1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for Objective C declarations.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/RecursiveASTVisitor.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/Scope.h"
26 #include "clang/Sema/ScopeInfo.h"
27 #include "clang/Sema/SemaInternal.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30
31 using namespace clang;
32
33 /// Check whether the given method, which must be in the 'init'
34 /// family, is a valid member of that family.
35 ///
36 /// \param receiverTypeIfCall - if null, check this as if declaring it;
37 /// if non-null, check this as if making a call to it with the given
38 /// receiver type
39 ///
40 /// \return true to indicate that there was an error and appropriate
41 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)42 bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!");
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!");
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(resultClass) ||
91 resultClass->isSuperClassOf(receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110 }
111
112 /// Issue a warning if the parameter of the overridden method is non-escaping
113 /// but the parameter of the overriding method is not.
diagnoseNoescape(const ParmVarDecl * NewD,const ParmVarDecl * OldD,Sema & S)114 static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115 Sema &S) {
116 if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117 S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118 S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119 return false;
120 }
121
122 return true;
123 }
124
125 /// Produce additional diagnostics if a category conforms to a protocol that
126 /// defines a method taking a non-escaping parameter.
diagnoseNoescape(const ParmVarDecl * NewD,const ParmVarDecl * OldD,const ObjCCategoryDecl * CD,const ObjCProtocolDecl * PD,Sema & S)127 static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128 const ObjCCategoryDecl *CD,
129 const ObjCProtocolDecl *PD, Sema &S) {
130 if (!diagnoseNoescape(NewD, OldD, S))
131 S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132 << CD->IsClassExtension() << PD
133 << cast<ObjCMethodDecl>(NewD->getDeclContext());
134 }
135
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden)136 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137 const ObjCMethodDecl *Overridden) {
138 if (Overridden->hasRelatedResultType() &&
139 !NewMethod->hasRelatedResultType()) {
140 // This can only happen when the method follows a naming convention that
141 // implies a related result type, and the original (overridden) method has
142 // a suitable return type, but the new (overriding) method does not have
143 // a suitable return type.
144 QualType ResultType = NewMethod->getReturnType();
145 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147 // Figure out which class this method is part of, if any.
148 ObjCInterfaceDecl *CurrentClass
149 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150 if (!CurrentClass) {
151 DeclContext *DC = NewMethod->getDeclContext();
152 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153 CurrentClass = Cat->getClassInterface();
154 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155 CurrentClass = Impl->getClassInterface();
156 else if (ObjCCategoryImplDecl *CatImpl
157 = dyn_cast<ObjCCategoryImplDecl>(DC))
158 CurrentClass = CatImpl->getClassInterface();
159 }
160
161 if (CurrentClass) {
162 Diag(NewMethod->getLocation(),
163 diag::warn_related_result_type_compatibility_class)
164 << Context.getObjCInterfaceType(CurrentClass)
165 << ResultType
166 << ResultTypeRange;
167 } else {
168 Diag(NewMethod->getLocation(),
169 diag::warn_related_result_type_compatibility_protocol)
170 << ResultType
171 << ResultTypeRange;
172 }
173
174 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175 Diag(Overridden->getLocation(),
176 diag::note_related_result_type_family)
177 << /*overridden method*/ 0
178 << Family;
179 else
180 Diag(Overridden->getLocation(),
181 diag::note_related_result_type_overridden);
182 }
183
184 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186 Diag(NewMethod->getLocation(),
187 getLangOpts().ObjCAutoRefCount
188 ? diag::err_nsreturns_retained_attribute_mismatch
189 : diag::warn_nsreturns_retained_attribute_mismatch)
190 << 1;
191 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192 }
193 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195 Diag(NewMethod->getLocation(),
196 getLangOpts().ObjCAutoRefCount
197 ? diag::err_nsreturns_retained_attribute_mismatch
198 : diag::warn_nsreturns_retained_attribute_mismatch)
199 << 0;
200 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
201 }
202
203 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204 oe = Overridden->param_end();
205 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206 ne = NewMethod->param_end();
207 ni != ne && oi != oe; ++ni, ++oi) {
208 const ParmVarDecl *oldDecl = (*oi);
209 ParmVarDecl *newDecl = (*ni);
210 if (newDecl->hasAttr<NSConsumedAttr>() !=
211 oldDecl->hasAttr<NSConsumedAttr>()) {
212 Diag(newDecl->getLocation(),
213 getLangOpts().ObjCAutoRefCount
214 ? diag::err_nsconsumed_attribute_mismatch
215 : diag::warn_nsconsumed_attribute_mismatch);
216 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217 }
218
219 diagnoseNoescape(newDecl, oldDecl, *this);
220 }
221 }
222
223 /// Check a method declaration for compatibility with the Objective-C
224 /// ARC conventions.
CheckARCMethodDecl(ObjCMethodDecl * method)225 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226 ObjCMethodFamily family = method->getMethodFamily();
227 switch (family) {
228 case OMF_None:
229 case OMF_finalize:
230 case OMF_retain:
231 case OMF_release:
232 case OMF_autorelease:
233 case OMF_retainCount:
234 case OMF_self:
235 case OMF_initialize:
236 case OMF_performSelector:
237 return false;
238
239 case OMF_dealloc:
240 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242 if (ResultTypeRange.isInvalid())
243 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244 << method->getReturnType()
245 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246 else
247 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248 << method->getReturnType()
249 << FixItHint::CreateReplacement(ResultTypeRange, "void");
250 return true;
251 }
252 return false;
253
254 case OMF_init:
255 // If the method doesn't obey the init rules, don't bother annotating it.
256 if (checkInitMethod(method, QualType()))
257 return true;
258
259 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260
261 // Don't add a second copy of this attribute, but otherwise don't
262 // let it be suppressed.
263 if (method->hasAttr<NSReturnsRetainedAttr>())
264 return false;
265 break;
266
267 case OMF_alloc:
268 case OMF_copy:
269 case OMF_mutableCopy:
270 case OMF_new:
271 if (method->hasAttr<NSReturnsRetainedAttr>() ||
272 method->hasAttr<NSReturnsNotRetainedAttr>() ||
273 method->hasAttr<NSReturnsAutoreleasedAttr>())
274 return false;
275 break;
276 }
277
278 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279 return false;
280 }
281
DiagnoseObjCImplementedDeprecations(Sema & S,const NamedDecl * ND,SourceLocation ImplLoc)282 static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283 SourceLocation ImplLoc) {
284 if (!ND)
285 return;
286 bool IsCategory = false;
287 StringRef RealizedPlatform;
288 AvailabilityResult Availability = ND->getAvailability(
289 /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290 &RealizedPlatform);
291 if (Availability != AR_Deprecated) {
292 if (isa<ObjCMethodDecl>(ND)) {
293 if (Availability != AR_Unavailable)
294 return;
295 if (RealizedPlatform.empty())
296 RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297 // Warn about implementing unavailable methods, unless the unavailable
298 // is for an app extension.
299 if (RealizedPlatform.endswith("_app_extension"))
300 return;
301 S.Diag(ImplLoc, diag::warn_unavailable_def);
302 S.Diag(ND->getLocation(), diag::note_method_declared_at)
303 << ND->getDeclName();
304 return;
305 }
306 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307 if (!CD->getClassInterface()->isDeprecated())
308 return;
309 ND = CD->getClassInterface();
310 IsCategory = true;
311 } else
312 return;
313 }
314 S.Diag(ImplLoc, diag::warn_deprecated_def)
315 << (isa<ObjCMethodDecl>(ND)
316 ? /*Method*/ 0
317 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318 : /*Class*/ 1);
319 if (isa<ObjCMethodDecl>(ND))
320 S.Diag(ND->getLocation(), diag::note_method_declared_at)
321 << ND->getDeclName();
322 else
323 S.Diag(ND->getLocation(), diag::note_previous_decl)
324 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325 }
326
327 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328 /// pool.
AddAnyMethodToGlobalPool(Decl * D)329 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331
332 // If we don't have a valid method decl, simply return.
333 if (!MDecl)
334 return;
335 if (MDecl->isInstanceMethod())
336 AddInstanceMethodToGlobalPool(MDecl, true);
337 else
338 AddFactoryMethodToGlobalPool(MDecl, true);
339 }
340
341 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342 /// has explicit ownership attribute; false otherwise.
343 static bool
HasExplicitOwnershipAttr(Sema & S,ParmVarDecl * Param)344 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345 QualType T = Param->getType();
346
347 if (const PointerType *PT = T->getAs<PointerType>()) {
348 T = PT->getPointeeType();
349 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350 T = RT->getPointeeType();
351 } else {
352 return true;
353 }
354
355 // If we have a lifetime qualifier, but it's local, we must have
356 // inferred it. So, it is implicit.
357 return !T.getLocalQualifiers().hasObjCLifetime();
358 }
359
360 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)362 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363 ImplicitlyRetainedSelfLocs.clear();
364 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
365 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
366
367 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
368
369 // If we don't have a valid method decl, simply return.
370 if (!MDecl)
371 return;
372
373 QualType ResultType = MDecl->getReturnType();
374 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
375 !MDecl->isInvalidDecl() &&
376 RequireCompleteType(MDecl->getLocation(), ResultType,
377 diag::err_func_def_incomplete_result))
378 MDecl->setInvalidDecl();
379
380 // Allow all of Sema to see that we are entering a method definition.
381 PushDeclContext(FnBodyScope, MDecl);
382 PushFunctionScope();
383
384 // Create Decl objects for each parameter, entrring them in the scope for
385 // binding to their use.
386
387 // Insert the invisible arguments, self and _cmd!
388 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
389
390 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
391 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
392
393 // The ObjC parser requires parameter names so there's no need to check.
394 CheckParmsForFunctionDef(MDecl->parameters(),
395 /*CheckParameterNames=*/false);
396
397 // Introduce all of the other parameters into this scope.
398 for (auto *Param : MDecl->parameters()) {
399 if (!Param->isInvalidDecl() &&
400 getLangOpts().ObjCAutoRefCount &&
401 !HasExplicitOwnershipAttr(*this, Param))
402 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
403 Param->getType();
404
405 if (Param->getIdentifier())
406 PushOnScopeChains(Param, FnBodyScope);
407 }
408
409 // In ARC, disallow definition of retain/release/autorelease/retainCount
410 if (getLangOpts().ObjCAutoRefCount) {
411 switch (MDecl->getMethodFamily()) {
412 case OMF_retain:
413 case OMF_retainCount:
414 case OMF_release:
415 case OMF_autorelease:
416 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
417 << 0 << MDecl->getSelector();
418 break;
419
420 case OMF_None:
421 case OMF_dealloc:
422 case OMF_finalize:
423 case OMF_alloc:
424 case OMF_init:
425 case OMF_mutableCopy:
426 case OMF_copy:
427 case OMF_new:
428 case OMF_self:
429 case OMF_initialize:
430 case OMF_performSelector:
431 break;
432 }
433 }
434
435 // Warn on deprecated methods under -Wdeprecated-implementations,
436 // and prepare for warning on missing super calls.
437 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
438 ObjCMethodDecl *IMD =
439 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
440
441 if (IMD) {
442 ObjCImplDecl *ImplDeclOfMethodDef =
443 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
444 ObjCContainerDecl *ContDeclOfMethodDecl =
445 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
446 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
447 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
448 ImplDeclOfMethodDecl = OID->getImplementation();
449 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
450 if (CD->IsClassExtension()) {
451 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
452 ImplDeclOfMethodDecl = OID->getImplementation();
453 } else
454 ImplDeclOfMethodDecl = CD->getImplementation();
455 }
456 // No need to issue deprecated warning if deprecated mehod in class/category
457 // is being implemented in its own implementation (no overriding is involved).
458 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
459 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
460 }
461
462 if (MDecl->getMethodFamily() == OMF_init) {
463 if (MDecl->isDesignatedInitializerForTheInterface()) {
464 getCurFunction()->ObjCIsDesignatedInit = true;
465 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
466 IC->getSuperClass() != nullptr;
467 } else if (IC->hasDesignatedInitializers()) {
468 getCurFunction()->ObjCIsSecondaryInit = true;
469 getCurFunction()->ObjCWarnForNoInitDelegation = true;
470 }
471 }
472
473 // If this is "dealloc" or "finalize", set some bit here.
474 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
475 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
476 // Only do this if the current class actually has a superclass.
477 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
478 ObjCMethodFamily Family = MDecl->getMethodFamily();
479 if (Family == OMF_dealloc) {
480 if (!(getLangOpts().ObjCAutoRefCount ||
481 getLangOpts().getGC() == LangOptions::GCOnly))
482 getCurFunction()->ObjCShouldCallSuper = true;
483
484 } else if (Family == OMF_finalize) {
485 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
486 getCurFunction()->ObjCShouldCallSuper = true;
487
488 } else {
489 const ObjCMethodDecl *SuperMethod =
490 SuperClass->lookupMethod(MDecl->getSelector(),
491 MDecl->isInstanceMethod());
492 getCurFunction()->ObjCShouldCallSuper =
493 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
494 }
495 }
496 }
497 }
498
499 namespace {
500
501 // Callback to only accept typo corrections that are Objective-C classes.
502 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
503 // function will reject corrections to that class.
504 class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
505 public:
ObjCInterfaceValidatorCCC()506 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)507 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
508 : CurrentIDecl(IDecl) {}
509
ValidateCandidate(const TypoCorrection & candidate)510 bool ValidateCandidate(const TypoCorrection &candidate) override {
511 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
512 return ID && !declaresSameEntity(ID, CurrentIDecl);
513 }
514
clone()515 std::unique_ptr<CorrectionCandidateCallback> clone() override {
516 return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
517 }
518
519 private:
520 ObjCInterfaceDecl *CurrentIDecl;
521 };
522
523 } // end anonymous namespace
524
diagnoseUseOfProtocols(Sema & TheSema,ObjCContainerDecl * CD,ObjCProtocolDecl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs)525 static void diagnoseUseOfProtocols(Sema &TheSema,
526 ObjCContainerDecl *CD,
527 ObjCProtocolDecl *const *ProtoRefs,
528 unsigned NumProtoRefs,
529 const SourceLocation *ProtoLocs) {
530 assert(ProtoRefs);
531 // Diagnose availability in the context of the ObjC container.
532 Sema::ContextRAII SavedContext(TheSema, CD);
533 for (unsigned i = 0; i < NumProtoRefs; ++i) {
534 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
535 /*UnknownObjCClass=*/nullptr,
536 /*ObjCPropertyAccess=*/false,
537 /*AvoidPartialAvailabilityChecks=*/true);
538 }
539 }
540
541 void Sema::
ActOnSuperClassOfClassInterface(Scope * S,SourceLocation AtInterfaceLoc,ObjCInterfaceDecl * IDecl,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange)542 ActOnSuperClassOfClassInterface(Scope *S,
543 SourceLocation AtInterfaceLoc,
544 ObjCInterfaceDecl *IDecl,
545 IdentifierInfo *ClassName,
546 SourceLocation ClassLoc,
547 IdentifierInfo *SuperName,
548 SourceLocation SuperLoc,
549 ArrayRef<ParsedType> SuperTypeArgs,
550 SourceRange SuperTypeArgsRange) {
551 // Check if a different kind of symbol declared in this scope.
552 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
553 LookupOrdinaryName);
554
555 if (!PrevDecl) {
556 // Try to correct for a typo in the superclass name without correcting
557 // to the class we're defining.
558 ObjCInterfaceValidatorCCC CCC(IDecl);
559 if (TypoCorrection Corrected = CorrectTypo(
560 DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
561 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
562 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
563 << SuperName << ClassName);
564 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
565 }
566 }
567
568 if (declaresSameEntity(PrevDecl, IDecl)) {
569 Diag(SuperLoc, diag::err_recursive_superclass)
570 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
571 IDecl->setEndOfDefinitionLoc(ClassLoc);
572 } else {
573 ObjCInterfaceDecl *SuperClassDecl =
574 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
575 QualType SuperClassType;
576
577 // Diagnose classes that inherit from deprecated classes.
578 if (SuperClassDecl) {
579 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
580 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
581 }
582
583 if (PrevDecl && !SuperClassDecl) {
584 // The previous declaration was not a class decl. Check if we have a
585 // typedef. If we do, get the underlying class type.
586 if (const TypedefNameDecl *TDecl =
587 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
588 QualType T = TDecl->getUnderlyingType();
589 if (T->isObjCObjectType()) {
590 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
591 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
592 SuperClassType = Context.getTypeDeclType(TDecl);
593
594 // This handles the following case:
595 // @interface NewI @end
596 // typedef NewI DeprI __attribute__((deprecated("blah")))
597 // @interface SI : DeprI /* warn here */ @end
598 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
599 }
600 }
601 }
602
603 // This handles the following case:
604 //
605 // typedef int SuperClass;
606 // @interface MyClass : SuperClass {} @end
607 //
608 if (!SuperClassDecl) {
609 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
610 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
611 }
612 }
613
614 if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
615 if (!SuperClassDecl)
616 Diag(SuperLoc, diag::err_undef_superclass)
617 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
618 else if (RequireCompleteType(SuperLoc,
619 SuperClassType,
620 diag::err_forward_superclass,
621 SuperClassDecl->getDeclName(),
622 ClassName,
623 SourceRange(AtInterfaceLoc, ClassLoc))) {
624 SuperClassDecl = nullptr;
625 SuperClassType = QualType();
626 }
627 }
628
629 if (SuperClassType.isNull()) {
630 assert(!SuperClassDecl && "Failed to set SuperClassType?");
631 return;
632 }
633
634 // Handle type arguments on the superclass.
635 TypeSourceInfo *SuperClassTInfo = nullptr;
636 if (!SuperTypeArgs.empty()) {
637 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
638 S,
639 SuperLoc,
640 CreateParsedType(SuperClassType,
641 nullptr),
642 SuperTypeArgsRange.getBegin(),
643 SuperTypeArgs,
644 SuperTypeArgsRange.getEnd(),
645 SourceLocation(),
646 { },
647 { },
648 SourceLocation());
649 if (!fullSuperClassType.isUsable())
650 return;
651
652 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
653 &SuperClassTInfo);
654 }
655
656 if (!SuperClassTInfo) {
657 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
658 SuperLoc);
659 }
660
661 IDecl->setSuperClass(SuperClassTInfo);
662 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663 }
664 }
665
actOnObjCTypeParam(Scope * S,ObjCTypeParamVariance variance,SourceLocation varianceLoc,unsigned index,IdentifierInfo * paramName,SourceLocation paramLoc,SourceLocation colonLoc,ParsedType parsedTypeBound)666 DeclResult Sema::actOnObjCTypeParam(Scope *S,
667 ObjCTypeParamVariance variance,
668 SourceLocation varianceLoc,
669 unsigned index,
670 IdentifierInfo *paramName,
671 SourceLocation paramLoc,
672 SourceLocation colonLoc,
673 ParsedType parsedTypeBound) {
674 // If there was an explicitly-provided type bound, check it.
675 TypeSourceInfo *typeBoundInfo = nullptr;
676 if (parsedTypeBound) {
677 // The type bound can be any Objective-C pointer type.
678 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
679 if (typeBound->isObjCObjectPointerType()) {
680 // okay
681 } else if (typeBound->isObjCObjectType()) {
682 // The user forgot the * on an Objective-C pointer type, e.g.,
683 // "T : NSView".
684 SourceLocation starLoc = getLocForEndOfToken(
685 typeBoundInfo->getTypeLoc().getEndLoc());
686 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
687 diag::err_objc_type_param_bound_missing_pointer)
688 << typeBound << paramName
689 << FixItHint::CreateInsertion(starLoc, " *");
690
691 // Create a new type location builder so we can update the type
692 // location information we have.
693 TypeLocBuilder builder;
694 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
695
696 // Create the Objective-C pointer type.
697 typeBound = Context.getObjCObjectPointerType(typeBound);
698 ObjCObjectPointerTypeLoc newT
699 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
700 newT.setStarLoc(starLoc);
701
702 // Form the new type source information.
703 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
704 } else {
705 // Not a valid type bound.
706 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
707 diag::err_objc_type_param_bound_nonobject)
708 << typeBound << paramName;
709
710 // Forget the bound; we'll default to id later.
711 typeBoundInfo = nullptr;
712 }
713
714 // Type bounds cannot have qualifiers (even indirectly) or explicit
715 // nullability.
716 if (typeBoundInfo) {
717 QualType typeBound = typeBoundInfo->getType();
718 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
719 if (qual || typeBound.hasQualifiers()) {
720 bool diagnosed = false;
721 SourceRange rangeToRemove;
722 if (qual) {
723 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
724 rangeToRemove = attr.getLocalSourceRange();
725 if (attr.getTypePtr()->getImmediateNullability()) {
726 Diag(attr.getBeginLoc(),
727 diag::err_objc_type_param_bound_explicit_nullability)
728 << paramName << typeBound
729 << FixItHint::CreateRemoval(rangeToRemove);
730 diagnosed = true;
731 }
732 }
733 }
734
735 if (!diagnosed) {
736 Diag(qual ? qual.getBeginLoc()
737 : typeBoundInfo->getTypeLoc().getBeginLoc(),
738 diag::err_objc_type_param_bound_qualified)
739 << paramName << typeBound
740 << typeBound.getQualifiers().getAsString()
741 << FixItHint::CreateRemoval(rangeToRemove);
742 }
743
744 // If the type bound has qualifiers other than CVR, we need to strip
745 // them or we'll probably assert later when trying to apply new
746 // qualifiers.
747 Qualifiers quals = typeBound.getQualifiers();
748 quals.removeCVRQualifiers();
749 if (!quals.empty()) {
750 typeBoundInfo =
751 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
752 }
753 }
754 }
755 }
756
757 // If there was no explicit type bound (or we removed it due to an error),
758 // use 'id' instead.
759 if (!typeBoundInfo) {
760 colonLoc = SourceLocation();
761 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
762 }
763
764 // Create the type parameter.
765 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
766 index, paramLoc, paramName, colonLoc,
767 typeBoundInfo);
768 }
769
actOnObjCTypeParamList(Scope * S,SourceLocation lAngleLoc,ArrayRef<Decl * > typeParamsIn,SourceLocation rAngleLoc)770 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
771 SourceLocation lAngleLoc,
772 ArrayRef<Decl *> typeParamsIn,
773 SourceLocation rAngleLoc) {
774 // We know that the array only contains Objective-C type parameters.
775 ArrayRef<ObjCTypeParamDecl *>
776 typeParams(
777 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
778 typeParamsIn.size());
779
780 // Diagnose redeclarations of type parameters.
781 // We do this now because Objective-C type parameters aren't pushed into
782 // scope until later (after the instance variable block), but we want the
783 // diagnostics to occur right after we parse the type parameter list.
784 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
785 for (auto typeParam : typeParams) {
786 auto known = knownParams.find(typeParam->getIdentifier());
787 if (known != knownParams.end()) {
788 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
789 << typeParam->getIdentifier()
790 << SourceRange(known->second->getLocation());
791
792 typeParam->setInvalidDecl();
793 } else {
794 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
795
796 // Push the type parameter into scope.
797 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
798 }
799 }
800
801 // Create the parameter list.
802 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
803 }
804
popObjCTypeParamList(Scope * S,ObjCTypeParamList * typeParamList)805 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
806 for (auto typeParam : *typeParamList) {
807 if (!typeParam->isInvalidDecl()) {
808 S->RemoveDecl(typeParam);
809 IdResolver.RemoveDecl(typeParam);
810 }
811 }
812 }
813
814 namespace {
815 /// The context in which an Objective-C type parameter list occurs, for use
816 /// in diagnostics.
817 enum class TypeParamListContext {
818 ForwardDeclaration,
819 Definition,
820 Category,
821 Extension
822 };
823 } // end anonymous namespace
824
825 /// Check consistency between two Objective-C type parameter lists, e.g.,
826 /// between a category/extension and an \@interface or between an \@class and an
827 /// \@interface.
checkTypeParamListConsistency(Sema & S,ObjCTypeParamList * prevTypeParams,ObjCTypeParamList * newTypeParams,TypeParamListContext newContext)828 static bool checkTypeParamListConsistency(Sema &S,
829 ObjCTypeParamList *prevTypeParams,
830 ObjCTypeParamList *newTypeParams,
831 TypeParamListContext newContext) {
832 // If the sizes don't match, complain about that.
833 if (prevTypeParams->size() != newTypeParams->size()) {
834 SourceLocation diagLoc;
835 if (newTypeParams->size() > prevTypeParams->size()) {
836 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837 } else {
838 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
839 }
840
841 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842 << static_cast<unsigned>(newContext)
843 << (newTypeParams->size() > prevTypeParams->size())
844 << prevTypeParams->size()
845 << newTypeParams->size();
846
847 return true;
848 }
849
850 // Match up the type parameters.
851 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854
855 // Check for consistency of the variance.
856 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858 newContext != TypeParamListContext::Definition) {
859 // When the new type parameter is invariant and is not part
860 // of the definition, just propagate the variance.
861 newTypeParam->setVariance(prevTypeParam->getVariance());
862 } else if (prevTypeParam->getVariance()
863 == ObjCTypeParamVariance::Invariant &&
864 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866 ->getDefinition() == prevTypeParam->getDeclContext())) {
867 // When the old parameter is invariant and was not part of the
868 // definition, just ignore the difference because it doesn't
869 // matter.
870 } else {
871 {
872 // Diagnose the conflict and update the second declaration.
873 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874 if (diagLoc.isInvalid())
875 diagLoc = newTypeParam->getBeginLoc();
876
877 auto diag = S.Diag(diagLoc,
878 diag::err_objc_type_param_variance_conflict)
879 << static_cast<unsigned>(newTypeParam->getVariance())
880 << newTypeParam->getDeclName()
881 << static_cast<unsigned>(prevTypeParam->getVariance())
882 << prevTypeParam->getDeclName();
883 switch (prevTypeParam->getVariance()) {
884 case ObjCTypeParamVariance::Invariant:
885 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
886 break;
887
888 case ObjCTypeParamVariance::Covariant:
889 case ObjCTypeParamVariance::Contravariant: {
890 StringRef newVarianceStr
891 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892 ? "__covariant"
893 : "__contravariant";
894 if (newTypeParam->getVariance()
895 == ObjCTypeParamVariance::Invariant) {
896 diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
897 (newVarianceStr + " ").str());
898 } else {
899 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
900 newVarianceStr);
901 }
902 }
903 }
904 }
905
906 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907 << prevTypeParam->getDeclName();
908
909 // Override the variance.
910 newTypeParam->setVariance(prevTypeParam->getVariance());
911 }
912 }
913
914 // If the bound types match, there's nothing to do.
915 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916 newTypeParam->getUnderlyingType()))
917 continue;
918
919 // If the new type parameter's bound was explicit, complain about it being
920 // different from the original.
921 if (newTypeParam->hasExplicitBound()) {
922 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923 ->getTypeLoc().getSourceRange();
924 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925 << newTypeParam->getUnderlyingType()
926 << newTypeParam->getDeclName()
927 << prevTypeParam->hasExplicitBound()
928 << prevTypeParam->getUnderlyingType()
929 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930 << prevTypeParam->getDeclName()
931 << FixItHint::CreateReplacement(
932 newBoundRange,
933 prevTypeParam->getUnderlyingType().getAsString(
934 S.Context.getPrintingPolicy()));
935
936 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937 << prevTypeParam->getDeclName();
938
939 // Override the new type parameter's bound type with the previous type,
940 // so that it's consistent.
941 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
942 continue;
943 }
944
945 // The new type parameter got the implicit bound of 'id'. That's okay for
946 // categories and extensions (overwrite it later), but not for forward
947 // declarations and @interfaces, because those must be standalone.
948 if (newContext == TypeParamListContext::ForwardDeclaration ||
949 newContext == TypeParamListContext::Definition) {
950 // Diagnose this problem for forward declarations and definitions.
951 SourceLocation insertionLoc
952 = S.getLocForEndOfToken(newTypeParam->getLocation());
953 std::string newCode
954 = " : " + prevTypeParam->getUnderlyingType().getAsString(
955 S.Context.getPrintingPolicy());
956 S.Diag(newTypeParam->getLocation(),
957 diag::err_objc_type_param_bound_missing)
958 << prevTypeParam->getUnderlyingType()
959 << newTypeParam->getDeclName()
960 << (newContext == TypeParamListContext::ForwardDeclaration)
961 << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964 << prevTypeParam->getDeclName();
965 }
966
967 // Update the new type parameter's bound to match the previous one.
968 S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
969 }
970
971 return false;
972 }
973
ActOnStartClassInterface(Scope * S,SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList)974 ObjCInterfaceDecl *Sema::ActOnStartClassInterface(
975 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977 IdentifierInfo *SuperName, SourceLocation SuperLoc,
978 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979 Decl *const *ProtoRefs, unsigned NumProtoRefs,
980 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981 const ParsedAttributesView &AttrList) {
982 assert(ClassName && "Missing class identifier");
983
984 // Check for another declaration kind with the same name.
985 NamedDecl *PrevDecl =
986 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
987 forRedeclarationInCurContext());
988
989 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
990 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
991 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
992 }
993
994 // Create a declaration to describe this @interface.
995 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
996
997 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
998 // A previous decl with a different name is because of
999 // @compatibility_alias, for example:
1000 // \code
1001 // @class NewImage;
1002 // @compatibility_alias OldImage NewImage;
1003 // \endcode
1004 // A lookup for 'OldImage' will return the 'NewImage' decl.
1005 //
1006 // In such a case use the real declaration name, instead of the alias one,
1007 // otherwise we will break IdentifierResolver and redecls-chain invariants.
1008 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1009 // has been aliased.
1010 ClassName = PrevIDecl->getIdentifier();
1011 }
1012
1013 // If there was a forward declaration with type parameters, check
1014 // for consistency.
1015 if (PrevIDecl) {
1016 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1017 if (typeParamList) {
1018 // Both have type parameter lists; check for consistency.
1019 if (checkTypeParamListConsistency(*this, prevTypeParamList,
1020 typeParamList,
1021 TypeParamListContext::Definition)) {
1022 typeParamList = nullptr;
1023 }
1024 } else {
1025 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1026 << ClassName;
1027 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1028 << ClassName;
1029
1030 // Clone the type parameter list.
1031 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1032 for (auto typeParam : *prevTypeParamList) {
1033 clonedTypeParams.push_back(
1034 ObjCTypeParamDecl::Create(
1035 Context,
1036 CurContext,
1037 typeParam->getVariance(),
1038 SourceLocation(),
1039 typeParam->getIndex(),
1040 SourceLocation(),
1041 typeParam->getIdentifier(),
1042 SourceLocation(),
1043 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1044 }
1045
1046 typeParamList = ObjCTypeParamList::create(Context,
1047 SourceLocation(),
1048 clonedTypeParams,
1049 SourceLocation());
1050 }
1051 }
1052 }
1053
1054 ObjCInterfaceDecl *IDecl
1055 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1056 typeParamList, PrevIDecl, ClassLoc);
1057 if (PrevIDecl) {
1058 // Class already seen. Was it a definition?
1059 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1060 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1061 << PrevIDecl->getDeclName();
1062 Diag(Def->getLocation(), diag::note_previous_definition);
1063 IDecl->setInvalidDecl();
1064 }
1065 }
1066
1067 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1068 AddPragmaAttributes(TUScope, IDecl);
1069
1070 // Merge attributes from previous declarations.
1071 if (PrevIDecl)
1072 mergeDeclAttributes(IDecl, PrevIDecl);
1073
1074 PushOnScopeChains(IDecl, TUScope);
1075
1076 // Start the definition of this class. If we're in a redefinition case, there
1077 // may already be a definition, so we'll end up adding to it.
1078 if (!IDecl->hasDefinition())
1079 IDecl->startDefinition();
1080
1081 if (SuperName) {
1082 // Diagnose availability in the context of the @interface.
1083 ContextRAII SavedContext(*this, IDecl);
1084
1085 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1086 ClassName, ClassLoc,
1087 SuperName, SuperLoc, SuperTypeArgs,
1088 SuperTypeArgsRange);
1089 } else { // we have a root class.
1090 IDecl->setEndOfDefinitionLoc(ClassLoc);
1091 }
1092
1093 // Check then save referenced protocols.
1094 if (NumProtoRefs) {
1095 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1096 NumProtoRefs, ProtoLocs);
1097 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1098 ProtoLocs, Context);
1099 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1100 }
1101
1102 CheckObjCDeclScope(IDecl);
1103 ActOnObjCContainerStartDefinition(IDecl);
1104 return IDecl;
1105 }
1106
1107 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1108 /// typedef'ed use for a qualified super class and adds them to the list
1109 /// of the protocols.
ActOnTypedefedProtocols(SmallVectorImpl<Decl * > & ProtocolRefs,SmallVectorImpl<SourceLocation> & ProtocolLocs,IdentifierInfo * SuperName,SourceLocation SuperLoc)1110 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1111 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1112 IdentifierInfo *SuperName,
1113 SourceLocation SuperLoc) {
1114 if (!SuperName)
1115 return;
1116 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1117 LookupOrdinaryName);
1118 if (!IDecl)
1119 return;
1120
1121 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1122 QualType T = TDecl->getUnderlyingType();
1123 if (T->isObjCObjectType())
1124 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1125 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1126 // FIXME: Consider whether this should be an invalid loc since the loc
1127 // is not actually pointing to a protocol name reference but to the
1128 // typedef reference. Note that the base class name loc is also pointing
1129 // at the typedef.
1130 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1131 }
1132 }
1133 }
1134
1135 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1136 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)1137 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1138 IdentifierInfo *AliasName,
1139 SourceLocation AliasLocation,
1140 IdentifierInfo *ClassName,
1141 SourceLocation ClassLocation) {
1142 // Look for previous declaration of alias name
1143 NamedDecl *ADecl =
1144 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1145 forRedeclarationInCurContext());
1146 if (ADecl) {
1147 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1148 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1149 return nullptr;
1150 }
1151 // Check for class declaration
1152 NamedDecl *CDeclU =
1153 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1154 forRedeclarationInCurContext());
1155 if (const TypedefNameDecl *TDecl =
1156 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1157 QualType T = TDecl->getUnderlyingType();
1158 if (T->isObjCObjectType()) {
1159 if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1160 ClassName = IDecl->getIdentifier();
1161 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1162 LookupOrdinaryName,
1163 forRedeclarationInCurContext());
1164 }
1165 }
1166 }
1167 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1168 if (!CDecl) {
1169 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1170 if (CDeclU)
1171 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1172 return nullptr;
1173 }
1174
1175 // Everything checked out, instantiate a new alias declaration AST.
1176 ObjCCompatibleAliasDecl *AliasDecl =
1177 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1178
1179 if (!CheckObjCDeclScope(AliasDecl))
1180 PushOnScopeChains(AliasDecl, TUScope);
1181
1182 return AliasDecl;
1183 }
1184
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)1185 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1186 IdentifierInfo *PName,
1187 SourceLocation &Ploc, SourceLocation PrevLoc,
1188 const ObjCList<ObjCProtocolDecl> &PList) {
1189
1190 bool res = false;
1191 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1192 E = PList.end(); I != E; ++I) {
1193 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1194 Ploc)) {
1195 if (PDecl->getIdentifier() == PName) {
1196 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1197 Diag(PrevLoc, diag::note_previous_definition);
1198 res = true;
1199 }
1200
1201 if (!PDecl->hasDefinition())
1202 continue;
1203
1204 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1205 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1206 res = true;
1207 }
1208 }
1209 return res;
1210 }
1211
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList)1212 ObjCProtocolDecl *Sema::ActOnStartProtocolInterface(
1213 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1214 SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1215 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1216 const ParsedAttributesView &AttrList) {
1217 bool err = false;
1218 // FIXME: Deal with AttrList.
1219 assert(ProtocolName && "Missing protocol identifier");
1220 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1221 forRedeclarationInCurContext());
1222 ObjCProtocolDecl *PDecl = nullptr;
1223 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1224 // If we already have a definition, complain.
1225 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1226 Diag(Def->getLocation(), diag::note_previous_definition);
1227
1228 // Create a new protocol that is completely distinct from previous
1229 // declarations, and do not make this protocol available for name lookup.
1230 // That way, we'll end up completely ignoring the duplicate.
1231 // FIXME: Can we turn this into an error?
1232 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1233 ProtocolLoc, AtProtoInterfaceLoc,
1234 /*PrevDecl=*/nullptr);
1235
1236 // If we are using modules, add the decl to the context in order to
1237 // serialize something meaningful.
1238 if (getLangOpts().Modules)
1239 PushOnScopeChains(PDecl, TUScope);
1240 PDecl->startDefinition();
1241 } else {
1242 if (PrevDecl) {
1243 // Check for circular dependencies among protocol declarations. This can
1244 // only happen if this protocol was forward-declared.
1245 ObjCList<ObjCProtocolDecl> PList;
1246 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1247 err = CheckForwardProtocolDeclarationForCircularDependency(
1248 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1249 }
1250
1251 // Create the new declaration.
1252 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1253 ProtocolLoc, AtProtoInterfaceLoc,
1254 /*PrevDecl=*/PrevDecl);
1255
1256 PushOnScopeChains(PDecl, TUScope);
1257 PDecl->startDefinition();
1258 }
1259
1260 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1261 AddPragmaAttributes(TUScope, PDecl);
1262
1263 // Merge attributes from previous declarations.
1264 if (PrevDecl)
1265 mergeDeclAttributes(PDecl, PrevDecl);
1266
1267 if (!err && NumProtoRefs ) {
1268 /// Check then save referenced protocols.
1269 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1270 NumProtoRefs, ProtoLocs);
1271 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1272 ProtoLocs, Context);
1273 }
1274
1275 CheckObjCDeclScope(PDecl);
1276 ActOnObjCContainerStartDefinition(PDecl);
1277 return PDecl;
1278 }
1279
NestedProtocolHasNoDefinition(ObjCProtocolDecl * PDecl,ObjCProtocolDecl * & UndefinedProtocol)1280 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1281 ObjCProtocolDecl *&UndefinedProtocol) {
1282 if (!PDecl->hasDefinition() ||
1283 !PDecl->getDefinition()->isUnconditionallyVisible()) {
1284 UndefinedProtocol = PDecl;
1285 return true;
1286 }
1287
1288 for (auto *PI : PDecl->protocols())
1289 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1290 UndefinedProtocol = PI;
1291 return true;
1292 }
1293 return false;
1294 }
1295
1296 /// FindProtocolDeclaration - This routine looks up protocols and
1297 /// issues an error if they are not declared. It returns list of
1298 /// protocol declarations in its 'Protocols' argument.
1299 void
FindProtocolDeclaration(bool WarnOnDeclarations,bool ForObjCContainer,ArrayRef<IdentifierLocPair> ProtocolId,SmallVectorImpl<Decl * > & Protocols)1300 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1301 ArrayRef<IdentifierLocPair> ProtocolId,
1302 SmallVectorImpl<Decl *> &Protocols) {
1303 for (const IdentifierLocPair &Pair : ProtocolId) {
1304 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1305 if (!PDecl) {
1306 DeclFilterCCC<ObjCProtocolDecl> CCC{};
1307 TypoCorrection Corrected = CorrectTypo(
1308 DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1309 TUScope, nullptr, CCC, CTK_ErrorRecovery);
1310 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1311 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1312 << Pair.first);
1313 }
1314
1315 if (!PDecl) {
1316 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1317 continue;
1318 }
1319 // If this is a forward protocol declaration, get its definition.
1320 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1321 PDecl = PDecl->getDefinition();
1322
1323 // For an objc container, delay protocol reference checking until after we
1324 // can set the objc decl as the availability context, otherwise check now.
1325 if (!ForObjCContainer) {
1326 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1327 }
1328
1329 // If this is a forward declaration and we are supposed to warn in this
1330 // case, do it.
1331 // FIXME: Recover nicely in the hidden case.
1332 ObjCProtocolDecl *UndefinedProtocol;
1333
1334 if (WarnOnDeclarations &&
1335 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1336 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1337 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1338 << UndefinedProtocol;
1339 }
1340 Protocols.push_back(PDecl);
1341 }
1342 }
1343
1344 namespace {
1345 // Callback to only accept typo corrections that are either
1346 // Objective-C protocols or valid Objective-C type arguments.
1347 class ObjCTypeArgOrProtocolValidatorCCC final
1348 : public CorrectionCandidateCallback {
1349 ASTContext &Context;
1350 Sema::LookupNameKind LookupKind;
1351 public:
ObjCTypeArgOrProtocolValidatorCCC(ASTContext & context,Sema::LookupNameKind lookupKind)1352 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1353 Sema::LookupNameKind lookupKind)
1354 : Context(context), LookupKind(lookupKind) { }
1355
ValidateCandidate(const TypoCorrection & candidate)1356 bool ValidateCandidate(const TypoCorrection &candidate) override {
1357 // If we're allowed to find protocols and we have a protocol, accept it.
1358 if (LookupKind != Sema::LookupOrdinaryName) {
1359 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1360 return true;
1361 }
1362
1363 // If we're allowed to find type names and we have one, accept it.
1364 if (LookupKind != Sema::LookupObjCProtocolName) {
1365 // If we have a type declaration, we might accept this result.
1366 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1367 // If we found a tag declaration outside of C++, skip it. This
1368 // can happy because we look for any name when there is no
1369 // bias to protocol or type names.
1370 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1371 return false;
1372
1373 // Make sure the type is something we would accept as a type
1374 // argument.
1375 auto type = Context.getTypeDeclType(typeDecl);
1376 if (type->isObjCObjectPointerType() ||
1377 type->isBlockPointerType() ||
1378 type->isDependentType() ||
1379 type->isObjCObjectType())
1380 return true;
1381
1382 return false;
1383 }
1384
1385 // If we have an Objective-C class type, accept it; there will
1386 // be another fix to add the '*'.
1387 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1388 return true;
1389
1390 return false;
1391 }
1392
1393 return false;
1394 }
1395
clone()1396 std::unique_ptr<CorrectionCandidateCallback> clone() override {
1397 return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1398 }
1399 };
1400 } // end anonymous namespace
1401
DiagnoseTypeArgsAndProtocols(IdentifierInfo * ProtocolId,SourceLocation ProtocolLoc,IdentifierInfo * TypeArgId,SourceLocation TypeArgLoc,bool SelectProtocolFirst)1402 void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1403 SourceLocation ProtocolLoc,
1404 IdentifierInfo *TypeArgId,
1405 SourceLocation TypeArgLoc,
1406 bool SelectProtocolFirst) {
1407 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1408 << SelectProtocolFirst << TypeArgId << ProtocolId
1409 << SourceRange(ProtocolLoc);
1410 }
1411
actOnObjCTypeArgsOrProtocolQualifiers(Scope * S,ParsedType baseType,SourceLocation lAngleLoc,ArrayRef<IdentifierInfo * > identifiers,ArrayRef<SourceLocation> identifierLocs,SourceLocation rAngleLoc,SourceLocation & typeArgsLAngleLoc,SmallVectorImpl<ParsedType> & typeArgs,SourceLocation & typeArgsRAngleLoc,SourceLocation & protocolLAngleLoc,SmallVectorImpl<Decl * > & protocols,SourceLocation & protocolRAngleLoc,bool warnOnIncompleteProtocols)1412 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1413 Scope *S,
1414 ParsedType baseType,
1415 SourceLocation lAngleLoc,
1416 ArrayRef<IdentifierInfo *> identifiers,
1417 ArrayRef<SourceLocation> identifierLocs,
1418 SourceLocation rAngleLoc,
1419 SourceLocation &typeArgsLAngleLoc,
1420 SmallVectorImpl<ParsedType> &typeArgs,
1421 SourceLocation &typeArgsRAngleLoc,
1422 SourceLocation &protocolLAngleLoc,
1423 SmallVectorImpl<Decl *> &protocols,
1424 SourceLocation &protocolRAngleLoc,
1425 bool warnOnIncompleteProtocols) {
1426 // Local function that updates the declaration specifiers with
1427 // protocol information.
1428 unsigned numProtocolsResolved = 0;
1429 auto resolvedAsProtocols = [&] {
1430 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1431
1432 // Determine whether the base type is a parameterized class, in
1433 // which case we want to warn about typos such as
1434 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1435 ObjCInterfaceDecl *baseClass = nullptr;
1436 QualType base = GetTypeFromParser(baseType, nullptr);
1437 bool allAreTypeNames = false;
1438 SourceLocation firstClassNameLoc;
1439 if (!base.isNull()) {
1440 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1441 baseClass = objcObjectType->getInterface();
1442 if (baseClass) {
1443 if (auto typeParams = baseClass->getTypeParamList()) {
1444 if (typeParams->size() == numProtocolsResolved) {
1445 // Note that we should be looking for type names, too.
1446 allAreTypeNames = true;
1447 }
1448 }
1449 }
1450 }
1451 }
1452
1453 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1454 ObjCProtocolDecl *&proto
1455 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1456 // For an objc container, delay protocol reference checking until after we
1457 // can set the objc decl as the availability context, otherwise check now.
1458 if (!warnOnIncompleteProtocols) {
1459 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1460 }
1461
1462 // If this is a forward protocol declaration, get its definition.
1463 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1464 proto = proto->getDefinition();
1465
1466 // If this is a forward declaration and we are supposed to warn in this
1467 // case, do it.
1468 // FIXME: Recover nicely in the hidden case.
1469 ObjCProtocolDecl *forwardDecl = nullptr;
1470 if (warnOnIncompleteProtocols &&
1471 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1472 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1473 << proto->getDeclName();
1474 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1475 << forwardDecl;
1476 }
1477
1478 // If everything this far has been a type name (and we care
1479 // about such things), check whether this name refers to a type
1480 // as well.
1481 if (allAreTypeNames) {
1482 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1483 LookupOrdinaryName)) {
1484 if (isa<ObjCInterfaceDecl>(decl)) {
1485 if (firstClassNameLoc.isInvalid())
1486 firstClassNameLoc = identifierLocs[i];
1487 } else if (!isa<TypeDecl>(decl)) {
1488 // Not a type.
1489 allAreTypeNames = false;
1490 }
1491 } else {
1492 allAreTypeNames = false;
1493 }
1494 }
1495 }
1496
1497 // All of the protocols listed also have type names, and at least
1498 // one is an Objective-C class name. Check whether all of the
1499 // protocol conformances are declared by the base class itself, in
1500 // which case we warn.
1501 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1502 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1503 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1504 bool allProtocolsDeclared = true;
1505 for (auto proto : protocols) {
1506 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1507 allProtocolsDeclared = false;
1508 break;
1509 }
1510 }
1511
1512 if (allProtocolsDeclared) {
1513 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1514 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1515 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1516 " *");
1517 }
1518 }
1519
1520 protocolLAngleLoc = lAngleLoc;
1521 protocolRAngleLoc = rAngleLoc;
1522 assert(protocols.size() == identifierLocs.size());
1523 };
1524
1525 // Attempt to resolve all of the identifiers as protocols.
1526 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1527 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1528 protocols.push_back(proto);
1529 if (proto)
1530 ++numProtocolsResolved;
1531 }
1532
1533 // If all of the names were protocols, these were protocol qualifiers.
1534 if (numProtocolsResolved == identifiers.size())
1535 return resolvedAsProtocols();
1536
1537 // Attempt to resolve all of the identifiers as type names or
1538 // Objective-C class names. The latter is technically ill-formed,
1539 // but is probably something like \c NSArray<NSView *> missing the
1540 // \c*.
1541 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1542 SmallVector<TypeOrClassDecl, 4> typeDecls;
1543 unsigned numTypeDeclsResolved = 0;
1544 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1545 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1546 LookupOrdinaryName);
1547 if (!decl) {
1548 typeDecls.push_back(TypeOrClassDecl());
1549 continue;
1550 }
1551
1552 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1553 typeDecls.push_back(typeDecl);
1554 ++numTypeDeclsResolved;
1555 continue;
1556 }
1557
1558 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1559 typeDecls.push_back(objcClass);
1560 ++numTypeDeclsResolved;
1561 continue;
1562 }
1563
1564 typeDecls.push_back(TypeOrClassDecl());
1565 }
1566
1567 AttributeFactory attrFactory;
1568
1569 // Local function that forms a reference to the given type or
1570 // Objective-C class declaration.
1571 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1572 -> TypeResult {
1573 // Form declaration specifiers. They simply refer to the type.
1574 DeclSpec DS(attrFactory);
1575 const char* prevSpec; // unused
1576 unsigned diagID; // unused
1577 QualType type;
1578 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1579 type = Context.getTypeDeclType(actualTypeDecl);
1580 else
1581 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1582 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1583 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1584 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1585 parsedType, Context.getPrintingPolicy());
1586 // Use the identifier location for the type source range.
1587 DS.SetRangeStart(loc);
1588 DS.SetRangeEnd(loc);
1589
1590 // Form the declarator.
1591 Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1592
1593 // If we have a typedef of an Objective-C class type that is missing a '*',
1594 // add the '*'.
1595 if (type->getAs<ObjCInterfaceType>()) {
1596 SourceLocation starLoc = getLocForEndOfToken(loc);
1597 D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1598 SourceLocation(),
1599 SourceLocation(),
1600 SourceLocation(),
1601 SourceLocation(),
1602 SourceLocation()),
1603 starLoc);
1604
1605 // Diagnose the missing '*'.
1606 Diag(loc, diag::err_objc_type_arg_missing_star)
1607 << type
1608 << FixItHint::CreateInsertion(starLoc, " *");
1609 }
1610
1611 // Convert this to a type.
1612 return ActOnTypeName(S, D);
1613 };
1614
1615 // Local function that updates the declaration specifiers with
1616 // type argument information.
1617 auto resolvedAsTypeDecls = [&] {
1618 // We did not resolve these as protocols.
1619 protocols.clear();
1620
1621 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1622 // Map type declarations to type arguments.
1623 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1624 // Map type reference to a type.
1625 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1626 if (!type.isUsable()) {
1627 typeArgs.clear();
1628 return;
1629 }
1630
1631 typeArgs.push_back(type.get());
1632 }
1633
1634 typeArgsLAngleLoc = lAngleLoc;
1635 typeArgsRAngleLoc = rAngleLoc;
1636 };
1637
1638 // If all of the identifiers can be resolved as type names or
1639 // Objective-C class names, we have type arguments.
1640 if (numTypeDeclsResolved == identifiers.size())
1641 return resolvedAsTypeDecls();
1642
1643 // Error recovery: some names weren't found, or we have a mix of
1644 // type and protocol names. Go resolve all of the unresolved names
1645 // and complain if we can't find a consistent answer.
1646 LookupNameKind lookupKind = LookupAnyName;
1647 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1648 // If we already have a protocol or type. Check whether it is the
1649 // right thing.
1650 if (protocols[i] || typeDecls[i]) {
1651 // If we haven't figured out whether we want types or protocols
1652 // yet, try to figure it out from this name.
1653 if (lookupKind == LookupAnyName) {
1654 // If this name refers to both a protocol and a type (e.g., \c
1655 // NSObject), don't conclude anything yet.
1656 if (protocols[i] && typeDecls[i])
1657 continue;
1658
1659 // Otherwise, let this name decide whether we'll be correcting
1660 // toward types or protocols.
1661 lookupKind = protocols[i] ? LookupObjCProtocolName
1662 : LookupOrdinaryName;
1663 continue;
1664 }
1665
1666 // If we want protocols and we have a protocol, there's nothing
1667 // more to do.
1668 if (lookupKind == LookupObjCProtocolName && protocols[i])
1669 continue;
1670
1671 // If we want types and we have a type declaration, there's
1672 // nothing more to do.
1673 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1674 continue;
1675
1676 // We have a conflict: some names refer to protocols and others
1677 // refer to types.
1678 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1679 identifiers[i], identifierLocs[i],
1680 protocols[i] != nullptr);
1681
1682 protocols.clear();
1683 typeArgs.clear();
1684 return;
1685 }
1686
1687 // Perform typo correction on the name.
1688 ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1689 TypoCorrection corrected =
1690 CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1691 lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1692 if (corrected) {
1693 // Did we find a protocol?
1694 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1695 diagnoseTypo(corrected,
1696 PDiag(diag::err_undeclared_protocol_suggest)
1697 << identifiers[i]);
1698 lookupKind = LookupObjCProtocolName;
1699 protocols[i] = proto;
1700 ++numProtocolsResolved;
1701 continue;
1702 }
1703
1704 // Did we find a type?
1705 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1706 diagnoseTypo(corrected,
1707 PDiag(diag::err_unknown_typename_suggest)
1708 << identifiers[i]);
1709 lookupKind = LookupOrdinaryName;
1710 typeDecls[i] = typeDecl;
1711 ++numTypeDeclsResolved;
1712 continue;
1713 }
1714
1715 // Did we find an Objective-C class?
1716 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1717 diagnoseTypo(corrected,
1718 PDiag(diag::err_unknown_type_or_class_name_suggest)
1719 << identifiers[i] << true);
1720 lookupKind = LookupOrdinaryName;
1721 typeDecls[i] = objcClass;
1722 ++numTypeDeclsResolved;
1723 continue;
1724 }
1725 }
1726
1727 // We couldn't find anything.
1728 Diag(identifierLocs[i],
1729 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1730 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1731 : diag::err_unknown_typename))
1732 << identifiers[i];
1733 protocols.clear();
1734 typeArgs.clear();
1735 return;
1736 }
1737
1738 // If all of the names were (corrected to) protocols, these were
1739 // protocol qualifiers.
1740 if (numProtocolsResolved == identifiers.size())
1741 return resolvedAsProtocols();
1742
1743 // Otherwise, all of the names were (corrected to) types.
1744 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1745 return resolvedAsTypeDecls();
1746 }
1747
1748 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1749 /// a class method in its extension.
1750 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)1751 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1752 ObjCInterfaceDecl *ID) {
1753 if (!ID)
1754 return; // Possibly due to previous error
1755
1756 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1757 for (auto *MD : ID->methods())
1758 MethodMap[MD->getSelector()] = MD;
1759
1760 if (MethodMap.empty())
1761 return;
1762 for (const auto *Method : CAT->methods()) {
1763 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1764 if (PrevMethod &&
1765 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1766 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1767 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1768 << Method->getDeclName();
1769 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1770 }
1771 }
1772 }
1773
1774 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1775 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,ArrayRef<IdentifierLocPair> IdentList,const ParsedAttributesView & attrList)1776 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1777 ArrayRef<IdentifierLocPair> IdentList,
1778 const ParsedAttributesView &attrList) {
1779 SmallVector<Decl *, 8> DeclsInGroup;
1780 for (const IdentifierLocPair &IdentPair : IdentList) {
1781 IdentifierInfo *Ident = IdentPair.first;
1782 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1783 forRedeclarationInCurContext());
1784 ObjCProtocolDecl *PDecl
1785 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1786 IdentPair.second, AtProtocolLoc,
1787 PrevDecl);
1788
1789 PushOnScopeChains(PDecl, TUScope);
1790 CheckObjCDeclScope(PDecl);
1791
1792 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1793 AddPragmaAttributes(TUScope, PDecl);
1794
1795 if (PrevDecl)
1796 mergeDeclAttributes(PDecl, PrevDecl);
1797
1798 DeclsInGroup.push_back(PDecl);
1799 }
1800
1801 return BuildDeclaratorGroup(DeclsInGroup);
1802 }
1803
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,const ParsedAttributesView & AttrList)1804 ObjCCategoryDecl *Sema::ActOnStartCategoryInterface(
1805 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1806 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1807 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1808 Decl *const *ProtoRefs, unsigned NumProtoRefs,
1809 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1810 const ParsedAttributesView &AttrList) {
1811 ObjCCategoryDecl *CDecl;
1812 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1813
1814 /// Check that class of this category is already completely declared.
1815
1816 if (!IDecl
1817 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1818 diag::err_category_forward_interface,
1819 CategoryName == nullptr)) {
1820 // Create an invalid ObjCCategoryDecl to serve as context for
1821 // the enclosing method declarations. We mark the decl invalid
1822 // to make it clear that this isn't a valid AST.
1823 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1824 ClassLoc, CategoryLoc, CategoryName,
1825 IDecl, typeParamList);
1826 CDecl->setInvalidDecl();
1827 CurContext->addDecl(CDecl);
1828
1829 if (!IDecl)
1830 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1831 ActOnObjCContainerStartDefinition(CDecl);
1832 return CDecl;
1833 }
1834
1835 if (!CategoryName && IDecl->getImplementation()) {
1836 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1837 Diag(IDecl->getImplementation()->getLocation(),
1838 diag::note_implementation_declared);
1839 }
1840
1841 if (CategoryName) {
1842 /// Check for duplicate interface declaration for this category
1843 if (ObjCCategoryDecl *Previous
1844 = IDecl->FindCategoryDeclaration(CategoryName)) {
1845 // Class extensions can be declared multiple times, categories cannot.
1846 Diag(CategoryLoc, diag::warn_dup_category_def)
1847 << ClassName << CategoryName;
1848 Diag(Previous->getLocation(), diag::note_previous_definition);
1849 }
1850 }
1851
1852 // If we have a type parameter list, check it.
1853 if (typeParamList) {
1854 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1855 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1856 CategoryName
1857 ? TypeParamListContext::Category
1858 : TypeParamListContext::Extension))
1859 typeParamList = nullptr;
1860 } else {
1861 Diag(typeParamList->getLAngleLoc(),
1862 diag::err_objc_parameterized_category_nonclass)
1863 << (CategoryName != nullptr)
1864 << ClassName
1865 << typeParamList->getSourceRange();
1866
1867 typeParamList = nullptr;
1868 }
1869 }
1870
1871 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1872 ClassLoc, CategoryLoc, CategoryName, IDecl,
1873 typeParamList);
1874 // FIXME: PushOnScopeChains?
1875 CurContext->addDecl(CDecl);
1876
1877 // Process the attributes before looking at protocols to ensure that the
1878 // availability attribute is attached to the category to provide availability
1879 // checking for protocol uses.
1880 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1881 AddPragmaAttributes(TUScope, CDecl);
1882
1883 if (NumProtoRefs) {
1884 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1885 NumProtoRefs, ProtoLocs);
1886 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1887 ProtoLocs, Context);
1888 // Protocols in the class extension belong to the class.
1889 if (CDecl->IsClassExtension())
1890 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1891 NumProtoRefs, Context);
1892 }
1893
1894 CheckObjCDeclScope(CDecl);
1895 ActOnObjCContainerStartDefinition(CDecl);
1896 return CDecl;
1897 }
1898
1899 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1900 /// category implementation declaration and build an ObjCCategoryImplDecl
1901 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc,const ParsedAttributesView & Attrs)1902 ObjCCategoryImplDecl *Sema::ActOnStartCategoryImplementation(
1903 SourceLocation AtCatImplLoc, IdentifierInfo *ClassName,
1904 SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc,
1905 const ParsedAttributesView &Attrs) {
1906 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1907 ObjCCategoryDecl *CatIDecl = nullptr;
1908 if (IDecl && IDecl->hasDefinition()) {
1909 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1910 if (!CatIDecl) {
1911 // Category @implementation with no corresponding @interface.
1912 // Create and install one.
1913 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1914 ClassLoc, CatLoc,
1915 CatName, IDecl,
1916 /*typeParamList=*/nullptr);
1917 CatIDecl->setImplicit();
1918 }
1919 }
1920
1921 ObjCCategoryImplDecl *CDecl =
1922 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1923 ClassLoc, AtCatImplLoc, CatLoc);
1924 /// Check that class of this category is already completely declared.
1925 if (!IDecl) {
1926 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1927 CDecl->setInvalidDecl();
1928 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1929 diag::err_undef_interface)) {
1930 CDecl->setInvalidDecl();
1931 }
1932
1933 ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1934 AddPragmaAttributes(TUScope, CDecl);
1935
1936 // FIXME: PushOnScopeChains?
1937 CurContext->addDecl(CDecl);
1938
1939 // If the interface has the objc_runtime_visible attribute, we
1940 // cannot implement a category for it.
1941 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1942 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1943 << IDecl->getDeclName();
1944 }
1945
1946 /// Check that CatName, category name, is not used in another implementation.
1947 if (CatIDecl) {
1948 if (CatIDecl->getImplementation()) {
1949 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1950 << CatName;
1951 Diag(CatIDecl->getImplementation()->getLocation(),
1952 diag::note_previous_definition);
1953 CDecl->setInvalidDecl();
1954 } else {
1955 CatIDecl->setImplementation(CDecl);
1956 // Warn on implementating category of deprecated class under
1957 // -Wdeprecated-implementations flag.
1958 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1959 CDecl->getLocation());
1960 }
1961 }
1962
1963 CheckObjCDeclScope(CDecl);
1964 ActOnObjCContainerStartDefinition(CDecl);
1965 return CDecl;
1966 }
1967
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc,const ParsedAttributesView & Attrs)1968 ObjCImplementationDecl *Sema::ActOnStartClassImplementation(
1969 SourceLocation AtClassImplLoc, IdentifierInfo *ClassName,
1970 SourceLocation ClassLoc, IdentifierInfo *SuperClassname,
1971 SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1972 ObjCInterfaceDecl *IDecl = nullptr;
1973 // Check for another declaration kind with the same name.
1974 NamedDecl *PrevDecl
1975 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1976 forRedeclarationInCurContext());
1977 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1978 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1979 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1980 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1981 // FIXME: This will produce an error if the definition of the interface has
1982 // been imported from a module but is not visible.
1983 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1984 diag::warn_undef_interface);
1985 } else {
1986 // We did not find anything with the name ClassName; try to correct for
1987 // typos in the class name.
1988 ObjCInterfaceValidatorCCC CCC{};
1989 TypoCorrection Corrected =
1990 CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1991 LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
1992 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1993 // Suggest the (potentially) correct interface name. Don't provide a
1994 // code-modification hint or use the typo name for recovery, because
1995 // this is just a warning. The program may actually be correct.
1996 diagnoseTypo(Corrected,
1997 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1998 /*ErrorRecovery*/false);
1999 } else {
2000 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2001 }
2002 }
2003
2004 // Check that super class name is valid class name
2005 ObjCInterfaceDecl *SDecl = nullptr;
2006 if (SuperClassname) {
2007 // Check if a different kind of symbol declared in this scope.
2008 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2009 LookupOrdinaryName);
2010 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2011 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2012 << SuperClassname;
2013 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2014 } else {
2015 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2016 if (SDecl && !SDecl->hasDefinition())
2017 SDecl = nullptr;
2018 if (!SDecl)
2019 Diag(SuperClassLoc, diag::err_undef_superclass)
2020 << SuperClassname << ClassName;
2021 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2022 // This implementation and its interface do not have the same
2023 // super class.
2024 Diag(SuperClassLoc, diag::err_conflicting_super_class)
2025 << SDecl->getDeclName();
2026 Diag(SDecl->getLocation(), diag::note_previous_definition);
2027 }
2028 }
2029 }
2030
2031 if (!IDecl) {
2032 // Legacy case of @implementation with no corresponding @interface.
2033 // Build, chain & install the interface decl into the identifier.
2034
2035 // FIXME: Do we support attributes on the @implementation? If so we should
2036 // copy them over.
2037 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2038 ClassName, /*typeParamList=*/nullptr,
2039 /*PrevDecl=*/nullptr, ClassLoc,
2040 true);
2041 AddPragmaAttributes(TUScope, IDecl);
2042 IDecl->startDefinition();
2043 if (SDecl) {
2044 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2045 Context.getObjCInterfaceType(SDecl),
2046 SuperClassLoc));
2047 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2048 } else {
2049 IDecl->setEndOfDefinitionLoc(ClassLoc);
2050 }
2051
2052 PushOnScopeChains(IDecl, TUScope);
2053 } else {
2054 // Mark the interface as being completed, even if it was just as
2055 // @class ....;
2056 // declaration; the user cannot reopen it.
2057 if (!IDecl->hasDefinition())
2058 IDecl->startDefinition();
2059 }
2060
2061 ObjCImplementationDecl* IMPDecl =
2062 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2063 ClassLoc, AtClassImplLoc, SuperClassLoc);
2064
2065 ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2066 AddPragmaAttributes(TUScope, IMPDecl);
2067
2068 if (CheckObjCDeclScope(IMPDecl)) {
2069 ActOnObjCContainerStartDefinition(IMPDecl);
2070 return IMPDecl;
2071 }
2072
2073 // Check that there is no duplicate implementation of this class.
2074 if (IDecl->getImplementation()) {
2075 // FIXME: Don't leak everything!
2076 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2077 Diag(IDecl->getImplementation()->getLocation(),
2078 diag::note_previous_definition);
2079 IMPDecl->setInvalidDecl();
2080 } else { // add it to the list.
2081 IDecl->setImplementation(IMPDecl);
2082 PushOnScopeChains(IMPDecl, TUScope);
2083 // Warn on implementating deprecated class under
2084 // -Wdeprecated-implementations flag.
2085 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2086 }
2087
2088 // If the superclass has the objc_runtime_visible attribute, we
2089 // cannot implement a subclass of it.
2090 if (IDecl->getSuperClass() &&
2091 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2092 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2093 << IDecl->getDeclName()
2094 << IDecl->getSuperClass()->getDeclName();
2095 }
2096
2097 ActOnObjCContainerStartDefinition(IMPDecl);
2098 return IMPDecl;
2099 }
2100
2101 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)2102 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2103 SmallVector<Decl *, 64> DeclsInGroup;
2104 DeclsInGroup.reserve(Decls.size() + 1);
2105
2106 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2107 Decl *Dcl = Decls[i];
2108 if (!Dcl)
2109 continue;
2110 if (Dcl->getDeclContext()->isFileContext())
2111 Dcl->setTopLevelDeclInObjCContainer();
2112 DeclsInGroup.push_back(Dcl);
2113 }
2114
2115 DeclsInGroup.push_back(ObjCImpDecl);
2116
2117 return BuildDeclaratorGroup(DeclsInGroup);
2118 }
2119
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)2120 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2121 ObjCIvarDecl **ivars, unsigned numIvars,
2122 SourceLocation RBrace) {
2123 assert(ImpDecl && "missing implementation decl");
2124 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2125 if (!IDecl)
2126 return;
2127 /// Check case of non-existing \@interface decl.
2128 /// (legacy objective-c \@implementation decl without an \@interface decl).
2129 /// Add implementations's ivar to the synthesize class's ivar list.
2130 if (IDecl->isImplicitInterfaceDecl()) {
2131 IDecl->setEndOfDefinitionLoc(RBrace);
2132 // Add ivar's to class's DeclContext.
2133 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2134 ivars[i]->setLexicalDeclContext(ImpDecl);
2135 // In a 'fragile' runtime the ivar was added to the implicit
2136 // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2137 // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2138 // therefore also needs to be propagated to the ObjCInterfaceDecl.
2139 if (!LangOpts.ObjCRuntime.isFragile())
2140 IDecl->makeDeclVisibleInContext(ivars[i]);
2141 ImpDecl->addDecl(ivars[i]);
2142 }
2143
2144 return;
2145 }
2146 // If implementation has empty ivar list, just return.
2147 if (numIvars == 0)
2148 return;
2149
2150 assert(ivars && "missing @implementation ivars");
2151 if (LangOpts.ObjCRuntime.isNonFragile()) {
2152 if (ImpDecl->getSuperClass())
2153 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2154 for (unsigned i = 0; i < numIvars; i++) {
2155 ObjCIvarDecl* ImplIvar = ivars[i];
2156 if (const ObjCIvarDecl *ClsIvar =
2157 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2158 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2159 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2160 continue;
2161 }
2162 // Check class extensions (unnamed categories) for duplicate ivars.
2163 for (const auto *CDecl : IDecl->visible_extensions()) {
2164 if (const ObjCIvarDecl *ClsExtIvar =
2165 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2166 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2167 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2168 continue;
2169 }
2170 }
2171 // Instance ivar to Implementation's DeclContext.
2172 ImplIvar->setLexicalDeclContext(ImpDecl);
2173 IDecl->makeDeclVisibleInContext(ImplIvar);
2174 ImpDecl->addDecl(ImplIvar);
2175 }
2176 return;
2177 }
2178 // Check interface's Ivar list against those in the implementation.
2179 // names and types must match.
2180 //
2181 unsigned j = 0;
2182 ObjCInterfaceDecl::ivar_iterator
2183 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2184 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2185 ObjCIvarDecl* ImplIvar = ivars[j++];
2186 ObjCIvarDecl* ClsIvar = *IVI;
2187 assert (ImplIvar && "missing implementation ivar");
2188 assert (ClsIvar && "missing class ivar");
2189
2190 // First, make sure the types match.
2191 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2192 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2193 << ImplIvar->getIdentifier()
2194 << ImplIvar->getType() << ClsIvar->getType();
2195 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2196 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2197 ImplIvar->getBitWidthValue(Context) !=
2198 ClsIvar->getBitWidthValue(Context)) {
2199 Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2200 diag::err_conflicting_ivar_bitwidth)
2201 << ImplIvar->getIdentifier();
2202 Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2203 diag::note_previous_definition);
2204 }
2205 // Make sure the names are identical.
2206 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2207 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2208 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2209 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2210 }
2211 --numIvars;
2212 }
2213
2214 if (numIvars > 0)
2215 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2216 else if (IVI != IVE)
2217 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2218 }
2219
WarnUndefinedMethod(Sema & S,ObjCImplDecl * Impl,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID,NamedDecl * NeededFor=nullptr)2220 static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2221 ObjCMethodDecl *method, bool &IncompleteImpl,
2222 unsigned DiagID,
2223 NamedDecl *NeededFor = nullptr) {
2224 // No point warning no definition of method which is 'unavailable'.
2225 if (method->getAvailability() == AR_Unavailable)
2226 return;
2227
2228 // FIXME: For now ignore 'IncompleteImpl'.
2229 // Previously we grouped all unimplemented methods under a single
2230 // warning, but some users strongly voiced that they would prefer
2231 // separate warnings. We will give that approach a try, as that
2232 // matches what we do with protocols.
2233 {
2234 const Sema::SemaDiagnosticBuilder &B = S.Diag(Impl->getLocation(), DiagID);
2235 B << method;
2236 if (NeededFor)
2237 B << NeededFor;
2238
2239 // Add an empty definition at the end of the @implementation.
2240 std::string FixItStr;
2241 llvm::raw_string_ostream Out(FixItStr);
2242 method->print(Out, Impl->getASTContext().getPrintingPolicy());
2243 Out << " {\n}\n\n";
2244
2245 SourceLocation Loc = Impl->getAtEndRange().getBegin();
2246 B << FixItHint::CreateInsertion(Loc, FixItStr);
2247 }
2248
2249 // Issue a note to the original declaration.
2250 SourceLocation MethodLoc = method->getBeginLoc();
2251 if (MethodLoc.isValid())
2252 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2253 }
2254
2255 /// Determines if type B can be substituted for type A. Returns true if we can
2256 /// guarantee that anything that the user will do to an object of type A can
2257 /// also be done to an object of type B. This is trivially true if the two
2258 /// types are the same, or if B is a subclass of A. It becomes more complex
2259 /// in cases where protocols are involved.
2260 ///
2261 /// Object types in Objective-C describe the minimum requirements for an
2262 /// object, rather than providing a complete description of a type. For
2263 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2264 /// The principle of substitutability means that we may use an instance of A
2265 /// anywhere that we may use an instance of B - it will implement all of the
2266 /// ivars of B and all of the methods of B.
2267 ///
2268 /// This substitutability is important when type checking methods, because
2269 /// the implementation may have stricter type definitions than the interface.
2270 /// The interface specifies minimum requirements, but the implementation may
2271 /// have more accurate ones. For example, a method may privately accept
2272 /// instances of B, but only publish that it accepts instances of A. Any
2273 /// object passed to it will be type checked against B, and so will implicitly
2274 /// by a valid A*. Similarly, a method may return a subclass of the class that
2275 /// it is declared as returning.
2276 ///
2277 /// This is most important when considering subclassing. A method in a
2278 /// subclass must accept any object as an argument that its superclass's
2279 /// implementation accepts. It may, however, accept a more general type
2280 /// without breaking substitutability (i.e. you can still use the subclass
2281 /// anywhere that you can use the superclass, but not vice versa). The
2282 /// converse requirement applies to return types: the return type for a
2283 /// subclass method must be a valid object of the kind that the superclass
2284 /// advertises, but it may be specified more accurately. This avoids the need
2285 /// for explicit down-casting by callers.
2286 ///
2287 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)2288 static bool isObjCTypeSubstitutable(ASTContext &Context,
2289 const ObjCObjectPointerType *A,
2290 const ObjCObjectPointerType *B,
2291 bool rejectId) {
2292 // Reject a protocol-unqualified id.
2293 if (rejectId && B->isObjCIdType()) return false;
2294
2295 // If B is a qualified id, then A must also be a qualified id and it must
2296 // implement all of the protocols in B. It may not be a qualified class.
2297 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2298 // stricter definition so it is not substitutable for id<A>.
2299 if (B->isObjCQualifiedIdType()) {
2300 return A->isObjCQualifiedIdType() &&
2301 Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2302 }
2303
2304 /*
2305 // id is a special type that bypasses type checking completely. We want a
2306 // warning when it is used in one place but not another.
2307 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2308
2309
2310 // If B is a qualified id, then A must also be a qualified id (which it isn't
2311 // if we've got this far)
2312 if (B->isObjCQualifiedIdType()) return false;
2313 */
2314
2315 // Now we know that A and B are (potentially-qualified) class types. The
2316 // normal rules for assignment apply.
2317 return Context.canAssignObjCInterfaces(A, B);
2318 }
2319
getTypeRange(TypeSourceInfo * TSI)2320 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2321 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2322 }
2323
2324 /// Determine whether two set of Objective-C declaration qualifiers conflict.
objcModifiersConflict(Decl::ObjCDeclQualifier x,Decl::ObjCDeclQualifier y)2325 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2326 Decl::ObjCDeclQualifier y) {
2327 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2328 (y & ~Decl::OBJC_TQ_CSNullability);
2329 }
2330
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2331 static bool CheckMethodOverrideReturn(Sema &S,
2332 ObjCMethodDecl *MethodImpl,
2333 ObjCMethodDecl *MethodDecl,
2334 bool IsProtocolMethodDecl,
2335 bool IsOverridingMode,
2336 bool Warn) {
2337 if (IsProtocolMethodDecl &&
2338 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2339 MethodImpl->getObjCDeclQualifier())) {
2340 if (Warn) {
2341 S.Diag(MethodImpl->getLocation(),
2342 (IsOverridingMode
2343 ? diag::warn_conflicting_overriding_ret_type_modifiers
2344 : diag::warn_conflicting_ret_type_modifiers))
2345 << MethodImpl->getDeclName()
2346 << MethodImpl->getReturnTypeSourceRange();
2347 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2348 << MethodDecl->getReturnTypeSourceRange();
2349 }
2350 else
2351 return false;
2352 }
2353 if (Warn && IsOverridingMode &&
2354 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2355 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2356 MethodDecl->getReturnType(),
2357 false)) {
2358 auto nullabilityMethodImpl =
2359 *MethodImpl->getReturnType()->getNullability(S.Context);
2360 auto nullabilityMethodDecl =
2361 *MethodDecl->getReturnType()->getNullability(S.Context);
2362 S.Diag(MethodImpl->getLocation(),
2363 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2364 << DiagNullabilityKind(
2365 nullabilityMethodImpl,
2366 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2367 != 0))
2368 << DiagNullabilityKind(
2369 nullabilityMethodDecl,
2370 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2371 != 0));
2372 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2373 }
2374
2375 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2376 MethodDecl->getReturnType()))
2377 return true;
2378 if (!Warn)
2379 return false;
2380
2381 unsigned DiagID =
2382 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2383 : diag::warn_conflicting_ret_types;
2384
2385 // Mismatches between ObjC pointers go into a different warning
2386 // category, and sometimes they're even completely explicitly allowed.
2387 if (const ObjCObjectPointerType *ImplPtrTy =
2388 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2389 if (const ObjCObjectPointerType *IfacePtrTy =
2390 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2391 // Allow non-matching return types as long as they don't violate
2392 // the principle of substitutability. Specifically, we permit
2393 // return types that are subclasses of the declared return type,
2394 // or that are more-qualified versions of the declared type.
2395 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2396 return false;
2397
2398 DiagID =
2399 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2400 : diag::warn_non_covariant_ret_types;
2401 }
2402 }
2403
2404 S.Diag(MethodImpl->getLocation(), DiagID)
2405 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2406 << MethodImpl->getReturnType()
2407 << MethodImpl->getReturnTypeSourceRange();
2408 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2409 ? diag::note_previous_declaration
2410 : diag::note_previous_definition)
2411 << MethodDecl->getReturnTypeSourceRange();
2412 return false;
2413 }
2414
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2415 static bool CheckMethodOverrideParam(Sema &S,
2416 ObjCMethodDecl *MethodImpl,
2417 ObjCMethodDecl *MethodDecl,
2418 ParmVarDecl *ImplVar,
2419 ParmVarDecl *IfaceVar,
2420 bool IsProtocolMethodDecl,
2421 bool IsOverridingMode,
2422 bool Warn) {
2423 if (IsProtocolMethodDecl &&
2424 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2425 IfaceVar->getObjCDeclQualifier())) {
2426 if (Warn) {
2427 if (IsOverridingMode)
2428 S.Diag(ImplVar->getLocation(),
2429 diag::warn_conflicting_overriding_param_modifiers)
2430 << getTypeRange(ImplVar->getTypeSourceInfo())
2431 << MethodImpl->getDeclName();
2432 else S.Diag(ImplVar->getLocation(),
2433 diag::warn_conflicting_param_modifiers)
2434 << getTypeRange(ImplVar->getTypeSourceInfo())
2435 << MethodImpl->getDeclName();
2436 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2437 << getTypeRange(IfaceVar->getTypeSourceInfo());
2438 }
2439 else
2440 return false;
2441 }
2442
2443 QualType ImplTy = ImplVar->getType();
2444 QualType IfaceTy = IfaceVar->getType();
2445 if (Warn && IsOverridingMode &&
2446 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2447 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2448 S.Diag(ImplVar->getLocation(),
2449 diag::warn_conflicting_nullability_attr_overriding_param_types)
2450 << DiagNullabilityKind(
2451 *ImplTy->getNullability(S.Context),
2452 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2453 != 0))
2454 << DiagNullabilityKind(
2455 *IfaceTy->getNullability(S.Context),
2456 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2457 != 0));
2458 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2459 }
2460 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2461 return true;
2462
2463 if (!Warn)
2464 return false;
2465 unsigned DiagID =
2466 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2467 : diag::warn_conflicting_param_types;
2468
2469 // Mismatches between ObjC pointers go into a different warning
2470 // category, and sometimes they're even completely explicitly allowed..
2471 if (const ObjCObjectPointerType *ImplPtrTy =
2472 ImplTy->getAs<ObjCObjectPointerType>()) {
2473 if (const ObjCObjectPointerType *IfacePtrTy =
2474 IfaceTy->getAs<ObjCObjectPointerType>()) {
2475 // Allow non-matching argument types as long as they don't
2476 // violate the principle of substitutability. Specifically, the
2477 // implementation must accept any objects that the superclass
2478 // accepts, however it may also accept others.
2479 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2480 return false;
2481
2482 DiagID =
2483 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2484 : diag::warn_non_contravariant_param_types;
2485 }
2486 }
2487
2488 S.Diag(ImplVar->getLocation(), DiagID)
2489 << getTypeRange(ImplVar->getTypeSourceInfo())
2490 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2491 S.Diag(IfaceVar->getLocation(),
2492 (IsOverridingMode ? diag::note_previous_declaration
2493 : diag::note_previous_definition))
2494 << getTypeRange(IfaceVar->getTypeSourceInfo());
2495 return false;
2496 }
2497
2498 /// In ARC, check whether the conventional meanings of the two methods
2499 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)2500 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2501 ObjCMethodDecl *decl) {
2502 ObjCMethodFamily implFamily = impl->getMethodFamily();
2503 ObjCMethodFamily declFamily = decl->getMethodFamily();
2504 if (implFamily == declFamily) return false;
2505
2506 // Since conventions are sorted by selector, the only possibility is
2507 // that the types differ enough to cause one selector or the other
2508 // to fall out of the family.
2509 assert(implFamily == OMF_None || declFamily == OMF_None);
2510
2511 // No further diagnostics required on invalid declarations.
2512 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2513
2514 const ObjCMethodDecl *unmatched = impl;
2515 ObjCMethodFamily family = declFamily;
2516 unsigned errorID = diag::err_arc_lost_method_convention;
2517 unsigned noteID = diag::note_arc_lost_method_convention;
2518 if (declFamily == OMF_None) {
2519 unmatched = decl;
2520 family = implFamily;
2521 errorID = diag::err_arc_gained_method_convention;
2522 noteID = diag::note_arc_gained_method_convention;
2523 }
2524
2525 // Indexes into a %select clause in the diagnostic.
2526 enum FamilySelector {
2527 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2528 };
2529 FamilySelector familySelector = FamilySelector();
2530
2531 switch (family) {
2532 case OMF_None: llvm_unreachable("logic error, no method convention");
2533 case OMF_retain:
2534 case OMF_release:
2535 case OMF_autorelease:
2536 case OMF_dealloc:
2537 case OMF_finalize:
2538 case OMF_retainCount:
2539 case OMF_self:
2540 case OMF_initialize:
2541 case OMF_performSelector:
2542 // Mismatches for these methods don't change ownership
2543 // conventions, so we don't care.
2544 return false;
2545
2546 case OMF_init: familySelector = F_init; break;
2547 case OMF_alloc: familySelector = F_alloc; break;
2548 case OMF_copy: familySelector = F_copy; break;
2549 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2550 case OMF_new: familySelector = F_new; break;
2551 }
2552
2553 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2554 ReasonSelector reasonSelector;
2555
2556 // The only reason these methods don't fall within their families is
2557 // due to unusual result types.
2558 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2559 reasonSelector = R_UnrelatedReturn;
2560 } else {
2561 reasonSelector = R_NonObjectReturn;
2562 }
2563
2564 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2565 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2566
2567 return true;
2568 }
2569
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2570 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2571 ObjCMethodDecl *MethodDecl,
2572 bool IsProtocolMethodDecl) {
2573 if (getLangOpts().ObjCAutoRefCount &&
2574 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2575 return;
2576
2577 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2578 IsProtocolMethodDecl, false,
2579 true);
2580
2581 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2582 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2583 EF = MethodDecl->param_end();
2584 IM != EM && IF != EF; ++IM, ++IF) {
2585 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2586 IsProtocolMethodDecl, false, true);
2587 }
2588
2589 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2590 Diag(ImpMethodDecl->getLocation(),
2591 diag::warn_conflicting_variadic);
2592 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2593 }
2594 }
2595
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)2596 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2597 ObjCMethodDecl *Overridden,
2598 bool IsProtocolMethodDecl) {
2599
2600 CheckMethodOverrideReturn(*this, Method, Overridden,
2601 IsProtocolMethodDecl, true,
2602 true);
2603
2604 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2605 IF = Overridden->param_begin(), EM = Method->param_end(),
2606 EF = Overridden->param_end();
2607 IM != EM && IF != EF; ++IM, ++IF) {
2608 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2609 IsProtocolMethodDecl, true, true);
2610 }
2611
2612 if (Method->isVariadic() != Overridden->isVariadic()) {
2613 Diag(Method->getLocation(),
2614 diag::warn_conflicting_overriding_variadic);
2615 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2616 }
2617 }
2618
2619 /// WarnExactTypedMethods - This routine issues a warning if method
2620 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2621 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2622 ObjCMethodDecl *MethodDecl,
2623 bool IsProtocolMethodDecl) {
2624 // don't issue warning when protocol method is optional because primary
2625 // class is not required to implement it and it is safe for protocol
2626 // to implement it.
2627 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2628 return;
2629 // don't issue warning when primary class's method is
2630 // deprecated/unavailable.
2631 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2632 MethodDecl->hasAttr<DeprecatedAttr>())
2633 return;
2634
2635 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2636 IsProtocolMethodDecl, false, false);
2637 if (match)
2638 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2639 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2640 EF = MethodDecl->param_end();
2641 IM != EM && IF != EF; ++IM, ++IF) {
2642 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2643 *IM, *IF,
2644 IsProtocolMethodDecl, false, false);
2645 if (!match)
2646 break;
2647 }
2648 if (match)
2649 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2650 if (match)
2651 match = !(MethodDecl->isClassMethod() &&
2652 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2653
2654 if (match) {
2655 Diag(ImpMethodDecl->getLocation(),
2656 diag::warn_category_method_impl_match);
2657 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2658 << MethodDecl->getDeclName();
2659 }
2660 }
2661
2662 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2663 /// improve the efficiency of selector lookups and type checking by associating
2664 /// with each protocol / interface / category the flattened instance tables. If
2665 /// we used an immutable set to keep the table then it wouldn't add significant
2666 /// memory cost and it would be handy for lookups.
2667
2668 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2669 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2670
findProtocolsWithExplicitImpls(const ObjCProtocolDecl * PDecl,ProtocolNameSet & PNS)2671 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2672 ProtocolNameSet &PNS) {
2673 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2674 PNS.insert(PDecl->getIdentifier());
2675 for (const auto *PI : PDecl->protocols())
2676 findProtocolsWithExplicitImpls(PI, PNS);
2677 }
2678
2679 /// Recursively populates a set with all conformed protocols in a class
2680 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2681 /// attribute.
findProtocolsWithExplicitImpls(const ObjCInterfaceDecl * Super,ProtocolNameSet & PNS)2682 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2683 ProtocolNameSet &PNS) {
2684 if (!Super)
2685 return;
2686
2687 for (const auto *I : Super->all_referenced_protocols())
2688 findProtocolsWithExplicitImpls(I, PNS);
2689
2690 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2691 }
2692
2693 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2694 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(Sema & S,ObjCImplDecl * Impl,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const Sema::SelectorSet & InsMap,const Sema::SelectorSet & ClsMap,ObjCContainerDecl * CDecl,LazyProtocolNameSet & ProtocolsExplictImpl)2695 static void CheckProtocolMethodDefs(
2696 Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2697 const Sema::SelectorSet &InsMap, const Sema::SelectorSet &ClsMap,
2698 ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2699 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2700 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2701 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2702 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2703
2704 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2705 ObjCInterfaceDecl *NSIDecl = nullptr;
2706
2707 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2708 // then we should check if any class in the super class hierarchy also
2709 // conforms to this protocol, either directly or via protocol inheritance.
2710 // If so, we can skip checking this protocol completely because we
2711 // know that a parent class already satisfies this protocol.
2712 //
2713 // Note: we could generalize this logic for all protocols, and merely
2714 // add the limit on looking at the super class chain for just
2715 // specially marked protocols. This may be a good optimization. This
2716 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2717 // protocols for now for controlled evaluation.
2718 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2719 if (!ProtocolsExplictImpl) {
2720 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2721 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2722 }
2723 if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
2724 return;
2725
2726 // If no super class conforms to the protocol, we should not search
2727 // for methods in the super class to implicitly satisfy the protocol.
2728 Super = nullptr;
2729 }
2730
2731 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2732 // check to see if class implements forwardInvocation method and objects
2733 // of this class are derived from 'NSProxy' so that to forward requests
2734 // from one object to another.
2735 // Under such conditions, which means that every method possible is
2736 // implemented in the class, we should not issue "Method definition not
2737 // found" warnings.
2738 // FIXME: Use a general GetUnarySelector method for this.
2739 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2740 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2741 if (InsMap.count(fISelector))
2742 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2743 // need be implemented in the implementation.
2744 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2745 }
2746
2747 // If this is a forward protocol declaration, get its definition.
2748 if (!PDecl->isThisDeclarationADefinition() &&
2749 PDecl->getDefinition())
2750 PDecl = PDecl->getDefinition();
2751
2752 // If a method lookup fails locally we still need to look and see if
2753 // the method was implemented by a base class or an inherited
2754 // protocol. This lookup is slow, but occurs rarely in correct code
2755 // and otherwise would terminate in a warning.
2756
2757 // check unimplemented instance methods.
2758 if (!NSIDecl)
2759 for (auto *method : PDecl->instance_methods()) {
2760 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2761 !method->isPropertyAccessor() &&
2762 !InsMap.count(method->getSelector()) &&
2763 (!Super || !Super->lookupMethod(method->getSelector(),
2764 true /* instance */,
2765 false /* shallowCategory */,
2766 true /* followsSuper */,
2767 nullptr /* category */))) {
2768 // If a method is not implemented in the category implementation but
2769 // has been declared in its primary class, superclass,
2770 // or in one of their protocols, no need to issue the warning.
2771 // This is because method will be implemented in the primary class
2772 // or one of its super class implementation.
2773
2774 // Ugly, but necessary. Method declared in protocol might have
2775 // have been synthesized due to a property declared in the class which
2776 // uses the protocol.
2777 if (ObjCMethodDecl *MethodInClass =
2778 IDecl->lookupMethod(method->getSelector(),
2779 true /* instance */,
2780 true /* shallowCategoryLookup */,
2781 false /* followSuper */))
2782 if (C || MethodInClass->isPropertyAccessor())
2783 continue;
2784 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2785 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2786 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2787 }
2788 }
2789 }
2790 // check unimplemented class methods
2791 for (auto *method : PDecl->class_methods()) {
2792 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2793 !ClsMap.count(method->getSelector()) &&
2794 (!Super || !Super->lookupMethod(method->getSelector(),
2795 false /* class method */,
2796 false /* shallowCategoryLookup */,
2797 true /* followSuper */,
2798 nullptr /* category */))) {
2799 // See above comment for instance method lookups.
2800 if (C && IDecl->lookupMethod(method->getSelector(),
2801 false /* class */,
2802 true /* shallowCategoryLookup */,
2803 false /* followSuper */))
2804 continue;
2805
2806 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2807 if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2808 WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2809 }
2810 }
2811 }
2812 // Check on this protocols's referenced protocols, recursively.
2813 for (auto *PI : PDecl->protocols())
2814 CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2815 ProtocolsExplictImpl);
2816 }
2817
2818 /// MatchAllMethodDeclarations - Check methods declared in interface
2819 /// or protocol against those declared in their implementations.
2820 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)2821 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2822 const SelectorSet &ClsMap,
2823 SelectorSet &InsMapSeen,
2824 SelectorSet &ClsMapSeen,
2825 ObjCImplDecl* IMPDecl,
2826 ObjCContainerDecl* CDecl,
2827 bool &IncompleteImpl,
2828 bool ImmediateClass,
2829 bool WarnCategoryMethodImpl) {
2830 // Check and see if instance methods in class interface have been
2831 // implemented in the implementation class. If so, their types match.
2832 for (auto *I : CDecl->instance_methods()) {
2833 if (!InsMapSeen.insert(I->getSelector()).second)
2834 continue;
2835 if (!I->isPropertyAccessor() &&
2836 !InsMap.count(I->getSelector())) {
2837 if (ImmediateClass)
2838 WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
2839 diag::warn_undef_method_impl);
2840 continue;
2841 } else {
2842 ObjCMethodDecl *ImpMethodDecl =
2843 IMPDecl->getInstanceMethod(I->getSelector());
2844 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2845 "Expected to find the method through lookup as well");
2846 // ImpMethodDecl may be null as in a @dynamic property.
2847 if (ImpMethodDecl) {
2848 // Skip property accessor function stubs.
2849 if (ImpMethodDecl->isSynthesizedAccessorStub())
2850 continue;
2851 if (!WarnCategoryMethodImpl)
2852 WarnConflictingTypedMethods(ImpMethodDecl, I,
2853 isa<ObjCProtocolDecl>(CDecl));
2854 else if (!I->isPropertyAccessor())
2855 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2856 }
2857 }
2858 }
2859
2860 // Check and see if class methods in class interface have been
2861 // implemented in the implementation class. If so, their types match.
2862 for (auto *I : CDecl->class_methods()) {
2863 if (!ClsMapSeen.insert(I->getSelector()).second)
2864 continue;
2865 if (!I->isPropertyAccessor() &&
2866 !ClsMap.count(I->getSelector())) {
2867 if (ImmediateClass)
2868 WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
2869 diag::warn_undef_method_impl);
2870 } else {
2871 ObjCMethodDecl *ImpMethodDecl =
2872 IMPDecl->getClassMethod(I->getSelector());
2873 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2874 "Expected to find the method through lookup as well");
2875 // ImpMethodDecl may be null as in a @dynamic property.
2876 if (ImpMethodDecl) {
2877 // Skip property accessor function stubs.
2878 if (ImpMethodDecl->isSynthesizedAccessorStub())
2879 continue;
2880 if (!WarnCategoryMethodImpl)
2881 WarnConflictingTypedMethods(ImpMethodDecl, I,
2882 isa<ObjCProtocolDecl>(CDecl));
2883 else if (!I->isPropertyAccessor())
2884 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2885 }
2886 }
2887 }
2888
2889 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2890 // Also, check for methods declared in protocols inherited by
2891 // this protocol.
2892 for (auto *PI : PD->protocols())
2893 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2894 IMPDecl, PI, IncompleteImpl, false,
2895 WarnCategoryMethodImpl);
2896 }
2897
2898 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2899 // when checking that methods in implementation match their declaration,
2900 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2901 // extension; as well as those in categories.
2902 if (!WarnCategoryMethodImpl) {
2903 for (auto *Cat : I->visible_categories())
2904 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2905 IMPDecl, Cat, IncompleteImpl,
2906 ImmediateClass && Cat->IsClassExtension(),
2907 WarnCategoryMethodImpl);
2908 } else {
2909 // Also methods in class extensions need be looked at next.
2910 for (auto *Ext : I->visible_extensions())
2911 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912 IMPDecl, Ext, IncompleteImpl, false,
2913 WarnCategoryMethodImpl);
2914 }
2915
2916 // Check for any implementation of a methods declared in protocol.
2917 for (auto *PI : I->all_referenced_protocols())
2918 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2919 IMPDecl, PI, IncompleteImpl, false,
2920 WarnCategoryMethodImpl);
2921
2922 // FIXME. For now, we are not checking for exact match of methods
2923 // in category implementation and its primary class's super class.
2924 if (!WarnCategoryMethodImpl && I->getSuperClass())
2925 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2926 IMPDecl,
2927 I->getSuperClass(), IncompleteImpl, false);
2928 }
2929 }
2930
2931 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2932 /// category matches with those implemented in its primary class and
2933 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)2934 void Sema::CheckCategoryVsClassMethodMatches(
2935 ObjCCategoryImplDecl *CatIMPDecl) {
2936 // Get category's primary class.
2937 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2938 if (!CatDecl)
2939 return;
2940 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2941 if (!IDecl)
2942 return;
2943 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2944 SelectorSet InsMap, ClsMap;
2945
2946 for (const auto *I : CatIMPDecl->instance_methods()) {
2947 Selector Sel = I->getSelector();
2948 // When checking for methods implemented in the category, skip over
2949 // those declared in category class's super class. This is because
2950 // the super class must implement the method.
2951 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2952 continue;
2953 InsMap.insert(Sel);
2954 }
2955
2956 for (const auto *I : CatIMPDecl->class_methods()) {
2957 Selector Sel = I->getSelector();
2958 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2959 continue;
2960 ClsMap.insert(Sel);
2961 }
2962 if (InsMap.empty() && ClsMap.empty())
2963 return;
2964
2965 SelectorSet InsMapSeen, ClsMapSeen;
2966 bool IncompleteImpl = false;
2967 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2968 CatIMPDecl, IDecl,
2969 IncompleteImpl, false,
2970 true /*WarnCategoryMethodImpl*/);
2971 }
2972
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)2973 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2974 ObjCContainerDecl* CDecl,
2975 bool IncompleteImpl) {
2976 SelectorSet InsMap;
2977 // Check and see if instance methods in class interface have been
2978 // implemented in the implementation class.
2979 for (const auto *I : IMPDecl->instance_methods())
2980 InsMap.insert(I->getSelector());
2981
2982 // Add the selectors for getters/setters of @dynamic properties.
2983 for (const auto *PImpl : IMPDecl->property_impls()) {
2984 // We only care about @dynamic implementations.
2985 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2986 continue;
2987
2988 const auto *P = PImpl->getPropertyDecl();
2989 if (!P) continue;
2990
2991 InsMap.insert(P->getGetterName());
2992 if (!P->getSetterName().isNull())
2993 InsMap.insert(P->getSetterName());
2994 }
2995
2996 // Check and see if properties declared in the interface have either 1)
2997 // an implementation or 2) there is a @synthesize/@dynamic implementation
2998 // of the property in the @implementation.
2999 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
3000 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
3001 LangOpts.ObjCRuntime.isNonFragile() &&
3002 !IDecl->isObjCRequiresPropertyDefs();
3003 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3004 }
3005
3006 // Diagnose null-resettable synthesized setters.
3007 diagnoseNullResettableSynthesizedSetters(IMPDecl);
3008
3009 SelectorSet ClsMap;
3010 for (const auto *I : IMPDecl->class_methods())
3011 ClsMap.insert(I->getSelector());
3012
3013 // Check for type conflict of methods declared in a class/protocol and
3014 // its implementation; if any.
3015 SelectorSet InsMapSeen, ClsMapSeen;
3016 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3017 IMPDecl, CDecl,
3018 IncompleteImpl, true);
3019
3020 // check all methods implemented in category against those declared
3021 // in its primary class.
3022 if (ObjCCategoryImplDecl *CatDecl =
3023 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3024 CheckCategoryVsClassMethodMatches(CatDecl);
3025
3026 // Check the protocol list for unimplemented methods in the @implementation
3027 // class.
3028 // Check and see if class methods in class interface have been
3029 // implemented in the implementation class.
3030
3031 LazyProtocolNameSet ExplicitImplProtocols;
3032
3033 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3034 for (auto *PI : I->all_referenced_protocols())
3035 CheckProtocolMethodDefs(*this, IMPDecl, PI, IncompleteImpl, InsMap,
3036 ClsMap, I, ExplicitImplProtocols);
3037 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3038 // For extended class, unimplemented methods in its protocols will
3039 // be reported in the primary class.
3040 if (!C->IsClassExtension()) {
3041 for (auto *P : C->protocols())
3042 CheckProtocolMethodDefs(*this, IMPDecl, P, IncompleteImpl, InsMap,
3043 ClsMap, CDecl, ExplicitImplProtocols);
3044 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3045 /*SynthesizeProperties=*/false);
3046 }
3047 } else
3048 llvm_unreachable("invalid ObjCContainerDecl type.");
3049 }
3050
3051 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,ArrayRef<ObjCTypeParamList * > TypeParamLists,unsigned NumElts)3052 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3053 IdentifierInfo **IdentList,
3054 SourceLocation *IdentLocs,
3055 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3056 unsigned NumElts) {
3057 SmallVector<Decl *, 8> DeclsInGroup;
3058 for (unsigned i = 0; i != NumElts; ++i) {
3059 // Check for another declaration kind with the same name.
3060 NamedDecl *PrevDecl
3061 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3062 LookupOrdinaryName, forRedeclarationInCurContext());
3063 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3064 // GCC apparently allows the following idiom:
3065 //
3066 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3067 // @class XCElementToggler;
3068 //
3069 // Here we have chosen to ignore the forward class declaration
3070 // with a warning. Since this is the implied behavior.
3071 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3072 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3073 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3074 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3075 } else {
3076 // a forward class declaration matching a typedef name of a class refers
3077 // to the underlying class. Just ignore the forward class with a warning
3078 // as this will force the intended behavior which is to lookup the
3079 // typedef name.
3080 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3081 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3082 << IdentList[i];
3083 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3084 continue;
3085 }
3086 }
3087 }
3088
3089 // Create a declaration to describe this forward declaration.
3090 ObjCInterfaceDecl *PrevIDecl
3091 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3092
3093 IdentifierInfo *ClassName = IdentList[i];
3094 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3095 // A previous decl with a different name is because of
3096 // @compatibility_alias, for example:
3097 // \code
3098 // @class NewImage;
3099 // @compatibility_alias OldImage NewImage;
3100 // \endcode
3101 // A lookup for 'OldImage' will return the 'NewImage' decl.
3102 //
3103 // In such a case use the real declaration name, instead of the alias one,
3104 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3105 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3106 // has been aliased.
3107 ClassName = PrevIDecl->getIdentifier();
3108 }
3109
3110 // If this forward declaration has type parameters, compare them with the
3111 // type parameters of the previous declaration.
3112 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3113 if (PrevIDecl && TypeParams) {
3114 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3115 // Check for consistency with the previous declaration.
3116 if (checkTypeParamListConsistency(
3117 *this, PrevTypeParams, TypeParams,
3118 TypeParamListContext::ForwardDeclaration)) {
3119 TypeParams = nullptr;
3120 }
3121 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3122 // The @interface does not have type parameters. Complain.
3123 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3124 << ClassName
3125 << TypeParams->getSourceRange();
3126 Diag(Def->getLocation(), diag::note_defined_here)
3127 << ClassName;
3128
3129 TypeParams = nullptr;
3130 }
3131 }
3132
3133 ObjCInterfaceDecl *IDecl
3134 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3135 ClassName, TypeParams, PrevIDecl,
3136 IdentLocs[i]);
3137 IDecl->setAtEndRange(IdentLocs[i]);
3138
3139 if (PrevIDecl)
3140 mergeDeclAttributes(IDecl, PrevIDecl);
3141
3142 PushOnScopeChains(IDecl, TUScope);
3143 CheckObjCDeclScope(IDecl);
3144 DeclsInGroup.push_back(IDecl);
3145 }
3146
3147 return BuildDeclaratorGroup(DeclsInGroup);
3148 }
3149
3150 static bool tryMatchRecordTypes(ASTContext &Context,
3151 Sema::MethodMatchStrategy strategy,
3152 const Type *left, const Type *right);
3153
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)3154 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3155 QualType leftQT, QualType rightQT) {
3156 const Type *left =
3157 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3158 const Type *right =
3159 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3160
3161 if (left == right) return true;
3162
3163 // If we're doing a strict match, the types have to match exactly.
3164 if (strategy == Sema::MMS_strict) return false;
3165
3166 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3167
3168 // Otherwise, use this absurdly complicated algorithm to try to
3169 // validate the basic, low-level compatibility of the two types.
3170
3171 // As a minimum, require the sizes and alignments to match.
3172 TypeInfo LeftTI = Context.getTypeInfo(left);
3173 TypeInfo RightTI = Context.getTypeInfo(right);
3174 if (LeftTI.Width != RightTI.Width)
3175 return false;
3176
3177 if (LeftTI.Align != RightTI.Align)
3178 return false;
3179
3180 // Consider all the kinds of non-dependent canonical types:
3181 // - functions and arrays aren't possible as return and parameter types
3182
3183 // - vector types of equal size can be arbitrarily mixed
3184 if (isa<VectorType>(left)) return isa<VectorType>(right);
3185 if (isa<VectorType>(right)) return false;
3186
3187 // - references should only match references of identical type
3188 // - structs, unions, and Objective-C objects must match more-or-less
3189 // exactly
3190 // - everything else should be a scalar
3191 if (!left->isScalarType() || !right->isScalarType())
3192 return tryMatchRecordTypes(Context, strategy, left, right);
3193
3194 // Make scalars agree in kind, except count bools as chars, and group
3195 // all non-member pointers together.
3196 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3197 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3198 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3199 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3200 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3201 leftSK = Type::STK_ObjCObjectPointer;
3202 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3203 rightSK = Type::STK_ObjCObjectPointer;
3204
3205 // Note that data member pointers and function member pointers don't
3206 // intermix because of the size differences.
3207
3208 return (leftSK == rightSK);
3209 }
3210
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)3211 static bool tryMatchRecordTypes(ASTContext &Context,
3212 Sema::MethodMatchStrategy strategy,
3213 const Type *lt, const Type *rt) {
3214 assert(lt && rt && lt != rt);
3215
3216 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3217 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3218 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3219
3220 // Require union-hood to match.
3221 if (left->isUnion() != right->isUnion()) return false;
3222
3223 // Require an exact match if either is non-POD.
3224 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3225 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3226 return false;
3227
3228 // Require size and alignment to match.
3229 TypeInfo LeftTI = Context.getTypeInfo(lt);
3230 TypeInfo RightTI = Context.getTypeInfo(rt);
3231 if (LeftTI.Width != RightTI.Width)
3232 return false;
3233
3234 if (LeftTI.Align != RightTI.Align)
3235 return false;
3236
3237 // Require fields to match.
3238 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3239 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3240 for (; li != le && ri != re; ++li, ++ri) {
3241 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3242 return false;
3243 }
3244 return (li == le && ri == re);
3245 }
3246
3247 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3248 /// returns true, or false, accordingly.
3249 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)3250 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3251 const ObjCMethodDecl *right,
3252 MethodMatchStrategy strategy) {
3253 if (!matchTypes(Context, strategy, left->getReturnType(),
3254 right->getReturnType()))
3255 return false;
3256
3257 // If either is hidden, it is not considered to match.
3258 if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3259 return false;
3260
3261 if (left->isDirectMethod() != right->isDirectMethod())
3262 return false;
3263
3264 if (getLangOpts().ObjCAutoRefCount &&
3265 (left->hasAttr<NSReturnsRetainedAttr>()
3266 != right->hasAttr<NSReturnsRetainedAttr>() ||
3267 left->hasAttr<NSConsumesSelfAttr>()
3268 != right->hasAttr<NSConsumesSelfAttr>()))
3269 return false;
3270
3271 ObjCMethodDecl::param_const_iterator
3272 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3273 re = right->param_end();
3274
3275 for (; li != le && ri != re; ++li, ++ri) {
3276 assert(ri != right->param_end() && "Param mismatch");
3277 const ParmVarDecl *lparm = *li, *rparm = *ri;
3278
3279 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3280 return false;
3281
3282 if (getLangOpts().ObjCAutoRefCount &&
3283 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3284 return false;
3285 }
3286 return true;
3287 }
3288
isMethodContextSameForKindofLookup(ObjCMethodDecl * Method,ObjCMethodDecl * MethodInList)3289 static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3290 ObjCMethodDecl *MethodInList) {
3291 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3292 auto *MethodInListProtocol =
3293 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3294 // If this method belongs to a protocol but the method in list does not, or
3295 // vice versa, we say the context is not the same.
3296 if ((MethodProtocol && !MethodInListProtocol) ||
3297 (!MethodProtocol && MethodInListProtocol))
3298 return false;
3299
3300 if (MethodProtocol && MethodInListProtocol)
3301 return true;
3302
3303 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3304 ObjCInterfaceDecl *MethodInListInterface =
3305 MethodInList->getClassInterface();
3306 return MethodInterface == MethodInListInterface;
3307 }
3308
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)3309 void Sema::addMethodToGlobalList(ObjCMethodList *List,
3310 ObjCMethodDecl *Method) {
3311 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3312 // inside categories.
3313 if (ObjCCategoryDecl *CD =
3314 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3315 if (!CD->IsClassExtension() && List->getBits() < 2)
3316 List->setBits(List->getBits() + 1);
3317
3318 // If the list is empty, make it a singleton list.
3319 if (List->getMethod() == nullptr) {
3320 List->setMethod(Method);
3321 List->setNext(nullptr);
3322 return;
3323 }
3324
3325 // We've seen a method with this name, see if we have already seen this type
3326 // signature.
3327 ObjCMethodList *Previous = List;
3328 ObjCMethodList *ListWithSameDeclaration = nullptr;
3329 for (; List; Previous = List, List = List->getNext()) {
3330 // If we are building a module, keep all of the methods.
3331 if (getLangOpts().isCompilingModule())
3332 continue;
3333
3334 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3335 List->getMethod());
3336 // Looking for method with a type bound requires the correct context exists.
3337 // We need to insert a method into the list if the context is different.
3338 // If the method's declaration matches the list
3339 // a> the method belongs to a different context: we need to insert it, in
3340 // order to emit the availability message, we need to prioritize over
3341 // availability among the methods with the same declaration.
3342 // b> the method belongs to the same context: there is no need to insert a
3343 // new entry.
3344 // If the method's declaration does not match the list, we insert it to the
3345 // end.
3346 if (!SameDeclaration ||
3347 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3348 // Even if two method types do not match, we would like to say
3349 // there is more than one declaration so unavailability/deprecated
3350 // warning is not too noisy.
3351 if (!Method->isDefined())
3352 List->setHasMoreThanOneDecl(true);
3353
3354 // For methods with the same declaration, the one that is deprecated
3355 // should be put in the front for better diagnostics.
3356 if (Method->isDeprecated() && SameDeclaration &&
3357 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3358 ListWithSameDeclaration = List;
3359
3360 if (Method->isUnavailable() && SameDeclaration &&
3361 !ListWithSameDeclaration &&
3362 List->getMethod()->getAvailability() < AR_Deprecated)
3363 ListWithSameDeclaration = List;
3364 continue;
3365 }
3366
3367 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3368
3369 // Propagate the 'defined' bit.
3370 if (Method->isDefined())
3371 PrevObjCMethod->setDefined(true);
3372 else {
3373 // Objective-C doesn't allow an @interface for a class after its
3374 // @implementation. So if Method is not defined and there already is
3375 // an entry for this type signature, Method has to be for a different
3376 // class than PrevObjCMethod.
3377 List->setHasMoreThanOneDecl(true);
3378 }
3379
3380 // If a method is deprecated, push it in the global pool.
3381 // This is used for better diagnostics.
3382 if (Method->isDeprecated()) {
3383 if (!PrevObjCMethod->isDeprecated())
3384 List->setMethod(Method);
3385 }
3386 // If the new method is unavailable, push it into global pool
3387 // unless previous one is deprecated.
3388 if (Method->isUnavailable()) {
3389 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3390 List->setMethod(Method);
3391 }
3392
3393 return;
3394 }
3395
3396 // We have a new signature for an existing method - add it.
3397 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3398 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3399
3400 // We insert it right before ListWithSameDeclaration.
3401 if (ListWithSameDeclaration) {
3402 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3403 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3404 ListWithSameDeclaration->setMethod(Method);
3405 ListWithSameDeclaration->setNext(List);
3406 return;
3407 }
3408
3409 Previous->setNext(new (Mem) ObjCMethodList(Method));
3410 }
3411
3412 /// Read the contents of the method pool for a given selector from
3413 /// external storage.
ReadMethodPool(Selector Sel)3414 void Sema::ReadMethodPool(Selector Sel) {
3415 assert(ExternalSource && "We need an external AST source");
3416 ExternalSource->ReadMethodPool(Sel);
3417 }
3418
updateOutOfDateSelector(Selector Sel)3419 void Sema::updateOutOfDateSelector(Selector Sel) {
3420 if (!ExternalSource)
3421 return;
3422 ExternalSource->updateOutOfDateSelector(Sel);
3423 }
3424
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)3425 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3426 bool instance) {
3427 // Ignore methods of invalid containers.
3428 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3429 return;
3430
3431 if (ExternalSource)
3432 ReadMethodPool(Method->getSelector());
3433
3434 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3435 if (Pos == MethodPool.end())
3436 Pos = MethodPool
3437 .insert(std::make_pair(Method->getSelector(),
3438 GlobalMethodPool::Lists()))
3439 .first;
3440
3441 Method->setDefined(impl);
3442
3443 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3444 addMethodToGlobalList(&Entry, Method);
3445 }
3446
3447 /// Determines if this is an "acceptable" loose mismatch in the global
3448 /// method pool. This exists mostly as a hack to get around certain
3449 /// global mismatches which we can't afford to make warnings / errors.
3450 /// Really, what we want is a way to take a method out of the global
3451 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)3452 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3453 ObjCMethodDecl *other) {
3454 if (!chosen->isInstanceMethod())
3455 return false;
3456
3457 if (chosen->isDirectMethod() != other->isDirectMethod())
3458 return false;
3459
3460 Selector sel = chosen->getSelector();
3461 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3462 return false;
3463
3464 // Don't complain about mismatches for -length if the method we
3465 // chose has an integral result type.
3466 return (chosen->getReturnType()->isIntegerType());
3467 }
3468
3469 /// Return true if the given method is wthin the type bound.
FilterMethodsByTypeBound(ObjCMethodDecl * Method,const ObjCObjectType * TypeBound)3470 static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3471 const ObjCObjectType *TypeBound) {
3472 if (!TypeBound)
3473 return true;
3474
3475 if (TypeBound->isObjCId())
3476 // FIXME: should we handle the case of bounding to id<A, B> differently?
3477 return true;
3478
3479 auto *BoundInterface = TypeBound->getInterface();
3480 assert(BoundInterface && "unexpected object type!");
3481
3482 // Check if the Method belongs to a protocol. We should allow any method
3483 // defined in any protocol, because any subclass could adopt the protocol.
3484 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3485 if (MethodProtocol) {
3486 return true;
3487 }
3488
3489 // If the Method belongs to a class, check if it belongs to the class
3490 // hierarchy of the class bound.
3491 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3492 // We allow methods declared within classes that are part of the hierarchy
3493 // of the class bound (superclass of, subclass of, or the same as the class
3494 // bound).
3495 return MethodInterface == BoundInterface ||
3496 MethodInterface->isSuperClassOf(BoundInterface) ||
3497 BoundInterface->isSuperClassOf(MethodInterface);
3498 }
3499 llvm_unreachable("unknown method context");
3500 }
3501
3502 /// We first select the type of the method: Instance or Factory, then collect
3503 /// all methods with that type.
CollectMultipleMethodsInGlobalPool(Selector Sel,SmallVectorImpl<ObjCMethodDecl * > & Methods,bool InstanceFirst,bool CheckTheOther,const ObjCObjectType * TypeBound)3504 bool Sema::CollectMultipleMethodsInGlobalPool(
3505 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3506 bool InstanceFirst, bool CheckTheOther,
3507 const ObjCObjectType *TypeBound) {
3508 if (ExternalSource)
3509 ReadMethodPool(Sel);
3510
3511 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3512 if (Pos == MethodPool.end())
3513 return false;
3514
3515 // Gather the non-hidden methods.
3516 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3517 Pos->second.second;
3518 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3519 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3520 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3521 Methods.push_back(M->getMethod());
3522 }
3523
3524 // Return if we find any method with the desired kind.
3525 if (!Methods.empty())
3526 return Methods.size() > 1;
3527
3528 if (!CheckTheOther)
3529 return false;
3530
3531 // Gather the other kind.
3532 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3533 Pos->second.first;
3534 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3535 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3536 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3537 Methods.push_back(M->getMethod());
3538 }
3539
3540 return Methods.size() > 1;
3541 }
3542
AreMultipleMethodsInGlobalPool(Selector Sel,ObjCMethodDecl * BestMethod,SourceRange R,bool receiverIdOrClass,SmallVectorImpl<ObjCMethodDecl * > & Methods)3543 bool Sema::AreMultipleMethodsInGlobalPool(
3544 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3545 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3546 // Diagnose finding more than one method in global pool.
3547 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3548 FilteredMethods.push_back(BestMethod);
3549
3550 for (auto *M : Methods)
3551 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3552 FilteredMethods.push_back(M);
3553
3554 if (FilteredMethods.size() > 1)
3555 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3556 receiverIdOrClass);
3557
3558 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3559 // Test for no method in the pool which should not trigger any warning by
3560 // caller.
3561 if (Pos == MethodPool.end())
3562 return true;
3563 ObjCMethodList &MethList =
3564 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3565 return MethList.hasMoreThanOneDecl();
3566 }
3567
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool instance)3568 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3569 bool receiverIdOrClass,
3570 bool instance) {
3571 if (ExternalSource)
3572 ReadMethodPool(Sel);
3573
3574 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3575 if (Pos == MethodPool.end())
3576 return nullptr;
3577
3578 // Gather the non-hidden methods.
3579 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3580 SmallVector<ObjCMethodDecl *, 4> Methods;
3581 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3582 if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3583 return M->getMethod();
3584 }
3585 return nullptr;
3586 }
3587
DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl * > & Methods,Selector Sel,SourceRange R,bool receiverIdOrClass)3588 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3589 Selector Sel, SourceRange R,
3590 bool receiverIdOrClass) {
3591 // We found multiple methods, so we may have to complain.
3592 bool issueDiagnostic = false, issueError = false;
3593
3594 // We support a warning which complains about *any* difference in
3595 // method signature.
3596 bool strictSelectorMatch =
3597 receiverIdOrClass &&
3598 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3599 if (strictSelectorMatch) {
3600 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3601 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3602 issueDiagnostic = true;
3603 break;
3604 }
3605 }
3606 }
3607
3608 // If we didn't see any strict differences, we won't see any loose
3609 // differences. In ARC, however, we also need to check for loose
3610 // mismatches, because most of them are errors.
3611 if (!strictSelectorMatch ||
3612 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3613 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3614 // This checks if the methods differ in type mismatch.
3615 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3616 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3617 issueDiagnostic = true;
3618 if (getLangOpts().ObjCAutoRefCount)
3619 issueError = true;
3620 break;
3621 }
3622 }
3623
3624 if (issueDiagnostic) {
3625 if (issueError)
3626 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3627 else if (strictSelectorMatch)
3628 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3629 else
3630 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3631
3632 Diag(Methods[0]->getBeginLoc(),
3633 issueError ? diag::note_possibility : diag::note_using)
3634 << Methods[0]->getSourceRange();
3635 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3636 Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3637 << Methods[I]->getSourceRange();
3638 }
3639 }
3640 }
3641
LookupImplementedMethodInGlobalPool(Selector Sel)3642 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3643 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3644 if (Pos == MethodPool.end())
3645 return nullptr;
3646
3647 GlobalMethodPool::Lists &Methods = Pos->second;
3648 for (const ObjCMethodList *Method = &Methods.first; Method;
3649 Method = Method->getNext())
3650 if (Method->getMethod() &&
3651 (Method->getMethod()->isDefined() ||
3652 Method->getMethod()->isPropertyAccessor()))
3653 return Method->getMethod();
3654
3655 for (const ObjCMethodList *Method = &Methods.second; Method;
3656 Method = Method->getNext())
3657 if (Method->getMethod() &&
3658 (Method->getMethod()->isDefined() ||
3659 Method->getMethod()->isPropertyAccessor()))
3660 return Method->getMethod();
3661 return nullptr;
3662 }
3663
3664 static void
HelperSelectorsForTypoCorrection(SmallVectorImpl<const ObjCMethodDecl * > & BestMethod,StringRef Typo,const ObjCMethodDecl * Method)3665 HelperSelectorsForTypoCorrection(
3666 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3667 StringRef Typo, const ObjCMethodDecl * Method) {
3668 const unsigned MaxEditDistance = 1;
3669 unsigned BestEditDistance = MaxEditDistance + 1;
3670 std::string MethodName = Method->getSelector().getAsString();
3671
3672 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3673 if (MinPossibleEditDistance > 0 &&
3674 Typo.size() / MinPossibleEditDistance < 1)
3675 return;
3676 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3677 if (EditDistance > MaxEditDistance)
3678 return;
3679 if (EditDistance == BestEditDistance)
3680 BestMethod.push_back(Method);
3681 else if (EditDistance < BestEditDistance) {
3682 BestMethod.clear();
3683 BestMethod.push_back(Method);
3684 }
3685 }
3686
HelperIsMethodInObjCType(Sema & S,Selector Sel,QualType ObjectType)3687 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3688 QualType ObjectType) {
3689 if (ObjectType.isNull())
3690 return true;
3691 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3692 return true;
3693 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3694 nullptr;
3695 }
3696
3697 const ObjCMethodDecl *
SelectorsForTypoCorrection(Selector Sel,QualType ObjectType)3698 Sema::SelectorsForTypoCorrection(Selector Sel,
3699 QualType ObjectType) {
3700 unsigned NumArgs = Sel.getNumArgs();
3701 SmallVector<const ObjCMethodDecl *, 8> Methods;
3702 bool ObjectIsId = true, ObjectIsClass = true;
3703 if (ObjectType.isNull())
3704 ObjectIsId = ObjectIsClass = false;
3705 else if (!ObjectType->isObjCObjectPointerType())
3706 return nullptr;
3707 else if (const ObjCObjectPointerType *ObjCPtr =
3708 ObjectType->getAsObjCInterfacePointerType()) {
3709 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3710 ObjectIsId = ObjectIsClass = false;
3711 }
3712 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3713 ObjectIsClass = false;
3714 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3715 ObjectIsId = false;
3716 else
3717 return nullptr;
3718
3719 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3720 e = MethodPool.end(); b != e; b++) {
3721 // instance methods
3722 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3723 if (M->getMethod() &&
3724 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3725 (M->getMethod()->getSelector() != Sel)) {
3726 if (ObjectIsId)
3727 Methods.push_back(M->getMethod());
3728 else if (!ObjectIsClass &&
3729 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3730 ObjectType))
3731 Methods.push_back(M->getMethod());
3732 }
3733 // class methods
3734 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3735 if (M->getMethod() &&
3736 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3737 (M->getMethod()->getSelector() != Sel)) {
3738 if (ObjectIsClass)
3739 Methods.push_back(M->getMethod());
3740 else if (!ObjectIsId &&
3741 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3742 ObjectType))
3743 Methods.push_back(M->getMethod());
3744 }
3745 }
3746
3747 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3748 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3749 HelperSelectorsForTypoCorrection(SelectedMethods,
3750 Sel.getAsString(), Methods[i]);
3751 }
3752 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3753 }
3754
3755 /// DiagnoseDuplicateIvars -
3756 /// Check for duplicate ivars in the entire class at the start of
3757 /// \@implementation. This becomes necesssary because class extension can
3758 /// add ivars to a class in random order which will not be known until
3759 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)3760 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3761 ObjCInterfaceDecl *SID) {
3762 for (auto *Ivar : ID->ivars()) {
3763 if (Ivar->isInvalidDecl())
3764 continue;
3765 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3766 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3767 if (prevIvar) {
3768 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3769 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3770 Ivar->setInvalidDecl();
3771 }
3772 }
3773 }
3774 }
3775
3776 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
DiagnoseWeakIvars(Sema & S,ObjCImplementationDecl * ID)3777 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3778 if (S.getLangOpts().ObjCWeak) return;
3779
3780 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3781 ivar; ivar = ivar->getNextIvar()) {
3782 if (ivar->isInvalidDecl()) continue;
3783 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3784 if (S.getLangOpts().ObjCWeakRuntime) {
3785 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3786 } else {
3787 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3788 }
3789 }
3790 }
3791 }
3792
3793 /// Diagnose attempts to use flexible array member with retainable object type.
DiagnoseRetainableFlexibleArrayMember(Sema & S,ObjCInterfaceDecl * ID)3794 static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3795 ObjCInterfaceDecl *ID) {
3796 if (!S.getLangOpts().ObjCAutoRefCount)
3797 return;
3798
3799 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3800 ivar = ivar->getNextIvar()) {
3801 if (ivar->isInvalidDecl())
3802 continue;
3803 QualType IvarTy = ivar->getType();
3804 if (IvarTy->isIncompleteArrayType() &&
3805 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3806 IvarTy->isObjCLifetimeType()) {
3807 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3808 ivar->setInvalidDecl();
3809 }
3810 }
3811 }
3812
getObjCContainerKind() const3813 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3814 switch (CurContext->getDeclKind()) {
3815 case Decl::ObjCInterface:
3816 return Sema::OCK_Interface;
3817 case Decl::ObjCProtocol:
3818 return Sema::OCK_Protocol;
3819 case Decl::ObjCCategory:
3820 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3821 return Sema::OCK_ClassExtension;
3822 return Sema::OCK_Category;
3823 case Decl::ObjCImplementation:
3824 return Sema::OCK_Implementation;
3825 case Decl::ObjCCategoryImpl:
3826 return Sema::OCK_CategoryImplementation;
3827
3828 default:
3829 return Sema::OCK_None;
3830 }
3831 }
3832
IsVariableSizedType(QualType T)3833 static bool IsVariableSizedType(QualType T) {
3834 if (T->isIncompleteArrayType())
3835 return true;
3836 const auto *RecordTy = T->getAs<RecordType>();
3837 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3838 }
3839
DiagnoseVariableSizedIvars(Sema & S,ObjCContainerDecl * OCD)3840 static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3841 ObjCInterfaceDecl *IntfDecl = nullptr;
3842 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3843 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3844 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3845 Ivars = IntfDecl->ivars();
3846 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3847 IntfDecl = ImplDecl->getClassInterface();
3848 Ivars = ImplDecl->ivars();
3849 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3850 if (CategoryDecl->IsClassExtension()) {
3851 IntfDecl = CategoryDecl->getClassInterface();
3852 Ivars = CategoryDecl->ivars();
3853 }
3854 }
3855
3856 // Check if variable sized ivar is in interface and visible to subclasses.
3857 if (!isa<ObjCInterfaceDecl>(OCD)) {
3858 for (auto ivar : Ivars) {
3859 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3860 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3861 << ivar->getDeclName() << ivar->getType();
3862 }
3863 }
3864 }
3865
3866 // Subsequent checks require interface decl.
3867 if (!IntfDecl)
3868 return;
3869
3870 // Check if variable sized ivar is followed by another ivar.
3871 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3872 ivar = ivar->getNextIvar()) {
3873 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3874 continue;
3875 QualType IvarTy = ivar->getType();
3876 bool IsInvalidIvar = false;
3877 if (IvarTy->isIncompleteArrayType()) {
3878 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3879 << ivar->getDeclName() << IvarTy
3880 << TTK_Class; // Use "class" for Obj-C.
3881 IsInvalidIvar = true;
3882 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3883 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3884 S.Diag(ivar->getLocation(),
3885 diag::err_objc_variable_sized_type_not_at_end)
3886 << ivar->getDeclName() << IvarTy;
3887 IsInvalidIvar = true;
3888 }
3889 }
3890 if (IsInvalidIvar) {
3891 S.Diag(ivar->getNextIvar()->getLocation(),
3892 diag::note_next_ivar_declaration)
3893 << ivar->getNextIvar()->getSynthesize();
3894 ivar->setInvalidDecl();
3895 }
3896 }
3897
3898 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3899 // Perform the check only if OCD is the first container to declare ivars to
3900 // avoid multiple warnings for the same ivar.
3901 ObjCIvarDecl *FirstIvar =
3902 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3903 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3904 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3905 while (SuperClass && SuperClass->ivar_empty())
3906 SuperClass = SuperClass->getSuperClass();
3907 if (SuperClass) {
3908 auto IvarIter = SuperClass->ivar_begin();
3909 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3910 const ObjCIvarDecl *LastIvar = *IvarIter;
3911 if (IsVariableSizedType(LastIvar->getType())) {
3912 S.Diag(FirstIvar->getLocation(),
3913 diag::warn_superclass_variable_sized_type_not_at_end)
3914 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3915 << LastIvar->getType() << SuperClass->getDeclName();
3916 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3917 << LastIvar->getDeclName();
3918 }
3919 }
3920 }
3921 }
3922
3923 static void DiagnoseCategoryDirectMembersProtocolConformance(
3924 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3925
DiagnoseCategoryDirectMembersProtocolConformance(Sema & S,ObjCCategoryDecl * CDecl,const llvm::iterator_range<ObjCProtocolList::iterator> & Protocols)3926 static void DiagnoseCategoryDirectMembersProtocolConformance(
3927 Sema &S, ObjCCategoryDecl *CDecl,
3928 const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3929 for (auto *PI : Protocols)
3930 DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl);
3931 }
3932
DiagnoseCategoryDirectMembersProtocolConformance(Sema & S,ObjCProtocolDecl * PDecl,ObjCCategoryDecl * CDecl)3933 static void DiagnoseCategoryDirectMembersProtocolConformance(
3934 Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3935 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3936 PDecl = PDecl->getDefinition();
3937
3938 llvm::SmallVector<const Decl *, 4> DirectMembers;
3939 const auto *IDecl = CDecl->getClassInterface();
3940 for (auto *MD : PDecl->methods()) {
3941 if (!MD->isPropertyAccessor()) {
3942 if (const auto *CMD =
3943 IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3944 if (CMD->isDirectMethod())
3945 DirectMembers.push_back(CMD);
3946 }
3947 }
3948 }
3949 for (auto *PD : PDecl->properties()) {
3950 if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3951 PD->getIdentifier(),
3952 PD->isClassProperty()
3953 ? ObjCPropertyQueryKind::OBJC_PR_query_class
3954 : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3955 if (CPD->isDirectProperty())
3956 DirectMembers.push_back(CPD);
3957 }
3958 }
3959 if (!DirectMembers.empty()) {
3960 S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3961 << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3962 for (const auto *MD : DirectMembers)
3963 S.Diag(MD->getLocation(), diag::note_direct_member_here);
3964 return;
3965 }
3966
3967 // Check on this protocols's referenced protocols, recursively.
3968 DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3969 PDecl->protocols());
3970 }
3971
3972 // Note: For class/category implementations, allMethods is always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,ArrayRef<Decl * > allMethods,ArrayRef<DeclGroupPtrTy> allTUVars)3973 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3974 ArrayRef<DeclGroupPtrTy> allTUVars) {
3975 if (getObjCContainerKind() == Sema::OCK_None)
3976 return nullptr;
3977
3978 assert(AtEnd.isValid() && "Invalid location for '@end'");
3979
3980 auto *OCD = cast<ObjCContainerDecl>(CurContext);
3981 Decl *ClassDecl = OCD;
3982
3983 bool isInterfaceDeclKind =
3984 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3985 || isa<ObjCProtocolDecl>(ClassDecl);
3986 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3987
3988 // Make synthesized accessor stub functions visible.
3989 // ActOnPropertyImplDecl() creates them as not visible in case
3990 // they are overridden by an explicit method that is encountered
3991 // later.
3992 if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) {
3993 for (auto PropImpl : OID->property_impls()) {
3994 if (auto *Getter = PropImpl->getGetterMethodDecl())
3995 if (Getter->isSynthesizedAccessorStub())
3996 OID->addDecl(Getter);
3997 if (auto *Setter = PropImpl->getSetterMethodDecl())
3998 if (Setter->isSynthesizedAccessorStub())
3999 OID->addDecl(Setter);
4000 }
4001 }
4002
4003 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4004 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4005 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4006
4007 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4008 ObjCMethodDecl *Method =
4009 cast_or_null<ObjCMethodDecl>(allMethods[i]);
4010
4011 if (!Method) continue; // Already issued a diagnostic.
4012 if (Method->isInstanceMethod()) {
4013 /// Check for instance method of the same name with incompatible types
4014 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4015 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4016 : false;
4017 if ((isInterfaceDeclKind && PrevMethod && !match)
4018 || (checkIdenticalMethods && match)) {
4019 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4020 << Method->getDeclName();
4021 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4022 Method->setInvalidDecl();
4023 } else {
4024 if (PrevMethod) {
4025 Method->setAsRedeclaration(PrevMethod);
4026 if (!Context.getSourceManager().isInSystemHeader(
4027 Method->getLocation()))
4028 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4029 << Method->getDeclName();
4030 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4031 }
4032 InsMap[Method->getSelector()] = Method;
4033 /// The following allows us to typecheck messages to "id".
4034 AddInstanceMethodToGlobalPool(Method);
4035 }
4036 } else {
4037 /// Check for class method of the same name with incompatible types
4038 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4039 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4040 : false;
4041 if ((isInterfaceDeclKind && PrevMethod && !match)
4042 || (checkIdenticalMethods && match)) {
4043 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4044 << Method->getDeclName();
4045 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4046 Method->setInvalidDecl();
4047 } else {
4048 if (PrevMethod) {
4049 Method->setAsRedeclaration(PrevMethod);
4050 if (!Context.getSourceManager().isInSystemHeader(
4051 Method->getLocation()))
4052 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4053 << Method->getDeclName();
4054 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4055 }
4056 ClsMap[Method->getSelector()] = Method;
4057 AddFactoryMethodToGlobalPool(Method);
4058 }
4059 }
4060 }
4061 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4062 // Nothing to do here.
4063 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4064 // Categories are used to extend the class by declaring new methods.
4065 // By the same token, they are also used to add new properties. No
4066 // need to compare the added property to those in the class.
4067
4068 if (C->IsClassExtension()) {
4069 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4070 DiagnoseClassExtensionDupMethods(C, CCPrimary);
4071 }
4072
4073 DiagnoseCategoryDirectMembersProtocolConformance(*this, C, C->protocols());
4074 }
4075 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4076 if (CDecl->getIdentifier())
4077 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4078 // user-defined setter/getter. It also synthesizes setter/getter methods
4079 // and adds them to the DeclContext and global method pools.
4080 for (auto *I : CDecl->properties())
4081 ProcessPropertyDecl(I);
4082 CDecl->setAtEndRange(AtEnd);
4083 }
4084 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4085 IC->setAtEndRange(AtEnd);
4086 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4087 // Any property declared in a class extension might have user
4088 // declared setter or getter in current class extension or one
4089 // of the other class extensions. Mark them as synthesized as
4090 // property will be synthesized when property with same name is
4091 // seen in the @implementation.
4092 for (const auto *Ext : IDecl->visible_extensions()) {
4093 for (const auto *Property : Ext->instance_properties()) {
4094 // Skip over properties declared @dynamic
4095 if (const ObjCPropertyImplDecl *PIDecl
4096 = IC->FindPropertyImplDecl(Property->getIdentifier(),
4097 Property->getQueryKind()))
4098 if (PIDecl->getPropertyImplementation()
4099 == ObjCPropertyImplDecl::Dynamic)
4100 continue;
4101
4102 for (const auto *Ext : IDecl->visible_extensions()) {
4103 if (ObjCMethodDecl *GetterMethod =
4104 Ext->getInstanceMethod(Property->getGetterName()))
4105 GetterMethod->setPropertyAccessor(true);
4106 if (!Property->isReadOnly())
4107 if (ObjCMethodDecl *SetterMethod
4108 = Ext->getInstanceMethod(Property->getSetterName()))
4109 SetterMethod->setPropertyAccessor(true);
4110 }
4111 }
4112 }
4113 ImplMethodsVsClassMethods(S, IC, IDecl);
4114 AtomicPropertySetterGetterRules(IC, IDecl);
4115 DiagnoseOwningPropertyGetterSynthesis(IC);
4116 DiagnoseUnusedBackingIvarInAccessor(S, IC);
4117 if (IDecl->hasDesignatedInitializers())
4118 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4119 DiagnoseWeakIvars(*this, IC);
4120 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4121
4122 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4123 if (IDecl->getSuperClass() == nullptr) {
4124 // This class has no superclass, so check that it has been marked with
4125 // __attribute((objc_root_class)).
4126 if (!HasRootClassAttr) {
4127 SourceLocation DeclLoc(IDecl->getLocation());
4128 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4129 Diag(DeclLoc, diag::warn_objc_root_class_missing)
4130 << IDecl->getIdentifier();
4131 // See if NSObject is in the current scope, and if it is, suggest
4132 // adding " : NSObject " to the class declaration.
4133 NamedDecl *IF = LookupSingleName(TUScope,
4134 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4135 DeclLoc, LookupOrdinaryName);
4136 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4137 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4138 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4139 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4140 } else {
4141 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4142 }
4143 }
4144 } else if (HasRootClassAttr) {
4145 // Complain that only root classes may have this attribute.
4146 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4147 }
4148
4149 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4150 // An interface can subclass another interface with a
4151 // objc_subclassing_restricted attribute when it has that attribute as
4152 // well (because of interfaces imported from Swift). Therefore we have
4153 // to check if we can subclass in the implementation as well.
4154 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4155 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4156 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4157 Diag(Super->getLocation(), diag::note_class_declared);
4158 }
4159 }
4160
4161 if (IDecl->hasAttr<ObjCClassStubAttr>())
4162 Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4163
4164 if (LangOpts.ObjCRuntime.isNonFragile()) {
4165 while (IDecl->getSuperClass()) {
4166 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4167 IDecl = IDecl->getSuperClass();
4168 }
4169 }
4170 }
4171 SetIvarInitializers(IC);
4172 } else if (ObjCCategoryImplDecl* CatImplClass =
4173 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4174 CatImplClass->setAtEndRange(AtEnd);
4175
4176 // Find category interface decl and then check that all methods declared
4177 // in this interface are implemented in the category @implementation.
4178 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4179 if (ObjCCategoryDecl *Cat
4180 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4181 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4182 }
4183 }
4184 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4185 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4186 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4187 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4188 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4189 Diag(Super->getLocation(), diag::note_class_declared);
4190 }
4191 }
4192
4193 if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4194 !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4195 Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4196 }
4197 DiagnoseVariableSizedIvars(*this, OCD);
4198 if (isInterfaceDeclKind) {
4199 // Reject invalid vardecls.
4200 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4201 DeclGroupRef DG = allTUVars[i].get();
4202 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4203 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4204 if (!VDecl->hasExternalStorage())
4205 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4206 }
4207 }
4208 }
4209 ActOnObjCContainerFinishDefinition();
4210
4211 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4212 DeclGroupRef DG = allTUVars[i].get();
4213 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4214 (*I)->setTopLevelDeclInObjCContainer();
4215 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4216 }
4217
4218 ActOnDocumentableDecl(ClassDecl);
4219 return ClassDecl;
4220 }
4221
4222 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4223 /// objective-c's type qualifier from the parser version of the same info.
4224 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)4225 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4226 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4227 }
4228
4229 /// Check whether the declared result type of the given Objective-C
4230 /// method declaration is compatible with the method's class.
4231 ///
4232 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)4233 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4234 ObjCInterfaceDecl *CurrentClass) {
4235 QualType ResultType = Method->getReturnType();
4236
4237 // If an Objective-C method inherits its related result type, then its
4238 // declared result type must be compatible with its own class type. The
4239 // declared result type is compatible if:
4240 if (const ObjCObjectPointerType *ResultObjectType
4241 = ResultType->getAs<ObjCObjectPointerType>()) {
4242 // - it is id or qualified id, or
4243 if (ResultObjectType->isObjCIdType() ||
4244 ResultObjectType->isObjCQualifiedIdType())
4245 return Sema::RTC_Compatible;
4246
4247 if (CurrentClass) {
4248 if (ObjCInterfaceDecl *ResultClass
4249 = ResultObjectType->getInterfaceDecl()) {
4250 // - it is the same as the method's class type, or
4251 if (declaresSameEntity(CurrentClass, ResultClass))
4252 return Sema::RTC_Compatible;
4253
4254 // - it is a superclass of the method's class type
4255 if (ResultClass->isSuperClassOf(CurrentClass))
4256 return Sema::RTC_Compatible;
4257 }
4258 } else {
4259 // Any Objective-C pointer type might be acceptable for a protocol
4260 // method; we just don't know.
4261 return Sema::RTC_Unknown;
4262 }
4263 }
4264
4265 return Sema::RTC_Incompatible;
4266 }
4267
4268 namespace {
4269 /// A helper class for searching for methods which a particular method
4270 /// overrides.
4271 class OverrideSearch {
4272 public:
4273 const ObjCMethodDecl *Method;
4274 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4275 bool Recursive;
4276
4277 public:
OverrideSearch(Sema & S,const ObjCMethodDecl * method)4278 OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4279 Selector selector = method->getSelector();
4280
4281 // Bypass this search if we've never seen an instance/class method
4282 // with this selector before.
4283 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4284 if (it == S.MethodPool.end()) {
4285 if (!S.getExternalSource()) return;
4286 S.ReadMethodPool(selector);
4287
4288 it = S.MethodPool.find(selector);
4289 if (it == S.MethodPool.end())
4290 return;
4291 }
4292 const ObjCMethodList &list =
4293 method->isInstanceMethod() ? it->second.first : it->second.second;
4294 if (!list.getMethod()) return;
4295
4296 const ObjCContainerDecl *container
4297 = cast<ObjCContainerDecl>(method->getDeclContext());
4298
4299 // Prevent the search from reaching this container again. This is
4300 // important with categories, which override methods from the
4301 // interface and each other.
4302 if (const ObjCCategoryDecl *Category =
4303 dyn_cast<ObjCCategoryDecl>(container)) {
4304 searchFromContainer(container);
4305 if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4306 searchFromContainer(Interface);
4307 } else {
4308 searchFromContainer(container);
4309 }
4310 }
4311
4312 typedef decltype(Overridden)::iterator iterator;
begin() const4313 iterator begin() const { return Overridden.begin(); }
end() const4314 iterator end() const { return Overridden.end(); }
4315
4316 private:
searchFromContainer(const ObjCContainerDecl * container)4317 void searchFromContainer(const ObjCContainerDecl *container) {
4318 if (container->isInvalidDecl()) return;
4319
4320 switch (container->getDeclKind()) {
4321 #define OBJCCONTAINER(type, base) \
4322 case Decl::type: \
4323 searchFrom(cast<type##Decl>(container)); \
4324 break;
4325 #define ABSTRACT_DECL(expansion)
4326 #define DECL(type, base) \
4327 case Decl::type:
4328 #include "clang/AST/DeclNodes.inc"
4329 llvm_unreachable("not an ObjC container!");
4330 }
4331 }
4332
searchFrom(const ObjCProtocolDecl * protocol)4333 void searchFrom(const ObjCProtocolDecl *protocol) {
4334 if (!protocol->hasDefinition())
4335 return;
4336
4337 // A method in a protocol declaration overrides declarations from
4338 // referenced ("parent") protocols.
4339 search(protocol->getReferencedProtocols());
4340 }
4341
searchFrom(const ObjCCategoryDecl * category)4342 void searchFrom(const ObjCCategoryDecl *category) {
4343 // A method in a category declaration overrides declarations from
4344 // the main class and from protocols the category references.
4345 // The main class is handled in the constructor.
4346 search(category->getReferencedProtocols());
4347 }
4348
searchFrom(const ObjCCategoryImplDecl * impl)4349 void searchFrom(const ObjCCategoryImplDecl *impl) {
4350 // A method in a category definition that has a category
4351 // declaration overrides declarations from the category
4352 // declaration.
4353 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4354 search(category);
4355 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4356 search(Interface);
4357
4358 // Otherwise it overrides declarations from the class.
4359 } else if (const auto *Interface = impl->getClassInterface()) {
4360 search(Interface);
4361 }
4362 }
4363
searchFrom(const ObjCInterfaceDecl * iface)4364 void searchFrom(const ObjCInterfaceDecl *iface) {
4365 // A method in a class declaration overrides declarations from
4366 if (!iface->hasDefinition())
4367 return;
4368
4369 // - categories,
4370 for (auto *Cat : iface->known_categories())
4371 search(Cat);
4372
4373 // - the super class, and
4374 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4375 search(super);
4376
4377 // - any referenced protocols.
4378 search(iface->getReferencedProtocols());
4379 }
4380
searchFrom(const ObjCImplementationDecl * impl)4381 void searchFrom(const ObjCImplementationDecl *impl) {
4382 // A method in a class implementation overrides declarations from
4383 // the class interface.
4384 if (const auto *Interface = impl->getClassInterface())
4385 search(Interface);
4386 }
4387
search(const ObjCProtocolList & protocols)4388 void search(const ObjCProtocolList &protocols) {
4389 for (const auto *Proto : protocols)
4390 search(Proto);
4391 }
4392
search(const ObjCContainerDecl * container)4393 void search(const ObjCContainerDecl *container) {
4394 // Check for a method in this container which matches this selector.
4395 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4396 Method->isInstanceMethod(),
4397 /*AllowHidden=*/true);
4398
4399 // If we find one, record it and bail out.
4400 if (meth) {
4401 Overridden.insert(meth);
4402 return;
4403 }
4404
4405 // Otherwise, search for methods that a hypothetical method here
4406 // would have overridden.
4407
4408 // Note that we're now in a recursive case.
4409 Recursive = true;
4410
4411 searchFromContainer(container);
4412 }
4413 };
4414 } // end anonymous namespace
4415
CheckObjCMethodDirectOverrides(ObjCMethodDecl * method,ObjCMethodDecl * overridden)4416 void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4417 ObjCMethodDecl *overridden) {
4418 if (overridden->isDirectMethod()) {
4419 const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4420 Diag(method->getLocation(), diag::err_objc_override_direct_method);
4421 Diag(attr->getLocation(), diag::note_previous_declaration);
4422 } else if (method->isDirectMethod()) {
4423 const auto *attr = method->getAttr<ObjCDirectAttr>();
4424 Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4425 << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4426 Diag(overridden->getLocation(), diag::note_previous_declaration);
4427 }
4428 }
4429
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)4430 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4431 ObjCInterfaceDecl *CurrentClass,
4432 ResultTypeCompatibilityKind RTC) {
4433 if (!ObjCMethod)
4434 return;
4435 // Search for overridden methods and merge information down from them.
4436 OverrideSearch overrides(*this, ObjCMethod);
4437 // Keep track if the method overrides any method in the class's base classes,
4438 // its protocols, or its categories' protocols; we will keep that info
4439 // in the ObjCMethodDecl.
4440 // For this info, a method in an implementation is not considered as
4441 // overriding the same method in the interface or its categories.
4442 bool hasOverriddenMethodsInBaseOrProtocol = false;
4443 for (ObjCMethodDecl *overridden : overrides) {
4444 if (!hasOverriddenMethodsInBaseOrProtocol) {
4445 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4446 CurrentClass != overridden->getClassInterface() ||
4447 overridden->isOverriding()) {
4448 CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4449 hasOverriddenMethodsInBaseOrProtocol = true;
4450 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4451 // OverrideSearch will return as "overridden" the same method in the
4452 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4453 // check whether a category of a base class introduced a method with the
4454 // same selector, after the interface method declaration.
4455 // To avoid unnecessary lookups in the majority of cases, we use the
4456 // extra info bits in GlobalMethodPool to check whether there were any
4457 // category methods with this selector.
4458 GlobalMethodPool::iterator It =
4459 MethodPool.find(ObjCMethod->getSelector());
4460 if (It != MethodPool.end()) {
4461 ObjCMethodList &List =
4462 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4463 unsigned CategCount = List.getBits();
4464 if (CategCount > 0) {
4465 // If the method is in a category we'll do lookup if there were at
4466 // least 2 category methods recorded, otherwise only one will do.
4467 if (CategCount > 1 ||
4468 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4469 OverrideSearch overrides(*this, overridden);
4470 for (ObjCMethodDecl *SuperOverridden : overrides) {
4471 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4472 CurrentClass != SuperOverridden->getClassInterface()) {
4473 CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4474 hasOverriddenMethodsInBaseOrProtocol = true;
4475 overridden->setOverriding(true);
4476 break;
4477 }
4478 }
4479 }
4480 }
4481 }
4482 }
4483 }
4484
4485 // Propagate down the 'related result type' bit from overridden methods.
4486 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4487 ObjCMethod->setRelatedResultType();
4488
4489 // Then merge the declarations.
4490 mergeObjCMethodDecls(ObjCMethod, overridden);
4491
4492 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4493 continue; // Conflicting properties are detected elsewhere.
4494
4495 // Check for overriding methods
4496 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4497 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4498 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4499 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4500
4501 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4502 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4503 !overridden->isImplicit() /* not meant for properties */) {
4504 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4505 E = ObjCMethod->param_end();
4506 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4507 PrevE = overridden->param_end();
4508 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4509 assert(PrevI != overridden->param_end() && "Param mismatch");
4510 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4511 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4512 // If type of argument of method in this class does not match its
4513 // respective argument type in the super class method, issue warning;
4514 if (!Context.typesAreCompatible(T1, T2)) {
4515 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4516 << T1 << T2;
4517 Diag(overridden->getLocation(), diag::note_previous_declaration);
4518 break;
4519 }
4520 }
4521 }
4522 }
4523
4524 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4525 }
4526
4527 /// Merge type nullability from for a redeclaration of the same entity,
4528 /// producing the updated type of the redeclared entity.
mergeTypeNullabilityForRedecl(Sema & S,SourceLocation loc,QualType type,bool usesCSKeyword,SourceLocation prevLoc,QualType prevType,bool prevUsesCSKeyword)4529 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4530 QualType type,
4531 bool usesCSKeyword,
4532 SourceLocation prevLoc,
4533 QualType prevType,
4534 bool prevUsesCSKeyword) {
4535 // Determine the nullability of both types.
4536 auto nullability = type->getNullability(S.Context);
4537 auto prevNullability = prevType->getNullability(S.Context);
4538
4539 // Easy case: both have nullability.
4540 if (nullability.has_value() == prevNullability.has_value()) {
4541 // Neither has nullability; continue.
4542 if (!nullability)
4543 return type;
4544
4545 // The nullabilities are equivalent; do nothing.
4546 if (*nullability == *prevNullability)
4547 return type;
4548
4549 // Complain about mismatched nullability.
4550 S.Diag(loc, diag::err_nullability_conflicting)
4551 << DiagNullabilityKind(*nullability, usesCSKeyword)
4552 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4553 return type;
4554 }
4555
4556 // If it's the redeclaration that has nullability, don't change anything.
4557 if (nullability)
4558 return type;
4559
4560 // Otherwise, provide the result with the same nullability.
4561 return S.Context.getAttributedType(
4562 AttributedType::getNullabilityAttrKind(*prevNullability),
4563 type, type);
4564 }
4565
4566 /// Merge information from the declaration of a method in the \@interface
4567 /// (or a category/extension) into the corresponding method in the
4568 /// @implementation (for a class or category).
mergeInterfaceMethodToImpl(Sema & S,ObjCMethodDecl * method,ObjCMethodDecl * prevMethod)4569 static void mergeInterfaceMethodToImpl(Sema &S,
4570 ObjCMethodDecl *method,
4571 ObjCMethodDecl *prevMethod) {
4572 // Merge the objc_requires_super attribute.
4573 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4574 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4575 // merge the attribute into implementation.
4576 method->addAttr(
4577 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4578 method->getLocation()));
4579 }
4580
4581 // Merge nullability of the result type.
4582 QualType newReturnType
4583 = mergeTypeNullabilityForRedecl(
4584 S, method->getReturnTypeSourceRange().getBegin(),
4585 method->getReturnType(),
4586 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4587 prevMethod->getReturnTypeSourceRange().getBegin(),
4588 prevMethod->getReturnType(),
4589 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4590 method->setReturnType(newReturnType);
4591
4592 // Handle each of the parameters.
4593 unsigned numParams = method->param_size();
4594 unsigned numPrevParams = prevMethod->param_size();
4595 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4596 ParmVarDecl *param = method->param_begin()[i];
4597 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4598
4599 // Merge nullability.
4600 QualType newParamType
4601 = mergeTypeNullabilityForRedecl(
4602 S, param->getLocation(), param->getType(),
4603 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4604 prevParam->getLocation(), prevParam->getType(),
4605 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4606 param->setType(newParamType);
4607 }
4608 }
4609
4610 /// Verify that the method parameters/return value have types that are supported
4611 /// by the x86 target.
checkObjCMethodX86VectorTypes(Sema & SemaRef,const ObjCMethodDecl * Method)4612 static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4613 const ObjCMethodDecl *Method) {
4614 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4615 llvm::Triple::x86 &&
4616 "x86-specific check invoked for a different target");
4617 SourceLocation Loc;
4618 QualType T;
4619 for (const ParmVarDecl *P : Method->parameters()) {
4620 if (P->getType()->isVectorType()) {
4621 Loc = P->getBeginLoc();
4622 T = P->getType();
4623 break;
4624 }
4625 }
4626 if (Loc.isInvalid()) {
4627 if (Method->getReturnType()->isVectorType()) {
4628 Loc = Method->getReturnTypeSourceRange().getBegin();
4629 T = Method->getReturnType();
4630 } else
4631 return;
4632 }
4633
4634 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4635 // iOS < 9 and macOS < 10.11.
4636 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4637 VersionTuple AcceptedInVersion;
4638 if (Triple.getOS() == llvm::Triple::IOS)
4639 AcceptedInVersion = VersionTuple(/*Major=*/9);
4640 else if (Triple.isMacOSX())
4641 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4642 else
4643 return;
4644 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4645 AcceptedInVersion)
4646 return;
4647 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4648 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4649 : /*parameter*/ 0)
4650 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4651 }
4652
mergeObjCDirectMembers(Sema & S,Decl * CD,ObjCMethodDecl * Method)4653 static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4654 if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4655 CD->hasAttr<ObjCDirectMembersAttr>()) {
4656 Method->addAttr(
4657 ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4658 }
4659 }
4660
checkObjCDirectMethodClashes(Sema & S,ObjCInterfaceDecl * IDecl,ObjCMethodDecl * Method,ObjCImplDecl * ImpDecl=nullptr)4661 static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4662 ObjCMethodDecl *Method,
4663 ObjCImplDecl *ImpDecl = nullptr) {
4664 auto Sel = Method->getSelector();
4665 bool isInstance = Method->isInstanceMethod();
4666 bool diagnosed = false;
4667
4668 auto diagClash = [&](const ObjCMethodDecl *IMD) {
4669 if (diagnosed || IMD->isImplicit())
4670 return;
4671 if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4672 S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4673 << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4674 << Method->getDeclName();
4675 S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4676 diagnosed = true;
4677 }
4678 };
4679
4680 // Look for any other declaration of this method anywhere we can see in this
4681 // compilation unit.
4682 //
4683 // We do not use IDecl->lookupMethod() because we have specific needs:
4684 //
4685 // - we absolutely do not need to walk protocols, because
4686 // diag::err_objc_direct_on_protocol has already been emitted
4687 // during parsing if there's a conflict,
4688 //
4689 // - when we do not find a match in a given @interface container,
4690 // we need to attempt looking it up in the @implementation block if the
4691 // translation unit sees it to find more clashes.
4692
4693 if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4694 diagClash(IMD);
4695 else if (auto *Impl = IDecl->getImplementation())
4696 if (Impl != ImpDecl)
4697 if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4698 diagClash(IMD);
4699
4700 for (const auto *Cat : IDecl->visible_categories())
4701 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4702 diagClash(IMD);
4703 else if (auto CatImpl = Cat->getImplementation())
4704 if (CatImpl != ImpDecl)
4705 if (auto *IMD = Cat->getMethod(Sel, isInstance))
4706 diagClash(IMD);
4707 }
4708
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,const ParsedAttributesView & AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)4709 Decl *Sema::ActOnMethodDeclaration(
4710 Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4711 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4712 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4713 // optional arguments. The number of types/arguments is obtained
4714 // from the Sel.getNumArgs().
4715 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4716 unsigned CNumArgs, // c-style args
4717 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4718 bool isVariadic, bool MethodDefinition) {
4719 // Make sure we can establish a context for the method.
4720 if (!CurContext->isObjCContainer()) {
4721 Diag(MethodLoc, diag::err_missing_method_context);
4722 return nullptr;
4723 }
4724
4725 Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4726 QualType resultDeclType;
4727
4728 bool HasRelatedResultType = false;
4729 TypeSourceInfo *ReturnTInfo = nullptr;
4730 if (ReturnType) {
4731 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4732
4733 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4734 return nullptr;
4735
4736 QualType bareResultType = resultDeclType;
4737 (void)AttributedType::stripOuterNullability(bareResultType);
4738 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4739 } else { // get the type for "id".
4740 resultDeclType = Context.getObjCIdType();
4741 Diag(MethodLoc, diag::warn_missing_method_return_type)
4742 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4743 }
4744
4745 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4746 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4747 MethodType == tok::minus, isVariadic,
4748 /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4749 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4750 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4751 : ObjCMethodDecl::Required,
4752 HasRelatedResultType);
4753
4754 SmallVector<ParmVarDecl*, 16> Params;
4755
4756 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4757 QualType ArgType;
4758 TypeSourceInfo *DI;
4759
4760 if (!ArgInfo[i].Type) {
4761 ArgType = Context.getObjCIdType();
4762 DI = nullptr;
4763 } else {
4764 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4765 }
4766
4767 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4768 LookupOrdinaryName, forRedeclarationInCurContext());
4769 LookupName(R, S);
4770 if (R.isSingleResult()) {
4771 NamedDecl *PrevDecl = R.getFoundDecl();
4772 if (S->isDeclScope(PrevDecl)) {
4773 Diag(ArgInfo[i].NameLoc,
4774 (MethodDefinition ? diag::warn_method_param_redefinition
4775 : diag::warn_method_param_declaration))
4776 << ArgInfo[i].Name;
4777 Diag(PrevDecl->getLocation(),
4778 diag::note_previous_declaration);
4779 }
4780 }
4781
4782 SourceLocation StartLoc = DI
4783 ? DI->getTypeLoc().getBeginLoc()
4784 : ArgInfo[i].NameLoc;
4785
4786 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4787 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4788 ArgType, DI, SC_None);
4789
4790 Param->setObjCMethodScopeInfo(i);
4791
4792 Param->setObjCDeclQualifier(
4793 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4794
4795 // Apply the attributes to the parameter.
4796 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4797 AddPragmaAttributes(TUScope, Param);
4798
4799 if (Param->hasAttr<BlocksAttr>()) {
4800 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4801 Param->setInvalidDecl();
4802 }
4803 S->AddDecl(Param);
4804 IdResolver.AddDecl(Param);
4805
4806 Params.push_back(Param);
4807 }
4808
4809 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4810 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4811 QualType ArgType = Param->getType();
4812 if (ArgType.isNull())
4813 ArgType = Context.getObjCIdType();
4814 else
4815 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4816 ArgType = Context.getAdjustedParameterType(ArgType);
4817
4818 Param->setDeclContext(ObjCMethod);
4819 Params.push_back(Param);
4820 }
4821
4822 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4823 ObjCMethod->setObjCDeclQualifier(
4824 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4825
4826 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4827 AddPragmaAttributes(TUScope, ObjCMethod);
4828
4829 // Add the method now.
4830 const ObjCMethodDecl *PrevMethod = nullptr;
4831 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4832 if (MethodType == tok::minus) {
4833 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4834 ImpDecl->addInstanceMethod(ObjCMethod);
4835 } else {
4836 PrevMethod = ImpDecl->getClassMethod(Sel);
4837 ImpDecl->addClassMethod(ObjCMethod);
4838 }
4839
4840 // If this method overrides a previous @synthesize declaration,
4841 // register it with the property. Linear search through all
4842 // properties here, because the autosynthesized stub hasn't been
4843 // made visible yet, so it can be overridden by a later
4844 // user-specified implementation.
4845 for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4846 if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4847 if (Setter->getSelector() == Sel &&
4848 Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4849 assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4850 PropertyImpl->setSetterMethodDecl(ObjCMethod);
4851 }
4852 if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4853 if (Getter->getSelector() == Sel &&
4854 Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4855 assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4856 PropertyImpl->setGetterMethodDecl(ObjCMethod);
4857 break;
4858 }
4859 }
4860
4861 // A method is either tagged direct explicitly, or inherits it from its
4862 // canonical declaration.
4863 //
4864 // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4865 // because IDecl->lookupMethod() returns more possible matches than just
4866 // the canonical declaration.
4867 if (!ObjCMethod->isDirectMethod()) {
4868 const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4869 if (CanonicalMD->isDirectMethod()) {
4870 const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4871 ObjCMethod->addAttr(
4872 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4873 }
4874 }
4875
4876 // Merge information from the @interface declaration into the
4877 // @implementation.
4878 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4879 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4880 ObjCMethod->isInstanceMethod())) {
4881 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4882
4883 // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4884 // in one of these places:
4885 //
4886 // (1) the canonical declaration in an @interface container paired
4887 // with the ImplDecl,
4888 // (2) non canonical declarations in @interface not paired with the
4889 // ImplDecl for the same Class,
4890 // (3) any superclass container.
4891 //
4892 // Direct methods only allow for canonical declarations in the matching
4893 // container (case 1).
4894 //
4895 // Direct methods overriding a superclass declaration (case 3) is
4896 // handled during overrides checks in CheckObjCMethodOverrides().
4897 //
4898 // We deal with same-class container mismatches (Case 2) here.
4899 if (IDecl == IMD->getClassInterface()) {
4900 auto diagContainerMismatch = [&] {
4901 int decl = 0, impl = 0;
4902
4903 if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4904 decl = Cat->IsClassExtension() ? 1 : 2;
4905
4906 if (isa<ObjCCategoryImplDecl>(ImpDecl))
4907 impl = 1 + (decl != 0);
4908
4909 Diag(ObjCMethod->getLocation(),
4910 diag::err_objc_direct_impl_decl_mismatch)
4911 << decl << impl;
4912 Diag(IMD->getLocation(), diag::note_previous_declaration);
4913 };
4914
4915 if (ObjCMethod->isDirectMethod()) {
4916 const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4917 if (ObjCMethod->getCanonicalDecl() != IMD) {
4918 diagContainerMismatch();
4919 } else if (!IMD->isDirectMethod()) {
4920 Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4921 Diag(IMD->getLocation(), diag::note_previous_declaration);
4922 }
4923 } else if (IMD->isDirectMethod()) {
4924 const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4925 if (ObjCMethod->getCanonicalDecl() != IMD) {
4926 diagContainerMismatch();
4927 } else {
4928 ObjCMethod->addAttr(
4929 ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4930 }
4931 }
4932 }
4933
4934 // Warn about defining -dealloc in a category.
4935 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4936 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4937 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4938 << ObjCMethod->getDeclName();
4939 }
4940 } else {
4941 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4942 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl);
4943 }
4944
4945 // Warn if a method declared in a protocol to which a category or
4946 // extension conforms is non-escaping and the implementation's method is
4947 // escaping.
4948 for (auto *C : IDecl->visible_categories())
4949 for (auto &P : C->protocols())
4950 if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4951 ObjCMethod->isInstanceMethod())) {
4952 assert(ObjCMethod->parameters().size() ==
4953 IMD->parameters().size() &&
4954 "Methods have different number of parameters");
4955 auto OI = IMD->param_begin(), OE = IMD->param_end();
4956 auto NI = ObjCMethod->param_begin();
4957 for (; OI != OE; ++OI, ++NI)
4958 diagnoseNoescape(*NI, *OI, C, P, *this);
4959 }
4960 }
4961 } else {
4962 if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4963 mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4964
4965 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4966 if (!IDecl)
4967 IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4968 // For valid code, we should always know the primary interface
4969 // declaration by now, however for invalid code we'll keep parsing
4970 // but we won't find the primary interface and IDecl will be nil.
4971 if (IDecl)
4972 checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod);
4973 }
4974
4975 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4976 }
4977
4978 if (PrevMethod) {
4979 // You can never have two method definitions with the same name.
4980 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4981 << ObjCMethod->getDeclName();
4982 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4983 ObjCMethod->setInvalidDecl();
4984 return ObjCMethod;
4985 }
4986
4987 // If this Objective-C method does not have a related result type, but we
4988 // are allowed to infer related result types, try to do so based on the
4989 // method family.
4990 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4991 if (!CurrentClass) {
4992 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4993 CurrentClass = Cat->getClassInterface();
4994 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4995 CurrentClass = Impl->getClassInterface();
4996 else if (ObjCCategoryImplDecl *CatImpl
4997 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4998 CurrentClass = CatImpl->getClassInterface();
4999 }
5000
5001 ResultTypeCompatibilityKind RTC
5002 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
5003
5004 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5005
5006 bool ARCError = false;
5007 if (getLangOpts().ObjCAutoRefCount)
5008 ARCError = CheckARCMethodDecl(ObjCMethod);
5009
5010 // Infer the related result type when possible.
5011 if (!ARCError && RTC == Sema::RTC_Compatible &&
5012 !ObjCMethod->hasRelatedResultType() &&
5013 LangOpts.ObjCInferRelatedResultType) {
5014 bool InferRelatedResultType = false;
5015 switch (ObjCMethod->getMethodFamily()) {
5016 case OMF_None:
5017 case OMF_copy:
5018 case OMF_dealloc:
5019 case OMF_finalize:
5020 case OMF_mutableCopy:
5021 case OMF_release:
5022 case OMF_retainCount:
5023 case OMF_initialize:
5024 case OMF_performSelector:
5025 break;
5026
5027 case OMF_alloc:
5028 case OMF_new:
5029 InferRelatedResultType = ObjCMethod->isClassMethod();
5030 break;
5031
5032 case OMF_init:
5033 case OMF_autorelease:
5034 case OMF_retain:
5035 case OMF_self:
5036 InferRelatedResultType = ObjCMethod->isInstanceMethod();
5037 break;
5038 }
5039
5040 if (InferRelatedResultType &&
5041 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5042 ObjCMethod->setRelatedResultType();
5043 }
5044
5045 if (MethodDefinition &&
5046 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5047 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
5048
5049 // + load method cannot have availability attributes. It get called on
5050 // startup, so it has to have the availability of the deployment target.
5051 if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5052 if (ObjCMethod->isClassMethod() &&
5053 ObjCMethod->getSelector().getAsString() == "load") {
5054 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5055 << 0;
5056 ObjCMethod->dropAttr<AvailabilityAttr>();
5057 }
5058 }
5059
5060 // Insert the invisible arguments, self and _cmd!
5061 ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
5062
5063 ActOnDocumentableDecl(ObjCMethod);
5064
5065 return ObjCMethod;
5066 }
5067
CheckObjCDeclScope(Decl * D)5068 bool Sema::CheckObjCDeclScope(Decl *D) {
5069 // Following is also an error. But it is caused by a missing @end
5070 // and diagnostic is issued elsewhere.
5071 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
5072 return false;
5073
5074 // If we switched context to translation unit while we are still lexically in
5075 // an objc container, it means the parser missed emitting an error.
5076 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
5077 return false;
5078
5079 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5080 D->setInvalidDecl();
5081
5082 return true;
5083 }
5084
5085 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
5086 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)5087 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5088 IdentifierInfo *ClassName,
5089 SmallVectorImpl<Decl*> &Decls) {
5090 // Check that ClassName is a valid class
5091 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5092 if (!Class) {
5093 Diag(DeclStart, diag::err_undef_interface) << ClassName;
5094 return;
5095 }
5096 if (LangOpts.ObjCRuntime.isNonFragile()) {
5097 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5098 return;
5099 }
5100
5101 // Collect the instance variables
5102 SmallVector<const ObjCIvarDecl*, 32> Ivars;
5103 Context.DeepCollectObjCIvars(Class, true, Ivars);
5104 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5105 for (unsigned i = 0; i < Ivars.size(); i++) {
5106 const FieldDecl* ID = Ivars[i];
5107 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5108 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
5109 /*FIXME: StartL=*/ID->getLocation(),
5110 ID->getLocation(),
5111 ID->getIdentifier(), ID->getType(),
5112 ID->getBitWidth());
5113 Decls.push_back(FD);
5114 }
5115
5116 // Introduce all of these fields into the appropriate scope.
5117 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5118 D != Decls.end(); ++D) {
5119 FieldDecl *FD = cast<FieldDecl>(*D);
5120 if (getLangOpts().CPlusPlus)
5121 PushOnScopeChains(FD, S);
5122 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5123 Record->addDecl(FD);
5124 }
5125 }
5126
5127 /// Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)5128 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5129 SourceLocation StartLoc,
5130 SourceLocation IdLoc,
5131 IdentifierInfo *Id,
5132 bool Invalid) {
5133 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5134 // duration shall not be qualified by an address-space qualifier."
5135 // Since all parameters have automatic store duration, they can not have
5136 // an address space.
5137 if (T.getAddressSpace() != LangAS::Default) {
5138 Diag(IdLoc, diag::err_arg_with_address_space);
5139 Invalid = true;
5140 }
5141
5142 // An @catch parameter must be an unqualified object pointer type;
5143 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5144 if (Invalid) {
5145 // Don't do any further checking.
5146 } else if (T->isDependentType()) {
5147 // Okay: we don't know what this type will instantiate to.
5148 } else if (T->isObjCQualifiedIdType()) {
5149 Invalid = true;
5150 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5151 } else if (T->isObjCIdType()) {
5152 // Okay: we don't know what this type will instantiate to.
5153 } else if (!T->isObjCObjectPointerType()) {
5154 Invalid = true;
5155 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5156 } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5157 Invalid = true;
5158 Diag(IdLoc, diag::err_catch_param_not_objc_type);
5159 }
5160
5161 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
5162 T, TInfo, SC_None);
5163 New->setExceptionVariable(true);
5164
5165 // In ARC, infer 'retaining' for variables of retainable type.
5166 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5167 Invalid = true;
5168
5169 if (Invalid)
5170 New->setInvalidDecl();
5171 return New;
5172 }
5173
ActOnObjCExceptionDecl(Scope * S,Declarator & D)5174 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5175 const DeclSpec &DS = D.getDeclSpec();
5176
5177 // We allow the "register" storage class on exception variables because
5178 // GCC did, but we drop it completely. Any other storage class is an error.
5179 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5180 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5181 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5182 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5183 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5184 << DeclSpec::getSpecifierName(SCS);
5185 }
5186 if (DS.isInlineSpecified())
5187 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5188 << getLangOpts().CPlusPlus17;
5189 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5190 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5191 diag::err_invalid_thread)
5192 << DeclSpec::getSpecifierName(TSCS);
5193 D.getMutableDeclSpec().ClearStorageClassSpecs();
5194
5195 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5196
5197 // Check that there are no default arguments inside the type of this
5198 // exception object (C++ only).
5199 if (getLangOpts().CPlusPlus)
5200 CheckExtraCXXDefaultArguments(D);
5201
5202 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5203 QualType ExceptionType = TInfo->getType();
5204
5205 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5206 D.getSourceRange().getBegin(),
5207 D.getIdentifierLoc(),
5208 D.getIdentifier(),
5209 D.isInvalidType());
5210
5211 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5212 if (D.getCXXScopeSpec().isSet()) {
5213 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5214 << D.getCXXScopeSpec().getRange();
5215 New->setInvalidDecl();
5216 }
5217
5218 // Add the parameter declaration into this scope.
5219 S->AddDecl(New);
5220 if (D.getIdentifier())
5221 IdResolver.AddDecl(New);
5222
5223 ProcessDeclAttributes(S, New, D);
5224
5225 if (New->hasAttr<BlocksAttr>())
5226 Diag(New->getLocation(), diag::err_block_on_nonlocal);
5227 return New;
5228 }
5229
5230 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5231 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)5232 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
5233 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
5234 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5235 Iv= Iv->getNextIvar()) {
5236 QualType QT = Context.getBaseElementType(Iv->getType());
5237 if (QT->isRecordType())
5238 Ivars.push_back(Iv);
5239 }
5240 }
5241
DiagnoseUseOfUnimplementedSelectors()5242 void Sema::DiagnoseUseOfUnimplementedSelectors() {
5243 // Load referenced selectors from the external source.
5244 if (ExternalSource) {
5245 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5246 ExternalSource->ReadReferencedSelectors(Sels);
5247 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5248 ReferencedSelectors[Sels[I].first] = Sels[I].second;
5249 }
5250
5251 // Warning will be issued only when selector table is
5252 // generated (which means there is at lease one implementation
5253 // in the TU). This is to match gcc's behavior.
5254 if (ReferencedSelectors.empty() ||
5255 !Context.AnyObjCImplementation())
5256 return;
5257 for (auto &SelectorAndLocation : ReferencedSelectors) {
5258 Selector Sel = SelectorAndLocation.first;
5259 SourceLocation Loc = SelectorAndLocation.second;
5260 if (!LookupImplementedMethodInGlobalPool(Sel))
5261 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5262 }
5263 }
5264
5265 ObjCIvarDecl *
GetIvarBackingPropertyAccessor(const ObjCMethodDecl * Method,const ObjCPropertyDecl * & PDecl) const5266 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5267 const ObjCPropertyDecl *&PDecl) const {
5268 if (Method->isClassMethod())
5269 return nullptr;
5270 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5271 if (!IDecl)
5272 return nullptr;
5273 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5274 /*shallowCategoryLookup=*/false,
5275 /*followSuper=*/false);
5276 if (!Method || !Method->isPropertyAccessor())
5277 return nullptr;
5278 if ((PDecl = Method->findPropertyDecl()))
5279 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5280 // property backing ivar must belong to property's class
5281 // or be a private ivar in class's implementation.
5282 // FIXME. fix the const-ness issue.
5283 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5284 IV->getIdentifier());
5285 return IV;
5286 }
5287 return nullptr;
5288 }
5289
5290 namespace {
5291 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5292 /// accessor references the backing ivar.
5293 class UnusedBackingIvarChecker :
5294 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5295 public:
5296 Sema &S;
5297 const ObjCMethodDecl *Method;
5298 const ObjCIvarDecl *IvarD;
5299 bool AccessedIvar;
5300 bool InvokedSelfMethod;
5301
UnusedBackingIvarChecker(Sema & S,const ObjCMethodDecl * Method,const ObjCIvarDecl * IvarD)5302 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5303 const ObjCIvarDecl *IvarD)
5304 : S(S), Method(Method), IvarD(IvarD),
5305 AccessedIvar(false), InvokedSelfMethod(false) {
5306 assert(IvarD);
5307 }
5308
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)5309 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5310 if (E->getDecl() == IvarD) {
5311 AccessedIvar = true;
5312 return false;
5313 }
5314 return true;
5315 }
5316
VisitObjCMessageExpr(ObjCMessageExpr * E)5317 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5318 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5319 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5320 InvokedSelfMethod = true;
5321 }
5322 return true;
5323 }
5324 };
5325 } // end anonymous namespace
5326
DiagnoseUnusedBackingIvarInAccessor(Scope * S,const ObjCImplementationDecl * ImplD)5327 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5328 const ObjCImplementationDecl *ImplD) {
5329 if (S->hasUnrecoverableErrorOccurred())
5330 return;
5331
5332 for (const auto *CurMethod : ImplD->instance_methods()) {
5333 unsigned DIAG = diag::warn_unused_property_backing_ivar;
5334 SourceLocation Loc = CurMethod->getLocation();
5335 if (Diags.isIgnored(DIAG, Loc))
5336 continue;
5337
5338 const ObjCPropertyDecl *PDecl;
5339 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5340 if (!IV)
5341 continue;
5342
5343 if (CurMethod->isSynthesizedAccessorStub())
5344 continue;
5345
5346 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5347 Checker.TraverseStmt(CurMethod->getBody());
5348 if (Checker.AccessedIvar)
5349 continue;
5350
5351 // Do not issue this warning if backing ivar is used somewhere and accessor
5352 // implementation makes a self call. This is to prevent false positive in
5353 // cases where the ivar is accessed by another method that the accessor
5354 // delegates to.
5355 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5356 Diag(Loc, DIAG) << IV;
5357 Diag(PDecl->getLocation(), diag::note_property_declare);
5358 }
5359 }
5360 }
5361