1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/LoopAnalysisManager.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/LoopIterator.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/MustExecute.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/GenericDomTree.h"
52 #include "llvm/Support/InstructionCost.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Cloning.h"
57 #include "llvm/Transforms/Utils/Local.h"
58 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #include "llvm/Transforms/Utils/ValueMapper.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <iterator>
63 #include <numeric>
64 #include <utility>
65
66 #define DEBUG_TYPE "simple-loop-unswitch"
67
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70
71 STATISTIC(NumBranches, "Number of branches unswitched");
72 STATISTIC(NumSwitches, "Number of switches unswitched");
73 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
74 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
75 STATISTIC(
76 NumCostMultiplierSkipped,
77 "Number of unswitch candidates that had their cost multiplier skipped");
78
79 static cl::opt<bool> EnableNonTrivialUnswitch(
80 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
81 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
82 "following the configuration passed into the pass."));
83
84 static cl::opt<int>
85 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
86 cl::desc("The cost threshold for unswitching a loop."));
87
88 static cl::opt<bool> EnableUnswitchCostMultiplier(
89 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
90 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
91 "explosion in nontrivial unswitch."));
92 static cl::opt<int> UnswitchSiblingsToplevelDiv(
93 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
94 cl::desc("Toplevel siblings divisor for cost multiplier."));
95 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
96 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
97 cl::desc("Number of unswitch candidates that are ignored when calculating "
98 "cost multiplier."));
99 static cl::opt<bool> UnswitchGuards(
100 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
101 cl::desc("If enabled, simple loop unswitching will also consider "
102 "llvm.experimental.guard intrinsics as unswitch candidates."));
103 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
104 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
105 cl::init(false), cl::Hidden,
106 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
107 "null checks to save time analyzing if we can keep it."));
108 static cl::opt<unsigned>
109 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
110 cl::desc("Max number of memory uses to explore during "
111 "partial unswitching analysis"),
112 cl::init(100), cl::Hidden);
113 static cl::opt<bool> FreezeLoopUnswitchCond(
114 "freeze-loop-unswitch-cond", cl::init(true), cl::Hidden,
115 cl::desc("If enabled, the freeze instruction will be added to condition "
116 "of loop unswitch to prevent miscompilation."));
117
118 // Helper to skip (select x, true, false), which matches both a logical AND and
119 // OR and can confuse code that tries to determine if \p Cond is either a
120 // logical AND or OR but not both.
skipTrivialSelect(Value * Cond)121 static Value *skipTrivialSelect(Value *Cond) {
122 Value *CondNext;
123 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
124 Cond = CondNext;
125 return Cond;
126 }
127
128 /// Collect all of the loop invariant input values transitively used by the
129 /// homogeneous instruction graph from a given root.
130 ///
131 /// This essentially walks from a root recursively through loop variant operands
132 /// which have perform the same logical operation (AND or OR) and finds all
133 /// inputs which are loop invariant. For some operations these can be
134 /// re-associated and unswitched out of the loop entirely.
135 static TinyPtrVector<Value *>
collectHomogenousInstGraphLoopInvariants(Loop & L,Instruction & Root,LoopInfo & LI)136 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
137 LoopInfo &LI) {
138 assert(!L.isLoopInvariant(&Root) &&
139 "Only need to walk the graph if root itself is not invariant.");
140 TinyPtrVector<Value *> Invariants;
141
142 bool IsRootAnd = match(&Root, m_LogicalAnd());
143 bool IsRootOr = match(&Root, m_LogicalOr());
144
145 // Build a worklist and recurse through operators collecting invariants.
146 SmallVector<Instruction *, 4> Worklist;
147 SmallPtrSet<Instruction *, 8> Visited;
148 Worklist.push_back(&Root);
149 Visited.insert(&Root);
150 do {
151 Instruction &I = *Worklist.pop_back_val();
152 for (Value *OpV : I.operand_values()) {
153 // Skip constants as unswitching isn't interesting for them.
154 if (isa<Constant>(OpV))
155 continue;
156
157 // Add it to our result if loop invariant.
158 if (L.isLoopInvariant(OpV)) {
159 Invariants.push_back(OpV);
160 continue;
161 }
162
163 // If not an instruction with the same opcode, nothing we can do.
164 Instruction *OpI = dyn_cast<Instruction>(skipTrivialSelect(OpV));
165
166 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
167 (IsRootOr && match(OpI, m_LogicalOr())))) {
168 // Visit this operand.
169 if (Visited.insert(OpI).second)
170 Worklist.push_back(OpI);
171 }
172 }
173 } while (!Worklist.empty());
174
175 return Invariants;
176 }
177
replaceLoopInvariantUses(Loop & L,Value * Invariant,Constant & Replacement)178 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
179 Constant &Replacement) {
180 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
181
182 // Replace uses of LIC in the loop with the given constant.
183 // We use make_early_inc_range as set invalidates the iterator.
184 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
185 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
186
187 // Replace this use within the loop body.
188 if (UserI && L.contains(UserI))
189 U.set(&Replacement);
190 }
191 }
192
193 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
194 /// incoming values along this edge.
areLoopExitPHIsLoopInvariant(Loop & L,BasicBlock & ExitingBB,BasicBlock & ExitBB)195 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
196 BasicBlock &ExitBB) {
197 for (Instruction &I : ExitBB) {
198 auto *PN = dyn_cast<PHINode>(&I);
199 if (!PN)
200 // No more PHIs to check.
201 return true;
202
203 // If the incoming value for this edge isn't loop invariant the unswitch
204 // won't be trivial.
205 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
206 return false;
207 }
208 llvm_unreachable("Basic blocks should never be empty!");
209 }
210
211 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
212 /// end of \p BB and conditionally branch on the copied condition. We only
213 /// branch on a single value.
buildPartialUnswitchConditionalBranch(BasicBlock & BB,ArrayRef<Value * > Invariants,bool Direction,BasicBlock & UnswitchedSucc,BasicBlock & NormalSucc,bool InsertFreeze,Instruction * I,AssumptionCache * AC,DominatorTree & DT)214 static void buildPartialUnswitchConditionalBranch(
215 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
216 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
217 Instruction *I, AssumptionCache *AC, DominatorTree &DT) {
218 IRBuilder<> IRB(&BB);
219
220 SmallVector<Value *> FrozenInvariants;
221 for (Value *Inv : Invariants) {
222 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(Inv, AC, I, &DT))
223 Inv = IRB.CreateFreeze(Inv, Inv->getName() + ".fr");
224 FrozenInvariants.push_back(Inv);
225 }
226
227 Value *Cond = Direction ? IRB.CreateOr(FrozenInvariants)
228 : IRB.CreateAnd(FrozenInvariants);
229 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
230 Direction ? &NormalSucc : &UnswitchedSucc);
231 }
232
233 /// Copy a set of loop invariant values, and conditionally branch on them.
buildPartialInvariantUnswitchConditionalBranch(BasicBlock & BB,ArrayRef<Value * > ToDuplicate,bool Direction,BasicBlock & UnswitchedSucc,BasicBlock & NormalSucc,Loop & L,MemorySSAUpdater * MSSAU)234 static void buildPartialInvariantUnswitchConditionalBranch(
235 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
236 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
237 MemorySSAUpdater *MSSAU) {
238 ValueToValueMapTy VMap;
239 for (auto *Val : reverse(ToDuplicate)) {
240 Instruction *Inst = cast<Instruction>(Val);
241 Instruction *NewInst = Inst->clone();
242 BB.getInstList().insert(BB.end(), NewInst);
243 RemapInstruction(NewInst, VMap,
244 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
245 VMap[Val] = NewInst;
246
247 if (!MSSAU)
248 continue;
249
250 MemorySSA *MSSA = MSSAU->getMemorySSA();
251 if (auto *MemUse =
252 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
253 auto *DefiningAccess = MemUse->getDefiningAccess();
254 // Get the first defining access before the loop.
255 while (L.contains(DefiningAccess->getBlock())) {
256 // If the defining access is a MemoryPhi, get the incoming
257 // value for the pre-header as defining access.
258 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
259 DefiningAccess =
260 MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
261 else
262 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
263 }
264 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
265 NewInst->getParent(),
266 MemorySSA::BeforeTerminator);
267 }
268 }
269
270 IRBuilder<> IRB(&BB);
271 Value *Cond = VMap[ToDuplicate[0]];
272 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
273 Direction ? &NormalSucc : &UnswitchedSucc);
274 }
275
276 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
277 ///
278 /// Requires that the loop exit and unswitched basic block are the same, and
279 /// that the exiting block was a unique predecessor of that block. Rewrites the
280 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
281 /// PHI nodes from the old preheader that now contains the unswitched
282 /// terminator.
rewritePHINodesForUnswitchedExitBlock(BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH)283 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
284 BasicBlock &OldExitingBB,
285 BasicBlock &OldPH) {
286 for (PHINode &PN : UnswitchedBB.phis()) {
287 // When the loop exit is directly unswitched we just need to update the
288 // incoming basic block. We loop to handle weird cases with repeated
289 // incoming blocks, but expect to typically only have one operand here.
290 for (auto i : seq<int>(0, PN.getNumOperands())) {
291 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
292 "Found incoming block different from unique predecessor!");
293 PN.setIncomingBlock(i, &OldPH);
294 }
295 }
296 }
297
298 /// Rewrite the PHI nodes in the loop exit basic block and the split off
299 /// unswitched block.
300 ///
301 /// Because the exit block remains an exit from the loop, this rewrites the
302 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
303 /// nodes into the unswitched basic block to select between the value in the
304 /// old preheader and the loop exit.
rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock & ExitBB,BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH,bool FullUnswitch)305 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
306 BasicBlock &UnswitchedBB,
307 BasicBlock &OldExitingBB,
308 BasicBlock &OldPH,
309 bool FullUnswitch) {
310 assert(&ExitBB != &UnswitchedBB &&
311 "Must have different loop exit and unswitched blocks!");
312 Instruction *InsertPt = &*UnswitchedBB.begin();
313 for (PHINode &PN : ExitBB.phis()) {
314 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
315 PN.getName() + ".split", InsertPt);
316
317 // Walk backwards over the old PHI node's inputs to minimize the cost of
318 // removing each one. We have to do this weird loop manually so that we
319 // create the same number of new incoming edges in the new PHI as we expect
320 // each case-based edge to be included in the unswitched switch in some
321 // cases.
322 // FIXME: This is really, really gross. It would be much cleaner if LLVM
323 // allowed us to create a single entry for a predecessor block without
324 // having separate entries for each "edge" even though these edges are
325 // required to produce identical results.
326 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
327 if (PN.getIncomingBlock(i) != &OldExitingBB)
328 continue;
329
330 Value *Incoming = PN.getIncomingValue(i);
331 if (FullUnswitch)
332 // No more edge from the old exiting block to the exit block.
333 PN.removeIncomingValue(i);
334
335 NewPN->addIncoming(Incoming, &OldPH);
336 }
337
338 // Now replace the old PHI with the new one and wire the old one in as an
339 // input to the new one.
340 PN.replaceAllUsesWith(NewPN);
341 NewPN->addIncoming(&PN, &ExitBB);
342 }
343 }
344
345 /// Hoist the current loop up to the innermost loop containing a remaining exit.
346 ///
347 /// Because we've removed an exit from the loop, we may have changed the set of
348 /// loops reachable and need to move the current loop up the loop nest or even
349 /// to an entirely separate nest.
hoistLoopToNewParent(Loop & L,BasicBlock & Preheader,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU,ScalarEvolution * SE)350 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
351 DominatorTree &DT, LoopInfo &LI,
352 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
353 // If the loop is already at the top level, we can't hoist it anywhere.
354 Loop *OldParentL = L.getParentLoop();
355 if (!OldParentL)
356 return;
357
358 SmallVector<BasicBlock *, 4> Exits;
359 L.getExitBlocks(Exits);
360 Loop *NewParentL = nullptr;
361 for (auto *ExitBB : Exits)
362 if (Loop *ExitL = LI.getLoopFor(ExitBB))
363 if (!NewParentL || NewParentL->contains(ExitL))
364 NewParentL = ExitL;
365
366 if (NewParentL == OldParentL)
367 return;
368
369 // The new parent loop (if different) should always contain the old one.
370 if (NewParentL)
371 assert(NewParentL->contains(OldParentL) &&
372 "Can only hoist this loop up the nest!");
373
374 // The preheader will need to move with the body of this loop. However,
375 // because it isn't in this loop we also need to update the primary loop map.
376 assert(OldParentL == LI.getLoopFor(&Preheader) &&
377 "Parent loop of this loop should contain this loop's preheader!");
378 LI.changeLoopFor(&Preheader, NewParentL);
379
380 // Remove this loop from its old parent.
381 OldParentL->removeChildLoop(&L);
382
383 // Add the loop either to the new parent or as a top-level loop.
384 if (NewParentL)
385 NewParentL->addChildLoop(&L);
386 else
387 LI.addTopLevelLoop(&L);
388
389 // Remove this loops blocks from the old parent and every other loop up the
390 // nest until reaching the new parent. Also update all of these
391 // no-longer-containing loops to reflect the nesting change.
392 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
393 OldContainingL = OldContainingL->getParentLoop()) {
394 llvm::erase_if(OldContainingL->getBlocksVector(),
395 [&](const BasicBlock *BB) {
396 return BB == &Preheader || L.contains(BB);
397 });
398
399 OldContainingL->getBlocksSet().erase(&Preheader);
400 for (BasicBlock *BB : L.blocks())
401 OldContainingL->getBlocksSet().erase(BB);
402
403 // Because we just hoisted a loop out of this one, we have essentially
404 // created new exit paths from it. That means we need to form LCSSA PHI
405 // nodes for values used in the no-longer-nested loop.
406 formLCSSA(*OldContainingL, DT, &LI, SE);
407
408 // We shouldn't need to form dedicated exits because the exit introduced
409 // here is the (just split by unswitching) preheader. However, after trivial
410 // unswitching it is possible to get new non-dedicated exits out of parent
411 // loop so let's conservatively form dedicated exit blocks and figure out
412 // if we can optimize later.
413 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
414 /*PreserveLCSSA*/ true);
415 }
416 }
417
418 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
419 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
420 // as exiting block.
getTopMostExitingLoop(BasicBlock * ExitBB,LoopInfo & LI)421 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
422 Loop *TopMost = LI.getLoopFor(ExitBB);
423 Loop *Current = TopMost;
424 while (Current) {
425 if (Current->isLoopExiting(ExitBB))
426 TopMost = Current;
427 Current = Current->getParentLoop();
428 }
429 return TopMost;
430 }
431
432 /// Unswitch a trivial branch if the condition is loop invariant.
433 ///
434 /// This routine should only be called when loop code leading to the branch has
435 /// been validated as trivial (no side effects). This routine checks if the
436 /// condition is invariant and one of the successors is a loop exit. This
437 /// allows us to unswitch without duplicating the loop, making it trivial.
438 ///
439 /// If this routine fails to unswitch the branch it returns false.
440 ///
441 /// If the branch can be unswitched, this routine splits the preheader and
442 /// hoists the branch above that split. Preserves loop simplified form
443 /// (splitting the exit block as necessary). It simplifies the branch within
444 /// the loop to an unconditional branch but doesn't remove it entirely. Further
445 /// cleanup can be done with some simplifycfg like pass.
446 ///
447 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
448 /// invalidated by this.
unswitchTrivialBranch(Loop & L,BranchInst & BI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)449 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
450 LoopInfo &LI, ScalarEvolution *SE,
451 MemorySSAUpdater *MSSAU) {
452 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
453 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
454
455 // The loop invariant values that we want to unswitch.
456 TinyPtrVector<Value *> Invariants;
457
458 // When true, we're fully unswitching the branch rather than just unswitching
459 // some input conditions to the branch.
460 bool FullUnswitch = false;
461
462 Value *Cond = skipTrivialSelect(BI.getCondition());
463 if (L.isLoopInvariant(Cond)) {
464 Invariants.push_back(Cond);
465 FullUnswitch = true;
466 } else {
467 if (auto *CondInst = dyn_cast<Instruction>(Cond))
468 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
469 if (Invariants.empty()) {
470 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
471 return false;
472 }
473 }
474
475 // Check that one of the branch's successors exits, and which one.
476 bool ExitDirection = true;
477 int LoopExitSuccIdx = 0;
478 auto *LoopExitBB = BI.getSuccessor(0);
479 if (L.contains(LoopExitBB)) {
480 ExitDirection = false;
481 LoopExitSuccIdx = 1;
482 LoopExitBB = BI.getSuccessor(1);
483 if (L.contains(LoopExitBB)) {
484 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
485 return false;
486 }
487 }
488 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
489 auto *ParentBB = BI.getParent();
490 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
491 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
492 return false;
493 }
494
495 // When unswitching only part of the branch's condition, we need the exit
496 // block to be reached directly from the partially unswitched input. This can
497 // be done when the exit block is along the true edge and the branch condition
498 // is a graph of `or` operations, or the exit block is along the false edge
499 // and the condition is a graph of `and` operations.
500 if (!FullUnswitch) {
501 if (ExitDirection ? !match(Cond, m_LogicalOr())
502 : !match(Cond, m_LogicalAnd())) {
503 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
504 "non-full unswitch!\n");
505 return false;
506 }
507 }
508
509 LLVM_DEBUG({
510 dbgs() << " unswitching trivial invariant conditions for: " << BI
511 << "\n";
512 for (Value *Invariant : Invariants) {
513 dbgs() << " " << *Invariant << " == true";
514 if (Invariant != Invariants.back())
515 dbgs() << " ||";
516 dbgs() << "\n";
517 }
518 });
519
520 // If we have scalar evolutions, we need to invalidate them including this
521 // loop, the loop containing the exit block and the topmost parent loop
522 // exiting via LoopExitBB.
523 if (SE) {
524 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
525 SE->forgetLoop(ExitL);
526 else
527 // Forget the entire nest as this exits the entire nest.
528 SE->forgetTopmostLoop(&L);
529 }
530
531 if (MSSAU && VerifyMemorySSA)
532 MSSAU->getMemorySSA()->verifyMemorySSA();
533
534 // Split the preheader, so that we know that there is a safe place to insert
535 // the conditional branch. We will change the preheader to have a conditional
536 // branch on LoopCond.
537 BasicBlock *OldPH = L.getLoopPreheader();
538 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
539
540 // Now that we have a place to insert the conditional branch, create a place
541 // to branch to: this is the exit block out of the loop that we are
542 // unswitching. We need to split this if there are other loop predecessors.
543 // Because the loop is in simplified form, *any* other predecessor is enough.
544 BasicBlock *UnswitchedBB;
545 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
546 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
547 "A branch's parent isn't a predecessor!");
548 UnswitchedBB = LoopExitBB;
549 } else {
550 UnswitchedBB =
551 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
552 }
553
554 if (MSSAU && VerifyMemorySSA)
555 MSSAU->getMemorySSA()->verifyMemorySSA();
556
557 // Actually move the invariant uses into the unswitched position. If possible,
558 // we do this by moving the instructions, but when doing partial unswitching
559 // we do it by building a new merge of the values in the unswitched position.
560 OldPH->getTerminator()->eraseFromParent();
561 if (FullUnswitch) {
562 // If fully unswitching, we can use the existing branch instruction.
563 // Splice it into the old PH to gate reaching the new preheader and re-point
564 // its successors.
565 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
566 BI);
567 BI.setCondition(Cond);
568 if (MSSAU) {
569 // Temporarily clone the terminator, to make MSSA update cheaper by
570 // separating "insert edge" updates from "remove edge" ones.
571 ParentBB->getInstList().push_back(BI.clone());
572 } else {
573 // Create a new unconditional branch that will continue the loop as a new
574 // terminator.
575 BranchInst::Create(ContinueBB, ParentBB);
576 }
577 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
578 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
579 } else {
580 // Only unswitching a subset of inputs to the condition, so we will need to
581 // build a new branch that merges the invariant inputs.
582 if (ExitDirection)
583 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
584 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
585 "condition!");
586 else
587 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
588 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
589 " condition!");
590 buildPartialUnswitchConditionalBranch(
591 *OldPH, Invariants, ExitDirection, *UnswitchedBB, *NewPH,
592 FreezeLoopUnswitchCond, OldPH->getTerminator(), nullptr, DT);
593 }
594
595 // Update the dominator tree with the added edge.
596 DT.insertEdge(OldPH, UnswitchedBB);
597
598 // After the dominator tree was updated with the added edge, update MemorySSA
599 // if available.
600 if (MSSAU) {
601 SmallVector<CFGUpdate, 1> Updates;
602 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
603 MSSAU->applyInsertUpdates(Updates, DT);
604 }
605
606 // Finish updating dominator tree and memory ssa for full unswitch.
607 if (FullUnswitch) {
608 if (MSSAU) {
609 // Remove the cloned branch instruction.
610 ParentBB->getTerminator()->eraseFromParent();
611 // Create unconditional branch now.
612 BranchInst::Create(ContinueBB, ParentBB);
613 MSSAU->removeEdge(ParentBB, LoopExitBB);
614 }
615 DT.deleteEdge(ParentBB, LoopExitBB);
616 }
617
618 if (MSSAU && VerifyMemorySSA)
619 MSSAU->getMemorySSA()->verifyMemorySSA();
620
621 // Rewrite the relevant PHI nodes.
622 if (UnswitchedBB == LoopExitBB)
623 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
624 else
625 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
626 *ParentBB, *OldPH, FullUnswitch);
627
628 // The constant we can replace all of our invariants with inside the loop
629 // body. If any of the invariants have a value other than this the loop won't
630 // be entered.
631 ConstantInt *Replacement = ExitDirection
632 ? ConstantInt::getFalse(BI.getContext())
633 : ConstantInt::getTrue(BI.getContext());
634
635 // Since this is an i1 condition we can also trivially replace uses of it
636 // within the loop with a constant.
637 for (Value *Invariant : Invariants)
638 replaceLoopInvariantUses(L, Invariant, *Replacement);
639
640 // If this was full unswitching, we may have changed the nesting relationship
641 // for this loop so hoist it to its correct parent if needed.
642 if (FullUnswitch)
643 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
644
645 if (MSSAU && VerifyMemorySSA)
646 MSSAU->getMemorySSA()->verifyMemorySSA();
647
648 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
649 ++NumTrivial;
650 ++NumBranches;
651 return true;
652 }
653
654 /// Unswitch a trivial switch if the condition is loop invariant.
655 ///
656 /// This routine should only be called when loop code leading to the switch has
657 /// been validated as trivial (no side effects). This routine checks if the
658 /// condition is invariant and that at least one of the successors is a loop
659 /// exit. This allows us to unswitch without duplicating the loop, making it
660 /// trivial.
661 ///
662 /// If this routine fails to unswitch the switch it returns false.
663 ///
664 /// If the switch can be unswitched, this routine splits the preheader and
665 /// copies the switch above that split. If the default case is one of the
666 /// exiting cases, it copies the non-exiting cases and points them at the new
667 /// preheader. If the default case is not exiting, it copies the exiting cases
668 /// and points the default at the preheader. It preserves loop simplified form
669 /// (splitting the exit blocks as necessary). It simplifies the switch within
670 /// the loop by removing now-dead cases. If the default case is one of those
671 /// unswitched, it replaces its destination with a new basic block containing
672 /// only unreachable. Such basic blocks, while technically loop exits, are not
673 /// considered for unswitching so this is a stable transform and the same
674 /// switch will not be revisited. If after unswitching there is only a single
675 /// in-loop successor, the switch is further simplified to an unconditional
676 /// branch. Still more cleanup can be done with some simplifycfg like pass.
677 ///
678 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
679 /// invalidated by this.
unswitchTrivialSwitch(Loop & L,SwitchInst & SI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)680 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
681 LoopInfo &LI, ScalarEvolution *SE,
682 MemorySSAUpdater *MSSAU) {
683 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
684 Value *LoopCond = SI.getCondition();
685
686 // If this isn't switching on an invariant condition, we can't unswitch it.
687 if (!L.isLoopInvariant(LoopCond))
688 return false;
689
690 auto *ParentBB = SI.getParent();
691
692 // The same check must be used both for the default and the exit cases. We
693 // should never leave edges from the switch instruction to a basic block that
694 // we are unswitching, hence the condition used to determine the default case
695 // needs to also be used to populate ExitCaseIndices, which is then used to
696 // remove cases from the switch.
697 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
698 // BBToCheck is not an exit block if it is inside loop L.
699 if (L.contains(&BBToCheck))
700 return false;
701 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
702 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
703 return false;
704 // We do not unswitch a block that only has an unreachable statement, as
705 // it's possible this is a previously unswitched block. Only unswitch if
706 // either the terminator is not unreachable, or, if it is, it's not the only
707 // instruction in the block.
708 auto *TI = BBToCheck.getTerminator();
709 bool isUnreachable = isa<UnreachableInst>(TI);
710 return !isUnreachable ||
711 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
712 };
713
714 SmallVector<int, 4> ExitCaseIndices;
715 for (auto Case : SI.cases())
716 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
717 ExitCaseIndices.push_back(Case.getCaseIndex());
718 BasicBlock *DefaultExitBB = nullptr;
719 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
720 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
721 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
722 DefaultExitBB = SI.getDefaultDest();
723 } else if (ExitCaseIndices.empty())
724 return false;
725
726 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
727
728 if (MSSAU && VerifyMemorySSA)
729 MSSAU->getMemorySSA()->verifyMemorySSA();
730
731 // We may need to invalidate SCEVs for the outermost loop reached by any of
732 // the exits.
733 Loop *OuterL = &L;
734
735 if (DefaultExitBB) {
736 // Clear out the default destination temporarily to allow accurate
737 // predecessor lists to be examined below.
738 SI.setDefaultDest(nullptr);
739 // Check the loop containing this exit.
740 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
741 if (!ExitL || ExitL->contains(OuterL))
742 OuterL = ExitL;
743 }
744
745 // Store the exit cases into a separate data structure and remove them from
746 // the switch.
747 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
748 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
749 4> ExitCases;
750 ExitCases.reserve(ExitCaseIndices.size());
751 SwitchInstProfUpdateWrapper SIW(SI);
752 // We walk the case indices backwards so that we remove the last case first
753 // and don't disrupt the earlier indices.
754 for (unsigned Index : reverse(ExitCaseIndices)) {
755 auto CaseI = SI.case_begin() + Index;
756 // Compute the outer loop from this exit.
757 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
758 if (!ExitL || ExitL->contains(OuterL))
759 OuterL = ExitL;
760 // Save the value of this case.
761 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
762 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
763 // Delete the unswitched cases.
764 SIW.removeCase(CaseI);
765 }
766
767 if (SE) {
768 if (OuterL)
769 SE->forgetLoop(OuterL);
770 else
771 SE->forgetTopmostLoop(&L);
772 }
773
774 // Check if after this all of the remaining cases point at the same
775 // successor.
776 BasicBlock *CommonSuccBB = nullptr;
777 if (SI.getNumCases() > 0 &&
778 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
779 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
780 }))
781 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
782 if (!DefaultExitBB) {
783 // If we're not unswitching the default, we need it to match any cases to
784 // have a common successor or if we have no cases it is the common
785 // successor.
786 if (SI.getNumCases() == 0)
787 CommonSuccBB = SI.getDefaultDest();
788 else if (SI.getDefaultDest() != CommonSuccBB)
789 CommonSuccBB = nullptr;
790 }
791
792 // Split the preheader, so that we know that there is a safe place to insert
793 // the switch.
794 BasicBlock *OldPH = L.getLoopPreheader();
795 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
796 OldPH->getTerminator()->eraseFromParent();
797
798 // Now add the unswitched switch.
799 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
800 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
801
802 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
803 // First, we split any exit blocks with remaining in-loop predecessors. Then
804 // we update the PHIs in one of two ways depending on if there was a split.
805 // We walk in reverse so that we split in the same order as the cases
806 // appeared. This is purely for convenience of reading the resulting IR, but
807 // it doesn't cost anything really.
808 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
809 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
810 // Handle the default exit if necessary.
811 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
812 // ranges aren't quite powerful enough yet.
813 if (DefaultExitBB) {
814 if (pred_empty(DefaultExitBB)) {
815 UnswitchedExitBBs.insert(DefaultExitBB);
816 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
817 } else {
818 auto *SplitBB =
819 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
820 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
821 *ParentBB, *OldPH,
822 /*FullUnswitch*/ true);
823 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
824 }
825 }
826 // Note that we must use a reference in the for loop so that we update the
827 // container.
828 for (auto &ExitCase : reverse(ExitCases)) {
829 // Grab a reference to the exit block in the pair so that we can update it.
830 BasicBlock *ExitBB = std::get<1>(ExitCase);
831
832 // If this case is the last edge into the exit block, we can simply reuse it
833 // as it will no longer be a loop exit. No mapping necessary.
834 if (pred_empty(ExitBB)) {
835 // Only rewrite once.
836 if (UnswitchedExitBBs.insert(ExitBB).second)
837 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
838 continue;
839 }
840
841 // Otherwise we need to split the exit block so that we retain an exit
842 // block from the loop and a target for the unswitched condition.
843 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
844 if (!SplitExitBB) {
845 // If this is the first time we see this, do the split and remember it.
846 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
847 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
848 *ParentBB, *OldPH,
849 /*FullUnswitch*/ true);
850 }
851 // Update the case pair to point to the split block.
852 std::get<1>(ExitCase) = SplitExitBB;
853 }
854
855 // Now add the unswitched cases. We do this in reverse order as we built them
856 // in reverse order.
857 for (auto &ExitCase : reverse(ExitCases)) {
858 ConstantInt *CaseVal = std::get<0>(ExitCase);
859 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
860
861 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
862 }
863
864 // If the default was unswitched, re-point it and add explicit cases for
865 // entering the loop.
866 if (DefaultExitBB) {
867 NewSIW->setDefaultDest(DefaultExitBB);
868 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
869
870 // We removed all the exit cases, so we just copy the cases to the
871 // unswitched switch.
872 for (const auto &Case : SI.cases())
873 NewSIW.addCase(Case.getCaseValue(), NewPH,
874 SIW.getSuccessorWeight(Case.getSuccessorIndex()));
875 } else if (DefaultCaseWeight) {
876 // We have to set branch weight of the default case.
877 uint64_t SW = *DefaultCaseWeight;
878 for (const auto &Case : SI.cases()) {
879 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
880 assert(W &&
881 "case weight must be defined as default case weight is defined");
882 SW += *W;
883 }
884 NewSIW.setSuccessorWeight(0, SW);
885 }
886
887 // If we ended up with a common successor for every path through the switch
888 // after unswitching, rewrite it to an unconditional branch to make it easy
889 // to recognize. Otherwise we potentially have to recognize the default case
890 // pointing at unreachable and other complexity.
891 if (CommonSuccBB) {
892 BasicBlock *BB = SI.getParent();
893 // We may have had multiple edges to this common successor block, so remove
894 // them as predecessors. We skip the first one, either the default or the
895 // actual first case.
896 bool SkippedFirst = DefaultExitBB == nullptr;
897 for (auto Case : SI.cases()) {
898 assert(Case.getCaseSuccessor() == CommonSuccBB &&
899 "Non-common successor!");
900 (void)Case;
901 if (!SkippedFirst) {
902 SkippedFirst = true;
903 continue;
904 }
905 CommonSuccBB->removePredecessor(BB,
906 /*KeepOneInputPHIs*/ true);
907 }
908 // Now nuke the switch and replace it with a direct branch.
909 SIW.eraseFromParent();
910 BranchInst::Create(CommonSuccBB, BB);
911 } else if (DefaultExitBB) {
912 assert(SI.getNumCases() > 0 &&
913 "If we had no cases we'd have a common successor!");
914 // Move the last case to the default successor. This is valid as if the
915 // default got unswitched it cannot be reached. This has the advantage of
916 // being simple and keeping the number of edges from this switch to
917 // successors the same, and avoiding any PHI update complexity.
918 auto LastCaseI = std::prev(SI.case_end());
919
920 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
921 SIW.setSuccessorWeight(
922 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
923 SIW.removeCase(LastCaseI);
924 }
925
926 // Walk the unswitched exit blocks and the unswitched split blocks and update
927 // the dominator tree based on the CFG edits. While we are walking unordered
928 // containers here, the API for applyUpdates takes an unordered list of
929 // updates and requires them to not contain duplicates.
930 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
931 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
932 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
933 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
934 }
935 for (auto SplitUnswitchedPair : SplitExitBBMap) {
936 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
937 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
938 }
939
940 if (MSSAU) {
941 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
942 if (VerifyMemorySSA)
943 MSSAU->getMemorySSA()->verifyMemorySSA();
944 } else {
945 DT.applyUpdates(DTUpdates);
946 }
947
948 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
949
950 // We may have changed the nesting relationship for this loop so hoist it to
951 // its correct parent if needed.
952 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
953
954 if (MSSAU && VerifyMemorySSA)
955 MSSAU->getMemorySSA()->verifyMemorySSA();
956
957 ++NumTrivial;
958 ++NumSwitches;
959 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
960 return true;
961 }
962
963 /// This routine scans the loop to find a branch or switch which occurs before
964 /// any side effects occur. These can potentially be unswitched without
965 /// duplicating the loop. If a branch or switch is successfully unswitched the
966 /// scanning continues to see if subsequent branches or switches have become
967 /// trivial. Once all trivial candidates have been unswitched, this routine
968 /// returns.
969 ///
970 /// The return value indicates whether anything was unswitched (and therefore
971 /// changed).
972 ///
973 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
974 /// invalidated by this.
unswitchAllTrivialConditions(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE,MemorySSAUpdater * MSSAU)975 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
976 LoopInfo &LI, ScalarEvolution *SE,
977 MemorySSAUpdater *MSSAU) {
978 bool Changed = false;
979
980 // If loop header has only one reachable successor we should keep looking for
981 // trivial condition candidates in the successor as well. An alternative is
982 // to constant fold conditions and merge successors into loop header (then we
983 // only need to check header's terminator). The reason for not doing this in
984 // LoopUnswitch pass is that it could potentially break LoopPassManager's
985 // invariants. Folding dead branches could either eliminate the current loop
986 // or make other loops unreachable. LCSSA form might also not be preserved
987 // after deleting branches. The following code keeps traversing loop header's
988 // successors until it finds the trivial condition candidate (condition that
989 // is not a constant). Since unswitching generates branches with constant
990 // conditions, this scenario could be very common in practice.
991 BasicBlock *CurrentBB = L.getHeader();
992 SmallPtrSet<BasicBlock *, 8> Visited;
993 Visited.insert(CurrentBB);
994 do {
995 // Check if there are any side-effecting instructions (e.g. stores, calls,
996 // volatile loads) in the part of the loop that the code *would* execute
997 // without unswitching.
998 if (MSSAU) // Possible early exit with MSSA
999 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
1000 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
1001 return Changed;
1002 if (llvm::any_of(*CurrentBB,
1003 [](Instruction &I) { return I.mayHaveSideEffects(); }))
1004 return Changed;
1005
1006 Instruction *CurrentTerm = CurrentBB->getTerminator();
1007
1008 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1009 // Don't bother trying to unswitch past a switch with a constant
1010 // condition. This should be removed prior to running this pass by
1011 // simplifycfg.
1012 if (isa<Constant>(SI->getCondition()))
1013 return Changed;
1014
1015 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
1016 // Couldn't unswitch this one so we're done.
1017 return Changed;
1018
1019 // Mark that we managed to unswitch something.
1020 Changed = true;
1021
1022 // If unswitching turned the terminator into an unconditional branch then
1023 // we can continue. The unswitching logic specifically works to fold any
1024 // cases it can into an unconditional branch to make it easier to
1025 // recognize here.
1026 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1027 if (!BI || BI->isConditional())
1028 return Changed;
1029
1030 CurrentBB = BI->getSuccessor(0);
1031 continue;
1032 }
1033
1034 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1035 if (!BI)
1036 // We do not understand other terminator instructions.
1037 return Changed;
1038
1039 // Don't bother trying to unswitch past an unconditional branch or a branch
1040 // with a constant value. These should be removed by simplifycfg prior to
1041 // running this pass.
1042 if (!BI->isConditional() ||
1043 isa<Constant>(skipTrivialSelect(BI->getCondition())))
1044 return Changed;
1045
1046 // Found a trivial condition candidate: non-foldable conditional branch. If
1047 // we fail to unswitch this, we can't do anything else that is trivial.
1048 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1049 return Changed;
1050
1051 // Mark that we managed to unswitch something.
1052 Changed = true;
1053
1054 // If we only unswitched some of the conditions feeding the branch, we won't
1055 // have collapsed it to a single successor.
1056 BI = cast<BranchInst>(CurrentBB->getTerminator());
1057 if (BI->isConditional())
1058 return Changed;
1059
1060 // Follow the newly unconditional branch into its successor.
1061 CurrentBB = BI->getSuccessor(0);
1062
1063 // When continuing, if we exit the loop or reach a previous visited block,
1064 // then we can not reach any trivial condition candidates (unfoldable
1065 // branch instructions or switch instructions) and no unswitch can happen.
1066 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1067
1068 return Changed;
1069 }
1070
1071 /// Build the cloned blocks for an unswitched copy of the given loop.
1072 ///
1073 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1074 /// after the split block (`SplitBB`) that will be used to select between the
1075 /// cloned and original loop.
1076 ///
1077 /// This routine handles cloning all of the necessary loop blocks and exit
1078 /// blocks including rewriting their instructions and the relevant PHI nodes.
1079 /// Any loop blocks or exit blocks which are dominated by a different successor
1080 /// than the one for this clone of the loop blocks can be trivially skipped. We
1081 /// use the `DominatingSucc` map to determine whether a block satisfies that
1082 /// property with a simple map lookup.
1083 ///
1084 /// It also correctly creates the unconditional branch in the cloned
1085 /// unswitched parent block to only point at the unswitched successor.
1086 ///
1087 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1088 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1089 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1090 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1091 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1092 /// instead the caller must recompute an accurate DT. It *does* correctly
1093 /// update the `AssumptionCache` provided in `AC`.
buildClonedLoopBlocks(Loop & L,BasicBlock * LoopPH,BasicBlock * SplitBB,ArrayRef<BasicBlock * > ExitBlocks,BasicBlock * ParentBB,BasicBlock * UnswitchedSuccBB,BasicBlock * ContinueSuccBB,const SmallDenseMap<BasicBlock *,BasicBlock *,16> & DominatingSucc,ValueToValueMapTy & VMap,SmallVectorImpl<DominatorTree::UpdateType> & DTUpdates,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)1094 static BasicBlock *buildClonedLoopBlocks(
1095 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1096 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1097 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1098 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1099 ValueToValueMapTy &VMap,
1100 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1101 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1102 SmallVector<BasicBlock *, 4> NewBlocks;
1103 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1104
1105 // We will need to clone a bunch of blocks, wrap up the clone operation in
1106 // a helper.
1107 auto CloneBlock = [&](BasicBlock *OldBB) {
1108 // Clone the basic block and insert it before the new preheader.
1109 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1110 NewBB->moveBefore(LoopPH);
1111
1112 // Record this block and the mapping.
1113 NewBlocks.push_back(NewBB);
1114 VMap[OldBB] = NewBB;
1115
1116 return NewBB;
1117 };
1118
1119 // We skip cloning blocks when they have a dominating succ that is not the
1120 // succ we are cloning for.
1121 auto SkipBlock = [&](BasicBlock *BB) {
1122 auto It = DominatingSucc.find(BB);
1123 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1124 };
1125
1126 // First, clone the preheader.
1127 auto *ClonedPH = CloneBlock(LoopPH);
1128
1129 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1130 for (auto *LoopBB : L.blocks())
1131 if (!SkipBlock(LoopBB))
1132 CloneBlock(LoopBB);
1133
1134 // Split all the loop exit edges so that when we clone the exit blocks, if
1135 // any of the exit blocks are *also* a preheader for some other loop, we
1136 // don't create multiple predecessors entering the loop header.
1137 for (auto *ExitBB : ExitBlocks) {
1138 if (SkipBlock(ExitBB))
1139 continue;
1140
1141 // When we are going to clone an exit, we don't need to clone all the
1142 // instructions in the exit block and we want to ensure we have an easy
1143 // place to merge the CFG, so split the exit first. This is always safe to
1144 // do because there cannot be any non-loop predecessors of a loop exit in
1145 // loop simplified form.
1146 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1147
1148 // Rearrange the names to make it easier to write test cases by having the
1149 // exit block carry the suffix rather than the merge block carrying the
1150 // suffix.
1151 MergeBB->takeName(ExitBB);
1152 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1153
1154 // Now clone the original exit block.
1155 auto *ClonedExitBB = CloneBlock(ExitBB);
1156 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1157 "Exit block should have been split to have one successor!");
1158 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1159 "Cloned exit block has the wrong successor!");
1160
1161 // Remap any cloned instructions and create a merge phi node for them.
1162 for (auto ZippedInsts : llvm::zip_first(
1163 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1164 llvm::make_range(ClonedExitBB->begin(),
1165 std::prev(ClonedExitBB->end())))) {
1166 Instruction &I = std::get<0>(ZippedInsts);
1167 Instruction &ClonedI = std::get<1>(ZippedInsts);
1168
1169 // The only instructions in the exit block should be PHI nodes and
1170 // potentially a landing pad.
1171 assert(
1172 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1173 "Bad instruction in exit block!");
1174 // We should have a value map between the instruction and its clone.
1175 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1176
1177 auto *MergePN =
1178 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1179 &*MergeBB->getFirstInsertionPt());
1180 I.replaceAllUsesWith(MergePN);
1181 MergePN->addIncoming(&I, ExitBB);
1182 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1183 }
1184 }
1185
1186 // Rewrite the instructions in the cloned blocks to refer to the instructions
1187 // in the cloned blocks. We have to do this as a second pass so that we have
1188 // everything available. Also, we have inserted new instructions which may
1189 // include assume intrinsics, so we update the assumption cache while
1190 // processing this.
1191 for (auto *ClonedBB : NewBlocks)
1192 for (Instruction &I : *ClonedBB) {
1193 RemapInstruction(&I, VMap,
1194 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1195 if (auto *II = dyn_cast<AssumeInst>(&I))
1196 AC.registerAssumption(II);
1197 }
1198
1199 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1200 // have spurious incoming values.
1201 for (auto *LoopBB : L.blocks())
1202 if (SkipBlock(LoopBB))
1203 for (auto *SuccBB : successors(LoopBB))
1204 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1205 for (PHINode &PN : ClonedSuccBB->phis())
1206 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1207
1208 // Remove the cloned parent as a predecessor of any successor we ended up
1209 // cloning other than the unswitched one.
1210 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1211 for (auto *SuccBB : successors(ParentBB)) {
1212 if (SuccBB == UnswitchedSuccBB)
1213 continue;
1214
1215 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1216 if (!ClonedSuccBB)
1217 continue;
1218
1219 ClonedSuccBB->removePredecessor(ClonedParentBB,
1220 /*KeepOneInputPHIs*/ true);
1221 }
1222
1223 // Replace the cloned branch with an unconditional branch to the cloned
1224 // unswitched successor.
1225 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1226 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1227 // Trivial Simplification. If Terminator is a conditional branch and
1228 // condition becomes dead - erase it.
1229 Value *ClonedConditionToErase = nullptr;
1230 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1231 ClonedConditionToErase = BI->getCondition();
1232 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1233 ClonedConditionToErase = SI->getCondition();
1234
1235 ClonedTerminator->eraseFromParent();
1236 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1237
1238 if (ClonedConditionToErase)
1239 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1240 MSSAU);
1241
1242 // If there are duplicate entries in the PHI nodes because of multiple edges
1243 // to the unswitched successor, we need to nuke all but one as we replaced it
1244 // with a direct branch.
1245 for (PHINode &PN : ClonedSuccBB->phis()) {
1246 bool Found = false;
1247 // Loop over the incoming operands backwards so we can easily delete as we
1248 // go without invalidating the index.
1249 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1250 if (PN.getIncomingBlock(i) != ClonedParentBB)
1251 continue;
1252 if (!Found) {
1253 Found = true;
1254 continue;
1255 }
1256 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1257 }
1258 }
1259
1260 // Record the domtree updates for the new blocks.
1261 SmallPtrSet<BasicBlock *, 4> SuccSet;
1262 for (auto *ClonedBB : NewBlocks) {
1263 for (auto *SuccBB : successors(ClonedBB))
1264 if (SuccSet.insert(SuccBB).second)
1265 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1266 SuccSet.clear();
1267 }
1268
1269 return ClonedPH;
1270 }
1271
1272 /// Recursively clone the specified loop and all of its children.
1273 ///
1274 /// The target parent loop for the clone should be provided, or can be null if
1275 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1276 /// with the provided value map. The entire original loop must be present in
1277 /// the value map. The cloned loop is returned.
cloneLoopNest(Loop & OrigRootL,Loop * RootParentL,const ValueToValueMapTy & VMap,LoopInfo & LI)1278 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1279 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1280 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1281 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1282 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1283 for (auto *BB : OrigL.blocks()) {
1284 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1285 ClonedL.addBlockEntry(ClonedBB);
1286 if (LI.getLoopFor(BB) == &OrigL)
1287 LI.changeLoopFor(ClonedBB, &ClonedL);
1288 }
1289 };
1290
1291 // We specially handle the first loop because it may get cloned into
1292 // a different parent and because we most commonly are cloning leaf loops.
1293 Loop *ClonedRootL = LI.AllocateLoop();
1294 if (RootParentL)
1295 RootParentL->addChildLoop(ClonedRootL);
1296 else
1297 LI.addTopLevelLoop(ClonedRootL);
1298 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1299
1300 if (OrigRootL.isInnermost())
1301 return ClonedRootL;
1302
1303 // If we have a nest, we can quickly clone the entire loop nest using an
1304 // iterative approach because it is a tree. We keep the cloned parent in the
1305 // data structure to avoid repeatedly querying through a map to find it.
1306 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1307 // Build up the loops to clone in reverse order as we'll clone them from the
1308 // back.
1309 for (Loop *ChildL : llvm::reverse(OrigRootL))
1310 LoopsToClone.push_back({ClonedRootL, ChildL});
1311 do {
1312 Loop *ClonedParentL, *L;
1313 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1314 Loop *ClonedL = LI.AllocateLoop();
1315 ClonedParentL->addChildLoop(ClonedL);
1316 AddClonedBlocksToLoop(*L, *ClonedL);
1317 for (Loop *ChildL : llvm::reverse(*L))
1318 LoopsToClone.push_back({ClonedL, ChildL});
1319 } while (!LoopsToClone.empty());
1320
1321 return ClonedRootL;
1322 }
1323
1324 /// Build the cloned loops of an original loop from unswitching.
1325 ///
1326 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1327 /// operation. We need to re-verify that there even is a loop (as the backedge
1328 /// may not have been cloned), and even if there are remaining backedges the
1329 /// backedge set may be different. However, we know that each child loop is
1330 /// undisturbed, we only need to find where to place each child loop within
1331 /// either any parent loop or within a cloned version of the original loop.
1332 ///
1333 /// Because child loops may end up cloned outside of any cloned version of the
1334 /// original loop, multiple cloned sibling loops may be created. All of them
1335 /// are returned so that the newly introduced loop nest roots can be
1336 /// identified.
buildClonedLoops(Loop & OrigL,ArrayRef<BasicBlock * > ExitBlocks,const ValueToValueMapTy & VMap,LoopInfo & LI,SmallVectorImpl<Loop * > & NonChildClonedLoops)1337 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1338 const ValueToValueMapTy &VMap, LoopInfo &LI,
1339 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1340 Loop *ClonedL = nullptr;
1341
1342 auto *OrigPH = OrigL.getLoopPreheader();
1343 auto *OrigHeader = OrigL.getHeader();
1344
1345 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1346 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1347
1348 // We need to know the loops of the cloned exit blocks to even compute the
1349 // accurate parent loop. If we only clone exits to some parent of the
1350 // original parent, we want to clone into that outer loop. We also keep track
1351 // of the loops that our cloned exit blocks participate in.
1352 Loop *ParentL = nullptr;
1353 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1354 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1355 ClonedExitsInLoops.reserve(ExitBlocks.size());
1356 for (auto *ExitBB : ExitBlocks)
1357 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1358 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1359 ExitLoopMap[ClonedExitBB] = ExitL;
1360 ClonedExitsInLoops.push_back(ClonedExitBB);
1361 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1362 ParentL = ExitL;
1363 }
1364 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1365 ParentL->contains(OrigL.getParentLoop())) &&
1366 "The computed parent loop should always contain (or be) the parent of "
1367 "the original loop.");
1368
1369 // We build the set of blocks dominated by the cloned header from the set of
1370 // cloned blocks out of the original loop. While not all of these will
1371 // necessarily be in the cloned loop, it is enough to establish that they
1372 // aren't in unreachable cycles, etc.
1373 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1374 for (auto *BB : OrigL.blocks())
1375 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1376 ClonedLoopBlocks.insert(ClonedBB);
1377
1378 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1379 // skipped cloning some region of this loop which can in turn skip some of
1380 // the backedges so we have to rebuild the blocks in the loop based on the
1381 // backedges that remain after cloning.
1382 SmallVector<BasicBlock *, 16> Worklist;
1383 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1384 for (auto *Pred : predecessors(ClonedHeader)) {
1385 // The only possible non-loop header predecessor is the preheader because
1386 // we know we cloned the loop in simplified form.
1387 if (Pred == ClonedPH)
1388 continue;
1389
1390 // Because the loop was in simplified form, the only non-loop predecessor
1391 // should be the preheader.
1392 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1393 "header other than the preheader "
1394 "that is not part of the loop!");
1395
1396 // Insert this block into the loop set and on the first visit (and if it
1397 // isn't the header we're currently walking) put it into the worklist to
1398 // recurse through.
1399 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1400 Worklist.push_back(Pred);
1401 }
1402
1403 // If we had any backedges then there *is* a cloned loop. Put the header into
1404 // the loop set and then walk the worklist backwards to find all the blocks
1405 // that remain within the loop after cloning.
1406 if (!BlocksInClonedLoop.empty()) {
1407 BlocksInClonedLoop.insert(ClonedHeader);
1408
1409 while (!Worklist.empty()) {
1410 BasicBlock *BB = Worklist.pop_back_val();
1411 assert(BlocksInClonedLoop.count(BB) &&
1412 "Didn't put block into the loop set!");
1413
1414 // Insert any predecessors that are in the possible set into the cloned
1415 // set, and if the insert is successful, add them to the worklist. Note
1416 // that we filter on the blocks that are definitely reachable via the
1417 // backedge to the loop header so we may prune out dead code within the
1418 // cloned loop.
1419 for (auto *Pred : predecessors(BB))
1420 if (ClonedLoopBlocks.count(Pred) &&
1421 BlocksInClonedLoop.insert(Pred).second)
1422 Worklist.push_back(Pred);
1423 }
1424
1425 ClonedL = LI.AllocateLoop();
1426 if (ParentL) {
1427 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1428 ParentL->addChildLoop(ClonedL);
1429 } else {
1430 LI.addTopLevelLoop(ClonedL);
1431 }
1432 NonChildClonedLoops.push_back(ClonedL);
1433
1434 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1435 // We don't want to just add the cloned loop blocks based on how we
1436 // discovered them. The original order of blocks was carefully built in
1437 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1438 // that logic, we just re-walk the original blocks (and those of the child
1439 // loops) and filter them as we add them into the cloned loop.
1440 for (auto *BB : OrigL.blocks()) {
1441 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1442 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1443 continue;
1444
1445 // Directly add the blocks that are only in this loop.
1446 if (LI.getLoopFor(BB) == &OrigL) {
1447 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1448 continue;
1449 }
1450
1451 // We want to manually add it to this loop and parents.
1452 // Registering it with LoopInfo will happen when we clone the top
1453 // loop for this block.
1454 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1455 PL->addBlockEntry(ClonedBB);
1456 }
1457
1458 // Now add each child loop whose header remains within the cloned loop. All
1459 // of the blocks within the loop must satisfy the same constraints as the
1460 // header so once we pass the header checks we can just clone the entire
1461 // child loop nest.
1462 for (Loop *ChildL : OrigL) {
1463 auto *ClonedChildHeader =
1464 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1465 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1466 continue;
1467
1468 #ifndef NDEBUG
1469 // We should never have a cloned child loop header but fail to have
1470 // all of the blocks for that child loop.
1471 for (auto *ChildLoopBB : ChildL->blocks())
1472 assert(BlocksInClonedLoop.count(
1473 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1474 "Child cloned loop has a header within the cloned outer "
1475 "loop but not all of its blocks!");
1476 #endif
1477
1478 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1479 }
1480 }
1481
1482 // Now that we've handled all the components of the original loop that were
1483 // cloned into a new loop, we still need to handle anything from the original
1484 // loop that wasn't in a cloned loop.
1485
1486 // Figure out what blocks are left to place within any loop nest containing
1487 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1488 // them.
1489 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1490 if (BlocksInClonedLoop.empty())
1491 UnloopedBlockSet.insert(ClonedPH);
1492 for (auto *ClonedBB : ClonedLoopBlocks)
1493 if (!BlocksInClonedLoop.count(ClonedBB))
1494 UnloopedBlockSet.insert(ClonedBB);
1495
1496 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1497 // backwards across these to process them inside out. The order shouldn't
1498 // matter as we're just trying to build up the map from inside-out; we use
1499 // the map in a more stably ordered way below.
1500 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1501 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1502 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1503 ExitLoopMap.lookup(RHS)->getLoopDepth();
1504 });
1505
1506 // Populate the existing ExitLoopMap with everything reachable from each
1507 // exit, starting from the inner most exit.
1508 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1509 assert(Worklist.empty() && "Didn't clear worklist!");
1510
1511 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1512 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1513
1514 // Walk the CFG back until we hit the cloned PH adding everything reachable
1515 // and in the unlooped set to this exit block's loop.
1516 Worklist.push_back(ExitBB);
1517 do {
1518 BasicBlock *BB = Worklist.pop_back_val();
1519 // We can stop recursing at the cloned preheader (if we get there).
1520 if (BB == ClonedPH)
1521 continue;
1522
1523 for (BasicBlock *PredBB : predecessors(BB)) {
1524 // If this pred has already been moved to our set or is part of some
1525 // (inner) loop, no update needed.
1526 if (!UnloopedBlockSet.erase(PredBB)) {
1527 assert(
1528 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1529 "Predecessor not mapped to a loop!");
1530 continue;
1531 }
1532
1533 // We just insert into the loop set here. We'll add these blocks to the
1534 // exit loop after we build up the set in an order that doesn't rely on
1535 // predecessor order (which in turn relies on use list order).
1536 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1537 (void)Inserted;
1538 assert(Inserted && "Should only visit an unlooped block once!");
1539
1540 // And recurse through to its predecessors.
1541 Worklist.push_back(PredBB);
1542 }
1543 } while (!Worklist.empty());
1544 }
1545
1546 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1547 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1548 // in their original order adding them to the correct loop.
1549
1550 // We need a stable insertion order. We use the order of the original loop
1551 // order and map into the correct parent loop.
1552 for (auto *BB : llvm::concat<BasicBlock *const>(
1553 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1554 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1555 OuterL->addBasicBlockToLoop(BB, LI);
1556
1557 #ifndef NDEBUG
1558 for (auto &BBAndL : ExitLoopMap) {
1559 auto *BB = BBAndL.first;
1560 auto *OuterL = BBAndL.second;
1561 assert(LI.getLoopFor(BB) == OuterL &&
1562 "Failed to put all blocks into outer loops!");
1563 }
1564 #endif
1565
1566 // Now that all the blocks are placed into the correct containing loop in the
1567 // absence of child loops, find all the potentially cloned child loops and
1568 // clone them into whatever outer loop we placed their header into.
1569 for (Loop *ChildL : OrigL) {
1570 auto *ClonedChildHeader =
1571 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1572 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1573 continue;
1574
1575 #ifndef NDEBUG
1576 for (auto *ChildLoopBB : ChildL->blocks())
1577 assert(VMap.count(ChildLoopBB) &&
1578 "Cloned a child loop header but not all of that loops blocks!");
1579 #endif
1580
1581 NonChildClonedLoops.push_back(cloneLoopNest(
1582 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1583 }
1584 }
1585
1586 static void
deleteDeadClonedBlocks(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,DominatorTree & DT,MemorySSAUpdater * MSSAU)1587 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1588 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1589 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1590 // Find all the dead clones, and remove them from their successors.
1591 SmallVector<BasicBlock *, 16> DeadBlocks;
1592 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1593 for (auto &VMap : VMaps)
1594 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1595 if (!DT.isReachableFromEntry(ClonedBB)) {
1596 for (BasicBlock *SuccBB : successors(ClonedBB))
1597 SuccBB->removePredecessor(ClonedBB);
1598 DeadBlocks.push_back(ClonedBB);
1599 }
1600
1601 // Remove all MemorySSA in the dead blocks
1602 if (MSSAU) {
1603 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1604 DeadBlocks.end());
1605 MSSAU->removeBlocks(DeadBlockSet);
1606 }
1607
1608 // Drop any remaining references to break cycles.
1609 for (BasicBlock *BB : DeadBlocks)
1610 BB->dropAllReferences();
1611 // Erase them from the IR.
1612 for (BasicBlock *BB : DeadBlocks)
1613 BB->eraseFromParent();
1614 }
1615
1616 static void
deleteDeadBlocksFromLoop(Loop & L,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU,function_ref<void (Loop &,StringRef)> DestroyLoopCB)1617 deleteDeadBlocksFromLoop(Loop &L,
1618 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1619 DominatorTree &DT, LoopInfo &LI,
1620 MemorySSAUpdater *MSSAU,
1621 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
1622 // Find all the dead blocks tied to this loop, and remove them from their
1623 // successors.
1624 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1625
1626 // Start with loop/exit blocks and get a transitive closure of reachable dead
1627 // blocks.
1628 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1629 ExitBlocks.end());
1630 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1631 while (!DeathCandidates.empty()) {
1632 auto *BB = DeathCandidates.pop_back_val();
1633 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1634 for (BasicBlock *SuccBB : successors(BB)) {
1635 SuccBB->removePredecessor(BB);
1636 DeathCandidates.push_back(SuccBB);
1637 }
1638 DeadBlockSet.insert(BB);
1639 }
1640 }
1641
1642 // Remove all MemorySSA in the dead blocks
1643 if (MSSAU)
1644 MSSAU->removeBlocks(DeadBlockSet);
1645
1646 // Filter out the dead blocks from the exit blocks list so that it can be
1647 // used in the caller.
1648 llvm::erase_if(ExitBlocks,
1649 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1650
1651 // Walk from this loop up through its parents removing all of the dead blocks.
1652 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1653 for (auto *BB : DeadBlockSet)
1654 ParentL->getBlocksSet().erase(BB);
1655 llvm::erase_if(ParentL->getBlocksVector(),
1656 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1657 }
1658
1659 // Now delete the dead child loops. This raw delete will clear them
1660 // recursively.
1661 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1662 if (!DeadBlockSet.count(ChildL->getHeader()))
1663 return false;
1664
1665 assert(llvm::all_of(ChildL->blocks(),
1666 [&](BasicBlock *ChildBB) {
1667 return DeadBlockSet.count(ChildBB);
1668 }) &&
1669 "If the child loop header is dead all blocks in the child loop must "
1670 "be dead as well!");
1671 DestroyLoopCB(*ChildL, ChildL->getName());
1672 LI.destroy(ChildL);
1673 return true;
1674 });
1675
1676 // Remove the loop mappings for the dead blocks and drop all the references
1677 // from these blocks to others to handle cyclic references as we start
1678 // deleting the blocks themselves.
1679 for (auto *BB : DeadBlockSet) {
1680 // Check that the dominator tree has already been updated.
1681 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1682 LI.changeLoopFor(BB, nullptr);
1683 // Drop all uses of the instructions to make sure we won't have dangling
1684 // uses in other blocks.
1685 for (auto &I : *BB)
1686 if (!I.use_empty())
1687 I.replaceAllUsesWith(PoisonValue::get(I.getType()));
1688 BB->dropAllReferences();
1689 }
1690
1691 // Actually delete the blocks now that they've been fully unhooked from the
1692 // IR.
1693 for (auto *BB : DeadBlockSet)
1694 BB->eraseFromParent();
1695 }
1696
1697 /// Recompute the set of blocks in a loop after unswitching.
1698 ///
1699 /// This walks from the original headers predecessors to rebuild the loop. We
1700 /// take advantage of the fact that new blocks can't have been added, and so we
1701 /// filter by the original loop's blocks. This also handles potentially
1702 /// unreachable code that we don't want to explore but might be found examining
1703 /// the predecessors of the header.
1704 ///
1705 /// If the original loop is no longer a loop, this will return an empty set. If
1706 /// it remains a loop, all the blocks within it will be added to the set
1707 /// (including those blocks in inner loops).
recomputeLoopBlockSet(Loop & L,LoopInfo & LI)1708 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1709 LoopInfo &LI) {
1710 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1711
1712 auto *PH = L.getLoopPreheader();
1713 auto *Header = L.getHeader();
1714
1715 // A worklist to use while walking backwards from the header.
1716 SmallVector<BasicBlock *, 16> Worklist;
1717
1718 // First walk the predecessors of the header to find the backedges. This will
1719 // form the basis of our walk.
1720 for (auto *Pred : predecessors(Header)) {
1721 // Skip the preheader.
1722 if (Pred == PH)
1723 continue;
1724
1725 // Because the loop was in simplified form, the only non-loop predecessor
1726 // is the preheader.
1727 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1728 "than the preheader that is not part of the "
1729 "loop!");
1730
1731 // Insert this block into the loop set and on the first visit and, if it
1732 // isn't the header we're currently walking, put it into the worklist to
1733 // recurse through.
1734 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1735 Worklist.push_back(Pred);
1736 }
1737
1738 // If no backedges were found, we're done.
1739 if (LoopBlockSet.empty())
1740 return LoopBlockSet;
1741
1742 // We found backedges, recurse through them to identify the loop blocks.
1743 while (!Worklist.empty()) {
1744 BasicBlock *BB = Worklist.pop_back_val();
1745 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1746
1747 // No need to walk past the header.
1748 if (BB == Header)
1749 continue;
1750
1751 // Because we know the inner loop structure remains valid we can use the
1752 // loop structure to jump immediately across the entire nested loop.
1753 // Further, because it is in loop simplified form, we can directly jump
1754 // to its preheader afterward.
1755 if (Loop *InnerL = LI.getLoopFor(BB))
1756 if (InnerL != &L) {
1757 assert(L.contains(InnerL) &&
1758 "Should not reach a loop *outside* this loop!");
1759 // The preheader is the only possible predecessor of the loop so
1760 // insert it into the set and check whether it was already handled.
1761 auto *InnerPH = InnerL->getLoopPreheader();
1762 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1763 "but not contain the inner loop "
1764 "preheader!");
1765 if (!LoopBlockSet.insert(InnerPH).second)
1766 // The only way to reach the preheader is through the loop body
1767 // itself so if it has been visited the loop is already handled.
1768 continue;
1769
1770 // Insert all of the blocks (other than those already present) into
1771 // the loop set. We expect at least the block that led us to find the
1772 // inner loop to be in the block set, but we may also have other loop
1773 // blocks if they were already enqueued as predecessors of some other
1774 // outer loop block.
1775 for (auto *InnerBB : InnerL->blocks()) {
1776 if (InnerBB == BB) {
1777 assert(LoopBlockSet.count(InnerBB) &&
1778 "Block should already be in the set!");
1779 continue;
1780 }
1781
1782 LoopBlockSet.insert(InnerBB);
1783 }
1784
1785 // Add the preheader to the worklist so we will continue past the
1786 // loop body.
1787 Worklist.push_back(InnerPH);
1788 continue;
1789 }
1790
1791 // Insert any predecessors that were in the original loop into the new
1792 // set, and if the insert is successful, add them to the worklist.
1793 for (auto *Pred : predecessors(BB))
1794 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1795 Worklist.push_back(Pred);
1796 }
1797
1798 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1799
1800 // We've found all the blocks participating in the loop, return our completed
1801 // set.
1802 return LoopBlockSet;
1803 }
1804
1805 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1806 ///
1807 /// The removal may have removed some child loops entirely but cannot have
1808 /// disturbed any remaining child loops. However, they may need to be hoisted
1809 /// to the parent loop (or to be top-level loops). The original loop may be
1810 /// completely removed.
1811 ///
1812 /// The sibling loops resulting from this update are returned. If the original
1813 /// loop remains a valid loop, it will be the first entry in this list with all
1814 /// of the newly sibling loops following it.
1815 ///
1816 /// Returns true if the loop remains a loop after unswitching, and false if it
1817 /// is no longer a loop after unswitching (and should not continue to be
1818 /// referenced).
rebuildLoopAfterUnswitch(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,LoopInfo & LI,SmallVectorImpl<Loop * > & HoistedLoops)1819 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1820 LoopInfo &LI,
1821 SmallVectorImpl<Loop *> &HoistedLoops) {
1822 auto *PH = L.getLoopPreheader();
1823
1824 // Compute the actual parent loop from the exit blocks. Because we may have
1825 // pruned some exits the loop may be different from the original parent.
1826 Loop *ParentL = nullptr;
1827 SmallVector<Loop *, 4> ExitLoops;
1828 SmallVector<BasicBlock *, 4> ExitsInLoops;
1829 ExitsInLoops.reserve(ExitBlocks.size());
1830 for (auto *ExitBB : ExitBlocks)
1831 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1832 ExitLoops.push_back(ExitL);
1833 ExitsInLoops.push_back(ExitBB);
1834 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1835 ParentL = ExitL;
1836 }
1837
1838 // Recompute the blocks participating in this loop. This may be empty if it
1839 // is no longer a loop.
1840 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1841
1842 // If we still have a loop, we need to re-set the loop's parent as the exit
1843 // block set changing may have moved it within the loop nest. Note that this
1844 // can only happen when this loop has a parent as it can only hoist the loop
1845 // *up* the nest.
1846 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1847 // Remove this loop's (original) blocks from all of the intervening loops.
1848 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1849 IL = IL->getParentLoop()) {
1850 IL->getBlocksSet().erase(PH);
1851 for (auto *BB : L.blocks())
1852 IL->getBlocksSet().erase(BB);
1853 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1854 return BB == PH || L.contains(BB);
1855 });
1856 }
1857
1858 LI.changeLoopFor(PH, ParentL);
1859 L.getParentLoop()->removeChildLoop(&L);
1860 if (ParentL)
1861 ParentL->addChildLoop(&L);
1862 else
1863 LI.addTopLevelLoop(&L);
1864 }
1865
1866 // Now we update all the blocks which are no longer within the loop.
1867 auto &Blocks = L.getBlocksVector();
1868 auto BlocksSplitI =
1869 LoopBlockSet.empty()
1870 ? Blocks.begin()
1871 : std::stable_partition(
1872 Blocks.begin(), Blocks.end(),
1873 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1874
1875 // Before we erase the list of unlooped blocks, build a set of them.
1876 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1877 if (LoopBlockSet.empty())
1878 UnloopedBlocks.insert(PH);
1879
1880 // Now erase these blocks from the loop.
1881 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1882 L.getBlocksSet().erase(BB);
1883 Blocks.erase(BlocksSplitI, Blocks.end());
1884
1885 // Sort the exits in ascending loop depth, we'll work backwards across these
1886 // to process them inside out.
1887 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1888 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1889 });
1890
1891 // We'll build up a set for each exit loop.
1892 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1893 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1894
1895 auto RemoveUnloopedBlocksFromLoop =
1896 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1897 for (auto *BB : UnloopedBlocks)
1898 L.getBlocksSet().erase(BB);
1899 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1900 return UnloopedBlocks.count(BB);
1901 });
1902 };
1903
1904 SmallVector<BasicBlock *, 16> Worklist;
1905 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1906 assert(Worklist.empty() && "Didn't clear worklist!");
1907 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1908
1909 // Grab the next exit block, in decreasing loop depth order.
1910 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1911 Loop &ExitL = *LI.getLoopFor(ExitBB);
1912 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1913
1914 // Erase all of the unlooped blocks from the loops between the previous
1915 // exit loop and this exit loop. This works because the ExitInLoops list is
1916 // sorted in increasing order of loop depth and thus we visit loops in
1917 // decreasing order of loop depth.
1918 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1919 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1920
1921 // Walk the CFG back until we hit the cloned PH adding everything reachable
1922 // and in the unlooped set to this exit block's loop.
1923 Worklist.push_back(ExitBB);
1924 do {
1925 BasicBlock *BB = Worklist.pop_back_val();
1926 // We can stop recursing at the cloned preheader (if we get there).
1927 if (BB == PH)
1928 continue;
1929
1930 for (BasicBlock *PredBB : predecessors(BB)) {
1931 // If this pred has already been moved to our set or is part of some
1932 // (inner) loop, no update needed.
1933 if (!UnloopedBlocks.erase(PredBB)) {
1934 assert((NewExitLoopBlocks.count(PredBB) ||
1935 ExitL.contains(LI.getLoopFor(PredBB))) &&
1936 "Predecessor not in a nested loop (or already visited)!");
1937 continue;
1938 }
1939
1940 // We just insert into the loop set here. We'll add these blocks to the
1941 // exit loop after we build up the set in a deterministic order rather
1942 // than the predecessor-influenced visit order.
1943 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1944 (void)Inserted;
1945 assert(Inserted && "Should only visit an unlooped block once!");
1946
1947 // And recurse through to its predecessors.
1948 Worklist.push_back(PredBB);
1949 }
1950 } while (!Worklist.empty());
1951
1952 // If blocks in this exit loop were directly part of the original loop (as
1953 // opposed to a child loop) update the map to point to this exit loop. This
1954 // just updates a map and so the fact that the order is unstable is fine.
1955 for (auto *BB : NewExitLoopBlocks)
1956 if (Loop *BBL = LI.getLoopFor(BB))
1957 if (BBL == &L || !L.contains(BBL))
1958 LI.changeLoopFor(BB, &ExitL);
1959
1960 // We will remove the remaining unlooped blocks from this loop in the next
1961 // iteration or below.
1962 NewExitLoopBlocks.clear();
1963 }
1964
1965 // Any remaining unlooped blocks are no longer part of any loop unless they
1966 // are part of some child loop.
1967 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1968 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1969 for (auto *BB : UnloopedBlocks)
1970 if (Loop *BBL = LI.getLoopFor(BB))
1971 if (BBL == &L || !L.contains(BBL))
1972 LI.changeLoopFor(BB, nullptr);
1973
1974 // Sink all the child loops whose headers are no longer in the loop set to
1975 // the parent (or to be top level loops). We reach into the loop and directly
1976 // update its subloop vector to make this batch update efficient.
1977 auto &SubLoops = L.getSubLoopsVector();
1978 auto SubLoopsSplitI =
1979 LoopBlockSet.empty()
1980 ? SubLoops.begin()
1981 : std::stable_partition(
1982 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1983 return LoopBlockSet.count(SubL->getHeader());
1984 });
1985 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1986 HoistedLoops.push_back(HoistedL);
1987 HoistedL->setParentLoop(nullptr);
1988
1989 // To compute the new parent of this hoisted loop we look at where we
1990 // placed the preheader above. We can't lookup the header itself because we
1991 // retained the mapping from the header to the hoisted loop. But the
1992 // preheader and header should have the exact same new parent computed
1993 // based on the set of exit blocks from the original loop as the preheader
1994 // is a predecessor of the header and so reached in the reverse walk. And
1995 // because the loops were all in simplified form the preheader of the
1996 // hoisted loop can't be part of some *other* loop.
1997 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1998 NewParentL->addChildLoop(HoistedL);
1999 else
2000 LI.addTopLevelLoop(HoistedL);
2001 }
2002 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
2003
2004 // Actually delete the loop if nothing remained within it.
2005 if (Blocks.empty()) {
2006 assert(SubLoops.empty() &&
2007 "Failed to remove all subloops from the original loop!");
2008 if (Loop *ParentL = L.getParentLoop())
2009 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
2010 else
2011 LI.removeLoop(llvm::find(LI, &L));
2012 // markLoopAsDeleted for L should be triggered by the caller (it is typically
2013 // done by using the UnswitchCB callback).
2014 LI.destroy(&L);
2015 return false;
2016 }
2017
2018 return true;
2019 }
2020
2021 /// Helper to visit a dominator subtree, invoking a callable on each node.
2022 ///
2023 /// Returning false at any point will stop walking past that node of the tree.
2024 template <typename CallableT>
visitDomSubTree(DominatorTree & DT,BasicBlock * BB,CallableT Callable)2025 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2026 SmallVector<DomTreeNode *, 4> DomWorklist;
2027 DomWorklist.push_back(DT[BB]);
2028 #ifndef NDEBUG
2029 SmallPtrSet<DomTreeNode *, 4> Visited;
2030 Visited.insert(DT[BB]);
2031 #endif
2032 do {
2033 DomTreeNode *N = DomWorklist.pop_back_val();
2034
2035 // Visit this node.
2036 if (!Callable(N->getBlock()))
2037 continue;
2038
2039 // Accumulate the child nodes.
2040 for (DomTreeNode *ChildN : *N) {
2041 assert(Visited.insert(ChildN).second &&
2042 "Cannot visit a node twice when walking a tree!");
2043 DomWorklist.push_back(ChildN);
2044 }
2045 } while (!DomWorklist.empty());
2046 }
2047
unswitchNontrivialInvariants(Loop & L,Instruction & TI,ArrayRef<Value * > Invariants,SmallVectorImpl<BasicBlock * > & ExitBlocks,IVConditionInfo & PartialIVInfo,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,function_ref<void (bool,bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU,function_ref<void (Loop &,StringRef)> DestroyLoopCB)2048 static void unswitchNontrivialInvariants(
2049 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2050 SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2051 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2052 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2053 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2054 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2055 auto *ParentBB = TI.getParent();
2056 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2057 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2058
2059 // We can only unswitch switches, conditional branches with an invariant
2060 // condition, or combining invariant conditions with an instruction or
2061 // partially invariant instructions.
2062 assert((SI || (BI && BI->isConditional())) &&
2063 "Can only unswitch switches and conditional branch!");
2064 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2065 bool FullUnswitch =
2066 SI || (skipTrivialSelect(BI->getCondition()) == Invariants[0] &&
2067 !PartiallyInvariant);
2068 if (FullUnswitch)
2069 assert(Invariants.size() == 1 &&
2070 "Cannot have other invariants with full unswitching!");
2071 else
2072 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2073 "Partial unswitching requires an instruction as the condition!");
2074
2075 if (MSSAU && VerifyMemorySSA)
2076 MSSAU->getMemorySSA()->verifyMemorySSA();
2077
2078 // Constant and BBs tracking the cloned and continuing successor. When we are
2079 // unswitching the entire condition, this can just be trivially chosen to
2080 // unswitch towards `true`. However, when we are unswitching a set of
2081 // invariants combined with `and` or `or` or partially invariant instructions,
2082 // the combining operation determines the best direction to unswitch: we want
2083 // to unswitch the direction that will collapse the branch.
2084 bool Direction = true;
2085 int ClonedSucc = 0;
2086 if (!FullUnswitch) {
2087 Value *Cond = skipTrivialSelect(BI->getCondition());
2088 (void)Cond;
2089 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2090 PartiallyInvariant) &&
2091 "Only `or`, `and`, an `select`, partially invariant instructions "
2092 "can combine invariants being unswitched.");
2093 if (!match(Cond, m_LogicalOr())) {
2094 if (match(Cond, m_LogicalAnd()) ||
2095 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2096 Direction = false;
2097 ClonedSucc = 1;
2098 }
2099 }
2100 }
2101
2102 BasicBlock *RetainedSuccBB =
2103 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2104 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2105 if (BI)
2106 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2107 else
2108 for (auto Case : SI->cases())
2109 if (Case.getCaseSuccessor() != RetainedSuccBB)
2110 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2111
2112 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2113 "Should not unswitch the same successor we are retaining!");
2114
2115 // The branch should be in this exact loop. Any inner loop's invariant branch
2116 // should be handled by unswitching that inner loop. The caller of this
2117 // routine should filter out any candidates that remain (but were skipped for
2118 // whatever reason).
2119 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2120
2121 // Compute the parent loop now before we start hacking on things.
2122 Loop *ParentL = L.getParentLoop();
2123 // Get blocks in RPO order for MSSA update, before changing the CFG.
2124 LoopBlocksRPO LBRPO(&L);
2125 if (MSSAU)
2126 LBRPO.perform(&LI);
2127
2128 // Compute the outer-most loop containing one of our exit blocks. This is the
2129 // furthest up our loopnest which can be mutated, which we will use below to
2130 // update things.
2131 Loop *OuterExitL = &L;
2132 for (auto *ExitBB : ExitBlocks) {
2133 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2134 if (!NewOuterExitL) {
2135 // We exited the entire nest with this block, so we're done.
2136 OuterExitL = nullptr;
2137 break;
2138 }
2139 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2140 OuterExitL = NewOuterExitL;
2141 }
2142
2143 // At this point, we're definitely going to unswitch something so invalidate
2144 // any cached information in ScalarEvolution for the outer most loop
2145 // containing an exit block and all nested loops.
2146 if (SE) {
2147 if (OuterExitL)
2148 SE->forgetLoop(OuterExitL);
2149 else
2150 SE->forgetTopmostLoop(&L);
2151 }
2152
2153 bool InsertFreeze = false;
2154 if (FreezeLoopUnswitchCond) {
2155 ICFLoopSafetyInfo SafetyInfo;
2156 SafetyInfo.computeLoopSafetyInfo(&L);
2157 InsertFreeze = !SafetyInfo.isGuaranteedToExecute(TI, &DT, &L);
2158 }
2159
2160 // If the edge from this terminator to a successor dominates that successor,
2161 // store a map from each block in its dominator subtree to it. This lets us
2162 // tell when cloning for a particular successor if a block is dominated by
2163 // some *other* successor with a single data structure. We use this to
2164 // significantly reduce cloning.
2165 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2166 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2167 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2168 if (SuccBB->getUniquePredecessor() ||
2169 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2170 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2171 }))
2172 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2173 DominatingSucc[BB] = SuccBB;
2174 return true;
2175 });
2176
2177 // Split the preheader, so that we know that there is a safe place to insert
2178 // the conditional branch. We will change the preheader to have a conditional
2179 // branch on LoopCond. The original preheader will become the split point
2180 // between the unswitched versions, and we will have a new preheader for the
2181 // original loop.
2182 BasicBlock *SplitBB = L.getLoopPreheader();
2183 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2184
2185 // Keep track of the dominator tree updates needed.
2186 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2187
2188 // Clone the loop for each unswitched successor.
2189 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2190 VMaps.reserve(UnswitchedSuccBBs.size());
2191 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2192 for (auto *SuccBB : UnswitchedSuccBBs) {
2193 VMaps.emplace_back(new ValueToValueMapTy());
2194 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2195 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2196 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2197 }
2198
2199 // Drop metadata if we may break its semantics by moving this instr into the
2200 // split block.
2201 if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2202 if (DropNonTrivialImplicitNullChecks)
2203 // Do not spend time trying to understand if we can keep it, just drop it
2204 // to save compile time.
2205 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2206 else {
2207 // It is only legal to preserve make.implicit metadata if we are
2208 // guaranteed no reach implicit null check after following this branch.
2209 ICFLoopSafetyInfo SafetyInfo;
2210 SafetyInfo.computeLoopSafetyInfo(&L);
2211 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2212 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2213 }
2214 }
2215
2216 // The stitching of the branched code back together depends on whether we're
2217 // doing full unswitching or not with the exception that we always want to
2218 // nuke the initial terminator placed in the split block.
2219 SplitBB->getTerminator()->eraseFromParent();
2220 if (FullUnswitch) {
2221 // Splice the terminator from the original loop and rewrite its
2222 // successors.
2223 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2224
2225 // Keep a clone of the terminator for MSSA updates.
2226 Instruction *NewTI = TI.clone();
2227 ParentBB->getInstList().push_back(NewTI);
2228
2229 // First wire up the moved terminator to the preheaders.
2230 if (BI) {
2231 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2232 BI->setSuccessor(ClonedSucc, ClonedPH);
2233 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2234 Value *Cond = skipTrivialSelect(BI->getCondition());
2235 if (InsertFreeze) {
2236 if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, BI, &DT))
2237 Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI);
2238 }
2239 BI->setCondition(Cond);
2240 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2241 } else {
2242 assert(SI && "Must either be a branch or switch!");
2243
2244 // Walk the cases and directly update their successors.
2245 assert(SI->getDefaultDest() == RetainedSuccBB &&
2246 "Not retaining default successor!");
2247 SI->setDefaultDest(LoopPH);
2248 for (auto &Case : SI->cases())
2249 if (Case.getCaseSuccessor() == RetainedSuccBB)
2250 Case.setSuccessor(LoopPH);
2251 else
2252 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2253
2254 if (InsertFreeze) {
2255 auto Cond = SI->getCondition();
2256 if (!isGuaranteedNotToBeUndefOrPoison(Cond, &AC, SI, &DT))
2257 SI->setCondition(new FreezeInst(Cond, Cond->getName() + ".fr", SI));
2258 }
2259 // We need to use the set to populate domtree updates as even when there
2260 // are multiple cases pointing at the same successor we only want to
2261 // remove and insert one edge in the domtree.
2262 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2263 DTUpdates.push_back(
2264 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2265 }
2266
2267 if (MSSAU) {
2268 DT.applyUpdates(DTUpdates);
2269 DTUpdates.clear();
2270
2271 // Remove all but one edge to the retained block and all unswitched
2272 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2273 // when we know we only keep a single edge for each case.
2274 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2275 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2276 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2277
2278 for (auto &VMap : VMaps)
2279 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2280 /*IgnoreIncomingWithNoClones=*/true);
2281 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2282
2283 // Remove all edges to unswitched blocks.
2284 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2285 MSSAU->removeEdge(ParentBB, SuccBB);
2286 }
2287
2288 // Now unhook the successor relationship as we'll be replacing
2289 // the terminator with a direct branch. This is much simpler for branches
2290 // than switches so we handle those first.
2291 if (BI) {
2292 // Remove the parent as a predecessor of the unswitched successor.
2293 assert(UnswitchedSuccBBs.size() == 1 &&
2294 "Only one possible unswitched block for a branch!");
2295 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2296 UnswitchedSuccBB->removePredecessor(ParentBB,
2297 /*KeepOneInputPHIs*/ true);
2298 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2299 } else {
2300 // Note that we actually want to remove the parent block as a predecessor
2301 // of *every* case successor. The case successor is either unswitched,
2302 // completely eliminating an edge from the parent to that successor, or it
2303 // is a duplicate edge to the retained successor as the retained successor
2304 // is always the default successor and as we'll replace this with a direct
2305 // branch we no longer need the duplicate entries in the PHI nodes.
2306 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2307 assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2308 "Not retaining default successor!");
2309 for (auto &Case : NewSI->cases())
2310 Case.getCaseSuccessor()->removePredecessor(
2311 ParentBB,
2312 /*KeepOneInputPHIs*/ true);
2313
2314 // We need to use the set to populate domtree updates as even when there
2315 // are multiple cases pointing at the same successor we only want to
2316 // remove and insert one edge in the domtree.
2317 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2318 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2319 }
2320
2321 // After MSSAU update, remove the cloned terminator instruction NewTI.
2322 ParentBB->getTerminator()->eraseFromParent();
2323
2324 // Create a new unconditional branch to the continuing block (as opposed to
2325 // the one cloned).
2326 BranchInst::Create(RetainedSuccBB, ParentBB);
2327 } else {
2328 assert(BI && "Only branches have partial unswitching.");
2329 assert(UnswitchedSuccBBs.size() == 1 &&
2330 "Only one possible unswitched block for a branch!");
2331 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2332 // When doing a partial unswitch, we have to do a bit more work to build up
2333 // the branch in the split block.
2334 if (PartiallyInvariant)
2335 buildPartialInvariantUnswitchConditionalBranch(
2336 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2337 else {
2338 buildPartialUnswitchConditionalBranch(
2339 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH,
2340 FreezeLoopUnswitchCond, BI, &AC, DT);
2341 }
2342 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2343
2344 if (MSSAU) {
2345 DT.applyUpdates(DTUpdates);
2346 DTUpdates.clear();
2347
2348 // Perform MSSA cloning updates.
2349 for (auto &VMap : VMaps)
2350 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2351 /*IgnoreIncomingWithNoClones=*/true);
2352 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2353 }
2354 }
2355
2356 // Apply the updates accumulated above to get an up-to-date dominator tree.
2357 DT.applyUpdates(DTUpdates);
2358
2359 // Now that we have an accurate dominator tree, first delete the dead cloned
2360 // blocks so that we can accurately build any cloned loops. It is important to
2361 // not delete the blocks from the original loop yet because we still want to
2362 // reference the original loop to understand the cloned loop's structure.
2363 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2364
2365 // Build the cloned loop structure itself. This may be substantially
2366 // different from the original structure due to the simplified CFG. This also
2367 // handles inserting all the cloned blocks into the correct loops.
2368 SmallVector<Loop *, 4> NonChildClonedLoops;
2369 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2370 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2371
2372 // Now that our cloned loops have been built, we can update the original loop.
2373 // First we delete the dead blocks from it and then we rebuild the loop
2374 // structure taking these deletions into account.
2375 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, DestroyLoopCB);
2376
2377 if (MSSAU && VerifyMemorySSA)
2378 MSSAU->getMemorySSA()->verifyMemorySSA();
2379
2380 SmallVector<Loop *, 4> HoistedLoops;
2381 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2382
2383 if (MSSAU && VerifyMemorySSA)
2384 MSSAU->getMemorySSA()->verifyMemorySSA();
2385
2386 // This transformation has a high risk of corrupting the dominator tree, and
2387 // the below steps to rebuild loop structures will result in hard to debug
2388 // errors in that case so verify that the dominator tree is sane first.
2389 // FIXME: Remove this when the bugs stop showing up and rely on existing
2390 // verification steps.
2391 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2392
2393 if (BI && !PartiallyInvariant) {
2394 // If we unswitched a branch which collapses the condition to a known
2395 // constant we want to replace all the uses of the invariants within both
2396 // the original and cloned blocks. We do this here so that we can use the
2397 // now updated dominator tree to identify which side the users are on.
2398 assert(UnswitchedSuccBBs.size() == 1 &&
2399 "Only one possible unswitched block for a branch!");
2400 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2401
2402 // When considering multiple partially-unswitched invariants
2403 // we cant just go replace them with constants in both branches.
2404 //
2405 // For 'AND' we infer that true branch ("continue") means true
2406 // for each invariant operand.
2407 // For 'OR' we can infer that false branch ("continue") means false
2408 // for each invariant operand.
2409 // So it happens that for multiple-partial case we dont replace
2410 // in the unswitched branch.
2411 bool ReplaceUnswitched =
2412 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2413
2414 ConstantInt *UnswitchedReplacement =
2415 Direction ? ConstantInt::getTrue(BI->getContext())
2416 : ConstantInt::getFalse(BI->getContext());
2417 ConstantInt *ContinueReplacement =
2418 Direction ? ConstantInt::getFalse(BI->getContext())
2419 : ConstantInt::getTrue(BI->getContext());
2420 for (Value *Invariant : Invariants) {
2421 assert(!isa<Constant>(Invariant) &&
2422 "Should not be replacing constant values!");
2423 // Use make_early_inc_range here as set invalidates the iterator.
2424 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2425 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2426 if (!UserI)
2427 continue;
2428
2429 // Replace it with the 'continue' side if in the main loop body, and the
2430 // unswitched if in the cloned blocks.
2431 if (DT.dominates(LoopPH, UserI->getParent()))
2432 U.set(ContinueReplacement);
2433 else if (ReplaceUnswitched &&
2434 DT.dominates(ClonedPH, UserI->getParent()))
2435 U.set(UnswitchedReplacement);
2436 }
2437 }
2438 }
2439
2440 // We can change which blocks are exit blocks of all the cloned sibling
2441 // loops, the current loop, and any parent loops which shared exit blocks
2442 // with the current loop. As a consequence, we need to re-form LCSSA for
2443 // them. But we shouldn't need to re-form LCSSA for any child loops.
2444 // FIXME: This could be made more efficient by tracking which exit blocks are
2445 // new, and focusing on them, but that isn't likely to be necessary.
2446 //
2447 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2448 // loop nest and update every loop that could have had its exits changed. We
2449 // also need to cover any intervening loops. We add all of these loops to
2450 // a list and sort them by loop depth to achieve this without updating
2451 // unnecessary loops.
2452 auto UpdateLoop = [&](Loop &UpdateL) {
2453 #ifndef NDEBUG
2454 UpdateL.verifyLoop();
2455 for (Loop *ChildL : UpdateL) {
2456 ChildL->verifyLoop();
2457 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2458 "Perturbed a child loop's LCSSA form!");
2459 }
2460 #endif
2461 // First build LCSSA for this loop so that we can preserve it when
2462 // forming dedicated exits. We don't want to perturb some other loop's
2463 // LCSSA while doing that CFG edit.
2464 formLCSSA(UpdateL, DT, &LI, SE);
2465
2466 // For loops reached by this loop's original exit blocks we may
2467 // introduced new, non-dedicated exits. At least try to re-form dedicated
2468 // exits for these loops. This may fail if they couldn't have dedicated
2469 // exits to start with.
2470 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2471 };
2472
2473 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2474 // and we can do it in any order as they don't nest relative to each other.
2475 //
2476 // Also check if any of the loops we have updated have become top-level loops
2477 // as that will necessitate widening the outer loop scope.
2478 for (Loop *UpdatedL :
2479 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2480 UpdateLoop(*UpdatedL);
2481 if (UpdatedL->isOutermost())
2482 OuterExitL = nullptr;
2483 }
2484 if (IsStillLoop) {
2485 UpdateLoop(L);
2486 if (L.isOutermost())
2487 OuterExitL = nullptr;
2488 }
2489
2490 // If the original loop had exit blocks, walk up through the outer most loop
2491 // of those exit blocks to update LCSSA and form updated dedicated exits.
2492 if (OuterExitL != &L)
2493 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2494 OuterL = OuterL->getParentLoop())
2495 UpdateLoop(*OuterL);
2496
2497 #ifndef NDEBUG
2498 // Verify the entire loop structure to catch any incorrect updates before we
2499 // progress in the pass pipeline.
2500 LI.verify(DT);
2501 #endif
2502
2503 // Now that we've unswitched something, make callbacks to report the changes.
2504 // For that we need to merge together the updated loops and the cloned loops
2505 // and check whether the original loop survived.
2506 SmallVector<Loop *, 4> SibLoops;
2507 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2508 if (UpdatedL->getParentLoop() == ParentL)
2509 SibLoops.push_back(UpdatedL);
2510 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2511
2512 if (MSSAU && VerifyMemorySSA)
2513 MSSAU->getMemorySSA()->verifyMemorySSA();
2514
2515 if (BI)
2516 ++NumBranches;
2517 else
2518 ++NumSwitches;
2519 }
2520
2521 /// Recursively compute the cost of a dominator subtree based on the per-block
2522 /// cost map provided.
2523 ///
2524 /// The recursive computation is memozied into the provided DT-indexed cost map
2525 /// to allow querying it for most nodes in the domtree without it becoming
2526 /// quadratic.
computeDomSubtreeCost(DomTreeNode & N,const SmallDenseMap<BasicBlock *,InstructionCost,4> & BBCostMap,SmallDenseMap<DomTreeNode *,InstructionCost,4> & DTCostMap)2527 static InstructionCost computeDomSubtreeCost(
2528 DomTreeNode &N,
2529 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2530 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2531 // Don't accumulate cost (or recurse through) blocks not in our block cost
2532 // map and thus not part of the duplication cost being considered.
2533 auto BBCostIt = BBCostMap.find(N.getBlock());
2534 if (BBCostIt == BBCostMap.end())
2535 return 0;
2536
2537 // Lookup this node to see if we already computed its cost.
2538 auto DTCostIt = DTCostMap.find(&N);
2539 if (DTCostIt != DTCostMap.end())
2540 return DTCostIt->second;
2541
2542 // If not, we have to compute it. We can't use insert above and update
2543 // because computing the cost may insert more things into the map.
2544 InstructionCost Cost = std::accumulate(
2545 N.begin(), N.end(), BBCostIt->second,
2546 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2547 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2548 });
2549 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2550 (void)Inserted;
2551 assert(Inserted && "Should not insert a node while visiting children!");
2552 return Cost;
2553 }
2554
2555 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2556 /// making the following replacement:
2557 ///
2558 /// --code before guard--
2559 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2560 /// --code after guard--
2561 ///
2562 /// into
2563 ///
2564 /// --code before guard--
2565 /// br i1 %cond, label %guarded, label %deopt
2566 ///
2567 /// guarded:
2568 /// --code after guard--
2569 ///
2570 /// deopt:
2571 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2572 /// unreachable
2573 ///
2574 /// It also makes all relevant DT and LI updates, so that all structures are in
2575 /// valid state after this transform.
2576 static BranchInst *
turnGuardIntoBranch(IntrinsicInst * GI,Loop & L,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)2577 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2578 SmallVectorImpl<BasicBlock *> &ExitBlocks,
2579 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2580 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2581 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2582 BasicBlock *CheckBB = GI->getParent();
2583
2584 if (MSSAU && VerifyMemorySSA)
2585 MSSAU->getMemorySSA()->verifyMemorySSA();
2586
2587 // Remove all CheckBB's successors from DomTree. A block can be seen among
2588 // successors more than once, but for DomTree it should be added only once.
2589 SmallPtrSet<BasicBlock *, 4> Successors;
2590 for (auto *Succ : successors(CheckBB))
2591 if (Successors.insert(Succ).second)
2592 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2593
2594 Instruction *DeoptBlockTerm =
2595 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2596 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2597 // SplitBlockAndInsertIfThen inserts control flow that branches to
2598 // DeoptBlockTerm if the condition is true. We want the opposite.
2599 CheckBI->swapSuccessors();
2600
2601 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2602 GuardedBlock->setName("guarded");
2603 CheckBI->getSuccessor(1)->setName("deopt");
2604 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2605
2606 // We now have a new exit block.
2607 ExitBlocks.push_back(CheckBI->getSuccessor(1));
2608
2609 if (MSSAU)
2610 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2611
2612 GI->moveBefore(DeoptBlockTerm);
2613 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2614
2615 // Add new successors of CheckBB into DomTree.
2616 for (auto *Succ : successors(CheckBB))
2617 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2618
2619 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2620 // successors.
2621 for (auto *Succ : Successors)
2622 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2623
2624 // Make proper changes to DT.
2625 DT.applyUpdates(DTUpdates);
2626 // Inform LI of a new loop block.
2627 L.addBasicBlockToLoop(GuardedBlock, LI);
2628
2629 if (MSSAU) {
2630 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2631 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2632 if (VerifyMemorySSA)
2633 MSSAU->getMemorySSA()->verifyMemorySSA();
2634 }
2635
2636 ++NumGuards;
2637 return CheckBI;
2638 }
2639
2640 /// Cost multiplier is a way to limit potentially exponential behavior
2641 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2642 /// candidates available. Also accounting for the number of "sibling" loops with
2643 /// the idea to account for previous unswitches that already happened on this
2644 /// cluster of loops. There was an attempt to keep this formula simple,
2645 /// just enough to limit the worst case behavior. Even if it is not that simple
2646 /// now it is still not an attempt to provide a detailed heuristic size
2647 /// prediction.
2648 ///
2649 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2650 /// unswitch candidates, making adequate predictions instead of wild guesses.
2651 /// That requires knowing not just the number of "remaining" candidates but
2652 /// also costs of unswitching for each of these candidates.
CalculateUnswitchCostMultiplier(Instruction & TI,Loop & L,LoopInfo & LI,DominatorTree & DT,ArrayRef<std::pair<Instruction *,TinyPtrVector<Value * >>> UnswitchCandidates)2653 static int CalculateUnswitchCostMultiplier(
2654 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2655 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2656 UnswitchCandidates) {
2657
2658 // Guards and other exiting conditions do not contribute to exponential
2659 // explosion as soon as they dominate the latch (otherwise there might be
2660 // another path to the latch remaining that does not allow to eliminate the
2661 // loop copy on unswitch).
2662 BasicBlock *Latch = L.getLoopLatch();
2663 BasicBlock *CondBlock = TI.getParent();
2664 if (DT.dominates(CondBlock, Latch) &&
2665 (isGuard(&TI) ||
2666 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2667 return L.contains(SuccBB);
2668 }) <= 1)) {
2669 NumCostMultiplierSkipped++;
2670 return 1;
2671 }
2672
2673 auto *ParentL = L.getParentLoop();
2674 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2675 : std::distance(LI.begin(), LI.end()));
2676 // Count amount of clones that all the candidates might cause during
2677 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2678 int UnswitchedClones = 0;
2679 for (auto Candidate : UnswitchCandidates) {
2680 Instruction *CI = Candidate.first;
2681 BasicBlock *CondBlock = CI->getParent();
2682 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2683 if (isGuard(CI)) {
2684 if (!SkipExitingSuccessors)
2685 UnswitchedClones++;
2686 continue;
2687 }
2688 int NonExitingSuccessors = llvm::count_if(
2689 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2690 return !SkipExitingSuccessors || L.contains(SuccBB);
2691 });
2692 UnswitchedClones += Log2_32(NonExitingSuccessors);
2693 }
2694
2695 // Ignore up to the "unscaled candidates" number of unswitch candidates
2696 // when calculating the power-of-two scaling of the cost. The main idea
2697 // with this control is to allow a small number of unswitches to happen
2698 // and rely more on siblings multiplier (see below) when the number
2699 // of candidates is small.
2700 unsigned ClonesPower =
2701 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2702
2703 // Allowing top-level loops to spread a bit more than nested ones.
2704 int SiblingsMultiplier =
2705 std::max((ParentL ? SiblingsCount
2706 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2707 1);
2708 // Compute the cost multiplier in a way that won't overflow by saturating
2709 // at an upper bound.
2710 int CostMultiplier;
2711 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2712 SiblingsMultiplier > UnswitchThreshold)
2713 CostMultiplier = UnswitchThreshold;
2714 else
2715 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2716 (int)UnswitchThreshold);
2717
2718 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2719 << " (siblings " << SiblingsMultiplier << " * clones "
2720 << (1 << ClonesPower) << ")"
2721 << " for unswitch candidate: " << TI << "\n");
2722 return CostMultiplier;
2723 }
2724
unswitchBestCondition(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,AAResults & AA,TargetTransformInfo & TTI,function_ref<void (bool,bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU,function_ref<void (Loop &,StringRef)> DestroyLoopCB)2725 static bool unswitchBestCondition(
2726 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2727 AAResults &AA, TargetTransformInfo &TTI,
2728 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2729 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2730 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
2731 // Collect all invariant conditions within this loop (as opposed to an inner
2732 // loop which would be handled when visiting that inner loop).
2733 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2734 UnswitchCandidates;
2735
2736 // Whether or not we should also collect guards in the loop.
2737 bool CollectGuards = false;
2738 if (UnswitchGuards) {
2739 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2740 Intrinsic::getName(Intrinsic::experimental_guard));
2741 if (GuardDecl && !GuardDecl->use_empty())
2742 CollectGuards = true;
2743 }
2744
2745 IVConditionInfo PartialIVInfo;
2746 for (auto *BB : L.blocks()) {
2747 if (LI.getLoopFor(BB) != &L)
2748 continue;
2749
2750 if (CollectGuards)
2751 for (auto &I : *BB)
2752 if (isGuard(&I)) {
2753 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2754 // TODO: Support AND, OR conditions and partial unswitching.
2755 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2756 UnswitchCandidates.push_back({&I, {Cond}});
2757 }
2758
2759 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2760 // We can only consider fully loop-invariant switch conditions as we need
2761 // to completely eliminate the switch after unswitching.
2762 if (!isa<Constant>(SI->getCondition()) &&
2763 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2764 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2765 continue;
2766 }
2767
2768 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2769 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2770 BI->getSuccessor(0) == BI->getSuccessor(1))
2771 continue;
2772
2773 Value *Cond = skipTrivialSelect(BI->getCondition());
2774 if (isa<Constant>(Cond))
2775 continue;
2776
2777 if (L.isLoopInvariant(Cond)) {
2778 UnswitchCandidates.push_back({BI, {Cond}});
2779 continue;
2780 }
2781
2782 Instruction &CondI = *cast<Instruction>(Cond);
2783 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2784 TinyPtrVector<Value *> Invariants =
2785 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2786 if (Invariants.empty())
2787 continue;
2788
2789 UnswitchCandidates.push_back({BI, std::move(Invariants)});
2790 continue;
2791 }
2792 }
2793
2794 Instruction *PartialIVCondBranch = nullptr;
2795 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2796 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2797 return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2798 })) {
2799 MemorySSA *MSSA = MSSAU->getMemorySSA();
2800 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2801 LLVM_DEBUG(
2802 dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2803 << *Info->InstToDuplicate[0] << "\n");
2804 PartialIVInfo = *Info;
2805 PartialIVCondBranch = L.getHeader()->getTerminator();
2806 TinyPtrVector<Value *> ValsToDuplicate;
2807 llvm::append_range(ValsToDuplicate, Info->InstToDuplicate);
2808 UnswitchCandidates.push_back(
2809 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2810 }
2811 }
2812
2813 // If we didn't find any candidates, we're done.
2814 if (UnswitchCandidates.empty())
2815 return false;
2816
2817 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2818 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2819 // irreducible control flow into reducible control flow and introduce new
2820 // loops "out of thin air". If we ever discover important use cases for doing
2821 // this, we can add support to loop unswitch, but it is a lot of complexity
2822 // for what seems little or no real world benefit.
2823 LoopBlocksRPO RPOT(&L);
2824 RPOT.perform(&LI);
2825 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2826 return false;
2827
2828 SmallVector<BasicBlock *, 4> ExitBlocks;
2829 L.getUniqueExitBlocks(ExitBlocks);
2830
2831 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2832 // instruction as we don't know how to split those exit blocks.
2833 // FIXME: We should teach SplitBlock to handle this and remove this
2834 // restriction.
2835 for (auto *ExitBB : ExitBlocks) {
2836 auto *I = ExitBB->getFirstNonPHI();
2837 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2838 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2839 "in exit block\n");
2840 return false;
2841 }
2842 }
2843
2844 LLVM_DEBUG(
2845 dbgs() << "Considering " << UnswitchCandidates.size()
2846 << " non-trivial loop invariant conditions for unswitching.\n");
2847
2848 // Given that unswitching these terminators will require duplicating parts of
2849 // the loop, so we need to be able to model that cost. Compute the ephemeral
2850 // values and set up a data structure to hold per-BB costs. We cache each
2851 // block's cost so that we don't recompute this when considering different
2852 // subsets of the loop for duplication during unswitching.
2853 SmallPtrSet<const Value *, 4> EphValues;
2854 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2855 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2856
2857 // Compute the cost of each block, as well as the total loop cost. Also, bail
2858 // out if we see instructions which are incompatible with loop unswitching
2859 // (convergent, noduplicate, or cross-basic-block tokens).
2860 // FIXME: We might be able to safely handle some of these in non-duplicated
2861 // regions.
2862 TargetTransformInfo::TargetCostKind CostKind =
2863 L.getHeader()->getParent()->hasMinSize()
2864 ? TargetTransformInfo::TCK_CodeSize
2865 : TargetTransformInfo::TCK_SizeAndLatency;
2866 InstructionCost LoopCost = 0;
2867 for (auto *BB : L.blocks()) {
2868 InstructionCost Cost = 0;
2869 for (auto &I : *BB) {
2870 if (EphValues.count(&I))
2871 continue;
2872
2873 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2874 return false;
2875 if (auto *CB = dyn_cast<CallBase>(&I))
2876 if (CB->isConvergent() || CB->cannotDuplicate())
2877 return false;
2878
2879 Cost += TTI.getUserCost(&I, CostKind);
2880 }
2881 assert(Cost >= 0 && "Must not have negative costs!");
2882 LoopCost += Cost;
2883 assert(LoopCost >= 0 && "Must not have negative loop costs!");
2884 BBCostMap[BB] = Cost;
2885 }
2886 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
2887
2888 // Now we find the best candidate by searching for the one with the following
2889 // properties in order:
2890 //
2891 // 1) An unswitching cost below the threshold
2892 // 2) The smallest number of duplicated unswitch candidates (to avoid
2893 // creating redundant subsequent unswitching)
2894 // 3) The smallest cost after unswitching.
2895 //
2896 // We prioritize reducing fanout of unswitch candidates provided the cost
2897 // remains below the threshold because this has a multiplicative effect.
2898 //
2899 // This requires memoizing each dominator subtree to avoid redundant work.
2900 //
2901 // FIXME: Need to actually do the number of candidates part above.
2902 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2903 // Given a terminator which might be unswitched, computes the non-duplicated
2904 // cost for that terminator.
2905 auto ComputeUnswitchedCost = [&](Instruction &TI,
2906 bool FullUnswitch) -> InstructionCost {
2907 BasicBlock &BB = *TI.getParent();
2908 SmallPtrSet<BasicBlock *, 4> Visited;
2909
2910 InstructionCost Cost = 0;
2911 for (BasicBlock *SuccBB : successors(&BB)) {
2912 // Don't count successors more than once.
2913 if (!Visited.insert(SuccBB).second)
2914 continue;
2915
2916 // If this is a partial unswitch candidate, then it must be a conditional
2917 // branch with a condition of either `or`, `and`, their corresponding
2918 // select forms or partially invariant instructions. In that case, one of
2919 // the successors is necessarily duplicated, so don't even try to remove
2920 // its cost.
2921 if (!FullUnswitch) {
2922 auto &BI = cast<BranchInst>(TI);
2923 Value *Cond = skipTrivialSelect(BI.getCondition());
2924 if (match(Cond, m_LogicalAnd())) {
2925 if (SuccBB == BI.getSuccessor(1))
2926 continue;
2927 } else if (match(Cond, m_LogicalOr())) {
2928 if (SuccBB == BI.getSuccessor(0))
2929 continue;
2930 } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2931 SuccBB == BI.getSuccessor(0)) ||
2932 (!PartialIVInfo.KnownValue->isOneValue() &&
2933 SuccBB == BI.getSuccessor(1)))
2934 continue;
2935 }
2936
2937 // This successor's domtree will not need to be duplicated after
2938 // unswitching if the edge to the successor dominates it (and thus the
2939 // entire tree). This essentially means there is no other path into this
2940 // subtree and so it will end up live in only one clone of the loop.
2941 if (SuccBB->getUniquePredecessor() ||
2942 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2943 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2944 })) {
2945 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2946 assert(Cost <= LoopCost &&
2947 "Non-duplicated cost should never exceed total loop cost!");
2948 }
2949 }
2950
2951 // Now scale the cost by the number of unique successors minus one. We
2952 // subtract one because there is already at least one copy of the entire
2953 // loop. This is computing the new cost of unswitching a condition.
2954 // Note that guards always have 2 unique successors that are implicit and
2955 // will be materialized if we decide to unswitch it.
2956 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2957 assert(SuccessorsCount > 1 &&
2958 "Cannot unswitch a condition without multiple distinct successors!");
2959 return (LoopCost - Cost) * (SuccessorsCount - 1);
2960 };
2961 Instruction *BestUnswitchTI = nullptr;
2962 InstructionCost BestUnswitchCost = 0;
2963 ArrayRef<Value *> BestUnswitchInvariants;
2964 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2965 Instruction &TI = *TerminatorAndInvariants.first;
2966 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2967 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2968 InstructionCost CandidateCost = ComputeUnswitchedCost(
2969 TI, /*FullUnswitch*/ !BI ||
2970 (Invariants.size() == 1 &&
2971 Invariants[0] == skipTrivialSelect(BI->getCondition())));
2972 // Calculate cost multiplier which is a tool to limit potentially
2973 // exponential behavior of loop-unswitch.
2974 if (EnableUnswitchCostMultiplier) {
2975 int CostMultiplier =
2976 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2977 assert(
2978 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2979 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2980 CandidateCost *= CostMultiplier;
2981 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2982 << " (multiplier: " << CostMultiplier << ")"
2983 << " for unswitch candidate: " << TI << "\n");
2984 } else {
2985 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2986 << " for unswitch candidate: " << TI << "\n");
2987 }
2988
2989 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2990 BestUnswitchTI = &TI;
2991 BestUnswitchCost = CandidateCost;
2992 BestUnswitchInvariants = Invariants;
2993 }
2994 }
2995 assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2996
2997 if (BestUnswitchCost >= UnswitchThreshold) {
2998 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2999 << BestUnswitchCost << "\n");
3000 return false;
3001 }
3002
3003 if (BestUnswitchTI != PartialIVCondBranch)
3004 PartialIVInfo.InstToDuplicate.clear();
3005
3006 // If the best candidate is a guard, turn it into a branch.
3007 if (isGuard(BestUnswitchTI))
3008 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
3009 ExitBlocks, DT, LI, MSSAU);
3010
3011 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "
3012 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
3013 << "\n");
3014 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
3015 ExitBlocks, PartialIVInfo, DT, LI, AC,
3016 UnswitchCB, SE, MSSAU, DestroyLoopCB);
3017 return true;
3018 }
3019
3020 /// Unswitch control flow predicated on loop invariant conditions.
3021 ///
3022 /// This first hoists all branches or switches which are trivial (IE, do not
3023 /// require duplicating any part of the loop) out of the loop body. It then
3024 /// looks at other loop invariant control flows and tries to unswitch those as
3025 /// well by cloning the loop if the result is small enough.
3026 ///
3027 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3028 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
3029 /// valid (i.e. its use is enabled).
3030 ///
3031 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3032 /// true, we will attempt to do non-trivial unswitching as well as trivial
3033 /// unswitching.
3034 ///
3035 /// The `UnswitchCB` callback provided will be run after unswitching is
3036 /// complete, with the first parameter set to `true` if the provided loop
3037 /// remains a loop, and a list of new sibling loops created.
3038 ///
3039 /// If `SE` is non-null, we will update that analysis based on the unswitching
3040 /// done.
3041 static bool
unswitchLoop(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,AAResults & AA,TargetTransformInfo & TTI,bool Trivial,bool NonTrivial,function_ref<void (bool,bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE,MemorySSAUpdater * MSSAU,function_ref<void (Loop &,StringRef)> DestroyLoopCB)3042 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
3043 AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
3044 bool NonTrivial,
3045 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
3046 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
3047 function_ref<void(Loop &, StringRef)> DestroyLoopCB) {
3048 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3049 "Loops must be in LCSSA form before unswitching.");
3050
3051 // Must be in loop simplified form: we need a preheader and dedicated exits.
3052 if (!L.isLoopSimplifyForm())
3053 return false;
3054
3055 // Try trivial unswitch first before loop over other basic blocks in the loop.
3056 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3057 // If we unswitched successfully we will want to clean up the loop before
3058 // processing it further so just mark it as unswitched and return.
3059 UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3060 return true;
3061 }
3062
3063 // Check whether we should continue with non-trivial conditions.
3064 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3065 // unswitching for testing and debugging.
3066 // NonTrivial: Parameter that enables non-trivial unswitching for this
3067 // invocation of the transform. But this should be allowed only
3068 // for targets without branch divergence.
3069 //
3070 // FIXME: If divergence analysis becomes available to a loop
3071 // transform, we should allow unswitching for non-trivial uniform
3072 // branches even on targets that have divergence.
3073 // https://bugs.llvm.org/show_bug.cgi?id=48819
3074 bool ContinueWithNonTrivial =
3075 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3076 if (!ContinueWithNonTrivial)
3077 return false;
3078
3079 // Skip non-trivial unswitching for optsize functions.
3080 if (L.getHeader()->getParent()->hasOptSize())
3081 return false;
3082
3083 // Skip non-trivial unswitching for loops that cannot be cloned.
3084 if (!L.isSafeToClone())
3085 return false;
3086
3087 // For non-trivial unswitching, because it often creates new loops, we rely on
3088 // the pass manager to iterate on the loops rather than trying to immediately
3089 // reach a fixed point. There is no substantial advantage to iterating
3090 // internally, and if any of the new loops are simplified enough to contain
3091 // trivial unswitching we want to prefer those.
3092
3093 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3094 // a partial unswitch when possible below the threshold.
3095 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU,
3096 DestroyLoopCB))
3097 return true;
3098
3099 // No other opportunities to unswitch.
3100 return false;
3101 }
3102
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)3103 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3104 LoopStandardAnalysisResults &AR,
3105 LPMUpdater &U) {
3106 Function &F = *L.getHeader()->getParent();
3107 (void)F;
3108
3109 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3110 << "\n");
3111
3112 // Save the current loop name in a variable so that we can report it even
3113 // after it has been deleted.
3114 std::string LoopName = std::string(L.getName());
3115
3116 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3117 bool PartiallyInvariant,
3118 ArrayRef<Loop *> NewLoops) {
3119 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3120 if (!NewLoops.empty())
3121 U.addSiblingLoops(NewLoops);
3122
3123 // If the current loop remains valid, we should revisit it to catch any
3124 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3125 if (CurrentLoopValid) {
3126 if (PartiallyInvariant) {
3127 // Mark the new loop as partially unswitched, to avoid unswitching on
3128 // the same condition again.
3129 auto &Context = L.getHeader()->getContext();
3130 MDNode *DisableUnswitchMD = MDNode::get(
3131 Context,
3132 MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3133 MDNode *NewLoopID = makePostTransformationMetadata(
3134 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3135 {DisableUnswitchMD});
3136 L.setLoopID(NewLoopID);
3137 } else
3138 U.revisitCurrentLoop();
3139 } else
3140 U.markLoopAsDeleted(L, LoopName);
3141 };
3142
3143 auto DestroyLoopCB = [&U](Loop &L, StringRef Name) {
3144 U.markLoopAsDeleted(L, Name);
3145 };
3146
3147 Optional<MemorySSAUpdater> MSSAU;
3148 if (AR.MSSA) {
3149 MSSAU = MemorySSAUpdater(AR.MSSA);
3150 if (VerifyMemorySSA)
3151 AR.MSSA->verifyMemorySSA();
3152 }
3153 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3154 UnswitchCB, &AR.SE, MSSAU ? MSSAU.getPointer() : nullptr,
3155 DestroyLoopCB))
3156 return PreservedAnalyses::all();
3157
3158 if (AR.MSSA && VerifyMemorySSA)
3159 AR.MSSA->verifyMemorySSA();
3160
3161 // Historically this pass has had issues with the dominator tree so verify it
3162 // in asserts builds.
3163 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3164
3165 auto PA = getLoopPassPreservedAnalyses();
3166 if (AR.MSSA)
3167 PA.preserve<MemorySSAAnalysis>();
3168 return PA;
3169 }
3170
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)3171 void SimpleLoopUnswitchPass::printPipeline(
3172 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3173 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3174 OS, MapClassName2PassName);
3175
3176 OS << "<";
3177 OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3178 OS << (Trivial ? "" : "no-") << "trivial";
3179 OS << ">";
3180 }
3181
3182 namespace {
3183
3184 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3185 bool NonTrivial;
3186
3187 public:
3188 static char ID; // Pass ID, replacement for typeid
3189
SimpleLoopUnswitchLegacyPass(bool NonTrivial=false)3190 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3191 : LoopPass(ID), NonTrivial(NonTrivial) {
3192 initializeSimpleLoopUnswitchLegacyPassPass(
3193 *PassRegistry::getPassRegistry());
3194 }
3195
3196 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3197
getAnalysisUsage(AnalysisUsage & AU) const3198 void getAnalysisUsage(AnalysisUsage &AU) const override {
3199 AU.addRequired<AssumptionCacheTracker>();
3200 AU.addRequired<TargetTransformInfoWrapperPass>();
3201 AU.addRequired<MemorySSAWrapperPass>();
3202 AU.addPreserved<MemorySSAWrapperPass>();
3203 getLoopAnalysisUsage(AU);
3204 }
3205 };
3206
3207 } // end anonymous namespace
3208
runOnLoop(Loop * L,LPPassManager & LPM)3209 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3210 if (skipLoop(L))
3211 return false;
3212
3213 Function &F = *L->getHeader()->getParent();
3214
3215 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3216 << "\n");
3217
3218 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3219 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3220 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3221 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3222 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3223 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3224 MemorySSAUpdater MSSAU(MSSA);
3225
3226 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3227 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3228
3229 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3230 ArrayRef<Loop *> NewLoops) {
3231 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3232 for (auto *NewL : NewLoops)
3233 LPM.addLoop(*NewL);
3234
3235 // If the current loop remains valid, re-add it to the queue. This is
3236 // a little wasteful as we'll finish processing the current loop as well,
3237 // but it is the best we can do in the old PM.
3238 if (CurrentLoopValid) {
3239 // If the current loop has been unswitched using a partially invariant
3240 // condition, we should not re-add the current loop to avoid unswitching
3241 // on the same condition again.
3242 if (!PartiallyInvariant)
3243 LPM.addLoop(*L);
3244 } else
3245 LPM.markLoopAsDeleted(*L);
3246 };
3247
3248 auto DestroyLoopCB = [&LPM](Loop &L, StringRef /* Name */) {
3249 LPM.markLoopAsDeleted(L);
3250 };
3251
3252 if (VerifyMemorySSA)
3253 MSSA->verifyMemorySSA();
3254
3255 bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial,
3256 UnswitchCB, SE, &MSSAU, DestroyLoopCB);
3257
3258 if (VerifyMemorySSA)
3259 MSSA->verifyMemorySSA();
3260
3261 // Historically this pass has had issues with the dominator tree so verify it
3262 // in asserts builds.
3263 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3264
3265 return Changed;
3266 }
3267
3268 char SimpleLoopUnswitchLegacyPass::ID = 0;
3269 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3270 "Simple unswitch loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3271 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3272 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3273 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3274 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3275 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3276 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3277 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3278 "Simple unswitch loops", false, false)
3279
3280 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3281 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
3282 }
3283