1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include "llvm/Target/TargetOptions.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65
66 using namespace llvm;
67
68 static cl::opt<bool> JumpIsExpensiveOverride(
69 "jump-is-expensive", cl::init(false),
70 cl::desc("Do not create extra branches to split comparison logic."),
71 cl::Hidden);
72
73 static cl::opt<unsigned> MinimumJumpTableEntries
74 ("min-jump-table-entries", cl::init(4), cl::Hidden,
75 cl::desc("Set minimum number of entries to use a jump table."));
76
77 static cl::opt<unsigned> MaximumJumpTableSize
78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79 cl::desc("Set maximum size of jump tables."));
80
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84 cl::desc("Minimum density for building a jump table in "
85 "a normal function"));
86
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89 "optsize-jump-table-density", cl::init(40), cl::Hidden,
90 cl::desc("Minimum density for building a jump table in "
91 "an optsize function"));
92
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98 cl::desc("Don't mutate strict-float node to a legalize node"),
99 cl::init(false), cl::Hidden);
100
darwinHasSinCos(const Triple & TT)101 static bool darwinHasSinCos(const Triple &TT) {
102 assert(TT.isOSDarwin() && "should be called with darwin triple");
103 // Don't bother with 32 bit x86.
104 if (TT.getArch() == Triple::x86)
105 return false;
106 // Macos < 10.9 has no sincos_stret.
107 if (TT.isMacOSX())
108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109 // iOS < 7.0 has no sincos_stret.
110 if (TT.isiOS())
111 return !TT.isOSVersionLT(7, 0);
112 // Any other darwin such as WatchOS/TvOS is new enough.
113 return true;
114 }
115
InitLibcalls(const Triple & TT)116 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117 #define HANDLE_LIBCALL(code, name) \
118 setLibcallName(RTLIB::code, name);
119 #include "llvm/IR/RuntimeLibcalls.def"
120 #undef HANDLE_LIBCALL
121 // Initialize calling conventions to their default.
122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124
125 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126 if (TT.isPPC()) {
127 setLibcallName(RTLIB::ADD_F128, "__addkf3");
128 setLibcallName(RTLIB::SUB_F128, "__subkf3");
129 setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130 setLibcallName(RTLIB::DIV_F128, "__divkf3");
131 setLibcallName(RTLIB::POWI_F128, "__powikf2");
132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148 setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149 setLibcallName(RTLIB::UNE_F128, "__nekf2");
150 setLibcallName(RTLIB::OGE_F128, "__gekf2");
151 setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152 setLibcallName(RTLIB::OLE_F128, "__lekf2");
153 setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154 setLibcallName(RTLIB::UO_F128, "__unordkf2");
155 }
156
157 // A few names are different on particular architectures or environments.
158 if (TT.isOSDarwin()) {
159 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160 // of the gnueabi-style __gnu_*_ieee.
161 // FIXME: What about other targets?
162 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
164
165 // Some darwins have an optimized __bzero/bzero function.
166 switch (TT.getArch()) {
167 case Triple::x86:
168 case Triple::x86_64:
169 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170 setLibcallName(RTLIB::BZERO, "__bzero");
171 break;
172 case Triple::aarch64:
173 case Triple::aarch64_32:
174 setLibcallName(RTLIB::BZERO, "bzero");
175 break;
176 default:
177 break;
178 }
179
180 if (darwinHasSinCos(TT)) {
181 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183 if (TT.isWatchABI()) {
184 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185 CallingConv::ARM_AAPCS_VFP);
186 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187 CallingConv::ARM_AAPCS_VFP);
188 }
189 }
190 } else {
191 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
193 }
194
195 if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198 setLibcallName(RTLIB::SINCOS_F64, "sincos");
199 setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200 setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
202 }
203
204 if (TT.isPS()) {
205 setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206 setLibcallName(RTLIB::SINCOS_F64, "sincos");
207 }
208
209 if (TT.isOSOpenBSD()) {
210 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211 }
212 }
213
214 /// GetFPLibCall - Helper to return the right libcall for the given floating
215 /// point type, or UNKNOWN_LIBCALL if there is none.
getFPLibCall(EVT VT,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128)216 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
217 RTLIB::Libcall Call_F32,
218 RTLIB::Libcall Call_F64,
219 RTLIB::Libcall Call_F80,
220 RTLIB::Libcall Call_F128,
221 RTLIB::Libcall Call_PPCF128) {
222 return
223 VT == MVT::f32 ? Call_F32 :
224 VT == MVT::f64 ? Call_F64 :
225 VT == MVT::f80 ? Call_F80 :
226 VT == MVT::f128 ? Call_F128 :
227 VT == MVT::ppcf128 ? Call_PPCF128 :
228 RTLIB::UNKNOWN_LIBCALL;
229 }
230
231 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
232 /// UNKNOWN_LIBCALL if there is none.
getFPEXT(EVT OpVT,EVT RetVT)233 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
234 if (OpVT == MVT::f16) {
235 if (RetVT == MVT::f32)
236 return FPEXT_F16_F32;
237 if (RetVT == MVT::f64)
238 return FPEXT_F16_F64;
239 if (RetVT == MVT::f80)
240 return FPEXT_F16_F80;
241 if (RetVT == MVT::f128)
242 return FPEXT_F16_F128;
243 } else if (OpVT == MVT::f32) {
244 if (RetVT == MVT::f64)
245 return FPEXT_F32_F64;
246 if (RetVT == MVT::f128)
247 return FPEXT_F32_F128;
248 if (RetVT == MVT::ppcf128)
249 return FPEXT_F32_PPCF128;
250 } else if (OpVT == MVT::f64) {
251 if (RetVT == MVT::f128)
252 return FPEXT_F64_F128;
253 else if (RetVT == MVT::ppcf128)
254 return FPEXT_F64_PPCF128;
255 } else if (OpVT == MVT::f80) {
256 if (RetVT == MVT::f128)
257 return FPEXT_F80_F128;
258 }
259
260 return UNKNOWN_LIBCALL;
261 }
262
263 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
264 /// UNKNOWN_LIBCALL if there is none.
getFPROUND(EVT OpVT,EVT RetVT)265 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
266 if (RetVT == MVT::f16) {
267 if (OpVT == MVT::f32)
268 return FPROUND_F32_F16;
269 if (OpVT == MVT::f64)
270 return FPROUND_F64_F16;
271 if (OpVT == MVT::f80)
272 return FPROUND_F80_F16;
273 if (OpVT == MVT::f128)
274 return FPROUND_F128_F16;
275 if (OpVT == MVT::ppcf128)
276 return FPROUND_PPCF128_F16;
277 } else if (RetVT == MVT::bf16) {
278 if (OpVT == MVT::f32)
279 return FPROUND_F32_BF16;
280 if (OpVT == MVT::f64)
281 return FPROUND_F64_BF16;
282 } else if (RetVT == MVT::f32) {
283 if (OpVT == MVT::f64)
284 return FPROUND_F64_F32;
285 if (OpVT == MVT::f80)
286 return FPROUND_F80_F32;
287 if (OpVT == MVT::f128)
288 return FPROUND_F128_F32;
289 if (OpVT == MVT::ppcf128)
290 return FPROUND_PPCF128_F32;
291 } else if (RetVT == MVT::f64) {
292 if (OpVT == MVT::f80)
293 return FPROUND_F80_F64;
294 if (OpVT == MVT::f128)
295 return FPROUND_F128_F64;
296 if (OpVT == MVT::ppcf128)
297 return FPROUND_PPCF128_F64;
298 } else if (RetVT == MVT::f80) {
299 if (OpVT == MVT::f128)
300 return FPROUND_F128_F80;
301 }
302
303 return UNKNOWN_LIBCALL;
304 }
305
306 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
307 /// UNKNOWN_LIBCALL if there is none.
getFPTOSINT(EVT OpVT,EVT RetVT)308 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
309 if (OpVT == MVT::f16) {
310 if (RetVT == MVT::i32)
311 return FPTOSINT_F16_I32;
312 if (RetVT == MVT::i64)
313 return FPTOSINT_F16_I64;
314 if (RetVT == MVT::i128)
315 return FPTOSINT_F16_I128;
316 } else if (OpVT == MVT::f32) {
317 if (RetVT == MVT::i32)
318 return FPTOSINT_F32_I32;
319 if (RetVT == MVT::i64)
320 return FPTOSINT_F32_I64;
321 if (RetVT == MVT::i128)
322 return FPTOSINT_F32_I128;
323 } else if (OpVT == MVT::f64) {
324 if (RetVT == MVT::i32)
325 return FPTOSINT_F64_I32;
326 if (RetVT == MVT::i64)
327 return FPTOSINT_F64_I64;
328 if (RetVT == MVT::i128)
329 return FPTOSINT_F64_I128;
330 } else if (OpVT == MVT::f80) {
331 if (RetVT == MVT::i32)
332 return FPTOSINT_F80_I32;
333 if (RetVT == MVT::i64)
334 return FPTOSINT_F80_I64;
335 if (RetVT == MVT::i128)
336 return FPTOSINT_F80_I128;
337 } else if (OpVT == MVT::f128) {
338 if (RetVT == MVT::i32)
339 return FPTOSINT_F128_I32;
340 if (RetVT == MVT::i64)
341 return FPTOSINT_F128_I64;
342 if (RetVT == MVT::i128)
343 return FPTOSINT_F128_I128;
344 } else if (OpVT == MVT::ppcf128) {
345 if (RetVT == MVT::i32)
346 return FPTOSINT_PPCF128_I32;
347 if (RetVT == MVT::i64)
348 return FPTOSINT_PPCF128_I64;
349 if (RetVT == MVT::i128)
350 return FPTOSINT_PPCF128_I128;
351 }
352 return UNKNOWN_LIBCALL;
353 }
354
355 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
356 /// UNKNOWN_LIBCALL if there is none.
getFPTOUINT(EVT OpVT,EVT RetVT)357 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
358 if (OpVT == MVT::f16) {
359 if (RetVT == MVT::i32)
360 return FPTOUINT_F16_I32;
361 if (RetVT == MVT::i64)
362 return FPTOUINT_F16_I64;
363 if (RetVT == MVT::i128)
364 return FPTOUINT_F16_I128;
365 } else if (OpVT == MVT::f32) {
366 if (RetVT == MVT::i32)
367 return FPTOUINT_F32_I32;
368 if (RetVT == MVT::i64)
369 return FPTOUINT_F32_I64;
370 if (RetVT == MVT::i128)
371 return FPTOUINT_F32_I128;
372 } else if (OpVT == MVT::f64) {
373 if (RetVT == MVT::i32)
374 return FPTOUINT_F64_I32;
375 if (RetVT == MVT::i64)
376 return FPTOUINT_F64_I64;
377 if (RetVT == MVT::i128)
378 return FPTOUINT_F64_I128;
379 } else if (OpVT == MVT::f80) {
380 if (RetVT == MVT::i32)
381 return FPTOUINT_F80_I32;
382 if (RetVT == MVT::i64)
383 return FPTOUINT_F80_I64;
384 if (RetVT == MVT::i128)
385 return FPTOUINT_F80_I128;
386 } else if (OpVT == MVT::f128) {
387 if (RetVT == MVT::i32)
388 return FPTOUINT_F128_I32;
389 if (RetVT == MVT::i64)
390 return FPTOUINT_F128_I64;
391 if (RetVT == MVT::i128)
392 return FPTOUINT_F128_I128;
393 } else if (OpVT == MVT::ppcf128) {
394 if (RetVT == MVT::i32)
395 return FPTOUINT_PPCF128_I32;
396 if (RetVT == MVT::i64)
397 return FPTOUINT_PPCF128_I64;
398 if (RetVT == MVT::i128)
399 return FPTOUINT_PPCF128_I128;
400 }
401 return UNKNOWN_LIBCALL;
402 }
403
404 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
405 /// UNKNOWN_LIBCALL if there is none.
getSINTTOFP(EVT OpVT,EVT RetVT)406 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
407 if (OpVT == MVT::i32) {
408 if (RetVT == MVT::f16)
409 return SINTTOFP_I32_F16;
410 if (RetVT == MVT::f32)
411 return SINTTOFP_I32_F32;
412 if (RetVT == MVT::f64)
413 return SINTTOFP_I32_F64;
414 if (RetVT == MVT::f80)
415 return SINTTOFP_I32_F80;
416 if (RetVT == MVT::f128)
417 return SINTTOFP_I32_F128;
418 if (RetVT == MVT::ppcf128)
419 return SINTTOFP_I32_PPCF128;
420 } else if (OpVT == MVT::i64) {
421 if (RetVT == MVT::f16)
422 return SINTTOFP_I64_F16;
423 if (RetVT == MVT::f32)
424 return SINTTOFP_I64_F32;
425 if (RetVT == MVT::f64)
426 return SINTTOFP_I64_F64;
427 if (RetVT == MVT::f80)
428 return SINTTOFP_I64_F80;
429 if (RetVT == MVT::f128)
430 return SINTTOFP_I64_F128;
431 if (RetVT == MVT::ppcf128)
432 return SINTTOFP_I64_PPCF128;
433 } else if (OpVT == MVT::i128) {
434 if (RetVT == MVT::f16)
435 return SINTTOFP_I128_F16;
436 if (RetVT == MVT::f32)
437 return SINTTOFP_I128_F32;
438 if (RetVT == MVT::f64)
439 return SINTTOFP_I128_F64;
440 if (RetVT == MVT::f80)
441 return SINTTOFP_I128_F80;
442 if (RetVT == MVT::f128)
443 return SINTTOFP_I128_F128;
444 if (RetVT == MVT::ppcf128)
445 return SINTTOFP_I128_PPCF128;
446 }
447 return UNKNOWN_LIBCALL;
448 }
449
450 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
451 /// UNKNOWN_LIBCALL if there is none.
getUINTTOFP(EVT OpVT,EVT RetVT)452 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
453 if (OpVT == MVT::i32) {
454 if (RetVT == MVT::f16)
455 return UINTTOFP_I32_F16;
456 if (RetVT == MVT::f32)
457 return UINTTOFP_I32_F32;
458 if (RetVT == MVT::f64)
459 return UINTTOFP_I32_F64;
460 if (RetVT == MVT::f80)
461 return UINTTOFP_I32_F80;
462 if (RetVT == MVT::f128)
463 return UINTTOFP_I32_F128;
464 if (RetVT == MVT::ppcf128)
465 return UINTTOFP_I32_PPCF128;
466 } else if (OpVT == MVT::i64) {
467 if (RetVT == MVT::f16)
468 return UINTTOFP_I64_F16;
469 if (RetVT == MVT::f32)
470 return UINTTOFP_I64_F32;
471 if (RetVT == MVT::f64)
472 return UINTTOFP_I64_F64;
473 if (RetVT == MVT::f80)
474 return UINTTOFP_I64_F80;
475 if (RetVT == MVT::f128)
476 return UINTTOFP_I64_F128;
477 if (RetVT == MVT::ppcf128)
478 return UINTTOFP_I64_PPCF128;
479 } else if (OpVT == MVT::i128) {
480 if (RetVT == MVT::f16)
481 return UINTTOFP_I128_F16;
482 if (RetVT == MVT::f32)
483 return UINTTOFP_I128_F32;
484 if (RetVT == MVT::f64)
485 return UINTTOFP_I128_F64;
486 if (RetVT == MVT::f80)
487 return UINTTOFP_I128_F80;
488 if (RetVT == MVT::f128)
489 return UINTTOFP_I128_F128;
490 if (RetVT == MVT::ppcf128)
491 return UINTTOFP_I128_PPCF128;
492 }
493 return UNKNOWN_LIBCALL;
494 }
495
getPOWI(EVT RetVT)496 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
497 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
498 POWI_PPCF128);
499 }
500
getOUTLINE_ATOMIC(unsigned Opc,AtomicOrdering Order,MVT VT)501 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
502 MVT VT) {
503 unsigned ModeN, ModelN;
504 switch (VT.SimpleTy) {
505 case MVT::i8:
506 ModeN = 0;
507 break;
508 case MVT::i16:
509 ModeN = 1;
510 break;
511 case MVT::i32:
512 ModeN = 2;
513 break;
514 case MVT::i64:
515 ModeN = 3;
516 break;
517 case MVT::i128:
518 ModeN = 4;
519 break;
520 default:
521 return UNKNOWN_LIBCALL;
522 }
523
524 switch (Order) {
525 case AtomicOrdering::Monotonic:
526 ModelN = 0;
527 break;
528 case AtomicOrdering::Acquire:
529 ModelN = 1;
530 break;
531 case AtomicOrdering::Release:
532 ModelN = 2;
533 break;
534 case AtomicOrdering::AcquireRelease:
535 case AtomicOrdering::SequentiallyConsistent:
536 ModelN = 3;
537 break;
538 default:
539 return UNKNOWN_LIBCALL;
540 }
541
542 #define LCALLS(A, B) \
543 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
544 #define LCALL5(A) \
545 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
546 switch (Opc) {
547 case ISD::ATOMIC_CMP_SWAP: {
548 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
549 return LC[ModeN][ModelN];
550 }
551 case ISD::ATOMIC_SWAP: {
552 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
553 return LC[ModeN][ModelN];
554 }
555 case ISD::ATOMIC_LOAD_ADD: {
556 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
557 return LC[ModeN][ModelN];
558 }
559 case ISD::ATOMIC_LOAD_OR: {
560 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
561 return LC[ModeN][ModelN];
562 }
563 case ISD::ATOMIC_LOAD_CLR: {
564 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
565 return LC[ModeN][ModelN];
566 }
567 case ISD::ATOMIC_LOAD_XOR: {
568 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
569 return LC[ModeN][ModelN];
570 }
571 default:
572 return UNKNOWN_LIBCALL;
573 }
574 #undef LCALLS
575 #undef LCALL5
576 }
577
getSYNC(unsigned Opc,MVT VT)578 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
579 #define OP_TO_LIBCALL(Name, Enum) \
580 case Name: \
581 switch (VT.SimpleTy) { \
582 default: \
583 return UNKNOWN_LIBCALL; \
584 case MVT::i8: \
585 return Enum##_1; \
586 case MVT::i16: \
587 return Enum##_2; \
588 case MVT::i32: \
589 return Enum##_4; \
590 case MVT::i64: \
591 return Enum##_8; \
592 case MVT::i128: \
593 return Enum##_16; \
594 }
595
596 switch (Opc) {
597 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
598 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
599 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
600 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
601 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
602 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
603 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
604 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
605 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
606 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
607 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
608 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
609 }
610
611 #undef OP_TO_LIBCALL
612
613 return UNKNOWN_LIBCALL;
614 }
615
getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)616 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
617 switch (ElementSize) {
618 case 1:
619 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
620 case 2:
621 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
622 case 4:
623 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
624 case 8:
625 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
626 case 16:
627 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
628 default:
629 return UNKNOWN_LIBCALL;
630 }
631 }
632
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)633 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
634 switch (ElementSize) {
635 case 1:
636 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
637 case 2:
638 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
639 case 4:
640 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
641 case 8:
642 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
643 case 16:
644 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
645 default:
646 return UNKNOWN_LIBCALL;
647 }
648 }
649
getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)650 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
651 switch (ElementSize) {
652 case 1:
653 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
654 case 2:
655 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
656 case 4:
657 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
658 case 8:
659 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
660 case 16:
661 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
662 default:
663 return UNKNOWN_LIBCALL;
664 }
665 }
666
667 /// InitCmpLibcallCCs - Set default comparison libcall CC.
InitCmpLibcallCCs(ISD::CondCode * CCs)668 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
669 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
670 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
671 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
672 CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
673 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
674 CCs[RTLIB::UNE_F32] = ISD::SETNE;
675 CCs[RTLIB::UNE_F64] = ISD::SETNE;
676 CCs[RTLIB::UNE_F128] = ISD::SETNE;
677 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
678 CCs[RTLIB::OGE_F32] = ISD::SETGE;
679 CCs[RTLIB::OGE_F64] = ISD::SETGE;
680 CCs[RTLIB::OGE_F128] = ISD::SETGE;
681 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
682 CCs[RTLIB::OLT_F32] = ISD::SETLT;
683 CCs[RTLIB::OLT_F64] = ISD::SETLT;
684 CCs[RTLIB::OLT_F128] = ISD::SETLT;
685 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
686 CCs[RTLIB::OLE_F32] = ISD::SETLE;
687 CCs[RTLIB::OLE_F64] = ISD::SETLE;
688 CCs[RTLIB::OLE_F128] = ISD::SETLE;
689 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
690 CCs[RTLIB::OGT_F32] = ISD::SETGT;
691 CCs[RTLIB::OGT_F64] = ISD::SETGT;
692 CCs[RTLIB::OGT_F128] = ISD::SETGT;
693 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
694 CCs[RTLIB::UO_F32] = ISD::SETNE;
695 CCs[RTLIB::UO_F64] = ISD::SETNE;
696 CCs[RTLIB::UO_F128] = ISD::SETNE;
697 CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
698 }
699
700 /// NOTE: The TargetMachine owns TLOF.
TargetLoweringBase(const TargetMachine & tm)701 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
702 initActions();
703
704 // Perform these initializations only once.
705 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
706 MaxLoadsPerMemcmp = 8;
707 MaxGluedStoresPerMemcpy = 0;
708 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
709 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
710 HasMultipleConditionRegisters = false;
711 HasExtractBitsInsn = false;
712 JumpIsExpensive = JumpIsExpensiveOverride;
713 PredictableSelectIsExpensive = false;
714 EnableExtLdPromotion = false;
715 StackPointerRegisterToSaveRestore = 0;
716 BooleanContents = UndefinedBooleanContent;
717 BooleanFloatContents = UndefinedBooleanContent;
718 BooleanVectorContents = UndefinedBooleanContent;
719 SchedPreferenceInfo = Sched::ILP;
720 GatherAllAliasesMaxDepth = 18;
721 IsStrictFPEnabled = DisableStrictNodeMutation;
722 MaxBytesForAlignment = 0;
723 // TODO: the default will be switched to 0 in the next commit, along
724 // with the Target-specific changes necessary.
725 MaxAtomicSizeInBitsSupported = 1024;
726
727 MinCmpXchgSizeInBits = 0;
728 SupportsUnalignedAtomics = false;
729
730 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
731
732 InitLibcalls(TM.getTargetTriple());
733 InitCmpLibcallCCs(CmpLibcallCCs);
734 }
735
initActions()736 void TargetLoweringBase::initActions() {
737 // All operations default to being supported.
738 memset(OpActions, 0, sizeof(OpActions));
739 memset(LoadExtActions, 0, sizeof(LoadExtActions));
740 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
741 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
742 memset(CondCodeActions, 0, sizeof(CondCodeActions));
743 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
744 std::fill(std::begin(TargetDAGCombineArray),
745 std::end(TargetDAGCombineArray), 0);
746
747 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
748 // remove this and targets should individually set these types if not legal.
749 for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
750 force_iteration_on_noniterable_enum)) {
751 for (MVT VT : {MVT::i2, MVT::i4})
752 OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
753 }
754 for (MVT AVT : MVT::all_valuetypes()) {
755 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
756 setTruncStoreAction(AVT, VT, Expand);
757 setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
758 setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
759 }
760 }
761 for (unsigned IM = (unsigned)ISD::PRE_INC;
762 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
763 for (MVT VT : {MVT::i2, MVT::i4}) {
764 setIndexedLoadAction(IM, VT, Expand);
765 setIndexedStoreAction(IM, VT, Expand);
766 setIndexedMaskedLoadAction(IM, VT, Expand);
767 setIndexedMaskedStoreAction(IM, VT, Expand);
768 }
769 }
770
771 for (MVT VT : MVT::fp_valuetypes()) {
772 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
773 if (IntVT.isValid()) {
774 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
775 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
776 }
777 }
778
779 // Set default actions for various operations.
780 for (MVT VT : MVT::all_valuetypes()) {
781 // Default all indexed load / store to expand.
782 for (unsigned IM = (unsigned)ISD::PRE_INC;
783 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
784 setIndexedLoadAction(IM, VT, Expand);
785 setIndexedStoreAction(IM, VT, Expand);
786 setIndexedMaskedLoadAction(IM, VT, Expand);
787 setIndexedMaskedStoreAction(IM, VT, Expand);
788 }
789
790 // Most backends expect to see the node which just returns the value loaded.
791 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
792
793 // These operations default to expand.
794 setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS,
795 ISD::FMINNUM, ISD::FMAXNUM,
796 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE,
797 ISD::FMINIMUM, ISD::FMAXIMUM,
798 ISD::FMAD, ISD::SMIN,
799 ISD::SMAX, ISD::UMIN,
800 ISD::UMAX, ISD::ABS,
801 ISD::FSHL, ISD::FSHR,
802 ISD::SADDSAT, ISD::UADDSAT,
803 ISD::SSUBSAT, ISD::USUBSAT,
804 ISD::SSHLSAT, ISD::USHLSAT,
805 ISD::SMULFIX, ISD::SMULFIXSAT,
806 ISD::UMULFIX, ISD::UMULFIXSAT,
807 ISD::SDIVFIX, ISD::SDIVFIXSAT,
808 ISD::UDIVFIX, ISD::UDIVFIXSAT,
809 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
810 ISD::IS_FPCLASS},
811 VT, Expand);
812
813 // Overflow operations default to expand
814 setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
815 ISD::SMULO, ISD::UMULO},
816 VT, Expand);
817
818 // ADDCARRY operations default to expand
819 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY,
820 ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
821 VT, Expand);
822
823 // ADDC/ADDE/SUBC/SUBE default to expand.
824 setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
825 Expand);
826
827 // Halving adds
828 setOperationAction(
829 {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
830 Expand);
831
832 // Absolute difference
833 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
834
835 // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
836 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
837 Expand);
838
839 setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
840
841 // These library functions default to expand.
842 setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand);
843
844 // These operations default to expand for vector types.
845 if (VT.isVector())
846 setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG,
847 ISD::ANY_EXTEND_VECTOR_INREG,
848 ISD::SIGN_EXTEND_VECTOR_INREG,
849 ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR},
850 VT, Expand);
851
852 // Constrained floating-point operations default to expand.
853 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
854 setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
855 #include "llvm/IR/ConstrainedOps.def"
856
857 // For most targets @llvm.get.dynamic.area.offset just returns 0.
858 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
859
860 // Vector reduction default to expand.
861 setOperationAction(
862 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
863 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
864 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
865 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
866 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
867 VT, Expand);
868
869 // Named vector shuffles default to expand.
870 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
871 }
872
873 // Most targets ignore the @llvm.prefetch intrinsic.
874 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
875
876 // Most targets also ignore the @llvm.readcyclecounter intrinsic.
877 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
878
879 // ConstantFP nodes default to expand. Targets can either change this to
880 // Legal, in which case all fp constants are legal, or use isFPImmLegal()
881 // to optimize expansions for certain constants.
882 setOperationAction(ISD::ConstantFP,
883 {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
884 Expand);
885
886 // These library functions default to expand.
887 setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
888 ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL,
889 ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND,
890 ISD::LRINT, ISD::LLRINT},
891 {MVT::f32, MVT::f64, MVT::f128}, Expand);
892
893 // Default ISD::TRAP to expand (which turns it into abort).
894 setOperationAction(ISD::TRAP, MVT::Other, Expand);
895
896 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
897 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
898 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
899
900 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
901 }
902
getScalarShiftAmountTy(const DataLayout & DL,EVT) const903 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
904 EVT) const {
905 return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
906 }
907
getShiftAmountTy(EVT LHSTy,const DataLayout & DL,bool LegalTypes) const908 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
909 bool LegalTypes) const {
910 assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
911 if (LHSTy.isVector())
912 return LHSTy;
913 MVT ShiftVT =
914 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
915 // If any possible shift value won't fit in the prefered type, just use
916 // something safe. Assume it will be legalized when the shift is expanded.
917 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
918 ShiftVT = MVT::i32;
919 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
920 "ShiftVT is still too small!");
921 return ShiftVT;
922 }
923
canOpTrap(unsigned Op,EVT VT) const924 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
925 assert(isTypeLegal(VT));
926 switch (Op) {
927 default:
928 return false;
929 case ISD::SDIV:
930 case ISD::UDIV:
931 case ISD::SREM:
932 case ISD::UREM:
933 return true;
934 }
935 }
936
isFreeAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const937 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
938 unsigned DestAS) const {
939 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
940 }
941
setJumpIsExpensive(bool isExpensive)942 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
943 // If the command-line option was specified, ignore this request.
944 if (!JumpIsExpensiveOverride.getNumOccurrences())
945 JumpIsExpensive = isExpensive;
946 }
947
948 TargetLoweringBase::LegalizeKind
getTypeConversion(LLVMContext & Context,EVT VT) const949 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
950 // If this is a simple type, use the ComputeRegisterProp mechanism.
951 if (VT.isSimple()) {
952 MVT SVT = VT.getSimpleVT();
953 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
954 MVT NVT = TransformToType[SVT.SimpleTy];
955 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
956
957 assert((LA == TypeLegal || LA == TypeSoftenFloat ||
958 LA == TypeSoftPromoteHalf ||
959 (NVT.isVector() ||
960 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
961 "Promote may not follow Expand or Promote");
962
963 if (LA == TypeSplitVector)
964 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
965 if (LA == TypeScalarizeVector)
966 return LegalizeKind(LA, SVT.getVectorElementType());
967 return LegalizeKind(LA, NVT);
968 }
969
970 // Handle Extended Scalar Types.
971 if (!VT.isVector()) {
972 assert(VT.isInteger() && "Float types must be simple");
973 unsigned BitSize = VT.getSizeInBits();
974 // First promote to a power-of-two size, then expand if necessary.
975 if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
976 EVT NVT = VT.getRoundIntegerType(Context);
977 assert(NVT != VT && "Unable to round integer VT");
978 LegalizeKind NextStep = getTypeConversion(Context, NVT);
979 // Avoid multi-step promotion.
980 if (NextStep.first == TypePromoteInteger)
981 return NextStep;
982 // Return rounded integer type.
983 return LegalizeKind(TypePromoteInteger, NVT);
984 }
985
986 return LegalizeKind(TypeExpandInteger,
987 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
988 }
989
990 // Handle vector types.
991 ElementCount NumElts = VT.getVectorElementCount();
992 EVT EltVT = VT.getVectorElementType();
993
994 // Vectors with only one element are always scalarized.
995 if (NumElts.isScalar())
996 return LegalizeKind(TypeScalarizeVector, EltVT);
997
998 // Try to widen vector elements until the element type is a power of two and
999 // promote it to a legal type later on, for example:
1000 // <3 x i8> -> <4 x i8> -> <4 x i32>
1001 if (EltVT.isInteger()) {
1002 // Vectors with a number of elements that is not a power of two are always
1003 // widened, for example <3 x i8> -> <4 x i8>.
1004 if (!VT.isPow2VectorType()) {
1005 NumElts = NumElts.coefficientNextPowerOf2();
1006 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1007 return LegalizeKind(TypeWidenVector, NVT);
1008 }
1009
1010 // Examine the element type.
1011 LegalizeKind LK = getTypeConversion(Context, EltVT);
1012
1013 // If type is to be expanded, split the vector.
1014 // <4 x i140> -> <2 x i140>
1015 if (LK.first == TypeExpandInteger) {
1016 if (VT.getVectorElementCount().isScalable())
1017 return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1018 return LegalizeKind(TypeSplitVector,
1019 VT.getHalfNumVectorElementsVT(Context));
1020 }
1021
1022 // Promote the integer element types until a legal vector type is found
1023 // or until the element integer type is too big. If a legal type was not
1024 // found, fallback to the usual mechanism of widening/splitting the
1025 // vector.
1026 EVT OldEltVT = EltVT;
1027 while (true) {
1028 // Increase the bitwidth of the element to the next pow-of-two
1029 // (which is greater than 8 bits).
1030 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1031 .getRoundIntegerType(Context);
1032
1033 // Stop trying when getting a non-simple element type.
1034 // Note that vector elements may be greater than legal vector element
1035 // types. Example: X86 XMM registers hold 64bit element on 32bit
1036 // systems.
1037 if (!EltVT.isSimple())
1038 break;
1039
1040 // Build a new vector type and check if it is legal.
1041 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1042 // Found a legal promoted vector type.
1043 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1044 return LegalizeKind(TypePromoteInteger,
1045 EVT::getVectorVT(Context, EltVT, NumElts));
1046 }
1047
1048 // Reset the type to the unexpanded type if we did not find a legal vector
1049 // type with a promoted vector element type.
1050 EltVT = OldEltVT;
1051 }
1052
1053 // Try to widen the vector until a legal type is found.
1054 // If there is no wider legal type, split the vector.
1055 while (true) {
1056 // Round up to the next power of 2.
1057 NumElts = NumElts.coefficientNextPowerOf2();
1058
1059 // If there is no simple vector type with this many elements then there
1060 // cannot be a larger legal vector type. Note that this assumes that
1061 // there are no skipped intermediate vector types in the simple types.
1062 if (!EltVT.isSimple())
1063 break;
1064 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1065 if (LargerVector == MVT())
1066 break;
1067
1068 // If this type is legal then widen the vector.
1069 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1070 return LegalizeKind(TypeWidenVector, LargerVector);
1071 }
1072
1073 // Widen odd vectors to next power of two.
1074 if (!VT.isPow2VectorType()) {
1075 EVT NVT = VT.getPow2VectorType(Context);
1076 return LegalizeKind(TypeWidenVector, NVT);
1077 }
1078
1079 if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1080 return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1081
1082 // Vectors with illegal element types are expanded.
1083 EVT NVT = EVT::getVectorVT(Context, EltVT,
1084 VT.getVectorElementCount().divideCoefficientBy(2));
1085 return LegalizeKind(TypeSplitVector, NVT);
1086 }
1087
getVectorTypeBreakdownMVT(MVT VT,MVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT,TargetLoweringBase * TLI)1088 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1089 unsigned &NumIntermediates,
1090 MVT &RegisterVT,
1091 TargetLoweringBase *TLI) {
1092 // Figure out the right, legal destination reg to copy into.
1093 ElementCount EC = VT.getVectorElementCount();
1094 MVT EltTy = VT.getVectorElementType();
1095
1096 unsigned NumVectorRegs = 1;
1097
1098 // Scalable vectors cannot be scalarized, so splitting or widening is
1099 // required.
1100 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1101 llvm_unreachable(
1102 "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1103
1104 // FIXME: We don't support non-power-of-2-sized vectors for now.
1105 // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1106 if (!isPowerOf2_32(EC.getKnownMinValue())) {
1107 // Split EC to unit size (scalable property is preserved).
1108 NumVectorRegs = EC.getKnownMinValue();
1109 EC = ElementCount::getFixed(1);
1110 }
1111
1112 // Divide the input until we get to a supported size. This will
1113 // always end up with an EC that represent a scalar or a scalable
1114 // scalar.
1115 while (EC.getKnownMinValue() > 1 &&
1116 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1117 EC = EC.divideCoefficientBy(2);
1118 NumVectorRegs <<= 1;
1119 }
1120
1121 NumIntermediates = NumVectorRegs;
1122
1123 MVT NewVT = MVT::getVectorVT(EltTy, EC);
1124 if (!TLI->isTypeLegal(NewVT))
1125 NewVT = EltTy;
1126 IntermediateVT = NewVT;
1127
1128 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1129
1130 // Convert sizes such as i33 to i64.
1131 if (!isPowerOf2_32(LaneSizeInBits))
1132 LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1133
1134 MVT DestVT = TLI->getRegisterType(NewVT);
1135 RegisterVT = DestVT;
1136 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
1137 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1138
1139 // Otherwise, promotion or legal types use the same number of registers as
1140 // the vector decimated to the appropriate level.
1141 return NumVectorRegs;
1142 }
1143
1144 /// isLegalRC - Return true if the value types that can be represented by the
1145 /// specified register class are all legal.
isLegalRC(const TargetRegisterInfo & TRI,const TargetRegisterClass & RC) const1146 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1147 const TargetRegisterClass &RC) const {
1148 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1149 if (isTypeLegal(*I))
1150 return true;
1151 return false;
1152 }
1153
1154 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1155 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1156 MachineBasicBlock *
emitPatchPoint(MachineInstr & InitialMI,MachineBasicBlock * MBB) const1157 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1158 MachineBasicBlock *MBB) const {
1159 MachineInstr *MI = &InitialMI;
1160 MachineFunction &MF = *MI->getMF();
1161 MachineFrameInfo &MFI = MF.getFrameInfo();
1162
1163 // We're handling multiple types of operands here:
1164 // PATCHPOINT MetaArgs - live-in, read only, direct
1165 // STATEPOINT Deopt Spill - live-through, read only, indirect
1166 // STATEPOINT Deopt Alloca - live-through, read only, direct
1167 // (We're currently conservative and mark the deopt slots read/write in
1168 // practice.)
1169 // STATEPOINT GC Spill - live-through, read/write, indirect
1170 // STATEPOINT GC Alloca - live-through, read/write, direct
1171 // The live-in vs live-through is handled already (the live through ones are
1172 // all stack slots), but we need to handle the different type of stackmap
1173 // operands and memory effects here.
1174
1175 if (llvm::none_of(MI->operands(),
1176 [](MachineOperand &Operand) { return Operand.isFI(); }))
1177 return MBB;
1178
1179 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1180
1181 // Inherit previous memory operands.
1182 MIB.cloneMemRefs(*MI);
1183
1184 for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1185 MachineOperand &MO = MI->getOperand(i);
1186 if (!MO.isFI()) {
1187 // Index of Def operand this Use it tied to.
1188 // Since Defs are coming before Uses, if Use is tied, then
1189 // index of Def must be smaller that index of that Use.
1190 // Also, Defs preserve their position in new MI.
1191 unsigned TiedTo = i;
1192 if (MO.isReg() && MO.isTied())
1193 TiedTo = MI->findTiedOperandIdx(i);
1194 MIB.add(MO);
1195 if (TiedTo < i)
1196 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1197 continue;
1198 }
1199
1200 // foldMemoryOperand builds a new MI after replacing a single FI operand
1201 // with the canonical set of five x86 addressing-mode operands.
1202 int FI = MO.getIndex();
1203
1204 // Add frame index operands recognized by stackmaps.cpp
1205 if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1206 // indirect-mem-ref tag, size, #FI, offset.
1207 // Used for spills inserted by StatepointLowering. This codepath is not
1208 // used for patchpoints/stackmaps at all, for these spilling is done via
1209 // foldMemoryOperand callback only.
1210 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1211 MIB.addImm(StackMaps::IndirectMemRefOp);
1212 MIB.addImm(MFI.getObjectSize(FI));
1213 MIB.add(MO);
1214 MIB.addImm(0);
1215 } else {
1216 // direct-mem-ref tag, #FI, offset.
1217 // Used by patchpoint, and direct alloca arguments to statepoints
1218 MIB.addImm(StackMaps::DirectMemRefOp);
1219 MIB.add(MO);
1220 MIB.addImm(0);
1221 }
1222
1223 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1224
1225 // Add a new memory operand for this FI.
1226 assert(MFI.getObjectOffset(FI) != -1);
1227
1228 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
1229 // PATCHPOINT should be updated to do the same. (TODO)
1230 if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1231 auto Flags = MachineMemOperand::MOLoad;
1232 MachineMemOperand *MMO = MF.getMachineMemOperand(
1233 MachinePointerInfo::getFixedStack(MF, FI), Flags,
1234 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1235 MIB->addMemOperand(MF, MMO);
1236 }
1237 }
1238 MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1239 MI->eraseFromParent();
1240 return MBB;
1241 }
1242
1243 /// findRepresentativeClass - Return the largest legal super-reg register class
1244 /// of the register class for the specified type and its associated "cost".
1245 // This function is in TargetLowering because it uses RegClassForVT which would
1246 // need to be moved to TargetRegisterInfo and would necessitate moving
1247 // isTypeLegal over as well - a massive change that would just require
1248 // TargetLowering having a TargetRegisterInfo class member that it would use.
1249 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1250 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1251 MVT VT) const {
1252 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1253 if (!RC)
1254 return std::make_pair(RC, 0);
1255
1256 // Compute the set of all super-register classes.
1257 BitVector SuperRegRC(TRI->getNumRegClasses());
1258 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1259 SuperRegRC.setBitsInMask(RCI.getMask());
1260
1261 // Find the first legal register class with the largest spill size.
1262 const TargetRegisterClass *BestRC = RC;
1263 for (unsigned i : SuperRegRC.set_bits()) {
1264 const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1265 // We want the largest possible spill size.
1266 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1267 continue;
1268 if (!isLegalRC(*TRI, *SuperRC))
1269 continue;
1270 BestRC = SuperRC;
1271 }
1272 return std::make_pair(BestRC, 1);
1273 }
1274
1275 /// computeRegisterProperties - Once all of the register classes are added,
1276 /// this allows us to compute derived properties we expose.
computeRegisterProperties(const TargetRegisterInfo * TRI)1277 void TargetLoweringBase::computeRegisterProperties(
1278 const TargetRegisterInfo *TRI) {
1279 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1280 "Too many value types for ValueTypeActions to hold!");
1281
1282 // Everything defaults to needing one register.
1283 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1284 NumRegistersForVT[i] = 1;
1285 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1286 }
1287 // ...except isVoid, which doesn't need any registers.
1288 NumRegistersForVT[MVT::isVoid] = 0;
1289
1290 // Find the largest integer register class.
1291 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1292 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1293 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1294
1295 // Every integer value type larger than this largest register takes twice as
1296 // many registers to represent as the previous ValueType.
1297 for (unsigned ExpandedReg = LargestIntReg + 1;
1298 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1299 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1300 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1301 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1302 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1303 TypeExpandInteger);
1304 }
1305
1306 // Inspect all of the ValueType's smaller than the largest integer
1307 // register to see which ones need promotion.
1308 unsigned LegalIntReg = LargestIntReg;
1309 for (unsigned IntReg = LargestIntReg - 1;
1310 IntReg >= (unsigned)MVT::i1; --IntReg) {
1311 MVT IVT = (MVT::SimpleValueType)IntReg;
1312 if (isTypeLegal(IVT)) {
1313 LegalIntReg = IntReg;
1314 } else {
1315 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1316 (MVT::SimpleValueType)LegalIntReg;
1317 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1318 }
1319 }
1320
1321 // ppcf128 type is really two f64's.
1322 if (!isTypeLegal(MVT::ppcf128)) {
1323 if (isTypeLegal(MVT::f64)) {
1324 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1325 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1326 TransformToType[MVT::ppcf128] = MVT::f64;
1327 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1328 } else {
1329 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1330 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1331 TransformToType[MVT::ppcf128] = MVT::i128;
1332 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1333 }
1334 }
1335
1336 // Decide how to handle f128. If the target does not have native f128 support,
1337 // expand it to i128 and we will be generating soft float library calls.
1338 if (!isTypeLegal(MVT::f128)) {
1339 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1340 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1341 TransformToType[MVT::f128] = MVT::i128;
1342 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1343 }
1344
1345 // Decide how to handle f64. If the target does not have native f64 support,
1346 // expand it to i64 and we will be generating soft float library calls.
1347 if (!isTypeLegal(MVT::f64)) {
1348 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1349 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1350 TransformToType[MVT::f64] = MVT::i64;
1351 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1352 }
1353
1354 // Decide how to handle f32. If the target does not have native f32 support,
1355 // expand it to i32 and we will be generating soft float library calls.
1356 if (!isTypeLegal(MVT::f32)) {
1357 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1358 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1359 TransformToType[MVT::f32] = MVT::i32;
1360 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1361 }
1362
1363 // Decide how to handle f16. If the target does not have native f16 support,
1364 // promote it to f32, because there are no f16 library calls (except for
1365 // conversions).
1366 if (!isTypeLegal(MVT::f16)) {
1367 // Allow targets to control how we legalize half.
1368 if (softPromoteHalfType()) {
1369 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1370 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1371 TransformToType[MVT::f16] = MVT::f32;
1372 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1373 } else {
1374 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1375 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1376 TransformToType[MVT::f16] = MVT::f32;
1377 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1378 }
1379 }
1380
1381 // Decide how to handle bf16. If the target does not have native bf16 support,
1382 // promote it to f32, because there are no bf16 library calls (except for
1383 // converting from f32 to bf16).
1384 if (!isTypeLegal(MVT::bf16)) {
1385 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1386 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1387 TransformToType[MVT::bf16] = MVT::f32;
1388 ValueTypeActions.setTypeAction(MVT::bf16, TypePromoteFloat);
1389 }
1390
1391 // Loop over all of the vector value types to see which need transformations.
1392 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1393 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1394 MVT VT = (MVT::SimpleValueType) i;
1395 if (isTypeLegal(VT))
1396 continue;
1397
1398 MVT EltVT = VT.getVectorElementType();
1399 ElementCount EC = VT.getVectorElementCount();
1400 bool IsLegalWiderType = false;
1401 bool IsScalable = VT.isScalableVector();
1402 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1403 switch (PreferredAction) {
1404 case TypePromoteInteger: {
1405 MVT::SimpleValueType EndVT = IsScalable ?
1406 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1407 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1408 // Try to promote the elements of integer vectors. If no legal
1409 // promotion was found, fall through to the widen-vector method.
1410 for (unsigned nVT = i + 1;
1411 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1412 MVT SVT = (MVT::SimpleValueType) nVT;
1413 // Promote vectors of integers to vectors with the same number
1414 // of elements, with a wider element type.
1415 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1416 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1417 TransformToType[i] = SVT;
1418 RegisterTypeForVT[i] = SVT;
1419 NumRegistersForVT[i] = 1;
1420 ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1421 IsLegalWiderType = true;
1422 break;
1423 }
1424 }
1425 if (IsLegalWiderType)
1426 break;
1427 LLVM_FALLTHROUGH;
1428 }
1429
1430 case TypeWidenVector:
1431 if (isPowerOf2_32(EC.getKnownMinValue())) {
1432 // Try to widen the vector.
1433 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1434 MVT SVT = (MVT::SimpleValueType) nVT;
1435 if (SVT.getVectorElementType() == EltVT &&
1436 SVT.isScalableVector() == IsScalable &&
1437 SVT.getVectorElementCount().getKnownMinValue() >
1438 EC.getKnownMinValue() &&
1439 isTypeLegal(SVT)) {
1440 TransformToType[i] = SVT;
1441 RegisterTypeForVT[i] = SVT;
1442 NumRegistersForVT[i] = 1;
1443 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1444 IsLegalWiderType = true;
1445 break;
1446 }
1447 }
1448 if (IsLegalWiderType)
1449 break;
1450 } else {
1451 // Only widen to the next power of 2 to keep consistency with EVT.
1452 MVT NVT = VT.getPow2VectorType();
1453 if (isTypeLegal(NVT)) {
1454 TransformToType[i] = NVT;
1455 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1456 RegisterTypeForVT[i] = NVT;
1457 NumRegistersForVT[i] = 1;
1458 break;
1459 }
1460 }
1461 LLVM_FALLTHROUGH;
1462
1463 case TypeSplitVector:
1464 case TypeScalarizeVector: {
1465 MVT IntermediateVT;
1466 MVT RegisterVT;
1467 unsigned NumIntermediates;
1468 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1469 NumIntermediates, RegisterVT, this);
1470 NumRegistersForVT[i] = NumRegisters;
1471 assert(NumRegistersForVT[i] == NumRegisters &&
1472 "NumRegistersForVT size cannot represent NumRegisters!");
1473 RegisterTypeForVT[i] = RegisterVT;
1474
1475 MVT NVT = VT.getPow2VectorType();
1476 if (NVT == VT) {
1477 // Type is already a power of 2. The default action is to split.
1478 TransformToType[i] = MVT::Other;
1479 if (PreferredAction == TypeScalarizeVector)
1480 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1481 else if (PreferredAction == TypeSplitVector)
1482 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1483 else if (EC.getKnownMinValue() > 1)
1484 ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1485 else
1486 ValueTypeActions.setTypeAction(VT, EC.isScalable()
1487 ? TypeScalarizeScalableVector
1488 : TypeScalarizeVector);
1489 } else {
1490 TransformToType[i] = NVT;
1491 ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1492 }
1493 break;
1494 }
1495 default:
1496 llvm_unreachable("Unknown vector legalization action!");
1497 }
1498 }
1499
1500 // Determine the 'representative' register class for each value type.
1501 // An representative register class is the largest (meaning one which is
1502 // not a sub-register class / subreg register class) legal register class for
1503 // a group of value types. For example, on i386, i8, i16, and i32
1504 // representative would be GR32; while on x86_64 it's GR64.
1505 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1506 const TargetRegisterClass* RRC;
1507 uint8_t Cost;
1508 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1509 RepRegClassForVT[i] = RRC;
1510 RepRegClassCostForVT[i] = Cost;
1511 }
1512 }
1513
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1514 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1515 EVT VT) const {
1516 assert(!VT.isVector() && "No default SetCC type for vectors!");
1517 return getPointerTy(DL).SimpleTy;
1518 }
1519
getCmpLibcallReturnType() const1520 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1521 return MVT::i32; // return the default value
1522 }
1523
1524 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1525 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
1526 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1527 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1528 ///
1529 /// This method returns the number of registers needed, and the VT for each
1530 /// register. It also returns the VT and quantity of the intermediate values
1531 /// before they are promoted/expanded.
getVectorTypeBreakdown(LLVMContext & Context,EVT VT,EVT & IntermediateVT,unsigned & NumIntermediates,MVT & RegisterVT) const1532 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1533 EVT VT, EVT &IntermediateVT,
1534 unsigned &NumIntermediates,
1535 MVT &RegisterVT) const {
1536 ElementCount EltCnt = VT.getVectorElementCount();
1537
1538 // If there is a wider vector type with the same element type as this one,
1539 // or a promoted vector type that has the same number of elements which
1540 // are wider, then we should convert to that legal vector type.
1541 // This handles things like <2 x float> -> <4 x float> and
1542 // <4 x i1> -> <4 x i32>.
1543 LegalizeTypeAction TA = getTypeAction(Context, VT);
1544 if (!EltCnt.isScalar() &&
1545 (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1546 EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1547 if (isTypeLegal(RegisterEVT)) {
1548 IntermediateVT = RegisterEVT;
1549 RegisterVT = RegisterEVT.getSimpleVT();
1550 NumIntermediates = 1;
1551 return 1;
1552 }
1553 }
1554
1555 // Figure out the right, legal destination reg to copy into.
1556 EVT EltTy = VT.getVectorElementType();
1557
1558 unsigned NumVectorRegs = 1;
1559
1560 // Scalable vectors cannot be scalarized, so handle the legalisation of the
1561 // types like done elsewhere in SelectionDAG.
1562 if (EltCnt.isScalable()) {
1563 LegalizeKind LK;
1564 EVT PartVT = VT;
1565 do {
1566 // Iterate until we've found a legal (part) type to hold VT.
1567 LK = getTypeConversion(Context, PartVT);
1568 PartVT = LK.second;
1569 } while (LK.first != TypeLegal);
1570
1571 if (!PartVT.isVector()) {
1572 report_fatal_error(
1573 "Don't know how to legalize this scalable vector type");
1574 }
1575
1576 NumIntermediates =
1577 divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1578 PartVT.getVectorElementCount().getKnownMinValue());
1579 IntermediateVT = PartVT;
1580 RegisterVT = getRegisterType(Context, IntermediateVT);
1581 return NumIntermediates;
1582 }
1583
1584 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
1585 // we could break down into LHS/RHS like LegalizeDAG does.
1586 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1587 NumVectorRegs = EltCnt.getKnownMinValue();
1588 EltCnt = ElementCount::getFixed(1);
1589 }
1590
1591 // Divide the input until we get to a supported size. This will always
1592 // end with a scalar if the target doesn't support vectors.
1593 while (EltCnt.getKnownMinValue() > 1 &&
1594 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1595 EltCnt = EltCnt.divideCoefficientBy(2);
1596 NumVectorRegs <<= 1;
1597 }
1598
1599 NumIntermediates = NumVectorRegs;
1600
1601 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1602 if (!isTypeLegal(NewVT))
1603 NewVT = EltTy;
1604 IntermediateVT = NewVT;
1605
1606 MVT DestVT = getRegisterType(Context, NewVT);
1607 RegisterVT = DestVT;
1608
1609 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
1610 TypeSize NewVTSize = NewVT.getSizeInBits();
1611 // Convert sizes such as i33 to i64.
1612 if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1613 NewVTSize = NewVTSize.coefficientNextPowerOf2();
1614 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1615 }
1616
1617 // Otherwise, promotion or legal types use the same number of registers as
1618 // the vector decimated to the appropriate level.
1619 return NumVectorRegs;
1620 }
1621
isSuitableForJumpTable(const SwitchInst * SI,uint64_t NumCases,uint64_t Range,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI) const1622 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1623 uint64_t NumCases,
1624 uint64_t Range,
1625 ProfileSummaryInfo *PSI,
1626 BlockFrequencyInfo *BFI) const {
1627 // FIXME: This function check the maximum table size and density, but the
1628 // minimum size is not checked. It would be nice if the minimum size is
1629 // also combined within this function. Currently, the minimum size check is
1630 // performed in findJumpTable() in SelectionDAGBuiler and
1631 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1632 const bool OptForSize =
1633 SI->getParent()->getParent()->hasOptSize() ||
1634 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1635 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1636 const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1637
1638 // Check whether the number of cases is small enough and
1639 // the range is dense enough for a jump table.
1640 return (OptForSize || Range <= MaxJumpTableSize) &&
1641 (NumCases * 100 >= Range * MinDensity);
1642 }
1643
getPreferredSwitchConditionType(LLVMContext & Context,EVT ConditionVT) const1644 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1645 EVT ConditionVT) const {
1646 return getRegisterType(Context, ConditionVT);
1647 }
1648
1649 /// Get the EVTs and ArgFlags collections that represent the legalized return
1650 /// type of the given function. This does not require a DAG or a return value,
1651 /// and is suitable for use before any DAGs for the function are constructed.
1652 /// TODO: Move this out of TargetLowering.cpp.
GetReturnInfo(CallingConv::ID CC,Type * ReturnType,AttributeList attr,SmallVectorImpl<ISD::OutputArg> & Outs,const TargetLowering & TLI,const DataLayout & DL)1653 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1654 AttributeList attr,
1655 SmallVectorImpl<ISD::OutputArg> &Outs,
1656 const TargetLowering &TLI, const DataLayout &DL) {
1657 SmallVector<EVT, 4> ValueVTs;
1658 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1659 unsigned NumValues = ValueVTs.size();
1660 if (NumValues == 0) return;
1661
1662 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1663 EVT VT = ValueVTs[j];
1664 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1665
1666 if (attr.hasRetAttr(Attribute::SExt))
1667 ExtendKind = ISD::SIGN_EXTEND;
1668 else if (attr.hasRetAttr(Attribute::ZExt))
1669 ExtendKind = ISD::ZERO_EXTEND;
1670
1671 // FIXME: C calling convention requires the return type to be promoted to
1672 // at least 32-bit. But this is not necessary for non-C calling
1673 // conventions. The frontend should mark functions whose return values
1674 // require promoting with signext or zeroext attributes.
1675 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1676 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1677 if (VT.bitsLT(MinVT))
1678 VT = MinVT;
1679 }
1680
1681 unsigned NumParts =
1682 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1683 MVT PartVT =
1684 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1685
1686 // 'inreg' on function refers to return value
1687 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1688 if (attr.hasRetAttr(Attribute::InReg))
1689 Flags.setInReg();
1690
1691 // Propagate extension type if any
1692 if (attr.hasRetAttr(Attribute::SExt))
1693 Flags.setSExt();
1694 else if (attr.hasRetAttr(Attribute::ZExt))
1695 Flags.setZExt();
1696
1697 for (unsigned i = 0; i < NumParts; ++i)
1698 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1699 }
1700 }
1701
1702 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1703 /// function arguments in the caller parameter area. This is the actual
1704 /// alignment, not its logarithm.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const1705 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1706 const DataLayout &DL) const {
1707 return DL.getABITypeAlign(Ty).value();
1708 }
1709
allowsMemoryAccessForAlignment(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const1710 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1711 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1712 Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1713 // Check if the specified alignment is sufficient based on the data layout.
1714 // TODO: While using the data layout works in practice, a better solution
1715 // would be to implement this check directly (make this a virtual function).
1716 // For example, the ABI alignment may change based on software platform while
1717 // this function should only be affected by hardware implementation.
1718 Type *Ty = VT.getTypeForEVT(Context);
1719 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1720 // Assume that an access that meets the ABI-specified alignment is fast.
1721 if (Fast != nullptr)
1722 *Fast = true;
1723 return true;
1724 }
1725
1726 // This is a misaligned access.
1727 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1728 }
1729
allowsMemoryAccessForAlignment(LLVMContext & Context,const DataLayout & DL,EVT VT,const MachineMemOperand & MMO,bool * Fast) const1730 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1731 LLVMContext &Context, const DataLayout &DL, EVT VT,
1732 const MachineMemOperand &MMO, bool *Fast) const {
1733 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1734 MMO.getAlign(), MMO.getFlags(), Fast);
1735 }
1736
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const1737 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1738 const DataLayout &DL, EVT VT,
1739 unsigned AddrSpace, Align Alignment,
1740 MachineMemOperand::Flags Flags,
1741 bool *Fast) const {
1742 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1743 Flags, Fast);
1744 }
1745
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,EVT VT,const MachineMemOperand & MMO,bool * Fast) const1746 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1747 const DataLayout &DL, EVT VT,
1748 const MachineMemOperand &MMO,
1749 bool *Fast) const {
1750 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1751 MMO.getFlags(), Fast);
1752 }
1753
allowsMemoryAccess(LLVMContext & Context,const DataLayout & DL,LLT Ty,const MachineMemOperand & MMO,bool * Fast) const1754 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1755 const DataLayout &DL, LLT Ty,
1756 const MachineMemOperand &MMO,
1757 bool *Fast) const {
1758 EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1759 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1760 MMO.getFlags(), Fast);
1761 }
1762
1763 //===----------------------------------------------------------------------===//
1764 // TargetTransformInfo Helpers
1765 //===----------------------------------------------------------------------===//
1766
InstructionOpcodeToISD(unsigned Opcode) const1767 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1768 enum InstructionOpcodes {
1769 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1770 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1771 #include "llvm/IR/Instruction.def"
1772 };
1773 switch (static_cast<InstructionOpcodes>(Opcode)) {
1774 case Ret: return 0;
1775 case Br: return 0;
1776 case Switch: return 0;
1777 case IndirectBr: return 0;
1778 case Invoke: return 0;
1779 case CallBr: return 0;
1780 case Resume: return 0;
1781 case Unreachable: return 0;
1782 case CleanupRet: return 0;
1783 case CatchRet: return 0;
1784 case CatchPad: return 0;
1785 case CatchSwitch: return 0;
1786 case CleanupPad: return 0;
1787 case FNeg: return ISD::FNEG;
1788 case Add: return ISD::ADD;
1789 case FAdd: return ISD::FADD;
1790 case Sub: return ISD::SUB;
1791 case FSub: return ISD::FSUB;
1792 case Mul: return ISD::MUL;
1793 case FMul: return ISD::FMUL;
1794 case UDiv: return ISD::UDIV;
1795 case SDiv: return ISD::SDIV;
1796 case FDiv: return ISD::FDIV;
1797 case URem: return ISD::UREM;
1798 case SRem: return ISD::SREM;
1799 case FRem: return ISD::FREM;
1800 case Shl: return ISD::SHL;
1801 case LShr: return ISD::SRL;
1802 case AShr: return ISD::SRA;
1803 case And: return ISD::AND;
1804 case Or: return ISD::OR;
1805 case Xor: return ISD::XOR;
1806 case Alloca: return 0;
1807 case Load: return ISD::LOAD;
1808 case Store: return ISD::STORE;
1809 case GetElementPtr: return 0;
1810 case Fence: return 0;
1811 case AtomicCmpXchg: return 0;
1812 case AtomicRMW: return 0;
1813 case Trunc: return ISD::TRUNCATE;
1814 case ZExt: return ISD::ZERO_EXTEND;
1815 case SExt: return ISD::SIGN_EXTEND;
1816 case FPToUI: return ISD::FP_TO_UINT;
1817 case FPToSI: return ISD::FP_TO_SINT;
1818 case UIToFP: return ISD::UINT_TO_FP;
1819 case SIToFP: return ISD::SINT_TO_FP;
1820 case FPTrunc: return ISD::FP_ROUND;
1821 case FPExt: return ISD::FP_EXTEND;
1822 case PtrToInt: return ISD::BITCAST;
1823 case IntToPtr: return ISD::BITCAST;
1824 case BitCast: return ISD::BITCAST;
1825 case AddrSpaceCast: return ISD::ADDRSPACECAST;
1826 case ICmp: return ISD::SETCC;
1827 case FCmp: return ISD::SETCC;
1828 case PHI: return 0;
1829 case Call: return 0;
1830 case Select: return ISD::SELECT;
1831 case UserOp1: return 0;
1832 case UserOp2: return 0;
1833 case VAArg: return 0;
1834 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1835 case InsertElement: return ISD::INSERT_VECTOR_ELT;
1836 case ShuffleVector: return ISD::VECTOR_SHUFFLE;
1837 case ExtractValue: return ISD::MERGE_VALUES;
1838 case InsertValue: return ISD::MERGE_VALUES;
1839 case LandingPad: return 0;
1840 case Freeze: return ISD::FREEZE;
1841 }
1842
1843 llvm_unreachable("Unknown instruction type encountered!");
1844 }
1845
1846 std::pair<InstructionCost, MVT>
getTypeLegalizationCost(const DataLayout & DL,Type * Ty) const1847 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1848 Type *Ty) const {
1849 LLVMContext &C = Ty->getContext();
1850 EVT MTy = getValueType(DL, Ty);
1851
1852 InstructionCost Cost = 1;
1853 // We keep legalizing the type until we find a legal kind. We assume that
1854 // the only operation that costs anything is the split. After splitting
1855 // we need to handle two types.
1856 while (true) {
1857 LegalizeKind LK = getTypeConversion(C, MTy);
1858
1859 if (LK.first == TypeScalarizeScalableVector) {
1860 // Ensure we return a sensible simple VT here, since many callers of this
1861 // function require it.
1862 MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
1863 return std::make_pair(InstructionCost::getInvalid(), VT);
1864 }
1865
1866 if (LK.first == TypeLegal)
1867 return std::make_pair(Cost, MTy.getSimpleVT());
1868
1869 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1870 Cost *= 2;
1871
1872 // Do not loop with f128 type.
1873 if (MTy == LK.second)
1874 return std::make_pair(Cost, MTy.getSimpleVT());
1875
1876 // Keep legalizing the type.
1877 MTy = LK.second;
1878 }
1879 }
1880
1881 Value *
getDefaultSafeStackPointerLocation(IRBuilderBase & IRB,bool UseTLS) const1882 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1883 bool UseTLS) const {
1884 // compiler-rt provides a variable with a magic name. Targets that do not
1885 // link with compiler-rt may also provide such a variable.
1886 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1887 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1888 auto UnsafeStackPtr =
1889 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1890
1891 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1892
1893 if (!UnsafeStackPtr) {
1894 auto TLSModel = UseTLS ?
1895 GlobalValue::InitialExecTLSModel :
1896 GlobalValue::NotThreadLocal;
1897 // The global variable is not defined yet, define it ourselves.
1898 // We use the initial-exec TLS model because we do not support the
1899 // variable living anywhere other than in the main executable.
1900 UnsafeStackPtr = new GlobalVariable(
1901 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1902 UnsafeStackPtrVar, nullptr, TLSModel);
1903 } else {
1904 // The variable exists, check its type and attributes.
1905 if (UnsafeStackPtr->getValueType() != StackPtrTy)
1906 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1907 if (UseTLS != UnsafeStackPtr->isThreadLocal())
1908 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1909 (UseTLS ? "" : "not ") + "be thread-local");
1910 }
1911 return UnsafeStackPtr;
1912 }
1913
1914 Value *
getSafeStackPointerLocation(IRBuilderBase & IRB) const1915 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1916 if (!TM.getTargetTriple().isAndroid())
1917 return getDefaultSafeStackPointerLocation(IRB, true);
1918
1919 // Android provides a libc function to retrieve the address of the current
1920 // thread's unsafe stack pointer.
1921 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1922 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1923 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1924 StackPtrTy->getPointerTo(0));
1925 return IRB.CreateCall(Fn);
1926 }
1927
1928 //===----------------------------------------------------------------------===//
1929 // Loop Strength Reduction hooks
1930 //===----------------------------------------------------------------------===//
1931
1932 /// isLegalAddressingMode - Return true if the addressing mode represented
1933 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1934 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1935 const AddrMode &AM, Type *Ty,
1936 unsigned AS, Instruction *I) const {
1937 // The default implementation of this implements a conservative RISCy, r+r and
1938 // r+i addr mode.
1939
1940 // Allows a sign-extended 16-bit immediate field.
1941 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1942 return false;
1943
1944 // No global is ever allowed as a base.
1945 if (AM.BaseGV)
1946 return false;
1947
1948 // Only support r+r,
1949 switch (AM.Scale) {
1950 case 0: // "r+i" or just "i", depending on HasBaseReg.
1951 break;
1952 case 1:
1953 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1954 return false;
1955 // Otherwise we have r+r or r+i.
1956 break;
1957 case 2:
1958 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1959 return false;
1960 // Allow 2*r as r+r.
1961 break;
1962 default: // Don't allow n * r
1963 return false;
1964 }
1965
1966 return true;
1967 }
1968
1969 //===----------------------------------------------------------------------===//
1970 // Stack Protector
1971 //===----------------------------------------------------------------------===//
1972
1973 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1974 // so that SelectionDAG handle SSP.
getIRStackGuard(IRBuilderBase & IRB) const1975 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1976 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1977 Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1978 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1979 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1980 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1981 G->setVisibility(GlobalValue::HiddenVisibility);
1982 return C;
1983 }
1984 return nullptr;
1985 }
1986
1987 // Currently only support "standard" __stack_chk_guard.
1988 // TODO: add LOAD_STACK_GUARD support.
insertSSPDeclarations(Module & M) const1989 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1990 if (!M.getNamedValue("__stack_chk_guard")) {
1991 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1992 GlobalVariable::ExternalLinkage, nullptr,
1993 "__stack_chk_guard");
1994
1995 // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1996 if (TM.getRelocationModel() == Reloc::Static &&
1997 !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1998 !TM.getTargetTriple().isOSFreeBSD())
1999 GV->setDSOLocal(true);
2000 }
2001 }
2002
2003 // Currently only support "standard" __stack_chk_guard.
2004 // TODO: add LOAD_STACK_GUARD support.
getSDagStackGuard(const Module & M) const2005 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2006 return M.getNamedValue("__stack_chk_guard");
2007 }
2008
getSSPStackGuardCheck(const Module & M) const2009 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2010 return nullptr;
2011 }
2012
getMinimumJumpTableEntries() const2013 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2014 return MinimumJumpTableEntries;
2015 }
2016
setMinimumJumpTableEntries(unsigned Val)2017 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2018 MinimumJumpTableEntries = Val;
2019 }
2020
getMinimumJumpTableDensity(bool OptForSize) const2021 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2022 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2023 }
2024
getMaximumJumpTableSize() const2025 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2026 return MaximumJumpTableSize;
2027 }
2028
setMaximumJumpTableSize(unsigned Val)2029 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2030 MaximumJumpTableSize = Val;
2031 }
2032
isJumpTableRelative() const2033 bool TargetLoweringBase::isJumpTableRelative() const {
2034 return getTargetMachine().isPositionIndependent();
2035 }
2036
getPrefLoopAlignment(MachineLoop * ML) const2037 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2038 if (TM.Options.LoopAlignment)
2039 return Align(TM.Options.LoopAlignment);
2040 return PrefLoopAlignment;
2041 }
2042
getMaxPermittedBytesForAlignment(MachineBasicBlock * MBB) const2043 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2044 MachineBasicBlock *MBB) const {
2045 return MaxBytesForAlignment;
2046 }
2047
2048 //===----------------------------------------------------------------------===//
2049 // Reciprocal Estimates
2050 //===----------------------------------------------------------------------===//
2051
2052 /// Get the reciprocal estimate attribute string for a function that will
2053 /// override the target defaults.
getRecipEstimateForFunc(MachineFunction & MF)2054 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2055 const Function &F = MF.getFunction();
2056 return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2057 }
2058
2059 /// Construct a string for the given reciprocal operation of the given type.
2060 /// This string should match the corresponding option to the front-end's
2061 /// "-mrecip" flag assuming those strings have been passed through in an
2062 /// attribute string. For example, "vec-divf" for a division of a vXf32.
getReciprocalOpName(bool IsSqrt,EVT VT)2063 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2064 std::string Name = VT.isVector() ? "vec-" : "";
2065
2066 Name += IsSqrt ? "sqrt" : "div";
2067
2068 // TODO: Handle other float types?
2069 if (VT.getScalarType() == MVT::f64) {
2070 Name += "d";
2071 } else if (VT.getScalarType() == MVT::f16) {
2072 Name += "h";
2073 } else {
2074 assert(VT.getScalarType() == MVT::f32 &&
2075 "Unexpected FP type for reciprocal estimate");
2076 Name += "f";
2077 }
2078
2079 return Name;
2080 }
2081
2082 /// Return the character position and value (a single numeric character) of a
2083 /// customized refinement operation in the input string if it exists. Return
2084 /// false if there is no customized refinement step count.
parseRefinementStep(StringRef In,size_t & Position,uint8_t & Value)2085 static bool parseRefinementStep(StringRef In, size_t &Position,
2086 uint8_t &Value) {
2087 const char RefStepToken = ':';
2088 Position = In.find(RefStepToken);
2089 if (Position == StringRef::npos)
2090 return false;
2091
2092 StringRef RefStepString = In.substr(Position + 1);
2093 // Allow exactly one numeric character for the additional refinement
2094 // step parameter.
2095 if (RefStepString.size() == 1) {
2096 char RefStepChar = RefStepString[0];
2097 if (isDigit(RefStepChar)) {
2098 Value = RefStepChar - '0';
2099 return true;
2100 }
2101 }
2102 report_fatal_error("Invalid refinement step for -recip.");
2103 }
2104
2105 /// For the input attribute string, return one of the ReciprocalEstimate enum
2106 /// status values (enabled, disabled, or not specified) for this operation on
2107 /// the specified data type.
getOpEnabled(bool IsSqrt,EVT VT,StringRef Override)2108 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2109 if (Override.empty())
2110 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2111
2112 SmallVector<StringRef, 4> OverrideVector;
2113 Override.split(OverrideVector, ',');
2114 unsigned NumArgs = OverrideVector.size();
2115
2116 // Check if "all", "none", or "default" was specified.
2117 if (NumArgs == 1) {
2118 // Look for an optional setting of the number of refinement steps needed
2119 // for this type of reciprocal operation.
2120 size_t RefPos;
2121 uint8_t RefSteps;
2122 if (parseRefinementStep(Override, RefPos, RefSteps)) {
2123 // Split the string for further processing.
2124 Override = Override.substr(0, RefPos);
2125 }
2126
2127 // All reciprocal types are enabled.
2128 if (Override == "all")
2129 return TargetLoweringBase::ReciprocalEstimate::Enabled;
2130
2131 // All reciprocal types are disabled.
2132 if (Override == "none")
2133 return TargetLoweringBase::ReciprocalEstimate::Disabled;
2134
2135 // Target defaults for enablement are used.
2136 if (Override == "default")
2137 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2138 }
2139
2140 // The attribute string may omit the size suffix ('f'/'d').
2141 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2142 std::string VTNameNoSize = VTName;
2143 VTNameNoSize.pop_back();
2144 static const char DisabledPrefix = '!';
2145
2146 for (StringRef RecipType : OverrideVector) {
2147 size_t RefPos;
2148 uint8_t RefSteps;
2149 if (parseRefinementStep(RecipType, RefPos, RefSteps))
2150 RecipType = RecipType.substr(0, RefPos);
2151
2152 // Ignore the disablement token for string matching.
2153 bool IsDisabled = RecipType[0] == DisabledPrefix;
2154 if (IsDisabled)
2155 RecipType = RecipType.substr(1);
2156
2157 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2158 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2159 : TargetLoweringBase::ReciprocalEstimate::Enabled;
2160 }
2161
2162 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2163 }
2164
2165 /// For the input attribute string, return the customized refinement step count
2166 /// for this operation on the specified data type. If the step count does not
2167 /// exist, return the ReciprocalEstimate enum value for unspecified.
getOpRefinementSteps(bool IsSqrt,EVT VT,StringRef Override)2168 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2169 if (Override.empty())
2170 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2171
2172 SmallVector<StringRef, 4> OverrideVector;
2173 Override.split(OverrideVector, ',');
2174 unsigned NumArgs = OverrideVector.size();
2175
2176 // Check if "all", "default", or "none" was specified.
2177 if (NumArgs == 1) {
2178 // Look for an optional setting of the number of refinement steps needed
2179 // for this type of reciprocal operation.
2180 size_t RefPos;
2181 uint8_t RefSteps;
2182 if (!parseRefinementStep(Override, RefPos, RefSteps))
2183 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2184
2185 // Split the string for further processing.
2186 Override = Override.substr(0, RefPos);
2187 assert(Override != "none" &&
2188 "Disabled reciprocals, but specifed refinement steps?");
2189
2190 // If this is a general override, return the specified number of steps.
2191 if (Override == "all" || Override == "default")
2192 return RefSteps;
2193 }
2194
2195 // The attribute string may omit the size suffix ('f'/'d').
2196 std::string VTName = getReciprocalOpName(IsSqrt, VT);
2197 std::string VTNameNoSize = VTName;
2198 VTNameNoSize.pop_back();
2199
2200 for (StringRef RecipType : OverrideVector) {
2201 size_t RefPos;
2202 uint8_t RefSteps;
2203 if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2204 continue;
2205
2206 RecipType = RecipType.substr(0, RefPos);
2207 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2208 return RefSteps;
2209 }
2210
2211 return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2212 }
2213
getRecipEstimateSqrtEnabled(EVT VT,MachineFunction & MF) const2214 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2215 MachineFunction &MF) const {
2216 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2217 }
2218
getRecipEstimateDivEnabled(EVT VT,MachineFunction & MF) const2219 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2220 MachineFunction &MF) const {
2221 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2222 }
2223
getSqrtRefinementSteps(EVT VT,MachineFunction & MF) const2224 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2225 MachineFunction &MF) const {
2226 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2227 }
2228
getDivRefinementSteps(EVT VT,MachineFunction & MF) const2229 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2230 MachineFunction &MF) const {
2231 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2232 }
2233
finalizeLowering(MachineFunction & MF) const2234 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2235 MF.getRegInfo().freezeReservedRegs(MF);
2236 }
2237
2238 MachineMemOperand::Flags
getLoadMemOperandFlags(const LoadInst & LI,const DataLayout & DL) const2239 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2240 const DataLayout &DL) const {
2241 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2242 if (LI.isVolatile())
2243 Flags |= MachineMemOperand::MOVolatile;
2244
2245 if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2246 Flags |= MachineMemOperand::MONonTemporal;
2247
2248 if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2249 Flags |= MachineMemOperand::MOInvariant;
2250
2251 if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2252 Flags |= MachineMemOperand::MODereferenceable;
2253
2254 Flags |= getTargetMMOFlags(LI);
2255 return Flags;
2256 }
2257
2258 MachineMemOperand::Flags
getStoreMemOperandFlags(const StoreInst & SI,const DataLayout & DL) const2259 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2260 const DataLayout &DL) const {
2261 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2262
2263 if (SI.isVolatile())
2264 Flags |= MachineMemOperand::MOVolatile;
2265
2266 if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2267 Flags |= MachineMemOperand::MONonTemporal;
2268
2269 // FIXME: Not preserving dereferenceable
2270 Flags |= getTargetMMOFlags(SI);
2271 return Flags;
2272 }
2273
2274 MachineMemOperand::Flags
getAtomicMemOperandFlags(const Instruction & AI,const DataLayout & DL) const2275 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2276 const DataLayout &DL) const {
2277 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2278
2279 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2280 if (RMW->isVolatile())
2281 Flags |= MachineMemOperand::MOVolatile;
2282 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2283 if (CmpX->isVolatile())
2284 Flags |= MachineMemOperand::MOVolatile;
2285 } else
2286 llvm_unreachable("not an atomic instruction");
2287
2288 // FIXME: Not preserving dereferenceable
2289 Flags |= getTargetMMOFlags(AI);
2290 return Flags;
2291 }
2292
emitLeadingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const2293 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2294 Instruction *Inst,
2295 AtomicOrdering Ord) const {
2296 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2297 return Builder.CreateFence(Ord);
2298 else
2299 return nullptr;
2300 }
2301
emitTrailingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const2302 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2303 Instruction *Inst,
2304 AtomicOrdering Ord) const {
2305 if (isAcquireOrStronger(Ord))
2306 return Builder.CreateFence(Ord);
2307 else
2308 return nullptr;
2309 }
2310
2311 //===----------------------------------------------------------------------===//
2312 // GlobalISel Hooks
2313 //===----------------------------------------------------------------------===//
2314
shouldLocalize(const MachineInstr & MI,const TargetTransformInfo * TTI) const2315 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2316 const TargetTransformInfo *TTI) const {
2317 auto &MF = *MI.getMF();
2318 auto &MRI = MF.getRegInfo();
2319 // Assuming a spill and reload of a value has a cost of 1 instruction each,
2320 // this helper function computes the maximum number of uses we should consider
2321 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2322 // break even in terms of code size when the original MI has 2 users vs
2323 // choosing to potentially spill. Any more than 2 users we we have a net code
2324 // size increase. This doesn't take into account register pressure though.
2325 auto maxUses = [](unsigned RematCost) {
2326 // A cost of 1 means remats are basically free.
2327 if (RematCost == 1)
2328 return UINT_MAX;
2329 if (RematCost == 2)
2330 return 2U;
2331
2332 // Remat is too expensive, only sink if there's one user.
2333 if (RematCost > 2)
2334 return 1U;
2335 llvm_unreachable("Unexpected remat cost");
2336 };
2337
2338 // Helper to walk through uses and terminate if we've reached a limit. Saves
2339 // us spending time traversing uses if all we want to know is if it's >= min.
2340 auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2341 unsigned NumUses = 0;
2342 auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2343 for (; UI != UE && NumUses < MaxUses; ++UI) {
2344 NumUses++;
2345 }
2346 // If we haven't reached the end yet then there are more than MaxUses users.
2347 return UI == UE;
2348 };
2349
2350 switch (MI.getOpcode()) {
2351 default:
2352 return false;
2353 // Constants-like instructions should be close to their users.
2354 // We don't want long live-ranges for them.
2355 case TargetOpcode::G_CONSTANT:
2356 case TargetOpcode::G_FCONSTANT:
2357 case TargetOpcode::G_FRAME_INDEX:
2358 case TargetOpcode::G_INTTOPTR:
2359 return true;
2360 case TargetOpcode::G_GLOBAL_VALUE: {
2361 unsigned RematCost = TTI->getGISelRematGlobalCost();
2362 Register Reg = MI.getOperand(0).getReg();
2363 unsigned MaxUses = maxUses(RematCost);
2364 if (MaxUses == UINT_MAX)
2365 return true; // Remats are "free" so always localize.
2366 bool B = isUsesAtMost(Reg, MaxUses);
2367 return B;
2368 }
2369 }
2370 }
2371