1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis member access expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/Overload.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/Lex/Preprocessor.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Scope.h"
23 #include "clang/Sema/ScopeInfo.h"
24 #include "clang/Sema/SemaInternal.h"
25
26 using namespace clang;
27 using namespace sema;
28
29 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
30
31 /// Determines if the given class is provably not derived from all of
32 /// the prospective base classes.
isProvablyNotDerivedFrom(Sema & SemaRef,CXXRecordDecl * Record,const BaseSet & Bases)33 static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
34 const BaseSet &Bases) {
35 auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
36 return !Bases.count(Base->getCanonicalDecl());
37 };
38 return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
39 }
40
41 enum IMAKind {
42 /// The reference is definitely not an instance member access.
43 IMA_Static,
44
45 /// The reference may be an implicit instance member access.
46 IMA_Mixed,
47
48 /// The reference may be to an instance member, but it might be invalid if
49 /// so, because the context is not an instance method.
50 IMA_Mixed_StaticContext,
51
52 /// The reference may be to an instance member, but it is invalid if
53 /// so, because the context is from an unrelated class.
54 IMA_Mixed_Unrelated,
55
56 /// The reference is definitely an implicit instance member access.
57 IMA_Instance,
58
59 /// The reference may be to an unresolved using declaration.
60 IMA_Unresolved,
61
62 /// The reference is a contextually-permitted abstract member reference.
63 IMA_Abstract,
64
65 /// The reference may be to an unresolved using declaration and the
66 /// context is not an instance method.
67 IMA_Unresolved_StaticContext,
68
69 // The reference refers to a field which is not a member of the containing
70 // class, which is allowed because we're in C++11 mode and the context is
71 // unevaluated.
72 IMA_Field_Uneval_Context,
73
74 /// All possible referrents are instance members and the current
75 /// context is not an instance method.
76 IMA_Error_StaticContext,
77
78 /// All possible referrents are instance members of an unrelated
79 /// class.
80 IMA_Error_Unrelated
81 };
82
83 /// The given lookup names class member(s) and is not being used for
84 /// an address-of-member expression. Classify the type of access
85 /// according to whether it's possible that this reference names an
86 /// instance member. This is best-effort in dependent contexts; it is okay to
87 /// conservatively answer "yes", in which case some errors will simply
88 /// not be caught until template-instantiation.
ClassifyImplicitMemberAccess(Sema & SemaRef,const LookupResult & R)89 static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
90 const LookupResult &R) {
91 assert(!R.empty() && (*R.begin())->isCXXClassMember());
92
93 DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
94
95 bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
96 (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
97
98 if (R.isUnresolvableResult())
99 return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
100
101 // Collect all the declaring classes of instance members we find.
102 bool hasNonInstance = false;
103 bool isField = false;
104 BaseSet Classes;
105 for (NamedDecl *D : R) {
106 // Look through any using decls.
107 D = D->getUnderlyingDecl();
108
109 if (D->isCXXInstanceMember()) {
110 isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
111 isa<IndirectFieldDecl>(D);
112
113 CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
114 Classes.insert(R->getCanonicalDecl());
115 } else
116 hasNonInstance = true;
117 }
118
119 // If we didn't find any instance members, it can't be an implicit
120 // member reference.
121 if (Classes.empty())
122 return IMA_Static;
123
124 // C++11 [expr.prim.general]p12:
125 // An id-expression that denotes a non-static data member or non-static
126 // member function of a class can only be used:
127 // (...)
128 // - if that id-expression denotes a non-static data member and it
129 // appears in an unevaluated operand.
130 //
131 // This rule is specific to C++11. However, we also permit this form
132 // in unevaluated inline assembly operands, like the operand to a SIZE.
133 IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
134 assert(!AbstractInstanceResult);
135 switch (SemaRef.ExprEvalContexts.back().Context) {
136 case Sema::ExpressionEvaluationContext::Unevaluated:
137 case Sema::ExpressionEvaluationContext::UnevaluatedList:
138 if (isField && SemaRef.getLangOpts().CPlusPlus11)
139 AbstractInstanceResult = IMA_Field_Uneval_Context;
140 break;
141
142 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
143 AbstractInstanceResult = IMA_Abstract;
144 break;
145
146 case Sema::ExpressionEvaluationContext::DiscardedStatement:
147 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
148 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
149 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
150 break;
151 }
152
153 // If the current context is not an instance method, it can't be
154 // an implicit member reference.
155 if (isStaticContext) {
156 if (hasNonInstance)
157 return IMA_Mixed_StaticContext;
158
159 return AbstractInstanceResult ? AbstractInstanceResult
160 : IMA_Error_StaticContext;
161 }
162
163 CXXRecordDecl *contextClass;
164 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
165 contextClass = MD->getParent()->getCanonicalDecl();
166 else
167 contextClass = cast<CXXRecordDecl>(DC);
168
169 // [class.mfct.non-static]p3:
170 // ...is used in the body of a non-static member function of class X,
171 // if name lookup (3.4.1) resolves the name in the id-expression to a
172 // non-static non-type member of some class C [...]
173 // ...if C is not X or a base class of X, the class member access expression
174 // is ill-formed.
175 if (R.getNamingClass() &&
176 contextClass->getCanonicalDecl() !=
177 R.getNamingClass()->getCanonicalDecl()) {
178 // If the naming class is not the current context, this was a qualified
179 // member name lookup, and it's sufficient to check that we have the naming
180 // class as a base class.
181 Classes.clear();
182 Classes.insert(R.getNamingClass()->getCanonicalDecl());
183 }
184
185 // If we can prove that the current context is unrelated to all the
186 // declaring classes, it can't be an implicit member reference (in
187 // which case it's an error if any of those members are selected).
188 if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
189 return hasNonInstance ? IMA_Mixed_Unrelated :
190 AbstractInstanceResult ? AbstractInstanceResult :
191 IMA_Error_Unrelated;
192
193 return (hasNonInstance ? IMA_Mixed : IMA_Instance);
194 }
195
196 /// Diagnose a reference to a field with no object available.
diagnoseInstanceReference(Sema & SemaRef,const CXXScopeSpec & SS,NamedDecl * Rep,const DeclarationNameInfo & nameInfo)197 static void diagnoseInstanceReference(Sema &SemaRef,
198 const CXXScopeSpec &SS,
199 NamedDecl *Rep,
200 const DeclarationNameInfo &nameInfo) {
201 SourceLocation Loc = nameInfo.getLoc();
202 SourceRange Range(Loc);
203 if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
204
205 // Look through using shadow decls and aliases.
206 Rep = Rep->getUnderlyingDecl();
207
208 DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
209 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
210 CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
211 CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
212
213 bool InStaticMethod = Method && Method->isStatic();
214 bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
215
216 if (IsField && InStaticMethod)
217 // "invalid use of member 'x' in static member function"
218 SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
219 << Range << nameInfo.getName();
220 else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
221 !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
222 // Unqualified lookup in a non-static member function found a member of an
223 // enclosing class.
224 SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
225 << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
226 else if (IsField)
227 SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
228 << nameInfo.getName() << Range;
229 else
230 SemaRef.Diag(Loc, diag::err_member_call_without_object)
231 << Range;
232 }
233
234 /// Builds an expression which might be an implicit member expression.
235 ExprResult
BuildPossibleImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,const Scope * S)236 Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
237 SourceLocation TemplateKWLoc,
238 LookupResult &R,
239 const TemplateArgumentListInfo *TemplateArgs,
240 const Scope *S) {
241 switch (ClassifyImplicitMemberAccess(*this, R)) {
242 case IMA_Instance:
243 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
244
245 case IMA_Mixed:
246 case IMA_Mixed_Unrelated:
247 case IMA_Unresolved:
248 return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
249 S);
250
251 case IMA_Field_Uneval_Context:
252 Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
253 << R.getLookupNameInfo().getName();
254 LLVM_FALLTHROUGH;
255 case IMA_Static:
256 case IMA_Abstract:
257 case IMA_Mixed_StaticContext:
258 case IMA_Unresolved_StaticContext:
259 if (TemplateArgs || TemplateKWLoc.isValid())
260 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
261 return BuildDeclarationNameExpr(SS, R, false);
262
263 case IMA_Error_StaticContext:
264 case IMA_Error_Unrelated:
265 diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
266 R.getLookupNameInfo());
267 return ExprError();
268 }
269
270 llvm_unreachable("unexpected instance member access kind");
271 }
272
273 /// Determine whether input char is from rgba component set.
274 static bool
IsRGBA(char c)275 IsRGBA(char c) {
276 switch (c) {
277 case 'r':
278 case 'g':
279 case 'b':
280 case 'a':
281 return true;
282 default:
283 return false;
284 }
285 }
286
287 // OpenCL v1.1, s6.1.7
288 // The component swizzle length must be in accordance with the acceptable
289 // vector sizes.
IsValidOpenCLComponentSwizzleLength(unsigned len)290 static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
291 {
292 return (len >= 1 && len <= 4) || len == 8 || len == 16;
293 }
294
295 /// Check an ext-vector component access expression.
296 ///
297 /// VK should be set in advance to the value kind of the base
298 /// expression.
299 static QualType
CheckExtVectorComponent(Sema & S,QualType baseType,ExprValueKind & VK,SourceLocation OpLoc,const IdentifierInfo * CompName,SourceLocation CompLoc)300 CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
301 SourceLocation OpLoc, const IdentifierInfo *CompName,
302 SourceLocation CompLoc) {
303 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
304 // see FIXME there.
305 //
306 // FIXME: This logic can be greatly simplified by splitting it along
307 // halving/not halving and reworking the component checking.
308 const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
309
310 // The vector accessor can't exceed the number of elements.
311 const char *compStr = CompName->getNameStart();
312
313 // This flag determines whether or not the component is one of the four
314 // special names that indicate a subset of exactly half the elements are
315 // to be selected.
316 bool HalvingSwizzle = false;
317
318 // This flag determines whether or not CompName has an 's' char prefix,
319 // indicating that it is a string of hex values to be used as vector indices.
320 bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
321
322 bool HasRepeated = false;
323 bool HasIndex[16] = {};
324
325 int Idx;
326
327 // Check that we've found one of the special components, or that the component
328 // names must come from the same set.
329 if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
330 !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
331 HalvingSwizzle = true;
332 } else if (!HexSwizzle &&
333 (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
334 bool HasRGBA = IsRGBA(*compStr);
335 do {
336 // Ensure that xyzw and rgba components don't intermingle.
337 if (HasRGBA != IsRGBA(*compStr))
338 break;
339 if (HasIndex[Idx]) HasRepeated = true;
340 HasIndex[Idx] = true;
341 compStr++;
342 } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
343
344 // Emit a warning if an rgba selector is used earlier than OpenCL 2.2
345 if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
346 if (S.getLangOpts().OpenCL && S.getLangOpts().OpenCLVersion < 220) {
347 const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
348 S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
349 << StringRef(DiagBegin, 1)
350 << S.getLangOpts().OpenCLVersion << SourceRange(CompLoc);
351 }
352 }
353 } else {
354 if (HexSwizzle) compStr++;
355 while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
356 if (HasIndex[Idx]) HasRepeated = true;
357 HasIndex[Idx] = true;
358 compStr++;
359 }
360 }
361
362 if (!HalvingSwizzle && *compStr) {
363 // We didn't get to the end of the string. This means the component names
364 // didn't come from the same set *or* we encountered an illegal name.
365 S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
366 << StringRef(compStr, 1) << SourceRange(CompLoc);
367 return QualType();
368 }
369
370 // Ensure no component accessor exceeds the width of the vector type it
371 // operates on.
372 if (!HalvingSwizzle) {
373 compStr = CompName->getNameStart();
374
375 if (HexSwizzle)
376 compStr++;
377
378 while (*compStr) {
379 if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
380 S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
381 << baseType << SourceRange(CompLoc);
382 return QualType();
383 }
384 }
385 }
386
387 // OpenCL mode requires swizzle length to be in accordance with accepted
388 // sizes. Clang however supports arbitrary lengths for other languages.
389 if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
390 unsigned SwizzleLength = CompName->getLength();
391
392 if (HexSwizzle)
393 SwizzleLength--;
394
395 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
396 S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
397 << SwizzleLength << SourceRange(CompLoc);
398 return QualType();
399 }
400 }
401
402 // The component accessor looks fine - now we need to compute the actual type.
403 // The vector type is implied by the component accessor. For example,
404 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
405 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
406 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
407 unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
408 : CompName->getLength();
409 if (HexSwizzle)
410 CompSize--;
411
412 if (CompSize == 1)
413 return vecType->getElementType();
414
415 if (HasRepeated) VK = VK_RValue;
416
417 QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
418 // Now look up the TypeDefDecl from the vector type. Without this,
419 // diagostics look bad. We want extended vector types to appear built-in.
420 for (Sema::ExtVectorDeclsType::iterator
421 I = S.ExtVectorDecls.begin(S.getExternalSource()),
422 E = S.ExtVectorDecls.end();
423 I != E; ++I) {
424 if ((*I)->getUnderlyingType() == VT)
425 return S.Context.getTypedefType(*I);
426 }
427
428 return VT; // should never get here (a typedef type should always be found).
429 }
430
FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl * PDecl,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)431 static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
432 IdentifierInfo *Member,
433 const Selector &Sel,
434 ASTContext &Context) {
435 if (Member)
436 if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
437 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
438 return PD;
439 if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
440 return OMD;
441
442 for (const auto *I : PDecl->protocols()) {
443 if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
444 Context))
445 return D;
446 }
447 return nullptr;
448 }
449
FindGetterSetterNameDecl(const ObjCObjectPointerType * QIdTy,IdentifierInfo * Member,const Selector & Sel,ASTContext & Context)450 static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
451 IdentifierInfo *Member,
452 const Selector &Sel,
453 ASTContext &Context) {
454 // Check protocols on qualified interfaces.
455 Decl *GDecl = nullptr;
456 for (const auto *I : QIdTy->quals()) {
457 if (Member)
458 if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
459 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
460 GDecl = PD;
461 break;
462 }
463 // Also must look for a getter or setter name which uses property syntax.
464 if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
465 GDecl = OMD;
466 break;
467 }
468 }
469 if (!GDecl) {
470 for (const auto *I : QIdTy->quals()) {
471 // Search in the protocol-qualifier list of current protocol.
472 GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
473 if (GDecl)
474 return GDecl;
475 }
476 }
477 return GDecl;
478 }
479
480 ExprResult
ActOnDependentMemberExpr(Expr * BaseExpr,QualType BaseType,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)481 Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
482 bool IsArrow, SourceLocation OpLoc,
483 const CXXScopeSpec &SS,
484 SourceLocation TemplateKWLoc,
485 NamedDecl *FirstQualifierInScope,
486 const DeclarationNameInfo &NameInfo,
487 const TemplateArgumentListInfo *TemplateArgs) {
488 // Even in dependent contexts, try to diagnose base expressions with
489 // obviously wrong types, e.g.:
490 //
491 // T* t;
492 // t.f;
493 //
494 // In Obj-C++, however, the above expression is valid, since it could be
495 // accessing the 'f' property if T is an Obj-C interface. The extra check
496 // allows this, while still reporting an error if T is a struct pointer.
497 if (!IsArrow) {
498 const PointerType *PT = BaseType->getAs<PointerType>();
499 if (PT && (!getLangOpts().ObjC ||
500 PT->getPointeeType()->isRecordType())) {
501 assert(BaseExpr && "cannot happen with implicit member accesses");
502 Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
503 << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
504 return ExprError();
505 }
506 }
507
508 assert(BaseType->isDependentType() ||
509 NameInfo.getName().isDependentName() ||
510 isDependentScopeSpecifier(SS));
511
512 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
513 // must have pointer type, and the accessed type is the pointee.
514 return CXXDependentScopeMemberExpr::Create(
515 Context, BaseExpr, BaseType, IsArrow, OpLoc,
516 SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
517 NameInfo, TemplateArgs);
518 }
519
520 /// We know that the given qualified member reference points only to
521 /// declarations which do not belong to the static type of the base
522 /// expression. Diagnose the problem.
DiagnoseQualifiedMemberReference(Sema & SemaRef,Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,NamedDecl * rep,const DeclarationNameInfo & nameInfo)523 static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
524 Expr *BaseExpr,
525 QualType BaseType,
526 const CXXScopeSpec &SS,
527 NamedDecl *rep,
528 const DeclarationNameInfo &nameInfo) {
529 // If this is an implicit member access, use a different set of
530 // diagnostics.
531 if (!BaseExpr)
532 return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
533
534 SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
535 << SS.getRange() << rep << BaseType;
536 }
537
538 // Check whether the declarations we found through a nested-name
539 // specifier in a member expression are actually members of the base
540 // type. The restriction here is:
541 //
542 // C++ [expr.ref]p2:
543 // ... In these cases, the id-expression shall name a
544 // member of the class or of one of its base classes.
545 //
546 // So it's perfectly legitimate for the nested-name specifier to name
547 // an unrelated class, and for us to find an overload set including
548 // decls from classes which are not superclasses, as long as the decl
549 // we actually pick through overload resolution is from a superclass.
CheckQualifiedMemberReference(Expr * BaseExpr,QualType BaseType,const CXXScopeSpec & SS,const LookupResult & R)550 bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
551 QualType BaseType,
552 const CXXScopeSpec &SS,
553 const LookupResult &R) {
554 CXXRecordDecl *BaseRecord =
555 cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
556 if (!BaseRecord) {
557 // We can't check this yet because the base type is still
558 // dependent.
559 assert(BaseType->isDependentType());
560 return false;
561 }
562
563 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
564 // If this is an implicit member reference and we find a
565 // non-instance member, it's not an error.
566 if (!BaseExpr && !(*I)->isCXXInstanceMember())
567 return false;
568
569 // Note that we use the DC of the decl, not the underlying decl.
570 DeclContext *DC = (*I)->getDeclContext();
571 while (DC->isTransparentContext())
572 DC = DC->getParent();
573
574 if (!DC->isRecord())
575 continue;
576
577 CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
578 if (BaseRecord->getCanonicalDecl() == MemberRecord ||
579 !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
580 return false;
581 }
582
583 DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
584 R.getRepresentativeDecl(),
585 R.getLookupNameInfo());
586 return true;
587 }
588
589 namespace {
590
591 // Callback to only accept typo corrections that are either a ValueDecl or a
592 // FunctionTemplateDecl and are declared in the current record or, for a C++
593 // classes, one of its base classes.
594 class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
595 public:
RecordMemberExprValidatorCCC(const RecordType * RTy)596 explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
597 : Record(RTy->getDecl()) {
598 // Don't add bare keywords to the consumer since they will always fail
599 // validation by virtue of not being associated with any decls.
600 WantTypeSpecifiers = false;
601 WantExpressionKeywords = false;
602 WantCXXNamedCasts = false;
603 WantFunctionLikeCasts = false;
604 WantRemainingKeywords = false;
605 }
606
ValidateCandidate(const TypoCorrection & candidate)607 bool ValidateCandidate(const TypoCorrection &candidate) override {
608 NamedDecl *ND = candidate.getCorrectionDecl();
609 // Don't accept candidates that cannot be member functions, constants,
610 // variables, or templates.
611 if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
612 return false;
613
614 // Accept candidates that occur in the current record.
615 if (Record->containsDecl(ND))
616 return true;
617
618 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
619 // Accept candidates that occur in any of the current class' base classes.
620 for (const auto &BS : RD->bases()) {
621 if (const RecordType *BSTy =
622 dyn_cast_or_null<RecordType>(BS.getType().getTypePtrOrNull())) {
623 if (BSTy->getDecl()->containsDecl(ND))
624 return true;
625 }
626 }
627 }
628
629 return false;
630 }
631
632 private:
633 const RecordDecl *const Record;
634 };
635
636 }
637
LookupMemberExprInRecord(Sema & SemaRef,LookupResult & R,Expr * BaseExpr,const RecordType * RTy,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,bool HasTemplateArgs,SourceLocation TemplateKWLoc,TypoExpr * & TE)638 static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
639 Expr *BaseExpr,
640 const RecordType *RTy,
641 SourceLocation OpLoc, bool IsArrow,
642 CXXScopeSpec &SS, bool HasTemplateArgs,
643 SourceLocation TemplateKWLoc,
644 TypoExpr *&TE) {
645 SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
646 RecordDecl *RDecl = RTy->getDecl();
647 if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
648 SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
649 diag::err_typecheck_incomplete_tag,
650 BaseRange))
651 return true;
652
653 if (HasTemplateArgs || TemplateKWLoc.isValid()) {
654 // LookupTemplateName doesn't expect these both to exist simultaneously.
655 QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
656
657 bool MOUS;
658 return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
659 TemplateKWLoc);
660 }
661
662 DeclContext *DC = RDecl;
663 if (SS.isSet()) {
664 // If the member name was a qualified-id, look into the
665 // nested-name-specifier.
666 DC = SemaRef.computeDeclContext(SS, false);
667
668 if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
669 SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
670 << SS.getRange() << DC;
671 return true;
672 }
673
674 assert(DC && "Cannot handle non-computable dependent contexts in lookup");
675
676 if (!isa<TypeDecl>(DC)) {
677 SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
678 << DC << SS.getRange();
679 return true;
680 }
681 }
682
683 // The record definition is complete, now look up the member.
684 SemaRef.LookupQualifiedName(R, DC, SS);
685
686 if (!R.empty())
687 return false;
688
689 DeclarationName Typo = R.getLookupName();
690 SourceLocation TypoLoc = R.getNameLoc();
691
692 struct QueryState {
693 Sema &SemaRef;
694 DeclarationNameInfo NameInfo;
695 Sema::LookupNameKind LookupKind;
696 Sema::RedeclarationKind Redecl;
697 };
698 QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
699 R.redeclarationKind()};
700 TE = SemaRef.CorrectTypoDelayed(
701 R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS,
702 llvm::make_unique<RecordMemberExprValidatorCCC>(RTy),
703 [=, &SemaRef](const TypoCorrection &TC) {
704 if (TC) {
705 assert(!TC.isKeyword() &&
706 "Got a keyword as a correction for a member!");
707 bool DroppedSpecifier =
708 TC.WillReplaceSpecifier() &&
709 Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
710 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
711 << Typo << DC << DroppedSpecifier
712 << SS.getRange());
713 } else {
714 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
715 }
716 },
717 [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
718 LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
719 R.clear(); // Ensure there's no decls lingering in the shared state.
720 R.suppressDiagnostics();
721 R.setLookupName(TC.getCorrection());
722 for (NamedDecl *ND : TC)
723 R.addDecl(ND);
724 R.resolveKind();
725 return SemaRef.BuildMemberReferenceExpr(
726 BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
727 nullptr, R, nullptr, nullptr);
728 },
729 Sema::CTK_ErrorRecovery, DC);
730
731 return false;
732 }
733
734 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
735 ExprResult &BaseExpr, bool &IsArrow,
736 SourceLocation OpLoc, CXXScopeSpec &SS,
737 Decl *ObjCImpDecl, bool HasTemplateArgs,
738 SourceLocation TemplateKWLoc);
739
740 ExprResult
BuildMemberReferenceExpr(Expr * Base,QualType BaseType,SourceLocation OpLoc,bool IsArrow,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs,const Scope * S,ActOnMemberAccessExtraArgs * ExtraArgs)741 Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
742 SourceLocation OpLoc, bool IsArrow,
743 CXXScopeSpec &SS,
744 SourceLocation TemplateKWLoc,
745 NamedDecl *FirstQualifierInScope,
746 const DeclarationNameInfo &NameInfo,
747 const TemplateArgumentListInfo *TemplateArgs,
748 const Scope *S,
749 ActOnMemberAccessExtraArgs *ExtraArgs) {
750 if (BaseType->isDependentType() ||
751 (SS.isSet() && isDependentScopeSpecifier(SS)))
752 return ActOnDependentMemberExpr(Base, BaseType,
753 IsArrow, OpLoc,
754 SS, TemplateKWLoc, FirstQualifierInScope,
755 NameInfo, TemplateArgs);
756
757 LookupResult R(*this, NameInfo, LookupMemberName);
758
759 // Implicit member accesses.
760 if (!Base) {
761 TypoExpr *TE = nullptr;
762 QualType RecordTy = BaseType;
763 if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
764 if (LookupMemberExprInRecord(
765 *this, R, nullptr, RecordTy->getAs<RecordType>(), OpLoc, IsArrow,
766 SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
767 return ExprError();
768 if (TE)
769 return TE;
770
771 // Explicit member accesses.
772 } else {
773 ExprResult BaseResult = Base;
774 ExprResult Result =
775 LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
776 ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
777 TemplateArgs != nullptr, TemplateKWLoc);
778
779 if (BaseResult.isInvalid())
780 return ExprError();
781 Base = BaseResult.get();
782
783 if (Result.isInvalid())
784 return ExprError();
785
786 if (Result.get())
787 return Result;
788
789 // LookupMemberExpr can modify Base, and thus change BaseType
790 BaseType = Base->getType();
791 }
792
793 return BuildMemberReferenceExpr(Base, BaseType,
794 OpLoc, IsArrow, SS, TemplateKWLoc,
795 FirstQualifierInScope, R, TemplateArgs, S,
796 false, ExtraArgs);
797 }
798
799 ExprResult
BuildAnonymousStructUnionMemberReference(const CXXScopeSpec & SS,SourceLocation loc,IndirectFieldDecl * indirectField,DeclAccessPair foundDecl,Expr * baseObjectExpr,SourceLocation opLoc)800 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
801 SourceLocation loc,
802 IndirectFieldDecl *indirectField,
803 DeclAccessPair foundDecl,
804 Expr *baseObjectExpr,
805 SourceLocation opLoc) {
806 // First, build the expression that refers to the base object.
807
808 // Case 1: the base of the indirect field is not a field.
809 VarDecl *baseVariable = indirectField->getVarDecl();
810 CXXScopeSpec EmptySS;
811 if (baseVariable) {
812 assert(baseVariable->getType()->isRecordType());
813
814 // In principle we could have a member access expression that
815 // accesses an anonymous struct/union that's a static member of
816 // the base object's class. However, under the current standard,
817 // static data members cannot be anonymous structs or unions.
818 // Supporting this is as easy as building a MemberExpr here.
819 assert(!baseObjectExpr && "anonymous struct/union is static data member?");
820
821 DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
822
823 ExprResult result
824 = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
825 if (result.isInvalid()) return ExprError();
826
827 baseObjectExpr = result.get();
828 }
829
830 assert((baseVariable || baseObjectExpr) &&
831 "referencing anonymous struct/union without a base variable or "
832 "expression");
833
834 // Build the implicit member references to the field of the
835 // anonymous struct/union.
836 Expr *result = baseObjectExpr;
837 IndirectFieldDecl::chain_iterator
838 FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
839
840 // Case 2: the base of the indirect field is a field and the user
841 // wrote a member expression.
842 if (!baseVariable) {
843 FieldDecl *field = cast<FieldDecl>(*FI);
844
845 bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
846
847 // Make a nameInfo that properly uses the anonymous name.
848 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
849
850 // Build the first member access in the chain with full information.
851 result =
852 BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
853 SS, field, foundDecl, memberNameInfo)
854 .get();
855 if (!result)
856 return ExprError();
857 }
858
859 // In all cases, we should now skip the first declaration in the chain.
860 ++FI;
861
862 while (FI != FEnd) {
863 FieldDecl *field = cast<FieldDecl>(*FI++);
864
865 // FIXME: these are somewhat meaningless
866 DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
867 DeclAccessPair fakeFoundDecl =
868 DeclAccessPair::make(field, field->getAccess());
869
870 result =
871 BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
872 (FI == FEnd ? SS : EmptySS), field,
873 fakeFoundDecl, memberNameInfo)
874 .get();
875 }
876
877 return result;
878 }
879
880 static ExprResult
BuildMSPropertyRefExpr(Sema & S,Expr * BaseExpr,bool IsArrow,const CXXScopeSpec & SS,MSPropertyDecl * PD,const DeclarationNameInfo & NameInfo)881 BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
882 const CXXScopeSpec &SS,
883 MSPropertyDecl *PD,
884 const DeclarationNameInfo &NameInfo) {
885 // Property names are always simple identifiers and therefore never
886 // require any interesting additional storage.
887 return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
888 S.Context.PseudoObjectTy, VK_LValue,
889 SS.getWithLocInContext(S.Context),
890 NameInfo.getLoc());
891 }
892
893 /// Build a MemberExpr AST node.
BuildMemberExpr(Sema & SemaRef,ASTContext & C,Expr * Base,bool isArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,ValueDecl * Member,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo,QualType Ty,ExprValueKind VK,ExprObjectKind OK,const TemplateArgumentListInfo * TemplateArgs=nullptr)894 static MemberExpr *BuildMemberExpr(
895 Sema &SemaRef, ASTContext &C, Expr *Base, bool isArrow,
896 SourceLocation OpLoc, const CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
897 ValueDecl *Member, DeclAccessPair FoundDecl,
898 const DeclarationNameInfo &MemberNameInfo, QualType Ty, ExprValueKind VK,
899 ExprObjectKind OK, const TemplateArgumentListInfo *TemplateArgs = nullptr) {
900 assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
901 MemberExpr *E = MemberExpr::Create(
902 C, Base, isArrow, OpLoc, SS.getWithLocInContext(C), TemplateKWLoc, Member,
903 FoundDecl, MemberNameInfo, TemplateArgs, Ty, VK, OK);
904 SemaRef.MarkMemberReferenced(E);
905 return E;
906 }
907
908 /// Determine if the given scope is within a function-try-block handler.
IsInFnTryBlockHandler(const Scope * S)909 static bool IsInFnTryBlockHandler(const Scope *S) {
910 // Walk the scope stack until finding a FnTryCatchScope, or leave the
911 // function scope. If a FnTryCatchScope is found, check whether the TryScope
912 // flag is set. If it is not, it's a function-try-block handler.
913 for (; S != S->getFnParent(); S = S->getParent()) {
914 if (S->getFlags() & Scope::FnTryCatchScope)
915 return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
916 }
917 return false;
918 }
919
920 static VarDecl *
getVarTemplateSpecialization(Sema & S,VarTemplateDecl * VarTempl,const TemplateArgumentListInfo * TemplateArgs,const DeclarationNameInfo & MemberNameInfo,SourceLocation TemplateKWLoc)921 getVarTemplateSpecialization(Sema &S, VarTemplateDecl *VarTempl,
922 const TemplateArgumentListInfo *TemplateArgs,
923 const DeclarationNameInfo &MemberNameInfo,
924 SourceLocation TemplateKWLoc) {
925 if (!TemplateArgs) {
926 S.diagnoseMissingTemplateArguments(TemplateName(VarTempl),
927 MemberNameInfo.getBeginLoc());
928 return nullptr;
929 }
930
931 DeclResult VDecl = S.CheckVarTemplateId(
932 VarTempl, TemplateKWLoc, MemberNameInfo.getLoc(), *TemplateArgs);
933 if (VDecl.isInvalid())
934 return nullptr;
935 VarDecl *Var = cast<VarDecl>(VDecl.get());
936 if (!Var->getTemplateSpecializationKind())
937 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
938 MemberNameInfo.getLoc());
939 return Var;
940 }
941
942 ExprResult
BuildMemberReferenceExpr(Expr * BaseExpr,QualType BaseExprType,SourceLocation OpLoc,bool IsArrow,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,NamedDecl * FirstQualifierInScope,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,const Scope * S,bool SuppressQualifierCheck,ActOnMemberAccessExtraArgs * ExtraArgs)943 Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
944 SourceLocation OpLoc, bool IsArrow,
945 const CXXScopeSpec &SS,
946 SourceLocation TemplateKWLoc,
947 NamedDecl *FirstQualifierInScope,
948 LookupResult &R,
949 const TemplateArgumentListInfo *TemplateArgs,
950 const Scope *S,
951 bool SuppressQualifierCheck,
952 ActOnMemberAccessExtraArgs *ExtraArgs) {
953 QualType BaseType = BaseExprType;
954 if (IsArrow) {
955 assert(BaseType->isPointerType());
956 BaseType = BaseType->castAs<PointerType>()->getPointeeType();
957 }
958 R.setBaseObjectType(BaseType);
959
960 // C++1z [expr.ref]p2:
961 // For the first option (dot) the first expression shall be a glvalue [...]
962 if (!IsArrow && BaseExpr && BaseExpr->isRValue()) {
963 ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
964 if (Converted.isInvalid())
965 return ExprError();
966 BaseExpr = Converted.get();
967 }
968
969
970 const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
971 DeclarationName MemberName = MemberNameInfo.getName();
972 SourceLocation MemberLoc = MemberNameInfo.getLoc();
973
974 if (R.isAmbiguous())
975 return ExprError();
976
977 // [except.handle]p10: Referring to any non-static member or base class of an
978 // object in the handler for a function-try-block of a constructor or
979 // destructor for that object results in undefined behavior.
980 const auto *FD = getCurFunctionDecl();
981 if (S && BaseExpr && FD &&
982 (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
983 isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
984 IsInFnTryBlockHandler(S))
985 Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
986 << isa<CXXDestructorDecl>(FD);
987
988 if (R.empty()) {
989 // Rederive where we looked up.
990 DeclContext *DC = (SS.isSet()
991 ? computeDeclContext(SS, false)
992 : BaseType->getAs<RecordType>()->getDecl());
993
994 if (ExtraArgs) {
995 ExprResult RetryExpr;
996 if (!IsArrow && BaseExpr) {
997 SFINAETrap Trap(*this, true);
998 ParsedType ObjectType;
999 bool MayBePseudoDestructor = false;
1000 RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1001 OpLoc, tok::arrow, ObjectType,
1002 MayBePseudoDestructor);
1003 if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1004 CXXScopeSpec TempSS(SS);
1005 RetryExpr = ActOnMemberAccessExpr(
1006 ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1007 TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1008 }
1009 if (Trap.hasErrorOccurred())
1010 RetryExpr = ExprError();
1011 }
1012 if (RetryExpr.isUsable()) {
1013 Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1014 << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1015 return RetryExpr;
1016 }
1017 }
1018
1019 Diag(R.getNameLoc(), diag::err_no_member)
1020 << MemberName << DC
1021 << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1022 return ExprError();
1023 }
1024
1025 // Diagnose lookups that find only declarations from a non-base
1026 // type. This is possible for either qualified lookups (which may
1027 // have been qualified with an unrelated type) or implicit member
1028 // expressions (which were found with unqualified lookup and thus
1029 // may have come from an enclosing scope). Note that it's okay for
1030 // lookup to find declarations from a non-base type as long as those
1031 // aren't the ones picked by overload resolution.
1032 if ((SS.isSet() || !BaseExpr ||
1033 (isa<CXXThisExpr>(BaseExpr) &&
1034 cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1035 !SuppressQualifierCheck &&
1036 CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1037 return ExprError();
1038
1039 // Construct an unresolved result if we in fact got an unresolved
1040 // result.
1041 if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1042 // Suppress any lookup-related diagnostics; we'll do these when we
1043 // pick a member.
1044 R.suppressDiagnostics();
1045
1046 UnresolvedMemberExpr *MemExpr
1047 = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1048 BaseExpr, BaseExprType,
1049 IsArrow, OpLoc,
1050 SS.getWithLocInContext(Context),
1051 TemplateKWLoc, MemberNameInfo,
1052 TemplateArgs, R.begin(), R.end());
1053
1054 return MemExpr;
1055 }
1056
1057 assert(R.isSingleResult());
1058 DeclAccessPair FoundDecl = R.begin().getPair();
1059 NamedDecl *MemberDecl = R.getFoundDecl();
1060
1061 // FIXME: diagnose the presence of template arguments now.
1062
1063 // If the decl being referenced had an error, return an error for this
1064 // sub-expr without emitting another error, in order to avoid cascading
1065 // error cases.
1066 if (MemberDecl->isInvalidDecl())
1067 return ExprError();
1068
1069 // Handle the implicit-member-access case.
1070 if (!BaseExpr) {
1071 // If this is not an instance member, convert to a non-member access.
1072 if (!MemberDecl->isCXXInstanceMember()) {
1073 // If this is a variable template, get the instantiated variable
1074 // declaration corresponding to the supplied template arguments
1075 // (while emitting diagnostics as necessary) that will be referenced
1076 // by this expression.
1077 assert((!TemplateArgs || isa<VarTemplateDecl>(MemberDecl)) &&
1078 "How did we get template arguments here sans a variable template");
1079 if (isa<VarTemplateDecl>(MemberDecl)) {
1080 MemberDecl = getVarTemplateSpecialization(
1081 *this, cast<VarTemplateDecl>(MemberDecl), TemplateArgs,
1082 R.getLookupNameInfo(), TemplateKWLoc);
1083 if (!MemberDecl)
1084 return ExprError();
1085 }
1086 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1087 FoundDecl, TemplateArgs);
1088 }
1089 SourceLocation Loc = R.getNameLoc();
1090 if (SS.getRange().isValid())
1091 Loc = SS.getRange().getBegin();
1092 CheckCXXThisCapture(Loc);
1093 BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1094 }
1095
1096 // Check the use of this member.
1097 if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1098 return ExprError();
1099
1100 if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1101 return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1102 MemberNameInfo);
1103
1104 if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1105 return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1106 MemberNameInfo);
1107
1108 if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1109 // We may have found a field within an anonymous union or struct
1110 // (C++ [class.union]).
1111 return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1112 FoundDecl, BaseExpr,
1113 OpLoc);
1114
1115 if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1116 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1117 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
1118 Var->getType().getNonReferenceType(), VK_LValue,
1119 OK_Ordinary);
1120 }
1121
1122 if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1123 ExprValueKind valueKind;
1124 QualType type;
1125 if (MemberFn->isInstance()) {
1126 valueKind = VK_RValue;
1127 type = Context.BoundMemberTy;
1128 } else {
1129 valueKind = VK_LValue;
1130 type = MemberFn->getType();
1131 }
1132
1133 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1134 TemplateKWLoc, MemberFn, FoundDecl, MemberNameInfo,
1135 type, valueKind, OK_Ordinary);
1136 }
1137 assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1138
1139 if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1140 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1141 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
1142 Enum->getType(), VK_RValue, OK_Ordinary);
1143 }
1144 if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1145 if (VarDecl *Var = getVarTemplateSpecialization(
1146 *this, VarTempl, TemplateArgs, MemberNameInfo, TemplateKWLoc))
1147 return BuildMemberExpr(*this, Context, BaseExpr, IsArrow, OpLoc, SS,
1148 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
1149 Var->getType().getNonReferenceType(), VK_LValue,
1150 OK_Ordinary);
1151 return ExprError();
1152 }
1153
1154 // We found something that we didn't expect. Complain.
1155 if (isa<TypeDecl>(MemberDecl))
1156 Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1157 << MemberName << BaseType << int(IsArrow);
1158 else
1159 Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1160 << MemberName << BaseType << int(IsArrow);
1161
1162 Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1163 << MemberName;
1164 R.suppressDiagnostics();
1165 return ExprError();
1166 }
1167
1168 /// Given that normal member access failed on the given expression,
1169 /// and given that the expression's type involves builtin-id or
1170 /// builtin-Class, decide whether substituting in the redefinition
1171 /// types would be profitable. The redefinition type is whatever
1172 /// this translation unit tried to typedef to id/Class; we store
1173 /// it to the side and then re-use it in places like this.
ShouldTryAgainWithRedefinitionType(Sema & S,ExprResult & base)1174 static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1175 const ObjCObjectPointerType *opty
1176 = base.get()->getType()->getAs<ObjCObjectPointerType>();
1177 if (!opty) return false;
1178
1179 const ObjCObjectType *ty = opty->getObjectType();
1180
1181 QualType redef;
1182 if (ty->isObjCId()) {
1183 redef = S.Context.getObjCIdRedefinitionType();
1184 } else if (ty->isObjCClass()) {
1185 redef = S.Context.getObjCClassRedefinitionType();
1186 } else {
1187 return false;
1188 }
1189
1190 // Do the substitution as long as the redefinition type isn't just a
1191 // possibly-qualified pointer to builtin-id or builtin-Class again.
1192 opty = redef->getAs<ObjCObjectPointerType>();
1193 if (opty && !opty->getObjectType()->getInterface())
1194 return false;
1195
1196 base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1197 return true;
1198 }
1199
isRecordType(QualType T)1200 static bool isRecordType(QualType T) {
1201 return T->isRecordType();
1202 }
isPointerToRecordType(QualType T)1203 static bool isPointerToRecordType(QualType T) {
1204 if (const PointerType *PT = T->getAs<PointerType>())
1205 return PT->getPointeeType()->isRecordType();
1206 return false;
1207 }
1208
1209 /// Perform conversions on the LHS of a member access expression.
1210 ExprResult
PerformMemberExprBaseConversion(Expr * Base,bool IsArrow)1211 Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1212 if (IsArrow && !Base->getType()->isFunctionType())
1213 return DefaultFunctionArrayLvalueConversion(Base);
1214
1215 return CheckPlaceholderExpr(Base);
1216 }
1217
1218 /// Look up the given member of the given non-type-dependent
1219 /// expression. This can return in one of two ways:
1220 /// * If it returns a sentinel null-but-valid result, the caller will
1221 /// assume that lookup was performed and the results written into
1222 /// the provided structure. It will take over from there.
1223 /// * Otherwise, the returned expression will be produced in place of
1224 /// an ordinary member expression.
1225 ///
1226 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1227 /// fixed for ObjC++.
LookupMemberExpr(Sema & S,LookupResult & R,ExprResult & BaseExpr,bool & IsArrow,SourceLocation OpLoc,CXXScopeSpec & SS,Decl * ObjCImpDecl,bool HasTemplateArgs,SourceLocation TemplateKWLoc)1228 static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1229 ExprResult &BaseExpr, bool &IsArrow,
1230 SourceLocation OpLoc, CXXScopeSpec &SS,
1231 Decl *ObjCImpDecl, bool HasTemplateArgs,
1232 SourceLocation TemplateKWLoc) {
1233 assert(BaseExpr.get() && "no base expression");
1234
1235 // Perform default conversions.
1236 BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1237 if (BaseExpr.isInvalid())
1238 return ExprError();
1239
1240 QualType BaseType = BaseExpr.get()->getType();
1241 assert(!BaseType->isDependentType());
1242
1243 DeclarationName MemberName = R.getLookupName();
1244 SourceLocation MemberLoc = R.getNameLoc();
1245
1246 // For later type-checking purposes, turn arrow accesses into dot
1247 // accesses. The only access type we support that doesn't follow
1248 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1249 // and those never use arrows, so this is unaffected.
1250 if (IsArrow) {
1251 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1252 BaseType = Ptr->getPointeeType();
1253 else if (const ObjCObjectPointerType *Ptr
1254 = BaseType->getAs<ObjCObjectPointerType>())
1255 BaseType = Ptr->getPointeeType();
1256 else if (BaseType->isRecordType()) {
1257 // Recover from arrow accesses to records, e.g.:
1258 // struct MyRecord foo;
1259 // foo->bar
1260 // This is actually well-formed in C++ if MyRecord has an
1261 // overloaded operator->, but that should have been dealt with
1262 // by now--or a diagnostic message already issued if a problem
1263 // was encountered while looking for the overloaded operator->.
1264 if (!S.getLangOpts().CPlusPlus) {
1265 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1266 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1267 << FixItHint::CreateReplacement(OpLoc, ".");
1268 }
1269 IsArrow = false;
1270 } else if (BaseType->isFunctionType()) {
1271 goto fail;
1272 } else {
1273 S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1274 << BaseType << BaseExpr.get()->getSourceRange();
1275 return ExprError();
1276 }
1277 }
1278
1279 // Handle field access to simple records.
1280 if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1281 TypoExpr *TE = nullptr;
1282 if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1283 HasTemplateArgs, TemplateKWLoc, TE))
1284 return ExprError();
1285
1286 // Returning valid-but-null is how we indicate to the caller that
1287 // the lookup result was filled in. If typo correction was attempted and
1288 // failed, the lookup result will have been cleared--that combined with the
1289 // valid-but-null ExprResult will trigger the appropriate diagnostics.
1290 return ExprResult(TE);
1291 }
1292
1293 // Handle ivar access to Objective-C objects.
1294 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1295 if (!SS.isEmpty() && !SS.isInvalid()) {
1296 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1297 << 1 << SS.getScopeRep()
1298 << FixItHint::CreateRemoval(SS.getRange());
1299 SS.clear();
1300 }
1301
1302 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1303
1304 // There are three cases for the base type:
1305 // - builtin id (qualified or unqualified)
1306 // - builtin Class (qualified or unqualified)
1307 // - an interface
1308 ObjCInterfaceDecl *IDecl = OTy->getInterface();
1309 if (!IDecl) {
1310 if (S.getLangOpts().ObjCAutoRefCount &&
1311 (OTy->isObjCId() || OTy->isObjCClass()))
1312 goto fail;
1313 // There's an implicit 'isa' ivar on all objects.
1314 // But we only actually find it this way on objects of type 'id',
1315 // apparently.
1316 if (OTy->isObjCId() && Member->isStr("isa"))
1317 return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1318 OpLoc, S.Context.getObjCClassType());
1319 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1320 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1321 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1322 goto fail;
1323 }
1324
1325 if (S.RequireCompleteType(OpLoc, BaseType,
1326 diag::err_typecheck_incomplete_tag,
1327 BaseExpr.get()))
1328 return ExprError();
1329
1330 ObjCInterfaceDecl *ClassDeclared = nullptr;
1331 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1332
1333 if (!IV) {
1334 // Attempt to correct for typos in ivar names.
1335 auto Validator = llvm::make_unique<DeclFilterCCC<ObjCIvarDecl>>();
1336 Validator->IsObjCIvarLookup = IsArrow;
1337 if (TypoCorrection Corrected = S.CorrectTypo(
1338 R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1339 std::move(Validator), Sema::CTK_ErrorRecovery, IDecl)) {
1340 IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1341 S.diagnoseTypo(
1342 Corrected,
1343 S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1344 << IDecl->getDeclName() << MemberName);
1345
1346 // Figure out the class that declares the ivar.
1347 assert(!ClassDeclared);
1348
1349 Decl *D = cast<Decl>(IV->getDeclContext());
1350 if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1351 D = Category->getClassInterface();
1352
1353 if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1354 ClassDeclared = Implementation->getClassInterface();
1355 else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1356 ClassDeclared = Interface;
1357
1358 assert(ClassDeclared && "cannot query interface");
1359 } else {
1360 if (IsArrow &&
1361 IDecl->FindPropertyDeclaration(
1362 Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1363 S.Diag(MemberLoc, diag::err_property_found_suggest)
1364 << Member << BaseExpr.get()->getType()
1365 << FixItHint::CreateReplacement(OpLoc, ".");
1366 return ExprError();
1367 }
1368
1369 S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1370 << IDecl->getDeclName() << MemberName
1371 << BaseExpr.get()->getSourceRange();
1372 return ExprError();
1373 }
1374 }
1375
1376 assert(ClassDeclared);
1377
1378 // If the decl being referenced had an error, return an error for this
1379 // sub-expr without emitting another error, in order to avoid cascading
1380 // error cases.
1381 if (IV->isInvalidDecl())
1382 return ExprError();
1383
1384 // Check whether we can reference this field.
1385 if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1386 return ExprError();
1387 if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1388 IV->getAccessControl() != ObjCIvarDecl::Package) {
1389 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1390 if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1391 ClassOfMethodDecl = MD->getClassInterface();
1392 else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1393 // Case of a c-function declared inside an objc implementation.
1394 // FIXME: For a c-style function nested inside an objc implementation
1395 // class, there is no implementation context available, so we pass
1396 // down the context as argument to this routine. Ideally, this context
1397 // need be passed down in the AST node and somehow calculated from the
1398 // AST for a function decl.
1399 if (ObjCImplementationDecl *IMPD =
1400 dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1401 ClassOfMethodDecl = IMPD->getClassInterface();
1402 else if (ObjCCategoryImplDecl* CatImplClass =
1403 dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1404 ClassOfMethodDecl = CatImplClass->getClassInterface();
1405 }
1406 if (!S.getLangOpts().DebuggerSupport) {
1407 if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1408 if (!declaresSameEntity(ClassDeclared, IDecl) ||
1409 !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1410 S.Diag(MemberLoc, diag::err_private_ivar_access)
1411 << IV->getDeclName();
1412 } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1413 // @protected
1414 S.Diag(MemberLoc, diag::err_protected_ivar_access)
1415 << IV->getDeclName();
1416 }
1417 }
1418 bool warn = true;
1419 if (S.getLangOpts().ObjCWeak) {
1420 Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1421 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1422 if (UO->getOpcode() == UO_Deref)
1423 BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1424
1425 if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1426 if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1427 S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1428 warn = false;
1429 }
1430 }
1431 if (warn) {
1432 if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1433 ObjCMethodFamily MF = MD->getMethodFamily();
1434 warn = (MF != OMF_init && MF != OMF_dealloc &&
1435 MF != OMF_finalize &&
1436 !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1437 }
1438 if (warn)
1439 S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1440 }
1441
1442 ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1443 IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1444 IsArrow);
1445
1446 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1447 if (!S.isUnevaluatedContext() &&
1448 !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1449 S.getCurFunction()->recordUseOfWeak(Result);
1450 }
1451
1452 return Result;
1453 }
1454
1455 // Objective-C property access.
1456 const ObjCObjectPointerType *OPT;
1457 if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1458 if (!SS.isEmpty() && !SS.isInvalid()) {
1459 S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1460 << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1461 SS.clear();
1462 }
1463
1464 // This actually uses the base as an r-value.
1465 BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1466 if (BaseExpr.isInvalid())
1467 return ExprError();
1468
1469 assert(S.Context.hasSameUnqualifiedType(BaseType,
1470 BaseExpr.get()->getType()));
1471
1472 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1473
1474 const ObjCObjectType *OT = OPT->getObjectType();
1475
1476 // id, with and without qualifiers.
1477 if (OT->isObjCId()) {
1478 // Check protocols on qualified interfaces.
1479 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1480 if (Decl *PMDecl =
1481 FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1482 if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1483 // Check the use of this declaration
1484 if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1485 return ExprError();
1486
1487 return new (S.Context)
1488 ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1489 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1490 }
1491
1492 if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1493 Selector SetterSel =
1494 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1495 S.PP.getSelectorTable(),
1496 Member);
1497 ObjCMethodDecl *SMD = nullptr;
1498 if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1499 /*Property id*/ nullptr,
1500 SetterSel, S.Context))
1501 SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1502
1503 return new (S.Context)
1504 ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1505 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1506 }
1507 }
1508 // Use of id.member can only be for a property reference. Do not
1509 // use the 'id' redefinition in this case.
1510 if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1511 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1512 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1513
1514 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1515 << MemberName << BaseType);
1516 }
1517
1518 // 'Class', unqualified only.
1519 if (OT->isObjCClass()) {
1520 // Only works in a method declaration (??!).
1521 ObjCMethodDecl *MD = S.getCurMethodDecl();
1522 if (!MD) {
1523 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1524 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1525 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1526
1527 goto fail;
1528 }
1529
1530 // Also must look for a getter name which uses property syntax.
1531 Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1532 ObjCInterfaceDecl *IFace = MD->getClassInterface();
1533 if (!IFace)
1534 goto fail;
1535
1536 ObjCMethodDecl *Getter;
1537 if ((Getter = IFace->lookupClassMethod(Sel))) {
1538 // Check the use of this method.
1539 if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1540 return ExprError();
1541 } else
1542 Getter = IFace->lookupPrivateMethod(Sel, false);
1543 // If we found a getter then this may be a valid dot-reference, we
1544 // will look for the matching setter, in case it is needed.
1545 Selector SetterSel =
1546 SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1547 S.PP.getSelectorTable(),
1548 Member);
1549 ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1550 if (!Setter) {
1551 // If this reference is in an @implementation, also check for 'private'
1552 // methods.
1553 Setter = IFace->lookupPrivateMethod(SetterSel, false);
1554 }
1555
1556 if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1557 return ExprError();
1558
1559 if (Getter || Setter) {
1560 return new (S.Context) ObjCPropertyRefExpr(
1561 Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1562 OK_ObjCProperty, MemberLoc, BaseExpr.get());
1563 }
1564
1565 if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1566 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1567 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1568
1569 return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1570 << MemberName << BaseType);
1571 }
1572
1573 // Normal property access.
1574 return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1575 MemberLoc, SourceLocation(), QualType(),
1576 false);
1577 }
1578
1579 // Handle 'field access' to vectors, such as 'V.xx'.
1580 if (BaseType->isExtVectorType()) {
1581 // FIXME: this expr should store IsArrow.
1582 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1583 ExprValueKind VK;
1584 if (IsArrow)
1585 VK = VK_LValue;
1586 else {
1587 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(BaseExpr.get()))
1588 VK = POE->getSyntacticForm()->getValueKind();
1589 else
1590 VK = BaseExpr.get()->getValueKind();
1591 }
1592
1593 QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1594 Member, MemberLoc);
1595 if (ret.isNull())
1596 return ExprError();
1597 Qualifiers BaseQ =
1598 S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1599 ret = S.Context.getQualifiedType(ret, BaseQ);
1600
1601 return new (S.Context)
1602 ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1603 }
1604
1605 // Adjust builtin-sel to the appropriate redefinition type if that's
1606 // not just a pointer to builtin-sel again.
1607 if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1608 !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1609 BaseExpr = S.ImpCastExprToType(
1610 BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1611 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1612 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1613 }
1614
1615 // Failure cases.
1616 fail:
1617
1618 // Recover from dot accesses to pointers, e.g.:
1619 // type *foo;
1620 // foo.bar
1621 // This is actually well-formed in two cases:
1622 // - 'type' is an Objective C type
1623 // - 'bar' is a pseudo-destructor name which happens to refer to
1624 // the appropriate pointer type
1625 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1626 if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1627 MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1628 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1629 << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1630 << FixItHint::CreateReplacement(OpLoc, "->");
1631
1632 // Recurse as an -> access.
1633 IsArrow = true;
1634 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1635 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1636 }
1637 }
1638
1639 // If the user is trying to apply -> or . to a function name, it's probably
1640 // because they forgot parentheses to call that function.
1641 if (S.tryToRecoverWithCall(
1642 BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1643 /*complain*/ false,
1644 IsArrow ? &isPointerToRecordType : &isRecordType)) {
1645 if (BaseExpr.isInvalid())
1646 return ExprError();
1647 BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1648 return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1649 ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1650 }
1651
1652 S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1653 << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1654
1655 return ExprError();
1656 }
1657
1658 /// The main callback when the parser finds something like
1659 /// expression . [nested-name-specifier] identifier
1660 /// expression -> [nested-name-specifier] identifier
1661 /// where 'identifier' encompasses a fairly broad spectrum of
1662 /// possibilities, including destructor and operator references.
1663 ///
1664 /// \param OpKind either tok::arrow or tok::period
1665 /// \param ObjCImpDecl the current Objective-C \@implementation
1666 /// decl; this is an ugly hack around the fact that Objective-C
1667 /// \@implementations aren't properly put in the context chain
ActOnMemberAccessExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Id,Decl * ObjCImpDecl)1668 ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1669 SourceLocation OpLoc,
1670 tok::TokenKind OpKind,
1671 CXXScopeSpec &SS,
1672 SourceLocation TemplateKWLoc,
1673 UnqualifiedId &Id,
1674 Decl *ObjCImpDecl) {
1675 if (SS.isSet() && SS.isInvalid())
1676 return ExprError();
1677
1678 // Warn about the explicit constructor calls Microsoft extension.
1679 if (getLangOpts().MicrosoftExt &&
1680 Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1681 Diag(Id.getSourceRange().getBegin(),
1682 diag::ext_ms_explicit_constructor_call);
1683
1684 TemplateArgumentListInfo TemplateArgsBuffer;
1685
1686 // Decompose the name into its component parts.
1687 DeclarationNameInfo NameInfo;
1688 const TemplateArgumentListInfo *TemplateArgs;
1689 DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1690 NameInfo, TemplateArgs);
1691
1692 DeclarationName Name = NameInfo.getName();
1693 bool IsArrow = (OpKind == tok::arrow);
1694
1695 NamedDecl *FirstQualifierInScope
1696 = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1697
1698 // This is a postfix expression, so get rid of ParenListExprs.
1699 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1700 if (Result.isInvalid()) return ExprError();
1701 Base = Result.get();
1702
1703 if (Base->getType()->isDependentType() || Name.isDependentName() ||
1704 isDependentScopeSpecifier(SS)) {
1705 return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1706 TemplateKWLoc, FirstQualifierInScope,
1707 NameInfo, TemplateArgs);
1708 }
1709
1710 ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1711 ExprResult Res = BuildMemberReferenceExpr(
1712 Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1713 FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1714
1715 if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1716 CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1717
1718 return Res;
1719 }
1720
CheckMemberAccessOfNoDeref(const MemberExpr * E)1721 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1722 QualType ResultTy = E->getType();
1723
1724 // Do not warn on member accesses to arrays since this returns an array
1725 // lvalue and does not actually dereference memory.
1726 if (isa<ArrayType>(ResultTy))
1727 return;
1728
1729 if (E->isArrow()) {
1730 if (const auto *Ptr = dyn_cast<PointerType>(
1731 E->getBase()->getType().getDesugaredType(Context))) {
1732 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1733 ExprEvalContexts.back().PossibleDerefs.insert(E);
1734 }
1735 }
1736 }
1737
1738 ExprResult
BuildFieldReferenceExpr(Expr * BaseExpr,bool IsArrow,SourceLocation OpLoc,const CXXScopeSpec & SS,FieldDecl * Field,DeclAccessPair FoundDecl,const DeclarationNameInfo & MemberNameInfo)1739 Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1740 SourceLocation OpLoc, const CXXScopeSpec &SS,
1741 FieldDecl *Field, DeclAccessPair FoundDecl,
1742 const DeclarationNameInfo &MemberNameInfo) {
1743 // x.a is an l-value if 'a' has a reference type. Otherwise:
1744 // x.a is an l-value/x-value/pr-value if the base is (and note
1745 // that *x is always an l-value), except that if the base isn't
1746 // an ordinary object then we must have an rvalue.
1747 ExprValueKind VK = VK_LValue;
1748 ExprObjectKind OK = OK_Ordinary;
1749 if (!IsArrow) {
1750 if (BaseExpr->getObjectKind() == OK_Ordinary)
1751 VK = BaseExpr->getValueKind();
1752 else
1753 VK = VK_RValue;
1754 }
1755 if (VK != VK_RValue && Field->isBitField())
1756 OK = OK_BitField;
1757
1758 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1759 QualType MemberType = Field->getType();
1760 if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1761 MemberType = Ref->getPointeeType();
1762 VK = VK_LValue;
1763 } else {
1764 QualType BaseType = BaseExpr->getType();
1765 if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1766
1767 Qualifiers BaseQuals = BaseType.getQualifiers();
1768
1769 // GC attributes are never picked up by members.
1770 BaseQuals.removeObjCGCAttr();
1771
1772 // CVR attributes from the base are picked up by members,
1773 // except that 'mutable' members don't pick up 'const'.
1774 if (Field->isMutable()) BaseQuals.removeConst();
1775
1776 Qualifiers MemberQuals =
1777 Context.getCanonicalType(MemberType).getQualifiers();
1778
1779 assert(!MemberQuals.hasAddressSpace());
1780
1781 Qualifiers Combined = BaseQuals + MemberQuals;
1782 if (Combined != MemberQuals)
1783 MemberType = Context.getQualifiedType(MemberType, Combined);
1784 }
1785
1786 auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1787 if (!(CurMethod && CurMethod->isDefaulted()))
1788 UnusedPrivateFields.remove(Field);
1789
1790 ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1791 FoundDecl, Field);
1792 if (Base.isInvalid())
1793 return ExprError();
1794
1795 // Build a reference to a private copy for non-static data members in
1796 // non-static member functions, privatized by OpenMP constructs.
1797 if (getLangOpts().OpenMP && IsArrow &&
1798 !CurContext->isDependentContext() &&
1799 isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1800 if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1801 return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1802 MemberNameInfo.getLoc());
1803 }
1804 }
1805
1806 return BuildMemberExpr(*this, Context, Base.get(), IsArrow, OpLoc, SS,
1807 /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1808 MemberNameInfo, MemberType, VK, OK);
1809 }
1810
1811 /// Builds an implicit member access expression. The current context
1812 /// is known to be an instance method, and the given unqualified lookup
1813 /// set is known to contain only instance members, at least one of which
1814 /// is from an appropriate type.
1815 ExprResult
BuildImplicitMemberExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,const TemplateArgumentListInfo * TemplateArgs,bool IsKnownInstance,const Scope * S)1816 Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1817 SourceLocation TemplateKWLoc,
1818 LookupResult &R,
1819 const TemplateArgumentListInfo *TemplateArgs,
1820 bool IsKnownInstance, const Scope *S) {
1821 assert(!R.empty() && !R.isAmbiguous());
1822
1823 SourceLocation loc = R.getNameLoc();
1824
1825 // If this is known to be an instance access, go ahead and build an
1826 // implicit 'this' expression now.
1827 // 'this' expression now.
1828 QualType ThisTy = getCurrentThisType();
1829 assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1830
1831 Expr *baseExpr = nullptr; // null signifies implicit access
1832 if (IsKnownInstance) {
1833 SourceLocation Loc = R.getNameLoc();
1834 if (SS.getRange().isValid())
1835 Loc = SS.getRange().getBegin();
1836 CheckCXXThisCapture(Loc);
1837 baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1838 }
1839
1840 return BuildMemberReferenceExpr(baseExpr, ThisTy,
1841 /*OpLoc*/ SourceLocation(),
1842 /*IsArrow*/ true,
1843 SS, TemplateKWLoc,
1844 /*FirstQualifierInScope*/ nullptr,
1845 R, TemplateArgs, S);
1846 }
1847