty, oper, rewriter->getArrayAttr(idx));
182 newInTys.push_back(ty);
183 newOpers.push_back(val);
184 }
185 }
186 }
187
188 // Convert fir.call and fir.dispatch Ops.
189 template <typename A>
convertCallOp(A callOp)190 void convertCallOp(A callOp) {
191 auto fnTy = callOp.getFunctionType();
192 auto loc = callOp.getLoc();
193 rewriter->setInsertionPoint(callOp);
194 llvm::SmallVector<mlir::Type> newResTys;
195 llvm::SmallVector<mlir::Type> newInTys;
196 llvm::SmallVector<mlir::Value> newOpers;
197
198 // If the call is indirect, the first argument must still be the function
199 // to call.
200 int dropFront = 0;
201 if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
202 if (!callOp.getCallee()) {
203 newInTys.push_back(fnTy.getInput(0));
204 newOpers.push_back(callOp.getOperand(0));
205 dropFront = 1;
206 }
207 }
208
209 // Determine the rewrite function, `wrap`, for the result value.
210 llvm::Optional<std::function<mlir::Value(mlir::Operation *)>> wrap;
211 if (fnTy.getResults().size() == 1) {
212 mlir::Type ty = fnTy.getResult(0);
213 llvm::TypeSwitch<mlir::Type>(ty)
214 .template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
215 wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, newInTys,
216 newOpers);
217 })
218 .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
219 wrap = rewriteCallComplexResultType(loc, cmplx, newResTys, newInTys,
220 newOpers);
221 })
222 .Default([&](mlir::Type ty) { newResTys.push_back(ty); });
223 } else if (fnTy.getResults().size() > 1) {
224 TODO(loc, "multiple results not supported yet");
225 }
226
227 llvm::SmallVector<mlir::Type> trailingInTys;
228 llvm::SmallVector<mlir::Value> trailingOpers;
229 for (auto e : llvm::enumerate(
230 llvm::zip(fnTy.getInputs().drop_front(dropFront),
231 callOp.getOperands().drop_front(dropFront)))) {
232 mlir::Type ty = std::get<0>(e.value());
233 mlir::Value oper = std::get<1>(e.value());
234 unsigned index = e.index();
235 llvm::TypeSwitch<mlir::Type>(ty)
236 .template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
237 bool sret;
238 if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
239 sret = callOp.getCallee() &&
240 functionArgIsSRet(
241 index, getModule().lookupSymbol<mlir::func::FuncOp>(
242 *callOp.getCallee()));
243 } else {
244 // TODO: dispatch case; how do we put arguments on a call?
245 // We cannot put both an sret and the dispatch object first.
246 sret = false;
247 TODO(loc, "dispatch + sret not supported yet");
248 }
249 auto m = specifics->boxcharArgumentType(boxTy.getEleTy(), sret);
250 auto unbox = rewriter->create<fir::UnboxCharOp>(
251 loc, std::get<mlir::Type>(m[0]), std::get<mlir::Type>(m[1]),
252 oper);
253 // unboxed CHARACTER arguments
254 for (auto e : llvm::enumerate(m)) {
255 unsigned idx = e.index();
256 auto attr =
257 std::get<fir::CodeGenSpecifics::Attributes>(e.value());
258 auto argTy = std::get<mlir::Type>(e.value());
259 if (attr.isAppend()) {
260 trailingInTys.push_back(argTy);
261 trailingOpers.push_back(unbox.getResult(idx));
262 } else {
263 newInTys.push_back(argTy);
264 newOpers.push_back(unbox.getResult(idx));
265 }
266 }
267 })
268 .template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
269 rewriteCallComplexInputType(cmplx, oper, newInTys, newOpers);
270 })
271 .template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
272 rewriteCallComplexInputType(cmplx, oper, newInTys, newOpers);
273 })
274 .template Case<mlir::TupleType>([&](mlir::TupleType tuple) {
275 if (fir::isCharacterProcedureTuple(tuple)) {
276 mlir::ModuleOp module = getModule();
277 if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
278 if (callOp.getCallee()) {
279 llvm::StringRef charProcAttr =
280 fir::getCharacterProcedureDummyAttrName();
281 // The charProcAttr attribute is only used as a safety to
282 // confirm that this is a dummy procedure and should be split.
283 // It cannot be used to match because attributes are not
284 // available in case of indirect calls.
285 auto funcOp = module.lookupSymbol<mlir::func::FuncOp>(
286 *callOp.getCallee());
287 if (funcOp &&
288 !funcOp.template getArgAttrOfType<mlir::UnitAttr>(
289 index, charProcAttr))
290 mlir::emitError(loc, "tuple argument will be split even "
291 "though it does not have the `" +
292 charProcAttr + "` attribute");
293 }
294 }
295 mlir::Type funcPointerType = tuple.getType(0);
296 mlir::Type lenType = tuple.getType(1);
297 fir::KindMapping kindMap = fir::getKindMapping(module);
298 fir::FirOpBuilder builder(*rewriter, kindMap);
299 auto [funcPointer, len] =
300 fir::factory::extractCharacterProcedureTuple(builder, loc,
301 oper);
302 newInTys.push_back(funcPointerType);
303 newOpers.push_back(funcPointer);
304 trailingInTys.push_back(lenType);
305 trailingOpers.push_back(len);
306 } else {
307 newInTys.push_back(tuple);
308 newOpers.push_back(oper);
309 }
310 })
311 .Default([&](mlir::Type ty) {
312 newInTys.push_back(ty);
313 newOpers.push_back(oper);
314 });
315 }
316 newInTys.insert(newInTys.end(), trailingInTys.begin(), trailingInTys.end());
317 newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end());
318 if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
319 fir::CallOp newCall;
320 if (callOp.getCallee()) {
321 newCall =
322 rewriter->create<A>(loc, *callOp.getCallee(), newResTys, newOpers);
323 } else {
324 // Force new type on the input operand.
325 newOpers[0].setType(mlir::FunctionType::get(
326 callOp.getContext(),
327 mlir::TypeRange{newInTys}.drop_front(dropFront), newResTys));
328 newCall = rewriter->create<A>(loc, newResTys, newOpers);
329 }
330 LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n');
331 if (wrap)
332 replaceOp(callOp, (*wrap)(newCall.getOperation()));
333 else
334 replaceOp(callOp, newCall.getResults());
335 } else {
336 // A is fir::DispatchOp
337 TODO(loc, "dispatch not implemented");
338 }
339 }
340
341 // Result type fixup for fir::ComplexType and mlir::ComplexType
342 template <typename A, typename B>
lowerComplexSignatureRes(mlir::Location loc,A cmplx,B & newResTys,B & newInTys)343 void lowerComplexSignatureRes(mlir::Location loc, A cmplx, B &newResTys,
344 B &newInTys) {
345 if (noComplexConversion) {
346 newResTys.push_back(cmplx);
347 } else {
348 for (auto &tup :
349 specifics->complexReturnType(loc, cmplx.getElementType())) {
350 auto argTy = std::get<mlir::Type>(tup);
351 if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet())
352 newInTys.push_back(argTy);
353 else
354 newResTys.push_back(argTy);
355 }
356 }
357 }
358
359 // Argument type fixup for fir::ComplexType and mlir::ComplexType
360 template <typename A, typename B>
lowerComplexSignatureArg(mlir::Location loc,A cmplx,B & newInTys)361 void lowerComplexSignatureArg(mlir::Location loc, A cmplx, B &newInTys) {
362 if (noComplexConversion)
363 newInTys.push_back(cmplx);
364 else
365 for (auto &tup :
366 specifics->complexArgumentType(loc, cmplx.getElementType()))
367 newInTys.push_back(std::get<mlir::Type>(tup));
368 }
369
370 /// Taking the address of a function. Modify the signature as needed.
convertAddrOp(fir::AddrOfOp addrOp)371 void convertAddrOp(fir::AddrOfOp addrOp) {
372 rewriter->setInsertionPoint(addrOp);
373 auto addrTy = addrOp.getType().cast<mlir::FunctionType>();
374 llvm::SmallVector<mlir::Type> newResTys;
375 llvm::SmallVector<mlir::Type> newInTys;
376 auto loc = addrOp.getLoc();
377 for (mlir::Type ty : addrTy.getResults()) {
378 llvm::TypeSwitch<mlir::Type>(ty)
379 .Case<fir::ComplexType>([&](fir::ComplexType ty) {
380 lowerComplexSignatureRes(loc, ty, newResTys, newInTys);
381 })
382 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
383 lowerComplexSignatureRes(loc, ty, newResTys, newInTys);
384 })
385 .Default([&](mlir::Type ty) { newResTys.push_back(ty); });
386 }
387 llvm::SmallVector<mlir::Type> trailingInTys;
388 for (mlir::Type ty : addrTy.getInputs()) {
389 llvm::TypeSwitch<mlir::Type>(ty)
390 .Case<fir::BoxCharType>([&](auto box) {
391 if (noCharacterConversion) {
392 newInTys.push_back(box);
393 } else {
394 for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) {
395 auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
396 auto argTy = std::get<mlir::Type>(tup);
397 llvm::SmallVector<mlir::Type> &vec =
398 attr.isAppend() ? trailingInTys : newInTys;
399 vec.push_back(argTy);
400 }
401 }
402 })
403 .Case<fir::ComplexType>([&](fir::ComplexType ty) {
404 lowerComplexSignatureArg(loc, ty, newInTys);
405 })
406 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
407 lowerComplexSignatureArg(loc, ty, newInTys);
408 })
409 .Case<mlir::TupleType>([&](mlir::TupleType tuple) {
410 if (fir::isCharacterProcedureTuple(tuple)) {
411 newInTys.push_back(tuple.getType(0));
412 trailingInTys.push_back(tuple.getType(1));
413 } else {
414 newInTys.push_back(ty);
415 }
416 })
417 .Default([&](mlir::Type ty) { newInTys.push_back(ty); });
418 }
419 // append trailing input types
420 newInTys.insert(newInTys.end(), trailingInTys.begin(), trailingInTys.end());
421 // replace this op with a new one with the updated signature
422 auto newTy = rewriter->getFunctionType(newInTys, newResTys);
423 auto newOp = rewriter->create<fir::AddrOfOp>(addrOp.getLoc(), newTy,
424 addrOp.getSymbol());
425 replaceOp(addrOp, newOp.getResult());
426 }
427
428 /// Convert the type signatures on all the functions present in the module.
429 /// As the type signature is being changed, this must also update the
430 /// function itself to use any new arguments, etc.
convertTypes(mlir::ModuleOp mod)431 mlir::LogicalResult convertTypes(mlir::ModuleOp mod) {
432 for (auto fn : mod.getOps<mlir::func::FuncOp>())
433 convertSignature(fn);
434 return mlir::success();
435 }
436
437 /// If the signature does not need any special target-specific converions,
438 /// then it is considered portable for any target, and this function will
439 /// return `true`. Otherwise, the signature is not portable and `false` is
440 /// returned.
hasPortableSignature(mlir::Type signature)441 bool hasPortableSignature(mlir::Type signature) {
442 assert(signature.isa<mlir::FunctionType>());
443 auto func = signature.dyn_cast<mlir::FunctionType>();
444 for (auto ty : func.getResults())
445 if ((ty.isa<fir::BoxCharType>() && !noCharacterConversion) ||
446 (fir::isa_complex(ty) && !noComplexConversion)) {
447 LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
448 return false;
449 }
450 for (auto ty : func.getInputs())
451 if (((ty.isa<fir::BoxCharType>() || fir::isCharacterProcedureTuple(ty)) &&
452 !noCharacterConversion) ||
453 (fir::isa_complex(ty) && !noComplexConversion)) {
454 LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
455 return false;
456 }
457 return true;
458 }
459
460 /// Determine if the signature has host associations. The host association
461 /// argument may need special target specific rewriting.
hasHostAssociations(mlir::func::FuncOp func)462 static bool hasHostAssociations(mlir::func::FuncOp func) {
463 std::size_t end = func.getFunctionType().getInputs().size();
464 for (std::size_t i = 0; i < end; ++i)
465 if (func.getArgAttrOfType<mlir::UnitAttr>(i, fir::getHostAssocAttrName()))
466 return true;
467 return false;
468 }
469
470 /// Rewrite the signatures and body of the `FuncOp`s in the module for
471 /// the immediately subsequent target code gen.
convertSignature(mlir::func::FuncOp func)472 void convertSignature(mlir::func::FuncOp func) {
473 auto funcTy = func.getFunctionType().cast<mlir::FunctionType>();
474 if (hasPortableSignature(funcTy) && !hasHostAssociations(func))
475 return;
476 llvm::SmallVector<mlir::Type> newResTys;
477 llvm::SmallVector<mlir::Type> newInTys;
478 llvm::SmallVector<FixupTy> fixups;
479
480 // Convert return value(s)
481 for (auto ty : funcTy.getResults())
482 llvm::TypeSwitch<mlir::Type>(ty)
483 .Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
484 if (noComplexConversion)
485 newResTys.push_back(cmplx);
486 else
487 doComplexReturn(func, cmplx, newResTys, newInTys, fixups);
488 })
489 .Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
490 if (noComplexConversion)
491 newResTys.push_back(cmplx);
492 else
493 doComplexReturn(func, cmplx, newResTys, newInTys, fixups);
494 })
495 .Default([&](mlir::Type ty) { newResTys.push_back(ty); });
496
497 // Convert arguments
498 llvm::SmallVector<mlir::Type> trailingTys;
499 for (auto e : llvm::enumerate(funcTy.getInputs())) {
500 auto ty = e.value();
501 unsigned index = e.index();
502 llvm::TypeSwitch<mlir::Type>(ty)
503 .Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
504 if (noCharacterConversion) {
505 newInTys.push_back(boxTy);
506 } else {
507 // Convert a CHARACTER argument type. This can involve separating
508 // the pointer and the LEN into two arguments and moving the LEN
509 // argument to the end of the arg list.
510 bool sret = functionArgIsSRet(index, func);
511 for (auto e : llvm::enumerate(specifics->boxcharArgumentType(
512 boxTy.getEleTy(), sret))) {
513 auto &tup = e.value();
514 auto index = e.index();
515 auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
516 auto argTy = std::get<mlir::Type>(tup);
517 if (attr.isAppend()) {
518 trailingTys.push_back(argTy);
519 } else {
520 if (sret) {
521 fixups.emplace_back(FixupTy::Codes::CharPair,
522 newInTys.size(), index);
523 } else {
524 fixups.emplace_back(FixupTy::Codes::Trailing,
525 newInTys.size(), trailingTys.size());
526 }
527 newInTys.push_back(argTy);
528 }
529 }
530 }
531 })
532 .Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
533 if (noComplexConversion)
534 newInTys.push_back(cmplx);
535 else
536 doComplexArg(func, cmplx, newInTys, fixups);
537 })
538 .Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
539 if (noComplexConversion)
540 newInTys.push_back(cmplx);
541 else
542 doComplexArg(func, cmplx, newInTys, fixups);
543 })
544 .Case<mlir::TupleType>([&](mlir::TupleType tuple) {
545 if (fir::isCharacterProcedureTuple(tuple)) {
546 fixups.emplace_back(FixupTy::Codes::TrailingCharProc,
547 newInTys.size(), trailingTys.size());
548 newInTys.push_back(tuple.getType(0));
549 trailingTys.push_back(tuple.getType(1));
550 } else {
551 newInTys.push_back(ty);
552 }
553 })
554 .Default([&](mlir::Type ty) { newInTys.push_back(ty); });
555 if (func.getArgAttrOfType<mlir::UnitAttr>(index,
556 fir::getHostAssocAttrName())) {
557 func.setArgAttr(index, "llvm.nest", rewriter->getUnitAttr());
558 }
559 }
560
561 if (!func.empty()) {
562 // If the function has a body, then apply the fixups to the arguments and
563 // return ops as required. These fixups are done in place.
564 auto loc = func.getLoc();
565 const auto fixupSize = fixups.size();
566 const auto oldArgTys = func.getFunctionType().getInputs();
567 int offset = 0;
568 for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) {
569 const auto &fixup = fixups[i];
570 switch (fixup.code) {
571 case FixupTy::Codes::ArgumentAsLoad: {
572 // Argument was pass-by-value, but is now pass-by-reference and
573 // possibly with a different element type.
574 auto newArg = func.front().insertArgument(fixup.index,
575 newInTys[fixup.index], loc);
576 rewriter->setInsertionPointToStart(&func.front());
577 auto oldArgTy =
578 fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
579 auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, newArg);
580 auto load = rewriter->create<fir::LoadOp>(loc, cast);
581 func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
582 func.front().eraseArgument(fixup.index + 1);
583 } break;
584 case FixupTy::Codes::ArgumentType: {
585 // Argument is pass-by-value, but its type has likely been modified to
586 // suit the target ABI convention.
587 auto newArg = func.front().insertArgument(fixup.index,
588 newInTys[fixup.index], loc);
589 rewriter->setInsertionPointToStart(&func.front());
590 auto mem =
591 rewriter->create<fir::AllocaOp>(loc, newInTys[fixup.index]);
592 rewriter->create<fir::StoreOp>(loc, newArg, mem);
593 auto oldArgTy =
594 fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
595 auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, mem);
596 mlir::Value load = rewriter->create<fir::LoadOp>(loc, cast);
597 func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
598 func.front().eraseArgument(fixup.index + 1);
599 LLVM_DEBUG(llvm::dbgs()
600 << "old argument: " << oldArgTy.getEleTy()
601 << ", repl: " << load << ", new argument: "
602 << func.getArgument(fixup.index).getType() << '\n');
603 } break;
604 case FixupTy::Codes::CharPair: {
605 // The FIR boxchar argument has been split into a pair of distinct
606 // arguments that are in juxtaposition to each other.
607 auto newArg = func.front().insertArgument(fixup.index,
608 newInTys[fixup.index], loc);
609 if (fixup.second == 1) {
610 rewriter->setInsertionPointToStart(&func.front());
611 auto boxTy = oldArgTys[fixup.index - offset - fixup.second];
612 auto box = rewriter->create<fir::EmboxCharOp>(
613 loc, boxTy, func.front().getArgument(fixup.index - 1), newArg);
614 func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
615 func.front().eraseArgument(fixup.index + 1);
616 offset++;
617 }
618 } break;
619 case FixupTy::Codes::ReturnAsStore: {
620 // The value being returned is now being returned in memory (callee
621 // stack space) through a hidden reference argument.
622 auto newArg = func.front().insertArgument(fixup.index,
623 newInTys[fixup.index], loc);
624 offset++;
625 func.walk([&](mlir::func::ReturnOp ret) {
626 rewriter->setInsertionPoint(ret);
627 auto oldOper = ret.getOperand(0);
628 auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
629 auto cast =
630 rewriter->create<fir::ConvertOp>(loc, oldOperTy, newArg);
631 rewriter->create<fir::StoreOp>(loc, oldOper, cast);
632 rewriter->create<mlir::func::ReturnOp>(loc);
633 ret.erase();
634 });
635 } break;
636 case FixupTy::Codes::ReturnType: {
637 // The function is still returning a value, but its type has likely
638 // changed to suit the target ABI convention.
639 func.walk([&](mlir::func::ReturnOp ret) {
640 rewriter->setInsertionPoint(ret);
641 auto oldOper = ret.getOperand(0);
642 auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
643 auto mem =
644 rewriter->create<fir::AllocaOp>(loc, newResTys[fixup.index]);
645 auto cast = rewriter->create<fir::ConvertOp>(loc, oldOperTy, mem);
646 rewriter->create<fir::StoreOp>(loc, oldOper, cast);
647 mlir::Value load = rewriter->create<fir::LoadOp>(loc, mem);
648 rewriter->create<mlir::func::ReturnOp>(loc, load);
649 ret.erase();
650 });
651 } break;
652 case FixupTy::Codes::Split: {
653 // The FIR argument has been split into a pair of distinct arguments
654 // that are in juxtaposition to each other. (For COMPLEX value.)
655 auto newArg = func.front().insertArgument(fixup.index,
656 newInTys[fixup.index], loc);
657 if (fixup.second == 1) {
658 rewriter->setInsertionPointToStart(&func.front());
659 auto cplxTy = oldArgTys[fixup.index - offset - fixup.second];
660 auto undef = rewriter->create<fir::UndefOp>(loc, cplxTy);
661 auto iTy = rewriter->getIntegerType(32);
662 auto zero = rewriter->getIntegerAttr(iTy, 0);
663 auto one = rewriter->getIntegerAttr(iTy, 1);
664 auto cplx1 = rewriter->create<fir::InsertValueOp>(
665 loc, cplxTy, undef, func.front().getArgument(fixup.index - 1),
666 rewriter->getArrayAttr(zero));
667 auto cplx = rewriter->create<fir::InsertValueOp>(
668 loc, cplxTy, cplx1, newArg, rewriter->getArrayAttr(one));
669 func.getArgument(fixup.index + 1).replaceAllUsesWith(cplx);
670 func.front().eraseArgument(fixup.index + 1);
671 offset++;
672 }
673 } break;
674 case FixupTy::Codes::Trailing: {
675 // The FIR argument has been split into a pair of distinct arguments.
676 // The first part of the pair appears in the original argument
677 // position. The second part of the pair is appended after all the
678 // original arguments. (Boxchar arguments.)
679 auto newBufArg = func.front().insertArgument(
680 fixup.index, newInTys[fixup.index], loc);
681 auto newLenArg =
682 func.front().addArgument(trailingTys[fixup.second], loc);
683 auto boxTy = oldArgTys[fixup.index - offset];
684 rewriter->setInsertionPointToStart(&func.front());
685 auto box = rewriter->create<fir::EmboxCharOp>(loc, boxTy, newBufArg,
686 newLenArg);
687 func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
688 func.front().eraseArgument(fixup.index + 1);
689 } break;
690 case FixupTy::Codes::TrailingCharProc: {
691 // The FIR character procedure argument tuple must be split into a
692 // pair of distinct arguments. The first part of the pair appears in
693 // the original argument position. The second part of the pair is
694 // appended after all the original arguments.
695 auto newProcPointerArg = func.front().insertArgument(
696 fixup.index, newInTys[fixup.index], loc);
697 auto newLenArg =
698 func.front().addArgument(trailingTys[fixup.second], loc);
699 auto tupleType = oldArgTys[fixup.index - offset];
700 rewriter->setInsertionPointToStart(&func.front());
701 fir::KindMapping kindMap = fir::getKindMapping(getModule());
702 fir::FirOpBuilder builder(*rewriter, kindMap);
703 auto tuple = fir::factory::createCharacterProcedureTuple(
704 builder, loc, tupleType, newProcPointerArg, newLenArg);
705 func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple);
706 func.front().eraseArgument(fixup.index + 1);
707 } break;
708 }
709 }
710 }
711
712 // Set the new type and finalize the arguments, etc.
713 newInTys.insert(newInTys.end(), trailingTys.begin(), trailingTys.end());
714 auto newFuncTy =
715 mlir::FunctionType::get(func.getContext(), newInTys, newResTys);
716 LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n');
717 func.setType(newFuncTy);
718
719 for (auto &fixup : fixups)
720 if (fixup.finalizer)
721 (*fixup.finalizer)(func);
722 }
723
functionArgIsSRet(unsigned index,mlir::func::FuncOp func)724 inline bool functionArgIsSRet(unsigned index, mlir::func::FuncOp func) {
725 if (auto attr = func.getArgAttrOfType<mlir::UnitAttr>(index, "llvm.sret"))
726 return true;
727 return false;
728 }
729
730 /// Convert a complex return value. This can involve converting the return
731 /// value to a "hidden" first argument or packing the complex into a wide
732 /// GPR.
733 template <typename A, typename B, typename C>
doComplexReturn(mlir::func::FuncOp func,A cmplx,B & newResTys,B & newInTys,C & fixups)734 void doComplexReturn(mlir::func::FuncOp func, A cmplx, B &newResTys,
735 B &newInTys, C &fixups) {
736 if (noComplexConversion) {
737 newResTys.push_back(cmplx);
738 return;
739 }
740 auto m =
741 specifics->complexReturnType(func.getLoc(), cmplx.getElementType());
742 assert(m.size() == 1);
743 auto &tup = m[0];
744 auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
745 auto argTy = std::get<mlir::Type>(tup);
746 if (attr.isSRet()) {
747 unsigned argNo = newInTys.size();
748 if (auto align = attr.getAlignment())
749 fixups.emplace_back(
750 FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) {
751 func.setArgAttr(argNo, "llvm.sret", rewriter->getUnitAttr());
752 func.setArgAttr(argNo, "llvm.align",
753 rewriter->getIntegerAttr(
754 rewriter->getIntegerType(32), align));
755 });
756 else
757 fixups.emplace_back(
758 FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) {
759 func.setArgAttr(argNo, "llvm.sret", rewriter->getUnitAttr());
760 });
761 newInTys.push_back(argTy);
762 return;
763 } else {
764 if (auto align = attr.getAlignment())
765 fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size(),
766 [=](mlir::func::FuncOp func) {
767 func.setArgAttr(
768 newResTys.size(), "llvm.align",
769 rewriter->getIntegerAttr(
770 rewriter->getIntegerType(32), align));
771 });
772 else
773 fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size());
774 }
775 newResTys.push_back(argTy);
776 }
777
778 /// Convert a complex argument value. This can involve storing the value to
779 /// a temporary memory location or factoring the value into two distinct
780 /// arguments.
781 template <typename A, typename B, typename C>
doComplexArg(mlir::func::FuncOp func,A cmplx,B & newInTys,C & fixups)782 void doComplexArg(mlir::func::FuncOp func, A cmplx, B &newInTys, C &fixups) {
783 if (noComplexConversion) {
784 newInTys.push_back(cmplx);
785 return;
786 }
787 auto m =
788 specifics->complexArgumentType(func.getLoc(), cmplx.getElementType());
789 const auto fixupCode =
790 m.size() > 1 ? FixupTy::Codes::Split : FixupTy::Codes::ArgumentType;
791 for (auto e : llvm::enumerate(m)) {
792 auto &tup = e.value();
793 auto index = e.index();
794 auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
795 auto argTy = std::get<mlir::Type>(tup);
796 auto argNo = newInTys.size();
797 if (attr.isByVal()) {
798 if (auto align = attr.getAlignment())
799 fixups.emplace_back(
800 FixupTy::Codes::ArgumentAsLoad, argNo,
801 [=](mlir::func::FuncOp func) {
802 func.setArgAttr(argNo, "llvm.byval", rewriter->getUnitAttr());
803 func.setArgAttr(argNo, "llvm.align",
804 rewriter->getIntegerAttr(
805 rewriter->getIntegerType(32), align));
806 });
807 else
808 fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, newInTys.size(),
809 [=](mlir::func::FuncOp func) {
810 func.setArgAttr(argNo, "llvm.byval",
811 rewriter->getUnitAttr());
812 });
813 } else {
814 if (auto align = attr.getAlignment())
815 fixups.emplace_back(
816 fixupCode, argNo, index, [=](mlir::func::FuncOp func) {
817 func.setArgAttr(argNo, "llvm.align",
818 rewriter->getIntegerAttr(
819 rewriter->getIntegerType(32), align));
820 });
821 else
822 fixups.emplace_back(fixupCode, argNo, index);
823 }
824 newInTys.push_back(argTy);
825 }
826 }
827
828 private:
829 // Replace `op` and remove it.
replaceOp(mlir::Operation * op,mlir::ValueRange newValues)830 void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) {
831 op->replaceAllUsesWith(newValues);
832 op->dropAllReferences();
833 op->erase();
834 }
835
setMembers(fir::CodeGenSpecifics * s,mlir::OpBuilder * r)836 inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r) {
837 specifics = s;
838 rewriter = r;
839 }
840
clearMembers()841 inline void clearMembers() { setMembers(nullptr, nullptr); }
842
843 fir::CodeGenSpecifics *specifics = nullptr;
844 mlir::OpBuilder *rewriter = nullptr;
845 }; // namespace
846 } // namespace
847
848 std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
createFirTargetRewritePass(const fir::TargetRewriteOptions & options)849 fir::createFirTargetRewritePass(const fir::TargetRewriteOptions &options) {
850 return std::make_unique<TargetRewrite>(options);
851 }
852