1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements decl-related attribute processing.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
26 #include "clang/Basic/DarwinSDKInfo.h"
27 #include "clang/Basic/SourceLocation.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetBuiltins.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/DeclSpec.h"
33 #include "clang/Sema/DelayedDiagnostic.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedAttr.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaInternal.h"
40 #include "llvm/ADT/Optional.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/IR/Assumptions.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/Support/Error.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/raw_ostream.h"
48
49 using namespace clang;
50 using namespace sema;
51
52 namespace AttributeLangSupport {
53 enum LANG {
54 C,
55 Cpp,
56 ObjC
57 };
58 } // end namespace AttributeLangSupport
59
60 //===----------------------------------------------------------------------===//
61 // Helper functions
62 //===----------------------------------------------------------------------===//
63
64 /// isFunctionOrMethod - Return true if the given decl has function
65 /// type (function or function-typed variable) or an Objective-C
66 /// method.
isFunctionOrMethod(const Decl * D)67 static bool isFunctionOrMethod(const Decl *D) {
68 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
69 }
70
71 /// Return true if the given decl has function type (function or
72 /// function-typed variable) or an Objective-C method or a block.
isFunctionOrMethodOrBlock(const Decl * D)73 static bool isFunctionOrMethodOrBlock(const Decl *D) {
74 return isFunctionOrMethod(D) || isa<BlockDecl>(D);
75 }
76
77 /// Return true if the given decl has a declarator that should have
78 /// been processed by Sema::GetTypeForDeclarator.
hasDeclarator(const Decl * D)79 static bool hasDeclarator(const Decl *D) {
80 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
81 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
82 isa<ObjCPropertyDecl>(D);
83 }
84
85 /// hasFunctionProto - Return true if the given decl has a argument
86 /// information. This decl should have already passed
87 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
hasFunctionProto(const Decl * D)88 static bool hasFunctionProto(const Decl *D) {
89 if (const FunctionType *FnTy = D->getFunctionType())
90 return isa<FunctionProtoType>(FnTy);
91 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
92 }
93
94 /// getFunctionOrMethodNumParams - Return number of function or method
95 /// parameters. It is an error to call this on a K&R function (use
96 /// hasFunctionProto first).
getFunctionOrMethodNumParams(const Decl * D)97 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
98 if (const FunctionType *FnTy = D->getFunctionType())
99 return cast<FunctionProtoType>(FnTy)->getNumParams();
100 if (const auto *BD = dyn_cast<BlockDecl>(D))
101 return BD->getNumParams();
102 return cast<ObjCMethodDecl>(D)->param_size();
103 }
104
getFunctionOrMethodParam(const Decl * D,unsigned Idx)105 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
106 unsigned Idx) {
107 if (const auto *FD = dyn_cast<FunctionDecl>(D))
108 return FD->getParamDecl(Idx);
109 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
110 return MD->getParamDecl(Idx);
111 if (const auto *BD = dyn_cast<BlockDecl>(D))
112 return BD->getParamDecl(Idx);
113 return nullptr;
114 }
115
getFunctionOrMethodParamType(const Decl * D,unsigned Idx)116 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
117 if (const FunctionType *FnTy = D->getFunctionType())
118 return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
119 if (const auto *BD = dyn_cast<BlockDecl>(D))
120 return BD->getParamDecl(Idx)->getType();
121
122 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
123 }
124
getFunctionOrMethodParamRange(const Decl * D,unsigned Idx)125 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
126 if (auto *PVD = getFunctionOrMethodParam(D, Idx))
127 return PVD->getSourceRange();
128 return SourceRange();
129 }
130
getFunctionOrMethodResultType(const Decl * D)131 static QualType getFunctionOrMethodResultType(const Decl *D) {
132 if (const FunctionType *FnTy = D->getFunctionType())
133 return FnTy->getReturnType();
134 return cast<ObjCMethodDecl>(D)->getReturnType();
135 }
136
getFunctionOrMethodResultSourceRange(const Decl * D)137 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
138 if (const auto *FD = dyn_cast<FunctionDecl>(D))
139 return FD->getReturnTypeSourceRange();
140 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
141 return MD->getReturnTypeSourceRange();
142 return SourceRange();
143 }
144
isFunctionOrMethodVariadic(const Decl * D)145 static bool isFunctionOrMethodVariadic(const Decl *D) {
146 if (const FunctionType *FnTy = D->getFunctionType())
147 return cast<FunctionProtoType>(FnTy)->isVariadic();
148 if (const auto *BD = dyn_cast<BlockDecl>(D))
149 return BD->isVariadic();
150 return cast<ObjCMethodDecl>(D)->isVariadic();
151 }
152
isInstanceMethod(const Decl * D)153 static bool isInstanceMethod(const Decl *D) {
154 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
155 return MethodDecl->isInstance();
156 return false;
157 }
158
isNSStringType(QualType T,ASTContext & Ctx,bool AllowNSAttributedString=false)159 static inline bool isNSStringType(QualType T, ASTContext &Ctx,
160 bool AllowNSAttributedString = false) {
161 const auto *PT = T->getAs<ObjCObjectPointerType>();
162 if (!PT)
163 return false;
164
165 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
166 if (!Cls)
167 return false;
168
169 IdentifierInfo* ClsName = Cls->getIdentifier();
170
171 if (AllowNSAttributedString &&
172 ClsName == &Ctx.Idents.get("NSAttributedString"))
173 return true;
174 // FIXME: Should we walk the chain of classes?
175 return ClsName == &Ctx.Idents.get("NSString") ||
176 ClsName == &Ctx.Idents.get("NSMutableString");
177 }
178
isCFStringType(QualType T,ASTContext & Ctx)179 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
180 const auto *PT = T->getAs<PointerType>();
181 if (!PT)
182 return false;
183
184 const auto *RT = PT->getPointeeType()->getAs<RecordType>();
185 if (!RT)
186 return false;
187
188 const RecordDecl *RD = RT->getDecl();
189 if (RD->getTagKind() != TTK_Struct)
190 return false;
191
192 return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
193 }
194
getNumAttributeArgs(const ParsedAttr & AL)195 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
196 // FIXME: Include the type in the argument list.
197 return AL.getNumArgs() + AL.hasParsedType();
198 }
199
200 /// A helper function to provide Attribute Location for the Attr types
201 /// AND the ParsedAttr.
202 template <typename AttrInfo>
203 static std::enable_if_t<std::is_base_of<Attr, AttrInfo>::value, SourceLocation>
getAttrLoc(const AttrInfo & AL)204 getAttrLoc(const AttrInfo &AL) {
205 return AL.getLocation();
206 }
getAttrLoc(const ParsedAttr & AL)207 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
208
209 /// If Expr is a valid integer constant, get the value of the integer
210 /// expression and return success or failure. May output an error.
211 ///
212 /// Negative argument is implicitly converted to unsigned, unless
213 /// \p StrictlyUnsigned is true.
214 template <typename AttrInfo>
checkUInt32Argument(Sema & S,const AttrInfo & AI,const Expr * Expr,uint32_t & Val,unsigned Idx=UINT_MAX,bool StrictlyUnsigned=false)215 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
216 uint32_t &Val, unsigned Idx = UINT_MAX,
217 bool StrictlyUnsigned = false) {
218 Optional<llvm::APSInt> I = llvm::APSInt(32);
219 if (Expr->isTypeDependent() || Expr->isValueDependent() ||
220 !(I = Expr->getIntegerConstantExpr(S.Context))) {
221 if (Idx != UINT_MAX)
222 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
223 << &AI << Idx << AANT_ArgumentIntegerConstant
224 << Expr->getSourceRange();
225 else
226 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
227 << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
228 return false;
229 }
230
231 if (!I->isIntN(32)) {
232 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
233 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
234 return false;
235 }
236
237 if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
238 S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
239 << &AI << /*non-negative*/ 1;
240 return false;
241 }
242
243 Val = (uint32_t)I->getZExtValue();
244 return true;
245 }
246
247 /// Wrapper around checkUInt32Argument, with an extra check to be sure
248 /// that the result will fit into a regular (signed) int. All args have the same
249 /// purpose as they do in checkUInt32Argument.
250 template <typename AttrInfo>
checkPositiveIntArgument(Sema & S,const AttrInfo & AI,const Expr * Expr,int & Val,unsigned Idx=UINT_MAX)251 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
252 int &Val, unsigned Idx = UINT_MAX) {
253 uint32_t UVal;
254 if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
255 return false;
256
257 if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
258 llvm::APSInt I(32); // for toString
259 I = UVal;
260 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
261 << toString(I, 10, false) << 32 << /* Unsigned */ 0;
262 return false;
263 }
264
265 Val = UVal;
266 return true;
267 }
268
269 /// Diagnose mutually exclusive attributes when present on a given
270 /// declaration. Returns true if diagnosed.
271 template <typename AttrTy>
checkAttrMutualExclusion(Sema & S,Decl * D,const ParsedAttr & AL)272 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
273 if (const auto *A = D->getAttr<AttrTy>()) {
274 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A;
275 S.Diag(A->getLocation(), diag::note_conflicting_attribute);
276 return true;
277 }
278 return false;
279 }
280
281 template <typename AttrTy>
checkAttrMutualExclusion(Sema & S,Decl * D,const Attr & AL)282 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
283 if (const auto *A = D->getAttr<AttrTy>()) {
284 S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL
285 << A;
286 S.Diag(A->getLocation(), diag::note_conflicting_attribute);
287 return true;
288 }
289 return false;
290 }
291
292 /// Check if IdxExpr is a valid parameter index for a function or
293 /// instance method D. May output an error.
294 ///
295 /// \returns true if IdxExpr is a valid index.
296 template <typename AttrInfo>
checkFunctionOrMethodParameterIndex(Sema & S,const Decl * D,const AttrInfo & AI,unsigned AttrArgNum,const Expr * IdxExpr,ParamIdx & Idx,bool CanIndexImplicitThis=false)297 static bool checkFunctionOrMethodParameterIndex(
298 Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
299 const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
300 assert(isFunctionOrMethodOrBlock(D));
301
302 // In C++ the implicit 'this' function parameter also counts.
303 // Parameters are counted from one.
304 bool HP = hasFunctionProto(D);
305 bool HasImplicitThisParam = isInstanceMethod(D);
306 bool IV = HP && isFunctionOrMethodVariadic(D);
307 unsigned NumParams =
308 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
309
310 Optional<llvm::APSInt> IdxInt;
311 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
312 !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
313 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
314 << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
315 << IdxExpr->getSourceRange();
316 return false;
317 }
318
319 unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
320 if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
321 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
322 << &AI << AttrArgNum << IdxExpr->getSourceRange();
323 return false;
324 }
325 if (HasImplicitThisParam && !CanIndexImplicitThis) {
326 if (IdxSource == 1) {
327 S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
328 << &AI << IdxExpr->getSourceRange();
329 return false;
330 }
331 }
332
333 Idx = ParamIdx(IdxSource, D);
334 return true;
335 }
336
337 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
338 /// If not emit an error and return false. If the argument is an identifier it
339 /// will emit an error with a fixit hint and treat it as if it was a string
340 /// literal.
checkStringLiteralArgumentAttr(const ParsedAttr & AL,unsigned ArgNum,StringRef & Str,SourceLocation * ArgLocation)341 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
342 StringRef &Str,
343 SourceLocation *ArgLocation) {
344 // Look for identifiers. If we have one emit a hint to fix it to a literal.
345 if (AL.isArgIdent(ArgNum)) {
346 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
347 Diag(Loc->Loc, diag::err_attribute_argument_type)
348 << AL << AANT_ArgumentString
349 << FixItHint::CreateInsertion(Loc->Loc, "\"")
350 << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
351 Str = Loc->Ident->getName();
352 if (ArgLocation)
353 *ArgLocation = Loc->Loc;
354 return true;
355 }
356
357 // Now check for an actual string literal.
358 Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
359 const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
360 if (ArgLocation)
361 *ArgLocation = ArgExpr->getBeginLoc();
362
363 if (!Literal || !Literal->isAscii()) {
364 Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
365 << AL << AANT_ArgumentString;
366 return false;
367 }
368
369 Str = Literal->getString();
370 return true;
371 }
372
373 /// Applies the given attribute to the Decl without performing any
374 /// additional semantic checking.
375 template <typename AttrType>
handleSimpleAttribute(Sema & S,Decl * D,const AttributeCommonInfo & CI)376 static void handleSimpleAttribute(Sema &S, Decl *D,
377 const AttributeCommonInfo &CI) {
378 D->addAttr(::new (S.Context) AttrType(S.Context, CI));
379 }
380
381 template <typename... DiagnosticArgs>
382 static const Sema::SemaDiagnosticBuilder&
appendDiagnostics(const Sema::SemaDiagnosticBuilder & Bldr)383 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
384 return Bldr;
385 }
386
387 template <typename T, typename... DiagnosticArgs>
388 static const Sema::SemaDiagnosticBuilder&
appendDiagnostics(const Sema::SemaDiagnosticBuilder & Bldr,T && ExtraArg,DiagnosticArgs &&...ExtraArgs)389 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
390 DiagnosticArgs &&... ExtraArgs) {
391 return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
392 std::forward<DiagnosticArgs>(ExtraArgs)...);
393 }
394
395 /// Add an attribute @c AttrType to declaration @c D, provided that
396 /// @c PassesCheck is true.
397 /// Otherwise, emit diagnostic @c DiagID, passing in all parameters
398 /// specified in @c ExtraArgs.
399 template <typename AttrType, typename... DiagnosticArgs>
handleSimpleAttributeOrDiagnose(Sema & S,Decl * D,const AttributeCommonInfo & CI,bool PassesCheck,unsigned DiagID,DiagnosticArgs &&...ExtraArgs)400 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
401 const AttributeCommonInfo &CI,
402 bool PassesCheck, unsigned DiagID,
403 DiagnosticArgs &&... ExtraArgs) {
404 if (!PassesCheck) {
405 Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
406 appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
407 return;
408 }
409 handleSimpleAttribute<AttrType>(S, D, CI);
410 }
411
412 /// Check if the passed-in expression is of type int or bool.
isIntOrBool(Expr * Exp)413 static bool isIntOrBool(Expr *Exp) {
414 QualType QT = Exp->getType();
415 return QT->isBooleanType() || QT->isIntegerType();
416 }
417
418
419 // Check to see if the type is a smart pointer of some kind. We assume
420 // it's a smart pointer if it defines both operator-> and operator*.
threadSafetyCheckIsSmartPointer(Sema & S,const RecordType * RT)421 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
422 auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
423 OverloadedOperatorKind Op) {
424 DeclContextLookupResult Result =
425 Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
426 return !Result.empty();
427 };
428
429 const RecordDecl *Record = RT->getDecl();
430 bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
431 bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
432 if (foundStarOperator && foundArrowOperator)
433 return true;
434
435 const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
436 if (!CXXRecord)
437 return false;
438
439 for (auto BaseSpecifier : CXXRecord->bases()) {
440 if (!foundStarOperator)
441 foundStarOperator = IsOverloadedOperatorPresent(
442 BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
443 if (!foundArrowOperator)
444 foundArrowOperator = IsOverloadedOperatorPresent(
445 BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
446 }
447
448 if (foundStarOperator && foundArrowOperator)
449 return true;
450
451 return false;
452 }
453
454 /// Check if passed in Decl is a pointer type.
455 /// Note that this function may produce an error message.
456 /// \return true if the Decl is a pointer type; false otherwise
threadSafetyCheckIsPointer(Sema & S,const Decl * D,const ParsedAttr & AL)457 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
458 const ParsedAttr &AL) {
459 const auto *VD = cast<ValueDecl>(D);
460 QualType QT = VD->getType();
461 if (QT->isAnyPointerType())
462 return true;
463
464 if (const auto *RT = QT->getAs<RecordType>()) {
465 // If it's an incomplete type, it could be a smart pointer; skip it.
466 // (We don't want to force template instantiation if we can avoid it,
467 // since that would alter the order in which templates are instantiated.)
468 if (RT->isIncompleteType())
469 return true;
470
471 if (threadSafetyCheckIsSmartPointer(S, RT))
472 return true;
473 }
474
475 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
476 return false;
477 }
478
479 /// Checks that the passed in QualType either is of RecordType or points
480 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
getRecordType(QualType QT)481 static const RecordType *getRecordType(QualType QT) {
482 if (const auto *RT = QT->getAs<RecordType>())
483 return RT;
484
485 // Now check if we point to record type.
486 if (const auto *PT = QT->getAs<PointerType>())
487 return PT->getPointeeType()->getAs<RecordType>();
488
489 return nullptr;
490 }
491
492 template <typename AttrType>
checkRecordDeclForAttr(const RecordDecl * RD)493 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
494 // Check if the record itself has the attribute.
495 if (RD->hasAttr<AttrType>())
496 return true;
497
498 // Else check if any base classes have the attribute.
499 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
500 if (!CRD->forallBases([](const CXXRecordDecl *Base) {
501 return !Base->hasAttr<AttrType>();
502 }))
503 return true;
504 }
505 return false;
506 }
507
checkRecordTypeForCapability(Sema & S,QualType Ty)508 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
509 const RecordType *RT = getRecordType(Ty);
510
511 if (!RT)
512 return false;
513
514 // Don't check for the capability if the class hasn't been defined yet.
515 if (RT->isIncompleteType())
516 return true;
517
518 // Allow smart pointers to be used as capability objects.
519 // FIXME -- Check the type that the smart pointer points to.
520 if (threadSafetyCheckIsSmartPointer(S, RT))
521 return true;
522
523 return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
524 }
525
checkTypedefTypeForCapability(QualType Ty)526 static bool checkTypedefTypeForCapability(QualType Ty) {
527 const auto *TD = Ty->getAs<TypedefType>();
528 if (!TD)
529 return false;
530
531 TypedefNameDecl *TN = TD->getDecl();
532 if (!TN)
533 return false;
534
535 return TN->hasAttr<CapabilityAttr>();
536 }
537
typeHasCapability(Sema & S,QualType Ty)538 static bool typeHasCapability(Sema &S, QualType Ty) {
539 if (checkTypedefTypeForCapability(Ty))
540 return true;
541
542 if (checkRecordTypeForCapability(S, Ty))
543 return true;
544
545 return false;
546 }
547
isCapabilityExpr(Sema & S,const Expr * Ex)548 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
549 // Capability expressions are simple expressions involving the boolean logic
550 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
551 // a DeclRefExpr is found, its type should be checked to determine whether it
552 // is a capability or not.
553
554 if (const auto *E = dyn_cast<CastExpr>(Ex))
555 return isCapabilityExpr(S, E->getSubExpr());
556 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
557 return isCapabilityExpr(S, E->getSubExpr());
558 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
559 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
560 E->getOpcode() == UO_Deref)
561 return isCapabilityExpr(S, E->getSubExpr());
562 return false;
563 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
564 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
565 return isCapabilityExpr(S, E->getLHS()) &&
566 isCapabilityExpr(S, E->getRHS());
567 return false;
568 }
569
570 return typeHasCapability(S, Ex->getType());
571 }
572
573 /// Checks that all attribute arguments, starting from Sidx, resolve to
574 /// a capability object.
575 /// \param Sidx The attribute argument index to start checking with.
576 /// \param ParamIdxOk Whether an argument can be indexing into a function
577 /// parameter list.
checkAttrArgsAreCapabilityObjs(Sema & S,Decl * D,const ParsedAttr & AL,SmallVectorImpl<Expr * > & Args,unsigned Sidx=0,bool ParamIdxOk=false)578 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
579 const ParsedAttr &AL,
580 SmallVectorImpl<Expr *> &Args,
581 unsigned Sidx = 0,
582 bool ParamIdxOk = false) {
583 if (Sidx == AL.getNumArgs()) {
584 // If we don't have any capability arguments, the attribute implicitly
585 // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
586 // a non-static method, and that the class is a (scoped) capability.
587 const auto *MD = dyn_cast<const CXXMethodDecl>(D);
588 if (MD && !MD->isStatic()) {
589 const CXXRecordDecl *RD = MD->getParent();
590 // FIXME -- need to check this again on template instantiation
591 if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
592 !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
593 S.Diag(AL.getLoc(),
594 diag::warn_thread_attribute_not_on_capability_member)
595 << AL << MD->getParent();
596 } else {
597 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
598 << AL;
599 }
600 }
601
602 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
603 Expr *ArgExp = AL.getArgAsExpr(Idx);
604
605 if (ArgExp->isTypeDependent()) {
606 // FIXME -- need to check this again on template instantiation
607 Args.push_back(ArgExp);
608 continue;
609 }
610
611 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
612 if (StrLit->getLength() == 0 ||
613 (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
614 // Pass empty strings to the analyzer without warnings.
615 // Treat "*" as the universal lock.
616 Args.push_back(ArgExp);
617 continue;
618 }
619
620 // We allow constant strings to be used as a placeholder for expressions
621 // that are not valid C++ syntax, but warn that they are ignored.
622 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
623 Args.push_back(ArgExp);
624 continue;
625 }
626
627 QualType ArgTy = ArgExp->getType();
628
629 // A pointer to member expression of the form &MyClass::mu is treated
630 // specially -- we need to look at the type of the member.
631 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
632 if (UOp->getOpcode() == UO_AddrOf)
633 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
634 if (DRE->getDecl()->isCXXInstanceMember())
635 ArgTy = DRE->getDecl()->getType();
636
637 // First see if we can just cast to record type, or pointer to record type.
638 const RecordType *RT = getRecordType(ArgTy);
639
640 // Now check if we index into a record type function param.
641 if(!RT && ParamIdxOk) {
642 const auto *FD = dyn_cast<FunctionDecl>(D);
643 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
644 if(FD && IL) {
645 unsigned int NumParams = FD->getNumParams();
646 llvm::APInt ArgValue = IL->getValue();
647 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
648 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
649 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
650 S.Diag(AL.getLoc(),
651 diag::err_attribute_argument_out_of_bounds_extra_info)
652 << AL << Idx + 1 << NumParams;
653 continue;
654 }
655 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
656 }
657 }
658
659 // If the type does not have a capability, see if the components of the
660 // expression have capabilities. This allows for writing C code where the
661 // capability may be on the type, and the expression is a capability
662 // boolean logic expression. Eg) requires_capability(A || B && !C)
663 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
664 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
665 << AL << ArgTy;
666
667 Args.push_back(ArgExp);
668 }
669 }
670
671 //===----------------------------------------------------------------------===//
672 // Attribute Implementations
673 //===----------------------------------------------------------------------===//
674
handlePtGuardedVarAttr(Sema & S,Decl * D,const ParsedAttr & AL)675 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
676 if (!threadSafetyCheckIsPointer(S, D, AL))
677 return;
678
679 D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
680 }
681
checkGuardedByAttrCommon(Sema & S,Decl * D,const ParsedAttr & AL,Expr * & Arg)682 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
683 Expr *&Arg) {
684 SmallVector<Expr *, 1> Args;
685 // check that all arguments are lockable objects
686 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
687 unsigned Size = Args.size();
688 if (Size != 1)
689 return false;
690
691 Arg = Args[0];
692
693 return true;
694 }
695
handleGuardedByAttr(Sema & S,Decl * D,const ParsedAttr & AL)696 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
697 Expr *Arg = nullptr;
698 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
699 return;
700
701 D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
702 }
703
handlePtGuardedByAttr(Sema & S,Decl * D,const ParsedAttr & AL)704 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
705 Expr *Arg = nullptr;
706 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
707 return;
708
709 if (!threadSafetyCheckIsPointer(S, D, AL))
710 return;
711
712 D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
713 }
714
checkAcquireOrderAttrCommon(Sema & S,Decl * D,const ParsedAttr & AL,SmallVectorImpl<Expr * > & Args)715 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
716 SmallVectorImpl<Expr *> &Args) {
717 if (!AL.checkAtLeastNumArgs(S, 1))
718 return false;
719
720 // Check that this attribute only applies to lockable types.
721 QualType QT = cast<ValueDecl>(D)->getType();
722 if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
723 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
724 return false;
725 }
726
727 // Check that all arguments are lockable objects.
728 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
729 if (Args.empty())
730 return false;
731
732 return true;
733 }
734
handleAcquiredAfterAttr(Sema & S,Decl * D,const ParsedAttr & AL)735 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
736 SmallVector<Expr *, 1> Args;
737 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
738 return;
739
740 Expr **StartArg = &Args[0];
741 D->addAttr(::new (S.Context)
742 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
743 }
744
handleAcquiredBeforeAttr(Sema & S,Decl * D,const ParsedAttr & AL)745 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
746 SmallVector<Expr *, 1> Args;
747 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
748 return;
749
750 Expr **StartArg = &Args[0];
751 D->addAttr(::new (S.Context)
752 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
753 }
754
checkLockFunAttrCommon(Sema & S,Decl * D,const ParsedAttr & AL,SmallVectorImpl<Expr * > & Args)755 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
756 SmallVectorImpl<Expr *> &Args) {
757 // zero or more arguments ok
758 // check that all arguments are lockable objects
759 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
760
761 return true;
762 }
763
handleAssertSharedLockAttr(Sema & S,Decl * D,const ParsedAttr & AL)764 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
765 SmallVector<Expr *, 1> Args;
766 if (!checkLockFunAttrCommon(S, D, AL, Args))
767 return;
768
769 unsigned Size = Args.size();
770 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
771 D->addAttr(::new (S.Context)
772 AssertSharedLockAttr(S.Context, AL, StartArg, Size));
773 }
774
handleAssertExclusiveLockAttr(Sema & S,Decl * D,const ParsedAttr & AL)775 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
776 const ParsedAttr &AL) {
777 SmallVector<Expr *, 1> Args;
778 if (!checkLockFunAttrCommon(S, D, AL, Args))
779 return;
780
781 unsigned Size = Args.size();
782 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
783 D->addAttr(::new (S.Context)
784 AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
785 }
786
787 /// Checks to be sure that the given parameter number is in bounds, and
788 /// is an integral type. Will emit appropriate diagnostics if this returns
789 /// false.
790 ///
791 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
792 template <typename AttrInfo>
checkParamIsIntegerType(Sema & S,const Decl * D,const AttrInfo & AI,unsigned AttrArgNo)793 static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
794 unsigned AttrArgNo) {
795 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
796 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
797 ParamIdx Idx;
798 if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg,
799 Idx))
800 return false;
801
802 QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex());
803 if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
804 SourceLocation SrcLoc = AttrArg->getBeginLoc();
805 S.Diag(SrcLoc, diag::err_attribute_integers_only)
806 << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex());
807 return false;
808 }
809 return true;
810 }
811
handleAllocSizeAttr(Sema & S,Decl * D,const ParsedAttr & AL)812 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
813 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
814 return;
815
816 assert(isFunctionOrMethod(D) && hasFunctionProto(D));
817
818 QualType RetTy = getFunctionOrMethodResultType(D);
819 if (!RetTy->isPointerType()) {
820 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
821 return;
822 }
823
824 const Expr *SizeExpr = AL.getArgAsExpr(0);
825 int SizeArgNoVal;
826 // Parameter indices are 1-indexed, hence Index=1
827 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
828 return;
829 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
830 return;
831 ParamIdx SizeArgNo(SizeArgNoVal, D);
832
833 ParamIdx NumberArgNo;
834 if (AL.getNumArgs() == 2) {
835 const Expr *NumberExpr = AL.getArgAsExpr(1);
836 int Val;
837 // Parameter indices are 1-based, hence Index=2
838 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
839 return;
840 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
841 return;
842 NumberArgNo = ParamIdx(Val, D);
843 }
844
845 D->addAttr(::new (S.Context)
846 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
847 }
848
checkTryLockFunAttrCommon(Sema & S,Decl * D,const ParsedAttr & AL,SmallVectorImpl<Expr * > & Args)849 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
850 SmallVectorImpl<Expr *> &Args) {
851 if (!AL.checkAtLeastNumArgs(S, 1))
852 return false;
853
854 if (!isIntOrBool(AL.getArgAsExpr(0))) {
855 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
856 << AL << 1 << AANT_ArgumentIntOrBool;
857 return false;
858 }
859
860 // check that all arguments are lockable objects
861 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
862
863 return true;
864 }
865
handleSharedTrylockFunctionAttr(Sema & S,Decl * D,const ParsedAttr & AL)866 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
867 const ParsedAttr &AL) {
868 SmallVector<Expr*, 2> Args;
869 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
870 return;
871
872 D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
873 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
874 }
875
handleExclusiveTrylockFunctionAttr(Sema & S,Decl * D,const ParsedAttr & AL)876 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
877 const ParsedAttr &AL) {
878 SmallVector<Expr*, 2> Args;
879 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
880 return;
881
882 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
883 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
884 }
885
handleLockReturnedAttr(Sema & S,Decl * D,const ParsedAttr & AL)886 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
887 // check that the argument is lockable object
888 SmallVector<Expr*, 1> Args;
889 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
890 unsigned Size = Args.size();
891 if (Size == 0)
892 return;
893
894 D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
895 }
896
handleLocksExcludedAttr(Sema & S,Decl * D,const ParsedAttr & AL)897 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
898 if (!AL.checkAtLeastNumArgs(S, 1))
899 return;
900
901 // check that all arguments are lockable objects
902 SmallVector<Expr*, 1> Args;
903 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
904 unsigned Size = Args.size();
905 if (Size == 0)
906 return;
907 Expr **StartArg = &Args[0];
908
909 D->addAttr(::new (S.Context)
910 LocksExcludedAttr(S.Context, AL, StartArg, Size));
911 }
912
checkFunctionConditionAttr(Sema & S,Decl * D,const ParsedAttr & AL,Expr * & Cond,StringRef & Msg)913 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
914 Expr *&Cond, StringRef &Msg) {
915 Cond = AL.getArgAsExpr(0);
916 if (!Cond->isTypeDependent()) {
917 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
918 if (Converted.isInvalid())
919 return false;
920 Cond = Converted.get();
921 }
922
923 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
924 return false;
925
926 if (Msg.empty())
927 Msg = "<no message provided>";
928
929 SmallVector<PartialDiagnosticAt, 8> Diags;
930 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
931 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
932 Diags)) {
933 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
934 for (const PartialDiagnosticAt &PDiag : Diags)
935 S.Diag(PDiag.first, PDiag.second);
936 return false;
937 }
938 return true;
939 }
940
handleEnableIfAttr(Sema & S,Decl * D,const ParsedAttr & AL)941 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
942 S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
943
944 Expr *Cond;
945 StringRef Msg;
946 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
947 D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
948 }
949
950 namespace {
951 /// Determines if a given Expr references any of the given function's
952 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
953 class ArgumentDependenceChecker
954 : public RecursiveASTVisitor<ArgumentDependenceChecker> {
955 #ifndef NDEBUG
956 const CXXRecordDecl *ClassType;
957 #endif
958 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
959 bool Result;
960
961 public:
ArgumentDependenceChecker(const FunctionDecl * FD)962 ArgumentDependenceChecker(const FunctionDecl *FD) {
963 #ifndef NDEBUG
964 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
965 ClassType = MD->getParent();
966 else
967 ClassType = nullptr;
968 #endif
969 Parms.insert(FD->param_begin(), FD->param_end());
970 }
971
referencesArgs(Expr * E)972 bool referencesArgs(Expr *E) {
973 Result = false;
974 TraverseStmt(E);
975 return Result;
976 }
977
VisitCXXThisExpr(CXXThisExpr * E)978 bool VisitCXXThisExpr(CXXThisExpr *E) {
979 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
980 "`this` doesn't refer to the enclosing class?");
981 Result = true;
982 return false;
983 }
984
VisitDeclRefExpr(DeclRefExpr * DRE)985 bool VisitDeclRefExpr(DeclRefExpr *DRE) {
986 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
987 if (Parms.count(PVD)) {
988 Result = true;
989 return false;
990 }
991 return true;
992 }
993 };
994 }
995
handleDiagnoseIfAttr(Sema & S,Decl * D,const ParsedAttr & AL)996 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
997 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
998
999 Expr *Cond;
1000 StringRef Msg;
1001 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1002 return;
1003
1004 StringRef DiagTypeStr;
1005 if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1006 return;
1007
1008 DiagnoseIfAttr::DiagnosticType DiagType;
1009 if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1010 S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1011 diag::err_diagnose_if_invalid_diagnostic_type);
1012 return;
1013 }
1014
1015 bool ArgDependent = false;
1016 if (const auto *FD = dyn_cast<FunctionDecl>(D))
1017 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1018 D->addAttr(::new (S.Context) DiagnoseIfAttr(
1019 S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1020 }
1021
handleNoBuiltinAttr(Sema & S,Decl * D,const ParsedAttr & AL)1022 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1023 static constexpr const StringRef kWildcard = "*";
1024
1025 llvm::SmallVector<StringRef, 16> Names;
1026 bool HasWildcard = false;
1027
1028 const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1029 if (Name == kWildcard)
1030 HasWildcard = true;
1031 Names.push_back(Name);
1032 };
1033
1034 // Add previously defined attributes.
1035 if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1036 for (StringRef BuiltinName : NBA->builtinNames())
1037 AddBuiltinName(BuiltinName);
1038
1039 // Add current attributes.
1040 if (AL.getNumArgs() == 0)
1041 AddBuiltinName(kWildcard);
1042 else
1043 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1044 StringRef BuiltinName;
1045 SourceLocation LiteralLoc;
1046 if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1047 return;
1048
1049 if (Builtin::Context::isBuiltinFunc(BuiltinName))
1050 AddBuiltinName(BuiltinName);
1051 else
1052 S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1053 << BuiltinName << AL;
1054 }
1055
1056 // Repeating the same attribute is fine.
1057 llvm::sort(Names);
1058 Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1059
1060 // Empty no_builtin must be on its own.
1061 if (HasWildcard && Names.size() > 1)
1062 S.Diag(D->getLocation(),
1063 diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1064 << AL;
1065
1066 if (D->hasAttr<NoBuiltinAttr>())
1067 D->dropAttr<NoBuiltinAttr>();
1068 D->addAttr(::new (S.Context)
1069 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1070 }
1071
handlePassObjectSizeAttr(Sema & S,Decl * D,const ParsedAttr & AL)1072 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1073 if (D->hasAttr<PassObjectSizeAttr>()) {
1074 S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1075 return;
1076 }
1077
1078 Expr *E = AL.getArgAsExpr(0);
1079 uint32_t Type;
1080 if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1081 return;
1082
1083 // pass_object_size's argument is passed in as the second argument of
1084 // __builtin_object_size. So, it has the same constraints as that second
1085 // argument; namely, it must be in the range [0, 3].
1086 if (Type > 3) {
1087 S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1088 << AL << 0 << 3 << E->getSourceRange();
1089 return;
1090 }
1091
1092 // pass_object_size is only supported on constant pointer parameters; as a
1093 // kindness to users, we allow the parameter to be non-const for declarations.
1094 // At this point, we have no clue if `D` belongs to a function declaration or
1095 // definition, so we defer the constness check until later.
1096 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1097 S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1098 return;
1099 }
1100
1101 D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1102 }
1103
handleConsumableAttr(Sema & S,Decl * D,const ParsedAttr & AL)1104 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1105 ConsumableAttr::ConsumedState DefaultState;
1106
1107 if (AL.isArgIdent(0)) {
1108 IdentifierLoc *IL = AL.getArgAsIdent(0);
1109 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1110 DefaultState)) {
1111 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1112 << IL->Ident;
1113 return;
1114 }
1115 } else {
1116 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1117 << AL << AANT_ArgumentIdentifier;
1118 return;
1119 }
1120
1121 D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1122 }
1123
checkForConsumableClass(Sema & S,const CXXMethodDecl * MD,const ParsedAttr & AL)1124 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1125 const ParsedAttr &AL) {
1126 QualType ThisType = MD->getThisType()->getPointeeType();
1127
1128 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1129 if (!RD->hasAttr<ConsumableAttr>()) {
1130 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1131
1132 return false;
1133 }
1134 }
1135
1136 return true;
1137 }
1138
handleCallableWhenAttr(Sema & S,Decl * D,const ParsedAttr & AL)1139 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1140 if (!AL.checkAtLeastNumArgs(S, 1))
1141 return;
1142
1143 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1144 return;
1145
1146 SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1147 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1148 CallableWhenAttr::ConsumedState CallableState;
1149
1150 StringRef StateString;
1151 SourceLocation Loc;
1152 if (AL.isArgIdent(ArgIndex)) {
1153 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1154 StateString = Ident->Ident->getName();
1155 Loc = Ident->Loc;
1156 } else {
1157 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1158 return;
1159 }
1160
1161 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1162 CallableState)) {
1163 S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1164 return;
1165 }
1166
1167 States.push_back(CallableState);
1168 }
1169
1170 D->addAttr(::new (S.Context)
1171 CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1172 }
1173
handleParamTypestateAttr(Sema & S,Decl * D,const ParsedAttr & AL)1174 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1175 ParamTypestateAttr::ConsumedState ParamState;
1176
1177 if (AL.isArgIdent(0)) {
1178 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1179 StringRef StateString = Ident->Ident->getName();
1180
1181 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1182 ParamState)) {
1183 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1184 << AL << StateString;
1185 return;
1186 }
1187 } else {
1188 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1189 << AL << AANT_ArgumentIdentifier;
1190 return;
1191 }
1192
1193 // FIXME: This check is currently being done in the analysis. It can be
1194 // enabled here only after the parser propagates attributes at
1195 // template specialization definition, not declaration.
1196 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1197 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1198 //
1199 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1200 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1201 // ReturnType.getAsString();
1202 // return;
1203 //}
1204
1205 D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1206 }
1207
handleReturnTypestateAttr(Sema & S,Decl * D,const ParsedAttr & AL)1208 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1209 ReturnTypestateAttr::ConsumedState ReturnState;
1210
1211 if (AL.isArgIdent(0)) {
1212 IdentifierLoc *IL = AL.getArgAsIdent(0);
1213 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1214 ReturnState)) {
1215 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1216 << IL->Ident;
1217 return;
1218 }
1219 } else {
1220 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1221 << AL << AANT_ArgumentIdentifier;
1222 return;
1223 }
1224
1225 // FIXME: This check is currently being done in the analysis. It can be
1226 // enabled here only after the parser propagates attributes at
1227 // template specialization definition, not declaration.
1228 //QualType ReturnType;
1229 //
1230 //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1231 // ReturnType = Param->getType();
1232 //
1233 //} else if (const CXXConstructorDecl *Constructor =
1234 // dyn_cast<CXXConstructorDecl>(D)) {
1235 // ReturnType = Constructor->getThisType()->getPointeeType();
1236 //
1237 //} else {
1238 //
1239 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1240 //}
1241 //
1242 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1243 //
1244 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1245 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1246 // ReturnType.getAsString();
1247 // return;
1248 //}
1249
1250 D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1251 }
1252
handleSetTypestateAttr(Sema & S,Decl * D,const ParsedAttr & AL)1253 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1254 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1255 return;
1256
1257 SetTypestateAttr::ConsumedState NewState;
1258 if (AL.isArgIdent(0)) {
1259 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1260 StringRef Param = Ident->Ident->getName();
1261 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1262 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1263 << Param;
1264 return;
1265 }
1266 } else {
1267 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1268 << AL << AANT_ArgumentIdentifier;
1269 return;
1270 }
1271
1272 D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1273 }
1274
handleTestTypestateAttr(Sema & S,Decl * D,const ParsedAttr & AL)1275 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1276 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1277 return;
1278
1279 TestTypestateAttr::ConsumedState TestState;
1280 if (AL.isArgIdent(0)) {
1281 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1282 StringRef Param = Ident->Ident->getName();
1283 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1284 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1285 << Param;
1286 return;
1287 }
1288 } else {
1289 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1290 << AL << AANT_ArgumentIdentifier;
1291 return;
1292 }
1293
1294 D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1295 }
1296
handleExtVectorTypeAttr(Sema & S,Decl * D,const ParsedAttr & AL)1297 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1298 // Remember this typedef decl, we will need it later for diagnostics.
1299 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1300 }
1301
handlePackedAttr(Sema & S,Decl * D,const ParsedAttr & AL)1302 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1303 if (auto *TD = dyn_cast<TagDecl>(D))
1304 TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1305 else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1306 bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1307 !FD->getType()->isIncompleteType() &&
1308 FD->isBitField() &&
1309 S.Context.getTypeAlign(FD->getType()) <= 8);
1310
1311 if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
1312 if (BitfieldByteAligned)
1313 // The PS4 target needs to maintain ABI backwards compatibility.
1314 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1315 << AL << FD->getType();
1316 else
1317 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1318 } else {
1319 // Report warning about changed offset in the newer compiler versions.
1320 if (BitfieldByteAligned)
1321 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1322
1323 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1324 }
1325
1326 } else
1327 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1328 }
1329
handlePreferredName(Sema & S,Decl * D,const ParsedAttr & AL)1330 static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1331 auto *RD = cast<CXXRecordDecl>(D);
1332 ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1333 assert(CTD && "attribute does not appertain to this declaration");
1334
1335 ParsedType PT = AL.getTypeArg();
1336 TypeSourceInfo *TSI = nullptr;
1337 QualType T = S.GetTypeFromParser(PT, &TSI);
1338 if (!TSI)
1339 TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
1340
1341 if (!T.hasQualifiers() && T->isTypedefNameType()) {
1342 // Find the template name, if this type names a template specialization.
1343 const TemplateDecl *Template = nullptr;
1344 if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1345 T->getAsCXXRecordDecl())) {
1346 Template = CTSD->getSpecializedTemplate();
1347 } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1348 while (TST && TST->isTypeAlias())
1349 TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1350 if (TST)
1351 Template = TST->getTemplateName().getAsTemplateDecl();
1352 }
1353
1354 if (Template && declaresSameEntity(Template, CTD)) {
1355 D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1356 return;
1357 }
1358 }
1359
1360 S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
1361 << T << CTD;
1362 if (const auto *TT = T->getAs<TypedefType>())
1363 S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1364 << TT->getDecl();
1365 }
1366
checkIBOutletCommon(Sema & S,Decl * D,const ParsedAttr & AL)1367 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1368 // The IBOutlet/IBOutletCollection attributes only apply to instance
1369 // variables or properties of Objective-C classes. The outlet must also
1370 // have an object reference type.
1371 if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1372 if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1373 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1374 << AL << VD->getType() << 0;
1375 return false;
1376 }
1377 }
1378 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1379 if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1380 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1381 << AL << PD->getType() << 1;
1382 return false;
1383 }
1384 }
1385 else {
1386 S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1387 return false;
1388 }
1389
1390 return true;
1391 }
1392
handleIBOutlet(Sema & S,Decl * D,const ParsedAttr & AL)1393 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1394 if (!checkIBOutletCommon(S, D, AL))
1395 return;
1396
1397 D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1398 }
1399
handleIBOutletCollection(Sema & S,Decl * D,const ParsedAttr & AL)1400 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1401
1402 // The iboutletcollection attribute can have zero or one arguments.
1403 if (AL.getNumArgs() > 1) {
1404 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1405 return;
1406 }
1407
1408 if (!checkIBOutletCommon(S, D, AL))
1409 return;
1410
1411 ParsedType PT;
1412
1413 if (AL.hasParsedType())
1414 PT = AL.getTypeArg();
1415 else {
1416 PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1417 S.getScopeForContext(D->getDeclContext()->getParent()));
1418 if (!PT) {
1419 S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1420 return;
1421 }
1422 }
1423
1424 TypeSourceInfo *QTLoc = nullptr;
1425 QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1426 if (!QTLoc)
1427 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1428
1429 // Diagnose use of non-object type in iboutletcollection attribute.
1430 // FIXME. Gnu attribute extension ignores use of builtin types in
1431 // attributes. So, __attribute__((iboutletcollection(char))) will be
1432 // treated as __attribute__((iboutletcollection())).
1433 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1434 S.Diag(AL.getLoc(),
1435 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1436 : diag::err_iboutletcollection_type) << QT;
1437 return;
1438 }
1439
1440 D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1441 }
1442
isValidPointerAttrType(QualType T,bool RefOkay)1443 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1444 if (RefOkay) {
1445 if (T->isReferenceType())
1446 return true;
1447 } else {
1448 T = T.getNonReferenceType();
1449 }
1450
1451 // The nonnull attribute, and other similar attributes, can be applied to a
1452 // transparent union that contains a pointer type.
1453 if (const RecordType *UT = T->getAsUnionType()) {
1454 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1455 RecordDecl *UD = UT->getDecl();
1456 for (const auto *I : UD->fields()) {
1457 QualType QT = I->getType();
1458 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1459 return true;
1460 }
1461 }
1462 }
1463
1464 return T->isAnyPointerType() || T->isBlockPointerType();
1465 }
1466
attrNonNullArgCheck(Sema & S,QualType T,const ParsedAttr & AL,SourceRange AttrParmRange,SourceRange TypeRange,bool isReturnValue=false)1467 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1468 SourceRange AttrParmRange,
1469 SourceRange TypeRange,
1470 bool isReturnValue = false) {
1471 if (!S.isValidPointerAttrType(T)) {
1472 if (isReturnValue)
1473 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1474 << AL << AttrParmRange << TypeRange;
1475 else
1476 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1477 << AL << AttrParmRange << TypeRange << 0;
1478 return false;
1479 }
1480 return true;
1481 }
1482
handleNonNullAttr(Sema & S,Decl * D,const ParsedAttr & AL)1483 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1484 SmallVector<ParamIdx, 8> NonNullArgs;
1485 for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1486 Expr *Ex = AL.getArgAsExpr(I);
1487 ParamIdx Idx;
1488 if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1489 return;
1490
1491 // Is the function argument a pointer type?
1492 if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1493 !attrNonNullArgCheck(
1494 S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1495 Ex->getSourceRange(),
1496 getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1497 continue;
1498
1499 NonNullArgs.push_back(Idx);
1500 }
1501
1502 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1503 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1504 // check if the attribute came from a macro expansion or a template
1505 // instantiation.
1506 if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1507 !S.inTemplateInstantiation()) {
1508 bool AnyPointers = isFunctionOrMethodVariadic(D);
1509 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1510 I != E && !AnyPointers; ++I) {
1511 QualType T = getFunctionOrMethodParamType(D, I);
1512 if (T->isDependentType() || S.isValidPointerAttrType(T))
1513 AnyPointers = true;
1514 }
1515
1516 if (!AnyPointers)
1517 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1518 }
1519
1520 ParamIdx *Start = NonNullArgs.data();
1521 unsigned Size = NonNullArgs.size();
1522 llvm::array_pod_sort(Start, Start + Size);
1523 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1524 }
1525
handleNonNullAttrParameter(Sema & S,ParmVarDecl * D,const ParsedAttr & AL)1526 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1527 const ParsedAttr &AL) {
1528 if (AL.getNumArgs() > 0) {
1529 if (D->getFunctionType()) {
1530 handleNonNullAttr(S, D, AL);
1531 } else {
1532 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1533 << D->getSourceRange();
1534 }
1535 return;
1536 }
1537
1538 // Is the argument a pointer type?
1539 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1540 D->getSourceRange()))
1541 return;
1542
1543 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1544 }
1545
handleReturnsNonNullAttr(Sema & S,Decl * D,const ParsedAttr & AL)1546 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1547 QualType ResultType = getFunctionOrMethodResultType(D);
1548 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1549 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1550 /* isReturnValue */ true))
1551 return;
1552
1553 D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1554 }
1555
handleNoEscapeAttr(Sema & S,Decl * D,const ParsedAttr & AL)1556 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1557 if (D->isInvalidDecl())
1558 return;
1559
1560 // noescape only applies to pointer types.
1561 QualType T = cast<ParmVarDecl>(D)->getType();
1562 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1563 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1564 << AL << AL.getRange() << 0;
1565 return;
1566 }
1567
1568 D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1569 }
1570
handleAssumeAlignedAttr(Sema & S,Decl * D,const ParsedAttr & AL)1571 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1572 Expr *E = AL.getArgAsExpr(0),
1573 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1574 S.AddAssumeAlignedAttr(D, AL, E, OE);
1575 }
1576
handleAllocAlignAttr(Sema & S,Decl * D,const ParsedAttr & AL)1577 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1578 S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1579 }
1580
AddAssumeAlignedAttr(Decl * D,const AttributeCommonInfo & CI,Expr * E,Expr * OE)1581 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1582 Expr *OE) {
1583 QualType ResultType = getFunctionOrMethodResultType(D);
1584 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1585
1586 AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1587 SourceLocation AttrLoc = TmpAttr.getLocation();
1588
1589 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1590 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1591 << &TmpAttr << TmpAttr.getRange() << SR;
1592 return;
1593 }
1594
1595 if (!E->isValueDependent()) {
1596 Optional<llvm::APSInt> I = llvm::APSInt(64);
1597 if (!(I = E->getIntegerConstantExpr(Context))) {
1598 if (OE)
1599 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1600 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1601 << E->getSourceRange();
1602 else
1603 Diag(AttrLoc, diag::err_attribute_argument_type)
1604 << &TmpAttr << AANT_ArgumentIntegerConstant
1605 << E->getSourceRange();
1606 return;
1607 }
1608
1609 if (!I->isPowerOf2()) {
1610 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1611 << E->getSourceRange();
1612 return;
1613 }
1614
1615 if (*I > Sema::MaximumAlignment)
1616 Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1617 << CI.getRange() << Sema::MaximumAlignment;
1618 }
1619
1620 if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1621 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1622 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1623 << OE->getSourceRange();
1624 return;
1625 }
1626
1627 D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1628 }
1629
AddAllocAlignAttr(Decl * D,const AttributeCommonInfo & CI,Expr * ParamExpr)1630 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1631 Expr *ParamExpr) {
1632 QualType ResultType = getFunctionOrMethodResultType(D);
1633
1634 AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1635 SourceLocation AttrLoc = CI.getLoc();
1636
1637 if (!ResultType->isDependentType() &&
1638 !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1639 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1640 << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1641 return;
1642 }
1643
1644 ParamIdx Idx;
1645 const auto *FuncDecl = cast<FunctionDecl>(D);
1646 if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1647 /*AttrArgNum=*/1, ParamExpr, Idx))
1648 return;
1649
1650 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1651 if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1652 !Ty->isAlignValT()) {
1653 Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1654 << &TmpAttr
1655 << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1656 return;
1657 }
1658
1659 D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1660 }
1661
1662 /// Check if \p AssumptionStr is a known assumption and warn if not.
checkAssumptionAttr(Sema & S,SourceLocation Loc,StringRef AssumptionStr)1663 static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
1664 StringRef AssumptionStr) {
1665 if (llvm::KnownAssumptionStrings.count(AssumptionStr))
1666 return;
1667
1668 unsigned BestEditDistance = 3;
1669 StringRef Suggestion;
1670 for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
1671 unsigned EditDistance =
1672 AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
1673 if (EditDistance < BestEditDistance) {
1674 Suggestion = KnownAssumptionIt.getKey();
1675 BestEditDistance = EditDistance;
1676 }
1677 }
1678
1679 if (!Suggestion.empty())
1680 S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
1681 << AssumptionStr << Suggestion;
1682 else
1683 S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
1684 }
1685
handleAssumumptionAttr(Sema & S,Decl * D,const ParsedAttr & AL)1686 static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1687 // Handle the case where the attribute has a text message.
1688 StringRef Str;
1689 SourceLocation AttrStrLoc;
1690 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
1691 return;
1692
1693 checkAssumptionAttr(S, AttrStrLoc, Str);
1694
1695 D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
1696 }
1697
1698 /// Normalize the attribute, __foo__ becomes foo.
1699 /// Returns true if normalization was applied.
normalizeName(StringRef & AttrName)1700 static bool normalizeName(StringRef &AttrName) {
1701 if (AttrName.size() > 4 && AttrName.startswith("__") &&
1702 AttrName.endswith("__")) {
1703 AttrName = AttrName.drop_front(2).drop_back(2);
1704 return true;
1705 }
1706 return false;
1707 }
1708
handleOwnershipAttr(Sema & S,Decl * D,const ParsedAttr & AL)1709 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1710 // This attribute must be applied to a function declaration. The first
1711 // argument to the attribute must be an identifier, the name of the resource,
1712 // for example: malloc. The following arguments must be argument indexes, the
1713 // arguments must be of integer type for Returns, otherwise of pointer type.
1714 // The difference between Holds and Takes is that a pointer may still be used
1715 // after being held. free() should be __attribute((ownership_takes)), whereas
1716 // a list append function may well be __attribute((ownership_holds)).
1717
1718 if (!AL.isArgIdent(0)) {
1719 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1720 << AL << 1 << AANT_ArgumentIdentifier;
1721 return;
1722 }
1723
1724 // Figure out our Kind.
1725 OwnershipAttr::OwnershipKind K =
1726 OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1727
1728 // Check arguments.
1729 switch (K) {
1730 case OwnershipAttr::Takes:
1731 case OwnershipAttr::Holds:
1732 if (AL.getNumArgs() < 2) {
1733 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1734 return;
1735 }
1736 break;
1737 case OwnershipAttr::Returns:
1738 if (AL.getNumArgs() > 2) {
1739 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1740 return;
1741 }
1742 break;
1743 }
1744
1745 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1746
1747 StringRef ModuleName = Module->getName();
1748 if (normalizeName(ModuleName)) {
1749 Module = &S.PP.getIdentifierTable().get(ModuleName);
1750 }
1751
1752 SmallVector<ParamIdx, 8> OwnershipArgs;
1753 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1754 Expr *Ex = AL.getArgAsExpr(i);
1755 ParamIdx Idx;
1756 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1757 return;
1758
1759 // Is the function argument a pointer type?
1760 QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1761 int Err = -1; // No error
1762 switch (K) {
1763 case OwnershipAttr::Takes:
1764 case OwnershipAttr::Holds:
1765 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1766 Err = 0;
1767 break;
1768 case OwnershipAttr::Returns:
1769 if (!T->isIntegerType())
1770 Err = 1;
1771 break;
1772 }
1773 if (-1 != Err) {
1774 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1775 << Ex->getSourceRange();
1776 return;
1777 }
1778
1779 // Check we don't have a conflict with another ownership attribute.
1780 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1781 // Cannot have two ownership attributes of different kinds for the same
1782 // index.
1783 if (I->getOwnKind() != K && I->args_end() !=
1784 std::find(I->args_begin(), I->args_end(), Idx)) {
1785 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I;
1786 return;
1787 } else if (K == OwnershipAttr::Returns &&
1788 I->getOwnKind() == OwnershipAttr::Returns) {
1789 // A returns attribute conflicts with any other returns attribute using
1790 // a different index.
1791 if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
1792 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1793 << I->args_begin()->getSourceIndex();
1794 if (I->args_size())
1795 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1796 << Idx.getSourceIndex() << Ex->getSourceRange();
1797 return;
1798 }
1799 }
1800 }
1801 OwnershipArgs.push_back(Idx);
1802 }
1803
1804 ParamIdx *Start = OwnershipArgs.data();
1805 unsigned Size = OwnershipArgs.size();
1806 llvm::array_pod_sort(Start, Start + Size);
1807 D->addAttr(::new (S.Context)
1808 OwnershipAttr(S.Context, AL, Module, Start, Size));
1809 }
1810
handleWeakRefAttr(Sema & S,Decl * D,const ParsedAttr & AL)1811 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1812 // Check the attribute arguments.
1813 if (AL.getNumArgs() > 1) {
1814 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1815 return;
1816 }
1817
1818 // gcc rejects
1819 // class c {
1820 // static int a __attribute__((weakref ("v2")));
1821 // static int b() __attribute__((weakref ("f3")));
1822 // };
1823 // and ignores the attributes of
1824 // void f(void) {
1825 // static int a __attribute__((weakref ("v2")));
1826 // }
1827 // we reject them
1828 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1829 if (!Ctx->isFileContext()) {
1830 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1831 << cast<NamedDecl>(D);
1832 return;
1833 }
1834
1835 // The GCC manual says
1836 //
1837 // At present, a declaration to which `weakref' is attached can only
1838 // be `static'.
1839 //
1840 // It also says
1841 //
1842 // Without a TARGET,
1843 // given as an argument to `weakref' or to `alias', `weakref' is
1844 // equivalent to `weak'.
1845 //
1846 // gcc 4.4.1 will accept
1847 // int a7 __attribute__((weakref));
1848 // as
1849 // int a7 __attribute__((weak));
1850 // This looks like a bug in gcc. We reject that for now. We should revisit
1851 // it if this behaviour is actually used.
1852
1853 // GCC rejects
1854 // static ((alias ("y"), weakref)).
1855 // Should we? How to check that weakref is before or after alias?
1856
1857 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1858 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1859 // StringRef parameter it was given anyway.
1860 StringRef Str;
1861 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1862 // GCC will accept anything as the argument of weakref. Should we
1863 // check for an existing decl?
1864 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1865
1866 D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1867 }
1868
handleIFuncAttr(Sema & S,Decl * D,const ParsedAttr & AL)1869 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1870 StringRef Str;
1871 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1872 return;
1873
1874 // Aliases should be on declarations, not definitions.
1875 const auto *FD = cast<FunctionDecl>(D);
1876 if (FD->isThisDeclarationADefinition()) {
1877 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1878 return;
1879 }
1880
1881 D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1882 }
1883
handleAliasAttr(Sema & S,Decl * D,const ParsedAttr & AL)1884 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1885 StringRef Str;
1886 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1887 return;
1888
1889 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1890 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1891 return;
1892 }
1893 if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1894 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1895 }
1896
1897 // Aliases should be on declarations, not definitions.
1898 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1899 if (FD->isThisDeclarationADefinition()) {
1900 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1901 return;
1902 }
1903 } else {
1904 const auto *VD = cast<VarDecl>(D);
1905 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1906 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1907 return;
1908 }
1909 }
1910
1911 // Mark target used to prevent unneeded-internal-declaration warnings.
1912 if (!S.LangOpts.CPlusPlus) {
1913 // FIXME: demangle Str for C++, as the attribute refers to the mangled
1914 // linkage name, not the pre-mangled identifier.
1915 const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
1916 LookupResult LR(S, target, Sema::LookupOrdinaryName);
1917 if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
1918 for (NamedDecl *ND : LR)
1919 ND->markUsed(S.Context);
1920 }
1921
1922 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1923 }
1924
handleTLSModelAttr(Sema & S,Decl * D,const ParsedAttr & AL)1925 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1926 StringRef Model;
1927 SourceLocation LiteralLoc;
1928 // Check that it is a string.
1929 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1930 return;
1931
1932 // Check that the value.
1933 if (Model != "global-dynamic" && Model != "local-dynamic"
1934 && Model != "initial-exec" && Model != "local-exec") {
1935 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1936 return;
1937 }
1938
1939 if (S.Context.getTargetInfo().getTriple().isOSAIX() &&
1940 Model != "global-dynamic") {
1941 S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model;
1942 return;
1943 }
1944
1945 D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
1946 }
1947
handleRestrictAttr(Sema & S,Decl * D,const ParsedAttr & AL)1948 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1949 QualType ResultType = getFunctionOrMethodResultType(D);
1950 if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
1951 D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
1952 return;
1953 }
1954
1955 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1956 << AL << getFunctionOrMethodResultSourceRange(D);
1957 }
1958
handleCPUSpecificAttr(Sema & S,Decl * D,const ParsedAttr & AL)1959 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1960 FunctionDecl *FD = cast<FunctionDecl>(D);
1961
1962 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1963 if (MD->getParent()->isLambda()) {
1964 S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
1965 return;
1966 }
1967 }
1968
1969 if (!AL.checkAtLeastNumArgs(S, 1))
1970 return;
1971
1972 SmallVector<IdentifierInfo *, 8> CPUs;
1973 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1974 if (!AL.isArgIdent(ArgNo)) {
1975 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1976 << AL << AANT_ArgumentIdentifier;
1977 return;
1978 }
1979
1980 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1981 StringRef CPUName = CPUArg->Ident->getName().trim();
1982
1983 if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
1984 S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
1985 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1986 return;
1987 }
1988
1989 const TargetInfo &Target = S.Context.getTargetInfo();
1990 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1991 return Target.CPUSpecificManglingCharacter(CPUName) ==
1992 Target.CPUSpecificManglingCharacter(Cur->getName());
1993 })) {
1994 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
1995 return;
1996 }
1997 CPUs.push_back(CPUArg->Ident);
1998 }
1999
2000 FD->setIsMultiVersion(true);
2001 if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
2002 D->addAttr(::new (S.Context)
2003 CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2004 else
2005 D->addAttr(::new (S.Context)
2006 CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2007 }
2008
handleCommonAttr(Sema & S,Decl * D,const ParsedAttr & AL)2009 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2010 if (S.LangOpts.CPlusPlus) {
2011 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
2012 << AL << AttributeLangSupport::Cpp;
2013 return;
2014 }
2015
2016 D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
2017 }
2018
handleCmseNSEntryAttr(Sema & S,Decl * D,const ParsedAttr & AL)2019 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2020 if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
2021 S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
2022 return;
2023 }
2024
2025 const auto *FD = cast<FunctionDecl>(D);
2026 if (!FD->isExternallyVisible()) {
2027 S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
2028 return;
2029 }
2030
2031 D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
2032 }
2033
handleNakedAttr(Sema & S,Decl * D,const ParsedAttr & AL)2034 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2035 if (AL.isDeclspecAttribute()) {
2036 const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
2037 const auto &Arch = Triple.getArch();
2038 if (Arch != llvm::Triple::x86 &&
2039 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2040 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2041 << AL << Triple.getArchName();
2042 return;
2043 }
2044 }
2045
2046 D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2047 }
2048
handleNoReturnAttr(Sema & S,Decl * D,const ParsedAttr & Attrs)2049 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2050 if (hasDeclarator(D)) return;
2051
2052 if (!isa<ObjCMethodDecl>(D)) {
2053 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2054 << Attrs << ExpectedFunctionOrMethod;
2055 return;
2056 }
2057
2058 D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2059 }
2060
handleNoCfCheckAttr(Sema & S,Decl * D,const ParsedAttr & Attrs)2061 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2062 if (!S.getLangOpts().CFProtectionBranch)
2063 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2064 else
2065 handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2066 }
2067
CheckAttrNoArgs(const ParsedAttr & Attrs)2068 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2069 if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2070 Attrs.setInvalid();
2071 return true;
2072 }
2073
2074 return false;
2075 }
2076
CheckAttrTarget(const ParsedAttr & AL)2077 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2078 // Check whether the attribute is valid on the current target.
2079 if (!AL.existsInTarget(Context.getTargetInfo())) {
2080 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
2081 << AL << AL.getRange();
2082 AL.setInvalid();
2083 return true;
2084 }
2085
2086 return false;
2087 }
2088
handleAnalyzerNoReturnAttr(Sema & S,Decl * D,const ParsedAttr & AL)2089 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2090
2091 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2092 // because 'analyzer_noreturn' does not impact the type.
2093 if (!isFunctionOrMethodOrBlock(D)) {
2094 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2095 if (!VD || (!VD->getType()->isBlockPointerType() &&
2096 !VD->getType()->isFunctionPointerType())) {
2097 S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax()
2098 ? diag::err_attribute_wrong_decl_type
2099 : diag::warn_attribute_wrong_decl_type)
2100 << AL << ExpectedFunctionMethodOrBlock;
2101 return;
2102 }
2103 }
2104
2105 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2106 }
2107
2108 // PS3 PPU-specific.
handleVecReturnAttr(Sema & S,Decl * D,const ParsedAttr & AL)2109 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2110 /*
2111 Returning a Vector Class in Registers
2112
2113 According to the PPU ABI specifications, a class with a single member of
2114 vector type is returned in memory when used as the return value of a
2115 function.
2116 This results in inefficient code when implementing vector classes. To return
2117 the value in a single vector register, add the vecreturn attribute to the
2118 class definition. This attribute is also applicable to struct types.
2119
2120 Example:
2121
2122 struct Vector
2123 {
2124 __vector float xyzw;
2125 } __attribute__((vecreturn));
2126
2127 Vector Add(Vector lhs, Vector rhs)
2128 {
2129 Vector result;
2130 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2131 return result; // This will be returned in a register
2132 }
2133 */
2134 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2135 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2136 return;
2137 }
2138
2139 const auto *R = cast<RecordDecl>(D);
2140 int count = 0;
2141
2142 if (!isa<CXXRecordDecl>(R)) {
2143 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2144 return;
2145 }
2146
2147 if (!cast<CXXRecordDecl>(R)->isPOD()) {
2148 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2149 return;
2150 }
2151
2152 for (const auto *I : R->fields()) {
2153 if ((count == 1) || !I->getType()->isVectorType()) {
2154 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2155 return;
2156 }
2157 count++;
2158 }
2159
2160 D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2161 }
2162
handleDependencyAttr(Sema & S,Scope * Scope,Decl * D,const ParsedAttr & AL)2163 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2164 const ParsedAttr &AL) {
2165 if (isa<ParmVarDecl>(D)) {
2166 // [[carries_dependency]] can only be applied to a parameter if it is a
2167 // parameter of a function declaration or lambda.
2168 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2169 S.Diag(AL.getLoc(),
2170 diag::err_carries_dependency_param_not_function_decl);
2171 return;
2172 }
2173 }
2174
2175 D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2176 }
2177
handleUnusedAttr(Sema & S,Decl * D,const ParsedAttr & AL)2178 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2179 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2180
2181 // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2182 // about using it as an extension.
2183 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2184 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2185
2186 D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2187 }
2188
handleConstructorAttr(Sema & S,Decl * D,const ParsedAttr & AL)2189 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2190 uint32_t priority = ConstructorAttr::DefaultPriority;
2191 if (AL.getNumArgs() &&
2192 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2193 return;
2194
2195 D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2196 }
2197
handleDestructorAttr(Sema & S,Decl * D,const ParsedAttr & AL)2198 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2199 uint32_t priority = DestructorAttr::DefaultPriority;
2200 if (AL.getNumArgs() &&
2201 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2202 return;
2203
2204 D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2205 }
2206
2207 template <typename AttrTy>
handleAttrWithMessage(Sema & S,Decl * D,const ParsedAttr & AL)2208 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2209 // Handle the case where the attribute has a text message.
2210 StringRef Str;
2211 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2212 return;
2213
2214 D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2215 }
2216
handleObjCSuppresProtocolAttr(Sema & S,Decl * D,const ParsedAttr & AL)2217 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2218 const ParsedAttr &AL) {
2219 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2220 S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2221 << AL << AL.getRange();
2222 return;
2223 }
2224
2225 D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2226 }
2227
checkAvailabilityAttr(Sema & S,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted)2228 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2229 IdentifierInfo *Platform,
2230 VersionTuple Introduced,
2231 VersionTuple Deprecated,
2232 VersionTuple Obsoleted) {
2233 StringRef PlatformName
2234 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2235 if (PlatformName.empty())
2236 PlatformName = Platform->getName();
2237
2238 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2239 // of these steps are needed).
2240 if (!Introduced.empty() && !Deprecated.empty() &&
2241 !(Introduced <= Deprecated)) {
2242 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2243 << 1 << PlatformName << Deprecated.getAsString()
2244 << 0 << Introduced.getAsString();
2245 return true;
2246 }
2247
2248 if (!Introduced.empty() && !Obsoleted.empty() &&
2249 !(Introduced <= Obsoleted)) {
2250 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2251 << 2 << PlatformName << Obsoleted.getAsString()
2252 << 0 << Introduced.getAsString();
2253 return true;
2254 }
2255
2256 if (!Deprecated.empty() && !Obsoleted.empty() &&
2257 !(Deprecated <= Obsoleted)) {
2258 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2259 << 2 << PlatformName << Obsoleted.getAsString()
2260 << 1 << Deprecated.getAsString();
2261 return true;
2262 }
2263
2264 return false;
2265 }
2266
2267 /// Check whether the two versions match.
2268 ///
2269 /// If either version tuple is empty, then they are assumed to match. If
2270 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
versionsMatch(const VersionTuple & X,const VersionTuple & Y,bool BeforeIsOkay)2271 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2272 bool BeforeIsOkay) {
2273 if (X.empty() || Y.empty())
2274 return true;
2275
2276 if (X == Y)
2277 return true;
2278
2279 if (BeforeIsOkay && X < Y)
2280 return true;
2281
2282 return false;
2283 }
2284
mergeAvailabilityAttr(NamedDecl * D,const AttributeCommonInfo & CI,IdentifierInfo * Platform,bool Implicit,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted,bool IsUnavailable,StringRef Message,bool IsStrict,StringRef Replacement,AvailabilityMergeKind AMK,int Priority)2285 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2286 NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2287 bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2288 VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2289 bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2290 int Priority) {
2291 VersionTuple MergedIntroduced = Introduced;
2292 VersionTuple MergedDeprecated = Deprecated;
2293 VersionTuple MergedObsoleted = Obsoleted;
2294 bool FoundAny = false;
2295 bool OverrideOrImpl = false;
2296 switch (AMK) {
2297 case AMK_None:
2298 case AMK_Redeclaration:
2299 OverrideOrImpl = false;
2300 break;
2301
2302 case AMK_Override:
2303 case AMK_ProtocolImplementation:
2304 case AMK_OptionalProtocolImplementation:
2305 OverrideOrImpl = true;
2306 break;
2307 }
2308
2309 if (D->hasAttrs()) {
2310 AttrVec &Attrs = D->getAttrs();
2311 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2312 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2313 if (!OldAA) {
2314 ++i;
2315 continue;
2316 }
2317
2318 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2319 if (OldPlatform != Platform) {
2320 ++i;
2321 continue;
2322 }
2323
2324 // If there is an existing availability attribute for this platform that
2325 // has a lower priority use the existing one and discard the new
2326 // attribute.
2327 if (OldAA->getPriority() < Priority)
2328 return nullptr;
2329
2330 // If there is an existing attribute for this platform that has a higher
2331 // priority than the new attribute then erase the old one and continue
2332 // processing the attributes.
2333 if (OldAA->getPriority() > Priority) {
2334 Attrs.erase(Attrs.begin() + i);
2335 --e;
2336 continue;
2337 }
2338
2339 FoundAny = true;
2340 VersionTuple OldIntroduced = OldAA->getIntroduced();
2341 VersionTuple OldDeprecated = OldAA->getDeprecated();
2342 VersionTuple OldObsoleted = OldAA->getObsoleted();
2343 bool OldIsUnavailable = OldAA->getUnavailable();
2344
2345 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2346 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2347 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2348 !(OldIsUnavailable == IsUnavailable ||
2349 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2350 if (OverrideOrImpl) {
2351 int Which = -1;
2352 VersionTuple FirstVersion;
2353 VersionTuple SecondVersion;
2354 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2355 Which = 0;
2356 FirstVersion = OldIntroduced;
2357 SecondVersion = Introduced;
2358 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2359 Which = 1;
2360 FirstVersion = Deprecated;
2361 SecondVersion = OldDeprecated;
2362 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2363 Which = 2;
2364 FirstVersion = Obsoleted;
2365 SecondVersion = OldObsoleted;
2366 }
2367
2368 if (Which == -1) {
2369 Diag(OldAA->getLocation(),
2370 diag::warn_mismatched_availability_override_unavail)
2371 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2372 << (AMK == AMK_Override);
2373 } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) {
2374 // Allow different 'introduced' / 'obsoleted' availability versions
2375 // on a method that implements an optional protocol requirement. It
2376 // makes less sense to allow this for 'deprecated' as the user can't
2377 // see if the method is 'deprecated' as 'respondsToSelector' will
2378 // still return true when the method is deprecated.
2379 ++i;
2380 continue;
2381 } else {
2382 Diag(OldAA->getLocation(),
2383 diag::warn_mismatched_availability_override)
2384 << Which
2385 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2386 << FirstVersion.getAsString() << SecondVersion.getAsString()
2387 << (AMK == AMK_Override);
2388 }
2389 if (AMK == AMK_Override)
2390 Diag(CI.getLoc(), diag::note_overridden_method);
2391 else
2392 Diag(CI.getLoc(), diag::note_protocol_method);
2393 } else {
2394 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2395 Diag(CI.getLoc(), diag::note_previous_attribute);
2396 }
2397
2398 Attrs.erase(Attrs.begin() + i);
2399 --e;
2400 continue;
2401 }
2402
2403 VersionTuple MergedIntroduced2 = MergedIntroduced;
2404 VersionTuple MergedDeprecated2 = MergedDeprecated;
2405 VersionTuple MergedObsoleted2 = MergedObsoleted;
2406
2407 if (MergedIntroduced2.empty())
2408 MergedIntroduced2 = OldIntroduced;
2409 if (MergedDeprecated2.empty())
2410 MergedDeprecated2 = OldDeprecated;
2411 if (MergedObsoleted2.empty())
2412 MergedObsoleted2 = OldObsoleted;
2413
2414 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2415 MergedIntroduced2, MergedDeprecated2,
2416 MergedObsoleted2)) {
2417 Attrs.erase(Attrs.begin() + i);
2418 --e;
2419 continue;
2420 }
2421
2422 MergedIntroduced = MergedIntroduced2;
2423 MergedDeprecated = MergedDeprecated2;
2424 MergedObsoleted = MergedObsoleted2;
2425 ++i;
2426 }
2427 }
2428
2429 if (FoundAny &&
2430 MergedIntroduced == Introduced &&
2431 MergedDeprecated == Deprecated &&
2432 MergedObsoleted == Obsoleted)
2433 return nullptr;
2434
2435 // Only create a new attribute if !OverrideOrImpl, but we want to do
2436 // the checking.
2437 if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2438 MergedDeprecated, MergedObsoleted) &&
2439 !OverrideOrImpl) {
2440 auto *Avail = ::new (Context) AvailabilityAttr(
2441 Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2442 Message, IsStrict, Replacement, Priority);
2443 Avail->setImplicit(Implicit);
2444 return Avail;
2445 }
2446 return nullptr;
2447 }
2448
handleAvailabilityAttr(Sema & S,Decl * D,const ParsedAttr & AL)2449 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2450 if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>(
2451 D)) {
2452 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2453 << AL;
2454 return;
2455 }
2456
2457 if (!AL.checkExactlyNumArgs(S, 1))
2458 return;
2459 IdentifierLoc *Platform = AL.getArgAsIdent(0);
2460
2461 IdentifierInfo *II = Platform->Ident;
2462 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2463 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2464 << Platform->Ident;
2465
2466 auto *ND = dyn_cast<NamedDecl>(D);
2467 if (!ND) // We warned about this already, so just return.
2468 return;
2469
2470 AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2471 AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2472 AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2473 bool IsUnavailable = AL.getUnavailableLoc().isValid();
2474 bool IsStrict = AL.getStrictLoc().isValid();
2475 StringRef Str;
2476 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2477 Str = SE->getString();
2478 StringRef Replacement;
2479 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2480 Replacement = SE->getString();
2481
2482 if (II->isStr("swift")) {
2483 if (Introduced.isValid() || Obsoleted.isValid() ||
2484 (!IsUnavailable && !Deprecated.isValid())) {
2485 S.Diag(AL.getLoc(),
2486 diag::warn_availability_swift_unavailable_deprecated_only);
2487 return;
2488 }
2489 }
2490
2491 int PriorityModifier = AL.isPragmaClangAttribute()
2492 ? Sema::AP_PragmaClangAttribute
2493 : Sema::AP_Explicit;
2494 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2495 ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2496 Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2497 Sema::AMK_None, PriorityModifier);
2498 if (NewAttr)
2499 D->addAttr(NewAttr);
2500
2501 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2502 // matches before the start of the watchOS platform.
2503 if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2504 IdentifierInfo *NewII = nullptr;
2505 if (II->getName() == "ios")
2506 NewII = &S.Context.Idents.get("watchos");
2507 else if (II->getName() == "ios_app_extension")
2508 NewII = &S.Context.Idents.get("watchos_app_extension");
2509
2510 if (NewII) {
2511 auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
2512 if (Version.empty())
2513 return Version;
2514 auto Major = Version.getMajor();
2515 auto NewMajor = Major >= 9 ? Major - 7 : 0;
2516 if (NewMajor >= 2) {
2517 if (Version.getMinor().hasValue()) {
2518 if (Version.getSubminor().hasValue())
2519 return VersionTuple(NewMajor, Version.getMinor().getValue(),
2520 Version.getSubminor().getValue());
2521 else
2522 return VersionTuple(NewMajor, Version.getMinor().getValue());
2523 }
2524 return VersionTuple(NewMajor);
2525 }
2526
2527 return VersionTuple(2, 0);
2528 };
2529
2530 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2531 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2532 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2533
2534 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2535 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2536 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2537 Sema::AMK_None,
2538 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2539 if (NewAttr)
2540 D->addAttr(NewAttr);
2541 }
2542 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2543 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2544 // matches before the start of the tvOS platform.
2545 IdentifierInfo *NewII = nullptr;
2546 if (II->getName() == "ios")
2547 NewII = &S.Context.Idents.get("tvos");
2548 else if (II->getName() == "ios_app_extension")
2549 NewII = &S.Context.Idents.get("tvos_app_extension");
2550
2551 if (NewII) {
2552 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2553 ND, AL, NewII, true /*Implicit*/, Introduced.Version,
2554 Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict,
2555 Replacement, Sema::AMK_None,
2556 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2557 if (NewAttr)
2558 D->addAttr(NewAttr);
2559 }
2560 } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2561 llvm::Triple::IOS &&
2562 S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2563 auto GetSDKInfo = [&]() {
2564 return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(),
2565 "macOS");
2566 };
2567
2568 // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2569 IdentifierInfo *NewII = nullptr;
2570 if (II->getName() == "ios")
2571 NewII = &S.Context.Idents.get("maccatalyst");
2572 else if (II->getName() == "ios_app_extension")
2573 NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2574 if (NewII) {
2575 auto MinMacCatalystVersion = [](const VersionTuple &V) {
2576 if (V.empty())
2577 return V;
2578 if (V.getMajor() < 13 ||
2579 (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2580 return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2581 return V;
2582 };
2583 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2584 ND, AL.getRange(), NewII, true /*Implicit*/,
2585 MinMacCatalystVersion(Introduced.Version),
2586 MinMacCatalystVersion(Deprecated.Version),
2587 MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2588 IsStrict, Replacement, Sema::AMK_None,
2589 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2590 if (NewAttr)
2591 D->addAttr(NewAttr);
2592 } else if (II->getName() == "macos" && GetSDKInfo() &&
2593 (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2594 !Obsoleted.Version.empty())) {
2595 if (const auto *MacOStoMacCatalystMapping =
2596 GetSDKInfo()->getVersionMapping(
2597 DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) {
2598 // Infer Mac Catalyst availability from the macOS availability attribute
2599 // if it has versioned availability. Don't infer 'unavailable'. This
2600 // inferred availability has lower priority than the other availability
2601 // attributes that are inferred from 'ios'.
2602 NewII = &S.Context.Idents.get("maccatalyst");
2603 auto RemapMacOSVersion =
2604 [&](const VersionTuple &V) -> Optional<VersionTuple> {
2605 if (V.empty())
2606 return None;
2607 // API_TO_BE_DEPRECATED is 100000.
2608 if (V.getMajor() == 100000)
2609 return VersionTuple(100000);
2610 // The minimum iosmac version is 13.1
2611 return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1), None);
2612 };
2613 Optional<VersionTuple> NewIntroduced =
2614 RemapMacOSVersion(Introduced.Version),
2615 NewDeprecated =
2616 RemapMacOSVersion(Deprecated.Version),
2617 NewObsoleted =
2618 RemapMacOSVersion(Obsoleted.Version);
2619 if (NewIntroduced || NewDeprecated || NewObsoleted) {
2620 auto VersionOrEmptyVersion =
2621 [](const Optional<VersionTuple> &V) -> VersionTuple {
2622 return V ? *V : VersionTuple();
2623 };
2624 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2625 ND, AL.getRange(), NewII, true /*Implicit*/,
2626 VersionOrEmptyVersion(NewIntroduced),
2627 VersionOrEmptyVersion(NewDeprecated),
2628 VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2629 IsStrict, Replacement, Sema::AMK_None,
2630 PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2631 Sema::AP_InferredFromOtherPlatform);
2632 if (NewAttr)
2633 D->addAttr(NewAttr);
2634 }
2635 }
2636 }
2637 }
2638 }
2639
handleExternalSourceSymbolAttr(Sema & S,Decl * D,const ParsedAttr & AL)2640 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2641 const ParsedAttr &AL) {
2642 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
2643 return;
2644
2645 StringRef Language;
2646 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2647 Language = SE->getString();
2648 StringRef DefinedIn;
2649 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2650 DefinedIn = SE->getString();
2651 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2652
2653 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2654 S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration));
2655 }
2656
2657 template <class T>
mergeVisibilityAttr(Sema & S,Decl * D,const AttributeCommonInfo & CI,typename T::VisibilityType value)2658 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2659 typename T::VisibilityType value) {
2660 T *existingAttr = D->getAttr<T>();
2661 if (existingAttr) {
2662 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2663 if (existingValue == value)
2664 return nullptr;
2665 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2666 S.Diag(CI.getLoc(), diag::note_previous_attribute);
2667 D->dropAttr<T>();
2668 }
2669 return ::new (S.Context) T(S.Context, CI, value);
2670 }
2671
mergeVisibilityAttr(Decl * D,const AttributeCommonInfo & CI,VisibilityAttr::VisibilityType Vis)2672 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2673 const AttributeCommonInfo &CI,
2674 VisibilityAttr::VisibilityType Vis) {
2675 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2676 }
2677
2678 TypeVisibilityAttr *
mergeTypeVisibilityAttr(Decl * D,const AttributeCommonInfo & CI,TypeVisibilityAttr::VisibilityType Vis)2679 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2680 TypeVisibilityAttr::VisibilityType Vis) {
2681 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2682 }
2683
handleVisibilityAttr(Sema & S,Decl * D,const ParsedAttr & AL,bool isTypeVisibility)2684 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2685 bool isTypeVisibility) {
2686 // Visibility attributes don't mean anything on a typedef.
2687 if (isa<TypedefNameDecl>(D)) {
2688 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2689 return;
2690 }
2691
2692 // 'type_visibility' can only go on a type or namespace.
2693 if (isTypeVisibility &&
2694 !(isa<TagDecl>(D) ||
2695 isa<ObjCInterfaceDecl>(D) ||
2696 isa<NamespaceDecl>(D))) {
2697 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2698 << AL << ExpectedTypeOrNamespace;
2699 return;
2700 }
2701
2702 // Check that the argument is a string literal.
2703 StringRef TypeStr;
2704 SourceLocation LiteralLoc;
2705 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2706 return;
2707
2708 VisibilityAttr::VisibilityType type;
2709 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2710 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2711 << TypeStr;
2712 return;
2713 }
2714
2715 // Complain about attempts to use protected visibility on targets
2716 // (like Darwin) that don't support it.
2717 if (type == VisibilityAttr::Protected &&
2718 !S.Context.getTargetInfo().hasProtectedVisibility()) {
2719 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2720 type = VisibilityAttr::Default;
2721 }
2722
2723 Attr *newAttr;
2724 if (isTypeVisibility) {
2725 newAttr = S.mergeTypeVisibilityAttr(
2726 D, AL, (TypeVisibilityAttr::VisibilityType)type);
2727 } else {
2728 newAttr = S.mergeVisibilityAttr(D, AL, type);
2729 }
2730 if (newAttr)
2731 D->addAttr(newAttr);
2732 }
2733
handleObjCDirectAttr(Sema & S,Decl * D,const ParsedAttr & AL)2734 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2735 // objc_direct cannot be set on methods declared in the context of a protocol
2736 if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2737 S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2738 return;
2739 }
2740
2741 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2742 handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2743 } else {
2744 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2745 }
2746 }
2747
handleObjCDirectMembersAttr(Sema & S,Decl * D,const ParsedAttr & AL)2748 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2749 const ParsedAttr &AL) {
2750 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2751 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2752 } else {
2753 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2754 }
2755 }
2756
handleObjCMethodFamilyAttr(Sema & S,Decl * D,const ParsedAttr & AL)2757 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2758 const auto *M = cast<ObjCMethodDecl>(D);
2759 if (!AL.isArgIdent(0)) {
2760 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2761 << AL << 1 << AANT_ArgumentIdentifier;
2762 return;
2763 }
2764
2765 IdentifierLoc *IL = AL.getArgAsIdent(0);
2766 ObjCMethodFamilyAttr::FamilyKind F;
2767 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2768 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2769 return;
2770 }
2771
2772 if (F == ObjCMethodFamilyAttr::OMF_init &&
2773 !M->getReturnType()->isObjCObjectPointerType()) {
2774 S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2775 << M->getReturnType();
2776 // Ignore the attribute.
2777 return;
2778 }
2779
2780 D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
2781 }
2782
handleObjCNSObject(Sema & S,Decl * D,const ParsedAttr & AL)2783 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2784 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2785 QualType T = TD->getUnderlyingType();
2786 if (!T->isCARCBridgableType()) {
2787 S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2788 return;
2789 }
2790 }
2791 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2792 QualType T = PD->getType();
2793 if (!T->isCARCBridgableType()) {
2794 S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2795 return;
2796 }
2797 }
2798 else {
2799 // It is okay to include this attribute on properties, e.g.:
2800 //
2801 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2802 //
2803 // In this case it follows tradition and suppresses an error in the above
2804 // case.
2805 S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2806 }
2807 D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
2808 }
2809
handleObjCIndependentClass(Sema & S,Decl * D,const ParsedAttr & AL)2810 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
2811 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2812 QualType T = TD->getUnderlyingType();
2813 if (!T->isObjCObjectPointerType()) {
2814 S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2815 return;
2816 }
2817 } else {
2818 S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2819 return;
2820 }
2821 D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
2822 }
2823
handleBlocksAttr(Sema & S,Decl * D,const ParsedAttr & AL)2824 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2825 if (!AL.isArgIdent(0)) {
2826 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2827 << AL << 1 << AANT_ArgumentIdentifier;
2828 return;
2829 }
2830
2831 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
2832 BlocksAttr::BlockType type;
2833 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2834 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
2835 return;
2836 }
2837
2838 D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
2839 }
2840
handleSentinelAttr(Sema & S,Decl * D,const ParsedAttr & AL)2841 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2842 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2843 if (AL.getNumArgs() > 0) {
2844 Expr *E = AL.getArgAsExpr(0);
2845 Optional<llvm::APSInt> Idx = llvm::APSInt(32);
2846 if (E->isTypeDependent() || E->isValueDependent() ||
2847 !(Idx = E->getIntegerConstantExpr(S.Context))) {
2848 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2849 << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2850 return;
2851 }
2852
2853 if (Idx->isSigned() && Idx->isNegative()) {
2854 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2855 << E->getSourceRange();
2856 return;
2857 }
2858
2859 sentinel = Idx->getZExtValue();
2860 }
2861
2862 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2863 if (AL.getNumArgs() > 1) {
2864 Expr *E = AL.getArgAsExpr(1);
2865 Optional<llvm::APSInt> Idx = llvm::APSInt(32);
2866 if (E->isTypeDependent() || E->isValueDependent() ||
2867 !(Idx = E->getIntegerConstantExpr(S.Context))) {
2868 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2869 << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
2870 return;
2871 }
2872 nullPos = Idx->getZExtValue();
2873
2874 if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
2875 // FIXME: This error message could be improved, it would be nice
2876 // to say what the bounds actually are.
2877 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2878 << E->getSourceRange();
2879 return;
2880 }
2881 }
2882
2883 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2884 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2885 if (isa<FunctionNoProtoType>(FT)) {
2886 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2887 return;
2888 }
2889
2890 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2891 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2892 return;
2893 }
2894 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2895 if (!MD->isVariadic()) {
2896 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2897 return;
2898 }
2899 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2900 if (!BD->isVariadic()) {
2901 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2902 return;
2903 }
2904 } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2905 QualType Ty = V->getType();
2906 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2907 const FunctionType *FT = Ty->isFunctionPointerType()
2908 ? D->getFunctionType()
2909 : Ty->castAs<BlockPointerType>()
2910 ->getPointeeType()
2911 ->castAs<FunctionType>();
2912 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2913 int m = Ty->isFunctionPointerType() ? 0 : 1;
2914 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2915 return;
2916 }
2917 } else {
2918 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2919 << AL << ExpectedFunctionMethodOrBlock;
2920 return;
2921 }
2922 } else {
2923 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2924 << AL << ExpectedFunctionMethodOrBlock;
2925 return;
2926 }
2927 D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
2928 }
2929
handleWarnUnusedResult(Sema & S,Decl * D,const ParsedAttr & AL)2930 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
2931 if (D->getFunctionType() &&
2932 D->getFunctionType()->getReturnType()->isVoidType() &&
2933 !isa<CXXConstructorDecl>(D)) {
2934 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
2935 return;
2936 }
2937 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
2938 if (MD->getReturnType()->isVoidType()) {
2939 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
2940 return;
2941 }
2942
2943 StringRef Str;
2944 if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) {
2945 // The standard attribute cannot be applied to variable declarations such
2946 // as a function pointer.
2947 if (isa<VarDecl>(D))
2948 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
2949 << AL << "functions, classes, or enumerations";
2950
2951 // If this is spelled as the standard C++17 attribute, but not in C++17,
2952 // warn about using it as an extension. If there are attribute arguments,
2953 // then claim it's a C++2a extension instead.
2954 // FIXME: If WG14 does not seem likely to adopt the same feature, add an
2955 // extension warning for C2x mode.
2956 const LangOptions &LO = S.getLangOpts();
2957 if (AL.getNumArgs() == 1) {
2958 if (LO.CPlusPlus && !LO.CPlusPlus20)
2959 S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
2960
2961 // Since this this is spelled [[nodiscard]], get the optional string
2962 // literal. If in C++ mode, but not in C++2a mode, diagnose as an
2963 // extension.
2964 // FIXME: C2x should support this feature as well, even as an extension.
2965 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
2966 return;
2967 } else if (LO.CPlusPlus && !LO.CPlusPlus17)
2968 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2969 }
2970
2971 D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
2972 }
2973
handleWeakImportAttr(Sema & S,Decl * D,const ParsedAttr & AL)2974 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2975 // weak_import only applies to variable & function declarations.
2976 bool isDef = false;
2977 if (!D->canBeWeakImported(isDef)) {
2978 if (isDef)
2979 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
2980 << "weak_import";
2981 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2982 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2983 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2984 // Nothing to warn about here.
2985 } else
2986 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2987 << AL << ExpectedVariableOrFunction;
2988
2989 return;
2990 }
2991
2992 D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
2993 }
2994
2995 // Handles reqd_work_group_size and work_group_size_hint.
2996 template <typename WorkGroupAttr>
handleWorkGroupSize(Sema & S,Decl * D,const ParsedAttr & AL)2997 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2998 uint32_t WGSize[3];
2999 for (unsigned i = 0; i < 3; ++i) {
3000 const Expr *E = AL.getArgAsExpr(i);
3001 if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
3002 /*StrictlyUnsigned=*/true))
3003 return;
3004 if (WGSize[i] == 0) {
3005 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3006 << AL << E->getSourceRange();
3007 return;
3008 }
3009 }
3010
3011 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3012 if (Existing && !(Existing->getXDim() == WGSize[0] &&
3013 Existing->getYDim() == WGSize[1] &&
3014 Existing->getZDim() == WGSize[2]))
3015 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3016
3017 D->addAttr(::new (S.Context)
3018 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3019 }
3020
3021 // Handles intel_reqd_sub_group_size.
handleSubGroupSize(Sema & S,Decl * D,const ParsedAttr & AL)3022 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3023 uint32_t SGSize;
3024 const Expr *E = AL.getArgAsExpr(0);
3025 if (!checkUInt32Argument(S, AL, E, SGSize))
3026 return;
3027 if (SGSize == 0) {
3028 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3029 << AL << E->getSourceRange();
3030 return;
3031 }
3032
3033 OpenCLIntelReqdSubGroupSizeAttr *Existing =
3034 D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
3035 if (Existing && Existing->getSubGroupSize() != SGSize)
3036 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3037
3038 D->addAttr(::new (S.Context)
3039 OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
3040 }
3041
handleVecTypeHint(Sema & S,Decl * D,const ParsedAttr & AL)3042 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3043 if (!AL.hasParsedType()) {
3044 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3045 return;
3046 }
3047
3048 TypeSourceInfo *ParmTSI = nullptr;
3049 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3050 assert(ParmTSI && "no type source info for attribute argument");
3051
3052 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3053 (ParmType->isBooleanType() ||
3054 !ParmType->isIntegralType(S.getASTContext()))) {
3055 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3056 return;
3057 }
3058
3059 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3060 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3061 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3062 return;
3063 }
3064 }
3065
3066 D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3067 }
3068
mergeSectionAttr(Decl * D,const AttributeCommonInfo & CI,StringRef Name)3069 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3070 StringRef Name) {
3071 // Explicit or partial specializations do not inherit
3072 // the section attribute from the primary template.
3073 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3074 if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3075 FD->isFunctionTemplateSpecialization())
3076 return nullptr;
3077 }
3078 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3079 if (ExistingAttr->getName() == Name)
3080 return nullptr;
3081 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3082 << 1 /*section*/;
3083 Diag(CI.getLoc(), diag::note_previous_attribute);
3084 return nullptr;
3085 }
3086 return ::new (Context) SectionAttr(Context, CI, Name);
3087 }
3088
3089 /// Used to implement to perform semantic checking on
3090 /// attribute((section("foo"))) specifiers.
3091 ///
3092 /// In this case, "foo" is passed in to be checked. If the section
3093 /// specifier is invalid, return an Error that indicates the problem.
3094 ///
3095 /// This is a simple quality of implementation feature to catch errors
3096 /// and give good diagnostics in cases when the assembler or code generator
3097 /// would otherwise reject the section specifier.
isValidSectionSpecifier(StringRef SecName)3098 llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3099 if (!Context.getTargetInfo().getTriple().isOSDarwin())
3100 return llvm::Error::success();
3101
3102 // Let MCSectionMachO validate this.
3103 StringRef Segment, Section;
3104 unsigned TAA, StubSize;
3105 bool HasTAA;
3106 return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3107 TAA, HasTAA, StubSize);
3108 }
3109
checkSectionName(SourceLocation LiteralLoc,StringRef SecName)3110 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3111 if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3112 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3113 << toString(std::move(E)) << 1 /*'section'*/;
3114 return false;
3115 }
3116 return true;
3117 }
3118
handleSectionAttr(Sema & S,Decl * D,const ParsedAttr & AL)3119 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3120 // Make sure that there is a string literal as the sections's single
3121 // argument.
3122 StringRef Str;
3123 SourceLocation LiteralLoc;
3124 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3125 return;
3126
3127 if (!S.checkSectionName(LiteralLoc, Str))
3128 return;
3129
3130 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3131 if (NewAttr) {
3132 D->addAttr(NewAttr);
3133 if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl,
3134 ObjCPropertyDecl>(D))
3135 S.UnifySection(NewAttr->getName(),
3136 ASTContext::PSF_Execute | ASTContext::PSF_Read,
3137 cast<NamedDecl>(D));
3138 }
3139 }
3140
3141 // This is used for `__declspec(code_seg("segname"))` on a decl.
3142 // `#pragma code_seg("segname")` uses checkSectionName() instead.
checkCodeSegName(Sema & S,SourceLocation LiteralLoc,StringRef CodeSegName)3143 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3144 StringRef CodeSegName) {
3145 if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3146 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3147 << toString(std::move(E)) << 0 /*'code-seg'*/;
3148 return false;
3149 }
3150
3151 return true;
3152 }
3153
mergeCodeSegAttr(Decl * D,const AttributeCommonInfo & CI,StringRef Name)3154 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3155 StringRef Name) {
3156 // Explicit or partial specializations do not inherit
3157 // the code_seg attribute from the primary template.
3158 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3159 if (FD->isFunctionTemplateSpecialization())
3160 return nullptr;
3161 }
3162 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3163 if (ExistingAttr->getName() == Name)
3164 return nullptr;
3165 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3166 << 0 /*codeseg*/;
3167 Diag(CI.getLoc(), diag::note_previous_attribute);
3168 return nullptr;
3169 }
3170 return ::new (Context) CodeSegAttr(Context, CI, Name);
3171 }
3172
handleCodeSegAttr(Sema & S,Decl * D,const ParsedAttr & AL)3173 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3174 StringRef Str;
3175 SourceLocation LiteralLoc;
3176 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3177 return;
3178 if (!checkCodeSegName(S, LiteralLoc, Str))
3179 return;
3180 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3181 if (!ExistingAttr->isImplicit()) {
3182 S.Diag(AL.getLoc(),
3183 ExistingAttr->getName() == Str
3184 ? diag::warn_duplicate_codeseg_attribute
3185 : diag::err_conflicting_codeseg_attribute);
3186 return;
3187 }
3188 D->dropAttr<CodeSegAttr>();
3189 }
3190 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3191 D->addAttr(CSA);
3192 }
3193
3194 // Check for things we'd like to warn about. Multiversioning issues are
3195 // handled later in the process, once we know how many exist.
checkTargetAttr(SourceLocation LiteralLoc,StringRef AttrStr)3196 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3197 enum FirstParam { Unsupported, Duplicate, Unknown };
3198 enum SecondParam { None, Architecture, Tune };
3199 if (AttrStr.find("fpmath=") != StringRef::npos)
3200 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3201 << Unsupported << None << "fpmath=";
3202
3203 // Diagnose use of tune if target doesn't support it.
3204 if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3205 AttrStr.find("tune=") != StringRef::npos)
3206 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3207 << Unsupported << None << "tune=";
3208
3209 ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
3210
3211 if (!ParsedAttrs.Architecture.empty() &&
3212 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
3213 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3214 << Unknown << Architecture << ParsedAttrs.Architecture;
3215
3216 if (!ParsedAttrs.Tune.empty() &&
3217 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3218 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3219 << Unknown << Tune << ParsedAttrs.Tune;
3220
3221 if (ParsedAttrs.DuplicateArchitecture)
3222 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3223 << Duplicate << None << "arch=";
3224 if (ParsedAttrs.DuplicateTune)
3225 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3226 << Duplicate << None << "tune=";
3227
3228 for (const auto &Feature : ParsedAttrs.Features) {
3229 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3230 if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3231 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3232 << Unsupported << None << CurFeature;
3233 }
3234
3235 TargetInfo::BranchProtectionInfo BPI;
3236 StringRef Error;
3237 if (!ParsedAttrs.BranchProtection.empty() &&
3238 !Context.getTargetInfo().validateBranchProtection(
3239 ParsedAttrs.BranchProtection, BPI, Error)) {
3240 if (Error.empty())
3241 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3242 << Unsupported << None << "branch-protection";
3243 else
3244 return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3245 << Error;
3246 }
3247
3248 return false;
3249 }
3250
handleTargetAttr(Sema & S,Decl * D,const ParsedAttr & AL)3251 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3252 StringRef Str;
3253 SourceLocation LiteralLoc;
3254 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3255 S.checkTargetAttr(LiteralLoc, Str))
3256 return;
3257
3258 TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3259 D->addAttr(NewAttr);
3260 }
3261
handleMinVectorWidthAttr(Sema & S,Decl * D,const ParsedAttr & AL)3262 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3263 Expr *E = AL.getArgAsExpr(0);
3264 uint32_t VecWidth;
3265 if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3266 AL.setInvalid();
3267 return;
3268 }
3269
3270 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3271 if (Existing && Existing->getVectorWidth() != VecWidth) {
3272 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3273 return;
3274 }
3275
3276 D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3277 }
3278
handleCleanupAttr(Sema & S,Decl * D,const ParsedAttr & AL)3279 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3280 Expr *E = AL.getArgAsExpr(0);
3281 SourceLocation Loc = E->getExprLoc();
3282 FunctionDecl *FD = nullptr;
3283 DeclarationNameInfo NI;
3284
3285 // gcc only allows for simple identifiers. Since we support more than gcc, we
3286 // will warn the user.
3287 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3288 if (DRE->hasQualifier())
3289 S.Diag(Loc, diag::warn_cleanup_ext);
3290 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3291 NI = DRE->getNameInfo();
3292 if (!FD) {
3293 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3294 << NI.getName();
3295 return;
3296 }
3297 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3298 if (ULE->hasExplicitTemplateArgs())
3299 S.Diag(Loc, diag::warn_cleanup_ext);
3300 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3301 NI = ULE->getNameInfo();
3302 if (!FD) {
3303 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3304 << NI.getName();
3305 if (ULE->getType() == S.Context.OverloadTy)
3306 S.NoteAllOverloadCandidates(ULE);
3307 return;
3308 }
3309 } else {
3310 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3311 return;
3312 }
3313
3314 if (FD->getNumParams() != 1) {
3315 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3316 << NI.getName();
3317 return;
3318 }
3319
3320 // We're currently more strict than GCC about what function types we accept.
3321 // If this ever proves to be a problem it should be easy to fix.
3322 QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3323 QualType ParamTy = FD->getParamDecl(0)->getType();
3324 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3325 ParamTy, Ty) != Sema::Compatible) {
3326 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3327 << NI.getName() << ParamTy << Ty;
3328 return;
3329 }
3330
3331 D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3332 }
3333
handleEnumExtensibilityAttr(Sema & S,Decl * D,const ParsedAttr & AL)3334 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3335 const ParsedAttr &AL) {
3336 if (!AL.isArgIdent(0)) {
3337 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3338 << AL << 0 << AANT_ArgumentIdentifier;
3339 return;
3340 }
3341
3342 EnumExtensibilityAttr::Kind ExtensibilityKind;
3343 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3344 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3345 ExtensibilityKind)) {
3346 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3347 return;
3348 }
3349
3350 D->addAttr(::new (S.Context)
3351 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3352 }
3353
3354 /// Handle __attribute__((format_arg((idx)))) attribute based on
3355 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatArgAttr(Sema & S,Decl * D,const ParsedAttr & AL)3356 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3357 Expr *IdxExpr = AL.getArgAsExpr(0);
3358 ParamIdx Idx;
3359 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3360 return;
3361
3362 // Make sure the format string is really a string.
3363 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3364
3365 bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3366 if (NotNSStringTy &&
3367 !isCFStringType(Ty, S.Context) &&
3368 (!Ty->isPointerType() ||
3369 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3370 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3371 << "a string type" << IdxExpr->getSourceRange()
3372 << getFunctionOrMethodParamRange(D, 0);
3373 return;
3374 }
3375 Ty = getFunctionOrMethodResultType(D);
3376 if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) &&
3377 !isCFStringType(Ty, S.Context) &&
3378 (!Ty->isPointerType() ||
3379 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3380 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3381 << (NotNSStringTy ? "string type" : "NSString")
3382 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3383 return;
3384 }
3385
3386 D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3387 }
3388
3389 enum FormatAttrKind {
3390 CFStringFormat,
3391 NSStringFormat,
3392 StrftimeFormat,
3393 SupportedFormat,
3394 IgnoredFormat,
3395 InvalidFormat
3396 };
3397
3398 /// getFormatAttrKind - Map from format attribute names to supported format
3399 /// types.
getFormatAttrKind(StringRef Format)3400 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3401 return llvm::StringSwitch<FormatAttrKind>(Format)
3402 // Check for formats that get handled specially.
3403 .Case("NSString", NSStringFormat)
3404 .Case("CFString", CFStringFormat)
3405 .Case("strftime", StrftimeFormat)
3406
3407 // Otherwise, check for supported formats.
3408 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3409 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3410 .Case("kprintf", SupportedFormat) // OpenBSD.
3411 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3412 .Case("os_trace", SupportedFormat)
3413 .Case("os_log", SupportedFormat)
3414
3415 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3416 .Default(InvalidFormat);
3417 }
3418
3419 /// Handle __attribute__((init_priority(priority))) attributes based on
3420 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
handleInitPriorityAttr(Sema & S,Decl * D,const ParsedAttr & AL)3421 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3422 if (!S.getLangOpts().CPlusPlus) {
3423 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3424 return;
3425 }
3426
3427 if (S.getCurFunctionOrMethodDecl()) {
3428 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3429 AL.setInvalid();
3430 return;
3431 }
3432 QualType T = cast<VarDecl>(D)->getType();
3433 if (S.Context.getAsArrayType(T))
3434 T = S.Context.getBaseElementType(T);
3435 if (!T->getAs<RecordType>()) {
3436 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3437 AL.setInvalid();
3438 return;
3439 }
3440
3441 Expr *E = AL.getArgAsExpr(0);
3442 uint32_t prioritynum;
3443 if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3444 AL.setInvalid();
3445 return;
3446 }
3447
3448 // Only perform the priority check if the attribute is outside of a system
3449 // header. Values <= 100 are reserved for the implementation, and libc++
3450 // benefits from being able to specify values in that range.
3451 if ((prioritynum < 101 || prioritynum > 65535) &&
3452 !S.getSourceManager().isInSystemHeader(AL.getLoc())) {
3453 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3454 << E->getSourceRange() << AL << 101 << 65535;
3455 AL.setInvalid();
3456 return;
3457 }
3458 D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3459 }
3460
mergeFormatAttr(Decl * D,const AttributeCommonInfo & CI,IdentifierInfo * Format,int FormatIdx,int FirstArg)3461 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3462 IdentifierInfo *Format, int FormatIdx,
3463 int FirstArg) {
3464 // Check whether we already have an equivalent format attribute.
3465 for (auto *F : D->specific_attrs<FormatAttr>()) {
3466 if (F->getType() == Format &&
3467 F->getFormatIdx() == FormatIdx &&
3468 F->getFirstArg() == FirstArg) {
3469 // If we don't have a valid location for this attribute, adopt the
3470 // location.
3471 if (F->getLocation().isInvalid())
3472 F->setRange(CI.getRange());
3473 return nullptr;
3474 }
3475 }
3476
3477 return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3478 }
3479
3480 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3481 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatAttr(Sema & S,Decl * D,const ParsedAttr & AL)3482 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3483 if (!AL.isArgIdent(0)) {
3484 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3485 << AL << 1 << AANT_ArgumentIdentifier;
3486 return;
3487 }
3488
3489 // In C++ the implicit 'this' function parameter also counts, and they are
3490 // counted from one.
3491 bool HasImplicitThisParam = isInstanceMethod(D);
3492 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3493
3494 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3495 StringRef Format = II->getName();
3496
3497 if (normalizeName(Format)) {
3498 // If we've modified the string name, we need a new identifier for it.
3499 II = &S.Context.Idents.get(Format);
3500 }
3501
3502 // Check for supported formats.
3503 FormatAttrKind Kind = getFormatAttrKind(Format);
3504
3505 if (Kind == IgnoredFormat)
3506 return;
3507
3508 if (Kind == InvalidFormat) {
3509 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3510 << AL << II->getName();
3511 return;
3512 }
3513
3514 // checks for the 2nd argument
3515 Expr *IdxExpr = AL.getArgAsExpr(1);
3516 uint32_t Idx;
3517 if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3518 return;
3519
3520 if (Idx < 1 || Idx > NumArgs) {
3521 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3522 << AL << 2 << IdxExpr->getSourceRange();
3523 return;
3524 }
3525
3526 // FIXME: Do we need to bounds check?
3527 unsigned ArgIdx = Idx - 1;
3528
3529 if (HasImplicitThisParam) {
3530 if (ArgIdx == 0) {
3531 S.Diag(AL.getLoc(),
3532 diag::err_format_attribute_implicit_this_format_string)
3533 << IdxExpr->getSourceRange();
3534 return;
3535 }
3536 ArgIdx--;
3537 }
3538
3539 // make sure the format string is really a string
3540 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3541
3542 if (Kind == CFStringFormat) {
3543 if (!isCFStringType(Ty, S.Context)) {
3544 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3545 << "a CFString" << IdxExpr->getSourceRange()
3546 << getFunctionOrMethodParamRange(D, ArgIdx);
3547 return;
3548 }
3549 } else if (Kind == NSStringFormat) {
3550 // FIXME: do we need to check if the type is NSString*? What are the
3551 // semantics?
3552 if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true)) {
3553 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3554 << "an NSString" << IdxExpr->getSourceRange()
3555 << getFunctionOrMethodParamRange(D, ArgIdx);
3556 return;
3557 }
3558 } else if (!Ty->isPointerType() ||
3559 !Ty->castAs<PointerType>()->getPointeeType()->isCharType()) {
3560 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3561 << "a string type" << IdxExpr->getSourceRange()
3562 << getFunctionOrMethodParamRange(D, ArgIdx);
3563 return;
3564 }
3565
3566 // check the 3rd argument
3567 Expr *FirstArgExpr = AL.getArgAsExpr(2);
3568 uint32_t FirstArg;
3569 if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3570 return;
3571
3572 // check if the function is variadic if the 3rd argument non-zero
3573 if (FirstArg != 0) {
3574 if (isFunctionOrMethodVariadic(D)) {
3575 ++NumArgs; // +1 for ...
3576 } else {
3577 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3578 return;
3579 }
3580 }
3581
3582 // strftime requires FirstArg to be 0 because it doesn't read from any
3583 // variable the input is just the current time + the format string.
3584 if (Kind == StrftimeFormat) {
3585 if (FirstArg != 0) {
3586 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3587 << FirstArgExpr->getSourceRange();
3588 return;
3589 }
3590 // if 0 it disables parameter checking (to use with e.g. va_list)
3591 } else if (FirstArg != 0 && FirstArg != NumArgs) {
3592 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3593 << AL << 3 << FirstArgExpr->getSourceRange();
3594 return;
3595 }
3596
3597 FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
3598 if (NewAttr)
3599 D->addAttr(NewAttr);
3600 }
3601
3602 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
handleCallbackAttr(Sema & S,Decl * D,const ParsedAttr & AL)3603 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3604 // The index that identifies the callback callee is mandatory.
3605 if (AL.getNumArgs() == 0) {
3606 S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
3607 << AL.getRange();
3608 return;
3609 }
3610
3611 bool HasImplicitThisParam = isInstanceMethod(D);
3612 int32_t NumArgs = getFunctionOrMethodNumParams(D);
3613
3614 FunctionDecl *FD = D->getAsFunction();
3615 assert(FD && "Expected a function declaration!");
3616
3617 llvm::StringMap<int> NameIdxMapping;
3618 NameIdxMapping["__"] = -1;
3619
3620 NameIdxMapping["this"] = 0;
3621
3622 int Idx = 1;
3623 for (const ParmVarDecl *PVD : FD->parameters())
3624 NameIdxMapping[PVD->getName()] = Idx++;
3625
3626 auto UnknownName = NameIdxMapping.end();
3627
3628 SmallVector<int, 8> EncodingIndices;
3629 for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
3630 SourceRange SR;
3631 int32_t ArgIdx;
3632
3633 if (AL.isArgIdent(I)) {
3634 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
3635 auto It = NameIdxMapping.find(IdLoc->Ident->getName());
3636 if (It == UnknownName) {
3637 S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
3638 << IdLoc->Ident << IdLoc->Loc;
3639 return;
3640 }
3641
3642 SR = SourceRange(IdLoc->Loc);
3643 ArgIdx = It->second;
3644 } else if (AL.isArgExpr(I)) {
3645 Expr *IdxExpr = AL.getArgAsExpr(I);
3646
3647 // If the expression is not parseable as an int32_t we have a problem.
3648 if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
3649 false)) {
3650 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3651 << AL << (I + 1) << IdxExpr->getSourceRange();
3652 return;
3653 }
3654
3655 // Check oob, excluding the special values, 0 and -1.
3656 if (ArgIdx < -1 || ArgIdx > NumArgs) {
3657 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3658 << AL << (I + 1) << IdxExpr->getSourceRange();
3659 return;
3660 }
3661
3662 SR = IdxExpr->getSourceRange();
3663 } else {
3664 llvm_unreachable("Unexpected ParsedAttr argument type!");
3665 }
3666
3667 if (ArgIdx == 0 && !HasImplicitThisParam) {
3668 S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
3669 << (I + 1) << SR;
3670 return;
3671 }
3672
3673 // Adjust for the case we do not have an implicit "this" parameter. In this
3674 // case we decrease all positive values by 1 to get LLVM argument indices.
3675 if (!HasImplicitThisParam && ArgIdx > 0)
3676 ArgIdx -= 1;
3677
3678 EncodingIndices.push_back(ArgIdx);
3679 }
3680
3681 int CalleeIdx = EncodingIndices.front();
3682 // Check if the callee index is proper, thus not "this" and not "unknown".
3683 // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
3684 // is false and positive if "HasImplicitThisParam" is true.
3685 if (CalleeIdx < (int)HasImplicitThisParam) {
3686 S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
3687 << AL.getRange();
3688 return;
3689 }
3690
3691 // Get the callee type, note the index adjustment as the AST doesn't contain
3692 // the this type (which the callee cannot reference anyway!).
3693 const Type *CalleeType =
3694 getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
3695 .getTypePtr();
3696 if (!CalleeType || !CalleeType->isFunctionPointerType()) {
3697 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3698 << AL.getRange();
3699 return;
3700 }
3701
3702 const Type *CalleeFnType =
3703 CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
3704
3705 // TODO: Check the type of the callee arguments.
3706
3707 const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
3708 if (!CalleeFnProtoType) {
3709 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
3710 << AL.getRange();
3711 return;
3712 }
3713
3714 if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
3715 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3716 << AL << (unsigned)(EncodingIndices.size() - 1);
3717 return;
3718 }
3719
3720 if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
3721 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3722 << AL << (unsigned)(EncodingIndices.size() - 1);
3723 return;
3724 }
3725
3726 if (CalleeFnProtoType->isVariadic()) {
3727 S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
3728 return;
3729 }
3730
3731 // Do not allow multiple callback attributes.
3732 if (D->hasAttr<CallbackAttr>()) {
3733 S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
3734 return;
3735 }
3736
3737 D->addAttr(::new (S.Context) CallbackAttr(
3738 S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
3739 }
3740
isFunctionLike(const Type & T)3741 static bool isFunctionLike(const Type &T) {
3742 // Check for explicit function types.
3743 // 'called_once' is only supported in Objective-C and it has
3744 // function pointers and block pointers.
3745 return T.isFunctionPointerType() || T.isBlockPointerType();
3746 }
3747
3748 /// Handle 'called_once' attribute.
handleCalledOnceAttr(Sema & S,Decl * D,const ParsedAttr & AL)3749 static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3750 // 'called_once' only applies to parameters representing functions.
3751 QualType T = cast<ParmVarDecl>(D)->getType();
3752
3753 if (!isFunctionLike(*T)) {
3754 S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
3755 return;
3756 }
3757
3758 D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
3759 }
3760
handleTransparentUnionAttr(Sema & S,Decl * D,const ParsedAttr & AL)3761 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3762 // Try to find the underlying union declaration.
3763 RecordDecl *RD = nullptr;
3764 const auto *TD = dyn_cast<TypedefNameDecl>(D);
3765 if (TD && TD->getUnderlyingType()->isUnionType())
3766 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3767 else
3768 RD = dyn_cast<RecordDecl>(D);
3769
3770 if (!RD || !RD->isUnion()) {
3771 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL
3772 << ExpectedUnion;
3773 return;
3774 }
3775
3776 if (!RD->isCompleteDefinition()) {
3777 if (!RD->isBeingDefined())
3778 S.Diag(AL.getLoc(),
3779 diag::warn_transparent_union_attribute_not_definition);
3780 return;
3781 }
3782
3783 RecordDecl::field_iterator Field = RD->field_begin(),
3784 FieldEnd = RD->field_end();
3785 if (Field == FieldEnd) {
3786 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3787 return;
3788 }
3789
3790 FieldDecl *FirstField = *Field;
3791 QualType FirstType = FirstField->getType();
3792 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3793 S.Diag(FirstField->getLocation(),
3794 diag::warn_transparent_union_attribute_floating)
3795 << FirstType->isVectorType() << FirstType;
3796 return;
3797 }
3798
3799 if (FirstType->isIncompleteType())
3800 return;
3801 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3802 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3803 for (; Field != FieldEnd; ++Field) {
3804 QualType FieldType = Field->getType();
3805 if (FieldType->isIncompleteType())
3806 return;
3807 // FIXME: this isn't fully correct; we also need to test whether the
3808 // members of the union would all have the same calling convention as the
3809 // first member of the union. Checking just the size and alignment isn't
3810 // sufficient (consider structs passed on the stack instead of in registers
3811 // as an example).
3812 if (S.Context.getTypeSize(FieldType) != FirstSize ||
3813 S.Context.getTypeAlign(FieldType) > FirstAlign) {
3814 // Warn if we drop the attribute.
3815 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3816 unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
3817 : S.Context.getTypeAlign(FieldType);
3818 S.Diag(Field->getLocation(),
3819 diag::warn_transparent_union_attribute_field_size_align)
3820 << isSize << *Field << FieldBits;
3821 unsigned FirstBits = isSize ? FirstSize : FirstAlign;
3822 S.Diag(FirstField->getLocation(),
3823 diag::note_transparent_union_first_field_size_align)
3824 << isSize << FirstBits;
3825 return;
3826 }
3827 }
3828
3829 RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
3830 }
3831
AddAnnotationAttr(Decl * D,const AttributeCommonInfo & CI,StringRef Str,MutableArrayRef<Expr * > Args)3832 void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
3833 StringRef Str, MutableArrayRef<Expr *> Args) {
3834 auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI);
3835 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
3836 for (unsigned Idx = 0; Idx < Attr->args_size(); Idx++) {
3837 Expr *&E = Attr->args_begin()[Idx];
3838 assert(E && "error are handled before");
3839 if (E->isValueDependent() || E->isTypeDependent())
3840 continue;
3841
3842 if (E->getType()->isArrayType())
3843 E = ImpCastExprToType(E, Context.getPointerType(E->getType()),
3844 clang::CK_ArrayToPointerDecay)
3845 .get();
3846 if (E->getType()->isFunctionType())
3847 E = ImplicitCastExpr::Create(Context,
3848 Context.getPointerType(E->getType()),
3849 clang::CK_FunctionToPointerDecay, E, nullptr,
3850 VK_PRValue, FPOptionsOverride());
3851 if (E->isLValue())
3852 E = ImplicitCastExpr::Create(Context, E->getType().getNonReferenceType(),
3853 clang::CK_LValueToRValue, E, nullptr,
3854 VK_PRValue, FPOptionsOverride());
3855
3856 Expr::EvalResult Eval;
3857 Notes.clear();
3858 Eval.Diag = &Notes;
3859
3860 bool Result =
3861 E->EvaluateAsConstantExpr(Eval, Context);
3862
3863 /// Result means the expression can be folded to a constant.
3864 /// Note.empty() means the expression is a valid constant expression in the
3865 /// current language mode.
3866 if (!Result || !Notes.empty()) {
3867 Diag(E->getBeginLoc(), diag::err_attribute_argument_n_type)
3868 << CI << (Idx + 1) << AANT_ArgumentConstantExpr;
3869 for (auto &Note : Notes)
3870 Diag(Note.first, Note.second);
3871 return;
3872 }
3873 assert(Eval.Val.hasValue());
3874 E = ConstantExpr::Create(Context, E, Eval.Val);
3875 }
3876 D->addAttr(Attr);
3877 }
3878
handleAnnotateAttr(Sema & S,Decl * D,const ParsedAttr & AL)3879 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3880 // Make sure that there is a string literal as the annotation's first
3881 // argument.
3882 StringRef Str;
3883 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
3884 return;
3885
3886 llvm::SmallVector<Expr *, 4> Args;
3887 Args.reserve(AL.getNumArgs() - 1);
3888 for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) {
3889 assert(!AL.isArgIdent(Idx));
3890 Args.push_back(AL.getArgAsExpr(Idx));
3891 }
3892
3893 S.AddAnnotationAttr(D, AL, Str, Args);
3894 }
3895
handleAlignValueAttr(Sema & S,Decl * D,const ParsedAttr & AL)3896 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3897 S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
3898 }
3899
AddAlignValueAttr(Decl * D,const AttributeCommonInfo & CI,Expr * E)3900 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
3901 AlignValueAttr TmpAttr(Context, CI, E);
3902 SourceLocation AttrLoc = CI.getLoc();
3903
3904 QualType T;
3905 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
3906 T = TD->getUnderlyingType();
3907 else if (const auto *VD = dyn_cast<ValueDecl>(D))
3908 T = VD->getType();
3909 else
3910 llvm_unreachable("Unknown decl type for align_value");
3911
3912 if (!T->isDependentType() && !T->isAnyPointerType() &&
3913 !T->isReferenceType() && !T->isMemberPointerType()) {
3914 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
3915 << &TmpAttr << T << D->getSourceRange();
3916 return;
3917 }
3918
3919 if (!E->isValueDependent()) {
3920 llvm::APSInt Alignment;
3921 ExprResult ICE = VerifyIntegerConstantExpression(
3922 E, &Alignment, diag::err_align_value_attribute_argument_not_int);
3923 if (ICE.isInvalid())
3924 return;
3925
3926 if (!Alignment.isPowerOf2()) {
3927 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3928 << E->getSourceRange();
3929 return;
3930 }
3931
3932 D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
3933 return;
3934 }
3935
3936 // Save dependent expressions in the AST to be instantiated.
3937 D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
3938 }
3939
handleAlignedAttr(Sema & S,Decl * D,const ParsedAttr & AL)3940 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3941 // check the attribute arguments.
3942 if (AL.getNumArgs() > 1) {
3943 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3944 return;
3945 }
3946
3947 if (AL.getNumArgs() == 0) {
3948 D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
3949 return;
3950 }
3951
3952 Expr *E = AL.getArgAsExpr(0);
3953 if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3954 S.Diag(AL.getEllipsisLoc(),
3955 diag::err_pack_expansion_without_parameter_packs);
3956 return;
3957 }
3958
3959 if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
3960 return;
3961
3962 S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
3963 }
3964
AddAlignedAttr(Decl * D,const AttributeCommonInfo & CI,Expr * E,bool IsPackExpansion)3965 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
3966 bool IsPackExpansion) {
3967 AlignedAttr TmpAttr(Context, CI, true, E);
3968 SourceLocation AttrLoc = CI.getLoc();
3969
3970 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
3971 if (TmpAttr.isAlignas()) {
3972 // C++11 [dcl.align]p1:
3973 // An alignment-specifier may be applied to a variable or to a class
3974 // data member, but it shall not be applied to a bit-field, a function
3975 // parameter, the formal parameter of a catch clause, or a variable
3976 // declared with the register storage class specifier. An
3977 // alignment-specifier may also be applied to the declaration of a class
3978 // or enumeration type.
3979 // C11 6.7.5/2:
3980 // An alignment attribute shall not be specified in a declaration of
3981 // a typedef, or a bit-field, or a function, or a parameter, or an
3982 // object declared with the register storage-class specifier.
3983 int DiagKind = -1;
3984 if (isa<ParmVarDecl>(D)) {
3985 DiagKind = 0;
3986 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
3987 if (VD->getStorageClass() == SC_Register)
3988 DiagKind = 1;
3989 if (VD->isExceptionVariable())
3990 DiagKind = 2;
3991 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
3992 if (FD->isBitField())
3993 DiagKind = 3;
3994 } else if (!isa<TagDecl>(D)) {
3995 Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
3996 << (TmpAttr.isC11() ? ExpectedVariableOrField
3997 : ExpectedVariableFieldOrTag);
3998 return;
3999 }
4000 if (DiagKind != -1) {
4001 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4002 << &TmpAttr << DiagKind;
4003 return;
4004 }
4005 }
4006
4007 if (E->isValueDependent()) {
4008 // We can't support a dependent alignment on a non-dependent type,
4009 // because we have no way to model that a type is "alignment-dependent"
4010 // but not dependent in any other way.
4011 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4012 if (!TND->getUnderlyingType()->isDependentType()) {
4013 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4014 << E->getSourceRange();
4015 return;
4016 }
4017 }
4018
4019 // Save dependent expressions in the AST to be instantiated.
4020 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4021 AA->setPackExpansion(IsPackExpansion);
4022 D->addAttr(AA);
4023 return;
4024 }
4025
4026 // FIXME: Cache the number on the AL object?
4027 llvm::APSInt Alignment;
4028 ExprResult ICE = VerifyIntegerConstantExpression(
4029 E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4030 if (ICE.isInvalid())
4031 return;
4032
4033 uint64_t AlignVal = Alignment.getZExtValue();
4034 // 16 byte ByVal alignment not due to a vector member is not honoured by XL
4035 // on AIX. Emit a warning here that users are generating binary incompatible
4036 // code to be safe.
4037 if (AlignVal >= 16 && isa<FieldDecl>(D) &&
4038 Context.getTargetInfo().getTriple().isOSAIX())
4039 Diag(AttrLoc, diag::warn_not_xl_compatible) << E->getSourceRange();
4040
4041 // C++11 [dcl.align]p2:
4042 // -- if the constant expression evaluates to zero, the alignment
4043 // specifier shall have no effect
4044 // C11 6.7.5p6:
4045 // An alignment specification of zero has no effect.
4046 if (!(TmpAttr.isAlignas() && !Alignment)) {
4047 if (!llvm::isPowerOf2_64(AlignVal)) {
4048 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4049 << E->getSourceRange();
4050 return;
4051 }
4052 }
4053
4054 unsigned MaximumAlignment = Sema::MaximumAlignment;
4055 if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4056 MaximumAlignment = std::min(MaximumAlignment, 8192u);
4057 if (AlignVal > MaximumAlignment) {
4058 Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4059 << MaximumAlignment << E->getSourceRange();
4060 return;
4061 }
4062
4063 if (Context.getTargetInfo().isTLSSupported()) {
4064 unsigned MaxTLSAlign =
4065 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4066 .getQuantity();
4067 const auto *VD = dyn_cast<VarDecl>(D);
4068 if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
4069 VD->getTLSKind() != VarDecl::TLS_None) {
4070 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4071 << (unsigned)AlignVal << VD << MaxTLSAlign;
4072 return;
4073 }
4074 }
4075
4076 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4077 AA->setPackExpansion(IsPackExpansion);
4078 D->addAttr(AA);
4079 }
4080
AddAlignedAttr(Decl * D,const AttributeCommonInfo & CI,TypeSourceInfo * TS,bool IsPackExpansion)4081 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
4082 TypeSourceInfo *TS, bool IsPackExpansion) {
4083 // FIXME: Cache the number on the AL object if non-dependent?
4084 // FIXME: Perform checking of type validity
4085 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4086 AA->setPackExpansion(IsPackExpansion);
4087 D->addAttr(AA);
4088 }
4089
CheckAlignasUnderalignment(Decl * D)4090 void Sema::CheckAlignasUnderalignment(Decl *D) {
4091 assert(D->hasAttrs() && "no attributes on decl");
4092
4093 QualType UnderlyingTy, DiagTy;
4094 if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4095 UnderlyingTy = DiagTy = VD->getType();
4096 } else {
4097 UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
4098 if (const auto *ED = dyn_cast<EnumDecl>(D))
4099 UnderlyingTy = ED->getIntegerType();
4100 }
4101 if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4102 return;
4103
4104 // C++11 [dcl.align]p5, C11 6.7.5/4:
4105 // The combined effect of all alignment attributes in a declaration shall
4106 // not specify an alignment that is less strict than the alignment that
4107 // would otherwise be required for the entity being declared.
4108 AlignedAttr *AlignasAttr = nullptr;
4109 AlignedAttr *LastAlignedAttr = nullptr;
4110 unsigned Align = 0;
4111 for (auto *I : D->specific_attrs<AlignedAttr>()) {
4112 if (I->isAlignmentDependent())
4113 return;
4114 if (I->isAlignas())
4115 AlignasAttr = I;
4116 Align = std::max(Align, I->getAlignment(Context));
4117 LastAlignedAttr = I;
4118 }
4119
4120 if (Align && DiagTy->isSizelessType()) {
4121 Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4122 << LastAlignedAttr << DiagTy;
4123 } else if (AlignasAttr && Align) {
4124 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4125 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4126 if (NaturalAlign > RequestedAlign)
4127 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4128 << DiagTy << (unsigned)NaturalAlign.getQuantity();
4129 }
4130 }
4131
checkMSInheritanceAttrOnDefinition(CXXRecordDecl * RD,SourceRange Range,bool BestCase,MSInheritanceModel ExplicitModel)4132 bool Sema::checkMSInheritanceAttrOnDefinition(
4133 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4134 MSInheritanceModel ExplicitModel) {
4135 assert(RD->hasDefinition() && "RD has no definition!");
4136
4137 // We may not have seen base specifiers or any virtual methods yet. We will
4138 // have to wait until the record is defined to catch any mismatches.
4139 if (!RD->getDefinition()->isCompleteDefinition())
4140 return false;
4141
4142 // The unspecified model never matches what a definition could need.
4143 if (ExplicitModel == MSInheritanceModel::Unspecified)
4144 return false;
4145
4146 if (BestCase) {
4147 if (RD->calculateInheritanceModel() == ExplicitModel)
4148 return false;
4149 } else {
4150 if (RD->calculateInheritanceModel() <= ExplicitModel)
4151 return false;
4152 }
4153
4154 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4155 << 0 /*definition*/;
4156 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4157 return true;
4158 }
4159
4160 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
4161 /// attribute.
parseModeAttrArg(Sema & S,StringRef Str,unsigned & DestWidth,bool & IntegerMode,bool & ComplexMode,bool & ExplicitIEEE)4162 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4163 bool &IntegerMode, bool &ComplexMode,
4164 bool &ExplicitIEEE) {
4165 IntegerMode = true;
4166 ComplexMode = false;
4167 switch (Str.size()) {
4168 case 2:
4169 switch (Str[0]) {
4170 case 'Q':
4171 DestWidth = 8;
4172 break;
4173 case 'H':
4174 DestWidth = 16;
4175 break;
4176 case 'S':
4177 DestWidth = 32;
4178 break;
4179 case 'D':
4180 DestWidth = 64;
4181 break;
4182 case 'X':
4183 DestWidth = 96;
4184 break;
4185 case 'K': // KFmode - IEEE quad precision (__float128)
4186 ExplicitIEEE = true;
4187 DestWidth = Str[1] == 'I' ? 0 : 128;
4188 break;
4189 case 'T':
4190 ExplicitIEEE = false;
4191 DestWidth = 128;
4192 break;
4193 }
4194 if (Str[1] == 'F') {
4195 IntegerMode = false;
4196 } else if (Str[1] == 'C') {
4197 IntegerMode = false;
4198 ComplexMode = true;
4199 } else if (Str[1] != 'I') {
4200 DestWidth = 0;
4201 }
4202 break;
4203 case 4:
4204 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4205 // pointer on PIC16 and other embedded platforms.
4206 if (Str == "word")
4207 DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4208 else if (Str == "byte")
4209 DestWidth = S.Context.getTargetInfo().getCharWidth();
4210 break;
4211 case 7:
4212 if (Str == "pointer")
4213 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
4214 break;
4215 case 11:
4216 if (Str == "unwind_word")
4217 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4218 break;
4219 }
4220 }
4221
4222 /// handleModeAttr - This attribute modifies the width of a decl with primitive
4223 /// type.
4224 ///
4225 /// Despite what would be logical, the mode attribute is a decl attribute, not a
4226 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4227 /// HImode, not an intermediate pointer.
handleModeAttr(Sema & S,Decl * D,const ParsedAttr & AL)4228 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4229 // This attribute isn't documented, but glibc uses it. It changes
4230 // the width of an int or unsigned int to the specified size.
4231 if (!AL.isArgIdent(0)) {
4232 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4233 << AL << AANT_ArgumentIdentifier;
4234 return;
4235 }
4236
4237 IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
4238
4239 S.AddModeAttr(D, AL, Name);
4240 }
4241
AddModeAttr(Decl * D,const AttributeCommonInfo & CI,IdentifierInfo * Name,bool InInstantiation)4242 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
4243 IdentifierInfo *Name, bool InInstantiation) {
4244 StringRef Str = Name->getName();
4245 normalizeName(Str);
4246 SourceLocation AttrLoc = CI.getLoc();
4247
4248 unsigned DestWidth = 0;
4249 bool IntegerMode = true;
4250 bool ComplexMode = false;
4251 bool ExplicitIEEE = false;
4252 llvm::APInt VectorSize(64, 0);
4253 if (Str.size() >= 4 && Str[0] == 'V') {
4254 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4255 size_t StrSize = Str.size();
4256 size_t VectorStringLength = 0;
4257 while ((VectorStringLength + 1) < StrSize &&
4258 isdigit(Str[VectorStringLength + 1]))
4259 ++VectorStringLength;
4260 if (VectorStringLength &&
4261 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4262 VectorSize.isPowerOf2()) {
4263 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4264 IntegerMode, ComplexMode, ExplicitIEEE);
4265 // Avoid duplicate warning from template instantiation.
4266 if (!InInstantiation)
4267 Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4268 } else {
4269 VectorSize = 0;
4270 }
4271 }
4272
4273 if (!VectorSize)
4274 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4275 ExplicitIEEE);
4276
4277 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4278 // and friends, at least with glibc.
4279 // FIXME: Make sure floating-point mappings are accurate
4280 // FIXME: Support XF and TF types
4281 if (!DestWidth) {
4282 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4283 return;
4284 }
4285
4286 QualType OldTy;
4287 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4288 OldTy = TD->getUnderlyingType();
4289 else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4290 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4291 // Try to get type from enum declaration, default to int.
4292 OldTy = ED->getIntegerType();
4293 if (OldTy.isNull())
4294 OldTy = Context.IntTy;
4295 } else
4296 OldTy = cast<ValueDecl>(D)->getType();
4297
4298 if (OldTy->isDependentType()) {
4299 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4300 return;
4301 }
4302
4303 // Base type can also be a vector type (see PR17453).
4304 // Distinguish between base type and base element type.
4305 QualType OldElemTy = OldTy;
4306 if (const auto *VT = OldTy->getAs<VectorType>())
4307 OldElemTy = VT->getElementType();
4308
4309 // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4310 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4311 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4312 if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4313 VectorSize.getBoolValue()) {
4314 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4315 return;
4316 }
4317 bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4318 !OldElemTy->isExtIntType()) ||
4319 OldElemTy->getAs<EnumType>();
4320
4321 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4322 !IntegralOrAnyEnumType)
4323 Diag(AttrLoc, diag::err_mode_not_primitive);
4324 else if (IntegerMode) {
4325 if (!IntegralOrAnyEnumType)
4326 Diag(AttrLoc, diag::err_mode_wrong_type);
4327 } else if (ComplexMode) {
4328 if (!OldElemTy->isComplexType())
4329 Diag(AttrLoc, diag::err_mode_wrong_type);
4330 } else {
4331 if (!OldElemTy->isFloatingType())
4332 Diag(AttrLoc, diag::err_mode_wrong_type);
4333 }
4334
4335 QualType NewElemTy;
4336
4337 if (IntegerMode)
4338 NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4339 OldElemTy->isSignedIntegerType());
4340 else
4341 NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitIEEE);
4342
4343 if (NewElemTy.isNull()) {
4344 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4345 return;
4346 }
4347
4348 if (ComplexMode) {
4349 NewElemTy = Context.getComplexType(NewElemTy);
4350 }
4351
4352 QualType NewTy = NewElemTy;
4353 if (VectorSize.getBoolValue()) {
4354 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4355 VectorType::GenericVector);
4356 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4357 // Complex machine mode does not support base vector types.
4358 if (ComplexMode) {
4359 Diag(AttrLoc, diag::err_complex_mode_vector_type);
4360 return;
4361 }
4362 unsigned NumElements = Context.getTypeSize(OldElemTy) *
4363 OldVT->getNumElements() /
4364 Context.getTypeSize(NewElemTy);
4365 NewTy =
4366 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4367 }
4368
4369 if (NewTy.isNull()) {
4370 Diag(AttrLoc, diag::err_mode_wrong_type);
4371 return;
4372 }
4373
4374 // Install the new type.
4375 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4376 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4377 else if (auto *ED = dyn_cast<EnumDecl>(D))
4378 ED->setIntegerType(NewTy);
4379 else
4380 cast<ValueDecl>(D)->setType(NewTy);
4381
4382 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4383 }
4384
handleNoDebugAttr(Sema & S,Decl * D,const ParsedAttr & AL)4385 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4386 D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4387 }
4388
mergeAlwaysInlineAttr(Decl * D,const AttributeCommonInfo & CI,const IdentifierInfo * Ident)4389 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4390 const AttributeCommonInfo &CI,
4391 const IdentifierInfo *Ident) {
4392 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4393 Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4394 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4395 return nullptr;
4396 }
4397
4398 if (D->hasAttr<AlwaysInlineAttr>())
4399 return nullptr;
4400
4401 return ::new (Context) AlwaysInlineAttr(Context, CI);
4402 }
4403
mergeInternalLinkageAttr(Decl * D,const ParsedAttr & AL)4404 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4405 const ParsedAttr &AL) {
4406 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4407 // Attribute applies to Var but not any subclass of it (like ParmVar,
4408 // ImplicitParm or VarTemplateSpecialization).
4409 if (VD->getKind() != Decl::Var) {
4410 Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4411 << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4412 : ExpectedVariableOrFunction);
4413 return nullptr;
4414 }
4415 // Attribute does not apply to non-static local variables.
4416 if (VD->hasLocalStorage()) {
4417 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4418 return nullptr;
4419 }
4420 }
4421
4422 return ::new (Context) InternalLinkageAttr(Context, AL);
4423 }
4424 InternalLinkageAttr *
mergeInternalLinkageAttr(Decl * D,const InternalLinkageAttr & AL)4425 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4426 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4427 // Attribute applies to Var but not any subclass of it (like ParmVar,
4428 // ImplicitParm or VarTemplateSpecialization).
4429 if (VD->getKind() != Decl::Var) {
4430 Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4431 << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4432 : ExpectedVariableOrFunction);
4433 return nullptr;
4434 }
4435 // Attribute does not apply to non-static local variables.
4436 if (VD->hasLocalStorage()) {
4437 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4438 return nullptr;
4439 }
4440 }
4441
4442 return ::new (Context) InternalLinkageAttr(Context, AL);
4443 }
4444
mergeMinSizeAttr(Decl * D,const AttributeCommonInfo & CI)4445 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4446 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4447 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4448 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4449 return nullptr;
4450 }
4451
4452 if (D->hasAttr<MinSizeAttr>())
4453 return nullptr;
4454
4455 return ::new (Context) MinSizeAttr(Context, CI);
4456 }
4457
mergeSwiftNameAttr(Decl * D,const SwiftNameAttr & SNA,StringRef Name)4458 SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
4459 StringRef Name) {
4460 if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
4461 if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
4462 Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
4463 << PrevSNA << &SNA;
4464 Diag(SNA.getLoc(), diag::note_conflicting_attribute);
4465 }
4466
4467 D->dropAttr<SwiftNameAttr>();
4468 }
4469 return ::new (Context) SwiftNameAttr(Context, SNA, Name);
4470 }
4471
mergeOptimizeNoneAttr(Decl * D,const AttributeCommonInfo & CI)4472 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4473 const AttributeCommonInfo &CI) {
4474 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4475 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4476 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4477 D->dropAttr<AlwaysInlineAttr>();
4478 }
4479 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4480 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4481 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4482 D->dropAttr<MinSizeAttr>();
4483 }
4484
4485 if (D->hasAttr<OptimizeNoneAttr>())
4486 return nullptr;
4487
4488 return ::new (Context) OptimizeNoneAttr(Context, CI);
4489 }
4490
handleAlwaysInlineAttr(Sema & S,Decl * D,const ParsedAttr & AL)4491 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4492 if (AlwaysInlineAttr *Inline =
4493 S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
4494 D->addAttr(Inline);
4495 }
4496
handleMinSizeAttr(Sema & S,Decl * D,const ParsedAttr & AL)4497 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4498 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
4499 D->addAttr(MinSize);
4500 }
4501
handleOptimizeNoneAttr(Sema & S,Decl * D,const ParsedAttr & AL)4502 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4503 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
4504 D->addAttr(Optnone);
4505 }
4506
handleConstantAttr(Sema & S,Decl * D,const ParsedAttr & AL)4507 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4508 const auto *VD = cast<VarDecl>(D);
4509 if (VD->hasLocalStorage()) {
4510 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4511 return;
4512 }
4513 // constexpr variable may already get an implicit constant attr, which should
4514 // be replaced by the explicit constant attr.
4515 if (auto *A = D->getAttr<CUDAConstantAttr>()) {
4516 if (!A->isImplicit())
4517 return;
4518 D->dropAttr<CUDAConstantAttr>();
4519 }
4520 D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
4521 }
4522
handleSharedAttr(Sema & S,Decl * D,const ParsedAttr & AL)4523 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4524 const auto *VD = cast<VarDecl>(D);
4525 // extern __shared__ is only allowed on arrays with no length (e.g.
4526 // "int x[]").
4527 if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
4528 !isa<IncompleteArrayType>(VD->getType())) {
4529 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4530 return;
4531 }
4532 if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4533 S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4534 << S.CurrentCUDATarget())
4535 return;
4536 D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
4537 }
4538
handleGlobalAttr(Sema & S,Decl * D,const ParsedAttr & AL)4539 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4540 const auto *FD = cast<FunctionDecl>(D);
4541 if (!FD->getReturnType()->isVoidType() &&
4542 !FD->getReturnType()->getAs<AutoType>() &&
4543 !FD->getReturnType()->isInstantiationDependentType()) {
4544 SourceRange RTRange = FD->getReturnTypeSourceRange();
4545 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4546 << FD->getType()
4547 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4548 : FixItHint());
4549 return;
4550 }
4551 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4552 if (Method->isInstance()) {
4553 S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
4554 << Method;
4555 return;
4556 }
4557 S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
4558 }
4559 // Only warn for "inline" when compiling for host, to cut down on noise.
4560 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4561 S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
4562
4563 D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
4564 // In host compilation the kernel is emitted as a stub function, which is
4565 // a helper function for launching the kernel. The instructions in the helper
4566 // function has nothing to do with the source code of the kernel. Do not emit
4567 // debug info for the stub function to avoid confusing the debugger.
4568 if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
4569 D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
4570 }
4571
handleDeviceAttr(Sema & S,Decl * D,const ParsedAttr & AL)4572 static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4573 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4574 if (VD->hasLocalStorage()) {
4575 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4576 return;
4577 }
4578 }
4579
4580 if (auto *A = D->getAttr<CUDADeviceAttr>()) {
4581 if (!A->isImplicit())
4582 return;
4583 D->dropAttr<CUDADeviceAttr>();
4584 }
4585 D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
4586 }
4587
handleManagedAttr(Sema & S,Decl * D,const ParsedAttr & AL)4588 static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4589 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4590 if (VD->hasLocalStorage()) {
4591 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
4592 return;
4593 }
4594 }
4595 if (!D->hasAttr<HIPManagedAttr>())
4596 D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
4597 if (!D->hasAttr<CUDADeviceAttr>())
4598 D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
4599 }
4600
handleGNUInlineAttr(Sema & S,Decl * D,const ParsedAttr & AL)4601 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4602 const auto *Fn = cast<FunctionDecl>(D);
4603 if (!Fn->isInlineSpecified()) {
4604 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
4605 return;
4606 }
4607
4608 if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
4609 S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
4610
4611 D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
4612 }
4613
handleCallConvAttr(Sema & S,Decl * D,const ParsedAttr & AL)4614 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4615 if (hasDeclarator(D)) return;
4616
4617 // Diagnostic is emitted elsewhere: here we store the (valid) AL
4618 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
4619 CallingConv CC;
4620 if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
4621 return;
4622
4623 if (!isa<ObjCMethodDecl>(D)) {
4624 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4625 << AL << ExpectedFunctionOrMethod;
4626 return;
4627 }
4628
4629 switch (AL.getKind()) {
4630 case ParsedAttr::AT_FastCall:
4631 D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
4632 return;
4633 case ParsedAttr::AT_StdCall:
4634 D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
4635 return;
4636 case ParsedAttr::AT_ThisCall:
4637 D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
4638 return;
4639 case ParsedAttr::AT_CDecl:
4640 D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
4641 return;
4642 case ParsedAttr::AT_Pascal:
4643 D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
4644 return;
4645 case ParsedAttr::AT_SwiftCall:
4646 D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
4647 return;
4648 case ParsedAttr::AT_SwiftAsyncCall:
4649 D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
4650 return;
4651 case ParsedAttr::AT_VectorCall:
4652 D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
4653 return;
4654 case ParsedAttr::AT_MSABI:
4655 D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
4656 return;
4657 case ParsedAttr::AT_SysVABI:
4658 D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
4659 return;
4660 case ParsedAttr::AT_RegCall:
4661 D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
4662 return;
4663 case ParsedAttr::AT_Pcs: {
4664 PcsAttr::PCSType PCS;
4665 switch (CC) {
4666 case CC_AAPCS:
4667 PCS = PcsAttr::AAPCS;
4668 break;
4669 case CC_AAPCS_VFP:
4670 PCS = PcsAttr::AAPCS_VFP;
4671 break;
4672 default:
4673 llvm_unreachable("unexpected calling convention in pcs attribute");
4674 }
4675
4676 D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
4677 return;
4678 }
4679 case ParsedAttr::AT_AArch64VectorPcs:
4680 D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
4681 return;
4682 case ParsedAttr::AT_IntelOclBicc:
4683 D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
4684 return;
4685 case ParsedAttr::AT_PreserveMost:
4686 D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
4687 return;
4688 case ParsedAttr::AT_PreserveAll:
4689 D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
4690 return;
4691 default:
4692 llvm_unreachable("unexpected attribute kind");
4693 }
4694 }
4695
handleSuppressAttr(Sema & S,Decl * D,const ParsedAttr & AL)4696 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4697 if (!AL.checkAtLeastNumArgs(S, 1))
4698 return;
4699
4700 std::vector<StringRef> DiagnosticIdentifiers;
4701 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
4702 StringRef RuleName;
4703
4704 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
4705 return;
4706
4707 // FIXME: Warn if the rule name is unknown. This is tricky because only
4708 // clang-tidy knows about available rules.
4709 DiagnosticIdentifiers.push_back(RuleName);
4710 }
4711 D->addAttr(::new (S.Context)
4712 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
4713 DiagnosticIdentifiers.size()));
4714 }
4715
handleLifetimeCategoryAttr(Sema & S,Decl * D,const ParsedAttr & AL)4716 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4717 TypeSourceInfo *DerefTypeLoc = nullptr;
4718 QualType ParmType;
4719 if (AL.hasParsedType()) {
4720 ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
4721
4722 unsigned SelectIdx = ~0U;
4723 if (ParmType->isReferenceType())
4724 SelectIdx = 0;
4725 else if (ParmType->isArrayType())
4726 SelectIdx = 1;
4727
4728 if (SelectIdx != ~0U) {
4729 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
4730 << SelectIdx << AL;
4731 return;
4732 }
4733 }
4734
4735 // To check if earlier decl attributes do not conflict the newly parsed ones
4736 // we always add (and check) the attribute to the cannonical decl. We need
4737 // to repeat the check for attribute mutual exclusion because we're attaching
4738 // all of the attributes to the canonical declaration rather than the current
4739 // declaration.
4740 D = D->getCanonicalDecl();
4741 if (AL.getKind() == ParsedAttr::AT_Owner) {
4742 if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
4743 return;
4744 if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
4745 const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
4746 ? OAttr->getDerefType().getTypePtr()
4747 : nullptr;
4748 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4749 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4750 << AL << OAttr;
4751 S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
4752 }
4753 return;
4754 }
4755 for (Decl *Redecl : D->redecls()) {
4756 Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
4757 }
4758 } else {
4759 if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
4760 return;
4761 if (const auto *PAttr = D->getAttr<PointerAttr>()) {
4762 const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
4763 ? PAttr->getDerefType().getTypePtr()
4764 : nullptr;
4765 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
4766 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
4767 << AL << PAttr;
4768 S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
4769 }
4770 return;
4771 }
4772 for (Decl *Redecl : D->redecls()) {
4773 Redecl->addAttr(::new (S.Context)
4774 PointerAttr(S.Context, AL, DerefTypeLoc));
4775 }
4776 }
4777 }
4778
CheckCallingConvAttr(const ParsedAttr & Attrs,CallingConv & CC,const FunctionDecl * FD)4779 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
4780 const FunctionDecl *FD) {
4781 if (Attrs.isInvalid())
4782 return true;
4783
4784 if (Attrs.hasProcessingCache()) {
4785 CC = (CallingConv) Attrs.getProcessingCache();
4786 return false;
4787 }
4788
4789 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
4790 if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
4791 Attrs.setInvalid();
4792 return true;
4793 }
4794
4795 // TODO: diagnose uses of these conventions on the wrong target.
4796 switch (Attrs.getKind()) {
4797 case ParsedAttr::AT_CDecl:
4798 CC = CC_C;
4799 break;
4800 case ParsedAttr::AT_FastCall:
4801 CC = CC_X86FastCall;
4802 break;
4803 case ParsedAttr::AT_StdCall:
4804 CC = CC_X86StdCall;
4805 break;
4806 case ParsedAttr::AT_ThisCall:
4807 CC = CC_X86ThisCall;
4808 break;
4809 case ParsedAttr::AT_Pascal:
4810 CC = CC_X86Pascal;
4811 break;
4812 case ParsedAttr::AT_SwiftCall:
4813 CC = CC_Swift;
4814 break;
4815 case ParsedAttr::AT_SwiftAsyncCall:
4816 CC = CC_SwiftAsync;
4817 break;
4818 case ParsedAttr::AT_VectorCall:
4819 CC = CC_X86VectorCall;
4820 break;
4821 case ParsedAttr::AT_AArch64VectorPcs:
4822 CC = CC_AArch64VectorCall;
4823 break;
4824 case ParsedAttr::AT_RegCall:
4825 CC = CC_X86RegCall;
4826 break;
4827 case ParsedAttr::AT_MSABI:
4828 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
4829 CC_Win64;
4830 break;
4831 case ParsedAttr::AT_SysVABI:
4832 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
4833 CC_C;
4834 break;
4835 case ParsedAttr::AT_Pcs: {
4836 StringRef StrRef;
4837 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
4838 Attrs.setInvalid();
4839 return true;
4840 }
4841 if (StrRef == "aapcs") {
4842 CC = CC_AAPCS;
4843 break;
4844 } else if (StrRef == "aapcs-vfp") {
4845 CC = CC_AAPCS_VFP;
4846 break;
4847 }
4848
4849 Attrs.setInvalid();
4850 Diag(Attrs.getLoc(), diag::err_invalid_pcs);
4851 return true;
4852 }
4853 case ParsedAttr::AT_IntelOclBicc:
4854 CC = CC_IntelOclBicc;
4855 break;
4856 case ParsedAttr::AT_PreserveMost:
4857 CC = CC_PreserveMost;
4858 break;
4859 case ParsedAttr::AT_PreserveAll:
4860 CC = CC_PreserveAll;
4861 break;
4862 default: llvm_unreachable("unexpected attribute kind");
4863 }
4864
4865 TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
4866 const TargetInfo &TI = Context.getTargetInfo();
4867 // CUDA functions may have host and/or device attributes which indicate
4868 // their targeted execution environment, therefore the calling convention
4869 // of functions in CUDA should be checked against the target deduced based
4870 // on their host/device attributes.
4871 if (LangOpts.CUDA) {
4872 auto *Aux = Context.getAuxTargetInfo();
4873 auto CudaTarget = IdentifyCUDATarget(FD);
4874 bool CheckHost = false, CheckDevice = false;
4875 switch (CudaTarget) {
4876 case CFT_HostDevice:
4877 CheckHost = true;
4878 CheckDevice = true;
4879 break;
4880 case CFT_Host:
4881 CheckHost = true;
4882 break;
4883 case CFT_Device:
4884 case CFT_Global:
4885 CheckDevice = true;
4886 break;
4887 case CFT_InvalidTarget:
4888 llvm_unreachable("unexpected cuda target");
4889 }
4890 auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
4891 auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
4892 if (CheckHost && HostTI)
4893 A = HostTI->checkCallingConvention(CC);
4894 if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
4895 A = DeviceTI->checkCallingConvention(CC);
4896 } else {
4897 A = TI.checkCallingConvention(CC);
4898 }
4899
4900 switch (A) {
4901 case TargetInfo::CCCR_OK:
4902 break;
4903
4904 case TargetInfo::CCCR_Ignore:
4905 // Treat an ignored convention as if it was an explicit C calling convention
4906 // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
4907 // that command line flags that change the default convention to
4908 // __vectorcall don't affect declarations marked __stdcall.
4909 CC = CC_C;
4910 break;
4911
4912 case TargetInfo::CCCR_Error:
4913 Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
4914 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4915 break;
4916
4917 case TargetInfo::CCCR_Warning: {
4918 Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
4919 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
4920
4921 // This convention is not valid for the target. Use the default function or
4922 // method calling convention.
4923 bool IsCXXMethod = false, IsVariadic = false;
4924 if (FD) {
4925 IsCXXMethod = FD->isCXXInstanceMember();
4926 IsVariadic = FD->isVariadic();
4927 }
4928 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
4929 break;
4930 }
4931 }
4932
4933 Attrs.setProcessingCache((unsigned) CC);
4934 return false;
4935 }
4936
4937 /// Pointer-like types in the default address space.
isValidSwiftContextType(QualType Ty)4938 static bool isValidSwiftContextType(QualType Ty) {
4939 if (!Ty->hasPointerRepresentation())
4940 return Ty->isDependentType();
4941 return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
4942 }
4943
4944 /// Pointers and references in the default address space.
isValidSwiftIndirectResultType(QualType Ty)4945 static bool isValidSwiftIndirectResultType(QualType Ty) {
4946 if (const auto *PtrType = Ty->getAs<PointerType>()) {
4947 Ty = PtrType->getPointeeType();
4948 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4949 Ty = RefType->getPointeeType();
4950 } else {
4951 return Ty->isDependentType();
4952 }
4953 return Ty.getAddressSpace() == LangAS::Default;
4954 }
4955
4956 /// Pointers and references to pointers in the default address space.
isValidSwiftErrorResultType(QualType Ty)4957 static bool isValidSwiftErrorResultType(QualType Ty) {
4958 if (const auto *PtrType = Ty->getAs<PointerType>()) {
4959 Ty = PtrType->getPointeeType();
4960 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4961 Ty = RefType->getPointeeType();
4962 } else {
4963 return Ty->isDependentType();
4964 }
4965 if (!Ty.getQualifiers().empty())
4966 return false;
4967 return isValidSwiftContextType(Ty);
4968 }
4969
AddParameterABIAttr(Decl * D,const AttributeCommonInfo & CI,ParameterABI abi)4970 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
4971 ParameterABI abi) {
4972
4973 QualType type = cast<ParmVarDecl>(D)->getType();
4974
4975 if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
4976 if (existingAttr->getABI() != abi) {
4977 Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
4978 << getParameterABISpelling(abi) << existingAttr;
4979 Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
4980 return;
4981 }
4982 }
4983
4984 switch (abi) {
4985 case ParameterABI::Ordinary:
4986 llvm_unreachable("explicit attribute for ordinary parameter ABI?");
4987
4988 case ParameterABI::SwiftContext:
4989 if (!isValidSwiftContextType(type)) {
4990 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4991 << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
4992 }
4993 D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
4994 return;
4995
4996 case ParameterABI::SwiftAsyncContext:
4997 if (!isValidSwiftContextType(type)) {
4998 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
4999 << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5000 }
5001 D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
5002 return;
5003
5004 case ParameterABI::SwiftErrorResult:
5005 if (!isValidSwiftErrorResultType(type)) {
5006 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5007 << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
5008 }
5009 D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
5010 return;
5011
5012 case ParameterABI::SwiftIndirectResult:
5013 if (!isValidSwiftIndirectResultType(type)) {
5014 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5015 << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
5016 }
5017 D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
5018 return;
5019 }
5020 llvm_unreachable("bad parameter ABI attribute");
5021 }
5022
5023 /// Checks a regparm attribute, returning true if it is ill-formed and
5024 /// otherwise setting numParams to the appropriate value.
CheckRegparmAttr(const ParsedAttr & AL,unsigned & numParams)5025 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5026 if (AL.isInvalid())
5027 return true;
5028
5029 if (!AL.checkExactlyNumArgs(*this, 1)) {
5030 AL.setInvalid();
5031 return true;
5032 }
5033
5034 uint32_t NP;
5035 Expr *NumParamsExpr = AL.getArgAsExpr(0);
5036 if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
5037 AL.setInvalid();
5038 return true;
5039 }
5040
5041 if (Context.getTargetInfo().getRegParmMax() == 0) {
5042 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5043 << NumParamsExpr->getSourceRange();
5044 AL.setInvalid();
5045 return true;
5046 }
5047
5048 numParams = NP;
5049 if (numParams > Context.getTargetInfo().getRegParmMax()) {
5050 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5051 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5052 AL.setInvalid();
5053 return true;
5054 }
5055
5056 return false;
5057 }
5058
5059 // Checks whether an argument of launch_bounds attribute is
5060 // acceptable, performs implicit conversion to Rvalue, and returns
5061 // non-nullptr Expr result on success. Otherwise, it returns nullptr
5062 // and may output an error.
makeLaunchBoundsArgExpr(Sema & S,Expr * E,const CUDALaunchBoundsAttr & AL,const unsigned Idx)5063 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
5064 const CUDALaunchBoundsAttr &AL,
5065 const unsigned Idx) {
5066 if (S.DiagnoseUnexpandedParameterPack(E))
5067 return nullptr;
5068
5069 // Accept template arguments for now as they depend on something else.
5070 // We'll get to check them when they eventually get instantiated.
5071 if (E->isValueDependent())
5072 return E;
5073
5074 Optional<llvm::APSInt> I = llvm::APSInt(64);
5075 if (!(I = E->getIntegerConstantExpr(S.Context))) {
5076 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5077 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5078 return nullptr;
5079 }
5080 // Make sure we can fit it in 32 bits.
5081 if (!I->isIntN(32)) {
5082 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5083 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5084 return nullptr;
5085 }
5086 if (*I < 0)
5087 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5088 << &AL << Idx << E->getSourceRange();
5089
5090 // We may need to perform implicit conversion of the argument.
5091 InitializedEntity Entity = InitializedEntity::InitializeParameter(
5092 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5093 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5094 assert(!ValArg.isInvalid() &&
5095 "Unexpected PerformCopyInitialization() failure.");
5096
5097 return ValArg.getAs<Expr>();
5098 }
5099
AddLaunchBoundsAttr(Decl * D,const AttributeCommonInfo & CI,Expr * MaxThreads,Expr * MinBlocks)5100 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
5101 Expr *MaxThreads, Expr *MinBlocks) {
5102 CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks);
5103 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5104 if (MaxThreads == nullptr)
5105 return;
5106
5107 if (MinBlocks) {
5108 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5109 if (MinBlocks == nullptr)
5110 return;
5111 }
5112
5113 D->addAttr(::new (Context)
5114 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks));
5115 }
5116
handleLaunchBoundsAttr(Sema & S,Decl * D,const ParsedAttr & AL)5117 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5118 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
5119 return;
5120
5121 S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5122 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr);
5123 }
5124
handleArgumentWithTypeTagAttr(Sema & S,Decl * D,const ParsedAttr & AL)5125 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
5126 const ParsedAttr &AL) {
5127 if (!AL.isArgIdent(0)) {
5128 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5129 << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5130 return;
5131 }
5132
5133 ParamIdx ArgumentIdx;
5134 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
5135 ArgumentIdx))
5136 return;
5137
5138 ParamIdx TypeTagIdx;
5139 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
5140 TypeTagIdx))
5141 return;
5142
5143 bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5144 if (IsPointer) {
5145 // Ensure that buffer has a pointer type.
5146 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5147 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5148 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5149 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5150 }
5151
5152 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5153 S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
5154 IsPointer));
5155 }
5156
handleTypeTagForDatatypeAttr(Sema & S,Decl * D,const ParsedAttr & AL)5157 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
5158 const ParsedAttr &AL) {
5159 if (!AL.isArgIdent(0)) {
5160 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5161 << AL << 1 << AANT_ArgumentIdentifier;
5162 return;
5163 }
5164
5165 if (!AL.checkExactlyNumArgs(S, 1))
5166 return;
5167
5168 if (!isa<VarDecl>(D)) {
5169 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5170 << AL << ExpectedVariable;
5171 return;
5172 }
5173
5174 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
5175 TypeSourceInfo *MatchingCTypeLoc = nullptr;
5176 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5177 assert(MatchingCTypeLoc && "no type source info for attribute argument");
5178
5179 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5180 S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5181 AL.getMustBeNull()));
5182 }
5183
handleXRayLogArgsAttr(Sema & S,Decl * D,const ParsedAttr & AL)5184 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5185 ParamIdx ArgCount;
5186
5187 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
5188 ArgCount,
5189 true /* CanIndexImplicitThis */))
5190 return;
5191
5192 // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5193 D->addAttr(::new (S.Context)
5194 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5195 }
5196
handlePatchableFunctionEntryAttr(Sema & S,Decl * D,const ParsedAttr & AL)5197 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
5198 const ParsedAttr &AL) {
5199 uint32_t Count = 0, Offset = 0;
5200 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
5201 return;
5202 if (AL.getNumArgs() == 2) {
5203 Expr *Arg = AL.getArgAsExpr(1);
5204 if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
5205 return;
5206 if (Count < Offset) {
5207 S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5208 << &AL << 0 << Count << Arg->getBeginLoc();
5209 return;
5210 }
5211 }
5212 D->addAttr(::new (S.Context)
5213 PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
5214 }
5215
5216 namespace {
5217 struct IntrinToName {
5218 uint32_t Id;
5219 int32_t FullName;
5220 int32_t ShortName;
5221 };
5222 } // unnamed namespace
5223
ArmBuiltinAliasValid(unsigned BuiltinID,StringRef AliasName,ArrayRef<IntrinToName> Map,const char * IntrinNames)5224 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
5225 ArrayRef<IntrinToName> Map,
5226 const char *IntrinNames) {
5227 if (AliasName.startswith("__arm_"))
5228 AliasName = AliasName.substr(6);
5229 const IntrinToName *It = std::lower_bound(
5230 Map.begin(), Map.end(), BuiltinID,
5231 [](const IntrinToName &L, unsigned Id) { return L.Id < Id; });
5232 if (It == Map.end() || It->Id != BuiltinID)
5233 return false;
5234 StringRef FullName(&IntrinNames[It->FullName]);
5235 if (AliasName == FullName)
5236 return true;
5237 if (It->ShortName == -1)
5238 return false;
5239 StringRef ShortName(&IntrinNames[It->ShortName]);
5240 return AliasName == ShortName;
5241 }
5242
ArmMveAliasValid(unsigned BuiltinID,StringRef AliasName)5243 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5244 #include "clang/Basic/arm_mve_builtin_aliases.inc"
5245 // The included file defines:
5246 // - ArrayRef<IntrinToName> Map
5247 // - const char IntrinNames[]
5248 return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5249 }
5250
ArmCdeAliasValid(unsigned BuiltinID,StringRef AliasName)5251 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
5252 #include "clang/Basic/arm_cde_builtin_aliases.inc"
5253 return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5254 }
5255
ArmSveAliasValid(ASTContext & Context,unsigned BuiltinID,StringRef AliasName)5256 static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID,
5257 StringRef AliasName) {
5258 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
5259 BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID);
5260 return BuiltinID >= AArch64::FirstSVEBuiltin &&
5261 BuiltinID <= AArch64::LastSVEBuiltin;
5262 }
5263
handleArmBuiltinAliasAttr(Sema & S,Decl * D,const ParsedAttr & AL)5264 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5265 if (!AL.isArgIdent(0)) {
5266 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5267 << AL << 1 << AANT_ArgumentIdentifier;
5268 return;
5269 }
5270
5271 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5272 unsigned BuiltinID = Ident->getBuiltinID();
5273 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5274
5275 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5276 if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5277 (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
5278 !ArmCdeAliasValid(BuiltinID, AliasName))) {
5279 S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
5280 return;
5281 }
5282
5283 D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
5284 }
5285
RISCVAliasValid(unsigned BuiltinID,StringRef AliasName)5286 static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) {
5287 return BuiltinID >= Builtin::FirstTSBuiltin &&
5288 BuiltinID < RISCV::LastTSBuiltin;
5289 }
5290
handleBuiltinAliasAttr(Sema & S,Decl * D,const ParsedAttr & AL)5291 static void handleBuiltinAliasAttr(Sema &S, Decl *D,
5292 const ParsedAttr &AL) {
5293 if (!AL.isArgIdent(0)) {
5294 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5295 << AL << 1 << AANT_ArgumentIdentifier;
5296 return;
5297 }
5298
5299 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5300 unsigned BuiltinID = Ident->getBuiltinID();
5301 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5302
5303 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5304 bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5305 bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5306 if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5307 (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) &&
5308 !ArmCdeAliasValid(BuiltinID, AliasName)) ||
5309 (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) ||
5310 (!IsAArch64 && !IsARM && !IsRISCV)) {
5311 S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5312 return;
5313 }
5314
5315 D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5316 }
5317
5318 //===----------------------------------------------------------------------===//
5319 // Checker-specific attribute handlers.
5320 //===----------------------------------------------------------------------===//
isValidSubjectOfNSReturnsRetainedAttribute(QualType QT)5321 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
5322 return QT->isDependentType() || QT->isObjCRetainableType();
5323 }
5324
isValidSubjectOfNSAttribute(QualType QT)5325 static bool isValidSubjectOfNSAttribute(QualType QT) {
5326 return QT->isDependentType() || QT->isObjCObjectPointerType() ||
5327 QT->isObjCNSObjectType();
5328 }
5329
isValidSubjectOfCFAttribute(QualType QT)5330 static bool isValidSubjectOfCFAttribute(QualType QT) {
5331 return QT->isDependentType() || QT->isPointerType() ||
5332 isValidSubjectOfNSAttribute(QT);
5333 }
5334
isValidSubjectOfOSAttribute(QualType QT)5335 static bool isValidSubjectOfOSAttribute(QualType QT) {
5336 if (QT->isDependentType())
5337 return true;
5338 QualType PT = QT->getPointeeType();
5339 return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
5340 }
5341
AddXConsumedAttr(Decl * D,const AttributeCommonInfo & CI,RetainOwnershipKind K,bool IsTemplateInstantiation)5342 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
5343 RetainOwnershipKind K,
5344 bool IsTemplateInstantiation) {
5345 ValueDecl *VD = cast<ValueDecl>(D);
5346 switch (K) {
5347 case RetainOwnershipKind::OS:
5348 handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
5349 *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
5350 diag::warn_ns_attribute_wrong_parameter_type,
5351 /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5352 return;
5353 case RetainOwnershipKind::NS:
5354 handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5355 *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5356
5357 // These attributes are normally just advisory, but in ARC, ns_consumed
5358 // is significant. Allow non-dependent code to contain inappropriate
5359 // attributes even in ARC, but require template instantiations to be
5360 // set up correctly.
5361 ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5362 ? diag::err_ns_attribute_wrong_parameter_type
5363 : diag::warn_ns_attribute_wrong_parameter_type),
5364 /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5365 return;
5366 case RetainOwnershipKind::CF:
5367 handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5368 *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5369 diag::warn_ns_attribute_wrong_parameter_type,
5370 /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5371 return;
5372 }
5373 }
5374
5375 static Sema::RetainOwnershipKind
parsedAttrToRetainOwnershipKind(const ParsedAttr & AL)5376 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5377 switch (AL.getKind()) {
5378 case ParsedAttr::AT_CFConsumed:
5379 case ParsedAttr::AT_CFReturnsRetained:
5380 case ParsedAttr::AT_CFReturnsNotRetained:
5381 return Sema::RetainOwnershipKind::CF;
5382 case ParsedAttr::AT_OSConsumesThis:
5383 case ParsedAttr::AT_OSConsumed:
5384 case ParsedAttr::AT_OSReturnsRetained:
5385 case ParsedAttr::AT_OSReturnsNotRetained:
5386 case ParsedAttr::AT_OSReturnsRetainedOnZero:
5387 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
5388 return Sema::RetainOwnershipKind::OS;
5389 case ParsedAttr::AT_NSConsumesSelf:
5390 case ParsedAttr::AT_NSConsumed:
5391 case ParsedAttr::AT_NSReturnsRetained:
5392 case ParsedAttr::AT_NSReturnsNotRetained:
5393 case ParsedAttr::AT_NSReturnsAutoreleased:
5394 return Sema::RetainOwnershipKind::NS;
5395 default:
5396 llvm_unreachable("Wrong argument supplied");
5397 }
5398 }
5399
checkNSReturnsRetainedReturnType(SourceLocation Loc,QualType QT)5400 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
5401 if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
5402 return false;
5403
5404 Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
5405 << "'ns_returns_retained'" << 0 << 0;
5406 return true;
5407 }
5408
5409 /// \return whether the parameter is a pointer to OSObject pointer.
isValidOSObjectOutParameter(const Decl * D)5410 static bool isValidOSObjectOutParameter(const Decl *D) {
5411 const auto *PVD = dyn_cast<ParmVarDecl>(D);
5412 if (!PVD)
5413 return false;
5414 QualType QT = PVD->getType();
5415 QualType PT = QT->getPointeeType();
5416 return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
5417 }
5418
handleXReturnsXRetainedAttr(Sema & S,Decl * D,const ParsedAttr & AL)5419 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
5420 const ParsedAttr &AL) {
5421 QualType ReturnType;
5422 Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
5423
5424 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
5425 ReturnType = MD->getReturnType();
5426 } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
5427 (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
5428 return; // ignore: was handled as a type attribute
5429 } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
5430 ReturnType = PD->getType();
5431 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5432 ReturnType = FD->getReturnType();
5433 } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
5434 // Attributes on parameters are used for out-parameters,
5435 // passed as pointers-to-pointers.
5436 unsigned DiagID = K == Sema::RetainOwnershipKind::CF
5437 ? /*pointer-to-CF-pointer*/2
5438 : /*pointer-to-OSObject-pointer*/3;
5439 ReturnType = Param->getType()->getPointeeType();
5440 if (ReturnType.isNull()) {
5441 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5442 << AL << DiagID << AL.getRange();
5443 return;
5444 }
5445 } else if (AL.isUsedAsTypeAttr()) {
5446 return;
5447 } else {
5448 AttributeDeclKind ExpectedDeclKind;
5449 switch (AL.getKind()) {
5450 default: llvm_unreachable("invalid ownership attribute");
5451 case ParsedAttr::AT_NSReturnsRetained:
5452 case ParsedAttr::AT_NSReturnsAutoreleased:
5453 case ParsedAttr::AT_NSReturnsNotRetained:
5454 ExpectedDeclKind = ExpectedFunctionOrMethod;
5455 break;
5456
5457 case ParsedAttr::AT_OSReturnsRetained:
5458 case ParsedAttr::AT_OSReturnsNotRetained:
5459 case ParsedAttr::AT_CFReturnsRetained:
5460 case ParsedAttr::AT_CFReturnsNotRetained:
5461 ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
5462 break;
5463 }
5464 S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
5465 << AL.getRange() << AL << ExpectedDeclKind;
5466 return;
5467 }
5468
5469 bool TypeOK;
5470 bool Cf;
5471 unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
5472 switch (AL.getKind()) {
5473 default: llvm_unreachable("invalid ownership attribute");
5474 case ParsedAttr::AT_NSReturnsRetained:
5475 TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
5476 Cf = false;
5477 break;
5478
5479 case ParsedAttr::AT_NSReturnsAutoreleased:
5480 case ParsedAttr::AT_NSReturnsNotRetained:
5481 TypeOK = isValidSubjectOfNSAttribute(ReturnType);
5482 Cf = false;
5483 break;
5484
5485 case ParsedAttr::AT_CFReturnsRetained:
5486 case ParsedAttr::AT_CFReturnsNotRetained:
5487 TypeOK = isValidSubjectOfCFAttribute(ReturnType);
5488 Cf = true;
5489 break;
5490
5491 case ParsedAttr::AT_OSReturnsRetained:
5492 case ParsedAttr::AT_OSReturnsNotRetained:
5493 TypeOK = isValidSubjectOfOSAttribute(ReturnType);
5494 Cf = true;
5495 ParmDiagID = 3; // Pointer-to-OSObject-pointer
5496 break;
5497 }
5498
5499 if (!TypeOK) {
5500 if (AL.isUsedAsTypeAttr())
5501 return;
5502
5503 if (isa<ParmVarDecl>(D)) {
5504 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
5505 << AL << ParmDiagID << AL.getRange();
5506 } else {
5507 // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
5508 enum : unsigned {
5509 Function,
5510 Method,
5511 Property
5512 } SubjectKind = Function;
5513 if (isa<ObjCMethodDecl>(D))
5514 SubjectKind = Method;
5515 else if (isa<ObjCPropertyDecl>(D))
5516 SubjectKind = Property;
5517 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5518 << AL << SubjectKind << Cf << AL.getRange();
5519 }
5520 return;
5521 }
5522
5523 switch (AL.getKind()) {
5524 default:
5525 llvm_unreachable("invalid ownership attribute");
5526 case ParsedAttr::AT_NSReturnsAutoreleased:
5527 handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
5528 return;
5529 case ParsedAttr::AT_CFReturnsNotRetained:
5530 handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
5531 return;
5532 case ParsedAttr::AT_NSReturnsNotRetained:
5533 handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
5534 return;
5535 case ParsedAttr::AT_CFReturnsRetained:
5536 handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
5537 return;
5538 case ParsedAttr::AT_NSReturnsRetained:
5539 handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
5540 return;
5541 case ParsedAttr::AT_OSReturnsRetained:
5542 handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
5543 return;
5544 case ParsedAttr::AT_OSReturnsNotRetained:
5545 handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
5546 return;
5547 };
5548 }
5549
handleObjCReturnsInnerPointerAttr(Sema & S,Decl * D,const ParsedAttr & Attrs)5550 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
5551 const ParsedAttr &Attrs) {
5552 const int EP_ObjCMethod = 1;
5553 const int EP_ObjCProperty = 2;
5554
5555 SourceLocation loc = Attrs.getLoc();
5556 QualType resultType;
5557 if (isa<ObjCMethodDecl>(D))
5558 resultType = cast<ObjCMethodDecl>(D)->getReturnType();
5559 else
5560 resultType = cast<ObjCPropertyDecl>(D)->getType();
5561
5562 if (!resultType->isReferenceType() &&
5563 (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
5564 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
5565 << SourceRange(loc) << Attrs
5566 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
5567 << /*non-retainable pointer*/ 2;
5568
5569 // Drop the attribute.
5570 return;
5571 }
5572
5573 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
5574 }
5575
handleObjCRequiresSuperAttr(Sema & S,Decl * D,const ParsedAttr & Attrs)5576 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
5577 const ParsedAttr &Attrs) {
5578 const auto *Method = cast<ObjCMethodDecl>(D);
5579
5580 const DeclContext *DC = Method->getDeclContext();
5581 if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
5582 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5583 << 0;
5584 S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
5585 return;
5586 }
5587 if (Method->getMethodFamily() == OMF_dealloc) {
5588 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
5589 << 1;
5590 return;
5591 }
5592
5593 D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
5594 }
5595
handleNSErrorDomain(Sema & S,Decl * D,const ParsedAttr & AL)5596 static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) {
5597 auto *E = AL.getArgAsExpr(0);
5598 auto Loc = E ? E->getBeginLoc() : AL.getLoc();
5599
5600 auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0));
5601 if (!DRE) {
5602 S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0;
5603 return;
5604 }
5605
5606 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
5607 if (!VD) {
5608 S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl();
5609 return;
5610 }
5611
5612 if (!isNSStringType(VD->getType(), S.Context) &&
5613 !isCFStringType(VD->getType(), S.Context)) {
5614 S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD;
5615 return;
5616 }
5617
5618 D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD));
5619 }
5620
handleObjCBridgeAttr(Sema & S,Decl * D,const ParsedAttr & AL)5621 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5622 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5623
5624 if (!Parm) {
5625 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5626 return;
5627 }
5628
5629 // Typedefs only allow objc_bridge(id) and have some additional checking.
5630 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
5631 if (!Parm->Ident->isStr("id")) {
5632 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
5633 return;
5634 }
5635
5636 // Only allow 'cv void *'.
5637 QualType T = TD->getUnderlyingType();
5638 if (!T->isVoidPointerType()) {
5639 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
5640 return;
5641 }
5642 }
5643
5644 D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
5645 }
5646
handleObjCBridgeMutableAttr(Sema & S,Decl * D,const ParsedAttr & AL)5647 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
5648 const ParsedAttr &AL) {
5649 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
5650
5651 if (!Parm) {
5652 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5653 return;
5654 }
5655
5656 D->addAttr(::new (S.Context)
5657 ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
5658 }
5659
handleObjCBridgeRelatedAttr(Sema & S,Decl * D,const ParsedAttr & AL)5660 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
5661 const ParsedAttr &AL) {
5662 IdentifierInfo *RelatedClass =
5663 AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
5664 if (!RelatedClass) {
5665 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
5666 return;
5667 }
5668 IdentifierInfo *ClassMethod =
5669 AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
5670 IdentifierInfo *InstanceMethod =
5671 AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
5672 D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
5673 S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
5674 }
5675
handleObjCDesignatedInitializer(Sema & S,Decl * D,const ParsedAttr & AL)5676 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
5677 const ParsedAttr &AL) {
5678 DeclContext *Ctx = D->getDeclContext();
5679
5680 // This attribute can only be applied to methods in interfaces or class
5681 // extensions.
5682 if (!isa<ObjCInterfaceDecl>(Ctx) &&
5683 !(isa<ObjCCategoryDecl>(Ctx) &&
5684 cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
5685 S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
5686 return;
5687 }
5688
5689 ObjCInterfaceDecl *IFace;
5690 if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
5691 IFace = CatDecl->getClassInterface();
5692 else
5693 IFace = cast<ObjCInterfaceDecl>(Ctx);
5694
5695 if (!IFace)
5696 return;
5697
5698 IFace->setHasDesignatedInitializers();
5699 D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
5700 }
5701
handleObjCRuntimeName(Sema & S,Decl * D,const ParsedAttr & AL)5702 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
5703 StringRef MetaDataName;
5704 if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
5705 return;
5706 D->addAttr(::new (S.Context)
5707 ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
5708 }
5709
5710 // When a user wants to use objc_boxable with a union or struct
5711 // but they don't have access to the declaration (legacy/third-party code)
5712 // then they can 'enable' this feature with a typedef:
5713 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
handleObjCBoxable(Sema & S,Decl * D,const ParsedAttr & AL)5714 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
5715 bool notify = false;
5716
5717 auto *RD = dyn_cast<RecordDecl>(D);
5718 if (RD && RD->getDefinition()) {
5719 RD = RD->getDefinition();
5720 notify = true;
5721 }
5722
5723 if (RD) {
5724 ObjCBoxableAttr *BoxableAttr =
5725 ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
5726 RD->addAttr(BoxableAttr);
5727 if (notify) {
5728 // we need to notify ASTReader/ASTWriter about
5729 // modification of existing declaration
5730 if (ASTMutationListener *L = S.getASTMutationListener())
5731 L->AddedAttributeToRecord(BoxableAttr, RD);
5732 }
5733 }
5734 }
5735
handleObjCOwnershipAttr(Sema & S,Decl * D,const ParsedAttr & AL)5736 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5737 if (hasDeclarator(D)) return;
5738
5739 S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
5740 << AL.getRange() << AL << ExpectedVariable;
5741 }
5742
handleObjCPreciseLifetimeAttr(Sema & S,Decl * D,const ParsedAttr & AL)5743 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
5744 const ParsedAttr &AL) {
5745 const auto *VD = cast<ValueDecl>(D);
5746 QualType QT = VD->getType();
5747
5748 if (!QT->isDependentType() &&
5749 !QT->isObjCLifetimeType()) {
5750 S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
5751 << QT;
5752 return;
5753 }
5754
5755 Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
5756
5757 // If we have no lifetime yet, check the lifetime we're presumably
5758 // going to infer.
5759 if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
5760 Lifetime = QT->getObjCARCImplicitLifetime();
5761
5762 switch (Lifetime) {
5763 case Qualifiers::OCL_None:
5764 assert(QT->isDependentType() &&
5765 "didn't infer lifetime for non-dependent type?");
5766 break;
5767
5768 case Qualifiers::OCL_Weak: // meaningful
5769 case Qualifiers::OCL_Strong: // meaningful
5770 break;
5771
5772 case Qualifiers::OCL_ExplicitNone:
5773 case Qualifiers::OCL_Autoreleasing:
5774 S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
5775 << (Lifetime == Qualifiers::OCL_Autoreleasing);
5776 break;
5777 }
5778
5779 D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
5780 }
5781
handleSwiftAttrAttr(Sema & S,Decl * D,const ParsedAttr & AL)5782 static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5783 // Make sure that there is a string literal as the annotation's single
5784 // argument.
5785 StringRef Str;
5786 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
5787 return;
5788
5789 D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str));
5790 }
5791
handleSwiftBridge(Sema & S,Decl * D,const ParsedAttr & AL)5792 static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) {
5793 // Make sure that there is a string literal as the annotation's single
5794 // argument.
5795 StringRef BT;
5796 if (!S.checkStringLiteralArgumentAttr(AL, 0, BT))
5797 return;
5798
5799 // Warn about duplicate attributes if they have different arguments, but drop
5800 // any duplicate attributes regardless.
5801 if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
5802 if (Other->getSwiftType() != BT)
5803 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
5804 return;
5805 }
5806
5807 D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT));
5808 }
5809
isErrorParameter(Sema & S,QualType QT)5810 static bool isErrorParameter(Sema &S, QualType QT) {
5811 const auto *PT = QT->getAs<PointerType>();
5812 if (!PT)
5813 return false;
5814
5815 QualType Pointee = PT->getPointeeType();
5816
5817 // Check for NSError**.
5818 if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
5819 if (const auto *ID = OPT->getInterfaceDecl())
5820 if (ID->getIdentifier() == S.getNSErrorIdent())
5821 return true;
5822
5823 // Check for CFError**.
5824 if (const auto *PT = Pointee->getAs<PointerType>())
5825 if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
5826 if (S.isCFError(RT->getDecl()))
5827 return true;
5828
5829 return false;
5830 }
5831
handleSwiftError(Sema & S,Decl * D,const ParsedAttr & AL)5832 static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) {
5833 auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
5834 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
5835 if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
5836 return true;
5837 }
5838
5839 S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
5840 << AL << isa<ObjCMethodDecl>(D);
5841 return false;
5842 };
5843
5844 auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
5845 // - C, ObjC, and block pointers are definitely okay.
5846 // - References are definitely not okay.
5847 // - nullptr_t is weird, but acceptable.
5848 QualType RT = getFunctionOrMethodResultType(D);
5849 if (RT->hasPointerRepresentation() && !RT->isReferenceType())
5850 return true;
5851
5852 S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
5853 << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
5854 << /*pointer*/ 1;
5855 return false;
5856 };
5857
5858 auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
5859 QualType RT = getFunctionOrMethodResultType(D);
5860 if (RT->isIntegralType(S.Context))
5861 return true;
5862
5863 S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
5864 << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
5865 << /*integral*/ 0;
5866 return false;
5867 };
5868
5869 if (D->isInvalidDecl())
5870 return;
5871
5872 IdentifierLoc *Loc = AL.getArgAsIdent(0);
5873 SwiftErrorAttr::ConventionKind Convention;
5874 if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
5875 Convention)) {
5876 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5877 << AL << Loc->Ident;
5878 return;
5879 }
5880
5881 switch (Convention) {
5882 case SwiftErrorAttr::None:
5883 // No additional validation required.
5884 break;
5885
5886 case SwiftErrorAttr::NonNullError:
5887 if (!hasErrorParameter(S, D, AL))
5888 return;
5889 break;
5890
5891 case SwiftErrorAttr::NullResult:
5892 if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL))
5893 return;
5894 break;
5895
5896 case SwiftErrorAttr::NonZeroResult:
5897 case SwiftErrorAttr::ZeroResult:
5898 if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL))
5899 return;
5900 break;
5901 }
5902
5903 D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention));
5904 }
5905
checkSwiftAsyncErrorBlock(Sema & S,Decl * D,const SwiftAsyncErrorAttr * ErrorAttr,const SwiftAsyncAttr * AsyncAttr)5906 static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
5907 const SwiftAsyncErrorAttr *ErrorAttr,
5908 const SwiftAsyncAttr *AsyncAttr) {
5909 if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
5910 if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
5911 S.Diag(AsyncAttr->getLocation(),
5912 diag::err_swift_async_error_without_swift_async)
5913 << AsyncAttr << isa<ObjCMethodDecl>(D);
5914 }
5915 return;
5916 }
5917
5918 const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
5919 D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
5920 // handleSwiftAsyncAttr already verified the type is correct, so no need to
5921 // double-check it here.
5922 const auto *FuncTy = HandlerParam->getType()
5923 ->castAs<BlockPointerType>()
5924 ->getPointeeType()
5925 ->getAs<FunctionProtoType>();
5926 ArrayRef<QualType> BlockParams;
5927 if (FuncTy)
5928 BlockParams = FuncTy->getParamTypes();
5929
5930 switch (ErrorAttr->getConvention()) {
5931 case SwiftAsyncErrorAttr::ZeroArgument:
5932 case SwiftAsyncErrorAttr::NonZeroArgument: {
5933 uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
5934 if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
5935 S.Diag(ErrorAttr->getLocation(),
5936 diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2;
5937 return;
5938 }
5939 QualType ErrorParam = BlockParams[ParamIdx - 1];
5940 if (!ErrorParam->isIntegralType(S.Context)) {
5941 StringRef ConvStr =
5942 ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
5943 ? "zero_argument"
5944 : "nonzero_argument";
5945 S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
5946 << ErrorAttr << ConvStr << ParamIdx << ErrorParam;
5947 return;
5948 }
5949 break;
5950 }
5951 case SwiftAsyncErrorAttr::NonNullError: {
5952 bool AnyErrorParams = false;
5953 for (QualType Param : BlockParams) {
5954 // Check for NSError *.
5955 if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
5956 if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
5957 if (ID->getIdentifier() == S.getNSErrorIdent()) {
5958 AnyErrorParams = true;
5959 break;
5960 }
5961 }
5962 }
5963 // Check for CFError *.
5964 if (const auto *PtrTy = Param->getAs<PointerType>()) {
5965 if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
5966 if (S.isCFError(RT->getDecl())) {
5967 AnyErrorParams = true;
5968 break;
5969 }
5970 }
5971 }
5972 }
5973
5974 if (!AnyErrorParams) {
5975 S.Diag(ErrorAttr->getLocation(),
5976 diag::err_swift_async_error_no_error_parameter)
5977 << ErrorAttr << isa<ObjCMethodDecl>(D);
5978 return;
5979 }
5980 break;
5981 }
5982 case SwiftAsyncErrorAttr::None:
5983 break;
5984 }
5985 }
5986
handleSwiftAsyncError(Sema & S,Decl * D,const ParsedAttr & AL)5987 static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) {
5988 IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
5989 SwiftAsyncErrorAttr::ConventionKind ConvKind;
5990 if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
5991 ConvKind)) {
5992 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5993 << AL << IDLoc->Ident;
5994 return;
5995 }
5996
5997 uint32_t ParamIdx = 0;
5998 switch (ConvKind) {
5999 case SwiftAsyncErrorAttr::ZeroArgument:
6000 case SwiftAsyncErrorAttr::NonZeroArgument: {
6001 if (!AL.checkExactlyNumArgs(S, 2))
6002 return;
6003
6004 Expr *IdxExpr = AL.getArgAsExpr(1);
6005 if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx))
6006 return;
6007 break;
6008 }
6009 case SwiftAsyncErrorAttr::NonNullError:
6010 case SwiftAsyncErrorAttr::None: {
6011 if (!AL.checkExactlyNumArgs(S, 1))
6012 return;
6013 break;
6014 }
6015 }
6016
6017 auto *ErrorAttr =
6018 ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx);
6019 D->addAttr(ErrorAttr);
6020
6021 if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
6022 checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6023 }
6024
6025 // For a function, this will validate a compound Swift name, e.g.
6026 // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
6027 // the function will output the number of parameter names, and whether this is a
6028 // single-arg initializer.
6029 //
6030 // For a type, enum constant, property, or variable declaration, this will
6031 // validate either a simple identifier, or a qualified
6032 // <code>context.identifier</code> name.
6033 static bool
validateSwiftFunctionName(Sema & S,const ParsedAttr & AL,SourceLocation Loc,StringRef Name,unsigned & SwiftParamCount,bool & IsSingleParamInit)6034 validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc,
6035 StringRef Name, unsigned &SwiftParamCount,
6036 bool &IsSingleParamInit) {
6037 SwiftParamCount = 0;
6038 IsSingleParamInit = false;
6039
6040 // Check whether this will be mapped to a getter or setter of a property.
6041 bool IsGetter = false, IsSetter = false;
6042 if (Name.startswith("getter:")) {
6043 IsGetter = true;
6044 Name = Name.substr(7);
6045 } else if (Name.startswith("setter:")) {
6046 IsSetter = true;
6047 Name = Name.substr(7);
6048 }
6049
6050 if (Name.back() != ')') {
6051 S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6052 return false;
6053 }
6054
6055 bool IsMember = false;
6056 StringRef ContextName, BaseName, Parameters;
6057
6058 std::tie(BaseName, Parameters) = Name.split('(');
6059
6060 // Split at the first '.', if it exists, which separates the context name
6061 // from the base name.
6062 std::tie(ContextName, BaseName) = BaseName.split('.');
6063 if (BaseName.empty()) {
6064 BaseName = ContextName;
6065 ContextName = StringRef();
6066 } else if (ContextName.empty() || !isValidIdentifier(ContextName)) {
6067 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6068 << AL << /*context*/ 1;
6069 return false;
6070 } else {
6071 IsMember = true;
6072 }
6073
6074 if (!isValidIdentifier(BaseName) || BaseName == "_") {
6075 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6076 << AL << /*basename*/ 0;
6077 return false;
6078 }
6079
6080 bool IsSubscript = BaseName == "subscript";
6081 // A subscript accessor must be a getter or setter.
6082 if (IsSubscript && !IsGetter && !IsSetter) {
6083 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6084 << AL << /* getter or setter */ 0;
6085 return false;
6086 }
6087
6088 if (Parameters.empty()) {
6089 S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
6090 return false;
6091 }
6092
6093 assert(Parameters.back() == ')' && "expected ')'");
6094 Parameters = Parameters.drop_back(); // ')'
6095
6096 if (Parameters.empty()) {
6097 // Setters and subscripts must have at least one parameter.
6098 if (IsSubscript) {
6099 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6100 << AL << /* have at least one parameter */1;
6101 return false;
6102 }
6103
6104 if (IsSetter) {
6105 S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
6106 return false;
6107 }
6108
6109 return true;
6110 }
6111
6112 if (Parameters.back() != ':') {
6113 S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6114 return false;
6115 }
6116
6117 StringRef CurrentParam;
6118 llvm::Optional<unsigned> SelfLocation;
6119 unsigned NewValueCount = 0;
6120 llvm::Optional<unsigned> NewValueLocation;
6121 do {
6122 std::tie(CurrentParam, Parameters) = Parameters.split(':');
6123
6124 if (!isValidIdentifier(CurrentParam)) {
6125 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6126 << AL << /*parameter*/2;
6127 return false;
6128 }
6129
6130 if (IsMember && CurrentParam == "self") {
6131 // "self" indicates the "self" argument for a member.
6132
6133 // More than one "self"?
6134 if (SelfLocation) {
6135 S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
6136 return false;
6137 }
6138
6139 // The "self" location is the current parameter.
6140 SelfLocation = SwiftParamCount;
6141 } else if (CurrentParam == "newValue") {
6142 // "newValue" indicates the "newValue" argument for a setter.
6143
6144 // There should only be one 'newValue', but it's only significant for
6145 // subscript accessors, so don't error right away.
6146 ++NewValueCount;
6147
6148 NewValueLocation = SwiftParamCount;
6149 }
6150
6151 ++SwiftParamCount;
6152 } while (!Parameters.empty());
6153
6154 // Only instance subscripts are currently supported.
6155 if (IsSubscript && !SelfLocation) {
6156 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6157 << AL << /*have a 'self:' parameter*/2;
6158 return false;
6159 }
6160
6161 IsSingleParamInit =
6162 SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
6163
6164 // Check the number of parameters for a getter/setter.
6165 if (IsGetter || IsSetter) {
6166 // Setters have one parameter for the new value.
6167 unsigned NumExpectedParams = IsGetter ? 0 : 1;
6168 unsigned ParamDiag =
6169 IsGetter ? diag::warn_attr_swift_name_getter_parameters
6170 : diag::warn_attr_swift_name_setter_parameters;
6171
6172 // Instance methods have one parameter for "self".
6173 if (SelfLocation)
6174 ++NumExpectedParams;
6175
6176 // Subscripts may have additional parameters beyond the expected params for
6177 // the index.
6178 if (IsSubscript) {
6179 if (SwiftParamCount < NumExpectedParams) {
6180 S.Diag(Loc, ParamDiag) << AL;
6181 return false;
6182 }
6183
6184 // A subscript setter must explicitly label its newValue parameter to
6185 // distinguish it from index parameters.
6186 if (IsSetter) {
6187 if (!NewValueLocation) {
6188 S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
6189 << AL;
6190 return false;
6191 }
6192 if (NewValueCount > 1) {
6193 S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
6194 << AL;
6195 return false;
6196 }
6197 } else {
6198 // Subscript getters should have no 'newValue:' parameter.
6199 if (NewValueLocation) {
6200 S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
6201 << AL;
6202 return false;
6203 }
6204 }
6205 } else {
6206 // Property accessors must have exactly the number of expected params.
6207 if (SwiftParamCount != NumExpectedParams) {
6208 S.Diag(Loc, ParamDiag) << AL;
6209 return false;
6210 }
6211 }
6212 }
6213
6214 return true;
6215 }
6216
DiagnoseSwiftName(Decl * D,StringRef Name,SourceLocation Loc,const ParsedAttr & AL,bool IsAsync)6217 bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
6218 const ParsedAttr &AL, bool IsAsync) {
6219 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
6220 ArrayRef<ParmVarDecl*> Params;
6221 unsigned ParamCount;
6222
6223 if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
6224 ParamCount = Method->getSelector().getNumArgs();
6225 Params = Method->parameters().slice(0, ParamCount);
6226 } else {
6227 const auto *F = cast<FunctionDecl>(D);
6228
6229 ParamCount = F->getNumParams();
6230 Params = F->parameters();
6231
6232 if (!F->hasWrittenPrototype()) {
6233 Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL
6234 << ExpectedFunctionWithProtoType;
6235 return false;
6236 }
6237 }
6238
6239 // The async name drops the last callback parameter.
6240 if (IsAsync) {
6241 if (ParamCount == 0) {
6242 Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
6243 << AL << isa<ObjCMethodDecl>(D);
6244 return false;
6245 }
6246 ParamCount -= 1;
6247 }
6248
6249 unsigned SwiftParamCount;
6250 bool IsSingleParamInit;
6251 if (!validateSwiftFunctionName(*this, AL, Loc, Name,
6252 SwiftParamCount, IsSingleParamInit))
6253 return false;
6254
6255 bool ParamCountValid;
6256 if (SwiftParamCount == ParamCount) {
6257 ParamCountValid = true;
6258 } else if (SwiftParamCount > ParamCount) {
6259 ParamCountValid = IsSingleParamInit && ParamCount == 0;
6260 } else {
6261 // We have fewer Swift parameters than Objective-C parameters, but that
6262 // might be because we've transformed some of them. Check for potential
6263 // "out" parameters and err on the side of not warning.
6264 unsigned MaybeOutParamCount =
6265 std::count_if(Params.begin(), Params.end(),
6266 [](const ParmVarDecl *Param) -> bool {
6267 QualType ParamTy = Param->getType();
6268 if (ParamTy->isReferenceType() || ParamTy->isPointerType())
6269 return !ParamTy->getPointeeType().isConstQualified();
6270 return false;
6271 });
6272
6273 ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
6274 }
6275
6276 if (!ParamCountValid) {
6277 Diag(Loc, diag::warn_attr_swift_name_num_params)
6278 << (SwiftParamCount > ParamCount) << AL << ParamCount
6279 << SwiftParamCount;
6280 return false;
6281 }
6282 } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
6283 isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
6284 isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
6285 isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
6286 !IsAsync) {
6287 StringRef ContextName, BaseName;
6288
6289 std::tie(ContextName, BaseName) = Name.split('.');
6290 if (BaseName.empty()) {
6291 BaseName = ContextName;
6292 ContextName = StringRef();
6293 } else if (!isValidIdentifier(ContextName)) {
6294 Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6295 << /*context*/1;
6296 return false;
6297 }
6298
6299 if (!isValidIdentifier(BaseName)) {
6300 Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6301 << /*basename*/0;
6302 return false;
6303 }
6304 } else {
6305 Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
6306 return false;
6307 }
6308 return true;
6309 }
6310
handleSwiftName(Sema & S,Decl * D,const ParsedAttr & AL)6311 static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) {
6312 StringRef Name;
6313 SourceLocation Loc;
6314 if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6315 return;
6316
6317 if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false))
6318 return;
6319
6320 D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name));
6321 }
6322
handleSwiftAsyncName(Sema & S,Decl * D,const ParsedAttr & AL)6323 static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) {
6324 StringRef Name;
6325 SourceLocation Loc;
6326 if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6327 return;
6328
6329 if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true))
6330 return;
6331
6332 D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name));
6333 }
6334
handleSwiftNewType(Sema & S,Decl * D,const ParsedAttr & AL)6335 static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) {
6336 // Make sure that there is an identifier as the annotation's single argument.
6337 if (!AL.checkExactlyNumArgs(S, 1))
6338 return;
6339
6340 if (!AL.isArgIdent(0)) {
6341 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6342 << AL << AANT_ArgumentIdentifier;
6343 return;
6344 }
6345
6346 SwiftNewTypeAttr::NewtypeKind Kind;
6347 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6348 if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
6349 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6350 return;
6351 }
6352
6353 if (!isa<TypedefNameDecl>(D)) {
6354 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
6355 << AL << "typedefs";
6356 return;
6357 }
6358
6359 D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind));
6360 }
6361
handleSwiftAsyncAttr(Sema & S,Decl * D,const ParsedAttr & AL)6362 static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6363 if (!AL.isArgIdent(0)) {
6364 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
6365 << AL << 1 << AANT_ArgumentIdentifier;
6366 return;
6367 }
6368
6369 SwiftAsyncAttr::Kind Kind;
6370 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6371 if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
6372 S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
6373 return;
6374 }
6375
6376 ParamIdx Idx;
6377 if (Kind == SwiftAsyncAttr::None) {
6378 // If this is 'none', then there shouldn't be any additional arguments.
6379 if (!AL.checkExactlyNumArgs(S, 1))
6380 return;
6381 } else {
6382 // Non-none swift_async requires a completion handler index argument.
6383 if (!AL.checkExactlyNumArgs(S, 2))
6384 return;
6385
6386 Expr *HandlerIdx = AL.getArgAsExpr(1);
6387 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx))
6388 return;
6389
6390 const ParmVarDecl *CompletionBlock =
6391 getFunctionOrMethodParam(D, Idx.getASTIndex());
6392 QualType CompletionBlockType = CompletionBlock->getType();
6393 if (!CompletionBlockType->isBlockPointerType()) {
6394 S.Diag(CompletionBlock->getLocation(),
6395 diag::err_swift_async_bad_block_type)
6396 << CompletionBlock->getType();
6397 return;
6398 }
6399 QualType BlockTy =
6400 CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
6401 if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
6402 S.Diag(CompletionBlock->getLocation(),
6403 diag::err_swift_async_bad_block_type)
6404 << CompletionBlock->getType();
6405 return;
6406 }
6407 }
6408
6409 auto *AsyncAttr =
6410 ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx);
6411 D->addAttr(AsyncAttr);
6412
6413 if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
6414 checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6415 }
6416
6417 //===----------------------------------------------------------------------===//
6418 // Microsoft specific attribute handlers.
6419 //===----------------------------------------------------------------------===//
6420
mergeUuidAttr(Decl * D,const AttributeCommonInfo & CI,StringRef UuidAsWritten,MSGuidDecl * GuidDecl)6421 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
6422 StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
6423 if (const auto *UA = D->getAttr<UuidAttr>()) {
6424 if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
6425 return nullptr;
6426 if (!UA->getGuid().empty()) {
6427 Diag(UA->getLocation(), diag::err_mismatched_uuid);
6428 Diag(CI.getLoc(), diag::note_previous_uuid);
6429 D->dropAttr<UuidAttr>();
6430 }
6431 }
6432
6433 return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
6434 }
6435
handleUuidAttr(Sema & S,Decl * D,const ParsedAttr & AL)6436 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6437 if (!S.LangOpts.CPlusPlus) {
6438 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6439 << AL << AttributeLangSupport::C;
6440 return;
6441 }
6442
6443 StringRef OrigStrRef;
6444 SourceLocation LiteralLoc;
6445 if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
6446 return;
6447
6448 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
6449 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
6450 StringRef StrRef = OrigStrRef;
6451 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
6452 StrRef = StrRef.drop_front().drop_back();
6453
6454 // Validate GUID length.
6455 if (StrRef.size() != 36) {
6456 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6457 return;
6458 }
6459
6460 for (unsigned i = 0; i < 36; ++i) {
6461 if (i == 8 || i == 13 || i == 18 || i == 23) {
6462 if (StrRef[i] != '-') {
6463 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6464 return;
6465 }
6466 } else if (!isHexDigit(StrRef[i])) {
6467 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
6468 return;
6469 }
6470 }
6471
6472 // Convert to our parsed format and canonicalize.
6473 MSGuidDecl::Parts Parsed;
6474 StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
6475 StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
6476 StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
6477 for (unsigned i = 0; i != 8; ++i)
6478 StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
6479 .getAsInteger(16, Parsed.Part4And5[i]);
6480 MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
6481
6482 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
6483 // the only thing in the [] list, the [] too), and add an insertion of
6484 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
6485 // separating attributes nor of the [ and the ] are in the AST.
6486 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
6487 // on cfe-dev.
6488 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
6489 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
6490
6491 UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
6492 if (UA)
6493 D->addAttr(UA);
6494 }
6495
handleMSInheritanceAttr(Sema & S,Decl * D,const ParsedAttr & AL)6496 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6497 if (!S.LangOpts.CPlusPlus) {
6498 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
6499 << AL << AttributeLangSupport::C;
6500 return;
6501 }
6502 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
6503 D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
6504 if (IA) {
6505 D->addAttr(IA);
6506 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
6507 }
6508 }
6509
handleDeclspecThreadAttr(Sema & S,Decl * D,const ParsedAttr & AL)6510 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6511 const auto *VD = cast<VarDecl>(D);
6512 if (!S.Context.getTargetInfo().isTLSSupported()) {
6513 S.Diag(AL.getLoc(), diag::err_thread_unsupported);
6514 return;
6515 }
6516 if (VD->getTSCSpec() != TSCS_unspecified) {
6517 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
6518 return;
6519 }
6520 if (VD->hasLocalStorage()) {
6521 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
6522 return;
6523 }
6524 D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
6525 }
6526
handleAbiTagAttr(Sema & S,Decl * D,const ParsedAttr & AL)6527 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6528 SmallVector<StringRef, 4> Tags;
6529 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
6530 StringRef Tag;
6531 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
6532 return;
6533 Tags.push_back(Tag);
6534 }
6535
6536 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
6537 if (!NS->isInline()) {
6538 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
6539 return;
6540 }
6541 if (NS->isAnonymousNamespace()) {
6542 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
6543 return;
6544 }
6545 if (AL.getNumArgs() == 0)
6546 Tags.push_back(NS->getName());
6547 } else if (!AL.checkAtLeastNumArgs(S, 1))
6548 return;
6549
6550 // Store tags sorted and without duplicates.
6551 llvm::sort(Tags);
6552 Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
6553
6554 D->addAttr(::new (S.Context)
6555 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
6556 }
6557
handleARMInterruptAttr(Sema & S,Decl * D,const ParsedAttr & AL)6558 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6559 // Check the attribute arguments.
6560 if (AL.getNumArgs() > 1) {
6561 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
6562 return;
6563 }
6564
6565 StringRef Str;
6566 SourceLocation ArgLoc;
6567
6568 if (AL.getNumArgs() == 0)
6569 Str = "";
6570 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6571 return;
6572
6573 ARMInterruptAttr::InterruptType Kind;
6574 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6575 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
6576 << ArgLoc;
6577 return;
6578 }
6579
6580 D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
6581 }
6582
handleMSP430InterruptAttr(Sema & S,Decl * D,const ParsedAttr & AL)6583 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6584 // MSP430 'interrupt' attribute is applied to
6585 // a function with no parameters and void return type.
6586 if (!isFunctionOrMethod(D)) {
6587 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6588 << "'interrupt'" << ExpectedFunctionOrMethod;
6589 return;
6590 }
6591
6592 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6593 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6594 << /*MSP430*/ 1 << 0;
6595 return;
6596 }
6597
6598 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6599 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6600 << /*MSP430*/ 1 << 1;
6601 return;
6602 }
6603
6604 // The attribute takes one integer argument.
6605 if (!AL.checkExactlyNumArgs(S, 1))
6606 return;
6607
6608 if (!AL.isArgExpr(0)) {
6609 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6610 << AL << AANT_ArgumentIntegerConstant;
6611 return;
6612 }
6613
6614 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6615 Optional<llvm::APSInt> NumParams = llvm::APSInt(32);
6616 if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) {
6617 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6618 << AL << AANT_ArgumentIntegerConstant
6619 << NumParamsExpr->getSourceRange();
6620 return;
6621 }
6622 // The argument should be in range 0..63.
6623 unsigned Num = NumParams->getLimitedValue(255);
6624 if (Num > 63) {
6625 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6626 << AL << (int)NumParams->getSExtValue()
6627 << NumParamsExpr->getSourceRange();
6628 return;
6629 }
6630
6631 D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
6632 D->addAttr(UsedAttr::CreateImplicit(S.Context));
6633 }
6634
handleMipsInterruptAttr(Sema & S,Decl * D,const ParsedAttr & AL)6635 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6636 // Only one optional argument permitted.
6637 if (AL.getNumArgs() > 1) {
6638 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
6639 return;
6640 }
6641
6642 StringRef Str;
6643 SourceLocation ArgLoc;
6644
6645 if (AL.getNumArgs() == 0)
6646 Str = "";
6647 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6648 return;
6649
6650 // Semantic checks for a function with the 'interrupt' attribute for MIPS:
6651 // a) Must be a function.
6652 // b) Must have no parameters.
6653 // c) Must have the 'void' return type.
6654 // d) Cannot have the 'mips16' attribute, as that instruction set
6655 // lacks the 'eret' instruction.
6656 // e) The attribute itself must either have no argument or one of the
6657 // valid interrupt types, see [MipsInterruptDocs].
6658
6659 if (!isFunctionOrMethod(D)) {
6660 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6661 << "'interrupt'" << ExpectedFunctionOrMethod;
6662 return;
6663 }
6664
6665 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6666 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6667 << /*MIPS*/ 0 << 0;
6668 return;
6669 }
6670
6671 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6672 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6673 << /*MIPS*/ 0 << 1;
6674 return;
6675 }
6676
6677 // We still have to do this manually because the Interrupt attributes are
6678 // a bit special due to sharing their spellings across targets.
6679 if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
6680 return;
6681
6682 MipsInterruptAttr::InterruptType Kind;
6683 if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6684 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6685 << AL << "'" + std::string(Str) + "'";
6686 return;
6687 }
6688
6689 D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
6690 }
6691
handleM68kInterruptAttr(Sema & S,Decl * D,const ParsedAttr & AL)6692 static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6693 if (!AL.checkExactlyNumArgs(S, 1))
6694 return;
6695
6696 if (!AL.isArgExpr(0)) {
6697 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6698 << AL << AANT_ArgumentIntegerConstant;
6699 return;
6700 }
6701
6702 // FIXME: Check for decl - it should be void ()(void).
6703
6704 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
6705 auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context);
6706 if (!MaybeNumParams) {
6707 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6708 << AL << AANT_ArgumentIntegerConstant
6709 << NumParamsExpr->getSourceRange();
6710 return;
6711 }
6712
6713 unsigned Num = MaybeNumParams->getLimitedValue(255);
6714 if ((Num & 1) || Num > 30) {
6715 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
6716 << AL << (int)MaybeNumParams->getSExtValue()
6717 << NumParamsExpr->getSourceRange();
6718 return;
6719 }
6720
6721 D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num));
6722 D->addAttr(UsedAttr::CreateImplicit(S.Context));
6723 }
6724
handleAnyX86InterruptAttr(Sema & S,Decl * D,const ParsedAttr & AL)6725 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6726 // Semantic checks for a function with the 'interrupt' attribute.
6727 // a) Must be a function.
6728 // b) Must have the 'void' return type.
6729 // c) Must take 1 or 2 arguments.
6730 // d) The 1st argument must be a pointer.
6731 // e) The 2nd argument (if any) must be an unsigned integer.
6732 if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
6733 CXXMethodDecl::isStaticOverloadedOperator(
6734 cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
6735 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
6736 << AL << ExpectedFunctionWithProtoType;
6737 return;
6738 }
6739 // Interrupt handler must have void return type.
6740 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6741 S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
6742 diag::err_anyx86_interrupt_attribute)
6743 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
6744 ? 0
6745 : 1)
6746 << 0;
6747 return;
6748 }
6749 // Interrupt handler must have 1 or 2 parameters.
6750 unsigned NumParams = getFunctionOrMethodNumParams(D);
6751 if (NumParams < 1 || NumParams > 2) {
6752 S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
6753 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
6754 ? 0
6755 : 1)
6756 << 1;
6757 return;
6758 }
6759 // The first argument must be a pointer.
6760 if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
6761 S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
6762 diag::err_anyx86_interrupt_attribute)
6763 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
6764 ? 0
6765 : 1)
6766 << 2;
6767 return;
6768 }
6769 // The second argument, if present, must be an unsigned integer.
6770 unsigned TypeSize =
6771 S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
6772 ? 64
6773 : 32;
6774 if (NumParams == 2 &&
6775 (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
6776 S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
6777 S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
6778 diag::err_anyx86_interrupt_attribute)
6779 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
6780 ? 0
6781 : 1)
6782 << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
6783 return;
6784 }
6785 D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
6786 D->addAttr(UsedAttr::CreateImplicit(S.Context));
6787 }
6788
handleAVRInterruptAttr(Sema & S,Decl * D,const ParsedAttr & AL)6789 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6790 if (!isFunctionOrMethod(D)) {
6791 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6792 << "'interrupt'" << ExpectedFunction;
6793 return;
6794 }
6795
6796 if (!AL.checkExactlyNumArgs(S, 0))
6797 return;
6798
6799 handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
6800 }
6801
handleAVRSignalAttr(Sema & S,Decl * D,const ParsedAttr & AL)6802 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6803 if (!isFunctionOrMethod(D)) {
6804 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6805 << "'signal'" << ExpectedFunction;
6806 return;
6807 }
6808
6809 if (!AL.checkExactlyNumArgs(S, 0))
6810 return;
6811
6812 handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
6813 }
6814
handleBPFPreserveAIRecord(Sema & S,RecordDecl * RD)6815 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
6816 // Add preserve_access_index attribute to all fields and inner records.
6817 for (auto D : RD->decls()) {
6818 if (D->hasAttr<BPFPreserveAccessIndexAttr>())
6819 continue;
6820
6821 D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
6822 if (auto *Rec = dyn_cast<RecordDecl>(D))
6823 handleBPFPreserveAIRecord(S, Rec);
6824 }
6825 }
6826
handleBPFPreserveAccessIndexAttr(Sema & S,Decl * D,const ParsedAttr & AL)6827 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
6828 const ParsedAttr &AL) {
6829 auto *Rec = cast<RecordDecl>(D);
6830 handleBPFPreserveAIRecord(S, Rec);
6831 Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
6832 }
6833
handleWebAssemblyExportNameAttr(Sema & S,Decl * D,const ParsedAttr & AL)6834 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6835 if (!isFunctionOrMethod(D)) {
6836 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6837 << "'export_name'" << ExpectedFunction;
6838 return;
6839 }
6840
6841 auto *FD = cast<FunctionDecl>(D);
6842 if (FD->isThisDeclarationADefinition()) {
6843 S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
6844 return;
6845 }
6846
6847 StringRef Str;
6848 SourceLocation ArgLoc;
6849 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6850 return;
6851
6852 D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
6853 D->addAttr(UsedAttr::CreateImplicit(S.Context));
6854 }
6855
6856 WebAssemblyImportModuleAttr *
mergeImportModuleAttr(Decl * D,const WebAssemblyImportModuleAttr & AL)6857 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
6858 auto *FD = cast<FunctionDecl>(D);
6859
6860 if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
6861 if (ExistingAttr->getImportModule() == AL.getImportModule())
6862 return nullptr;
6863 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
6864 << ExistingAttr->getImportModule() << AL.getImportModule();
6865 Diag(AL.getLoc(), diag::note_previous_attribute);
6866 return nullptr;
6867 }
6868 if (FD->hasBody()) {
6869 Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
6870 return nullptr;
6871 }
6872 return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
6873 AL.getImportModule());
6874 }
6875
6876 WebAssemblyImportNameAttr *
mergeImportNameAttr(Decl * D,const WebAssemblyImportNameAttr & AL)6877 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
6878 auto *FD = cast<FunctionDecl>(D);
6879
6880 if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
6881 if (ExistingAttr->getImportName() == AL.getImportName())
6882 return nullptr;
6883 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
6884 << ExistingAttr->getImportName() << AL.getImportName();
6885 Diag(AL.getLoc(), diag::note_previous_attribute);
6886 return nullptr;
6887 }
6888 if (FD->hasBody()) {
6889 Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
6890 return nullptr;
6891 }
6892 return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
6893 AL.getImportName());
6894 }
6895
6896 static void
handleWebAssemblyImportModuleAttr(Sema & S,Decl * D,const ParsedAttr & AL)6897 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6898 auto *FD = cast<FunctionDecl>(D);
6899
6900 StringRef Str;
6901 SourceLocation ArgLoc;
6902 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6903 return;
6904 if (FD->hasBody()) {
6905 S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
6906 return;
6907 }
6908
6909 FD->addAttr(::new (S.Context)
6910 WebAssemblyImportModuleAttr(S.Context, AL, Str));
6911 }
6912
6913 static void
handleWebAssemblyImportNameAttr(Sema & S,Decl * D,const ParsedAttr & AL)6914 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6915 auto *FD = cast<FunctionDecl>(D);
6916
6917 StringRef Str;
6918 SourceLocation ArgLoc;
6919 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6920 return;
6921 if (FD->hasBody()) {
6922 S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
6923 return;
6924 }
6925
6926 FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
6927 }
6928
handleRISCVInterruptAttr(Sema & S,Decl * D,const ParsedAttr & AL)6929 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
6930 const ParsedAttr &AL) {
6931 // Warn about repeated attributes.
6932 if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
6933 S.Diag(AL.getRange().getBegin(),
6934 diag::warn_riscv_repeated_interrupt_attribute);
6935 S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
6936 return;
6937 }
6938
6939 // Check the attribute argument. Argument is optional.
6940 if (!AL.checkAtMostNumArgs(S, 1))
6941 return;
6942
6943 StringRef Str;
6944 SourceLocation ArgLoc;
6945
6946 // 'machine'is the default interrupt mode.
6947 if (AL.getNumArgs() == 0)
6948 Str = "machine";
6949 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
6950 return;
6951
6952 // Semantic checks for a function with the 'interrupt' attribute:
6953 // - Must be a function.
6954 // - Must have no parameters.
6955 // - Must have the 'void' return type.
6956 // - The attribute itself must either have no argument or one of the
6957 // valid interrupt types, see [RISCVInterruptDocs].
6958
6959 if (D->getFunctionType() == nullptr) {
6960 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
6961 << "'interrupt'" << ExpectedFunction;
6962 return;
6963 }
6964
6965 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
6966 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6967 << /*RISC-V*/ 2 << 0;
6968 return;
6969 }
6970
6971 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
6972 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
6973 << /*RISC-V*/ 2 << 1;
6974 return;
6975 }
6976
6977 RISCVInterruptAttr::InterruptType Kind;
6978 if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
6979 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
6980 << ArgLoc;
6981 return;
6982 }
6983
6984 D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
6985 }
6986
handleInterruptAttr(Sema & S,Decl * D,const ParsedAttr & AL)6987 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6988 // Dispatch the interrupt attribute based on the current target.
6989 switch (S.Context.getTargetInfo().getTriple().getArch()) {
6990 case llvm::Triple::msp430:
6991 handleMSP430InterruptAttr(S, D, AL);
6992 break;
6993 case llvm::Triple::mipsel:
6994 case llvm::Triple::mips:
6995 handleMipsInterruptAttr(S, D, AL);
6996 break;
6997 case llvm::Triple::m68k:
6998 handleM68kInterruptAttr(S, D, AL);
6999 break;
7000 case llvm::Triple::x86:
7001 case llvm::Triple::x86_64:
7002 handleAnyX86InterruptAttr(S, D, AL);
7003 break;
7004 case llvm::Triple::avr:
7005 handleAVRInterruptAttr(S, D, AL);
7006 break;
7007 case llvm::Triple::riscv32:
7008 case llvm::Triple::riscv64:
7009 handleRISCVInterruptAttr(S, D, AL);
7010 break;
7011 default:
7012 handleARMInterruptAttr(S, D, AL);
7013 break;
7014 }
7015 }
7016
7017 static bool
checkAMDGPUFlatWorkGroupSizeArguments(Sema & S,Expr * MinExpr,Expr * MaxExpr,const AMDGPUFlatWorkGroupSizeAttr & Attr)7018 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
7019 const AMDGPUFlatWorkGroupSizeAttr &Attr) {
7020 // Accept template arguments for now as they depend on something else.
7021 // We'll get to check them when they eventually get instantiated.
7022 if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
7023 return false;
7024
7025 uint32_t Min = 0;
7026 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7027 return true;
7028
7029 uint32_t Max = 0;
7030 if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7031 return true;
7032
7033 if (Min == 0 && Max != 0) {
7034 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7035 << &Attr << 0;
7036 return true;
7037 }
7038 if (Min > Max) {
7039 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7040 << &Attr << 1;
7041 return true;
7042 }
7043
7044 return false;
7045 }
7046
addAMDGPUFlatWorkGroupSizeAttr(Decl * D,const AttributeCommonInfo & CI,Expr * MinExpr,Expr * MaxExpr)7047 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
7048 const AttributeCommonInfo &CI,
7049 Expr *MinExpr, Expr *MaxExpr) {
7050 AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7051
7052 if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
7053 return;
7054
7055 D->addAttr(::new (Context)
7056 AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr));
7057 }
7058
handleAMDGPUFlatWorkGroupSizeAttr(Sema & S,Decl * D,const ParsedAttr & AL)7059 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
7060 const ParsedAttr &AL) {
7061 Expr *MinExpr = AL.getArgAsExpr(0);
7062 Expr *MaxExpr = AL.getArgAsExpr(1);
7063
7064 S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
7065 }
7066
checkAMDGPUWavesPerEUArguments(Sema & S,Expr * MinExpr,Expr * MaxExpr,const AMDGPUWavesPerEUAttr & Attr)7067 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
7068 Expr *MaxExpr,
7069 const AMDGPUWavesPerEUAttr &Attr) {
7070 if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
7071 (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
7072 return true;
7073
7074 // Accept template arguments for now as they depend on something else.
7075 // We'll get to check them when they eventually get instantiated.
7076 if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
7077 return false;
7078
7079 uint32_t Min = 0;
7080 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7081 return true;
7082
7083 uint32_t Max = 0;
7084 if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7085 return true;
7086
7087 if (Min == 0 && Max != 0) {
7088 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7089 << &Attr << 0;
7090 return true;
7091 }
7092 if (Max != 0 && Min > Max) {
7093 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7094 << &Attr << 1;
7095 return true;
7096 }
7097
7098 return false;
7099 }
7100
addAMDGPUWavesPerEUAttr(Decl * D,const AttributeCommonInfo & CI,Expr * MinExpr,Expr * MaxExpr)7101 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
7102 Expr *MinExpr, Expr *MaxExpr) {
7103 AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7104
7105 if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
7106 return;
7107
7108 D->addAttr(::new (Context)
7109 AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr));
7110 }
7111
handleAMDGPUWavesPerEUAttr(Sema & S,Decl * D,const ParsedAttr & AL)7112 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7113 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
7114 return;
7115
7116 Expr *MinExpr = AL.getArgAsExpr(0);
7117 Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
7118
7119 S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
7120 }
7121
handleAMDGPUNumSGPRAttr(Sema & S,Decl * D,const ParsedAttr & AL)7122 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7123 uint32_t NumSGPR = 0;
7124 Expr *NumSGPRExpr = AL.getArgAsExpr(0);
7125 if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
7126 return;
7127
7128 D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
7129 }
7130
handleAMDGPUNumVGPRAttr(Sema & S,Decl * D,const ParsedAttr & AL)7131 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7132 uint32_t NumVGPR = 0;
7133 Expr *NumVGPRExpr = AL.getArgAsExpr(0);
7134 if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
7135 return;
7136
7137 D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
7138 }
7139
handleX86ForceAlignArgPointerAttr(Sema & S,Decl * D,const ParsedAttr & AL)7140 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
7141 const ParsedAttr &AL) {
7142 // If we try to apply it to a function pointer, don't warn, but don't
7143 // do anything, either. It doesn't matter anyway, because there's nothing
7144 // special about calling a force_align_arg_pointer function.
7145 const auto *VD = dyn_cast<ValueDecl>(D);
7146 if (VD && VD->getType()->isFunctionPointerType())
7147 return;
7148 // Also don't warn on function pointer typedefs.
7149 const auto *TD = dyn_cast<TypedefNameDecl>(D);
7150 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
7151 TD->getUnderlyingType()->isFunctionType()))
7152 return;
7153 // Attribute can only be applied to function types.
7154 if (!isa<FunctionDecl>(D)) {
7155 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7156 << AL << ExpectedFunction;
7157 return;
7158 }
7159
7160 D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
7161 }
7162
handleLayoutVersion(Sema & S,Decl * D,const ParsedAttr & AL)7163 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
7164 uint32_t Version;
7165 Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7166 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
7167 return;
7168
7169 // TODO: Investigate what happens with the next major version of MSVC.
7170 if (Version != LangOptions::MSVC2015 / 100) {
7171 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7172 << AL << Version << VersionExpr->getSourceRange();
7173 return;
7174 }
7175
7176 // The attribute expects a "major" version number like 19, but new versions of
7177 // MSVC have moved to updating the "minor", or less significant numbers, so we
7178 // have to multiply by 100 now.
7179 Version *= 100;
7180
7181 D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
7182 }
7183
mergeDLLImportAttr(Decl * D,const AttributeCommonInfo & CI)7184 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
7185 const AttributeCommonInfo &CI) {
7186 if (D->hasAttr<DLLExportAttr>()) {
7187 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
7188 return nullptr;
7189 }
7190
7191 if (D->hasAttr<DLLImportAttr>())
7192 return nullptr;
7193
7194 return ::new (Context) DLLImportAttr(Context, CI);
7195 }
7196
mergeDLLExportAttr(Decl * D,const AttributeCommonInfo & CI)7197 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
7198 const AttributeCommonInfo &CI) {
7199 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
7200 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
7201 D->dropAttr<DLLImportAttr>();
7202 }
7203
7204 if (D->hasAttr<DLLExportAttr>())
7205 return nullptr;
7206
7207 return ::new (Context) DLLExportAttr(Context, CI);
7208 }
7209
handleDLLAttr(Sema & S,Decl * D,const ParsedAttr & A)7210 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7211 if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
7212 (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7213 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
7214 return;
7215 }
7216
7217 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
7218 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
7219 !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
7220 // MinGW doesn't allow dllimport on inline functions.
7221 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
7222 << A;
7223 return;
7224 }
7225 }
7226
7227 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
7228 if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) &&
7229 MD->getParent()->isLambda()) {
7230 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
7231 return;
7232 }
7233 }
7234
7235 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
7236 ? (Attr *)S.mergeDLLExportAttr(D, A)
7237 : (Attr *)S.mergeDLLImportAttr(D, A);
7238 if (NewAttr)
7239 D->addAttr(NewAttr);
7240 }
7241
7242 MSInheritanceAttr *
mergeMSInheritanceAttr(Decl * D,const AttributeCommonInfo & CI,bool BestCase,MSInheritanceModel Model)7243 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
7244 bool BestCase,
7245 MSInheritanceModel Model) {
7246 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
7247 if (IA->getInheritanceModel() == Model)
7248 return nullptr;
7249 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
7250 << 1 /*previous declaration*/;
7251 Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
7252 D->dropAttr<MSInheritanceAttr>();
7253 }
7254
7255 auto *RD = cast<CXXRecordDecl>(D);
7256 if (RD->hasDefinition()) {
7257 if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
7258 Model)) {
7259 return nullptr;
7260 }
7261 } else {
7262 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
7263 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7264 << 1 /*partial specialization*/;
7265 return nullptr;
7266 }
7267 if (RD->getDescribedClassTemplate()) {
7268 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
7269 << 0 /*primary template*/;
7270 return nullptr;
7271 }
7272 }
7273
7274 return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
7275 }
7276
handleCapabilityAttr(Sema & S,Decl * D,const ParsedAttr & AL)7277 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7278 // The capability attributes take a single string parameter for the name of
7279 // the capability they represent. The lockable attribute does not take any
7280 // parameters. However, semantically, both attributes represent the same
7281 // concept, and so they use the same semantic attribute. Eventually, the
7282 // lockable attribute will be removed.
7283 //
7284 // For backward compatibility, any capability which has no specified string
7285 // literal will be considered a "mutex."
7286 StringRef N("mutex");
7287 SourceLocation LiteralLoc;
7288 if (AL.getKind() == ParsedAttr::AT_Capability &&
7289 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
7290 return;
7291
7292 D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
7293 }
7294
handleAssertCapabilityAttr(Sema & S,Decl * D,const ParsedAttr & AL)7295 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7296 SmallVector<Expr*, 1> Args;
7297 if (!checkLockFunAttrCommon(S, D, AL, Args))
7298 return;
7299
7300 D->addAttr(::new (S.Context)
7301 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
7302 }
7303
handleAcquireCapabilityAttr(Sema & S,Decl * D,const ParsedAttr & AL)7304 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
7305 const ParsedAttr &AL) {
7306 SmallVector<Expr*, 1> Args;
7307 if (!checkLockFunAttrCommon(S, D, AL, Args))
7308 return;
7309
7310 D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
7311 Args.size()));
7312 }
7313
handleTryAcquireCapabilityAttr(Sema & S,Decl * D,const ParsedAttr & AL)7314 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
7315 const ParsedAttr &AL) {
7316 SmallVector<Expr*, 2> Args;
7317 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
7318 return;
7319
7320 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
7321 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
7322 }
7323
handleReleaseCapabilityAttr(Sema & S,Decl * D,const ParsedAttr & AL)7324 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
7325 const ParsedAttr &AL) {
7326 // Check that all arguments are lockable objects.
7327 SmallVector<Expr *, 1> Args;
7328 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
7329
7330 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
7331 Args.size()));
7332 }
7333
handleRequiresCapabilityAttr(Sema & S,Decl * D,const ParsedAttr & AL)7334 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
7335 const ParsedAttr &AL) {
7336 if (!AL.checkAtLeastNumArgs(S, 1))
7337 return;
7338
7339 // check that all arguments are lockable objects
7340 SmallVector<Expr*, 1> Args;
7341 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
7342 if (Args.empty())
7343 return;
7344
7345 RequiresCapabilityAttr *RCA = ::new (S.Context)
7346 RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
7347
7348 D->addAttr(RCA);
7349 }
7350
handleDeprecatedAttr(Sema & S,Decl * D,const ParsedAttr & AL)7351 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7352 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
7353 if (NSD->isAnonymousNamespace()) {
7354 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
7355 // Do not want to attach the attribute to the namespace because that will
7356 // cause confusing diagnostic reports for uses of declarations within the
7357 // namespace.
7358 return;
7359 }
7360 } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl,
7361 UnresolvedUsingValueDecl>(D)) {
7362 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
7363 << AL;
7364 return;
7365 }
7366
7367 // Handle the cases where the attribute has a text message.
7368 StringRef Str, Replacement;
7369 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
7370 !S.checkStringLiteralArgumentAttr(AL, 0, Str))
7371 return;
7372
7373 // Support a single optional message only for Declspec and [[]] spellings.
7374 if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax())
7375 AL.checkAtMostNumArgs(S, 1);
7376 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
7377 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
7378 return;
7379
7380 if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
7381 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
7382
7383 D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
7384 }
7385
isGlobalVar(const Decl * D)7386 static bool isGlobalVar(const Decl *D) {
7387 if (const auto *S = dyn_cast<VarDecl>(D))
7388 return S->hasGlobalStorage();
7389 return false;
7390 }
7391
handleNoSanitizeAttr(Sema & S,Decl * D,const ParsedAttr & AL)7392 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7393 if (!AL.checkAtLeastNumArgs(S, 1))
7394 return;
7395
7396 std::vector<StringRef> Sanitizers;
7397
7398 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
7399 StringRef SanitizerName;
7400 SourceLocation LiteralLoc;
7401
7402 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
7403 return;
7404
7405 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
7406 SanitizerMask() &&
7407 SanitizerName != "coverage")
7408 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
7409 else if (isGlobalVar(D) && SanitizerName != "address")
7410 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7411 << AL << ExpectedFunctionOrMethod;
7412 Sanitizers.push_back(SanitizerName);
7413 }
7414
7415 D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
7416 Sanitizers.size()));
7417 }
7418
handleNoSanitizeSpecificAttr(Sema & S,Decl * D,const ParsedAttr & AL)7419 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
7420 const ParsedAttr &AL) {
7421 StringRef AttrName = AL.getAttrName()->getName();
7422 normalizeName(AttrName);
7423 StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
7424 .Case("no_address_safety_analysis", "address")
7425 .Case("no_sanitize_address", "address")
7426 .Case("no_sanitize_thread", "thread")
7427 .Case("no_sanitize_memory", "memory");
7428 if (isGlobalVar(D) && SanitizerName != "address")
7429 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
7430 << AL << ExpectedFunction;
7431
7432 // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
7433 // NoSanitizeAttr object; but we need to calculate the correct spelling list
7434 // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
7435 // has the same spellings as the index for NoSanitizeAttr. We don't have a
7436 // general way to "translate" between the two, so this hack attempts to work
7437 // around the issue with hard-coded indicies. This is critical for calling
7438 // getSpelling() or prettyPrint() on the resulting semantic attribute object
7439 // without failing assertions.
7440 unsigned TranslatedSpellingIndex = 0;
7441 if (AL.isStandardAttributeSyntax())
7442 TranslatedSpellingIndex = 1;
7443
7444 AttributeCommonInfo Info = AL;
7445 Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
7446 D->addAttr(::new (S.Context)
7447 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
7448 }
7449
handleInternalLinkageAttr(Sema & S,Decl * D,const ParsedAttr & AL)7450 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7451 if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
7452 D->addAttr(Internal);
7453 }
7454
handleOpenCLNoSVMAttr(Sema & S,Decl * D,const ParsedAttr & AL)7455 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7456 if (S.LangOpts.OpenCLVersion != 200)
7457 S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
7458 << AL << "2.0" << 0;
7459 else
7460 S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL
7461 << "2.0";
7462 }
7463
handleOpenCLAccessAttr(Sema & S,Decl * D,const ParsedAttr & AL)7464 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7465 if (D->isInvalidDecl())
7466 return;
7467
7468 // Check if there is only one access qualifier.
7469 if (D->hasAttr<OpenCLAccessAttr>()) {
7470 if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
7471 AL.getSemanticSpelling()) {
7472 S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
7473 << AL.getAttrName()->getName() << AL.getRange();
7474 } else {
7475 S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
7476 << D->getSourceRange();
7477 D->setInvalidDecl(true);
7478 return;
7479 }
7480 }
7481
7482 // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that
7483 // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel
7484 // cannot read from and write to the same pipe object. Using the read_write
7485 // (or __read_write) qualifier with the pipe qualifier is a compilation error.
7486 // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the
7487 // __opencl_c_read_write_images feature, image objects specified as arguments
7488 // to a kernel can additionally be declared to be read-write.
7489 // C++ for OpenCL inherits rule from OpenCL C v2.0.
7490 if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
7491 const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
7492 if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) {
7493 bool ReadWriteImagesUnsupportedForOCLC =
7494 (S.getLangOpts().OpenCLVersion < 200) ||
7495 (S.getLangOpts().OpenCLVersion == 300 &&
7496 !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images",
7497 S.getLangOpts()));
7498 if ((!S.getLangOpts().OpenCLCPlusPlus &&
7499 ReadWriteImagesUnsupportedForOCLC) ||
7500 DeclTy->isPipeType()) {
7501 S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
7502 << AL << PDecl->getType() << DeclTy->isImageType();
7503 D->setInvalidDecl(true);
7504 return;
7505 }
7506 }
7507 }
7508
7509 D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
7510 }
7511
handleSYCLKernelAttr(Sema & S,Decl * D,const ParsedAttr & AL)7512 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7513 // The 'sycl_kernel' attribute applies only to function templates.
7514 const auto *FD = cast<FunctionDecl>(D);
7515 const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
7516 assert(FT && "Function template is expected");
7517
7518 // Function template must have at least two template parameters.
7519 const TemplateParameterList *TL = FT->getTemplateParameters();
7520 if (TL->size() < 2) {
7521 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
7522 return;
7523 }
7524
7525 // Template parameters must be typenames.
7526 for (unsigned I = 0; I < 2; ++I) {
7527 const NamedDecl *TParam = TL->getParam(I);
7528 if (isa<NonTypeTemplateParmDecl>(TParam)) {
7529 S.Diag(FT->getLocation(),
7530 diag::warn_sycl_kernel_invalid_template_param_type);
7531 return;
7532 }
7533 }
7534
7535 // Function must have at least one argument.
7536 if (getFunctionOrMethodNumParams(D) != 1) {
7537 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
7538 return;
7539 }
7540
7541 // Function must return void.
7542 QualType RetTy = getFunctionOrMethodResultType(D);
7543 if (!RetTy->isVoidType()) {
7544 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
7545 return;
7546 }
7547
7548 handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
7549 }
7550
handleDestroyAttr(Sema & S,Decl * D,const ParsedAttr & A)7551 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
7552 if (!cast<VarDecl>(D)->hasGlobalStorage()) {
7553 S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
7554 << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
7555 return;
7556 }
7557
7558 if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
7559 handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A);
7560 else
7561 handleSimpleAttribute<NoDestroyAttr>(S, D, A);
7562 }
7563
handleUninitializedAttr(Sema & S,Decl * D,const ParsedAttr & AL)7564 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7565 assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
7566 "uninitialized is only valid on automatic duration variables");
7567 D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
7568 }
7569
tryMakeVariablePseudoStrong(Sema & S,VarDecl * VD,bool DiagnoseFailure)7570 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
7571 bool DiagnoseFailure) {
7572 QualType Ty = VD->getType();
7573 if (!Ty->isObjCRetainableType()) {
7574 if (DiagnoseFailure) {
7575 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7576 << 0;
7577 }
7578 return false;
7579 }
7580
7581 Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
7582
7583 // Sema::inferObjCARCLifetime must run after processing decl attributes
7584 // (because __block lowers to an attribute), so if the lifetime hasn't been
7585 // explicitly specified, infer it locally now.
7586 if (LifetimeQual == Qualifiers::OCL_None)
7587 LifetimeQual = Ty->getObjCARCImplicitLifetime();
7588
7589 // The attributes only really makes sense for __strong variables; ignore any
7590 // attempts to annotate a parameter with any other lifetime qualifier.
7591 if (LifetimeQual != Qualifiers::OCL_Strong) {
7592 if (DiagnoseFailure) {
7593 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7594 << 1;
7595 }
7596 return false;
7597 }
7598
7599 // Tampering with the type of a VarDecl here is a bit of a hack, but we need
7600 // to ensure that the variable is 'const' so that we can error on
7601 // modification, which can otherwise over-release.
7602 VD->setType(Ty.withConst());
7603 VD->setARCPseudoStrong(true);
7604 return true;
7605 }
7606
handleObjCExternallyRetainedAttr(Sema & S,Decl * D,const ParsedAttr & AL)7607 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
7608 const ParsedAttr &AL) {
7609 if (auto *VD = dyn_cast<VarDecl>(D)) {
7610 assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
7611 if (!VD->hasLocalStorage()) {
7612 S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
7613 << 0;
7614 return;
7615 }
7616
7617 if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
7618 return;
7619
7620 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
7621 return;
7622 }
7623
7624 // If D is a function-like declaration (method, block, or function), then we
7625 // make every parameter psuedo-strong.
7626 unsigned NumParams =
7627 hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
7628 for (unsigned I = 0; I != NumParams; ++I) {
7629 auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
7630 QualType Ty = PVD->getType();
7631
7632 // If a user wrote a parameter with __strong explicitly, then assume they
7633 // want "real" strong semantics for that parameter. This works because if
7634 // the parameter was written with __strong, then the strong qualifier will
7635 // be non-local.
7636 if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
7637 Qualifiers::OCL_Strong)
7638 continue;
7639
7640 tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
7641 }
7642 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
7643 }
7644
handleMIGServerRoutineAttr(Sema & S,Decl * D,const ParsedAttr & AL)7645 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7646 // Check that the return type is a `typedef int kern_return_t` or a typedef
7647 // around it, because otherwise MIG convention checks make no sense.
7648 // BlockDecl doesn't store a return type, so it's annoying to check,
7649 // so let's skip it for now.
7650 if (!isa<BlockDecl>(D)) {
7651 QualType T = getFunctionOrMethodResultType(D);
7652 bool IsKernReturnT = false;
7653 while (const auto *TT = T->getAs<TypedefType>()) {
7654 IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
7655 T = TT->desugar();
7656 }
7657 if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
7658 S.Diag(D->getBeginLoc(),
7659 diag::warn_mig_server_routine_does_not_return_kern_return_t);
7660 return;
7661 }
7662 }
7663
7664 handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
7665 }
7666
handleMSAllocatorAttr(Sema & S,Decl * D,const ParsedAttr & AL)7667 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7668 // Warn if the return type is not a pointer or reference type.
7669 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
7670 QualType RetTy = FD->getReturnType();
7671 if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
7672 S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
7673 << AL.getRange() << RetTy;
7674 return;
7675 }
7676 }
7677
7678 handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
7679 }
7680
handleAcquireHandleAttr(Sema & S,Decl * D,const ParsedAttr & AL)7681 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7682 if (AL.isUsedAsTypeAttr())
7683 return;
7684 // Warn if the parameter is definitely not an output parameter.
7685 if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
7686 if (PVD->getType()->isIntegerType()) {
7687 S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
7688 << AL.getRange();
7689 return;
7690 }
7691 }
7692 StringRef Argument;
7693 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
7694 return;
7695 D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
7696 }
7697
7698 template<typename Attr>
handleHandleAttr(Sema & S,Decl * D,const ParsedAttr & AL)7699 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7700 StringRef Argument;
7701 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
7702 return;
7703 D->addAttr(Attr::Create(S.Context, Argument, AL));
7704 }
7705
handleCFGuardAttr(Sema & S,Decl * D,const ParsedAttr & AL)7706 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7707 // The guard attribute takes a single identifier argument.
7708
7709 if (!AL.isArgIdent(0)) {
7710 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7711 << AL << AANT_ArgumentIdentifier;
7712 return;
7713 }
7714
7715 CFGuardAttr::GuardArg Arg;
7716 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
7717 if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
7718 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
7719 return;
7720 }
7721
7722 D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
7723 }
7724
7725
7726 template <typename AttrTy>
findEnforceTCBAttrByName(Decl * D,StringRef Name)7727 static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
7728 auto Attrs = D->specific_attrs<AttrTy>();
7729 auto I = llvm::find_if(Attrs,
7730 [Name](const AttrTy *A) {
7731 return A->getTCBName() == Name;
7732 });
7733 return I == Attrs.end() ? nullptr : *I;
7734 }
7735
7736 template <typename AttrTy, typename ConflictingAttrTy>
handleEnforceTCBAttr(Sema & S,Decl * D,const ParsedAttr & AL)7737 static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7738 StringRef Argument;
7739 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
7740 return;
7741
7742 // A function cannot be have both regular and leaf membership in the same TCB.
7743 if (const ConflictingAttrTy *ConflictingAttr =
7744 findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) {
7745 // We could attach a note to the other attribute but in this case
7746 // there's no need given how the two are very close to each other.
7747 S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
7748 << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
7749 << Argument;
7750
7751 // Error recovery: drop the non-leaf attribute so that to suppress
7752 // all future warnings caused by erroneous attributes. The leaf attribute
7753 // needs to be kept because it can only suppresses warnings, not cause them.
7754 D->dropAttr<EnforceTCBAttr>();
7755 return;
7756 }
7757
7758 D->addAttr(AttrTy::Create(S.Context, Argument, AL));
7759 }
7760
7761 template <typename AttrTy, typename ConflictingAttrTy>
mergeEnforceTCBAttrImpl(Sema & S,Decl * D,const AttrTy & AL)7762 static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
7763 // Check if the new redeclaration has different leaf-ness in the same TCB.
7764 StringRef TCBName = AL.getTCBName();
7765 if (const ConflictingAttrTy *ConflictingAttr =
7766 findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) {
7767 S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
7768 << ConflictingAttr->getAttrName()->getName()
7769 << AL.getAttrName()->getName() << TCBName;
7770
7771 // Add a note so that the user could easily find the conflicting attribute.
7772 S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
7773
7774 // More error recovery.
7775 D->dropAttr<EnforceTCBAttr>();
7776 return nullptr;
7777 }
7778
7779 ASTContext &Context = S.getASTContext();
7780 return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
7781 }
7782
mergeEnforceTCBAttr(Decl * D,const EnforceTCBAttr & AL)7783 EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
7784 return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>(
7785 *this, D, AL);
7786 }
7787
mergeEnforceTCBLeafAttr(Decl * D,const EnforceTCBLeafAttr & AL)7788 EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr(
7789 Decl *D, const EnforceTCBLeafAttr &AL) {
7790 return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>(
7791 *this, D, AL);
7792 }
7793
7794 //===----------------------------------------------------------------------===//
7795 // Top Level Sema Entry Points
7796 //===----------------------------------------------------------------------===//
7797
7798 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
7799 /// the attribute applies to decls. If the attribute is a type attribute, just
7800 /// silently ignore it if a GNU attribute.
ProcessDeclAttribute(Sema & S,Scope * scope,Decl * D,const ParsedAttr & AL,bool IncludeCXX11Attributes)7801 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
7802 const ParsedAttr &AL,
7803 bool IncludeCXX11Attributes) {
7804 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
7805 return;
7806
7807 // Ignore C++11 attributes on declarator chunks: they appertain to the type
7808 // instead.
7809 if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
7810 return;
7811
7812 // Unknown attributes are automatically warned on. Target-specific attributes
7813 // which do not apply to the current target architecture are treated as
7814 // though they were unknown attributes.
7815 if (AL.getKind() == ParsedAttr::UnknownAttribute ||
7816 !AL.existsInTarget(S.Context.getTargetInfo())) {
7817 S.Diag(AL.getLoc(),
7818 AL.isDeclspecAttribute()
7819 ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
7820 : (unsigned)diag::warn_unknown_attribute_ignored)
7821 << AL << AL.getRange();
7822 return;
7823 }
7824
7825 if (S.checkCommonAttributeFeatures(D, AL))
7826 return;
7827
7828 switch (AL.getKind()) {
7829 default:
7830 if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
7831 break;
7832 if (!AL.isStmtAttr()) {
7833 // Type attributes are handled elsewhere; silently move on.
7834 assert(AL.isTypeAttr() && "Non-type attribute not handled");
7835 break;
7836 }
7837 // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
7838 // statement attribute is not written on a declaration, but this code is
7839 // needed for attributes in Attr.td that do not list any subjects.
7840 S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
7841 << AL << D->getLocation();
7842 break;
7843 case ParsedAttr::AT_Interrupt:
7844 handleInterruptAttr(S, D, AL);
7845 break;
7846 case ParsedAttr::AT_X86ForceAlignArgPointer:
7847 handleX86ForceAlignArgPointerAttr(S, D, AL);
7848 break;
7849 case ParsedAttr::AT_DLLExport:
7850 case ParsedAttr::AT_DLLImport:
7851 handleDLLAttr(S, D, AL);
7852 break;
7853 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
7854 handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
7855 break;
7856 case ParsedAttr::AT_AMDGPUWavesPerEU:
7857 handleAMDGPUWavesPerEUAttr(S, D, AL);
7858 break;
7859 case ParsedAttr::AT_AMDGPUNumSGPR:
7860 handleAMDGPUNumSGPRAttr(S, D, AL);
7861 break;
7862 case ParsedAttr::AT_AMDGPUNumVGPR:
7863 handleAMDGPUNumVGPRAttr(S, D, AL);
7864 break;
7865 case ParsedAttr::AT_AVRSignal:
7866 handleAVRSignalAttr(S, D, AL);
7867 break;
7868 case ParsedAttr::AT_BPFPreserveAccessIndex:
7869 handleBPFPreserveAccessIndexAttr(S, D, AL);
7870 break;
7871 case ParsedAttr::AT_WebAssemblyExportName:
7872 handleWebAssemblyExportNameAttr(S, D, AL);
7873 break;
7874 case ParsedAttr::AT_WebAssemblyImportModule:
7875 handleWebAssemblyImportModuleAttr(S, D, AL);
7876 break;
7877 case ParsedAttr::AT_WebAssemblyImportName:
7878 handleWebAssemblyImportNameAttr(S, D, AL);
7879 break;
7880 case ParsedAttr::AT_IBOutlet:
7881 handleIBOutlet(S, D, AL);
7882 break;
7883 case ParsedAttr::AT_IBOutletCollection:
7884 handleIBOutletCollection(S, D, AL);
7885 break;
7886 case ParsedAttr::AT_IFunc:
7887 handleIFuncAttr(S, D, AL);
7888 break;
7889 case ParsedAttr::AT_Alias:
7890 handleAliasAttr(S, D, AL);
7891 break;
7892 case ParsedAttr::AT_Aligned:
7893 handleAlignedAttr(S, D, AL);
7894 break;
7895 case ParsedAttr::AT_AlignValue:
7896 handleAlignValueAttr(S, D, AL);
7897 break;
7898 case ParsedAttr::AT_AllocSize:
7899 handleAllocSizeAttr(S, D, AL);
7900 break;
7901 case ParsedAttr::AT_AlwaysInline:
7902 handleAlwaysInlineAttr(S, D, AL);
7903 break;
7904 case ParsedAttr::AT_AnalyzerNoReturn:
7905 handleAnalyzerNoReturnAttr(S, D, AL);
7906 break;
7907 case ParsedAttr::AT_TLSModel:
7908 handleTLSModelAttr(S, D, AL);
7909 break;
7910 case ParsedAttr::AT_Annotate:
7911 handleAnnotateAttr(S, D, AL);
7912 break;
7913 case ParsedAttr::AT_Availability:
7914 handleAvailabilityAttr(S, D, AL);
7915 break;
7916 case ParsedAttr::AT_CarriesDependency:
7917 handleDependencyAttr(S, scope, D, AL);
7918 break;
7919 case ParsedAttr::AT_CPUDispatch:
7920 case ParsedAttr::AT_CPUSpecific:
7921 handleCPUSpecificAttr(S, D, AL);
7922 break;
7923 case ParsedAttr::AT_Common:
7924 handleCommonAttr(S, D, AL);
7925 break;
7926 case ParsedAttr::AT_CUDAConstant:
7927 handleConstantAttr(S, D, AL);
7928 break;
7929 case ParsedAttr::AT_PassObjectSize:
7930 handlePassObjectSizeAttr(S, D, AL);
7931 break;
7932 case ParsedAttr::AT_Constructor:
7933 handleConstructorAttr(S, D, AL);
7934 break;
7935 case ParsedAttr::AT_Deprecated:
7936 handleDeprecatedAttr(S, D, AL);
7937 break;
7938 case ParsedAttr::AT_Destructor:
7939 handleDestructorAttr(S, D, AL);
7940 break;
7941 case ParsedAttr::AT_EnableIf:
7942 handleEnableIfAttr(S, D, AL);
7943 break;
7944 case ParsedAttr::AT_DiagnoseIf:
7945 handleDiagnoseIfAttr(S, D, AL);
7946 break;
7947 case ParsedAttr::AT_NoBuiltin:
7948 handleNoBuiltinAttr(S, D, AL);
7949 break;
7950 case ParsedAttr::AT_ExtVectorType:
7951 handleExtVectorTypeAttr(S, D, AL);
7952 break;
7953 case ParsedAttr::AT_ExternalSourceSymbol:
7954 handleExternalSourceSymbolAttr(S, D, AL);
7955 break;
7956 case ParsedAttr::AT_MinSize:
7957 handleMinSizeAttr(S, D, AL);
7958 break;
7959 case ParsedAttr::AT_OptimizeNone:
7960 handleOptimizeNoneAttr(S, D, AL);
7961 break;
7962 case ParsedAttr::AT_EnumExtensibility:
7963 handleEnumExtensibilityAttr(S, D, AL);
7964 break;
7965 case ParsedAttr::AT_SYCLKernel:
7966 handleSYCLKernelAttr(S, D, AL);
7967 break;
7968 case ParsedAttr::AT_Format:
7969 handleFormatAttr(S, D, AL);
7970 break;
7971 case ParsedAttr::AT_FormatArg:
7972 handleFormatArgAttr(S, D, AL);
7973 break;
7974 case ParsedAttr::AT_Callback:
7975 handleCallbackAttr(S, D, AL);
7976 break;
7977 case ParsedAttr::AT_CalledOnce:
7978 handleCalledOnceAttr(S, D, AL);
7979 break;
7980 case ParsedAttr::AT_CUDAGlobal:
7981 handleGlobalAttr(S, D, AL);
7982 break;
7983 case ParsedAttr::AT_CUDADevice:
7984 handleDeviceAttr(S, D, AL);
7985 break;
7986 case ParsedAttr::AT_HIPManaged:
7987 handleManagedAttr(S, D, AL);
7988 break;
7989 case ParsedAttr::AT_GNUInline:
7990 handleGNUInlineAttr(S, D, AL);
7991 break;
7992 case ParsedAttr::AT_CUDALaunchBounds:
7993 handleLaunchBoundsAttr(S, D, AL);
7994 break;
7995 case ParsedAttr::AT_Restrict:
7996 handleRestrictAttr(S, D, AL);
7997 break;
7998 case ParsedAttr::AT_Mode:
7999 handleModeAttr(S, D, AL);
8000 break;
8001 case ParsedAttr::AT_NonNull:
8002 if (auto *PVD = dyn_cast<ParmVarDecl>(D))
8003 handleNonNullAttrParameter(S, PVD, AL);
8004 else
8005 handleNonNullAttr(S, D, AL);
8006 break;
8007 case ParsedAttr::AT_ReturnsNonNull:
8008 handleReturnsNonNullAttr(S, D, AL);
8009 break;
8010 case ParsedAttr::AT_NoEscape:
8011 handleNoEscapeAttr(S, D, AL);
8012 break;
8013 case ParsedAttr::AT_AssumeAligned:
8014 handleAssumeAlignedAttr(S, D, AL);
8015 break;
8016 case ParsedAttr::AT_AllocAlign:
8017 handleAllocAlignAttr(S, D, AL);
8018 break;
8019 case ParsedAttr::AT_Ownership:
8020 handleOwnershipAttr(S, D, AL);
8021 break;
8022 case ParsedAttr::AT_Naked:
8023 handleNakedAttr(S, D, AL);
8024 break;
8025 case ParsedAttr::AT_NoReturn:
8026 handleNoReturnAttr(S, D, AL);
8027 break;
8028 case ParsedAttr::AT_AnyX86NoCfCheck:
8029 handleNoCfCheckAttr(S, D, AL);
8030 break;
8031 case ParsedAttr::AT_NoThrow:
8032 if (!AL.isUsedAsTypeAttr())
8033 handleSimpleAttribute<NoThrowAttr>(S, D, AL);
8034 break;
8035 case ParsedAttr::AT_CUDAShared:
8036 handleSharedAttr(S, D, AL);
8037 break;
8038 case ParsedAttr::AT_VecReturn:
8039 handleVecReturnAttr(S, D, AL);
8040 break;
8041 case ParsedAttr::AT_ObjCOwnership:
8042 handleObjCOwnershipAttr(S, D, AL);
8043 break;
8044 case ParsedAttr::AT_ObjCPreciseLifetime:
8045 handleObjCPreciseLifetimeAttr(S, D, AL);
8046 break;
8047 case ParsedAttr::AT_ObjCReturnsInnerPointer:
8048 handleObjCReturnsInnerPointerAttr(S, D, AL);
8049 break;
8050 case ParsedAttr::AT_ObjCRequiresSuper:
8051 handleObjCRequiresSuperAttr(S, D, AL);
8052 break;
8053 case ParsedAttr::AT_ObjCBridge:
8054 handleObjCBridgeAttr(S, D, AL);
8055 break;
8056 case ParsedAttr::AT_ObjCBridgeMutable:
8057 handleObjCBridgeMutableAttr(S, D, AL);
8058 break;
8059 case ParsedAttr::AT_ObjCBridgeRelated:
8060 handleObjCBridgeRelatedAttr(S, D, AL);
8061 break;
8062 case ParsedAttr::AT_ObjCDesignatedInitializer:
8063 handleObjCDesignatedInitializer(S, D, AL);
8064 break;
8065 case ParsedAttr::AT_ObjCRuntimeName:
8066 handleObjCRuntimeName(S, D, AL);
8067 break;
8068 case ParsedAttr::AT_ObjCBoxable:
8069 handleObjCBoxable(S, D, AL);
8070 break;
8071 case ParsedAttr::AT_NSErrorDomain:
8072 handleNSErrorDomain(S, D, AL);
8073 break;
8074 case ParsedAttr::AT_CFConsumed:
8075 case ParsedAttr::AT_NSConsumed:
8076 case ParsedAttr::AT_OSConsumed:
8077 S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
8078 /*IsTemplateInstantiation=*/false);
8079 break;
8080 case ParsedAttr::AT_OSReturnsRetainedOnZero:
8081 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
8082 S, D, AL, isValidOSObjectOutParameter(D),
8083 diag::warn_ns_attribute_wrong_parameter_type,
8084 /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
8085 break;
8086 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
8087 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
8088 S, D, AL, isValidOSObjectOutParameter(D),
8089 diag::warn_ns_attribute_wrong_parameter_type,
8090 /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
8091 break;
8092 case ParsedAttr::AT_NSReturnsAutoreleased:
8093 case ParsedAttr::AT_NSReturnsNotRetained:
8094 case ParsedAttr::AT_NSReturnsRetained:
8095 case ParsedAttr::AT_CFReturnsNotRetained:
8096 case ParsedAttr::AT_CFReturnsRetained:
8097 case ParsedAttr::AT_OSReturnsNotRetained:
8098 case ParsedAttr::AT_OSReturnsRetained:
8099 handleXReturnsXRetainedAttr(S, D, AL);
8100 break;
8101 case ParsedAttr::AT_WorkGroupSizeHint:
8102 handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
8103 break;
8104 case ParsedAttr::AT_ReqdWorkGroupSize:
8105 handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
8106 break;
8107 case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
8108 handleSubGroupSize(S, D, AL);
8109 break;
8110 case ParsedAttr::AT_VecTypeHint:
8111 handleVecTypeHint(S, D, AL);
8112 break;
8113 case ParsedAttr::AT_InitPriority:
8114 handleInitPriorityAttr(S, D, AL);
8115 break;
8116 case ParsedAttr::AT_Packed:
8117 handlePackedAttr(S, D, AL);
8118 break;
8119 case ParsedAttr::AT_PreferredName:
8120 handlePreferredName(S, D, AL);
8121 break;
8122 case ParsedAttr::AT_Section:
8123 handleSectionAttr(S, D, AL);
8124 break;
8125 case ParsedAttr::AT_CodeSeg:
8126 handleCodeSegAttr(S, D, AL);
8127 break;
8128 case ParsedAttr::AT_Target:
8129 handleTargetAttr(S, D, AL);
8130 break;
8131 case ParsedAttr::AT_MinVectorWidth:
8132 handleMinVectorWidthAttr(S, D, AL);
8133 break;
8134 case ParsedAttr::AT_Unavailable:
8135 handleAttrWithMessage<UnavailableAttr>(S, D, AL);
8136 break;
8137 case ParsedAttr::AT_Assumption:
8138 handleAssumumptionAttr(S, D, AL);
8139 break;
8140 case ParsedAttr::AT_ObjCDirect:
8141 handleObjCDirectAttr(S, D, AL);
8142 break;
8143 case ParsedAttr::AT_ObjCDirectMembers:
8144 handleObjCDirectMembersAttr(S, D, AL);
8145 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
8146 break;
8147 case ParsedAttr::AT_ObjCExplicitProtocolImpl:
8148 handleObjCSuppresProtocolAttr(S, D, AL);
8149 break;
8150 case ParsedAttr::AT_Unused:
8151 handleUnusedAttr(S, D, AL);
8152 break;
8153 case ParsedAttr::AT_Visibility:
8154 handleVisibilityAttr(S, D, AL, false);
8155 break;
8156 case ParsedAttr::AT_TypeVisibility:
8157 handleVisibilityAttr(S, D, AL, true);
8158 break;
8159 case ParsedAttr::AT_WarnUnusedResult:
8160 handleWarnUnusedResult(S, D, AL);
8161 break;
8162 case ParsedAttr::AT_WeakRef:
8163 handleWeakRefAttr(S, D, AL);
8164 break;
8165 case ParsedAttr::AT_WeakImport:
8166 handleWeakImportAttr(S, D, AL);
8167 break;
8168 case ParsedAttr::AT_TransparentUnion:
8169 handleTransparentUnionAttr(S, D, AL);
8170 break;
8171 case ParsedAttr::AT_ObjCMethodFamily:
8172 handleObjCMethodFamilyAttr(S, D, AL);
8173 break;
8174 case ParsedAttr::AT_ObjCNSObject:
8175 handleObjCNSObject(S, D, AL);
8176 break;
8177 case ParsedAttr::AT_ObjCIndependentClass:
8178 handleObjCIndependentClass(S, D, AL);
8179 break;
8180 case ParsedAttr::AT_Blocks:
8181 handleBlocksAttr(S, D, AL);
8182 break;
8183 case ParsedAttr::AT_Sentinel:
8184 handleSentinelAttr(S, D, AL);
8185 break;
8186 case ParsedAttr::AT_Cleanup:
8187 handleCleanupAttr(S, D, AL);
8188 break;
8189 case ParsedAttr::AT_NoDebug:
8190 handleNoDebugAttr(S, D, AL);
8191 break;
8192 case ParsedAttr::AT_CmseNSEntry:
8193 handleCmseNSEntryAttr(S, D, AL);
8194 break;
8195 case ParsedAttr::AT_StdCall:
8196 case ParsedAttr::AT_CDecl:
8197 case ParsedAttr::AT_FastCall:
8198 case ParsedAttr::AT_ThisCall:
8199 case ParsedAttr::AT_Pascal:
8200 case ParsedAttr::AT_RegCall:
8201 case ParsedAttr::AT_SwiftCall:
8202 case ParsedAttr::AT_SwiftAsyncCall:
8203 case ParsedAttr::AT_VectorCall:
8204 case ParsedAttr::AT_MSABI:
8205 case ParsedAttr::AT_SysVABI:
8206 case ParsedAttr::AT_Pcs:
8207 case ParsedAttr::AT_IntelOclBicc:
8208 case ParsedAttr::AT_PreserveMost:
8209 case ParsedAttr::AT_PreserveAll:
8210 case ParsedAttr::AT_AArch64VectorPcs:
8211 handleCallConvAttr(S, D, AL);
8212 break;
8213 case ParsedAttr::AT_Suppress:
8214 handleSuppressAttr(S, D, AL);
8215 break;
8216 case ParsedAttr::AT_Owner:
8217 case ParsedAttr::AT_Pointer:
8218 handleLifetimeCategoryAttr(S, D, AL);
8219 break;
8220 case ParsedAttr::AT_OpenCLAccess:
8221 handleOpenCLAccessAttr(S, D, AL);
8222 break;
8223 case ParsedAttr::AT_OpenCLNoSVM:
8224 handleOpenCLNoSVMAttr(S, D, AL);
8225 break;
8226 case ParsedAttr::AT_SwiftContext:
8227 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
8228 break;
8229 case ParsedAttr::AT_SwiftAsyncContext:
8230 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext);
8231 break;
8232 case ParsedAttr::AT_SwiftErrorResult:
8233 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
8234 break;
8235 case ParsedAttr::AT_SwiftIndirectResult:
8236 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
8237 break;
8238 case ParsedAttr::AT_InternalLinkage:
8239 handleInternalLinkageAttr(S, D, AL);
8240 break;
8241
8242 // Microsoft attributes:
8243 case ParsedAttr::AT_LayoutVersion:
8244 handleLayoutVersion(S, D, AL);
8245 break;
8246 case ParsedAttr::AT_Uuid:
8247 handleUuidAttr(S, D, AL);
8248 break;
8249 case ParsedAttr::AT_MSInheritance:
8250 handleMSInheritanceAttr(S, D, AL);
8251 break;
8252 case ParsedAttr::AT_Thread:
8253 handleDeclspecThreadAttr(S, D, AL);
8254 break;
8255
8256 case ParsedAttr::AT_AbiTag:
8257 handleAbiTagAttr(S, D, AL);
8258 break;
8259 case ParsedAttr::AT_CFGuard:
8260 handleCFGuardAttr(S, D, AL);
8261 break;
8262
8263 // Thread safety attributes:
8264 case ParsedAttr::AT_AssertExclusiveLock:
8265 handleAssertExclusiveLockAttr(S, D, AL);
8266 break;
8267 case ParsedAttr::AT_AssertSharedLock:
8268 handleAssertSharedLockAttr(S, D, AL);
8269 break;
8270 case ParsedAttr::AT_PtGuardedVar:
8271 handlePtGuardedVarAttr(S, D, AL);
8272 break;
8273 case ParsedAttr::AT_NoSanitize:
8274 handleNoSanitizeAttr(S, D, AL);
8275 break;
8276 case ParsedAttr::AT_NoSanitizeSpecific:
8277 handleNoSanitizeSpecificAttr(S, D, AL);
8278 break;
8279 case ParsedAttr::AT_GuardedBy:
8280 handleGuardedByAttr(S, D, AL);
8281 break;
8282 case ParsedAttr::AT_PtGuardedBy:
8283 handlePtGuardedByAttr(S, D, AL);
8284 break;
8285 case ParsedAttr::AT_ExclusiveTrylockFunction:
8286 handleExclusiveTrylockFunctionAttr(S, D, AL);
8287 break;
8288 case ParsedAttr::AT_LockReturned:
8289 handleLockReturnedAttr(S, D, AL);
8290 break;
8291 case ParsedAttr::AT_LocksExcluded:
8292 handleLocksExcludedAttr(S, D, AL);
8293 break;
8294 case ParsedAttr::AT_SharedTrylockFunction:
8295 handleSharedTrylockFunctionAttr(S, D, AL);
8296 break;
8297 case ParsedAttr::AT_AcquiredBefore:
8298 handleAcquiredBeforeAttr(S, D, AL);
8299 break;
8300 case ParsedAttr::AT_AcquiredAfter:
8301 handleAcquiredAfterAttr(S, D, AL);
8302 break;
8303
8304 // Capability analysis attributes.
8305 case ParsedAttr::AT_Capability:
8306 case ParsedAttr::AT_Lockable:
8307 handleCapabilityAttr(S, D, AL);
8308 break;
8309 case ParsedAttr::AT_RequiresCapability:
8310 handleRequiresCapabilityAttr(S, D, AL);
8311 break;
8312
8313 case ParsedAttr::AT_AssertCapability:
8314 handleAssertCapabilityAttr(S, D, AL);
8315 break;
8316 case ParsedAttr::AT_AcquireCapability:
8317 handleAcquireCapabilityAttr(S, D, AL);
8318 break;
8319 case ParsedAttr::AT_ReleaseCapability:
8320 handleReleaseCapabilityAttr(S, D, AL);
8321 break;
8322 case ParsedAttr::AT_TryAcquireCapability:
8323 handleTryAcquireCapabilityAttr(S, D, AL);
8324 break;
8325
8326 // Consumed analysis attributes.
8327 case ParsedAttr::AT_Consumable:
8328 handleConsumableAttr(S, D, AL);
8329 break;
8330 case ParsedAttr::AT_CallableWhen:
8331 handleCallableWhenAttr(S, D, AL);
8332 break;
8333 case ParsedAttr::AT_ParamTypestate:
8334 handleParamTypestateAttr(S, D, AL);
8335 break;
8336 case ParsedAttr::AT_ReturnTypestate:
8337 handleReturnTypestateAttr(S, D, AL);
8338 break;
8339 case ParsedAttr::AT_SetTypestate:
8340 handleSetTypestateAttr(S, D, AL);
8341 break;
8342 case ParsedAttr::AT_TestTypestate:
8343 handleTestTypestateAttr(S, D, AL);
8344 break;
8345
8346 // Type safety attributes.
8347 case ParsedAttr::AT_ArgumentWithTypeTag:
8348 handleArgumentWithTypeTagAttr(S, D, AL);
8349 break;
8350 case ParsedAttr::AT_TypeTagForDatatype:
8351 handleTypeTagForDatatypeAttr(S, D, AL);
8352 break;
8353
8354 // Swift attributes.
8355 case ParsedAttr::AT_SwiftAsyncName:
8356 handleSwiftAsyncName(S, D, AL);
8357 break;
8358 case ParsedAttr::AT_SwiftAttr:
8359 handleSwiftAttrAttr(S, D, AL);
8360 break;
8361 case ParsedAttr::AT_SwiftBridge:
8362 handleSwiftBridge(S, D, AL);
8363 break;
8364 case ParsedAttr::AT_SwiftError:
8365 handleSwiftError(S, D, AL);
8366 break;
8367 case ParsedAttr::AT_SwiftName:
8368 handleSwiftName(S, D, AL);
8369 break;
8370 case ParsedAttr::AT_SwiftNewType:
8371 handleSwiftNewType(S, D, AL);
8372 break;
8373 case ParsedAttr::AT_SwiftAsync:
8374 handleSwiftAsyncAttr(S, D, AL);
8375 break;
8376 case ParsedAttr::AT_SwiftAsyncError:
8377 handleSwiftAsyncError(S, D, AL);
8378 break;
8379
8380 // XRay attributes.
8381 case ParsedAttr::AT_XRayLogArgs:
8382 handleXRayLogArgsAttr(S, D, AL);
8383 break;
8384
8385 case ParsedAttr::AT_PatchableFunctionEntry:
8386 handlePatchableFunctionEntryAttr(S, D, AL);
8387 break;
8388
8389 case ParsedAttr::AT_AlwaysDestroy:
8390 case ParsedAttr::AT_NoDestroy:
8391 handleDestroyAttr(S, D, AL);
8392 break;
8393
8394 case ParsedAttr::AT_Uninitialized:
8395 handleUninitializedAttr(S, D, AL);
8396 break;
8397
8398 case ParsedAttr::AT_ObjCExternallyRetained:
8399 handleObjCExternallyRetainedAttr(S, D, AL);
8400 break;
8401
8402 case ParsedAttr::AT_MIGServerRoutine:
8403 handleMIGServerRoutineAttr(S, D, AL);
8404 break;
8405
8406 case ParsedAttr::AT_MSAllocator:
8407 handleMSAllocatorAttr(S, D, AL);
8408 break;
8409
8410 case ParsedAttr::AT_ArmBuiltinAlias:
8411 handleArmBuiltinAliasAttr(S, D, AL);
8412 break;
8413
8414 case ParsedAttr::AT_AcquireHandle:
8415 handleAcquireHandleAttr(S, D, AL);
8416 break;
8417
8418 case ParsedAttr::AT_ReleaseHandle:
8419 handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
8420 break;
8421
8422 case ParsedAttr::AT_UseHandle:
8423 handleHandleAttr<UseHandleAttr>(S, D, AL);
8424 break;
8425
8426 case ParsedAttr::AT_EnforceTCB:
8427 handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL);
8428 break;
8429
8430 case ParsedAttr::AT_EnforceTCBLeaf:
8431 handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL);
8432 break;
8433
8434 case ParsedAttr::AT_BuiltinAlias:
8435 handleBuiltinAliasAttr(S, D, AL);
8436 break;
8437
8438 case ParsedAttr::AT_UsingIfExists:
8439 handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL);
8440 break;
8441 }
8442 }
8443
8444 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
8445 /// attribute list to the specified decl, ignoring any type attributes.
ProcessDeclAttributeList(Scope * S,Decl * D,const ParsedAttributesView & AttrList,bool IncludeCXX11Attributes)8446 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
8447 const ParsedAttributesView &AttrList,
8448 bool IncludeCXX11Attributes) {
8449 if (AttrList.empty())
8450 return;
8451
8452 for (const ParsedAttr &AL : AttrList)
8453 ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes);
8454
8455 // FIXME: We should be able to handle these cases in TableGen.
8456 // GCC accepts
8457 // static int a9 __attribute__((weakref));
8458 // but that looks really pointless. We reject it.
8459 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
8460 Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
8461 << cast<NamedDecl>(D);
8462 D->dropAttr<WeakRefAttr>();
8463 return;
8464 }
8465
8466 // FIXME: We should be able to handle this in TableGen as well. It would be
8467 // good to have a way to specify "these attributes must appear as a group",
8468 // for these. Additionally, it would be good to have a way to specify "these
8469 // attribute must never appear as a group" for attributes like cold and hot.
8470 if (!D->hasAttr<OpenCLKernelAttr>()) {
8471 // These attributes cannot be applied to a non-kernel function.
8472 if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
8473 // FIXME: This emits a different error message than
8474 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
8475 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8476 D->setInvalidDecl();
8477 } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
8478 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8479 D->setInvalidDecl();
8480 } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
8481 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8482 D->setInvalidDecl();
8483 } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
8484 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
8485 D->setInvalidDecl();
8486 } else if (!D->hasAttr<CUDAGlobalAttr>()) {
8487 if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
8488 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8489 << A << ExpectedKernelFunction;
8490 D->setInvalidDecl();
8491 } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
8492 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8493 << A << ExpectedKernelFunction;
8494 D->setInvalidDecl();
8495 } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
8496 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8497 << A << ExpectedKernelFunction;
8498 D->setInvalidDecl();
8499 } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
8500 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8501 << A << ExpectedKernelFunction;
8502 D->setInvalidDecl();
8503 }
8504 }
8505 }
8506
8507 // Do this check after processing D's attributes because the attribute
8508 // objc_method_family can change whether the given method is in the init
8509 // family, and it can be applied after objc_designated_initializer. This is a
8510 // bit of a hack, but we need it to be compatible with versions of clang that
8511 // processed the attribute list in the wrong order.
8512 if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
8513 cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
8514 Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
8515 D->dropAttr<ObjCDesignatedInitializerAttr>();
8516 }
8517 }
8518
8519 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
8520 // attribute.
ProcessDeclAttributeDelayed(Decl * D,const ParsedAttributesView & AttrList)8521 void Sema::ProcessDeclAttributeDelayed(Decl *D,
8522 const ParsedAttributesView &AttrList) {
8523 for (const ParsedAttr &AL : AttrList)
8524 if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
8525 handleTransparentUnionAttr(*this, D, AL);
8526 break;
8527 }
8528
8529 // For BPFPreserveAccessIndexAttr, we want to populate the attributes
8530 // to fields and inner records as well.
8531 if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
8532 handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
8533 }
8534
8535 // Annotation attributes are the only attributes allowed after an access
8536 // specifier.
ProcessAccessDeclAttributeList(AccessSpecDecl * ASDecl,const ParsedAttributesView & AttrList)8537 bool Sema::ProcessAccessDeclAttributeList(
8538 AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
8539 for (const ParsedAttr &AL : AttrList) {
8540 if (AL.getKind() == ParsedAttr::AT_Annotate) {
8541 ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute());
8542 } else {
8543 Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
8544 return true;
8545 }
8546 }
8547 return false;
8548 }
8549
8550 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
8551 /// contains any decl attributes that we should warn about.
checkUnusedDeclAttributes(Sema & S,const ParsedAttributesView & A)8552 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
8553 for (const ParsedAttr &AL : A) {
8554 // Only warn if the attribute is an unignored, non-type attribute.
8555 if (AL.isUsedAsTypeAttr() || AL.isInvalid())
8556 continue;
8557 if (AL.getKind() == ParsedAttr::IgnoredAttribute)
8558 continue;
8559
8560 if (AL.getKind() == ParsedAttr::UnknownAttribute) {
8561 S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
8562 << AL << AL.getRange();
8563 } else {
8564 S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
8565 << AL.getRange();
8566 }
8567 }
8568 }
8569
8570 /// checkUnusedDeclAttributes - Given a declarator which is not being
8571 /// used to build a declaration, complain about any decl attributes
8572 /// which might be lying around on it.
checkUnusedDeclAttributes(Declarator & D)8573 void Sema::checkUnusedDeclAttributes(Declarator &D) {
8574 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
8575 ::checkUnusedDeclAttributes(*this, D.getAttributes());
8576 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
8577 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
8578 }
8579
8580 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
8581 /// \#pragma weak needs a non-definition decl and source may not have one.
DeclClonePragmaWeak(NamedDecl * ND,IdentifierInfo * II,SourceLocation Loc)8582 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
8583 SourceLocation Loc) {
8584 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
8585 NamedDecl *NewD = nullptr;
8586 if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
8587 FunctionDecl *NewFD;
8588 // FIXME: Missing call to CheckFunctionDeclaration().
8589 // FIXME: Mangling?
8590 // FIXME: Is the qualifier info correct?
8591 // FIXME: Is the DeclContext correct?
8592 NewFD = FunctionDecl::Create(
8593 FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
8594 DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
8595 false /*isInlineSpecified*/, FD->hasPrototype(),
8596 ConstexprSpecKind::Unspecified, FD->getTrailingRequiresClause());
8597 NewD = NewFD;
8598
8599 if (FD->getQualifier())
8600 NewFD->setQualifierInfo(FD->getQualifierLoc());
8601
8602 // Fake up parameter variables; they are declared as if this were
8603 // a typedef.
8604 QualType FDTy = FD->getType();
8605 if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
8606 SmallVector<ParmVarDecl*, 16> Params;
8607 for (const auto &AI : FT->param_types()) {
8608 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
8609 Param->setScopeInfo(0, Params.size());
8610 Params.push_back(Param);
8611 }
8612 NewFD->setParams(Params);
8613 }
8614 } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
8615 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
8616 VD->getInnerLocStart(), VD->getLocation(), II,
8617 VD->getType(), VD->getTypeSourceInfo(),
8618 VD->getStorageClass());
8619 if (VD->getQualifier())
8620 cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
8621 }
8622 return NewD;
8623 }
8624
8625 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
8626 /// applied to it, possibly with an alias.
DeclApplyPragmaWeak(Scope * S,NamedDecl * ND,WeakInfo & W)8627 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
8628 if (W.getUsed()) return; // only do this once
8629 W.setUsed(true);
8630 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
8631 IdentifierInfo *NDId = ND->getIdentifier();
8632 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
8633 NewD->addAttr(
8634 AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
8635 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
8636 AttributeCommonInfo::AS_Pragma));
8637 WeakTopLevelDecl.push_back(NewD);
8638 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
8639 // to insert Decl at TU scope, sorry.
8640 DeclContext *SavedContext = CurContext;
8641 CurContext = Context.getTranslationUnitDecl();
8642 NewD->setDeclContext(CurContext);
8643 NewD->setLexicalDeclContext(CurContext);
8644 PushOnScopeChains(NewD, S);
8645 CurContext = SavedContext;
8646 } else { // just add weak to existing
8647 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(),
8648 AttributeCommonInfo::AS_Pragma));
8649 }
8650 }
8651
ProcessPragmaWeak(Scope * S,Decl * D)8652 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
8653 // It's valid to "forward-declare" #pragma weak, in which case we
8654 // have to do this.
8655 LoadExternalWeakUndeclaredIdentifiers();
8656 if (!WeakUndeclaredIdentifiers.empty()) {
8657 NamedDecl *ND = nullptr;
8658 if (auto *VD = dyn_cast<VarDecl>(D))
8659 if (VD->isExternC())
8660 ND = VD;
8661 if (auto *FD = dyn_cast<FunctionDecl>(D))
8662 if (FD->isExternC())
8663 ND = FD;
8664 if (ND) {
8665 if (IdentifierInfo *Id = ND->getIdentifier()) {
8666 auto I = WeakUndeclaredIdentifiers.find(Id);
8667 if (I != WeakUndeclaredIdentifiers.end()) {
8668 WeakInfo W = I->second;
8669 DeclApplyPragmaWeak(S, ND, W);
8670 WeakUndeclaredIdentifiers[Id] = W;
8671 }
8672 }
8673 }
8674 }
8675 }
8676
8677 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
8678 /// it, apply them to D. This is a bit tricky because PD can have attributes
8679 /// specified in many different places, and we need to find and apply them all.
ProcessDeclAttributes(Scope * S,Decl * D,const Declarator & PD)8680 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
8681 // Apply decl attributes from the DeclSpec if present.
8682 if (!PD.getDeclSpec().getAttributes().empty())
8683 ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes());
8684
8685 // Walk the declarator structure, applying decl attributes that were in a type
8686 // position to the decl itself. This handles cases like:
8687 // int *__attr__(x)** D;
8688 // when X is a decl attribute.
8689 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
8690 ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
8691 /*IncludeCXX11Attributes=*/false);
8692
8693 // Finally, apply any attributes on the decl itself.
8694 ProcessDeclAttributeList(S, D, PD.getAttributes());
8695
8696 // Apply additional attributes specified by '#pragma clang attribute'.
8697 AddPragmaAttributes(S, D);
8698 }
8699
8700 /// Is the given declaration allowed to use a forbidden type?
8701 /// If so, it'll still be annotated with an attribute that makes it
8702 /// illegal to actually use.
isForbiddenTypeAllowed(Sema & S,Decl * D,const DelayedDiagnostic & diag,UnavailableAttr::ImplicitReason & reason)8703 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
8704 const DelayedDiagnostic &diag,
8705 UnavailableAttr::ImplicitReason &reason) {
8706 // Private ivars are always okay. Unfortunately, people don't
8707 // always properly make their ivars private, even in system headers.
8708 // Plus we need to make fields okay, too.
8709 if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
8710 !isa<FunctionDecl>(D))
8711 return false;
8712
8713 // Silently accept unsupported uses of __weak in both user and system
8714 // declarations when it's been disabled, for ease of integration with
8715 // -fno-objc-arc files. We do have to take some care against attempts
8716 // to define such things; for now, we've only done that for ivars
8717 // and properties.
8718 if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
8719 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
8720 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
8721 reason = UnavailableAttr::IR_ForbiddenWeak;
8722 return true;
8723 }
8724 }
8725
8726 // Allow all sorts of things in system headers.
8727 if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
8728 // Currently, all the failures dealt with this way are due to ARC
8729 // restrictions.
8730 reason = UnavailableAttr::IR_ARCForbiddenType;
8731 return true;
8732 }
8733
8734 return false;
8735 }
8736
8737 /// Handle a delayed forbidden-type diagnostic.
handleDelayedForbiddenType(Sema & S,DelayedDiagnostic & DD,Decl * D)8738 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
8739 Decl *D) {
8740 auto Reason = UnavailableAttr::IR_None;
8741 if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
8742 assert(Reason && "didn't set reason?");
8743 D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
8744 return;
8745 }
8746 if (S.getLangOpts().ObjCAutoRefCount)
8747 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
8748 // FIXME: we may want to suppress diagnostics for all
8749 // kind of forbidden type messages on unavailable functions.
8750 if (FD->hasAttr<UnavailableAttr>() &&
8751 DD.getForbiddenTypeDiagnostic() ==
8752 diag::err_arc_array_param_no_ownership) {
8753 DD.Triggered = true;
8754 return;
8755 }
8756 }
8757
8758 S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
8759 << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
8760 DD.Triggered = true;
8761 }
8762
8763
PopParsingDeclaration(ParsingDeclState state,Decl * decl)8764 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
8765 assert(DelayedDiagnostics.getCurrentPool());
8766 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
8767 DelayedDiagnostics.popWithoutEmitting(state);
8768
8769 // When delaying diagnostics to run in the context of a parsed
8770 // declaration, we only want to actually emit anything if parsing
8771 // succeeds.
8772 if (!decl) return;
8773
8774 // We emit all the active diagnostics in this pool or any of its
8775 // parents. In general, we'll get one pool for the decl spec
8776 // and a child pool for each declarator; in a decl group like:
8777 // deprecated_typedef foo, *bar, baz();
8778 // only the declarator pops will be passed decls. This is correct;
8779 // we really do need to consider delayed diagnostics from the decl spec
8780 // for each of the different declarations.
8781 const DelayedDiagnosticPool *pool = &poppedPool;
8782 do {
8783 bool AnyAccessFailures = false;
8784 for (DelayedDiagnosticPool::pool_iterator
8785 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
8786 // This const_cast is a bit lame. Really, Triggered should be mutable.
8787 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
8788 if (diag.Triggered)
8789 continue;
8790
8791 switch (diag.Kind) {
8792 case DelayedDiagnostic::Availability:
8793 // Don't bother giving deprecation/unavailable diagnostics if
8794 // the decl is invalid.
8795 if (!decl->isInvalidDecl())
8796 handleDelayedAvailabilityCheck(diag, decl);
8797 break;
8798
8799 case DelayedDiagnostic::Access:
8800 // Only produce one access control diagnostic for a structured binding
8801 // declaration: we don't need to tell the user that all the fields are
8802 // inaccessible one at a time.
8803 if (AnyAccessFailures && isa<DecompositionDecl>(decl))
8804 continue;
8805 HandleDelayedAccessCheck(diag, decl);
8806 if (diag.Triggered)
8807 AnyAccessFailures = true;
8808 break;
8809
8810 case DelayedDiagnostic::ForbiddenType:
8811 handleDelayedForbiddenType(*this, diag, decl);
8812 break;
8813 }
8814 }
8815 } while ((pool = pool->getParent()));
8816 }
8817
8818 /// Given a set of delayed diagnostics, re-emit them as if they had
8819 /// been delayed in the current context instead of in the given pool.
8820 /// Essentially, this just moves them to the current pool.
redelayDiagnostics(DelayedDiagnosticPool & pool)8821 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
8822 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
8823 assert(curPool && "re-emitting in undelayed context not supported");
8824 curPool->steal(pool);
8825 }
8826