1 //===-- RewriteLoop.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "PassDetail.h"
10 #include "flang/Optimizer/Dialect/FIRDialect.h"
11 #include "flang/Optimizer/Dialect/FIROps.h"
12 #include "flang/Optimizer/Transforms/Passes.h"
13 #include "mlir/Dialect/Affine/IR/AffineOps.h"
14 #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
15 #include "mlir/Dialect/Func/IR/FuncOps.h"
16 #include "mlir/Pass/Pass.h"
17 #include "mlir/Transforms/DialectConversion.h"
18 #include "llvm/Support/CommandLine.h"
19
20 using namespace fir;
21 using namespace mlir;
22
23 namespace {
24
25 // Conversion of fir control ops to more primitive control-flow.
26 //
27 // FIR loops that cannot be converted to the affine dialect will remain as
28 // `fir.do_loop` operations. These can be converted to control-flow operations.
29
30 /// Convert `fir.do_loop` to CFG
31 class CfgLoopConv : public mlir::OpRewritePattern<fir::DoLoopOp> {
32 public:
33 using OpRewritePattern::OpRewritePattern;
34
CfgLoopConv(mlir::MLIRContext * ctx,bool forceLoopToExecuteOnce)35 CfgLoopConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
36 : mlir::OpRewritePattern<fir::DoLoopOp>(ctx),
37 forceLoopToExecuteOnce(forceLoopToExecuteOnce) {}
38
39 mlir::LogicalResult
matchAndRewrite(DoLoopOp loop,mlir::PatternRewriter & rewriter) const40 matchAndRewrite(DoLoopOp loop,
41 mlir::PatternRewriter &rewriter) const override {
42 auto loc = loop.getLoc();
43
44 // Create the start and end blocks that will wrap the DoLoopOp with an
45 // initalizer and an end point
46 auto *initBlock = rewriter.getInsertionBlock();
47 auto initPos = rewriter.getInsertionPoint();
48 auto *endBlock = rewriter.splitBlock(initBlock, initPos);
49
50 // Split the first DoLoopOp block in two parts. The part before will be the
51 // conditional block since it already has the induction variable and
52 // loop-carried values as arguments.
53 auto *conditionalBlock = &loop.getRegion().front();
54 conditionalBlock->addArgument(rewriter.getIndexType(), loc);
55 auto *firstBlock =
56 rewriter.splitBlock(conditionalBlock, conditionalBlock->begin());
57 auto *lastBlock = &loop.getRegion().back();
58
59 // Move the blocks from the DoLoopOp between initBlock and endBlock
60 rewriter.inlineRegionBefore(loop.getRegion(), endBlock);
61
62 // Get loop values from the DoLoopOp
63 auto low = loop.getLowerBound();
64 auto high = loop.getUpperBound();
65 assert(low && high && "must be a Value");
66 auto step = loop.getStep();
67
68 // Initalization block
69 rewriter.setInsertionPointToEnd(initBlock);
70 auto diff = rewriter.create<mlir::arith::SubIOp>(loc, high, low);
71 auto distance = rewriter.create<mlir::arith::AddIOp>(loc, diff, step);
72 mlir::Value iters =
73 rewriter.create<mlir::arith::DivSIOp>(loc, distance, step);
74
75 if (forceLoopToExecuteOnce) {
76 auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
77 auto cond = rewriter.create<mlir::arith::CmpIOp>(
78 loc, arith::CmpIPredicate::sle, iters, zero);
79 auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
80 iters = rewriter.create<mlir::arith::SelectOp>(loc, cond, one, iters);
81 }
82
83 llvm::SmallVector<mlir::Value> loopOperands;
84 loopOperands.push_back(low);
85 auto operands = loop.getIterOperands();
86 loopOperands.append(operands.begin(), operands.end());
87 loopOperands.push_back(iters);
88
89 rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopOperands);
90
91 // Last loop block
92 auto *terminator = lastBlock->getTerminator();
93 rewriter.setInsertionPointToEnd(lastBlock);
94 auto iv = conditionalBlock->getArgument(0);
95 mlir::Value steppedIndex =
96 rewriter.create<mlir::arith::AddIOp>(loc, iv, step);
97 assert(steppedIndex && "must be a Value");
98 auto lastArg = conditionalBlock->getNumArguments() - 1;
99 auto itersLeft = conditionalBlock->getArgument(lastArg);
100 auto one = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 1);
101 mlir::Value itersMinusOne =
102 rewriter.create<mlir::arith::SubIOp>(loc, itersLeft, one);
103
104 llvm::SmallVector<mlir::Value> loopCarried;
105 loopCarried.push_back(steppedIndex);
106 auto begin = loop.getFinalValue() ? std::next(terminator->operand_begin())
107 : terminator->operand_begin();
108 loopCarried.append(begin, terminator->operand_end());
109 loopCarried.push_back(itersMinusOne);
110 rewriter.create<mlir::cf::BranchOp>(loc, conditionalBlock, loopCarried);
111 rewriter.eraseOp(terminator);
112
113 // Conditional block
114 rewriter.setInsertionPointToEnd(conditionalBlock);
115 auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
116 auto comparison = rewriter.create<mlir::arith::CmpIOp>(
117 loc, arith::CmpIPredicate::sgt, itersLeft, zero);
118
119 rewriter.create<mlir::cf::CondBranchOp>(
120 loc, comparison, firstBlock, llvm::ArrayRef<mlir::Value>(), endBlock,
121 llvm::ArrayRef<mlir::Value>());
122
123 // The result of the loop operation is the values of the condition block
124 // arguments except the induction variable on the last iteration.
125 auto args = loop.getFinalValue()
126 ? conditionalBlock->getArguments()
127 : conditionalBlock->getArguments().drop_front();
128 rewriter.replaceOp(loop, args.drop_back());
129 return success();
130 }
131
132 private:
133 bool forceLoopToExecuteOnce;
134 };
135
136 /// Convert `fir.if` to control-flow
137 class CfgIfConv : public mlir::OpRewritePattern<fir::IfOp> {
138 public:
139 using OpRewritePattern::OpRewritePattern;
140
CfgIfConv(mlir::MLIRContext * ctx,bool forceLoopToExecuteOnce)141 CfgIfConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
142 : mlir::OpRewritePattern<fir::IfOp>(ctx) {}
143
144 mlir::LogicalResult
matchAndRewrite(IfOp ifOp,mlir::PatternRewriter & rewriter) const145 matchAndRewrite(IfOp ifOp, mlir::PatternRewriter &rewriter) const override {
146 auto loc = ifOp.getLoc();
147
148 // Split the block containing the 'fir.if' into two parts. The part before
149 // will contain the condition, the part after will be the continuation
150 // point.
151 auto *condBlock = rewriter.getInsertionBlock();
152 auto opPosition = rewriter.getInsertionPoint();
153 auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition);
154 mlir::Block *continueBlock;
155 if (ifOp.getNumResults() == 0) {
156 continueBlock = remainingOpsBlock;
157 } else {
158 continueBlock = rewriter.createBlock(
159 remainingOpsBlock, ifOp.getResultTypes(),
160 llvm::SmallVector<mlir::Location>(ifOp.getNumResults(), loc));
161 rewriter.create<mlir::cf::BranchOp>(loc, remainingOpsBlock);
162 }
163
164 // Move blocks from the "then" region to the region containing 'fir.if',
165 // place it before the continuation block, and branch to it.
166 auto &ifOpRegion = ifOp.getThenRegion();
167 auto *ifOpBlock = &ifOpRegion.front();
168 auto *ifOpTerminator = ifOpRegion.back().getTerminator();
169 auto ifOpTerminatorOperands = ifOpTerminator->getOperands();
170 rewriter.setInsertionPointToEnd(&ifOpRegion.back());
171 rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
172 ifOpTerminatorOperands);
173 rewriter.eraseOp(ifOpTerminator);
174 rewriter.inlineRegionBefore(ifOpRegion, continueBlock);
175
176 // Move blocks from the "else" region (if present) to the region containing
177 // 'fir.if', place it before the continuation block and branch to it. It
178 // will be placed after the "then" regions.
179 auto *otherwiseBlock = continueBlock;
180 auto &otherwiseRegion = ifOp.getElseRegion();
181 if (!otherwiseRegion.empty()) {
182 otherwiseBlock = &otherwiseRegion.front();
183 auto *otherwiseTerm = otherwiseRegion.back().getTerminator();
184 auto otherwiseTermOperands = otherwiseTerm->getOperands();
185 rewriter.setInsertionPointToEnd(&otherwiseRegion.back());
186 rewriter.create<mlir::cf::BranchOp>(loc, continueBlock,
187 otherwiseTermOperands);
188 rewriter.eraseOp(otherwiseTerm);
189 rewriter.inlineRegionBefore(otherwiseRegion, continueBlock);
190 }
191
192 rewriter.setInsertionPointToEnd(condBlock);
193 rewriter.create<mlir::cf::CondBranchOp>(
194 loc, ifOp.getCondition(), ifOpBlock, llvm::ArrayRef<mlir::Value>(),
195 otherwiseBlock, llvm::ArrayRef<mlir::Value>());
196 rewriter.replaceOp(ifOp, continueBlock->getArguments());
197 return success();
198 }
199 };
200
201 /// Convert `fir.iter_while` to control-flow.
202 class CfgIterWhileConv : public mlir::OpRewritePattern<fir::IterWhileOp> {
203 public:
204 using OpRewritePattern::OpRewritePattern;
205
CfgIterWhileConv(mlir::MLIRContext * ctx,bool forceLoopToExecuteOnce)206 CfgIterWhileConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce)
207 : mlir::OpRewritePattern<fir::IterWhileOp>(ctx) {}
208
209 mlir::LogicalResult
matchAndRewrite(fir::IterWhileOp whileOp,mlir::PatternRewriter & rewriter) const210 matchAndRewrite(fir::IterWhileOp whileOp,
211 mlir::PatternRewriter &rewriter) const override {
212 auto loc = whileOp.getLoc();
213
214 // Start by splitting the block containing the 'fir.do_loop' into two parts.
215 // The part before will get the init code, the part after will be the end
216 // point.
217 auto *initBlock = rewriter.getInsertionBlock();
218 auto initPosition = rewriter.getInsertionPoint();
219 auto *endBlock = rewriter.splitBlock(initBlock, initPosition);
220
221 // Use the first block of the loop body as the condition block since it is
222 // the block that has the induction variable and loop-carried values as
223 // arguments. Split out all operations from the first block into a new
224 // block. Move all body blocks from the loop body region to the region
225 // containing the loop.
226 auto *conditionBlock = &whileOp.getRegion().front();
227 auto *firstBodyBlock =
228 rewriter.splitBlock(conditionBlock, conditionBlock->begin());
229 auto *lastBodyBlock = &whileOp.getRegion().back();
230 rewriter.inlineRegionBefore(whileOp.getRegion(), endBlock);
231 auto iv = conditionBlock->getArgument(0);
232 auto iterateVar = conditionBlock->getArgument(1);
233
234 // Append the induction variable stepping logic to the last body block and
235 // branch back to the condition block. Loop-carried values are taken from
236 // operands of the loop terminator.
237 auto *terminator = lastBodyBlock->getTerminator();
238 rewriter.setInsertionPointToEnd(lastBodyBlock);
239 auto step = whileOp.getStep();
240 mlir::Value stepped = rewriter.create<mlir::arith::AddIOp>(loc, iv, step);
241 assert(stepped && "must be a Value");
242
243 llvm::SmallVector<mlir::Value> loopCarried;
244 loopCarried.push_back(stepped);
245 auto begin = whileOp.getFinalValue()
246 ? std::next(terminator->operand_begin())
247 : terminator->operand_begin();
248 loopCarried.append(begin, terminator->operand_end());
249 rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, loopCarried);
250 rewriter.eraseOp(terminator);
251
252 // Compute loop bounds before branching to the condition.
253 rewriter.setInsertionPointToEnd(initBlock);
254 auto lowerBound = whileOp.getLowerBound();
255 auto upperBound = whileOp.getUpperBound();
256 assert(lowerBound && upperBound && "must be a Value");
257
258 // The initial values of loop-carried values is obtained from the operands
259 // of the loop operation.
260 llvm::SmallVector<mlir::Value> destOperands;
261 destOperands.push_back(lowerBound);
262 auto iterOperands = whileOp.getIterOperands();
263 destOperands.append(iterOperands.begin(), iterOperands.end());
264 rewriter.create<mlir::cf::BranchOp>(loc, conditionBlock, destOperands);
265
266 // With the body block done, we can fill in the condition block.
267 rewriter.setInsertionPointToEnd(conditionBlock);
268 // The comparison depends on the sign of the step value. We fully expect
269 // this expression to be folded by the optimizer or LLVM. This expression
270 // is written this way so that `step == 0` always returns `false`.
271 auto zero = rewriter.create<mlir::arith::ConstantIndexOp>(loc, 0);
272 auto compl0 = rewriter.create<mlir::arith::CmpIOp>(
273 loc, arith::CmpIPredicate::slt, zero, step);
274 auto compl1 = rewriter.create<mlir::arith::CmpIOp>(
275 loc, arith::CmpIPredicate::sle, iv, upperBound);
276 auto compl2 = rewriter.create<mlir::arith::CmpIOp>(
277 loc, arith::CmpIPredicate::slt, step, zero);
278 auto compl3 = rewriter.create<mlir::arith::CmpIOp>(
279 loc, arith::CmpIPredicate::sle, upperBound, iv);
280 auto cmp0 = rewriter.create<mlir::arith::AndIOp>(loc, compl0, compl1);
281 auto cmp1 = rewriter.create<mlir::arith::AndIOp>(loc, compl2, compl3);
282 auto cmp2 = rewriter.create<mlir::arith::OrIOp>(loc, cmp0, cmp1);
283 // Remember to AND in the early-exit bool.
284 auto comparison =
285 rewriter.create<mlir::arith::AndIOp>(loc, iterateVar, cmp2);
286 rewriter.create<mlir::cf::CondBranchOp>(
287 loc, comparison, firstBodyBlock, llvm::ArrayRef<mlir::Value>(),
288 endBlock, llvm::ArrayRef<mlir::Value>());
289 // The result of the loop operation is the values of the condition block
290 // arguments except the induction variable on the last iteration.
291 auto args = whileOp.getFinalValue()
292 ? conditionBlock->getArguments()
293 : conditionBlock->getArguments().drop_front();
294 rewriter.replaceOp(whileOp, args);
295 return success();
296 }
297 };
298
299 /// Convert FIR structured control flow ops to CFG ops.
300 class CfgConversion : public CFGConversionBase<CfgConversion> {
301 public:
runOnOperation()302 void runOnOperation() override {
303 auto *context = &getContext();
304 mlir::RewritePatternSet patterns(context);
305 patterns.insert<CfgLoopConv, CfgIfConv, CfgIterWhileConv>(
306 context, forceLoopToExecuteOnce);
307 mlir::ConversionTarget target(*context);
308 target.addLegalDialect<mlir::AffineDialect, mlir::cf::ControlFlowDialect,
309 FIROpsDialect, mlir::func::FuncDialect>();
310
311 // apply the patterns
312 target.addIllegalOp<ResultOp, DoLoopOp, IfOp, IterWhileOp>();
313 target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
314 if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
315 std::move(patterns)))) {
316 mlir::emitError(mlir::UnknownLoc::get(context),
317 "error in converting to CFG\n");
318 signalPassFailure();
319 }
320 }
321 };
322 } // namespace
323
324 /// Convert FIR's structured control flow ops to CFG ops. This
325 /// conversion enables the `createLowerToCFGPass` to transform these to CFG
326 /// form.
createFirToCfgPass()327 std::unique_ptr<mlir::Pass> fir::createFirToCfgPass() {
328 return std::make_unique<CfgConversion>();
329 }
330