1 //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Rewrite call/invoke instructions so as to make potential relocations
11 // performed by the garbage collector explicit in the IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h"
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/DomTreeUpdater.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstIterator.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Statepoint.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueHandle.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <set>
76 #include <string>
77 #include <utility>
78 #include <vector>
79
80 #define DEBUG_TYPE "rewrite-statepoints-for-gc"
81
82 using namespace llvm;
83
84 // Print the liveset found at the insert location
85 static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
86 cl::init(false));
87 static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
88 cl::init(false));
89
90 // Print out the base pointers for debugging
91 static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
92 cl::init(false));
93
94 // Cost threshold measuring when it is profitable to rematerialize value instead
95 // of relocating it
96 static cl::opt<unsigned>
97 RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
98 cl::init(6));
99
100 #ifdef EXPENSIVE_CHECKS
101 static bool ClobberNonLive = true;
102 #else
103 static bool ClobberNonLive = false;
104 #endif
105
106 static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
107 cl::location(ClobberNonLive),
108 cl::Hidden);
109
110 static cl::opt<bool>
111 AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
112 cl::Hidden, cl::init(true));
113
114 /// The IR fed into RewriteStatepointsForGC may have had attributes and
115 /// metadata implying dereferenceability that are no longer valid/correct after
116 /// RewriteStatepointsForGC has run. This is because semantically, after
117 /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
118 /// heap. stripNonValidData (conservatively) restores
119 /// correctness by erasing all attributes in the module that externally imply
120 /// dereferenceability. Similar reasoning also applies to the noalias
121 /// attributes and metadata. gc.statepoint can touch the entire heap including
122 /// noalias objects.
123 /// Apart from attributes and metadata, we also remove instructions that imply
124 /// constant physical memory: llvm.invariant.start.
125 static void stripNonValidData(Module &M);
126
127 static bool shouldRewriteStatepointsIn(Function &F);
128
run(Module & M,ModuleAnalysisManager & AM)129 PreservedAnalyses RewriteStatepointsForGC::run(Module &M,
130 ModuleAnalysisManager &AM) {
131 bool Changed = false;
132 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
133 for (Function &F : M) {
134 // Nothing to do for declarations.
135 if (F.isDeclaration() || F.empty())
136 continue;
137
138 // Policy choice says not to rewrite - the most common reason is that we're
139 // compiling code without a GCStrategy.
140 if (!shouldRewriteStatepointsIn(F))
141 continue;
142
143 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
144 auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
145 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
146 Changed |= runOnFunction(F, DT, TTI, TLI);
147 }
148 if (!Changed)
149 return PreservedAnalyses::all();
150
151 // stripNonValidData asserts that shouldRewriteStatepointsIn
152 // returns true for at least one function in the module. Since at least
153 // one function changed, we know that the precondition is satisfied.
154 stripNonValidData(M);
155
156 PreservedAnalyses PA;
157 PA.preserve<TargetIRAnalysis>();
158 PA.preserve<TargetLibraryAnalysis>();
159 return PA;
160 }
161
162 namespace {
163
164 class RewriteStatepointsForGCLegacyPass : public ModulePass {
165 RewriteStatepointsForGC Impl;
166
167 public:
168 static char ID; // Pass identification, replacement for typeid
169
RewriteStatepointsForGCLegacyPass()170 RewriteStatepointsForGCLegacyPass() : ModulePass(ID), Impl() {
171 initializeRewriteStatepointsForGCLegacyPassPass(
172 *PassRegistry::getPassRegistry());
173 }
174
runOnModule(Module & M)175 bool runOnModule(Module &M) override {
176 bool Changed = false;
177 const TargetLibraryInfo &TLI =
178 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
179 for (Function &F : M) {
180 // Nothing to do for declarations.
181 if (F.isDeclaration() || F.empty())
182 continue;
183
184 // Policy choice says not to rewrite - the most common reason is that
185 // we're compiling code without a GCStrategy.
186 if (!shouldRewriteStatepointsIn(F))
187 continue;
188
189 TargetTransformInfo &TTI =
190 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
191 auto &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
192
193 Changed |= Impl.runOnFunction(F, DT, TTI, TLI);
194 }
195
196 if (!Changed)
197 return false;
198
199 // stripNonValidData asserts that shouldRewriteStatepointsIn
200 // returns true for at least one function in the module. Since at least
201 // one function changed, we know that the precondition is satisfied.
202 stripNonValidData(M);
203 return true;
204 }
205
getAnalysisUsage(AnalysisUsage & AU) const206 void getAnalysisUsage(AnalysisUsage &AU) const override {
207 // We add and rewrite a bunch of instructions, but don't really do much
208 // else. We could in theory preserve a lot more analyses here.
209 AU.addRequired<DominatorTreeWrapperPass>();
210 AU.addRequired<TargetTransformInfoWrapperPass>();
211 AU.addRequired<TargetLibraryInfoWrapperPass>();
212 }
213 };
214
215 } // end anonymous namespace
216
217 char RewriteStatepointsForGCLegacyPass::ID = 0;
218
createRewriteStatepointsForGCLegacyPass()219 ModulePass *llvm::createRewriteStatepointsForGCLegacyPass() {
220 return new RewriteStatepointsForGCLegacyPass();
221 }
222
223 INITIALIZE_PASS_BEGIN(RewriteStatepointsForGCLegacyPass,
224 "rewrite-statepoints-for-gc",
225 "Make relocations explicit at statepoints", false, false)
226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
227 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
228 INITIALIZE_PASS_END(RewriteStatepointsForGCLegacyPass,
229 "rewrite-statepoints-for-gc",
230 "Make relocations explicit at statepoints", false, false)
231
232 namespace {
233
234 struct GCPtrLivenessData {
235 /// Values defined in this block.
236 MapVector<BasicBlock *, SetVector<Value *>> KillSet;
237
238 /// Values used in this block (and thus live); does not included values
239 /// killed within this block.
240 MapVector<BasicBlock *, SetVector<Value *>> LiveSet;
241
242 /// Values live into this basic block (i.e. used by any
243 /// instruction in this basic block or ones reachable from here)
244 MapVector<BasicBlock *, SetVector<Value *>> LiveIn;
245
246 /// Values live out of this basic block (i.e. live into
247 /// any successor block)
248 MapVector<BasicBlock *, SetVector<Value *>> LiveOut;
249 };
250
251 // The type of the internal cache used inside the findBasePointers family
252 // of functions. From the callers perspective, this is an opaque type and
253 // should not be inspected.
254 //
255 // In the actual implementation this caches two relations:
256 // - The base relation itself (i.e. this pointer is based on that one)
257 // - The base defining value relation (i.e. before base_phi insertion)
258 // Generally, after the execution of a full findBasePointer call, only the
259 // base relation will remain. Internally, we add a mixture of the two
260 // types, then update all the second type to the first type
261 using DefiningValueMapTy = MapVector<Value *, Value *>;
262 using StatepointLiveSetTy = SetVector<Value *>;
263 using RematerializedValueMapTy =
264 MapVector<AssertingVH<Instruction>, AssertingVH<Value>>;
265
266 struct PartiallyConstructedSafepointRecord {
267 /// The set of values known to be live across this safepoint
268 StatepointLiveSetTy LiveSet;
269
270 /// Mapping from live pointers to a base-defining-value
271 MapVector<Value *, Value *> PointerToBase;
272
273 /// The *new* gc.statepoint instruction itself. This produces the token
274 /// that normal path gc.relocates and the gc.result are tied to.
275 Instruction *StatepointToken;
276
277 /// Instruction to which exceptional gc relocates are attached
278 /// Makes it easier to iterate through them during relocationViaAlloca.
279 Instruction *UnwindToken;
280
281 /// Record live values we are rematerialized instead of relocating.
282 /// They are not included into 'LiveSet' field.
283 /// Maps rematerialized copy to it's original value.
284 RematerializedValueMapTy RematerializedValues;
285 };
286
287 } // end anonymous namespace
288
GetDeoptBundleOperands(ImmutableCallSite CS)289 static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
290 Optional<OperandBundleUse> DeoptBundle =
291 CS.getOperandBundle(LLVMContext::OB_deopt);
292
293 if (!DeoptBundle.hasValue()) {
294 assert(AllowStatepointWithNoDeoptInfo &&
295 "Found non-leaf call without deopt info!");
296 return None;
297 }
298
299 return DeoptBundle.getValue().Inputs;
300 }
301
302 /// Compute the live-in set for every basic block in the function
303 static void computeLiveInValues(DominatorTree &DT, Function &F,
304 GCPtrLivenessData &Data);
305
306 /// Given results from the dataflow liveness computation, find the set of live
307 /// Values at a particular instruction.
308 static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
309 StatepointLiveSetTy &out);
310
311 // TODO: Once we can get to the GCStrategy, this becomes
312 // Optional<bool> isGCManagedPointer(const Type *Ty) const override {
313
isGCPointerType(Type * T)314 static bool isGCPointerType(Type *T) {
315 if (auto *PT = dyn_cast<PointerType>(T))
316 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
317 // GC managed heap. We know that a pointer into this heap needs to be
318 // updated and that no other pointer does.
319 return PT->getAddressSpace() == 1;
320 return false;
321 }
322
323 // Return true if this type is one which a) is a gc pointer or contains a GC
324 // pointer and b) is of a type this code expects to encounter as a live value.
325 // (The insertion code will assert that a type which matches (a) and not (b)
326 // is not encountered.)
isHandledGCPointerType(Type * T)327 static bool isHandledGCPointerType(Type *T) {
328 // We fully support gc pointers
329 if (isGCPointerType(T))
330 return true;
331 // We partially support vectors of gc pointers. The code will assert if it
332 // can't handle something.
333 if (auto VT = dyn_cast<VectorType>(T))
334 if (isGCPointerType(VT->getElementType()))
335 return true;
336 return false;
337 }
338
339 #ifndef NDEBUG
340 /// Returns true if this type contains a gc pointer whether we know how to
341 /// handle that type or not.
containsGCPtrType(Type * Ty)342 static bool containsGCPtrType(Type *Ty) {
343 if (isGCPointerType(Ty))
344 return true;
345 if (VectorType *VT = dyn_cast<VectorType>(Ty))
346 return isGCPointerType(VT->getScalarType());
347 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
348 return containsGCPtrType(AT->getElementType());
349 if (StructType *ST = dyn_cast<StructType>(Ty))
350 return llvm::any_of(ST->elements(), containsGCPtrType);
351 return false;
352 }
353
354 // Returns true if this is a type which a) is a gc pointer or contains a GC
355 // pointer and b) is of a type which the code doesn't expect (i.e. first class
356 // aggregates). Used to trip assertions.
isUnhandledGCPointerType(Type * Ty)357 static bool isUnhandledGCPointerType(Type *Ty) {
358 return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
359 }
360 #endif
361
362 // Return the name of the value suffixed with the provided value, or if the
363 // value didn't have a name, the default value specified.
suffixed_name_or(Value * V,StringRef Suffix,StringRef DefaultName)364 static std::string suffixed_name_or(Value *V, StringRef Suffix,
365 StringRef DefaultName) {
366 return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
367 }
368
369 // Conservatively identifies any definitions which might be live at the
370 // given instruction. The analysis is performed immediately before the
371 // given instruction. Values defined by that instruction are not considered
372 // live. Values used by that instruction are considered live.
373 static void
analyzeParsePointLiveness(DominatorTree & DT,GCPtrLivenessData & OriginalLivenessData,CallSite CS,PartiallyConstructedSafepointRecord & Result)374 analyzeParsePointLiveness(DominatorTree &DT,
375 GCPtrLivenessData &OriginalLivenessData, CallSite CS,
376 PartiallyConstructedSafepointRecord &Result) {
377 Instruction *Inst = CS.getInstruction();
378
379 StatepointLiveSetTy LiveSet;
380 findLiveSetAtInst(Inst, OriginalLivenessData, LiveSet);
381
382 if (PrintLiveSet) {
383 dbgs() << "Live Variables:\n";
384 for (Value *V : LiveSet)
385 dbgs() << " " << V->getName() << " " << *V << "\n";
386 }
387 if (PrintLiveSetSize) {
388 dbgs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
389 dbgs() << "Number live values: " << LiveSet.size() << "\n";
390 }
391 Result.LiveSet = LiveSet;
392 }
393
394 static bool isKnownBaseResult(Value *V);
395
396 namespace {
397
398 /// A single base defining value - An immediate base defining value for an
399 /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
400 /// For instructions which have multiple pointer [vector] inputs or that
401 /// transition between vector and scalar types, there is no immediate base
402 /// defining value. The 'base defining value' for 'Def' is the transitive
403 /// closure of this relation stopping at the first instruction which has no
404 /// immediate base defining value. The b.d.v. might itself be a base pointer,
405 /// but it can also be an arbitrary derived pointer.
406 struct BaseDefiningValueResult {
407 /// Contains the value which is the base defining value.
408 Value * const BDV;
409
410 /// True if the base defining value is also known to be an actual base
411 /// pointer.
412 const bool IsKnownBase;
413
BaseDefiningValueResult__anon89fdfd490311::BaseDefiningValueResult414 BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
415 : BDV(BDV), IsKnownBase(IsKnownBase) {
416 #ifndef NDEBUG
417 // Check consistency between new and old means of checking whether a BDV is
418 // a base.
419 bool MustBeBase = isKnownBaseResult(BDV);
420 assert(!MustBeBase || MustBeBase == IsKnownBase);
421 #endif
422 }
423 };
424
425 } // end anonymous namespace
426
427 static BaseDefiningValueResult findBaseDefiningValue(Value *I);
428
429 /// Return a base defining value for the 'Index' element of the given vector
430 /// instruction 'I'. If Index is null, returns a BDV for the entire vector
431 /// 'I'. As an optimization, this method will try to determine when the
432 /// element is known to already be a base pointer. If this can be established,
433 /// the second value in the returned pair will be true. Note that either a
434 /// vector or a pointer typed value can be returned. For the former, the
435 /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
436 /// If the later, the return pointer is a BDV (or possibly a base) for the
437 /// particular element in 'I'.
438 static BaseDefiningValueResult
findBaseDefiningValueOfVector(Value * I)439 findBaseDefiningValueOfVector(Value *I) {
440 // Each case parallels findBaseDefiningValue below, see that code for
441 // detailed motivation.
442
443 if (isa<Argument>(I))
444 // An incoming argument to the function is a base pointer
445 return BaseDefiningValueResult(I, true);
446
447 if (isa<Constant>(I))
448 // Base of constant vector consists only of constant null pointers.
449 // For reasoning see similar case inside 'findBaseDefiningValue' function.
450 return BaseDefiningValueResult(ConstantAggregateZero::get(I->getType()),
451 true);
452
453 if (isa<LoadInst>(I))
454 return BaseDefiningValueResult(I, true);
455
456 if (isa<InsertElementInst>(I))
457 // We don't know whether this vector contains entirely base pointers or
458 // not. To be conservatively correct, we treat it as a BDV and will
459 // duplicate code as needed to construct a parallel vector of bases.
460 return BaseDefiningValueResult(I, false);
461
462 if (isa<ShuffleVectorInst>(I))
463 // We don't know whether this vector contains entirely base pointers or
464 // not. To be conservatively correct, we treat it as a BDV and will
465 // duplicate code as needed to construct a parallel vector of bases.
466 // TODO: There a number of local optimizations which could be applied here
467 // for particular sufflevector patterns.
468 return BaseDefiningValueResult(I, false);
469
470 // The behavior of getelementptr instructions is the same for vector and
471 // non-vector data types.
472 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
473 return findBaseDefiningValue(GEP->getPointerOperand());
474
475 // If the pointer comes through a bitcast of a vector of pointers to
476 // a vector of another type of pointer, then look through the bitcast
477 if (auto *BC = dyn_cast<BitCastInst>(I))
478 return findBaseDefiningValue(BC->getOperand(0));
479
480 // We assume that functions in the source language only return base
481 // pointers. This should probably be generalized via attributes to support
482 // both source language and internal functions.
483 if (isa<CallInst>(I) || isa<InvokeInst>(I))
484 return BaseDefiningValueResult(I, true);
485
486 // A PHI or Select is a base defining value. The outer findBasePointer
487 // algorithm is responsible for constructing a base value for this BDV.
488 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
489 "unknown vector instruction - no base found for vector element");
490 return BaseDefiningValueResult(I, false);
491 }
492
493 /// Helper function for findBasePointer - Will return a value which either a)
494 /// defines the base pointer for the input, b) blocks the simple search
495 /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
496 /// from pointer to vector type or back.
findBaseDefiningValue(Value * I)497 static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
498 assert(I->getType()->isPtrOrPtrVectorTy() &&
499 "Illegal to ask for the base pointer of a non-pointer type");
500
501 if (I->getType()->isVectorTy())
502 return findBaseDefiningValueOfVector(I);
503
504 if (isa<Argument>(I))
505 // An incoming argument to the function is a base pointer
506 // We should have never reached here if this argument isn't an gc value
507 return BaseDefiningValueResult(I, true);
508
509 if (isa<Constant>(I)) {
510 // We assume that objects with a constant base (e.g. a global) can't move
511 // and don't need to be reported to the collector because they are always
512 // live. Besides global references, all kinds of constants (e.g. undef,
513 // constant expressions, null pointers) can be introduced by the inliner or
514 // the optimizer, especially on dynamically dead paths.
515 // Here we treat all of them as having single null base. By doing this we
516 // trying to avoid problems reporting various conflicts in a form of
517 // "phi (const1, const2)" or "phi (const, regular gc ptr)".
518 // See constant.ll file for relevant test cases.
519
520 return BaseDefiningValueResult(
521 ConstantPointerNull::get(cast<PointerType>(I->getType())), true);
522 }
523
524 if (CastInst *CI = dyn_cast<CastInst>(I)) {
525 Value *Def = CI->stripPointerCasts();
526 // If stripping pointer casts changes the address space there is an
527 // addrspacecast in between.
528 assert(cast<PointerType>(Def->getType())->getAddressSpace() ==
529 cast<PointerType>(CI->getType())->getAddressSpace() &&
530 "unsupported addrspacecast");
531 // If we find a cast instruction here, it means we've found a cast which is
532 // not simply a pointer cast (i.e. an inttoptr). We don't know how to
533 // handle int->ptr conversion.
534 assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
535 return findBaseDefiningValue(Def);
536 }
537
538 if (isa<LoadInst>(I))
539 // The value loaded is an gc base itself
540 return BaseDefiningValueResult(I, true);
541
542 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
543 // The base of this GEP is the base
544 return findBaseDefiningValue(GEP->getPointerOperand());
545
546 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
547 switch (II->getIntrinsicID()) {
548 default:
549 // fall through to general call handling
550 break;
551 case Intrinsic::experimental_gc_statepoint:
552 llvm_unreachable("statepoints don't produce pointers");
553 case Intrinsic::experimental_gc_relocate:
554 // Rerunning safepoint insertion after safepoints are already
555 // inserted is not supported. It could probably be made to work,
556 // but why are you doing this? There's no good reason.
557 llvm_unreachable("repeat safepoint insertion is not supported");
558 case Intrinsic::gcroot:
559 // Currently, this mechanism hasn't been extended to work with gcroot.
560 // There's no reason it couldn't be, but I haven't thought about the
561 // implications much.
562 llvm_unreachable(
563 "interaction with the gcroot mechanism is not supported");
564 }
565 }
566 // We assume that functions in the source language only return base
567 // pointers. This should probably be generalized via attributes to support
568 // both source language and internal functions.
569 if (isa<CallInst>(I) || isa<InvokeInst>(I))
570 return BaseDefiningValueResult(I, true);
571
572 // TODO: I have absolutely no idea how to implement this part yet. It's not
573 // necessarily hard, I just haven't really looked at it yet.
574 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
575
576 if (isa<AtomicCmpXchgInst>(I))
577 // A CAS is effectively a atomic store and load combined under a
578 // predicate. From the perspective of base pointers, we just treat it
579 // like a load.
580 return BaseDefiningValueResult(I, true);
581
582 assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
583 "binary ops which don't apply to pointers");
584
585 // The aggregate ops. Aggregates can either be in the heap or on the
586 // stack, but in either case, this is simply a field load. As a result,
587 // this is a defining definition of the base just like a load is.
588 if (isa<ExtractValueInst>(I))
589 return BaseDefiningValueResult(I, true);
590
591 // We should never see an insert vector since that would require we be
592 // tracing back a struct value not a pointer value.
593 assert(!isa<InsertValueInst>(I) &&
594 "Base pointer for a struct is meaningless");
595
596 // An extractelement produces a base result exactly when it's input does.
597 // We may need to insert a parallel instruction to extract the appropriate
598 // element out of the base vector corresponding to the input. Given this,
599 // it's analogous to the phi and select case even though it's not a merge.
600 if (isa<ExtractElementInst>(I))
601 // Note: There a lot of obvious peephole cases here. This are deliberately
602 // handled after the main base pointer inference algorithm to make writing
603 // test cases to exercise that code easier.
604 return BaseDefiningValueResult(I, false);
605
606 // The last two cases here don't return a base pointer. Instead, they
607 // return a value which dynamically selects from among several base
608 // derived pointers (each with it's own base potentially). It's the job of
609 // the caller to resolve these.
610 assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
611 "missing instruction case in findBaseDefiningValing");
612 return BaseDefiningValueResult(I, false);
613 }
614
615 /// Returns the base defining value for this value.
findBaseDefiningValueCached(Value * I,DefiningValueMapTy & Cache)616 static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
617 Value *&Cached = Cache[I];
618 if (!Cached) {
619 Cached = findBaseDefiningValue(I).BDV;
620 LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
621 << Cached->getName() << "\n");
622 }
623 assert(Cache[I] != nullptr);
624 return Cached;
625 }
626
627 /// Return a base pointer for this value if known. Otherwise, return it's
628 /// base defining value.
findBaseOrBDV(Value * I,DefiningValueMapTy & Cache)629 static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
630 Value *Def = findBaseDefiningValueCached(I, Cache);
631 auto Found = Cache.find(Def);
632 if (Found != Cache.end()) {
633 // Either a base-of relation, or a self reference. Caller must check.
634 return Found->second;
635 }
636 // Only a BDV available
637 return Def;
638 }
639
640 /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
641 /// is it known to be a base pointer? Or do we need to continue searching.
isKnownBaseResult(Value * V)642 static bool isKnownBaseResult(Value *V) {
643 if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
644 !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
645 !isa<ShuffleVectorInst>(V)) {
646 // no recursion possible
647 return true;
648 }
649 if (isa<Instruction>(V) &&
650 cast<Instruction>(V)->getMetadata("is_base_value")) {
651 // This is a previously inserted base phi or select. We know
652 // that this is a base value.
653 return true;
654 }
655
656 // We need to keep searching
657 return false;
658 }
659
660 namespace {
661
662 /// Models the state of a single base defining value in the findBasePointer
663 /// algorithm for determining where a new instruction is needed to propagate
664 /// the base of this BDV.
665 class BDVState {
666 public:
667 enum Status { Unknown, Base, Conflict };
668
BDVState()669 BDVState() : BaseValue(nullptr) {}
670
BDVState(Status Status,Value * BaseValue=nullptr)671 explicit BDVState(Status Status, Value *BaseValue = nullptr)
672 : Status(Status), BaseValue(BaseValue) {
673 assert(Status != Base || BaseValue);
674 }
675
BDVState(Value * BaseValue)676 explicit BDVState(Value *BaseValue) : Status(Base), BaseValue(BaseValue) {}
677
getStatus() const678 Status getStatus() const { return Status; }
getBaseValue() const679 Value *getBaseValue() const { return BaseValue; }
680
isBase() const681 bool isBase() const { return getStatus() == Base; }
isUnknown() const682 bool isUnknown() const { return getStatus() == Unknown; }
isConflict() const683 bool isConflict() const { return getStatus() == Conflict; }
684
operator ==(const BDVState & Other) const685 bool operator==(const BDVState &Other) const {
686 return BaseValue == Other.BaseValue && Status == Other.Status;
687 }
688
operator !=(const BDVState & other) const689 bool operator!=(const BDVState &other) const { return !(*this == other); }
690
691 LLVM_DUMP_METHOD
dump() const692 void dump() const {
693 print(dbgs());
694 dbgs() << '\n';
695 }
696
print(raw_ostream & OS) const697 void print(raw_ostream &OS) const {
698 switch (getStatus()) {
699 case Unknown:
700 OS << "U";
701 break;
702 case Base:
703 OS << "B";
704 break;
705 case Conflict:
706 OS << "C";
707 break;
708 }
709 OS << " (" << getBaseValue() << " - "
710 << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << "): ";
711 }
712
713 private:
714 Status Status = Unknown;
715 AssertingVH<Value> BaseValue; // Non-null only if Status == Base.
716 };
717
718 } // end anonymous namespace
719
720 #ifndef NDEBUG
operator <<(raw_ostream & OS,const BDVState & State)721 static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
722 State.print(OS);
723 return OS;
724 }
725 #endif
726
meetBDVStateImpl(const BDVState & LHS,const BDVState & RHS)727 static BDVState meetBDVStateImpl(const BDVState &LHS, const BDVState &RHS) {
728 switch (LHS.getStatus()) {
729 case BDVState::Unknown:
730 return RHS;
731
732 case BDVState::Base:
733 assert(LHS.getBaseValue() && "can't be null");
734 if (RHS.isUnknown())
735 return LHS;
736
737 if (RHS.isBase()) {
738 if (LHS.getBaseValue() == RHS.getBaseValue()) {
739 assert(LHS == RHS && "equality broken!");
740 return LHS;
741 }
742 return BDVState(BDVState::Conflict);
743 }
744 assert(RHS.isConflict() && "only three states!");
745 return BDVState(BDVState::Conflict);
746
747 case BDVState::Conflict:
748 return LHS;
749 }
750 llvm_unreachable("only three states!");
751 }
752
753 // Values of type BDVState form a lattice, and this function implements the meet
754 // operation.
meetBDVState(const BDVState & LHS,const BDVState & RHS)755 static BDVState meetBDVState(const BDVState &LHS, const BDVState &RHS) {
756 BDVState Result = meetBDVStateImpl(LHS, RHS);
757 assert(Result == meetBDVStateImpl(RHS, LHS) &&
758 "Math is wrong: meet does not commute!");
759 return Result;
760 }
761
762 /// For a given value or instruction, figure out what base ptr its derived from.
763 /// For gc objects, this is simply itself. On success, returns a value which is
764 /// the base pointer. (This is reliable and can be used for relocation.) On
765 /// failure, returns nullptr.
findBasePointer(Value * I,DefiningValueMapTy & Cache)766 static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache) {
767 Value *Def = findBaseOrBDV(I, Cache);
768
769 if (isKnownBaseResult(Def))
770 return Def;
771
772 // Here's the rough algorithm:
773 // - For every SSA value, construct a mapping to either an actual base
774 // pointer or a PHI which obscures the base pointer.
775 // - Construct a mapping from PHI to unknown TOP state. Use an
776 // optimistic algorithm to propagate base pointer information. Lattice
777 // looks like:
778 // UNKNOWN
779 // b1 b2 b3 b4
780 // CONFLICT
781 // When algorithm terminates, all PHIs will either have a single concrete
782 // base or be in a conflict state.
783 // - For every conflict, insert a dummy PHI node without arguments. Add
784 // these to the base[Instruction] = BasePtr mapping. For every
785 // non-conflict, add the actual base.
786 // - For every conflict, add arguments for the base[a] of each input
787 // arguments.
788 //
789 // Note: A simpler form of this would be to add the conflict form of all
790 // PHIs without running the optimistic algorithm. This would be
791 // analogous to pessimistic data flow and would likely lead to an
792 // overall worse solution.
793
794 #ifndef NDEBUG
795 auto isExpectedBDVType = [](Value *BDV) {
796 return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
797 isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV) ||
798 isa<ShuffleVectorInst>(BDV);
799 };
800 #endif
801
802 // Once populated, will contain a mapping from each potentially non-base BDV
803 // to a lattice value (described above) which corresponds to that BDV.
804 // We use the order of insertion (DFS over the def/use graph) to provide a
805 // stable deterministic ordering for visiting DenseMaps (which are unordered)
806 // below. This is important for deterministic compilation.
807 MapVector<Value *, BDVState> States;
808
809 // Recursively fill in all base defining values reachable from the initial
810 // one for which we don't already know a definite base value for
811 /* scope */ {
812 SmallVector<Value*, 16> Worklist;
813 Worklist.push_back(Def);
814 States.insert({Def, BDVState()});
815 while (!Worklist.empty()) {
816 Value *Current = Worklist.pop_back_val();
817 assert(!isKnownBaseResult(Current) && "why did it get added?");
818
819 auto visitIncomingValue = [&](Value *InVal) {
820 Value *Base = findBaseOrBDV(InVal, Cache);
821 if (isKnownBaseResult(Base))
822 // Known bases won't need new instructions introduced and can be
823 // ignored safely
824 return;
825 assert(isExpectedBDVType(Base) && "the only non-base values "
826 "we see should be base defining values");
827 if (States.insert(std::make_pair(Base, BDVState())).second)
828 Worklist.push_back(Base);
829 };
830 if (PHINode *PN = dyn_cast<PHINode>(Current)) {
831 for (Value *InVal : PN->incoming_values())
832 visitIncomingValue(InVal);
833 } else if (SelectInst *SI = dyn_cast<SelectInst>(Current)) {
834 visitIncomingValue(SI->getTrueValue());
835 visitIncomingValue(SI->getFalseValue());
836 } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
837 visitIncomingValue(EE->getVectorOperand());
838 } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
839 visitIncomingValue(IE->getOperand(0)); // vector operand
840 visitIncomingValue(IE->getOperand(1)); // scalar operand
841 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(Current)) {
842 visitIncomingValue(SV->getOperand(0));
843 visitIncomingValue(SV->getOperand(1));
844 }
845 else {
846 llvm_unreachable("Unimplemented instruction case");
847 }
848 }
849 }
850
851 #ifndef NDEBUG
852 LLVM_DEBUG(dbgs() << "States after initialization:\n");
853 for (auto Pair : States) {
854 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
855 }
856 #endif
857
858 // Return a phi state for a base defining value. We'll generate a new
859 // base state for known bases and expect to find a cached state otherwise.
860 auto getStateForBDV = [&](Value *baseValue) {
861 if (isKnownBaseResult(baseValue))
862 return BDVState(baseValue);
863 auto I = States.find(baseValue);
864 assert(I != States.end() && "lookup failed!");
865 return I->second;
866 };
867
868 bool Progress = true;
869 while (Progress) {
870 #ifndef NDEBUG
871 const size_t OldSize = States.size();
872 #endif
873 Progress = false;
874 // We're only changing values in this loop, thus safe to keep iterators.
875 // Since this is computing a fixed point, the order of visit does not
876 // effect the result. TODO: We could use a worklist here and make this run
877 // much faster.
878 for (auto Pair : States) {
879 Value *BDV = Pair.first;
880 assert(!isKnownBaseResult(BDV) && "why did it get added?");
881
882 // Given an input value for the current instruction, return a BDVState
883 // instance which represents the BDV of that value.
884 auto getStateForInput = [&](Value *V) mutable {
885 Value *BDV = findBaseOrBDV(V, Cache);
886 return getStateForBDV(BDV);
887 };
888
889 BDVState NewState;
890 if (SelectInst *SI = dyn_cast<SelectInst>(BDV)) {
891 NewState = meetBDVState(NewState, getStateForInput(SI->getTrueValue()));
892 NewState =
893 meetBDVState(NewState, getStateForInput(SI->getFalseValue()));
894 } else if (PHINode *PN = dyn_cast<PHINode>(BDV)) {
895 for (Value *Val : PN->incoming_values())
896 NewState = meetBDVState(NewState, getStateForInput(Val));
897 } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
898 // The 'meet' for an extractelement is slightly trivial, but it's still
899 // useful in that it drives us to conflict if our input is.
900 NewState =
901 meetBDVState(NewState, getStateForInput(EE->getVectorOperand()));
902 } else if (auto *IE = dyn_cast<InsertElementInst>(BDV)){
903 // Given there's a inherent type mismatch between the operands, will
904 // *always* produce Conflict.
905 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(0)));
906 NewState = meetBDVState(NewState, getStateForInput(IE->getOperand(1)));
907 } else {
908 // The only instance this does not return a Conflict is when both the
909 // vector operands are the same vector.
910 auto *SV = cast<ShuffleVectorInst>(BDV);
911 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(0)));
912 NewState = meetBDVState(NewState, getStateForInput(SV->getOperand(1)));
913 }
914
915 BDVState OldState = States[BDV];
916 if (OldState != NewState) {
917 Progress = true;
918 States[BDV] = NewState;
919 }
920 }
921
922 assert(OldSize == States.size() &&
923 "fixed point shouldn't be adding any new nodes to state");
924 }
925
926 #ifndef NDEBUG
927 LLVM_DEBUG(dbgs() << "States after meet iteration:\n");
928 for (auto Pair : States) {
929 LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
930 }
931 #endif
932
933 // Insert Phis for all conflicts
934 // TODO: adjust naming patterns to avoid this order of iteration dependency
935 for (auto Pair : States) {
936 Instruction *I = cast<Instruction>(Pair.first);
937 BDVState State = Pair.second;
938 assert(!isKnownBaseResult(I) && "why did it get added?");
939 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
940
941 // extractelement instructions are a bit special in that we may need to
942 // insert an extract even when we know an exact base for the instruction.
943 // The problem is that we need to convert from a vector base to a scalar
944 // base for the particular indice we're interested in.
945 if (State.isBase() && isa<ExtractElementInst>(I) &&
946 isa<VectorType>(State.getBaseValue()->getType())) {
947 auto *EE = cast<ExtractElementInst>(I);
948 // TODO: In many cases, the new instruction is just EE itself. We should
949 // exploit this, but can't do it here since it would break the invariant
950 // about the BDV not being known to be a base.
951 auto *BaseInst = ExtractElementInst::Create(
952 State.getBaseValue(), EE->getIndexOperand(), "base_ee", EE);
953 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
954 States[I] = BDVState(BDVState::Base, BaseInst);
955 }
956
957 // Since we're joining a vector and scalar base, they can never be the
958 // same. As a result, we should always see insert element having reached
959 // the conflict state.
960 assert(!isa<InsertElementInst>(I) || State.isConflict());
961
962 if (!State.isConflict())
963 continue;
964
965 /// Create and insert a new instruction which will represent the base of
966 /// the given instruction 'I'.
967 auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
968 if (isa<PHINode>(I)) {
969 BasicBlock *BB = I->getParent();
970 int NumPreds = pred_size(BB);
971 assert(NumPreds > 0 && "how did we reach here");
972 std::string Name = suffixed_name_or(I, ".base", "base_phi");
973 return PHINode::Create(I->getType(), NumPreds, Name, I);
974 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
975 // The undef will be replaced later
976 UndefValue *Undef = UndefValue::get(SI->getType());
977 std::string Name = suffixed_name_or(I, ".base", "base_select");
978 return SelectInst::Create(SI->getCondition(), Undef, Undef, Name, SI);
979 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
980 UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
981 std::string Name = suffixed_name_or(I, ".base", "base_ee");
982 return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
983 EE);
984 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
985 UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
986 UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
987 std::string Name = suffixed_name_or(I, ".base", "base_ie");
988 return InsertElementInst::Create(VecUndef, ScalarUndef,
989 IE->getOperand(2), Name, IE);
990 } else {
991 auto *SV = cast<ShuffleVectorInst>(I);
992 UndefValue *VecUndef = UndefValue::get(SV->getOperand(0)->getType());
993 std::string Name = suffixed_name_or(I, ".base", "base_sv");
994 return new ShuffleVectorInst(VecUndef, VecUndef, SV->getOperand(2),
995 Name, SV);
996 }
997 };
998 Instruction *BaseInst = MakeBaseInstPlaceholder(I);
999 // Add metadata marking this as a base value
1000 BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
1001 States[I] = BDVState(BDVState::Conflict, BaseInst);
1002 }
1003
1004 // Returns a instruction which produces the base pointer for a given
1005 // instruction. The instruction is assumed to be an input to one of the BDVs
1006 // seen in the inference algorithm above. As such, we must either already
1007 // know it's base defining value is a base, or have inserted a new
1008 // instruction to propagate the base of it's BDV and have entered that newly
1009 // introduced instruction into the state table. In either case, we are
1010 // assured to be able to determine an instruction which produces it's base
1011 // pointer.
1012 auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
1013 Value *BDV = findBaseOrBDV(Input, Cache);
1014 Value *Base = nullptr;
1015 if (isKnownBaseResult(BDV)) {
1016 Base = BDV;
1017 } else {
1018 // Either conflict or base.
1019 assert(States.count(BDV));
1020 Base = States[BDV].getBaseValue();
1021 }
1022 assert(Base && "Can't be null");
1023 // The cast is needed since base traversal may strip away bitcasts
1024 if (Base->getType() != Input->getType() && InsertPt)
1025 Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt);
1026 return Base;
1027 };
1028
1029 // Fixup all the inputs of the new PHIs. Visit order needs to be
1030 // deterministic and predictable because we're naming newly created
1031 // instructions.
1032 for (auto Pair : States) {
1033 Instruction *BDV = cast<Instruction>(Pair.first);
1034 BDVState State = Pair.second;
1035
1036 assert(!isKnownBaseResult(BDV) && "why did it get added?");
1037 assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
1038 if (!State.isConflict())
1039 continue;
1040
1041 if (PHINode *BasePHI = dyn_cast<PHINode>(State.getBaseValue())) {
1042 PHINode *PN = cast<PHINode>(BDV);
1043 unsigned NumPHIValues = PN->getNumIncomingValues();
1044 for (unsigned i = 0; i < NumPHIValues; i++) {
1045 Value *InVal = PN->getIncomingValue(i);
1046 BasicBlock *InBB = PN->getIncomingBlock(i);
1047
1048 // If we've already seen InBB, add the same incoming value
1049 // we added for it earlier. The IR verifier requires phi
1050 // nodes with multiple entries from the same basic block
1051 // to have the same incoming value for each of those
1052 // entries. If we don't do this check here and basephi
1053 // has a different type than base, we'll end up adding two
1054 // bitcasts (and hence two distinct values) as incoming
1055 // values for the same basic block.
1056
1057 int BlockIndex = BasePHI->getBasicBlockIndex(InBB);
1058 if (BlockIndex != -1) {
1059 Value *OldBase = BasePHI->getIncomingValue(BlockIndex);
1060 BasePHI->addIncoming(OldBase, InBB);
1061
1062 #ifndef NDEBUG
1063 Value *Base = getBaseForInput(InVal, nullptr);
1064 // In essence this assert states: the only way two values
1065 // incoming from the same basic block may be different is by
1066 // being different bitcasts of the same value. A cleanup
1067 // that remains TODO is changing findBaseOrBDV to return an
1068 // llvm::Value of the correct type (and still remain pure).
1069 // This will remove the need to add bitcasts.
1070 assert(Base->stripPointerCasts() == OldBase->stripPointerCasts() &&
1071 "Sanity -- findBaseOrBDV should be pure!");
1072 #endif
1073 continue;
1074 }
1075
1076 // Find the instruction which produces the base for each input. We may
1077 // need to insert a bitcast in the incoming block.
1078 // TODO: Need to split critical edges if insertion is needed
1079 Value *Base = getBaseForInput(InVal, InBB->getTerminator());
1080 BasePHI->addIncoming(Base, InBB);
1081 }
1082 assert(BasePHI->getNumIncomingValues() == NumPHIValues);
1083 } else if (SelectInst *BaseSI =
1084 dyn_cast<SelectInst>(State.getBaseValue())) {
1085 SelectInst *SI = cast<SelectInst>(BDV);
1086
1087 // Find the instruction which produces the base for each input.
1088 // We may need to insert a bitcast.
1089 BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI));
1090 BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI));
1091 } else if (auto *BaseEE =
1092 dyn_cast<ExtractElementInst>(State.getBaseValue())) {
1093 Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
1094 // Find the instruction which produces the base for each input. We may
1095 // need to insert a bitcast.
1096 BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE));
1097 } else if (auto *BaseIE = dyn_cast<InsertElementInst>(State.getBaseValue())){
1098 auto *BdvIE = cast<InsertElementInst>(BDV);
1099 auto UpdateOperand = [&](int OperandIdx) {
1100 Value *InVal = BdvIE->getOperand(OperandIdx);
1101 Value *Base = getBaseForInput(InVal, BaseIE);
1102 BaseIE->setOperand(OperandIdx, Base);
1103 };
1104 UpdateOperand(0); // vector operand
1105 UpdateOperand(1); // scalar operand
1106 } else {
1107 auto *BaseSV = cast<ShuffleVectorInst>(State.getBaseValue());
1108 auto *BdvSV = cast<ShuffleVectorInst>(BDV);
1109 auto UpdateOperand = [&](int OperandIdx) {
1110 Value *InVal = BdvSV->getOperand(OperandIdx);
1111 Value *Base = getBaseForInput(InVal, BaseSV);
1112 BaseSV->setOperand(OperandIdx, Base);
1113 };
1114 UpdateOperand(0); // vector operand
1115 UpdateOperand(1); // vector operand
1116 }
1117 }
1118
1119 // Cache all of our results so we can cheaply reuse them
1120 // NOTE: This is actually two caches: one of the base defining value
1121 // relation and one of the base pointer relation! FIXME
1122 for (auto Pair : States) {
1123 auto *BDV = Pair.first;
1124 Value *Base = Pair.second.getBaseValue();
1125 assert(BDV && Base);
1126 assert(!isKnownBaseResult(BDV) && "why did it get added?");
1127
1128 LLVM_DEBUG(
1129 dbgs() << "Updating base value cache"
1130 << " for: " << BDV->getName() << " from: "
1131 << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none")
1132 << " to: " << Base->getName() << "\n");
1133
1134 if (Cache.count(BDV)) {
1135 assert(isKnownBaseResult(Base) &&
1136 "must be something we 'know' is a base pointer");
1137 // Once we transition from the BDV relation being store in the Cache to
1138 // the base relation being stored, it must be stable
1139 assert((!isKnownBaseResult(Cache[BDV]) || Cache[BDV] == Base) &&
1140 "base relation should be stable");
1141 }
1142 Cache[BDV] = Base;
1143 }
1144 assert(Cache.count(Def));
1145 return Cache[Def];
1146 }
1147
1148 // For a set of live pointers (base and/or derived), identify the base
1149 // pointer of the object which they are derived from. This routine will
1150 // mutate the IR graph as needed to make the 'base' pointer live at the
1151 // definition site of 'derived'. This ensures that any use of 'derived' can
1152 // also use 'base'. This may involve the insertion of a number of
1153 // additional PHI nodes.
1154 //
1155 // preconditions: live is a set of pointer type Values
1156 //
1157 // side effects: may insert PHI nodes into the existing CFG, will preserve
1158 // CFG, will not remove or mutate any existing nodes
1159 //
1160 // post condition: PointerToBase contains one (derived, base) pair for every
1161 // pointer in live. Note that derived can be equal to base if the original
1162 // pointer was a base pointer.
1163 static void
findBasePointers(const StatepointLiveSetTy & live,MapVector<Value *,Value * > & PointerToBase,DominatorTree * DT,DefiningValueMapTy & DVCache)1164 findBasePointers(const StatepointLiveSetTy &live,
1165 MapVector<Value *, Value *> &PointerToBase,
1166 DominatorTree *DT, DefiningValueMapTy &DVCache) {
1167 for (Value *ptr : live) {
1168 Value *base = findBasePointer(ptr, DVCache);
1169 assert(base && "failed to find base pointer");
1170 PointerToBase[ptr] = base;
1171 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
1172 DT->dominates(cast<Instruction>(base)->getParent(),
1173 cast<Instruction>(ptr)->getParent())) &&
1174 "The base we found better dominate the derived pointer");
1175 }
1176 }
1177
1178 /// Find the required based pointers (and adjust the live set) for the given
1179 /// parse point.
findBasePointers(DominatorTree & DT,DefiningValueMapTy & DVCache,CallSite CS,PartiallyConstructedSafepointRecord & result)1180 static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1181 CallSite CS,
1182 PartiallyConstructedSafepointRecord &result) {
1183 MapVector<Value *, Value *> PointerToBase;
1184 findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
1185
1186 if (PrintBasePointers) {
1187 errs() << "Base Pairs (w/o Relocation):\n";
1188 for (auto &Pair : PointerToBase) {
1189 errs() << " derived ";
1190 Pair.first->printAsOperand(errs(), false);
1191 errs() << " base ";
1192 Pair.second->printAsOperand(errs(), false);
1193 errs() << "\n";;
1194 }
1195 }
1196
1197 result.PointerToBase = PointerToBase;
1198 }
1199
1200 /// Given an updated version of the dataflow liveness results, update the
1201 /// liveset and base pointer maps for the call site CS.
1202 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
1203 CallSite CS,
1204 PartiallyConstructedSafepointRecord &result);
1205
recomputeLiveInValues(Function & F,DominatorTree & DT,ArrayRef<CallSite> toUpdate,MutableArrayRef<struct PartiallyConstructedSafepointRecord> records)1206 static void recomputeLiveInValues(
1207 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1208 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1209 // TODO-PERF: reuse the original liveness, then simply run the dataflow
1210 // again. The old values are still live and will help it stabilize quickly.
1211 GCPtrLivenessData RevisedLivenessData;
1212 computeLiveInValues(DT, F, RevisedLivenessData);
1213 for (size_t i = 0; i < records.size(); i++) {
1214 struct PartiallyConstructedSafepointRecord &info = records[i];
1215 recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info);
1216 }
1217 }
1218
1219 // When inserting gc.relocate and gc.result calls, we need to ensure there are
1220 // no uses of the original value / return value between the gc.statepoint and
1221 // the gc.relocate / gc.result call. One case which can arise is a phi node
1222 // starting one of the successor blocks. We also need to be able to insert the
1223 // gc.relocates only on the path which goes through the statepoint. We might
1224 // need to split an edge to make this possible.
1225 static BasicBlock *
normalizeForInvokeSafepoint(BasicBlock * BB,BasicBlock * InvokeParent,DominatorTree & DT)1226 normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
1227 DominatorTree &DT) {
1228 BasicBlock *Ret = BB;
1229 if (!BB->getUniquePredecessor())
1230 Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
1231
1232 // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
1233 // from it
1234 FoldSingleEntryPHINodes(Ret);
1235 assert(!isa<PHINode>(Ret->begin()) &&
1236 "All PHI nodes should have been removed!");
1237
1238 // At this point, we can safely insert a gc.relocate or gc.result as the first
1239 // instruction in Ret if needed.
1240 return Ret;
1241 }
1242
1243 // Create new attribute set containing only attributes which can be transferred
1244 // from original call to the safepoint.
legalizeCallAttributes(AttributeList AL)1245 static AttributeList legalizeCallAttributes(AttributeList AL) {
1246 if (AL.isEmpty())
1247 return AL;
1248
1249 // Remove the readonly, readnone, and statepoint function attributes.
1250 AttrBuilder FnAttrs = AL.getFnAttributes();
1251 FnAttrs.removeAttribute(Attribute::ReadNone);
1252 FnAttrs.removeAttribute(Attribute::ReadOnly);
1253 for (Attribute A : AL.getFnAttributes()) {
1254 if (isStatepointDirectiveAttr(A))
1255 FnAttrs.remove(A);
1256 }
1257
1258 // Just skip parameter and return attributes for now
1259 LLVMContext &Ctx = AL.getContext();
1260 return AttributeList::get(Ctx, AttributeList::FunctionIndex,
1261 AttributeSet::get(Ctx, FnAttrs));
1262 }
1263
1264 /// Helper function to place all gc relocates necessary for the given
1265 /// statepoint.
1266 /// Inputs:
1267 /// liveVariables - list of variables to be relocated.
1268 /// liveStart - index of the first live variable.
1269 /// basePtrs - base pointers.
1270 /// statepointToken - statepoint instruction to which relocates should be
1271 /// bound.
1272 /// Builder - Llvm IR builder to be used to construct new calls.
CreateGCRelocates(ArrayRef<Value * > LiveVariables,const int LiveStart,ArrayRef<Value * > BasePtrs,Instruction * StatepointToken,IRBuilder<> Builder)1273 static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
1274 const int LiveStart,
1275 ArrayRef<Value *> BasePtrs,
1276 Instruction *StatepointToken,
1277 IRBuilder<> Builder) {
1278 if (LiveVariables.empty())
1279 return;
1280
1281 auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
1282 auto ValIt = llvm::find(LiveVec, Val);
1283 assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
1284 size_t Index = std::distance(LiveVec.begin(), ValIt);
1285 assert(Index < LiveVec.size() && "Bug in std::find?");
1286 return Index;
1287 };
1288 Module *M = StatepointToken->getModule();
1289
1290 // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose
1291 // element type is i8 addrspace(1)*). We originally generated unique
1292 // declarations for each pointer type, but this proved problematic because
1293 // the intrinsic mangling code is incomplete and fragile. Since we're moving
1294 // towards a single unified pointer type anyways, we can just cast everything
1295 // to an i8* of the right address space. A bitcast is added later to convert
1296 // gc_relocate to the actual value's type.
1297 auto getGCRelocateDecl = [&] (Type *Ty) {
1298 assert(isHandledGCPointerType(Ty));
1299 auto AS = Ty->getScalarType()->getPointerAddressSpace();
1300 Type *NewTy = Type::getInt8PtrTy(M->getContext(), AS);
1301 if (auto *VT = dyn_cast<VectorType>(Ty))
1302 NewTy = VectorType::get(NewTy, VT->getNumElements());
1303 return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate,
1304 {NewTy});
1305 };
1306
1307 // Lazily populated map from input types to the canonicalized form mentioned
1308 // in the comment above. This should probably be cached somewhere more
1309 // broadly.
1310 DenseMap<Type*, Value*> TypeToDeclMap;
1311
1312 for (unsigned i = 0; i < LiveVariables.size(); i++) {
1313 // Generate the gc.relocate call and save the result
1314 Value *BaseIdx =
1315 Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
1316 Value *LiveIdx = Builder.getInt32(LiveStart + i);
1317
1318 Type *Ty = LiveVariables[i]->getType();
1319 if (!TypeToDeclMap.count(Ty))
1320 TypeToDeclMap[Ty] = getGCRelocateDecl(Ty);
1321 Value *GCRelocateDecl = TypeToDeclMap[Ty];
1322
1323 // only specify a debug name if we can give a useful one
1324 CallInst *Reloc = Builder.CreateCall(
1325 GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
1326 suffixed_name_or(LiveVariables[i], ".relocated", ""));
1327 // Trick CodeGen into thinking there are lots of free registers at this
1328 // fake call.
1329 Reloc->setCallingConv(CallingConv::Cold);
1330 }
1331 }
1332
1333 namespace {
1334
1335 /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this
1336 /// avoids having to worry about keeping around dangling pointers to Values.
1337 class DeferredReplacement {
1338 AssertingVH<Instruction> Old;
1339 AssertingVH<Instruction> New;
1340 bool IsDeoptimize = false;
1341
1342 DeferredReplacement() = default;
1343
1344 public:
createRAUW(Instruction * Old,Instruction * New)1345 static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) {
1346 assert(Old != New && Old && New &&
1347 "Cannot RAUW equal values or to / from null!");
1348
1349 DeferredReplacement D;
1350 D.Old = Old;
1351 D.New = New;
1352 return D;
1353 }
1354
createDelete(Instruction * ToErase)1355 static DeferredReplacement createDelete(Instruction *ToErase) {
1356 DeferredReplacement D;
1357 D.Old = ToErase;
1358 return D;
1359 }
1360
createDeoptimizeReplacement(Instruction * Old)1361 static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) {
1362 #ifndef NDEBUG
1363 auto *F = cast<CallInst>(Old)->getCalledFunction();
1364 assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize &&
1365 "Only way to construct a deoptimize deferred replacement");
1366 #endif
1367 DeferredReplacement D;
1368 D.Old = Old;
1369 D.IsDeoptimize = true;
1370 return D;
1371 }
1372
1373 /// Does the task represented by this instance.
doReplacement()1374 void doReplacement() {
1375 Instruction *OldI = Old;
1376 Instruction *NewI = New;
1377
1378 assert(OldI != NewI && "Disallowed at construction?!");
1379 assert((!IsDeoptimize || !New) &&
1380 "Deoptimize intrinsics are not replaced!");
1381
1382 Old = nullptr;
1383 New = nullptr;
1384
1385 if (NewI)
1386 OldI->replaceAllUsesWith(NewI);
1387
1388 if (IsDeoptimize) {
1389 // Note: we've inserted instructions, so the call to llvm.deoptimize may
1390 // not necessarily be followed by the matching return.
1391 auto *RI = cast<ReturnInst>(OldI->getParent()->getTerminator());
1392 new UnreachableInst(RI->getContext(), RI);
1393 RI->eraseFromParent();
1394 }
1395
1396 OldI->eraseFromParent();
1397 }
1398 };
1399
1400 } // end anonymous namespace
1401
getDeoptLowering(CallSite CS)1402 static StringRef getDeoptLowering(CallSite CS) {
1403 const char *DeoptLowering = "deopt-lowering";
1404 if (CS.hasFnAttr(DeoptLowering)) {
1405 // FIXME: CallSite has a *really* confusing interface around attributes
1406 // with values.
1407 const AttributeList &CSAS = CS.getAttributes();
1408 if (CSAS.hasAttribute(AttributeList::FunctionIndex, DeoptLowering))
1409 return CSAS.getAttribute(AttributeList::FunctionIndex, DeoptLowering)
1410 .getValueAsString();
1411 Function *F = CS.getCalledFunction();
1412 assert(F && F->hasFnAttribute(DeoptLowering));
1413 return F->getFnAttribute(DeoptLowering).getValueAsString();
1414 }
1415 return "live-through";
1416 }
1417
1418 static void
makeStatepointExplicitImpl(const CallSite CS,const SmallVectorImpl<Value * > & BasePtrs,const SmallVectorImpl<Value * > & LiveVariables,PartiallyConstructedSafepointRecord & Result,std::vector<DeferredReplacement> & Replacements)1419 makeStatepointExplicitImpl(const CallSite CS, /* to replace */
1420 const SmallVectorImpl<Value *> &BasePtrs,
1421 const SmallVectorImpl<Value *> &LiveVariables,
1422 PartiallyConstructedSafepointRecord &Result,
1423 std::vector<DeferredReplacement> &Replacements) {
1424 assert(BasePtrs.size() == LiveVariables.size());
1425
1426 // Then go ahead and use the builder do actually do the inserts. We insert
1427 // immediately before the previous instruction under the assumption that all
1428 // arguments will be available here. We can't insert afterwards since we may
1429 // be replacing a terminator.
1430 Instruction *InsertBefore = CS.getInstruction();
1431 IRBuilder<> Builder(InsertBefore);
1432
1433 ArrayRef<Value *> GCArgs(LiveVariables);
1434 uint64_t StatepointID = StatepointDirectives::DefaultStatepointID;
1435 uint32_t NumPatchBytes = 0;
1436 uint32_t Flags = uint32_t(StatepointFlags::None);
1437
1438 ArrayRef<Use> CallArgs(CS.arg_begin(), CS.arg_end());
1439 ArrayRef<Use> DeoptArgs = GetDeoptBundleOperands(CS);
1440 ArrayRef<Use> TransitionArgs;
1441 if (auto TransitionBundle =
1442 CS.getOperandBundle(LLVMContext::OB_gc_transition)) {
1443 Flags |= uint32_t(StatepointFlags::GCTransition);
1444 TransitionArgs = TransitionBundle->Inputs;
1445 }
1446
1447 // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls
1448 // with a return value, we lower then as never returning calls to
1449 // __llvm_deoptimize that are followed by unreachable to get better codegen.
1450 bool IsDeoptimize = false;
1451
1452 StatepointDirectives SD =
1453 parseStatepointDirectivesFromAttrs(CS.getAttributes());
1454 if (SD.NumPatchBytes)
1455 NumPatchBytes = *SD.NumPatchBytes;
1456 if (SD.StatepointID)
1457 StatepointID = *SD.StatepointID;
1458
1459 // Pass through the requested lowering if any. The default is live-through.
1460 StringRef DeoptLowering = getDeoptLowering(CS);
1461 if (DeoptLowering.equals("live-in"))
1462 Flags |= uint32_t(StatepointFlags::DeoptLiveIn);
1463 else {
1464 assert(DeoptLowering.equals("live-through") && "Unsupported value!");
1465 }
1466
1467 Value *CallTarget = CS.getCalledValue();
1468 if (Function *F = dyn_cast<Function>(CallTarget)) {
1469 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize) {
1470 // Calls to llvm.experimental.deoptimize are lowered to calls to the
1471 // __llvm_deoptimize symbol. We want to resolve this now, since the
1472 // verifier does not allow taking the address of an intrinsic function.
1473
1474 SmallVector<Type *, 8> DomainTy;
1475 for (Value *Arg : CallArgs)
1476 DomainTy.push_back(Arg->getType());
1477 auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy,
1478 /* isVarArg = */ false);
1479
1480 // Note: CallTarget can be a bitcast instruction of a symbol if there are
1481 // calls to @llvm.experimental.deoptimize with different argument types in
1482 // the same module. This is fine -- we assume the frontend knew what it
1483 // was doing when generating this kind of IR.
1484 CallTarget =
1485 F->getParent()->getOrInsertFunction("__llvm_deoptimize", FTy);
1486
1487 IsDeoptimize = true;
1488 }
1489 }
1490
1491 // Create the statepoint given all the arguments
1492 Instruction *Token = nullptr;
1493 if (CS.isCall()) {
1494 CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
1495 CallInst *Call = Builder.CreateGCStatepointCall(
1496 StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
1497 TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
1498
1499 Call->setTailCallKind(ToReplace->getTailCallKind());
1500 Call->setCallingConv(ToReplace->getCallingConv());
1501
1502 // Currently we will fail on parameter attributes and on certain
1503 // function attributes. In case if we can handle this set of attributes -
1504 // set up function attrs directly on statepoint and return attrs later for
1505 // gc_result intrinsic.
1506 Call->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1507
1508 Token = Call;
1509
1510 // Put the following gc_result and gc_relocate calls immediately after the
1511 // the old call (which we're about to delete)
1512 assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
1513 Builder.SetInsertPoint(ToReplace->getNextNode());
1514 Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
1515 } else {
1516 InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
1517
1518 // Insert the new invoke into the old block. We'll remove the old one in a
1519 // moment at which point this will become the new terminator for the
1520 // original block.
1521 InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
1522 StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
1523 ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
1524 GCArgs, "statepoint_token");
1525
1526 Invoke->setCallingConv(ToReplace->getCallingConv());
1527
1528 // Currently we will fail on parameter attributes and on certain
1529 // function attributes. In case if we can handle this set of attributes -
1530 // set up function attrs directly on statepoint and return attrs later for
1531 // gc_result intrinsic.
1532 Invoke->setAttributes(legalizeCallAttributes(ToReplace->getAttributes()));
1533
1534 Token = Invoke;
1535
1536 // Generate gc relocates in exceptional path
1537 BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
1538 assert(!isa<PHINode>(UnwindBlock->begin()) &&
1539 UnwindBlock->getUniquePredecessor() &&
1540 "can't safely insert in this block!");
1541
1542 Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
1543 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1544
1545 // Attach exceptional gc relocates to the landingpad.
1546 Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst();
1547 Result.UnwindToken = ExceptionalToken;
1548
1549 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1550 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
1551 Builder);
1552
1553 // Generate gc relocates and returns for normal block
1554 BasicBlock *NormalDest = ToReplace->getNormalDest();
1555 assert(!isa<PHINode>(NormalDest->begin()) &&
1556 NormalDest->getUniquePredecessor() &&
1557 "can't safely insert in this block!");
1558
1559 Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
1560
1561 // gc relocates will be generated later as if it were regular call
1562 // statepoint
1563 }
1564 assert(Token && "Should be set in one of the above branches!");
1565
1566 if (IsDeoptimize) {
1567 // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we
1568 // transform the tail-call like structure to a call to a void function
1569 // followed by unreachable to get better codegen.
1570 Replacements.push_back(
1571 DeferredReplacement::createDeoptimizeReplacement(CS.getInstruction()));
1572 } else {
1573 Token->setName("statepoint_token");
1574 if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
1575 StringRef Name =
1576 CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
1577 CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
1578 GCResult->setAttributes(
1579 AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex,
1580 CS.getAttributes().getRetAttributes()));
1581
1582 // We cannot RAUW or delete CS.getInstruction() because it could be in the
1583 // live set of some other safepoint, in which case that safepoint's
1584 // PartiallyConstructedSafepointRecord will hold a raw pointer to this
1585 // llvm::Instruction. Instead, we defer the replacement and deletion to
1586 // after the live sets have been made explicit in the IR, and we no longer
1587 // have raw pointers to worry about.
1588 Replacements.emplace_back(
1589 DeferredReplacement::createRAUW(CS.getInstruction(), GCResult));
1590 } else {
1591 Replacements.emplace_back(
1592 DeferredReplacement::createDelete(CS.getInstruction()));
1593 }
1594 }
1595
1596 Result.StatepointToken = Token;
1597
1598 // Second, create a gc.relocate for every live variable
1599 const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
1600 CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
1601 }
1602
1603 // Replace an existing gc.statepoint with a new one and a set of gc.relocates
1604 // which make the relocations happening at this safepoint explicit.
1605 //
1606 // WARNING: Does not do any fixup to adjust users of the original live
1607 // values. That's the callers responsibility.
1608 static void
makeStatepointExplicit(DominatorTree & DT,CallSite CS,PartiallyConstructedSafepointRecord & Result,std::vector<DeferredReplacement> & Replacements)1609 makeStatepointExplicit(DominatorTree &DT, CallSite CS,
1610 PartiallyConstructedSafepointRecord &Result,
1611 std::vector<DeferredReplacement> &Replacements) {
1612 const auto &LiveSet = Result.LiveSet;
1613 const auto &PointerToBase = Result.PointerToBase;
1614
1615 // Convert to vector for efficient cross referencing.
1616 SmallVector<Value *, 64> BaseVec, LiveVec;
1617 LiveVec.reserve(LiveSet.size());
1618 BaseVec.reserve(LiveSet.size());
1619 for (Value *L : LiveSet) {
1620 LiveVec.push_back(L);
1621 assert(PointerToBase.count(L));
1622 Value *Base = PointerToBase.find(L)->second;
1623 BaseVec.push_back(Base);
1624 }
1625 assert(LiveVec.size() == BaseVec.size());
1626
1627 // Do the actual rewriting and delete the old statepoint
1628 makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
1629 }
1630
1631 // Helper function for the relocationViaAlloca.
1632 //
1633 // It receives iterator to the statepoint gc relocates and emits a store to the
1634 // assigned location (via allocaMap) for the each one of them. It adds the
1635 // visited values into the visitedLiveValues set, which we will later use them
1636 // for sanity checking.
1637 static void
insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,DenseMap<Value *,Value * > & AllocaMap,DenseSet<Value * > & VisitedLiveValues)1638 insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
1639 DenseMap<Value *, Value *> &AllocaMap,
1640 DenseSet<Value *> &VisitedLiveValues) {
1641 for (User *U : GCRelocs) {
1642 GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U);
1643 if (!Relocate)
1644 continue;
1645
1646 Value *OriginalValue = Relocate->getDerivedPtr();
1647 assert(AllocaMap.count(OriginalValue));
1648 Value *Alloca = AllocaMap[OriginalValue];
1649
1650 // Emit store into the related alloca
1651 // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
1652 // the correct type according to alloca.
1653 assert(Relocate->getNextNode() &&
1654 "Should always have one since it's not a terminator");
1655 IRBuilder<> Builder(Relocate->getNextNode());
1656 Value *CastedRelocatedValue =
1657 Builder.CreateBitCast(Relocate,
1658 cast<AllocaInst>(Alloca)->getAllocatedType(),
1659 suffixed_name_or(Relocate, ".casted", ""));
1660
1661 StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
1662 Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
1663
1664 #ifndef NDEBUG
1665 VisitedLiveValues.insert(OriginalValue);
1666 #endif
1667 }
1668 }
1669
1670 // Helper function for the "relocationViaAlloca". Similar to the
1671 // "insertRelocationStores" but works for rematerialized values.
insertRematerializationStores(const RematerializedValueMapTy & RematerializedValues,DenseMap<Value *,Value * > & AllocaMap,DenseSet<Value * > & VisitedLiveValues)1672 static void insertRematerializationStores(
1673 const RematerializedValueMapTy &RematerializedValues,
1674 DenseMap<Value *, Value *> &AllocaMap,
1675 DenseSet<Value *> &VisitedLiveValues) {
1676 for (auto RematerializedValuePair: RematerializedValues) {
1677 Instruction *RematerializedValue = RematerializedValuePair.first;
1678 Value *OriginalValue = RematerializedValuePair.second;
1679
1680 assert(AllocaMap.count(OriginalValue) &&
1681 "Can not find alloca for rematerialized value");
1682 Value *Alloca = AllocaMap[OriginalValue];
1683
1684 StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
1685 Store->insertAfter(RematerializedValue);
1686
1687 #ifndef NDEBUG
1688 VisitedLiveValues.insert(OriginalValue);
1689 #endif
1690 }
1691 }
1692
1693 /// Do all the relocation update via allocas and mem2reg
relocationViaAlloca(Function & F,DominatorTree & DT,ArrayRef<Value * > Live,ArrayRef<PartiallyConstructedSafepointRecord> Records)1694 static void relocationViaAlloca(
1695 Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
1696 ArrayRef<PartiallyConstructedSafepointRecord> Records) {
1697 #ifndef NDEBUG
1698 // record initial number of (static) allocas; we'll check we have the same
1699 // number when we get done.
1700 int InitialAllocaNum = 0;
1701 for (Instruction &I : F.getEntryBlock())
1702 if (isa<AllocaInst>(I))
1703 InitialAllocaNum++;
1704 #endif
1705
1706 // TODO-PERF: change data structures, reserve
1707 DenseMap<Value *, Value *> AllocaMap;
1708 SmallVector<AllocaInst *, 200> PromotableAllocas;
1709 // Used later to chack that we have enough allocas to store all values
1710 std::size_t NumRematerializedValues = 0;
1711 PromotableAllocas.reserve(Live.size());
1712
1713 // Emit alloca for "LiveValue" and record it in "allocaMap" and
1714 // "PromotableAllocas"
1715 const DataLayout &DL = F.getParent()->getDataLayout();
1716 auto emitAllocaFor = [&](Value *LiveValue) {
1717 AllocaInst *Alloca = new AllocaInst(LiveValue->getType(),
1718 DL.getAllocaAddrSpace(), "",
1719 F.getEntryBlock().getFirstNonPHI());
1720 AllocaMap[LiveValue] = Alloca;
1721 PromotableAllocas.push_back(Alloca);
1722 };
1723
1724 // Emit alloca for each live gc pointer
1725 for (Value *V : Live)
1726 emitAllocaFor(V);
1727
1728 // Emit allocas for rematerialized values
1729 for (const auto &Info : Records)
1730 for (auto RematerializedValuePair : Info.RematerializedValues) {
1731 Value *OriginalValue = RematerializedValuePair.second;
1732 if (AllocaMap.count(OriginalValue) != 0)
1733 continue;
1734
1735 emitAllocaFor(OriginalValue);
1736 ++NumRematerializedValues;
1737 }
1738
1739 // The next two loops are part of the same conceptual operation. We need to
1740 // insert a store to the alloca after the original def and at each
1741 // redefinition. We need to insert a load before each use. These are split
1742 // into distinct loops for performance reasons.
1743
1744 // Update gc pointer after each statepoint: either store a relocated value or
1745 // null (if no relocated value was found for this gc pointer and it is not a
1746 // gc_result). This must happen before we update the statepoint with load of
1747 // alloca otherwise we lose the link between statepoint and old def.
1748 for (const auto &Info : Records) {
1749 Value *Statepoint = Info.StatepointToken;
1750
1751 // This will be used for consistency check
1752 DenseSet<Value *> VisitedLiveValues;
1753
1754 // Insert stores for normal statepoint gc relocates
1755 insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
1756
1757 // In case if it was invoke statepoint
1758 // we will insert stores for exceptional path gc relocates.
1759 if (isa<InvokeInst>(Statepoint)) {
1760 insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
1761 VisitedLiveValues);
1762 }
1763
1764 // Do similar thing with rematerialized values
1765 insertRematerializationStores(Info.RematerializedValues, AllocaMap,
1766 VisitedLiveValues);
1767
1768 if (ClobberNonLive) {
1769 // As a debugging aid, pretend that an unrelocated pointer becomes null at
1770 // the gc.statepoint. This will turn some subtle GC problems into
1771 // slightly easier to debug SEGVs. Note that on large IR files with
1772 // lots of gc.statepoints this is extremely costly both memory and time
1773 // wise.
1774 SmallVector<AllocaInst *, 64> ToClobber;
1775 for (auto Pair : AllocaMap) {
1776 Value *Def = Pair.first;
1777 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
1778
1779 // This value was relocated
1780 if (VisitedLiveValues.count(Def)) {
1781 continue;
1782 }
1783 ToClobber.push_back(Alloca);
1784 }
1785
1786 auto InsertClobbersAt = [&](Instruction *IP) {
1787 for (auto *AI : ToClobber) {
1788 auto PT = cast<PointerType>(AI->getAllocatedType());
1789 Constant *CPN = ConstantPointerNull::get(PT);
1790 StoreInst *Store = new StoreInst(CPN, AI);
1791 Store->insertBefore(IP);
1792 }
1793 };
1794
1795 // Insert the clobbering stores. These may get intermixed with the
1796 // gc.results and gc.relocates, but that's fine.
1797 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1798 InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
1799 InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
1800 } else {
1801 InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
1802 }
1803 }
1804 }
1805
1806 // Update use with load allocas and add store for gc_relocated.
1807 for (auto Pair : AllocaMap) {
1808 Value *Def = Pair.first;
1809 Value *Alloca = Pair.second;
1810
1811 // We pre-record the uses of allocas so that we dont have to worry about
1812 // later update that changes the user information..
1813
1814 SmallVector<Instruction *, 20> Uses;
1815 // PERF: trade a linear scan for repeated reallocation
1816 Uses.reserve(Def->getNumUses());
1817 for (User *U : Def->users()) {
1818 if (!isa<ConstantExpr>(U)) {
1819 // If the def has a ConstantExpr use, then the def is either a
1820 // ConstantExpr use itself or null. In either case
1821 // (recursively in the first, directly in the second), the oop
1822 // it is ultimately dependent on is null and this particular
1823 // use does not need to be fixed up.
1824 Uses.push_back(cast<Instruction>(U));
1825 }
1826 }
1827
1828 llvm::sort(Uses);
1829 auto Last = std::unique(Uses.begin(), Uses.end());
1830 Uses.erase(Last, Uses.end());
1831
1832 for (Instruction *Use : Uses) {
1833 if (isa<PHINode>(Use)) {
1834 PHINode *Phi = cast<PHINode>(Use);
1835 for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
1836 if (Def == Phi->getIncomingValue(i)) {
1837 LoadInst *Load = new LoadInst(
1838 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
1839 Phi->setIncomingValue(i, Load);
1840 }
1841 }
1842 } else {
1843 LoadInst *Load = new LoadInst(Alloca, "", Use);
1844 Use->replaceUsesOfWith(Def, Load);
1845 }
1846 }
1847
1848 // Emit store for the initial gc value. Store must be inserted after load,
1849 // otherwise store will be in alloca's use list and an extra load will be
1850 // inserted before it.
1851 StoreInst *Store = new StoreInst(Def, Alloca);
1852 if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
1853 if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
1854 // InvokeInst is a terminator so the store need to be inserted into its
1855 // normal destination block.
1856 BasicBlock *NormalDest = Invoke->getNormalDest();
1857 Store->insertBefore(NormalDest->getFirstNonPHI());
1858 } else {
1859 assert(!Inst->isTerminator() &&
1860 "The only terminator that can produce a value is "
1861 "InvokeInst which is handled above.");
1862 Store->insertAfter(Inst);
1863 }
1864 } else {
1865 assert(isa<Argument>(Def));
1866 Store->insertAfter(cast<Instruction>(Alloca));
1867 }
1868 }
1869
1870 assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
1871 "we must have the same allocas with lives");
1872 if (!PromotableAllocas.empty()) {
1873 // Apply mem2reg to promote alloca to SSA
1874 PromoteMemToReg(PromotableAllocas, DT);
1875 }
1876
1877 #ifndef NDEBUG
1878 for (auto &I : F.getEntryBlock())
1879 if (isa<AllocaInst>(I))
1880 InitialAllocaNum--;
1881 assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
1882 #endif
1883 }
1884
1885 /// Implement a unique function which doesn't require we sort the input
1886 /// vector. Doing so has the effect of changing the output of a couple of
1887 /// tests in ways which make them less useful in testing fused safepoints.
unique_unsorted(SmallVectorImpl<T> & Vec)1888 template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1889 SmallSet<T, 8> Seen;
1890 Vec.erase(remove_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }),
1891 Vec.end());
1892 }
1893
1894 /// Insert holders so that each Value is obviously live through the entire
1895 /// lifetime of the call.
insertUseHolderAfter(CallSite & CS,const ArrayRef<Value * > Values,SmallVectorImpl<CallInst * > & Holders)1896 static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
1897 SmallVectorImpl<CallInst *> &Holders) {
1898 if (Values.empty())
1899 // No values to hold live, might as well not insert the empty holder
1900 return;
1901
1902 Module *M = CS.getInstruction()->getModule();
1903 // Use a dummy vararg function to actually hold the values live
1904 Function *Func = cast<Function>(M->getOrInsertFunction(
1905 "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
1906 if (CS.isCall()) {
1907 // For call safepoints insert dummy calls right after safepoint
1908 Holders.push_back(CallInst::Create(Func, Values, "",
1909 &*++CS.getInstruction()->getIterator()));
1910 return;
1911 }
1912 // For invoke safepooints insert dummy calls both in normal and
1913 // exceptional destination blocks
1914 auto *II = cast<InvokeInst>(CS.getInstruction());
1915 Holders.push_back(CallInst::Create(
1916 Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
1917 Holders.push_back(CallInst::Create(
1918 Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
1919 }
1920
findLiveReferences(Function & F,DominatorTree & DT,ArrayRef<CallSite> toUpdate,MutableArrayRef<struct PartiallyConstructedSafepointRecord> records)1921 static void findLiveReferences(
1922 Function &F, DominatorTree &DT, ArrayRef<CallSite> toUpdate,
1923 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
1924 GCPtrLivenessData OriginalLivenessData;
1925 computeLiveInValues(DT, F, OriginalLivenessData);
1926 for (size_t i = 0; i < records.size(); i++) {
1927 struct PartiallyConstructedSafepointRecord &info = records[i];
1928 analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info);
1929 }
1930 }
1931
1932 // Helper function for the "rematerializeLiveValues". It walks use chain
1933 // starting from the "CurrentValue" until it reaches the root of the chain, i.e.
1934 // the base or a value it cannot process. Only "simple" values are processed
1935 // (currently it is GEP's and casts). The returned root is examined by the
1936 // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array
1937 // with all visited values.
findRematerializableChainToBasePointer(SmallVectorImpl<Instruction * > & ChainToBase,Value * CurrentValue)1938 static Value* findRematerializableChainToBasePointer(
1939 SmallVectorImpl<Instruction*> &ChainToBase,
1940 Value *CurrentValue) {
1941 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
1942 ChainToBase.push_back(GEP);
1943 return findRematerializableChainToBasePointer(ChainToBase,
1944 GEP->getPointerOperand());
1945 }
1946
1947 if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
1948 if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
1949 return CI;
1950
1951 ChainToBase.push_back(CI);
1952 return findRematerializableChainToBasePointer(ChainToBase,
1953 CI->getOperand(0));
1954 }
1955
1956 // We have reached the root of the chain, which is either equal to the base or
1957 // is the first unsupported value along the use chain.
1958 return CurrentValue;
1959 }
1960
1961 // Helper function for the "rematerializeLiveValues". Compute cost of the use
1962 // chain we are going to rematerialize.
1963 static unsigned
chainToBasePointerCost(SmallVectorImpl<Instruction * > & Chain,TargetTransformInfo & TTI)1964 chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
1965 TargetTransformInfo &TTI) {
1966 unsigned Cost = 0;
1967
1968 for (Instruction *Instr : Chain) {
1969 if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
1970 assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
1971 "non noop cast is found during rematerialization");
1972
1973 Type *SrcTy = CI->getOperand(0)->getType();
1974 Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, CI);
1975
1976 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
1977 // Cost of the address calculation
1978 Type *ValTy = GEP->getSourceElementType();
1979 Cost += TTI.getAddressComputationCost(ValTy);
1980
1981 // And cost of the GEP itself
1982 // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
1983 // allowed for the external usage)
1984 if (!GEP->hasAllConstantIndices())
1985 Cost += 2;
1986
1987 } else {
1988 llvm_unreachable("unsupported instruction type during rematerialization");
1989 }
1990 }
1991
1992 return Cost;
1993 }
1994
AreEquivalentPhiNodes(PHINode & OrigRootPhi,PHINode & AlternateRootPhi)1995 static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) {
1996 unsigned PhiNum = OrigRootPhi.getNumIncomingValues();
1997 if (PhiNum != AlternateRootPhi.getNumIncomingValues() ||
1998 OrigRootPhi.getParent() != AlternateRootPhi.getParent())
1999 return false;
2000 // Map of incoming values and their corresponding basic blocks of
2001 // OrigRootPhi.
2002 SmallDenseMap<Value *, BasicBlock *, 8> CurrentIncomingValues;
2003 for (unsigned i = 0; i < PhiNum; i++)
2004 CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] =
2005 OrigRootPhi.getIncomingBlock(i);
2006
2007 // Both current and base PHIs should have same incoming values and
2008 // the same basic blocks corresponding to the incoming values.
2009 for (unsigned i = 0; i < PhiNum; i++) {
2010 auto CIVI =
2011 CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i));
2012 if (CIVI == CurrentIncomingValues.end())
2013 return false;
2014 BasicBlock *CurrentIncomingBB = CIVI->second;
2015 if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i))
2016 return false;
2017 }
2018 return true;
2019 }
2020
2021 // From the statepoint live set pick values that are cheaper to recompute then
2022 // to relocate. Remove this values from the live set, rematerialize them after
2023 // statepoint and record them in "Info" structure. Note that similar to
2024 // relocated values we don't do any user adjustments here.
rematerializeLiveValues(CallSite CS,PartiallyConstructedSafepointRecord & Info,TargetTransformInfo & TTI)2025 static void rematerializeLiveValues(CallSite CS,
2026 PartiallyConstructedSafepointRecord &Info,
2027 TargetTransformInfo &TTI) {
2028 const unsigned int ChainLengthThreshold = 10;
2029
2030 // Record values we are going to delete from this statepoint live set.
2031 // We can not di this in following loop due to iterator invalidation.
2032 SmallVector<Value *, 32> LiveValuesToBeDeleted;
2033
2034 for (Value *LiveValue: Info.LiveSet) {
2035 // For each live pointer find its defining chain
2036 SmallVector<Instruction *, 3> ChainToBase;
2037 assert(Info.PointerToBase.count(LiveValue));
2038 Value *RootOfChain =
2039 findRematerializableChainToBasePointer(ChainToBase,
2040 LiveValue);
2041
2042 // Nothing to do, or chain is too long
2043 if ( ChainToBase.size() == 0 ||
2044 ChainToBase.size() > ChainLengthThreshold)
2045 continue;
2046
2047 // Handle the scenario where the RootOfChain is not equal to the
2048 // Base Value, but they are essentially the same phi values.
2049 if (RootOfChain != Info.PointerToBase[LiveValue]) {
2050 PHINode *OrigRootPhi = dyn_cast<PHINode>(RootOfChain);
2051 PHINode *AlternateRootPhi = dyn_cast<PHINode>(Info.PointerToBase[LiveValue]);
2052 if (!OrigRootPhi || !AlternateRootPhi)
2053 continue;
2054 // PHI nodes that have the same incoming values, and belonging to the same
2055 // basic blocks are essentially the same SSA value. When the original phi
2056 // has incoming values with different base pointers, the original phi is
2057 // marked as conflict, and an additional `AlternateRootPhi` with the same
2058 // incoming values get generated by the findBasePointer function. We need
2059 // to identify the newly generated AlternateRootPhi (.base version of phi)
2060 // and RootOfChain (the original phi node itself) are the same, so that we
2061 // can rematerialize the gep and casts. This is a workaround for the
2062 // deficiency in the findBasePointer algorithm.
2063 if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi))
2064 continue;
2065 // Now that the phi nodes are proved to be the same, assert that
2066 // findBasePointer's newly generated AlternateRootPhi is present in the
2067 // liveset of the call.
2068 assert(Info.LiveSet.count(AlternateRootPhi));
2069 }
2070 // Compute cost of this chain
2071 unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
2072 // TODO: We can also account for cases when we will be able to remove some
2073 // of the rematerialized values by later optimization passes. I.e if
2074 // we rematerialized several intersecting chains. Or if original values
2075 // don't have any uses besides this statepoint.
2076
2077 // For invokes we need to rematerialize each chain twice - for normal and
2078 // for unwind basic blocks. Model this by multiplying cost by two.
2079 if (CS.isInvoke()) {
2080 Cost *= 2;
2081 }
2082 // If it's too expensive - skip it
2083 if (Cost >= RematerializationThreshold)
2084 continue;
2085
2086 // Remove value from the live set
2087 LiveValuesToBeDeleted.push_back(LiveValue);
2088
2089 // Clone instructions and record them inside "Info" structure
2090
2091 // Walk backwards to visit top-most instructions first
2092 std::reverse(ChainToBase.begin(), ChainToBase.end());
2093
2094 // Utility function which clones all instructions from "ChainToBase"
2095 // and inserts them before "InsertBefore". Returns rematerialized value
2096 // which should be used after statepoint.
2097 auto rematerializeChain = [&ChainToBase](
2098 Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) {
2099 Instruction *LastClonedValue = nullptr;
2100 Instruction *LastValue = nullptr;
2101 for (Instruction *Instr: ChainToBase) {
2102 // Only GEP's and casts are supported as we need to be careful to not
2103 // introduce any new uses of pointers not in the liveset.
2104 // Note that it's fine to introduce new uses of pointers which were
2105 // otherwise not used after this statepoint.
2106 assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
2107
2108 Instruction *ClonedValue = Instr->clone();
2109 ClonedValue->insertBefore(InsertBefore);
2110 ClonedValue->setName(Instr->getName() + ".remat");
2111
2112 // If it is not first instruction in the chain then it uses previously
2113 // cloned value. We should update it to use cloned value.
2114 if (LastClonedValue) {
2115 assert(LastValue);
2116 ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
2117 #ifndef NDEBUG
2118 for (auto OpValue : ClonedValue->operand_values()) {
2119 // Assert that cloned instruction does not use any instructions from
2120 // this chain other than LastClonedValue
2121 assert(!is_contained(ChainToBase, OpValue) &&
2122 "incorrect use in rematerialization chain");
2123 // Assert that the cloned instruction does not use the RootOfChain
2124 // or the AlternateLiveBase.
2125 assert(OpValue != RootOfChain && OpValue != AlternateLiveBase);
2126 }
2127 #endif
2128 } else {
2129 // For the first instruction, replace the use of unrelocated base i.e.
2130 // RootOfChain/OrigRootPhi, with the corresponding PHI present in the
2131 // live set. They have been proved to be the same PHI nodes. Note
2132 // that the *only* use of the RootOfChain in the ChainToBase list is
2133 // the first Value in the list.
2134 if (RootOfChain != AlternateLiveBase)
2135 ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase);
2136 }
2137
2138 LastClonedValue = ClonedValue;
2139 LastValue = Instr;
2140 }
2141 assert(LastClonedValue);
2142 return LastClonedValue;
2143 };
2144
2145 // Different cases for calls and invokes. For invokes we need to clone
2146 // instructions both on normal and unwind path.
2147 if (CS.isCall()) {
2148 Instruction *InsertBefore = CS.getInstruction()->getNextNode();
2149 assert(InsertBefore);
2150 Instruction *RematerializedValue = rematerializeChain(
2151 InsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2152 Info.RematerializedValues[RematerializedValue] = LiveValue;
2153 } else {
2154 InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
2155
2156 Instruction *NormalInsertBefore =
2157 &*Invoke->getNormalDest()->getFirstInsertionPt();
2158 Instruction *UnwindInsertBefore =
2159 &*Invoke->getUnwindDest()->getFirstInsertionPt();
2160
2161 Instruction *NormalRematerializedValue = rematerializeChain(
2162 NormalInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2163 Instruction *UnwindRematerializedValue = rematerializeChain(
2164 UnwindInsertBefore, RootOfChain, Info.PointerToBase[LiveValue]);
2165
2166 Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
2167 Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
2168 }
2169 }
2170
2171 // Remove rematerializaed values from the live set
2172 for (auto LiveValue: LiveValuesToBeDeleted) {
2173 Info.LiveSet.remove(LiveValue);
2174 }
2175 }
2176
insertParsePoints(Function & F,DominatorTree & DT,TargetTransformInfo & TTI,SmallVectorImpl<CallSite> & ToUpdate)2177 static bool insertParsePoints(Function &F, DominatorTree &DT,
2178 TargetTransformInfo &TTI,
2179 SmallVectorImpl<CallSite> &ToUpdate) {
2180 #ifndef NDEBUG
2181 // sanity check the input
2182 std::set<CallSite> Uniqued;
2183 Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
2184 assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
2185
2186 for (CallSite CS : ToUpdate)
2187 assert(CS.getInstruction()->getFunction() == &F);
2188 #endif
2189
2190 // When inserting gc.relocates for invokes, we need to be able to insert at
2191 // the top of the successor blocks. See the comment on
2192 // normalForInvokeSafepoint on exactly what is needed. Note that this step
2193 // may restructure the CFG.
2194 for (CallSite CS : ToUpdate) {
2195 if (!CS.isInvoke())
2196 continue;
2197 auto *II = cast<InvokeInst>(CS.getInstruction());
2198 normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
2199 normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
2200 }
2201
2202 // A list of dummy calls added to the IR to keep various values obviously
2203 // live in the IR. We'll remove all of these when done.
2204 SmallVector<CallInst *, 64> Holders;
2205
2206 // Insert a dummy call with all of the deopt operands we'll need for the
2207 // actual safepoint insertion as arguments. This ensures reference operands
2208 // in the deopt argument list are considered live through the safepoint (and
2209 // thus makes sure they get relocated.)
2210 for (CallSite CS : ToUpdate) {
2211 SmallVector<Value *, 64> DeoptValues;
2212
2213 for (Value *Arg : GetDeoptBundleOperands(CS)) {
2214 assert(!isUnhandledGCPointerType(Arg->getType()) &&
2215 "support for FCA unimplemented");
2216 if (isHandledGCPointerType(Arg->getType()))
2217 DeoptValues.push_back(Arg);
2218 }
2219
2220 insertUseHolderAfter(CS, DeoptValues, Holders);
2221 }
2222
2223 SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
2224
2225 // A) Identify all gc pointers which are statically live at the given call
2226 // site.
2227 findLiveReferences(F, DT, ToUpdate, Records);
2228
2229 // B) Find the base pointers for each live pointer
2230 /* scope for caching */ {
2231 // Cache the 'defining value' relation used in the computation and
2232 // insertion of base phis and selects. This ensures that we don't insert
2233 // large numbers of duplicate base_phis.
2234 DefiningValueMapTy DVCache;
2235
2236 for (size_t i = 0; i < Records.size(); i++) {
2237 PartiallyConstructedSafepointRecord &info = Records[i];
2238 findBasePointers(DT, DVCache, ToUpdate[i], info);
2239 }
2240 } // end of cache scope
2241
2242 // The base phi insertion logic (for any safepoint) may have inserted new
2243 // instructions which are now live at some safepoint. The simplest such
2244 // example is:
2245 // loop:
2246 // phi a <-- will be a new base_phi here
2247 // safepoint 1 <-- that needs to be live here
2248 // gep a + 1
2249 // safepoint 2
2250 // br loop
2251 // We insert some dummy calls after each safepoint to definitely hold live
2252 // the base pointers which were identified for that safepoint. We'll then
2253 // ask liveness for _every_ base inserted to see what is now live. Then we
2254 // remove the dummy calls.
2255 Holders.reserve(Holders.size() + Records.size());
2256 for (size_t i = 0; i < Records.size(); i++) {
2257 PartiallyConstructedSafepointRecord &Info = Records[i];
2258
2259 SmallVector<Value *, 128> Bases;
2260 for (auto Pair : Info.PointerToBase)
2261 Bases.push_back(Pair.second);
2262
2263 insertUseHolderAfter(ToUpdate[i], Bases, Holders);
2264 }
2265
2266 // By selecting base pointers, we've effectively inserted new uses. Thus, we
2267 // need to rerun liveness. We may *also* have inserted new defs, but that's
2268 // not the key issue.
2269 recomputeLiveInValues(F, DT, ToUpdate, Records);
2270
2271 if (PrintBasePointers) {
2272 for (auto &Info : Records) {
2273 errs() << "Base Pairs: (w/Relocation)\n";
2274 for (auto Pair : Info.PointerToBase) {
2275 errs() << " derived ";
2276 Pair.first->printAsOperand(errs(), false);
2277 errs() << " base ";
2278 Pair.second->printAsOperand(errs(), false);
2279 errs() << "\n";
2280 }
2281 }
2282 }
2283
2284 // It is possible that non-constant live variables have a constant base. For
2285 // example, a GEP with a variable offset from a global. In this case we can
2286 // remove it from the liveset. We already don't add constants to the liveset
2287 // because we assume they won't move at runtime and the GC doesn't need to be
2288 // informed about them. The same reasoning applies if the base is constant.
2289 // Note that the relocation placement code relies on this filtering for
2290 // correctness as it expects the base to be in the liveset, which isn't true
2291 // if the base is constant.
2292 for (auto &Info : Records)
2293 for (auto &BasePair : Info.PointerToBase)
2294 if (isa<Constant>(BasePair.second))
2295 Info.LiveSet.remove(BasePair.first);
2296
2297 for (CallInst *CI : Holders)
2298 CI->eraseFromParent();
2299
2300 Holders.clear();
2301
2302 // In order to reduce live set of statepoint we might choose to rematerialize
2303 // some values instead of relocating them. This is purely an optimization and
2304 // does not influence correctness.
2305 for (size_t i = 0; i < Records.size(); i++)
2306 rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
2307
2308 // We need this to safely RAUW and delete call or invoke return values that
2309 // may themselves be live over a statepoint. For details, please see usage in
2310 // makeStatepointExplicitImpl.
2311 std::vector<DeferredReplacement> Replacements;
2312
2313 // Now run through and replace the existing statepoints with new ones with
2314 // the live variables listed. We do not yet update uses of the values being
2315 // relocated. We have references to live variables that need to
2316 // survive to the last iteration of this loop. (By construction, the
2317 // previous statepoint can not be a live variable, thus we can and remove
2318 // the old statepoint calls as we go.)
2319 for (size_t i = 0; i < Records.size(); i++)
2320 makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
2321
2322 ToUpdate.clear(); // prevent accident use of invalid CallSites
2323
2324 for (auto &PR : Replacements)
2325 PR.doReplacement();
2326
2327 Replacements.clear();
2328
2329 for (auto &Info : Records) {
2330 // These live sets may contain state Value pointers, since we replaced calls
2331 // with operand bundles with calls wrapped in gc.statepoint, and some of
2332 // those calls may have been def'ing live gc pointers. Clear these out to
2333 // avoid accidentally using them.
2334 //
2335 // TODO: We should create a separate data structure that does not contain
2336 // these live sets, and migrate to using that data structure from this point
2337 // onward.
2338 Info.LiveSet.clear();
2339 Info.PointerToBase.clear();
2340 }
2341
2342 // Do all the fixups of the original live variables to their relocated selves
2343 SmallVector<Value *, 128> Live;
2344 for (size_t i = 0; i < Records.size(); i++) {
2345 PartiallyConstructedSafepointRecord &Info = Records[i];
2346
2347 // We can't simply save the live set from the original insertion. One of
2348 // the live values might be the result of a call which needs a safepoint.
2349 // That Value* no longer exists and we need to use the new gc_result.
2350 // Thankfully, the live set is embedded in the statepoint (and updated), so
2351 // we just grab that.
2352 Statepoint Statepoint(Info.StatepointToken);
2353 Live.insert(Live.end(), Statepoint.gc_args_begin(),
2354 Statepoint.gc_args_end());
2355 #ifndef NDEBUG
2356 // Do some basic sanity checks on our liveness results before performing
2357 // relocation. Relocation can and will turn mistakes in liveness results
2358 // into non-sensical code which is must harder to debug.
2359 // TODO: It would be nice to test consistency as well
2360 assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
2361 "statepoint must be reachable or liveness is meaningless");
2362 for (Value *V : Statepoint.gc_args()) {
2363 if (!isa<Instruction>(V))
2364 // Non-instruction values trivial dominate all possible uses
2365 continue;
2366 auto *LiveInst = cast<Instruction>(V);
2367 assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
2368 "unreachable values should never be live");
2369 assert(DT.dominates(LiveInst, Info.StatepointToken) &&
2370 "basic SSA liveness expectation violated by liveness analysis");
2371 }
2372 #endif
2373 }
2374 unique_unsorted(Live);
2375
2376 #ifndef NDEBUG
2377 // sanity check
2378 for (auto *Ptr : Live)
2379 assert(isHandledGCPointerType(Ptr->getType()) &&
2380 "must be a gc pointer type");
2381 #endif
2382
2383 relocationViaAlloca(F, DT, Live, Records);
2384 return !Records.empty();
2385 }
2386
2387 // Handles both return values and arguments for Functions and CallSites.
2388 template <typename AttrHolder>
RemoveNonValidAttrAtIndex(LLVMContext & Ctx,AttrHolder & AH,unsigned Index)2389 static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
2390 unsigned Index) {
2391 AttrBuilder R;
2392 if (AH.getDereferenceableBytes(Index))
2393 R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
2394 AH.getDereferenceableBytes(Index)));
2395 if (AH.getDereferenceableOrNullBytes(Index))
2396 R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
2397 AH.getDereferenceableOrNullBytes(Index)));
2398 if (AH.getAttributes().hasAttribute(Index, Attribute::NoAlias))
2399 R.addAttribute(Attribute::NoAlias);
2400
2401 if (!R.empty())
2402 AH.setAttributes(AH.getAttributes().removeAttributes(Ctx, Index, R));
2403 }
2404
stripNonValidAttributesFromPrototype(Function & F)2405 static void stripNonValidAttributesFromPrototype(Function &F) {
2406 LLVMContext &Ctx = F.getContext();
2407
2408 for (Argument &A : F.args())
2409 if (isa<PointerType>(A.getType()))
2410 RemoveNonValidAttrAtIndex(Ctx, F,
2411 A.getArgNo() + AttributeList::FirstArgIndex);
2412
2413 if (isa<PointerType>(F.getReturnType()))
2414 RemoveNonValidAttrAtIndex(Ctx, F, AttributeList::ReturnIndex);
2415 }
2416
2417 /// Certain metadata on instructions are invalid after running RS4GC.
2418 /// Optimizations that run after RS4GC can incorrectly use this metadata to
2419 /// optimize functions. We drop such metadata on the instruction.
stripInvalidMetadataFromInstruction(Instruction & I)2420 static void stripInvalidMetadataFromInstruction(Instruction &I) {
2421 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2422 return;
2423 // These are the attributes that are still valid on loads and stores after
2424 // RS4GC.
2425 // The metadata implying dereferenceability and noalias are (conservatively)
2426 // dropped. This is because semantically, after RewriteStatepointsForGC runs,
2427 // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can
2428 // touch the entire heap including noalias objects. Note: The reasoning is
2429 // same as stripping the dereferenceability and noalias attributes that are
2430 // analogous to the metadata counterparts.
2431 // We also drop the invariant.load metadata on the load because that metadata
2432 // implies the address operand to the load points to memory that is never
2433 // changed once it became dereferenceable. This is no longer true after RS4GC.
2434 // Similar reasoning applies to invariant.group metadata, which applies to
2435 // loads within a group.
2436 unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa,
2437 LLVMContext::MD_range,
2438 LLVMContext::MD_alias_scope,
2439 LLVMContext::MD_nontemporal,
2440 LLVMContext::MD_nonnull,
2441 LLVMContext::MD_align,
2442 LLVMContext::MD_type};
2443
2444 // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC.
2445 I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC);
2446 }
2447
stripNonValidDataFromBody(Function & F)2448 static void stripNonValidDataFromBody(Function &F) {
2449 if (F.empty())
2450 return;
2451
2452 LLVMContext &Ctx = F.getContext();
2453 MDBuilder Builder(Ctx);
2454
2455 // Set of invariantstart instructions that we need to remove.
2456 // Use this to avoid invalidating the instruction iterator.
2457 SmallVector<IntrinsicInst*, 12> InvariantStartInstructions;
2458
2459 for (Instruction &I : instructions(F)) {
2460 // invariant.start on memory location implies that the referenced memory
2461 // location is constant and unchanging. This is no longer true after
2462 // RewriteStatepointsForGC runs because there can be calls to gc.statepoint
2463 // which frees the entire heap and the presence of invariant.start allows
2464 // the optimizer to sink the load of a memory location past a statepoint,
2465 // which is incorrect.
2466 if (auto *II = dyn_cast<IntrinsicInst>(&I))
2467 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
2468 InvariantStartInstructions.push_back(II);
2469 continue;
2470 }
2471
2472 if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) {
2473 MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag);
2474 I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
2475 }
2476
2477 stripInvalidMetadataFromInstruction(I);
2478
2479 if (CallSite CS = CallSite(&I)) {
2480 for (int i = 0, e = CS.arg_size(); i != e; i++)
2481 if (isa<PointerType>(CS.getArgument(i)->getType()))
2482 RemoveNonValidAttrAtIndex(Ctx, CS, i + AttributeList::FirstArgIndex);
2483 if (isa<PointerType>(CS.getType()))
2484 RemoveNonValidAttrAtIndex(Ctx, CS, AttributeList::ReturnIndex);
2485 }
2486 }
2487
2488 // Delete the invariant.start instructions and RAUW undef.
2489 for (auto *II : InvariantStartInstructions) {
2490 II->replaceAllUsesWith(UndefValue::get(II->getType()));
2491 II->eraseFromParent();
2492 }
2493 }
2494
2495 /// Returns true if this function should be rewritten by this pass. The main
2496 /// point of this function is as an extension point for custom logic.
shouldRewriteStatepointsIn(Function & F)2497 static bool shouldRewriteStatepointsIn(Function &F) {
2498 // TODO: This should check the GCStrategy
2499 if (F.hasGC()) {
2500 const auto &FunctionGCName = F.getGC();
2501 const StringRef StatepointExampleName("statepoint-example");
2502 const StringRef CoreCLRName("coreclr");
2503 return (StatepointExampleName == FunctionGCName) ||
2504 (CoreCLRName == FunctionGCName);
2505 } else
2506 return false;
2507 }
2508
stripNonValidData(Module & M)2509 static void stripNonValidData(Module &M) {
2510 #ifndef NDEBUG
2511 assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!");
2512 #endif
2513
2514 for (Function &F : M)
2515 stripNonValidAttributesFromPrototype(F);
2516
2517 for (Function &F : M)
2518 stripNonValidDataFromBody(F);
2519 }
2520
runOnFunction(Function & F,DominatorTree & DT,TargetTransformInfo & TTI,const TargetLibraryInfo & TLI)2521 bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT,
2522 TargetTransformInfo &TTI,
2523 const TargetLibraryInfo &TLI) {
2524 assert(!F.isDeclaration() && !F.empty() &&
2525 "need function body to rewrite statepoints in");
2526 assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision");
2527
2528 auto NeedsRewrite = [&TLI](Instruction &I) {
2529 if (ImmutableCallSite CS = ImmutableCallSite(&I))
2530 return !callsGCLeafFunction(CS, TLI) && !isStatepoint(CS);
2531 return false;
2532 };
2533
2534
2535 // Delete any unreachable statepoints so that we don't have unrewritten
2536 // statepoints surviving this pass. This makes testing easier and the
2537 // resulting IR less confusing to human readers.
2538 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
2539 bool MadeChange = removeUnreachableBlocks(F, nullptr, &DTU);
2540 // Flush the Dominator Tree.
2541 DTU.getDomTree();
2542
2543 // Gather all the statepoints which need rewritten. Be careful to only
2544 // consider those in reachable code since we need to ask dominance queries
2545 // when rewriting. We'll delete the unreachable ones in a moment.
2546 SmallVector<CallSite, 64> ParsePointNeeded;
2547 for (Instruction &I : instructions(F)) {
2548 // TODO: only the ones with the flag set!
2549 if (NeedsRewrite(I)) {
2550 // NOTE removeUnreachableBlocks() is stronger than
2551 // DominatorTree::isReachableFromEntry(). In other words
2552 // removeUnreachableBlocks can remove some blocks for which
2553 // isReachableFromEntry() returns true.
2554 assert(DT.isReachableFromEntry(I.getParent()) &&
2555 "no unreachable blocks expected");
2556 ParsePointNeeded.push_back(CallSite(&I));
2557 }
2558 }
2559
2560 // Return early if no work to do.
2561 if (ParsePointNeeded.empty())
2562 return MadeChange;
2563
2564 // As a prepass, go ahead and aggressively destroy single entry phi nodes.
2565 // These are created by LCSSA. They have the effect of increasing the size
2566 // of liveness sets for no good reason. It may be harder to do this post
2567 // insertion since relocations and base phis can confuse things.
2568 for (BasicBlock &BB : F)
2569 if (BB.getUniquePredecessor()) {
2570 MadeChange = true;
2571 FoldSingleEntryPHINodes(&BB);
2572 }
2573
2574 // Before we start introducing relocations, we want to tweak the IR a bit to
2575 // avoid unfortunate code generation effects. The main example is that we
2576 // want to try to make sure the comparison feeding a branch is after any
2577 // safepoints. Otherwise, we end up with a comparison of pre-relocation
2578 // values feeding a branch after relocation. This is semantically correct,
2579 // but results in extra register pressure since both the pre-relocation and
2580 // post-relocation copies must be available in registers. For code without
2581 // relocations this is handled elsewhere, but teaching the scheduler to
2582 // reverse the transform we're about to do would be slightly complex.
2583 // Note: This may extend the live range of the inputs to the icmp and thus
2584 // increase the liveset of any statepoint we move over. This is profitable
2585 // as long as all statepoints are in rare blocks. If we had in-register
2586 // lowering for live values this would be a much safer transform.
2587 auto getConditionInst = [](Instruction *TI) -> Instruction * {
2588 if (auto *BI = dyn_cast<BranchInst>(TI))
2589 if (BI->isConditional())
2590 return dyn_cast<Instruction>(BI->getCondition());
2591 // TODO: Extend this to handle switches
2592 return nullptr;
2593 };
2594 for (BasicBlock &BB : F) {
2595 Instruction *TI = BB.getTerminator();
2596 if (auto *Cond = getConditionInst(TI))
2597 // TODO: Handle more than just ICmps here. We should be able to move
2598 // most instructions without side effects or memory access.
2599 if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
2600 MadeChange = true;
2601 Cond->moveBefore(TI);
2602 }
2603 }
2604
2605 MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded);
2606 return MadeChange;
2607 }
2608
2609 // liveness computation via standard dataflow
2610 // -------------------------------------------------------------------
2611
2612 // TODO: Consider using bitvectors for liveness, the set of potentially
2613 // interesting values should be small and easy to pre-compute.
2614
2615 /// Compute the live-in set for the location rbegin starting from
2616 /// the live-out set of the basic block
computeLiveInValues(BasicBlock::reverse_iterator Begin,BasicBlock::reverse_iterator End,SetVector<Value * > & LiveTmp)2617 static void computeLiveInValues(BasicBlock::reverse_iterator Begin,
2618 BasicBlock::reverse_iterator End,
2619 SetVector<Value *> &LiveTmp) {
2620 for (auto &I : make_range(Begin, End)) {
2621 // KILL/Def - Remove this definition from LiveIn
2622 LiveTmp.remove(&I);
2623
2624 // Don't consider *uses* in PHI nodes, we handle their contribution to
2625 // predecessor blocks when we seed the LiveOut sets
2626 if (isa<PHINode>(I))
2627 continue;
2628
2629 // USE - Add to the LiveIn set for this instruction
2630 for (Value *V : I.operands()) {
2631 assert(!isUnhandledGCPointerType(V->getType()) &&
2632 "support for FCA unimplemented");
2633 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
2634 // The choice to exclude all things constant here is slightly subtle.
2635 // There are two independent reasons:
2636 // - We assume that things which are constant (from LLVM's definition)
2637 // do not move at runtime. For example, the address of a global
2638 // variable is fixed, even though it's contents may not be.
2639 // - Second, we can't disallow arbitrary inttoptr constants even
2640 // if the language frontend does. Optimization passes are free to
2641 // locally exploit facts without respect to global reachability. This
2642 // can create sections of code which are dynamically unreachable and
2643 // contain just about anything. (see constants.ll in tests)
2644 LiveTmp.insert(V);
2645 }
2646 }
2647 }
2648 }
2649
computeLiveOutSeed(BasicBlock * BB,SetVector<Value * > & LiveTmp)2650 static void computeLiveOutSeed(BasicBlock *BB, SetVector<Value *> &LiveTmp) {
2651 for (BasicBlock *Succ : successors(BB)) {
2652 for (auto &I : *Succ) {
2653 PHINode *PN = dyn_cast<PHINode>(&I);
2654 if (!PN)
2655 break;
2656
2657 Value *V = PN->getIncomingValueForBlock(BB);
2658 assert(!isUnhandledGCPointerType(V->getType()) &&
2659 "support for FCA unimplemented");
2660 if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V))
2661 LiveTmp.insert(V);
2662 }
2663 }
2664 }
2665
computeKillSet(BasicBlock * BB)2666 static SetVector<Value *> computeKillSet(BasicBlock *BB) {
2667 SetVector<Value *> KillSet;
2668 for (Instruction &I : *BB)
2669 if (isHandledGCPointerType(I.getType()))
2670 KillSet.insert(&I);
2671 return KillSet;
2672 }
2673
2674 #ifndef NDEBUG
2675 /// Check that the items in 'Live' dominate 'TI'. This is used as a basic
2676 /// sanity check for the liveness computation.
checkBasicSSA(DominatorTree & DT,SetVector<Value * > & Live,Instruction * TI,bool TermOkay=false)2677 static void checkBasicSSA(DominatorTree &DT, SetVector<Value *> &Live,
2678 Instruction *TI, bool TermOkay = false) {
2679 for (Value *V : Live) {
2680 if (auto *I = dyn_cast<Instruction>(V)) {
2681 // The terminator can be a member of the LiveOut set. LLVM's definition
2682 // of instruction dominance states that V does not dominate itself. As
2683 // such, we need to special case this to allow it.
2684 if (TermOkay && TI == I)
2685 continue;
2686 assert(DT.dominates(I, TI) &&
2687 "basic SSA liveness expectation violated by liveness analysis");
2688 }
2689 }
2690 }
2691
2692 /// Check that all the liveness sets used during the computation of liveness
2693 /// obey basic SSA properties. This is useful for finding cases where we miss
2694 /// a def.
checkBasicSSA(DominatorTree & DT,GCPtrLivenessData & Data,BasicBlock & BB)2695 static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
2696 BasicBlock &BB) {
2697 checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
2698 checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
2699 checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
2700 }
2701 #endif
2702
computeLiveInValues(DominatorTree & DT,Function & F,GCPtrLivenessData & Data)2703 static void computeLiveInValues(DominatorTree &DT, Function &F,
2704 GCPtrLivenessData &Data) {
2705 SmallSetVector<BasicBlock *, 32> Worklist;
2706
2707 // Seed the liveness for each individual block
2708 for (BasicBlock &BB : F) {
2709 Data.KillSet[&BB] = computeKillSet(&BB);
2710 Data.LiveSet[&BB].clear();
2711 computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
2712
2713 #ifndef NDEBUG
2714 for (Value *Kill : Data.KillSet[&BB])
2715 assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
2716 #endif
2717
2718 Data.LiveOut[&BB] = SetVector<Value *>();
2719 computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
2720 Data.LiveIn[&BB] = Data.LiveSet[&BB];
2721 Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]);
2722 Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]);
2723 if (!Data.LiveIn[&BB].empty())
2724 Worklist.insert(pred_begin(&BB), pred_end(&BB));
2725 }
2726
2727 // Propagate that liveness until stable
2728 while (!Worklist.empty()) {
2729 BasicBlock *BB = Worklist.pop_back_val();
2730
2731 // Compute our new liveout set, then exit early if it hasn't changed despite
2732 // the contribution of our successor.
2733 SetVector<Value *> LiveOut = Data.LiveOut[BB];
2734 const auto OldLiveOutSize = LiveOut.size();
2735 for (BasicBlock *Succ : successors(BB)) {
2736 assert(Data.LiveIn.count(Succ));
2737 LiveOut.set_union(Data.LiveIn[Succ]);
2738 }
2739 // assert OutLiveOut is a subset of LiveOut
2740 if (OldLiveOutSize == LiveOut.size()) {
2741 // If the sets are the same size, then we didn't actually add anything
2742 // when unioning our successors LiveIn. Thus, the LiveIn of this block
2743 // hasn't changed.
2744 continue;
2745 }
2746 Data.LiveOut[BB] = LiveOut;
2747
2748 // Apply the effects of this basic block
2749 SetVector<Value *> LiveTmp = LiveOut;
2750 LiveTmp.set_union(Data.LiveSet[BB]);
2751 LiveTmp.set_subtract(Data.KillSet[BB]);
2752
2753 assert(Data.LiveIn.count(BB));
2754 const SetVector<Value *> &OldLiveIn = Data.LiveIn[BB];
2755 // assert: OldLiveIn is a subset of LiveTmp
2756 if (OldLiveIn.size() != LiveTmp.size()) {
2757 Data.LiveIn[BB] = LiveTmp;
2758 Worklist.insert(pred_begin(BB), pred_end(BB));
2759 }
2760 } // while (!Worklist.empty())
2761
2762 #ifndef NDEBUG
2763 // Sanity check our output against SSA properties. This helps catch any
2764 // missing kills during the above iteration.
2765 for (BasicBlock &BB : F)
2766 checkBasicSSA(DT, Data, BB);
2767 #endif
2768 }
2769
findLiveSetAtInst(Instruction * Inst,GCPtrLivenessData & Data,StatepointLiveSetTy & Out)2770 static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
2771 StatepointLiveSetTy &Out) {
2772 BasicBlock *BB = Inst->getParent();
2773
2774 // Note: The copy is intentional and required
2775 assert(Data.LiveOut.count(BB));
2776 SetVector<Value *> LiveOut = Data.LiveOut[BB];
2777
2778 // We want to handle the statepoint itself oddly. It's
2779 // call result is not live (normal), nor are it's arguments
2780 // (unless they're used again later). This adjustment is
2781 // specifically what we need to relocate
2782 computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(),
2783 LiveOut);
2784 LiveOut.remove(Inst);
2785 Out.insert(LiveOut.begin(), LiveOut.end());
2786 }
2787
recomputeLiveInValues(GCPtrLivenessData & RevisedLivenessData,CallSite CS,PartiallyConstructedSafepointRecord & Info)2788 static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
2789 CallSite CS,
2790 PartiallyConstructedSafepointRecord &Info) {
2791 Instruction *Inst = CS.getInstruction();
2792 StatepointLiveSetTy Updated;
2793 findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
2794
2795 // We may have base pointers which are now live that weren't before. We need
2796 // to update the PointerToBase structure to reflect this.
2797 for (auto V : Updated)
2798 if (Info.PointerToBase.insert({V, V}).second) {
2799 assert(isKnownBaseResult(V) &&
2800 "Can't find base for unexpected live value!");
2801 continue;
2802 }
2803
2804 #ifndef NDEBUG
2805 for (auto V : Updated)
2806 assert(Info.PointerToBase.count(V) &&
2807 "Must be able to find base for live value!");
2808 #endif
2809
2810 // Remove any stale base mappings - this can happen since our liveness is
2811 // more precise then the one inherent in the base pointer analysis.
2812 DenseSet<Value *> ToErase;
2813 for (auto KVPair : Info.PointerToBase)
2814 if (!Updated.count(KVPair.first))
2815 ToErase.insert(KVPair.first);
2816
2817 for (auto *V : ToErase)
2818 Info.PointerToBase.erase(V);
2819
2820 #ifndef NDEBUG
2821 for (auto KVPair : Info.PointerToBase)
2822 assert(Updated.count(KVPair.first) && "record for non-live value");
2823 #endif
2824
2825 Info.LiveSet = Updated;
2826 }
2827