1 //===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the class that reads LLVM sample profiles. It
10 // supports three file formats: text, binary and gcov.
11 //
12 // The textual representation is useful for debugging and testing purposes. The
13 // binary representation is more compact, resulting in smaller file sizes.
14 //
15 // The gcov encoding is the one generated by GCC's AutoFDO profile creation
16 // tool (https://github.com/google/autofdo)
17 //
18 // All three encodings can be used interchangeably as an input sample profile.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "llvm/ProfileData/SampleProfReader.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/ProfileSummary.h"
27 #include "llvm/ProfileData/ProfileCommon.h"
28 #include "llvm/ProfileData/SampleProf.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Compression.h"
31 #include "llvm/Support/ErrorOr.h"
32 #include "llvm/Support/LEB128.h"
33 #include "llvm/Support/LineIterator.h"
34 #include "llvm/Support/MD5.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cstddef>
39 #include <cstdint>
40 #include <limits>
41 #include <memory>
42 #include <set>
43 #include <system_error>
44 #include <vector>
45
46 using namespace llvm;
47 using namespace sampleprof;
48
49 #define DEBUG_TYPE "samplepgo-reader"
50
51 // This internal option specifies if the profile uses FS discriminators.
52 // It only applies to text, binary and compact binary format profiles.
53 // For ext-binary format profiles, the flag is set in the summary.
54 static cl::opt<bool> ProfileIsFSDisciminator(
55 "profile-isfs", cl::Hidden, cl::init(false),
56 cl::desc("Profile uses flow senstive discriminators"));
57
58 /// Dump the function profile for \p FName.
59 ///
60 /// \param FName Name of the function to print.
61 /// \param OS Stream to emit the output to.
dumpFunctionProfile(StringRef FName,raw_ostream & OS)62 void SampleProfileReader::dumpFunctionProfile(StringRef FName,
63 raw_ostream &OS) {
64 OS << "Function: " << FName << ": " << Profiles[FName];
65 }
66
67 /// Dump all the function profiles found on stream \p OS.
dump(raw_ostream & OS)68 void SampleProfileReader::dump(raw_ostream &OS) {
69 for (const auto &I : Profiles)
70 dumpFunctionProfile(I.getKey(), OS);
71 }
72
73 /// Parse \p Input as function head.
74 ///
75 /// Parse one line of \p Input, and update function name in \p FName,
76 /// function's total sample count in \p NumSamples, function's entry
77 /// count in \p NumHeadSamples.
78 ///
79 /// \returns true if parsing is successful.
ParseHead(const StringRef & Input,StringRef & FName,uint64_t & NumSamples,uint64_t & NumHeadSamples)80 static bool ParseHead(const StringRef &Input, StringRef &FName,
81 uint64_t &NumSamples, uint64_t &NumHeadSamples) {
82 if (Input[0] == ' ')
83 return false;
84 size_t n2 = Input.rfind(':');
85 size_t n1 = Input.rfind(':', n2 - 1);
86 FName = Input.substr(0, n1);
87 if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples))
88 return false;
89 if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples))
90 return false;
91 return true;
92 }
93
94 /// Returns true if line offset \p L is legal (only has 16 bits).
isOffsetLegal(unsigned L)95 static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; }
96
97 /// Parse \p Input that contains metadata.
98 /// Possible metadata:
99 /// - CFG Checksum information:
100 /// !CFGChecksum: 12345
101 /// - CFG Checksum information:
102 /// !Attributes: 1
103 /// Stores the FunctionHash (a.k.a. CFG Checksum) into \p FunctionHash.
parseMetadata(const StringRef & Input,uint64_t & FunctionHash,uint32_t & Attributes)104 static bool parseMetadata(const StringRef &Input, uint64_t &FunctionHash,
105 uint32_t &Attributes) {
106 if (Input.startswith("!CFGChecksum:")) {
107 StringRef CFGInfo = Input.substr(strlen("!CFGChecksum:")).trim();
108 return !CFGInfo.getAsInteger(10, FunctionHash);
109 }
110
111 if (Input.startswith("!Attributes:")) {
112 StringRef Attrib = Input.substr(strlen("!Attributes:")).trim();
113 return !Attrib.getAsInteger(10, Attributes);
114 }
115
116 return false;
117 }
118
119 enum class LineType {
120 CallSiteProfile,
121 BodyProfile,
122 Metadata,
123 };
124
125 /// Parse \p Input as line sample.
126 ///
127 /// \param Input input line.
128 /// \param LineTy Type of this line.
129 /// \param Depth the depth of the inline stack.
130 /// \param NumSamples total samples of the line/inlined callsite.
131 /// \param LineOffset line offset to the start of the function.
132 /// \param Discriminator discriminator of the line.
133 /// \param TargetCountMap map from indirect call target to count.
134 /// \param FunctionHash the function's CFG hash, used by pseudo probe.
135 ///
136 /// returns true if parsing is successful.
ParseLine(const StringRef & Input,LineType & LineTy,uint32_t & Depth,uint64_t & NumSamples,uint32_t & LineOffset,uint32_t & Discriminator,StringRef & CalleeName,DenseMap<StringRef,uint64_t> & TargetCountMap,uint64_t & FunctionHash,uint32_t & Attributes)137 static bool ParseLine(const StringRef &Input, LineType &LineTy, uint32_t &Depth,
138 uint64_t &NumSamples, uint32_t &LineOffset,
139 uint32_t &Discriminator, StringRef &CalleeName,
140 DenseMap<StringRef, uint64_t> &TargetCountMap,
141 uint64_t &FunctionHash, uint32_t &Attributes) {
142 for (Depth = 0; Input[Depth] == ' '; Depth++)
143 ;
144 if (Depth == 0)
145 return false;
146
147 if (Depth == 1 && Input[Depth] == '!') {
148 LineTy = LineType::Metadata;
149 return parseMetadata(Input.substr(Depth), FunctionHash, Attributes);
150 }
151
152 size_t n1 = Input.find(':');
153 StringRef Loc = Input.substr(Depth, n1 - Depth);
154 size_t n2 = Loc.find('.');
155 if (n2 == StringRef::npos) {
156 if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset))
157 return false;
158 Discriminator = 0;
159 } else {
160 if (Loc.substr(0, n2).getAsInteger(10, LineOffset))
161 return false;
162 if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator))
163 return false;
164 }
165
166 StringRef Rest = Input.substr(n1 + 2);
167 if (isDigit(Rest[0])) {
168 LineTy = LineType::BodyProfile;
169 size_t n3 = Rest.find(' ');
170 if (n3 == StringRef::npos) {
171 if (Rest.getAsInteger(10, NumSamples))
172 return false;
173 } else {
174 if (Rest.substr(0, n3).getAsInteger(10, NumSamples))
175 return false;
176 }
177 // Find call targets and their sample counts.
178 // Note: In some cases, there are symbols in the profile which are not
179 // mangled. To accommodate such cases, use colon + integer pairs as the
180 // anchor points.
181 // An example:
182 // _M_construct<char *>:1000 string_view<std::allocator<char> >:437
183 // ":1000" and ":437" are used as anchor points so the string above will
184 // be interpreted as
185 // target: _M_construct<char *>
186 // count: 1000
187 // target: string_view<std::allocator<char> >
188 // count: 437
189 while (n3 != StringRef::npos) {
190 n3 += Rest.substr(n3).find_first_not_of(' ');
191 Rest = Rest.substr(n3);
192 n3 = Rest.find_first_of(':');
193 if (n3 == StringRef::npos || n3 == 0)
194 return false;
195
196 StringRef Target;
197 uint64_t count, n4;
198 while (true) {
199 // Get the segment after the current colon.
200 StringRef AfterColon = Rest.substr(n3 + 1);
201 // Get the target symbol before the current colon.
202 Target = Rest.substr(0, n3);
203 // Check if the word after the current colon is an integer.
204 n4 = AfterColon.find_first_of(' ');
205 n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size();
206 StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1);
207 if (!WordAfterColon.getAsInteger(10, count))
208 break;
209
210 // Try to find the next colon.
211 uint64_t n5 = AfterColon.find_first_of(':');
212 if (n5 == StringRef::npos)
213 return false;
214 n3 += n5 + 1;
215 }
216
217 // An anchor point is found. Save the {target, count} pair
218 TargetCountMap[Target] = count;
219 if (n4 == Rest.size())
220 break;
221 // Change n3 to the next blank space after colon + integer pair.
222 n3 = n4;
223 }
224 } else {
225 LineTy = LineType::CallSiteProfile;
226 size_t n3 = Rest.find_last_of(':');
227 CalleeName = Rest.substr(0, n3);
228 if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples))
229 return false;
230 }
231 return true;
232 }
233
234 /// Load samples from a text file.
235 ///
236 /// See the documentation at the top of the file for an explanation of
237 /// the expected format.
238 ///
239 /// \returns true if the file was loaded successfully, false otherwise.
readImpl()240 std::error_code SampleProfileReaderText::readImpl() {
241 line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#');
242 sampleprof_error Result = sampleprof_error::success;
243
244 InlineCallStack InlineStack;
245 uint32_t ProbeProfileCount = 0;
246
247 // SeenMetadata tracks whether we have processed metadata for the current
248 // top-level function profile.
249 bool SeenMetadata = false;
250
251 ProfileIsFS = ProfileIsFSDisciminator;
252 for (; !LineIt.is_at_eof(); ++LineIt) {
253 if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#')
254 continue;
255 // Read the header of each function.
256 //
257 // Note that for function identifiers we are actually expecting
258 // mangled names, but we may not always get them. This happens when
259 // the compiler decides not to emit the function (e.g., it was inlined
260 // and removed). In this case, the binary will not have the linkage
261 // name for the function, so the profiler will emit the function's
262 // unmangled name, which may contain characters like ':' and '>' in its
263 // name (member functions, templates, etc).
264 //
265 // The only requirement we place on the identifier, then, is that it
266 // should not begin with a number.
267 if ((*LineIt)[0] != ' ') {
268 uint64_t NumSamples, NumHeadSamples;
269 StringRef FName;
270 if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) {
271 reportError(LineIt.line_number(),
272 "Expected 'mangled_name:NUM:NUM', found " + *LineIt);
273 return sampleprof_error::malformed;
274 }
275 SeenMetadata = false;
276 SampleContext FContext(FName);
277 if (FContext.hasContext())
278 ++CSProfileCount;
279 Profiles[FContext] = FunctionSamples();
280 FunctionSamples &FProfile = Profiles[FContext];
281 FProfile.setName(FContext.getNameWithoutContext());
282 FProfile.setContext(FContext);
283 MergeResult(Result, FProfile.addTotalSamples(NumSamples));
284 MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples));
285 InlineStack.clear();
286 InlineStack.push_back(&FProfile);
287 } else {
288 uint64_t NumSamples;
289 StringRef FName;
290 DenseMap<StringRef, uint64_t> TargetCountMap;
291 uint32_t Depth, LineOffset, Discriminator;
292 LineType LineTy;
293 uint64_t FunctionHash = 0;
294 uint32_t Attributes = 0;
295 if (!ParseLine(*LineIt, LineTy, Depth, NumSamples, LineOffset,
296 Discriminator, FName, TargetCountMap, FunctionHash,
297 Attributes)) {
298 reportError(LineIt.line_number(),
299 "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " +
300 *LineIt);
301 return sampleprof_error::malformed;
302 }
303 if (SeenMetadata && LineTy != LineType::Metadata) {
304 // Metadata must be put at the end of a function profile.
305 reportError(LineIt.line_number(),
306 "Found non-metadata after metadata: " + *LineIt);
307 return sampleprof_error::malformed;
308 }
309
310 // Here we handle FS discriminators.
311 Discriminator &= getDiscriminatorMask();
312
313 while (InlineStack.size() > Depth) {
314 InlineStack.pop_back();
315 }
316 switch (LineTy) {
317 case LineType::CallSiteProfile: {
318 FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt(
319 LineLocation(LineOffset, Discriminator))[std::string(FName)];
320 FSamples.setName(FName);
321 MergeResult(Result, FSamples.addTotalSamples(NumSamples));
322 InlineStack.push_back(&FSamples);
323 break;
324 }
325 case LineType::BodyProfile: {
326 while (InlineStack.size() > Depth) {
327 InlineStack.pop_back();
328 }
329 FunctionSamples &FProfile = *InlineStack.back();
330 for (const auto &name_count : TargetCountMap) {
331 MergeResult(Result, FProfile.addCalledTargetSamples(
332 LineOffset, Discriminator, name_count.first,
333 name_count.second));
334 }
335 MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator,
336 NumSamples));
337 break;
338 }
339 case LineType::Metadata: {
340 FunctionSamples &FProfile = *InlineStack.back();
341 if (FunctionHash) {
342 FProfile.setFunctionHash(FunctionHash);
343 ++ProbeProfileCount;
344 }
345 if (Attributes)
346 FProfile.getContext().setAllAttributes(Attributes);
347 SeenMetadata = true;
348 break;
349 }
350 }
351 }
352 }
353
354 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) &&
355 "Cannot have both context-sensitive and regular profile");
356 ProfileIsCS = (CSProfileCount > 0);
357 assert((ProbeProfileCount == 0 || ProbeProfileCount == Profiles.size()) &&
358 "Cannot have both probe-based profiles and regular profiles");
359 ProfileIsProbeBased = (ProbeProfileCount > 0);
360 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
361 FunctionSamples::ProfileIsCS = ProfileIsCS;
362
363 if (Result == sampleprof_error::success)
364 computeSummary();
365
366 return Result;
367 }
368
hasFormat(const MemoryBuffer & Buffer)369 bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) {
370 bool result = false;
371
372 // Check that the first non-comment line is a valid function header.
373 line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#');
374 if (!LineIt.is_at_eof()) {
375 if ((*LineIt)[0] != ' ') {
376 uint64_t NumSamples, NumHeadSamples;
377 StringRef FName;
378 result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples);
379 }
380 }
381
382 return result;
383 }
384
readNumber()385 template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() {
386 unsigned NumBytesRead = 0;
387 std::error_code EC;
388 uint64_t Val = decodeULEB128(Data, &NumBytesRead);
389
390 if (Val > std::numeric_limits<T>::max())
391 EC = sampleprof_error::malformed;
392 else if (Data + NumBytesRead > End)
393 EC = sampleprof_error::truncated;
394 else
395 EC = sampleprof_error::success;
396
397 if (EC) {
398 reportError(0, EC.message());
399 return EC;
400 }
401
402 Data += NumBytesRead;
403 return static_cast<T>(Val);
404 }
405
readString()406 ErrorOr<StringRef> SampleProfileReaderBinary::readString() {
407 std::error_code EC;
408 StringRef Str(reinterpret_cast<const char *>(Data));
409 if (Data + Str.size() + 1 > End) {
410 EC = sampleprof_error::truncated;
411 reportError(0, EC.message());
412 return EC;
413 }
414
415 Data += Str.size() + 1;
416 return Str;
417 }
418
419 template <typename T>
readUnencodedNumber()420 ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() {
421 std::error_code EC;
422
423 if (Data + sizeof(T) > End) {
424 EC = sampleprof_error::truncated;
425 reportError(0, EC.message());
426 return EC;
427 }
428
429 using namespace support;
430 T Val = endian::readNext<T, little, unaligned>(Data);
431 return Val;
432 }
433
434 template <typename T>
readStringIndex(T & Table)435 inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) {
436 std::error_code EC;
437 auto Idx = readNumber<uint32_t>();
438 if (std::error_code EC = Idx.getError())
439 return EC;
440 if (*Idx >= Table.size())
441 return sampleprof_error::truncated_name_table;
442 return *Idx;
443 }
444
readStringFromTable()445 ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() {
446 auto Idx = readStringIndex(NameTable);
447 if (std::error_code EC = Idx.getError())
448 return EC;
449
450 return NameTable[*Idx];
451 }
452
readStringFromTable()453 ErrorOr<StringRef> SampleProfileReaderExtBinaryBase::readStringFromTable() {
454 if (!FixedLengthMD5)
455 return SampleProfileReaderBinary::readStringFromTable();
456
457 // read NameTable index.
458 auto Idx = readStringIndex(NameTable);
459 if (std::error_code EC = Idx.getError())
460 return EC;
461
462 // Check whether the name to be accessed has been accessed before,
463 // if not, read it from memory directly.
464 StringRef &SR = NameTable[*Idx];
465 if (SR.empty()) {
466 const uint8_t *SavedData = Data;
467 Data = MD5NameMemStart + ((*Idx) * sizeof(uint64_t));
468 auto FID = readUnencodedNumber<uint64_t>();
469 if (std::error_code EC = FID.getError())
470 return EC;
471 // Save the string converted from uint64_t in MD5StringBuf. All the
472 // references to the name are all StringRefs refering to the string
473 // in MD5StringBuf.
474 MD5StringBuf->push_back(std::to_string(*FID));
475 SR = MD5StringBuf->back();
476 Data = SavedData;
477 }
478 return SR;
479 }
480
readStringFromTable()481 ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() {
482 auto Idx = readStringIndex(NameTable);
483 if (std::error_code EC = Idx.getError())
484 return EC;
485
486 return StringRef(NameTable[*Idx]);
487 }
488
489 std::error_code
readProfile(FunctionSamples & FProfile)490 SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) {
491 auto NumSamples = readNumber<uint64_t>();
492 if (std::error_code EC = NumSamples.getError())
493 return EC;
494 FProfile.addTotalSamples(*NumSamples);
495
496 // Read the samples in the body.
497 auto NumRecords = readNumber<uint32_t>();
498 if (std::error_code EC = NumRecords.getError())
499 return EC;
500
501 for (uint32_t I = 0; I < *NumRecords; ++I) {
502 auto LineOffset = readNumber<uint64_t>();
503 if (std::error_code EC = LineOffset.getError())
504 return EC;
505
506 if (!isOffsetLegal(*LineOffset)) {
507 return std::error_code();
508 }
509
510 auto Discriminator = readNumber<uint64_t>();
511 if (std::error_code EC = Discriminator.getError())
512 return EC;
513
514 auto NumSamples = readNumber<uint64_t>();
515 if (std::error_code EC = NumSamples.getError())
516 return EC;
517
518 auto NumCalls = readNumber<uint32_t>();
519 if (std::error_code EC = NumCalls.getError())
520 return EC;
521
522 // Here we handle FS discriminators:
523 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask();
524
525 for (uint32_t J = 0; J < *NumCalls; ++J) {
526 auto CalledFunction(readStringFromTable());
527 if (std::error_code EC = CalledFunction.getError())
528 return EC;
529
530 auto CalledFunctionSamples = readNumber<uint64_t>();
531 if (std::error_code EC = CalledFunctionSamples.getError())
532 return EC;
533
534 FProfile.addCalledTargetSamples(*LineOffset, DiscriminatorVal,
535 *CalledFunction, *CalledFunctionSamples);
536 }
537
538 FProfile.addBodySamples(*LineOffset, DiscriminatorVal, *NumSamples);
539 }
540
541 // Read all the samples for inlined function calls.
542 auto NumCallsites = readNumber<uint32_t>();
543 if (std::error_code EC = NumCallsites.getError())
544 return EC;
545
546 for (uint32_t J = 0; J < *NumCallsites; ++J) {
547 auto LineOffset = readNumber<uint64_t>();
548 if (std::error_code EC = LineOffset.getError())
549 return EC;
550
551 auto Discriminator = readNumber<uint64_t>();
552 if (std::error_code EC = Discriminator.getError())
553 return EC;
554
555 auto FName(readStringFromTable());
556 if (std::error_code EC = FName.getError())
557 return EC;
558
559 // Here we handle FS discriminators:
560 uint32_t DiscriminatorVal = (*Discriminator) & getDiscriminatorMask();
561
562 FunctionSamples &CalleeProfile = FProfile.functionSamplesAt(
563 LineLocation(*LineOffset, DiscriminatorVal))[std::string(*FName)];
564 CalleeProfile.setName(*FName);
565 if (std::error_code EC = readProfile(CalleeProfile))
566 return EC;
567 }
568
569 return sampleprof_error::success;
570 }
571
572 std::error_code
readFuncProfile(const uint8_t * Start)573 SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) {
574 Data = Start;
575 auto NumHeadSamples = readNumber<uint64_t>();
576 if (std::error_code EC = NumHeadSamples.getError())
577 return EC;
578
579 auto FName(readStringFromTable());
580 if (std::error_code EC = FName.getError())
581 return EC;
582
583 SampleContext FContext(*FName);
584 Profiles[FContext] = FunctionSamples();
585 FunctionSamples &FProfile = Profiles[FContext];
586 FProfile.setName(FContext.getNameWithoutContext());
587 FProfile.setContext(FContext);
588 FProfile.addHeadSamples(*NumHeadSamples);
589
590 if (FContext.hasContext())
591 CSProfileCount++;
592
593 if (std::error_code EC = readProfile(FProfile))
594 return EC;
595 return sampleprof_error::success;
596 }
597
readImpl()598 std::error_code SampleProfileReaderBinary::readImpl() {
599 ProfileIsFS = ProfileIsFSDisciminator;
600 while (!at_eof()) {
601 if (std::error_code EC = readFuncProfile(Data))
602 return EC;
603 }
604
605 return sampleprof_error::success;
606 }
607
readOneSection(const uint8_t * Start,uint64_t Size,const SecHdrTableEntry & Entry)608 std::error_code SampleProfileReaderExtBinaryBase::readOneSection(
609 const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) {
610 Data = Start;
611 End = Start + Size;
612 switch (Entry.Type) {
613 case SecProfSummary:
614 if (std::error_code EC = readSummary())
615 return EC;
616 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
617 Summary->setPartialProfile(true);
618 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext))
619 FunctionSamples::ProfileIsCS = ProfileIsCS = true;
620 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator))
621 FunctionSamples::ProfileIsFS = ProfileIsFS = true;
622 break;
623 case SecNameTable: {
624 FixedLengthMD5 =
625 hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5);
626 bool UseMD5 = hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name);
627 assert((!FixedLengthMD5 || UseMD5) &&
628 "If FixedLengthMD5 is true, UseMD5 has to be true");
629 FunctionSamples::HasUniqSuffix =
630 hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix);
631 if (std::error_code EC = readNameTableSec(UseMD5))
632 return EC;
633 break;
634 }
635 case SecLBRProfile:
636 if (std::error_code EC = readFuncProfiles())
637 return EC;
638 break;
639 case SecFuncOffsetTable:
640 if (std::error_code EC = readFuncOffsetTable())
641 return EC;
642 break;
643 case SecFuncMetadata: {
644 ProfileIsProbeBased =
645 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagIsProbeBased);
646 FunctionSamples::ProfileIsProbeBased = ProfileIsProbeBased;
647 bool HasAttribute =
648 hasSecFlag(Entry, SecFuncMetadataFlags::SecFlagHasAttribute);
649 if (std::error_code EC = readFuncMetadata(HasAttribute))
650 return EC;
651 break;
652 }
653 case SecProfileSymbolList:
654 if (std::error_code EC = readProfileSymbolList())
655 return EC;
656 break;
657 default:
658 if (std::error_code EC = readCustomSection(Entry))
659 return EC;
660 break;
661 }
662 return sampleprof_error::success;
663 }
664
collectFuncsFromModule()665 bool SampleProfileReaderExtBinaryBase::collectFuncsFromModule() {
666 if (!M)
667 return false;
668 FuncsToUse.clear();
669 for (auto &F : *M)
670 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
671 return true;
672 }
673
readFuncOffsetTable()674 std::error_code SampleProfileReaderExtBinaryBase::readFuncOffsetTable() {
675 // If there are more than one FuncOffsetTable, the profile read associated
676 // with previous FuncOffsetTable has to be done before next FuncOffsetTable
677 // is read.
678 FuncOffsetTable.clear();
679
680 auto Size = readNumber<uint64_t>();
681 if (std::error_code EC = Size.getError())
682 return EC;
683
684 FuncOffsetTable.reserve(*Size);
685 for (uint32_t I = 0; I < *Size; ++I) {
686 auto FName(readStringFromTable());
687 if (std::error_code EC = FName.getError())
688 return EC;
689
690 auto Offset = readNumber<uint64_t>();
691 if (std::error_code EC = Offset.getError())
692 return EC;
693
694 FuncOffsetTable[*FName] = *Offset;
695 }
696 return sampleprof_error::success;
697 }
698
readFuncProfiles()699 std::error_code SampleProfileReaderExtBinaryBase::readFuncProfiles() {
700 // Collect functions used by current module if the Reader has been
701 // given a module.
702 // collectFuncsFromModule uses FunctionSamples::getCanonicalFnName
703 // which will query FunctionSamples::HasUniqSuffix, so it has to be
704 // called after FunctionSamples::HasUniqSuffix is set, i.e. after
705 // NameTable section is read.
706 bool LoadFuncsToBeUsed = collectFuncsFromModule();
707
708 // When LoadFuncsToBeUsed is false, load all the function profiles.
709 const uint8_t *Start = Data;
710 if (!LoadFuncsToBeUsed) {
711 while (Data < End) {
712 if (std::error_code EC = readFuncProfile(Data))
713 return EC;
714 }
715 assert(Data == End && "More data is read than expected");
716 } else {
717 // Load function profiles on demand.
718 if (Remapper) {
719 for (auto Name : FuncsToUse) {
720 Remapper->insert(Name);
721 }
722 }
723
724 if (useMD5()) {
725 for (auto Name : FuncsToUse) {
726 auto GUID = std::to_string(MD5Hash(Name));
727 auto iter = FuncOffsetTable.find(StringRef(GUID));
728 if (iter == FuncOffsetTable.end())
729 continue;
730 const uint8_t *FuncProfileAddr = Start + iter->second;
731 assert(FuncProfileAddr < End && "out of LBRProfile section");
732 if (std::error_code EC = readFuncProfile(FuncProfileAddr))
733 return EC;
734 }
735 } else if (FunctionSamples::ProfileIsCS) {
736 // Compute the ordered set of names, so we can
737 // get all context profiles under a subtree by
738 // iterating through the ordered names.
739 struct Comparer {
740 // Ignore the closing ']' when ordering context
741 bool operator()(const StringRef &L, const StringRef &R) const {
742 return L.substr(0, L.size() - 1) < R.substr(0, R.size() - 1);
743 }
744 };
745 std::set<StringRef, Comparer> OrderedNames;
746 for (auto Name : FuncOffsetTable) {
747 OrderedNames.insert(Name.first);
748 }
749
750 // For each function in current module, load all
751 // context profiles for the function.
752 for (auto NameOffset : FuncOffsetTable) {
753 StringRef ContextName = NameOffset.first;
754 SampleContext FContext(ContextName);
755 auto FuncName = FContext.getNameWithoutContext();
756 if (!FuncsToUse.count(FuncName) &&
757 (!Remapper || !Remapper->exist(FuncName)))
758 continue;
759
760 // For each context profile we need, try to load
761 // all context profile in the subtree. This can
762 // help profile guided importing for ThinLTO.
763 auto It = OrderedNames.find(ContextName);
764 while (It != OrderedNames.end() &&
765 It->startswith(ContextName.substr(0, ContextName.size() - 1))) {
766 const uint8_t *FuncProfileAddr = Start + FuncOffsetTable[*It];
767 assert(FuncProfileAddr < End && "out of LBRProfile section");
768 if (std::error_code EC = readFuncProfile(FuncProfileAddr))
769 return EC;
770 // Remove loaded context profile so we won't
771 // load it repeatedly.
772 It = OrderedNames.erase(It);
773 }
774 }
775 } else {
776 for (auto NameOffset : FuncOffsetTable) {
777 SampleContext FContext(NameOffset.first);
778 auto FuncName = FContext.getNameWithoutContext();
779 if (!FuncsToUse.count(FuncName) &&
780 (!Remapper || !Remapper->exist(FuncName)))
781 continue;
782 const uint8_t *FuncProfileAddr = Start + NameOffset.second;
783 assert(FuncProfileAddr < End && "out of LBRProfile section");
784 if (std::error_code EC = readFuncProfile(FuncProfileAddr))
785 return EC;
786 }
787 }
788 Data = End;
789 }
790 assert((CSProfileCount == 0 || CSProfileCount == Profiles.size()) &&
791 "Cannot have both context-sensitive and regular profile");
792 assert(ProfileIsCS == (CSProfileCount > 0) &&
793 "Section flag should be consistent with actual profile");
794 return sampleprof_error::success;
795 }
796
readProfileSymbolList()797 std::error_code SampleProfileReaderExtBinaryBase::readProfileSymbolList() {
798 if (!ProfSymList)
799 ProfSymList = std::make_unique<ProfileSymbolList>();
800
801 if (std::error_code EC = ProfSymList->read(Data, End - Data))
802 return EC;
803
804 Data = End;
805 return sampleprof_error::success;
806 }
807
decompressSection(const uint8_t * SecStart,const uint64_t SecSize,const uint8_t * & DecompressBuf,uint64_t & DecompressBufSize)808 std::error_code SampleProfileReaderExtBinaryBase::decompressSection(
809 const uint8_t *SecStart, const uint64_t SecSize,
810 const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) {
811 Data = SecStart;
812 End = SecStart + SecSize;
813 auto DecompressSize = readNumber<uint64_t>();
814 if (std::error_code EC = DecompressSize.getError())
815 return EC;
816 DecompressBufSize = *DecompressSize;
817
818 auto CompressSize = readNumber<uint64_t>();
819 if (std::error_code EC = CompressSize.getError())
820 return EC;
821
822 if (!llvm::zlib::isAvailable())
823 return sampleprof_error::zlib_unavailable;
824
825 StringRef CompressedStrings(reinterpret_cast<const char *>(Data),
826 *CompressSize);
827 char *Buffer = Allocator.Allocate<char>(DecompressBufSize);
828 size_t UCSize = DecompressBufSize;
829 llvm::Error E =
830 zlib::uncompress(CompressedStrings, Buffer, UCSize);
831 if (E)
832 return sampleprof_error::uncompress_failed;
833 DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer);
834 return sampleprof_error::success;
835 }
836
readImpl()837 std::error_code SampleProfileReaderExtBinaryBase::readImpl() {
838 const uint8_t *BufStart =
839 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
840
841 for (auto &Entry : SecHdrTable) {
842 // Skip empty section.
843 if (!Entry.Size)
844 continue;
845
846 // Skip sections without context when SkipFlatProf is true.
847 if (SkipFlatProf && hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
848 continue;
849
850 const uint8_t *SecStart = BufStart + Entry.Offset;
851 uint64_t SecSize = Entry.Size;
852
853 // If the section is compressed, decompress it into a buffer
854 // DecompressBuf before reading the actual data. The pointee of
855 // 'Data' will be changed to buffer hold by DecompressBuf
856 // temporarily when reading the actual data.
857 bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress);
858 if (isCompressed) {
859 const uint8_t *DecompressBuf;
860 uint64_t DecompressBufSize;
861 if (std::error_code EC = decompressSection(
862 SecStart, SecSize, DecompressBuf, DecompressBufSize))
863 return EC;
864 SecStart = DecompressBuf;
865 SecSize = DecompressBufSize;
866 }
867
868 if (std::error_code EC = readOneSection(SecStart, SecSize, Entry))
869 return EC;
870 if (Data != SecStart + SecSize)
871 return sampleprof_error::malformed;
872
873 // Change the pointee of 'Data' from DecompressBuf to original Buffer.
874 if (isCompressed) {
875 Data = BufStart + Entry.Offset;
876 End = BufStart + Buffer->getBufferSize();
877 }
878 }
879
880 return sampleprof_error::success;
881 }
882
readImpl()883 std::error_code SampleProfileReaderCompactBinary::readImpl() {
884 // Collect functions used by current module if the Reader has been
885 // given a module.
886 bool LoadFuncsToBeUsed = collectFuncsFromModule();
887 ProfileIsFS = ProfileIsFSDisciminator;
888 std::vector<uint64_t> OffsetsToUse;
889 if (!LoadFuncsToBeUsed) {
890 // load all the function profiles.
891 for (auto FuncEntry : FuncOffsetTable) {
892 OffsetsToUse.push_back(FuncEntry.second);
893 }
894 } else {
895 // load function profiles on demand.
896 for (auto Name : FuncsToUse) {
897 auto GUID = std::to_string(MD5Hash(Name));
898 auto iter = FuncOffsetTable.find(StringRef(GUID));
899 if (iter == FuncOffsetTable.end())
900 continue;
901 OffsetsToUse.push_back(iter->second);
902 }
903 }
904
905 for (auto Offset : OffsetsToUse) {
906 const uint8_t *SavedData = Data;
907 if (std::error_code EC = readFuncProfile(
908 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
909 Offset))
910 return EC;
911 Data = SavedData;
912 }
913 return sampleprof_error::success;
914 }
915
verifySPMagic(uint64_t Magic)916 std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) {
917 if (Magic == SPMagic())
918 return sampleprof_error::success;
919 return sampleprof_error::bad_magic;
920 }
921
verifySPMagic(uint64_t Magic)922 std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) {
923 if (Magic == SPMagic(SPF_Ext_Binary))
924 return sampleprof_error::success;
925 return sampleprof_error::bad_magic;
926 }
927
928 std::error_code
verifySPMagic(uint64_t Magic)929 SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) {
930 if (Magic == SPMagic(SPF_Compact_Binary))
931 return sampleprof_error::success;
932 return sampleprof_error::bad_magic;
933 }
934
readNameTable()935 std::error_code SampleProfileReaderBinary::readNameTable() {
936 auto Size = readNumber<uint32_t>();
937 if (std::error_code EC = Size.getError())
938 return EC;
939 NameTable.reserve(*Size + NameTable.size());
940 for (uint32_t I = 0; I < *Size; ++I) {
941 auto Name(readString());
942 if (std::error_code EC = Name.getError())
943 return EC;
944 NameTable.push_back(*Name);
945 }
946
947 return sampleprof_error::success;
948 }
949
readMD5NameTable()950 std::error_code SampleProfileReaderExtBinaryBase::readMD5NameTable() {
951 auto Size = readNumber<uint64_t>();
952 if (std::error_code EC = Size.getError())
953 return EC;
954 MD5StringBuf = std::make_unique<std::vector<std::string>>();
955 MD5StringBuf->reserve(*Size);
956 if (FixedLengthMD5) {
957 // Preallocate and initialize NameTable so we can check whether a name
958 // index has been read before by checking whether the element in the
959 // NameTable is empty, meanwhile readStringIndex can do the boundary
960 // check using the size of NameTable.
961 NameTable.resize(*Size + NameTable.size());
962
963 MD5NameMemStart = Data;
964 Data = Data + (*Size) * sizeof(uint64_t);
965 return sampleprof_error::success;
966 }
967 NameTable.reserve(*Size);
968 for (uint32_t I = 0; I < *Size; ++I) {
969 auto FID = readNumber<uint64_t>();
970 if (std::error_code EC = FID.getError())
971 return EC;
972 MD5StringBuf->push_back(std::to_string(*FID));
973 // NameTable is a vector of StringRef. Here it is pushing back a
974 // StringRef initialized with the last string in MD5stringBuf.
975 NameTable.push_back(MD5StringBuf->back());
976 }
977 return sampleprof_error::success;
978 }
979
readNameTableSec(bool IsMD5)980 std::error_code SampleProfileReaderExtBinaryBase::readNameTableSec(bool IsMD5) {
981 if (IsMD5)
982 return readMD5NameTable();
983 return SampleProfileReaderBinary::readNameTable();
984 }
985
986 std::error_code
readFuncMetadata(bool ProfileHasAttribute)987 SampleProfileReaderExtBinaryBase::readFuncMetadata(bool ProfileHasAttribute) {
988 while (Data < End) {
989 auto FName(readStringFromTable());
990 if (std::error_code EC = FName.getError())
991 return EC;
992
993 SampleContext FContext(*FName);
994 bool ProfileInMap = Profiles.count(FContext);
995
996 if (ProfileIsProbeBased) {
997 auto Checksum = readNumber<uint64_t>();
998 if (std::error_code EC = Checksum.getError())
999 return EC;
1000 if (ProfileInMap)
1001 Profiles[FContext].setFunctionHash(*Checksum);
1002 }
1003
1004 if (ProfileHasAttribute) {
1005 auto Attributes = readNumber<uint32_t>();
1006 if (std::error_code EC = Attributes.getError())
1007 return EC;
1008 if (ProfileInMap)
1009 Profiles[FContext].getContext().setAllAttributes(*Attributes);
1010 }
1011 }
1012
1013 assert(Data == End && "More data is read than expected");
1014 return sampleprof_error::success;
1015 }
1016
readNameTable()1017 std::error_code SampleProfileReaderCompactBinary::readNameTable() {
1018 auto Size = readNumber<uint64_t>();
1019 if (std::error_code EC = Size.getError())
1020 return EC;
1021 NameTable.reserve(*Size);
1022 for (uint32_t I = 0; I < *Size; ++I) {
1023 auto FID = readNumber<uint64_t>();
1024 if (std::error_code EC = FID.getError())
1025 return EC;
1026 NameTable.push_back(std::to_string(*FID));
1027 }
1028 return sampleprof_error::success;
1029 }
1030
1031 std::error_code
readSecHdrTableEntry(uint32_t Idx)1032 SampleProfileReaderExtBinaryBase::readSecHdrTableEntry(uint32_t Idx) {
1033 SecHdrTableEntry Entry;
1034 auto Type = readUnencodedNumber<uint64_t>();
1035 if (std::error_code EC = Type.getError())
1036 return EC;
1037 Entry.Type = static_cast<SecType>(*Type);
1038
1039 auto Flags = readUnencodedNumber<uint64_t>();
1040 if (std::error_code EC = Flags.getError())
1041 return EC;
1042 Entry.Flags = *Flags;
1043
1044 auto Offset = readUnencodedNumber<uint64_t>();
1045 if (std::error_code EC = Offset.getError())
1046 return EC;
1047 Entry.Offset = *Offset;
1048
1049 auto Size = readUnencodedNumber<uint64_t>();
1050 if (std::error_code EC = Size.getError())
1051 return EC;
1052 Entry.Size = *Size;
1053
1054 Entry.LayoutIndex = Idx;
1055 SecHdrTable.push_back(std::move(Entry));
1056 return sampleprof_error::success;
1057 }
1058
readSecHdrTable()1059 std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() {
1060 auto EntryNum = readUnencodedNumber<uint64_t>();
1061 if (std::error_code EC = EntryNum.getError())
1062 return EC;
1063
1064 for (uint32_t i = 0; i < (*EntryNum); i++)
1065 if (std::error_code EC = readSecHdrTableEntry(i))
1066 return EC;
1067
1068 return sampleprof_error::success;
1069 }
1070
readHeader()1071 std::error_code SampleProfileReaderExtBinaryBase::readHeader() {
1072 const uint8_t *BufStart =
1073 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
1074 Data = BufStart;
1075 End = BufStart + Buffer->getBufferSize();
1076
1077 if (std::error_code EC = readMagicIdent())
1078 return EC;
1079
1080 if (std::error_code EC = readSecHdrTable())
1081 return EC;
1082
1083 return sampleprof_error::success;
1084 }
1085
getSectionSize(SecType Type)1086 uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) {
1087 uint64_t Size = 0;
1088 for (auto &Entry : SecHdrTable) {
1089 if (Entry.Type == Type)
1090 Size += Entry.Size;
1091 }
1092 return Size;
1093 }
1094
getFileSize()1095 uint64_t SampleProfileReaderExtBinaryBase::getFileSize() {
1096 // Sections in SecHdrTable is not necessarily in the same order as
1097 // sections in the profile because section like FuncOffsetTable needs
1098 // to be written after section LBRProfile but needs to be read before
1099 // section LBRProfile, so we cannot simply use the last entry in
1100 // SecHdrTable to calculate the file size.
1101 uint64_t FileSize = 0;
1102 for (auto &Entry : SecHdrTable) {
1103 FileSize = std::max(Entry.Offset + Entry.Size, FileSize);
1104 }
1105 return FileSize;
1106 }
1107
getSecFlagsStr(const SecHdrTableEntry & Entry)1108 static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) {
1109 std::string Flags;
1110 if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress))
1111 Flags.append("{compressed,");
1112 else
1113 Flags.append("{");
1114
1115 if (hasSecFlag(Entry, SecCommonFlags::SecFlagFlat))
1116 Flags.append("flat,");
1117
1118 switch (Entry.Type) {
1119 case SecNameTable:
1120 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagFixedLengthMD5))
1121 Flags.append("fixlenmd5,");
1122 else if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name))
1123 Flags.append("md5,");
1124 if (hasSecFlag(Entry, SecNameTableFlags::SecFlagUniqSuffix))
1125 Flags.append("uniq,");
1126 break;
1127 case SecProfSummary:
1128 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
1129 Flags.append("partial,");
1130 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFullContext))
1131 Flags.append("context,");
1132 if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagFSDiscriminator))
1133 Flags.append("fs-discriminator,");
1134 break;
1135 default:
1136 break;
1137 }
1138 char &last = Flags.back();
1139 if (last == ',')
1140 last = '}';
1141 else
1142 Flags.append("}");
1143 return Flags;
1144 }
1145
dumpSectionInfo(raw_ostream & OS)1146 bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) {
1147 uint64_t TotalSecsSize = 0;
1148 for (auto &Entry : SecHdrTable) {
1149 OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset
1150 << ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry)
1151 << "\n";
1152 ;
1153 TotalSecsSize += Entry.Size;
1154 }
1155 uint64_t HeaderSize = SecHdrTable.front().Offset;
1156 assert(HeaderSize + TotalSecsSize == getFileSize() &&
1157 "Size of 'header + sections' doesn't match the total size of profile");
1158
1159 OS << "Header Size: " << HeaderSize << "\n";
1160 OS << "Total Sections Size: " << TotalSecsSize << "\n";
1161 OS << "File Size: " << getFileSize() << "\n";
1162 return true;
1163 }
1164
readMagicIdent()1165 std::error_code SampleProfileReaderBinary::readMagicIdent() {
1166 // Read and check the magic identifier.
1167 auto Magic = readNumber<uint64_t>();
1168 if (std::error_code EC = Magic.getError())
1169 return EC;
1170 else if (std::error_code EC = verifySPMagic(*Magic))
1171 return EC;
1172
1173 // Read the version number.
1174 auto Version = readNumber<uint64_t>();
1175 if (std::error_code EC = Version.getError())
1176 return EC;
1177 else if (*Version != SPVersion())
1178 return sampleprof_error::unsupported_version;
1179
1180 return sampleprof_error::success;
1181 }
1182
readHeader()1183 std::error_code SampleProfileReaderBinary::readHeader() {
1184 Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
1185 End = Data + Buffer->getBufferSize();
1186
1187 if (std::error_code EC = readMagicIdent())
1188 return EC;
1189
1190 if (std::error_code EC = readSummary())
1191 return EC;
1192
1193 if (std::error_code EC = readNameTable())
1194 return EC;
1195 return sampleprof_error::success;
1196 }
1197
readHeader()1198 std::error_code SampleProfileReaderCompactBinary::readHeader() {
1199 SampleProfileReaderBinary::readHeader();
1200 if (std::error_code EC = readFuncOffsetTable())
1201 return EC;
1202 return sampleprof_error::success;
1203 }
1204
readFuncOffsetTable()1205 std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() {
1206 auto TableOffset = readUnencodedNumber<uint64_t>();
1207 if (std::error_code EC = TableOffset.getError())
1208 return EC;
1209
1210 const uint8_t *SavedData = Data;
1211 const uint8_t *TableStart =
1212 reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
1213 *TableOffset;
1214 Data = TableStart;
1215
1216 auto Size = readNumber<uint64_t>();
1217 if (std::error_code EC = Size.getError())
1218 return EC;
1219
1220 FuncOffsetTable.reserve(*Size);
1221 for (uint32_t I = 0; I < *Size; ++I) {
1222 auto FName(readStringFromTable());
1223 if (std::error_code EC = FName.getError())
1224 return EC;
1225
1226 auto Offset = readNumber<uint64_t>();
1227 if (std::error_code EC = Offset.getError())
1228 return EC;
1229
1230 FuncOffsetTable[*FName] = *Offset;
1231 }
1232 End = TableStart;
1233 Data = SavedData;
1234 return sampleprof_error::success;
1235 }
1236
collectFuncsFromModule()1237 bool SampleProfileReaderCompactBinary::collectFuncsFromModule() {
1238 if (!M)
1239 return false;
1240 FuncsToUse.clear();
1241 for (auto &F : *M)
1242 FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
1243 return true;
1244 }
1245
readSummaryEntry(std::vector<ProfileSummaryEntry> & Entries)1246 std::error_code SampleProfileReaderBinary::readSummaryEntry(
1247 std::vector<ProfileSummaryEntry> &Entries) {
1248 auto Cutoff = readNumber<uint64_t>();
1249 if (std::error_code EC = Cutoff.getError())
1250 return EC;
1251
1252 auto MinBlockCount = readNumber<uint64_t>();
1253 if (std::error_code EC = MinBlockCount.getError())
1254 return EC;
1255
1256 auto NumBlocks = readNumber<uint64_t>();
1257 if (std::error_code EC = NumBlocks.getError())
1258 return EC;
1259
1260 Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks);
1261 return sampleprof_error::success;
1262 }
1263
readSummary()1264 std::error_code SampleProfileReaderBinary::readSummary() {
1265 auto TotalCount = readNumber<uint64_t>();
1266 if (std::error_code EC = TotalCount.getError())
1267 return EC;
1268
1269 auto MaxBlockCount = readNumber<uint64_t>();
1270 if (std::error_code EC = MaxBlockCount.getError())
1271 return EC;
1272
1273 auto MaxFunctionCount = readNumber<uint64_t>();
1274 if (std::error_code EC = MaxFunctionCount.getError())
1275 return EC;
1276
1277 auto NumBlocks = readNumber<uint64_t>();
1278 if (std::error_code EC = NumBlocks.getError())
1279 return EC;
1280
1281 auto NumFunctions = readNumber<uint64_t>();
1282 if (std::error_code EC = NumFunctions.getError())
1283 return EC;
1284
1285 auto NumSummaryEntries = readNumber<uint64_t>();
1286 if (std::error_code EC = NumSummaryEntries.getError())
1287 return EC;
1288
1289 std::vector<ProfileSummaryEntry> Entries;
1290 for (unsigned i = 0; i < *NumSummaryEntries; i++) {
1291 std::error_code EC = readSummaryEntry(Entries);
1292 if (EC != sampleprof_error::success)
1293 return EC;
1294 }
1295 Summary = std::make_unique<ProfileSummary>(
1296 ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0,
1297 *MaxFunctionCount, *NumBlocks, *NumFunctions);
1298
1299 return sampleprof_error::success;
1300 }
1301
hasFormat(const MemoryBuffer & Buffer)1302 bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) {
1303 const uint8_t *Data =
1304 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1305 uint64_t Magic = decodeULEB128(Data);
1306 return Magic == SPMagic();
1307 }
1308
hasFormat(const MemoryBuffer & Buffer)1309 bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) {
1310 const uint8_t *Data =
1311 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1312 uint64_t Magic = decodeULEB128(Data);
1313 return Magic == SPMagic(SPF_Ext_Binary);
1314 }
1315
hasFormat(const MemoryBuffer & Buffer)1316 bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) {
1317 const uint8_t *Data =
1318 reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
1319 uint64_t Magic = decodeULEB128(Data);
1320 return Magic == SPMagic(SPF_Compact_Binary);
1321 }
1322
skipNextWord()1323 std::error_code SampleProfileReaderGCC::skipNextWord() {
1324 uint32_t dummy;
1325 if (!GcovBuffer.readInt(dummy))
1326 return sampleprof_error::truncated;
1327 return sampleprof_error::success;
1328 }
1329
readNumber()1330 template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() {
1331 if (sizeof(T) <= sizeof(uint32_t)) {
1332 uint32_t Val;
1333 if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max())
1334 return static_cast<T>(Val);
1335 } else if (sizeof(T) <= sizeof(uint64_t)) {
1336 uint64_t Val;
1337 if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max())
1338 return static_cast<T>(Val);
1339 }
1340
1341 std::error_code EC = sampleprof_error::malformed;
1342 reportError(0, EC.message());
1343 return EC;
1344 }
1345
readString()1346 ErrorOr<StringRef> SampleProfileReaderGCC::readString() {
1347 StringRef Str;
1348 if (!GcovBuffer.readString(Str))
1349 return sampleprof_error::truncated;
1350 return Str;
1351 }
1352
readHeader()1353 std::error_code SampleProfileReaderGCC::readHeader() {
1354 // Read the magic identifier.
1355 if (!GcovBuffer.readGCDAFormat())
1356 return sampleprof_error::unrecognized_format;
1357
1358 // Read the version number. Note - the GCC reader does not validate this
1359 // version, but the profile creator generates v704.
1360 GCOV::GCOVVersion version;
1361 if (!GcovBuffer.readGCOVVersion(version))
1362 return sampleprof_error::unrecognized_format;
1363
1364 if (version != GCOV::V407)
1365 return sampleprof_error::unsupported_version;
1366
1367 // Skip the empty integer.
1368 if (std::error_code EC = skipNextWord())
1369 return EC;
1370
1371 return sampleprof_error::success;
1372 }
1373
readSectionTag(uint32_t Expected)1374 std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) {
1375 uint32_t Tag;
1376 if (!GcovBuffer.readInt(Tag))
1377 return sampleprof_error::truncated;
1378
1379 if (Tag != Expected)
1380 return sampleprof_error::malformed;
1381
1382 if (std::error_code EC = skipNextWord())
1383 return EC;
1384
1385 return sampleprof_error::success;
1386 }
1387
readNameTable()1388 std::error_code SampleProfileReaderGCC::readNameTable() {
1389 if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames))
1390 return EC;
1391
1392 uint32_t Size;
1393 if (!GcovBuffer.readInt(Size))
1394 return sampleprof_error::truncated;
1395
1396 for (uint32_t I = 0; I < Size; ++I) {
1397 StringRef Str;
1398 if (!GcovBuffer.readString(Str))
1399 return sampleprof_error::truncated;
1400 Names.push_back(std::string(Str));
1401 }
1402
1403 return sampleprof_error::success;
1404 }
1405
readFunctionProfiles()1406 std::error_code SampleProfileReaderGCC::readFunctionProfiles() {
1407 if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction))
1408 return EC;
1409
1410 uint32_t NumFunctions;
1411 if (!GcovBuffer.readInt(NumFunctions))
1412 return sampleprof_error::truncated;
1413
1414 InlineCallStack Stack;
1415 for (uint32_t I = 0; I < NumFunctions; ++I)
1416 if (std::error_code EC = readOneFunctionProfile(Stack, true, 0))
1417 return EC;
1418
1419 computeSummary();
1420 return sampleprof_error::success;
1421 }
1422
readOneFunctionProfile(const InlineCallStack & InlineStack,bool Update,uint32_t Offset)1423 std::error_code SampleProfileReaderGCC::readOneFunctionProfile(
1424 const InlineCallStack &InlineStack, bool Update, uint32_t Offset) {
1425 uint64_t HeadCount = 0;
1426 if (InlineStack.size() == 0)
1427 if (!GcovBuffer.readInt64(HeadCount))
1428 return sampleprof_error::truncated;
1429
1430 uint32_t NameIdx;
1431 if (!GcovBuffer.readInt(NameIdx))
1432 return sampleprof_error::truncated;
1433
1434 StringRef Name(Names[NameIdx]);
1435
1436 uint32_t NumPosCounts;
1437 if (!GcovBuffer.readInt(NumPosCounts))
1438 return sampleprof_error::truncated;
1439
1440 uint32_t NumCallsites;
1441 if (!GcovBuffer.readInt(NumCallsites))
1442 return sampleprof_error::truncated;
1443
1444 FunctionSamples *FProfile = nullptr;
1445 if (InlineStack.size() == 0) {
1446 // If this is a top function that we have already processed, do not
1447 // update its profile again. This happens in the presence of
1448 // function aliases. Since these aliases share the same function
1449 // body, there will be identical replicated profiles for the
1450 // original function. In this case, we simply not bother updating
1451 // the profile of the original function.
1452 FProfile = &Profiles[Name];
1453 FProfile->addHeadSamples(HeadCount);
1454 if (FProfile->getTotalSamples() > 0)
1455 Update = false;
1456 } else {
1457 // Otherwise, we are reading an inlined instance. The top of the
1458 // inline stack contains the profile of the caller. Insert this
1459 // callee in the caller's CallsiteMap.
1460 FunctionSamples *CallerProfile = InlineStack.front();
1461 uint32_t LineOffset = Offset >> 16;
1462 uint32_t Discriminator = Offset & 0xffff;
1463 FProfile = &CallerProfile->functionSamplesAt(
1464 LineLocation(LineOffset, Discriminator))[std::string(Name)];
1465 }
1466 FProfile->setName(Name);
1467
1468 for (uint32_t I = 0; I < NumPosCounts; ++I) {
1469 uint32_t Offset;
1470 if (!GcovBuffer.readInt(Offset))
1471 return sampleprof_error::truncated;
1472
1473 uint32_t NumTargets;
1474 if (!GcovBuffer.readInt(NumTargets))
1475 return sampleprof_error::truncated;
1476
1477 uint64_t Count;
1478 if (!GcovBuffer.readInt64(Count))
1479 return sampleprof_error::truncated;
1480
1481 // The line location is encoded in the offset as:
1482 // high 16 bits: line offset to the start of the function.
1483 // low 16 bits: discriminator.
1484 uint32_t LineOffset = Offset >> 16;
1485 uint32_t Discriminator = Offset & 0xffff;
1486
1487 InlineCallStack NewStack;
1488 NewStack.push_back(FProfile);
1489 llvm::append_range(NewStack, InlineStack);
1490 if (Update) {
1491 // Walk up the inline stack, adding the samples on this line to
1492 // the total sample count of the callers in the chain.
1493 for (auto CallerProfile : NewStack)
1494 CallerProfile->addTotalSamples(Count);
1495
1496 // Update the body samples for the current profile.
1497 FProfile->addBodySamples(LineOffset, Discriminator, Count);
1498 }
1499
1500 // Process the list of functions called at an indirect call site.
1501 // These are all the targets that a function pointer (or virtual
1502 // function) resolved at runtime.
1503 for (uint32_t J = 0; J < NumTargets; J++) {
1504 uint32_t HistVal;
1505 if (!GcovBuffer.readInt(HistVal))
1506 return sampleprof_error::truncated;
1507
1508 if (HistVal != HIST_TYPE_INDIR_CALL_TOPN)
1509 return sampleprof_error::malformed;
1510
1511 uint64_t TargetIdx;
1512 if (!GcovBuffer.readInt64(TargetIdx))
1513 return sampleprof_error::truncated;
1514 StringRef TargetName(Names[TargetIdx]);
1515
1516 uint64_t TargetCount;
1517 if (!GcovBuffer.readInt64(TargetCount))
1518 return sampleprof_error::truncated;
1519
1520 if (Update)
1521 FProfile->addCalledTargetSamples(LineOffset, Discriminator,
1522 TargetName, TargetCount);
1523 }
1524 }
1525
1526 // Process all the inlined callers into the current function. These
1527 // are all the callsites that were inlined into this function.
1528 for (uint32_t I = 0; I < NumCallsites; I++) {
1529 // The offset is encoded as:
1530 // high 16 bits: line offset to the start of the function.
1531 // low 16 bits: discriminator.
1532 uint32_t Offset;
1533 if (!GcovBuffer.readInt(Offset))
1534 return sampleprof_error::truncated;
1535 InlineCallStack NewStack;
1536 NewStack.push_back(FProfile);
1537 llvm::append_range(NewStack, InlineStack);
1538 if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset))
1539 return EC;
1540 }
1541
1542 return sampleprof_error::success;
1543 }
1544
1545 /// Read a GCC AutoFDO profile.
1546 ///
1547 /// This format is generated by the Linux Perf conversion tool at
1548 /// https://github.com/google/autofdo.
readImpl()1549 std::error_code SampleProfileReaderGCC::readImpl() {
1550 assert(!ProfileIsFSDisciminator && "Gcc profiles not support FSDisciminator");
1551 // Read the string table.
1552 if (std::error_code EC = readNameTable())
1553 return EC;
1554
1555 // Read the source profile.
1556 if (std::error_code EC = readFunctionProfiles())
1557 return EC;
1558
1559 return sampleprof_error::success;
1560 }
1561
hasFormat(const MemoryBuffer & Buffer)1562 bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) {
1563 StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart()));
1564 return Magic == "adcg*704";
1565 }
1566
applyRemapping(LLVMContext & Ctx)1567 void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) {
1568 // If the reader uses MD5 to represent string, we can't remap it because
1569 // we don't know what the original function names were.
1570 if (Reader.useMD5()) {
1571 Ctx.diagnose(DiagnosticInfoSampleProfile(
1572 Reader.getBuffer()->getBufferIdentifier(),
1573 "Profile data remapping cannot be applied to profile data "
1574 "in compact format (original mangled names are not available).",
1575 DS_Warning));
1576 return;
1577 }
1578
1579 // CSSPGO-TODO: Remapper is not yet supported.
1580 // We will need to remap the entire context string.
1581 assert(Remappings && "should be initialized while creating remapper");
1582 for (auto &Sample : Reader.getProfiles()) {
1583 DenseSet<StringRef> NamesInSample;
1584 Sample.second.findAllNames(NamesInSample);
1585 for (auto &Name : NamesInSample)
1586 if (auto Key = Remappings->insert(Name))
1587 NameMap.insert({Key, Name});
1588 }
1589
1590 RemappingApplied = true;
1591 }
1592
1593 Optional<StringRef>
lookUpNameInProfile(StringRef Fname)1594 SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) {
1595 if (auto Key = Remappings->lookup(Fname))
1596 return NameMap.lookup(Key);
1597 return None;
1598 }
1599
1600 /// Prepare a memory buffer for the contents of \p Filename.
1601 ///
1602 /// \returns an error code indicating the status of the buffer.
1603 static ErrorOr<std::unique_ptr<MemoryBuffer>>
setupMemoryBuffer(const Twine & Filename)1604 setupMemoryBuffer(const Twine &Filename) {
1605 auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename, /*IsText=*/true);
1606 if (std::error_code EC = BufferOrErr.getError())
1607 return EC;
1608 auto Buffer = std::move(BufferOrErr.get());
1609
1610 // Sanity check the file.
1611 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max())
1612 return sampleprof_error::too_large;
1613
1614 return std::move(Buffer);
1615 }
1616
1617 /// Create a sample profile reader based on the format of the input file.
1618 ///
1619 /// \param Filename The file to open.
1620 ///
1621 /// \param C The LLVM context to use to emit diagnostics.
1622 ///
1623 /// \param P The FSDiscriminatorPass.
1624 ///
1625 /// \param RemapFilename The file used for profile remapping.
1626 ///
1627 /// \returns an error code indicating the status of the created reader.
1628 ErrorOr<std::unique_ptr<SampleProfileReader>>
create(const std::string Filename,LLVMContext & C,FSDiscriminatorPass P,const std::string RemapFilename)1629 SampleProfileReader::create(const std::string Filename, LLVMContext &C,
1630 FSDiscriminatorPass P,
1631 const std::string RemapFilename) {
1632 auto BufferOrError = setupMemoryBuffer(Filename);
1633 if (std::error_code EC = BufferOrError.getError())
1634 return EC;
1635 return create(BufferOrError.get(), C, P, RemapFilename);
1636 }
1637
1638 /// Create a sample profile remapper from the given input, to remap the
1639 /// function names in the given profile data.
1640 ///
1641 /// \param Filename The file to open.
1642 ///
1643 /// \param Reader The profile reader the remapper is going to be applied to.
1644 ///
1645 /// \param C The LLVM context to use to emit diagnostics.
1646 ///
1647 /// \returns an error code indicating the status of the created reader.
1648 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
create(const std::string Filename,SampleProfileReader & Reader,LLVMContext & C)1649 SampleProfileReaderItaniumRemapper::create(const std::string Filename,
1650 SampleProfileReader &Reader,
1651 LLVMContext &C) {
1652 auto BufferOrError = setupMemoryBuffer(Filename);
1653 if (std::error_code EC = BufferOrError.getError())
1654 return EC;
1655 return create(BufferOrError.get(), Reader, C);
1656 }
1657
1658 /// Create a sample profile remapper from the given input, to remap the
1659 /// function names in the given profile data.
1660 ///
1661 /// \param B The memory buffer to create the reader from (assumes ownership).
1662 ///
1663 /// \param C The LLVM context to use to emit diagnostics.
1664 ///
1665 /// \param Reader The profile reader the remapper is going to be applied to.
1666 ///
1667 /// \returns an error code indicating the status of the created reader.
1668 ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
create(std::unique_ptr<MemoryBuffer> & B,SampleProfileReader & Reader,LLVMContext & C)1669 SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B,
1670 SampleProfileReader &Reader,
1671 LLVMContext &C) {
1672 auto Remappings = std::make_unique<SymbolRemappingReader>();
1673 if (Error E = Remappings->read(*B.get())) {
1674 handleAllErrors(
1675 std::move(E), [&](const SymbolRemappingParseError &ParseError) {
1676 C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(),
1677 ParseError.getLineNum(),
1678 ParseError.getMessage()));
1679 });
1680 return sampleprof_error::malformed;
1681 }
1682
1683 return std::make_unique<SampleProfileReaderItaniumRemapper>(
1684 std::move(B), std::move(Remappings), Reader);
1685 }
1686
1687 /// Create a sample profile reader based on the format of the input data.
1688 ///
1689 /// \param B The memory buffer to create the reader from (assumes ownership).
1690 ///
1691 /// \param C The LLVM context to use to emit diagnostics.
1692 ///
1693 /// \param P The FSDiscriminatorPass.
1694 ///
1695 /// \param RemapFilename The file used for profile remapping.
1696 ///
1697 /// \returns an error code indicating the status of the created reader.
1698 ErrorOr<std::unique_ptr<SampleProfileReader>>
create(std::unique_ptr<MemoryBuffer> & B,LLVMContext & C,FSDiscriminatorPass P,const std::string RemapFilename)1699 SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
1700 FSDiscriminatorPass P,
1701 const std::string RemapFilename) {
1702 std::unique_ptr<SampleProfileReader> Reader;
1703 if (SampleProfileReaderRawBinary::hasFormat(*B))
1704 Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C));
1705 else if (SampleProfileReaderExtBinary::hasFormat(*B))
1706 Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C));
1707 else if (SampleProfileReaderCompactBinary::hasFormat(*B))
1708 Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C));
1709 else if (SampleProfileReaderGCC::hasFormat(*B))
1710 Reader.reset(new SampleProfileReaderGCC(std::move(B), C));
1711 else if (SampleProfileReaderText::hasFormat(*B))
1712 Reader.reset(new SampleProfileReaderText(std::move(B), C));
1713 else
1714 return sampleprof_error::unrecognized_format;
1715
1716 if (!RemapFilename.empty()) {
1717 auto ReaderOrErr =
1718 SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C);
1719 if (std::error_code EC = ReaderOrErr.getError()) {
1720 std::string Msg = "Could not create remapper: " + EC.message();
1721 C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg));
1722 return EC;
1723 }
1724 Reader->Remapper = std::move(ReaderOrErr.get());
1725 }
1726
1727 FunctionSamples::Format = Reader->getFormat();
1728 if (std::error_code EC = Reader->readHeader()) {
1729 return EC;
1730 }
1731
1732 Reader->setDiscriminatorMaskedBitFrom(P);
1733
1734 return std::move(Reader);
1735 }
1736
1737 // For text and GCC file formats, we compute the summary after reading the
1738 // profile. Binary format has the profile summary in its header.
computeSummary()1739 void SampleProfileReader::computeSummary() {
1740 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1741 Summary = Builder.computeSummaryForProfiles(Profiles);
1742 }
1743