1 //===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The analysis collects instructions that should be output at the module level
10 // and performs the global register numbering.
11 //
12 // The results of this analysis are used in AsmPrinter to rename registers
13 // globally and to output required instructions at the module level.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "SPIRVModuleAnalysis.h"
18 #include "SPIRV.h"
19 #include "SPIRVGlobalRegistry.h"
20 #include "SPIRVSubtarget.h"
21 #include "SPIRVTargetMachine.h"
22 #include "SPIRVUtils.h"
23 #include "TargetInfo/SPIRVTargetInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "spirv-module-analysis"
30
31 static cl::opt<bool>
32 SPVDumpDeps("spv-dump-deps",
33 cl::desc("Dump MIR with SPIR-V dependencies info"),
34 cl::Optional, cl::init(false));
35
36 char llvm::SPIRVModuleAnalysis::ID = 0;
37
38 namespace llvm {
39 void initializeSPIRVModuleAnalysisPass(PassRegistry &);
40 } // namespace llvm
41
42 INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
43 true)
44
45 // Retrieve an unsigned from an MDNode with a list of them as operands.
getMetadataUInt(MDNode * MdNode,unsigned OpIndex,unsigned DefaultVal=0)46 static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
47 unsigned DefaultVal = 0) {
48 if (MdNode && OpIndex < MdNode->getNumOperands()) {
49 const auto &Op = MdNode->getOperand(OpIndex);
50 return mdconst::extract<ConstantInt>(Op)->getZExtValue();
51 }
52 return DefaultVal;
53 }
54
setBaseInfo(const Module & M)55 void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
56 MAI.MaxID = 0;
57 for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
58 MAI.MS[i].clear();
59 MAI.RegisterAliasTable.clear();
60 MAI.InstrsToDelete.clear();
61 MAI.FuncNameMap.clear();
62 MAI.GlobalVarList.clear();
63 MAI.ExtInstSetMap.clear();
64
65 // TODO: determine memory model and source language from the configuratoin.
66 if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
67 auto MemMD = MemModel->getOperand(0);
68 MAI.Addr = static_cast<SPIRV::AddressingModel>(getMetadataUInt(MemMD, 0));
69 MAI.Mem = static_cast<SPIRV::MemoryModel>(getMetadataUInt(MemMD, 1));
70 } else {
71 MAI.Mem = SPIRV::MemoryModel::OpenCL;
72 unsigned PtrSize = ST->getPointerSize();
73 MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32
74 : PtrSize == 64 ? SPIRV::AddressingModel::Physical64
75 : SPIRV::AddressingModel::Logical;
76 }
77 // Get the OpenCL version number from metadata.
78 // TODO: support other source languages.
79 if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
80 MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
81 // Construct version literal in accordance with SPIRV-LLVM-Translator.
82 // TODO: support multiple OCL version metadata.
83 assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
84 auto VersionMD = VerNode->getOperand(0);
85 unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
86 unsigned MinorNum = getMetadataUInt(VersionMD, 1);
87 unsigned RevNum = getMetadataUInt(VersionMD, 2);
88 MAI.SrcLangVersion = (MajorNum * 100 + MinorNum) * 1000 + RevNum;
89 } else {
90 MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
91 MAI.SrcLangVersion = 0;
92 }
93
94 if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
95 for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
96 MDNode *MD = ExtNode->getOperand(I);
97 if (!MD || MD->getNumOperands() == 0)
98 continue;
99 for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
100 MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
101 }
102 }
103
104 // TODO: check if it's required by default.
105 MAI.ExtInstSetMap[static_cast<unsigned>(SPIRV::InstructionSet::OpenCL_std)] =
106 Register::index2VirtReg(MAI.getNextID());
107 }
108
109 // Collect MI which defines the register in the given machine function.
collectDefInstr(Register Reg,const MachineFunction * MF,SPIRV::ModuleAnalysisInfo * MAI,SPIRV::ModuleSectionType MSType,bool DoInsert=true)110 static void collectDefInstr(Register Reg, const MachineFunction *MF,
111 SPIRV::ModuleAnalysisInfo *MAI,
112 SPIRV::ModuleSectionType MSType,
113 bool DoInsert = true) {
114 assert(MAI->hasRegisterAlias(MF, Reg) && "Cannot find register alias");
115 MachineInstr *MI = MF->getRegInfo().getUniqueVRegDef(Reg);
116 assert(MI && "There should be an instruction that defines the register");
117 MAI->setSkipEmission(MI);
118 if (DoInsert)
119 MAI->MS[MSType].push_back(MI);
120 }
121
collectGlobalEntities(const std::vector<SPIRV::DTSortableEntry * > & DepsGraph,SPIRV::ModuleSectionType MSType,std::function<bool (const SPIRV::DTSortableEntry *)> Pred,bool UsePreOrder=false)122 void SPIRVModuleAnalysis::collectGlobalEntities(
123 const std::vector<SPIRV::DTSortableEntry *> &DepsGraph,
124 SPIRV::ModuleSectionType MSType,
125 std::function<bool(const SPIRV::DTSortableEntry *)> Pred,
126 bool UsePreOrder = false) {
127 DenseSet<const SPIRV::DTSortableEntry *> Visited;
128 for (const auto *E : DepsGraph) {
129 std::function<void(const SPIRV::DTSortableEntry *)> RecHoistUtil;
130 // NOTE: here we prefer recursive approach over iterative because
131 // we don't expect depchains long enough to cause SO.
132 RecHoistUtil = [MSType, UsePreOrder, &Visited, &Pred,
133 &RecHoistUtil](const SPIRV::DTSortableEntry *E) {
134 if (Visited.count(E) || !Pred(E))
135 return;
136 Visited.insert(E);
137
138 // Traversing deps graph in post-order allows us to get rid of
139 // register aliases preprocessing.
140 // But pre-order is required for correct processing of function
141 // declaration and arguments processing.
142 if (!UsePreOrder)
143 for (auto *S : E->getDeps())
144 RecHoistUtil(S);
145
146 Register GlobalReg = Register::index2VirtReg(MAI.getNextID());
147 bool IsFirst = true;
148 for (auto &U : *E) {
149 const MachineFunction *MF = U.first;
150 Register Reg = U.second;
151 MAI.setRegisterAlias(MF, Reg, GlobalReg);
152 if (!MF->getRegInfo().getUniqueVRegDef(Reg))
153 continue;
154 collectDefInstr(Reg, MF, &MAI, MSType, IsFirst);
155 IsFirst = false;
156 if (E->getIsGV())
157 MAI.GlobalVarList.push_back(MF->getRegInfo().getUniqueVRegDef(Reg));
158 }
159
160 if (UsePreOrder)
161 for (auto *S : E->getDeps())
162 RecHoistUtil(S);
163 };
164 RecHoistUtil(E);
165 }
166 }
167
168 // The function initializes global register alias table for types, consts,
169 // global vars and func decls and collects these instruction for output
170 // at module level. Also it collects explicit OpExtension/OpCapability
171 // instructions.
processDefInstrs(const Module & M)172 void SPIRVModuleAnalysis::processDefInstrs(const Module &M) {
173 std::vector<SPIRV::DTSortableEntry *> DepsGraph;
174
175 GR->buildDepsGraph(DepsGraph, SPVDumpDeps ? MMI : nullptr);
176
177 collectGlobalEntities(
178 DepsGraph, SPIRV::MB_TypeConstVars,
179 [](const SPIRV::DTSortableEntry *E) { return !E->getIsFunc(); });
180
181 collectGlobalEntities(
182 DepsGraph, SPIRV::MB_ExtFuncDecls,
183 [](const SPIRV::DTSortableEntry *E) { return E->getIsFunc(); }, true);
184 }
185
186 // True if there is an instruction in the MS list with all the same operands as
187 // the given instruction has (after the given starting index).
188 // TODO: maybe it needs to check Opcodes too.
findSameInstrInMS(const MachineInstr & A,SPIRV::ModuleSectionType MSType,SPIRV::ModuleAnalysisInfo & MAI,unsigned StartOpIndex=0)189 static bool findSameInstrInMS(const MachineInstr &A,
190 SPIRV::ModuleSectionType MSType,
191 SPIRV::ModuleAnalysisInfo &MAI,
192 unsigned StartOpIndex = 0) {
193 for (const auto *B : MAI.MS[MSType]) {
194 const unsigned NumAOps = A.getNumOperands();
195 if (NumAOps != B->getNumOperands() || A.getNumDefs() != B->getNumDefs())
196 continue;
197 bool AllOpsMatch = true;
198 for (unsigned i = StartOpIndex; i < NumAOps && AllOpsMatch; ++i) {
199 if (A.getOperand(i).isReg() && B->getOperand(i).isReg()) {
200 Register RegA = A.getOperand(i).getReg();
201 Register RegB = B->getOperand(i).getReg();
202 AllOpsMatch = MAI.getRegisterAlias(A.getMF(), RegA) ==
203 MAI.getRegisterAlias(B->getMF(), RegB);
204 } else {
205 AllOpsMatch = A.getOperand(i).isIdenticalTo(B->getOperand(i));
206 }
207 }
208 if (AllOpsMatch)
209 return true;
210 }
211 return false;
212 }
213
214 // Look for IDs declared with Import linkage, and map the imported name string
215 // to the register defining that variable (which will usually be the result of
216 // an OpFunction). This lets us call externally imported functions using
217 // the correct ID registers.
collectFuncNames(MachineInstr & MI,const Function & F)218 void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
219 const Function &F) {
220 if (MI.getOpcode() == SPIRV::OpDecorate) {
221 // If it's got Import linkage.
222 auto Dec = MI.getOperand(1).getImm();
223 if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
224 auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
225 if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
226 // Map imported function name to function ID register.
227 std::string Name = getStringImm(MI, 2);
228 Register Target = MI.getOperand(0).getReg();
229 // TODO: check defs from different MFs.
230 MAI.FuncNameMap[Name] = MAI.getRegisterAlias(MI.getMF(), Target);
231 }
232 }
233 } else if (MI.getOpcode() == SPIRV::OpFunction) {
234 // Record all internal OpFunction declarations.
235 Register Reg = MI.defs().begin()->getReg();
236 Register GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
237 assert(GlobalReg.isValid());
238 // TODO: check that it does not conflict with existing entries.
239 MAI.FuncNameMap[F.getGlobalIdentifier()] = GlobalReg;
240 }
241 }
242
243 // Collect the given instruction in the specified MS. We assume global register
244 // numbering has already occurred by this point. We can directly compare reg
245 // arguments when detecting duplicates.
collectOtherInstr(MachineInstr & MI,SPIRV::ModuleAnalysisInfo & MAI,SPIRV::ModuleSectionType MSType,bool Append=true)246 static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
247 SPIRV::ModuleSectionType MSType,
248 bool Append = true) {
249 MAI.setSkipEmission(&MI);
250 if (findSameInstrInMS(MI, MSType, MAI))
251 return; // Found a duplicate, so don't add it.
252 // No duplicates, so add it.
253 if (Append)
254 MAI.MS[MSType].push_back(&MI);
255 else
256 MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
257 }
258
259 // Some global instructions make reference to function-local ID regs, so cannot
260 // be correctly collected until these registers are globally numbered.
processOtherInstrs(const Module & M)261 void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
262 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
263 if ((*F).isDeclaration())
264 continue;
265 MachineFunction *MF = MMI->getMachineFunction(*F);
266 assert(MF);
267 for (MachineBasicBlock &MBB : *MF)
268 for (MachineInstr &MI : MBB) {
269 if (MAI.getSkipEmission(&MI))
270 continue;
271 const unsigned OpCode = MI.getOpcode();
272 if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
273 collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames);
274 } else if (OpCode == SPIRV::OpEntryPoint) {
275 collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints);
276 } else if (TII->isDecorationInstr(MI)) {
277 collectOtherInstr(MI, MAI, SPIRV::MB_Annotations);
278 collectFuncNames(MI, *F);
279 } else if (TII->isConstantInstr(MI)) {
280 // Now OpSpecConstant*s are not in DT,
281 // but they need to be collected anyway.
282 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars);
283 } else if (OpCode == SPIRV::OpFunction) {
284 collectFuncNames(MI, *F);
285 } else if (OpCode == SPIRV::OpTypeForwardPointer) {
286 collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, false);
287 }
288 }
289 }
290 }
291
292 // Number registers in all functions globally from 0 onwards and store
293 // the result in global register alias table. Some registers are already
294 // numbered in collectGlobalEntities.
numberRegistersGlobally(const Module & M)295 void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
296 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
297 if ((*F).isDeclaration())
298 continue;
299 MachineFunction *MF = MMI->getMachineFunction(*F);
300 assert(MF);
301 for (MachineBasicBlock &MBB : *MF) {
302 for (MachineInstr &MI : MBB) {
303 for (MachineOperand &Op : MI.operands()) {
304 if (!Op.isReg())
305 continue;
306 Register Reg = Op.getReg();
307 if (MAI.hasRegisterAlias(MF, Reg))
308 continue;
309 Register NewReg = Register::index2VirtReg(MAI.getNextID());
310 MAI.setRegisterAlias(MF, Reg, NewReg);
311 }
312 if (MI.getOpcode() != SPIRV::OpExtInst)
313 continue;
314 auto Set = MI.getOperand(2).getImm();
315 if (MAI.ExtInstSetMap.find(Set) == MAI.ExtInstSetMap.end())
316 MAI.ExtInstSetMap[Set] = Register::index2VirtReg(MAI.getNextID());
317 }
318 }
319 }
320 }
321
322 // Find OpIEqual and OpBranchConditional instructions originating from
323 // OpSwitches, mark them skipped for emission. Also mark MBB skipped if it
324 // contains only these instructions.
processSwitches(const Module & M,SPIRV::ModuleAnalysisInfo & MAI,MachineModuleInfo * MMI)325 static void processSwitches(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
326 MachineModuleInfo *MMI) {
327 DenseSet<Register> SwitchRegs;
328 for (auto F = M.begin(), E = M.end(); F != E; ++F) {
329 MachineFunction *MF = MMI->getMachineFunction(*F);
330 if (!MF)
331 continue;
332 for (MachineBasicBlock &MBB : *MF)
333 for (MachineInstr &MI : MBB) {
334 if (MAI.getSkipEmission(&MI))
335 continue;
336 if (MI.getOpcode() == SPIRV::OpSwitch) {
337 assert(MI.getOperand(0).isReg());
338 SwitchRegs.insert(MI.getOperand(0).getReg());
339 }
340 if (MI.getOpcode() != SPIRV::OpIEqual || !MI.getOperand(2).isReg() ||
341 !SwitchRegs.contains(MI.getOperand(2).getReg()))
342 continue;
343 Register CmpReg = MI.getOperand(0).getReg();
344 MachineInstr *CBr = MI.getNextNode();
345 assert(CBr && CBr->getOpcode() == SPIRV::OpBranchConditional &&
346 CBr->getOperand(0).isReg() &&
347 CBr->getOperand(0).getReg() == CmpReg);
348 MAI.setSkipEmission(&MI);
349 MAI.setSkipEmission(CBr);
350 if (&MBB.front() == &MI && &MBB.back() == CBr)
351 MAI.MBBsToSkip.insert(&MBB);
352 }
353 }
354 }
355
356 struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
357
getAnalysisUsage(AnalysisUsage & AU) const358 void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
359 AU.addRequired<TargetPassConfig>();
360 AU.addRequired<MachineModuleInfoWrapperPass>();
361 }
362
runOnModule(Module & M)363 bool SPIRVModuleAnalysis::runOnModule(Module &M) {
364 SPIRVTargetMachine &TM =
365 getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
366 ST = TM.getSubtargetImpl();
367 GR = ST->getSPIRVGlobalRegistry();
368 TII = ST->getInstrInfo();
369
370 MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
371
372 setBaseInfo(M);
373
374 processSwitches(M, MAI, MMI);
375
376 // Process type/const/global var/func decl instructions, number their
377 // destination registers from 0 to N, collect Extensions and Capabilities.
378 processDefInstrs(M);
379
380 // Number rest of registers from N+1 onwards.
381 numberRegistersGlobally(M);
382
383 // Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
384 processOtherInstrs(M);
385
386 return false;
387 }
388