1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a flow-sensitive, path-insensitive analysis of
10 // determining reachable blocks within a CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/Analyses/ReachableCode.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/AnalysisDeclContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/SmallVector.h"
27
28 using namespace clang;
29
30 //===----------------------------------------------------------------------===//
31 // Core Reachability Analysis routines.
32 //===----------------------------------------------------------------------===//
33
isEnumConstant(const Expr * Ex)34 static bool isEnumConstant(const Expr *Ex) {
35 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
36 if (!DR)
37 return false;
38 return isa<EnumConstantDecl>(DR->getDecl());
39 }
40
isTrivialExpression(const Expr * Ex)41 static bool isTrivialExpression(const Expr *Ex) {
42 Ex = Ex->IgnoreParenCasts();
43 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
44 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
45 isa<CharacterLiteral>(Ex) ||
46 isEnumConstant(Ex);
47 }
48
isTrivialDoWhile(const CFGBlock * B,const Stmt * S)49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
50 // Check if the block ends with a do...while() and see if 'S' is the
51 // condition.
52 if (const Stmt *Term = B->getTerminatorStmt()) {
53 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
54 const Expr *Cond = DS->getCond()->IgnoreParenCasts();
55 return Cond == S && isTrivialExpression(Cond);
56 }
57 }
58 return false;
59 }
60
isBuiltinUnreachable(const Stmt * S)61 static bool isBuiltinUnreachable(const Stmt *S) {
62 if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
63 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
64 return FDecl->getIdentifier() &&
65 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
66 return false;
67 }
68
isBuiltinAssumeFalse(const CFGBlock * B,const Stmt * S,ASTContext & C)69 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
70 ASTContext &C) {
71 if (B->empty()) {
72 // Happens if S is B's terminator and B contains nothing else
73 // (e.g. a CFGBlock containing only a goto).
74 return false;
75 }
76 if (Optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
77 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
78 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
79 }
80 }
81 return false;
82 }
83
isDeadReturn(const CFGBlock * B,const Stmt * S)84 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
85 // Look to see if the current control flow ends with a 'return', and see if
86 // 'S' is a substatement. The 'return' may not be the last element in the
87 // block, or may be in a subsequent block because of destructors.
88 const CFGBlock *Current = B;
89 while (true) {
90 for (const CFGElement &CE : llvm::reverse(*Current)) {
91 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
92 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
93 if (RS == S)
94 return true;
95 if (const Expr *RE = RS->getRetValue()) {
96 RE = RE->IgnoreParenCasts();
97 if (RE == S)
98 return true;
99 ParentMap PM(const_cast<Expr *>(RE));
100 // If 'S' is in the ParentMap, it is a subexpression of
101 // the return statement.
102 return PM.getParent(S);
103 }
104 }
105 break;
106 }
107 }
108 // Note also that we are restricting the search for the return statement
109 // to stop at control-flow; only part of a return statement may be dead,
110 // without the whole return statement being dead.
111 if (Current->getTerminator().isTemporaryDtorsBranch()) {
112 // Temporary destructors have a predictable control flow, thus we want to
113 // look into the next block for the return statement.
114 // We look into the false branch, as we know the true branch only contains
115 // the call to the destructor.
116 assert(Current->succ_size() == 2);
117 Current = *(Current->succ_begin() + 1);
118 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
119 // If there is only one successor, we're not dealing with outgoing control
120 // flow. Thus, look into the next block.
121 Current = *Current->succ_begin();
122 if (Current->pred_size() > 1) {
123 // If there is more than one predecessor, we're dealing with incoming
124 // control flow - if the return statement is in that block, it might
125 // well be reachable via a different control flow, thus it's not dead.
126 return false;
127 }
128 } else {
129 // We hit control flow or a dead end. Stop searching.
130 return false;
131 }
132 }
133 llvm_unreachable("Broke out of infinite loop.");
134 }
135
getTopMostMacro(SourceLocation Loc,SourceManager & SM)136 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
137 assert(Loc.isMacroID());
138 SourceLocation Last;
139 do {
140 Last = Loc;
141 Loc = SM.getImmediateMacroCallerLoc(Loc);
142 } while (Loc.isMacroID());
143 return Last;
144 }
145
146 /// Returns true if the statement is expanded from a configuration macro.
isExpandedFromConfigurationMacro(const Stmt * S,Preprocessor & PP,bool IgnoreYES_NO=false)147 static bool isExpandedFromConfigurationMacro(const Stmt *S,
148 Preprocessor &PP,
149 bool IgnoreYES_NO = false) {
150 // FIXME: This is not very precise. Here we just check to see if the
151 // value comes from a macro, but we can do much better. This is likely
152 // to be over conservative. This logic is factored into a separate function
153 // so that we can refine it later.
154 SourceLocation L = S->getBeginLoc();
155 if (L.isMacroID()) {
156 SourceManager &SM = PP.getSourceManager();
157 if (IgnoreYES_NO) {
158 // The Objective-C constant 'YES' and 'NO'
159 // are defined as macros. Do not treat them
160 // as configuration values.
161 SourceLocation TopL = getTopMostMacro(L, SM);
162 StringRef MacroName = PP.getImmediateMacroName(TopL);
163 if (MacroName == "YES" || MacroName == "NO")
164 return false;
165 } else if (!PP.getLangOpts().CPlusPlus) {
166 // Do not treat C 'false' and 'true' macros as configuration values.
167 SourceLocation TopL = getTopMostMacro(L, SM);
168 StringRef MacroName = PP.getImmediateMacroName(TopL);
169 if (MacroName == "false" || MacroName == "true")
170 return false;
171 }
172 return true;
173 }
174 return false;
175 }
176
177 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
178
179 /// Returns true if the statement represents a configuration value.
180 ///
181 /// A configuration value is something usually determined at compile-time
182 /// to conditionally always execute some branch. Such guards are for
183 /// "sometimes unreachable" code. Such code is usually not interesting
184 /// to report as unreachable, and may mask truly unreachable code within
185 /// those blocks.
isConfigurationValue(const Stmt * S,Preprocessor & PP,SourceRange * SilenceableCondVal=nullptr,bool IncludeIntegers=true,bool WrappedInParens=false)186 static bool isConfigurationValue(const Stmt *S,
187 Preprocessor &PP,
188 SourceRange *SilenceableCondVal = nullptr,
189 bool IncludeIntegers = true,
190 bool WrappedInParens = false) {
191 if (!S)
192 return false;
193
194 if (const auto *Ex = dyn_cast<Expr>(S))
195 S = Ex->IgnoreImplicit();
196
197 if (const auto *Ex = dyn_cast<Expr>(S))
198 S = Ex->IgnoreCasts();
199
200 // Special case looking for the sigil '()' around an integer literal.
201 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
202 if (!PE->getBeginLoc().isMacroID())
203 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
204 IncludeIntegers, true);
205
206 if (const Expr *Ex = dyn_cast<Expr>(S))
207 S = Ex->IgnoreCasts();
208
209 bool IgnoreYES_NO = false;
210
211 switch (S->getStmtClass()) {
212 case Stmt::CallExprClass: {
213 const FunctionDecl *Callee =
214 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
215 return Callee ? Callee->isConstexpr() : false;
216 }
217 case Stmt::DeclRefExprClass:
218 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
219 case Stmt::ObjCBoolLiteralExprClass:
220 IgnoreYES_NO = true;
221 LLVM_FALLTHROUGH;
222 case Stmt::CXXBoolLiteralExprClass:
223 case Stmt::IntegerLiteralClass: {
224 const Expr *E = cast<Expr>(S);
225 if (IncludeIntegers) {
226 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
227 *SilenceableCondVal = E->getSourceRange();
228 return WrappedInParens ||
229 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
230 }
231 return false;
232 }
233 case Stmt::MemberExprClass:
234 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
235 case Stmt::UnaryExprOrTypeTraitExprClass:
236 return true;
237 case Stmt::BinaryOperatorClass: {
238 const BinaryOperator *B = cast<BinaryOperator>(S);
239 // Only include raw integers (not enums) as configuration
240 // values if they are used in a logical or comparison operator
241 // (not arithmetic).
242 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
243 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
244 IncludeIntegers) ||
245 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
246 IncludeIntegers);
247 }
248 case Stmt::UnaryOperatorClass: {
249 const UnaryOperator *UO = cast<UnaryOperator>(S);
250 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
251 return false;
252 bool SilenceableCondValNotSet =
253 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
254 bool IsSubExprConfigValue =
255 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
256 IncludeIntegers, WrappedInParens);
257 // Update the silenceable condition value source range only if the range
258 // was set directly by the child expression.
259 if (SilenceableCondValNotSet &&
260 SilenceableCondVal->getBegin().isValid() &&
261 *SilenceableCondVal ==
262 UO->getSubExpr()->IgnoreCasts()->getSourceRange())
263 *SilenceableCondVal = UO->getSourceRange();
264 return IsSubExprConfigValue;
265 }
266 default:
267 return false;
268 }
269 }
270
isConfigurationValue(const ValueDecl * D,Preprocessor & PP)271 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
272 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
273 return isConfigurationValue(ED->getInitExpr(), PP);
274 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
275 // As a heuristic, treat globals as configuration values. Note
276 // that we only will get here if Sema evaluated this
277 // condition to a constant expression, which means the global
278 // had to be declared in a way to be a truly constant value.
279 // We could generalize this to local variables, but it isn't
280 // clear if those truly represent configuration values that
281 // gate unreachable code.
282 if (!VD->hasLocalStorage())
283 return true;
284
285 // As a heuristic, locals that have been marked 'const' explicitly
286 // can be treated as configuration values as well.
287 return VD->getType().isLocalConstQualified();
288 }
289 return false;
290 }
291
292 /// Returns true if we should always explore all successors of a block.
shouldTreatSuccessorsAsReachable(const CFGBlock * B,Preprocessor & PP)293 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
294 Preprocessor &PP) {
295 if (const Stmt *Term = B->getTerminatorStmt()) {
296 if (isa<SwitchStmt>(Term))
297 return true;
298 // Specially handle '||' and '&&'.
299 if (isa<BinaryOperator>(Term)) {
300 return isConfigurationValue(Term, PP);
301 }
302 }
303
304 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
305 return isConfigurationValue(Cond, PP);
306 }
307
scanFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable,Preprocessor * PP,bool IncludeSometimesUnreachableEdges)308 static unsigned scanFromBlock(const CFGBlock *Start,
309 llvm::BitVector &Reachable,
310 Preprocessor *PP,
311 bool IncludeSometimesUnreachableEdges) {
312 unsigned count = 0;
313
314 // Prep work queue
315 SmallVector<const CFGBlock*, 32> WL;
316
317 // The entry block may have already been marked reachable
318 // by the caller.
319 if (!Reachable[Start->getBlockID()]) {
320 ++count;
321 Reachable[Start->getBlockID()] = true;
322 }
323
324 WL.push_back(Start);
325
326 // Find the reachable blocks from 'Start'.
327 while (!WL.empty()) {
328 const CFGBlock *item = WL.pop_back_val();
329
330 // There are cases where we want to treat all successors as reachable.
331 // The idea is that some "sometimes unreachable" code is not interesting,
332 // and that we should forge ahead and explore those branches anyway.
333 // This allows us to potentially uncover some "always unreachable" code
334 // within the "sometimes unreachable" code.
335 // Look at the successors and mark then reachable.
336 Optional<bool> TreatAllSuccessorsAsReachable;
337 if (!IncludeSometimesUnreachableEdges)
338 TreatAllSuccessorsAsReachable = false;
339
340 for (CFGBlock::const_succ_iterator I = item->succ_begin(),
341 E = item->succ_end(); I != E; ++I) {
342 const CFGBlock *B = *I;
343 if (!B) do {
344 const CFGBlock *UB = I->getPossiblyUnreachableBlock();
345 if (!UB)
346 break;
347
348 if (!TreatAllSuccessorsAsReachable) {
349 assert(PP);
350 TreatAllSuccessorsAsReachable =
351 shouldTreatSuccessorsAsReachable(item, *PP);
352 }
353
354 if (*TreatAllSuccessorsAsReachable) {
355 B = UB;
356 break;
357 }
358 }
359 while (false);
360
361 if (B) {
362 unsigned blockID = B->getBlockID();
363 if (!Reachable[blockID]) {
364 Reachable.set(blockID);
365 WL.push_back(B);
366 ++count;
367 }
368 }
369 }
370 }
371 return count;
372 }
373
scanMaybeReachableFromBlock(const CFGBlock * Start,Preprocessor & PP,llvm::BitVector & Reachable)374 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
375 Preprocessor &PP,
376 llvm::BitVector &Reachable) {
377 return scanFromBlock(Start, Reachable, &PP, true);
378 }
379
380 //===----------------------------------------------------------------------===//
381 // Dead Code Scanner.
382 //===----------------------------------------------------------------------===//
383
384 namespace {
385 class DeadCodeScan {
386 llvm::BitVector Visited;
387 llvm::BitVector &Reachable;
388 SmallVector<const CFGBlock *, 10> WorkList;
389 Preprocessor &PP;
390 ASTContext &C;
391
392 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
393 DeferredLocsTy;
394
395 DeferredLocsTy DeferredLocs;
396
397 public:
DeadCodeScan(llvm::BitVector & reachable,Preprocessor & PP,ASTContext & C)398 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
399 : Visited(reachable.size()),
400 Reachable(reachable),
401 PP(PP), C(C) {}
402
403 void enqueue(const CFGBlock *block);
404 unsigned scanBackwards(const CFGBlock *Start,
405 clang::reachable_code::Callback &CB);
406
407 bool isDeadCodeRoot(const CFGBlock *Block);
408
409 const Stmt *findDeadCode(const CFGBlock *Block);
410
411 void reportDeadCode(const CFGBlock *B,
412 const Stmt *S,
413 clang::reachable_code::Callback &CB);
414 };
415 }
416
enqueue(const CFGBlock * block)417 void DeadCodeScan::enqueue(const CFGBlock *block) {
418 unsigned blockID = block->getBlockID();
419 if (Reachable[blockID] || Visited[blockID])
420 return;
421 Visited[blockID] = true;
422 WorkList.push_back(block);
423 }
424
isDeadCodeRoot(const clang::CFGBlock * Block)425 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
426 bool isDeadRoot = true;
427
428 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
429 E = Block->pred_end(); I != E; ++I) {
430 if (const CFGBlock *PredBlock = *I) {
431 unsigned blockID = PredBlock->getBlockID();
432 if (Visited[blockID]) {
433 isDeadRoot = false;
434 continue;
435 }
436 if (!Reachable[blockID]) {
437 isDeadRoot = false;
438 Visited[blockID] = true;
439 WorkList.push_back(PredBlock);
440 continue;
441 }
442 }
443 }
444
445 return isDeadRoot;
446 }
447
isValidDeadStmt(const Stmt * S)448 static bool isValidDeadStmt(const Stmt *S) {
449 if (S->getBeginLoc().isInvalid())
450 return false;
451 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
452 return BO->getOpcode() != BO_Comma;
453 return true;
454 }
455
findDeadCode(const clang::CFGBlock * Block)456 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
457 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
458 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
459 const Stmt *S = CS->getStmt();
460 if (isValidDeadStmt(S))
461 return S;
462 }
463
464 CFGTerminator T = Block->getTerminator();
465 if (T.isStmtBranch()) {
466 const Stmt *S = T.getStmt();
467 if (S && isValidDeadStmt(S))
468 return S;
469 }
470
471 return nullptr;
472 }
473
SrcCmp(const std::pair<const CFGBlock *,const Stmt * > * p1,const std::pair<const CFGBlock *,const Stmt * > * p2)474 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
475 const std::pair<const CFGBlock *, const Stmt *> *p2) {
476 if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
477 return -1;
478 if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
479 return 1;
480 return 0;
481 }
482
scanBackwards(const clang::CFGBlock * Start,clang::reachable_code::Callback & CB)483 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
484 clang::reachable_code::Callback &CB) {
485
486 unsigned count = 0;
487 enqueue(Start);
488
489 while (!WorkList.empty()) {
490 const CFGBlock *Block = WorkList.pop_back_val();
491
492 // It is possible that this block has been marked reachable after
493 // it was enqueued.
494 if (Reachable[Block->getBlockID()])
495 continue;
496
497 // Look for any dead code within the block.
498 const Stmt *S = findDeadCode(Block);
499
500 if (!S) {
501 // No dead code. Possibly an empty block. Look at dead predecessors.
502 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
503 E = Block->pred_end(); I != E; ++I) {
504 if (const CFGBlock *predBlock = *I)
505 enqueue(predBlock);
506 }
507 continue;
508 }
509
510 // Specially handle macro-expanded code.
511 if (S->getBeginLoc().isMacroID()) {
512 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
513 continue;
514 }
515
516 if (isDeadCodeRoot(Block)) {
517 reportDeadCode(Block, S, CB);
518 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
519 }
520 else {
521 // Record this statement as the possibly best location in a
522 // strongly-connected component of dead code for emitting a
523 // warning.
524 DeferredLocs.push_back(std::make_pair(Block, S));
525 }
526 }
527
528 // If we didn't find a dead root, then report the dead code with the
529 // earliest location.
530 if (!DeferredLocs.empty()) {
531 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
532 for (const auto &I : DeferredLocs) {
533 const CFGBlock *Block = I.first;
534 if (Reachable[Block->getBlockID()])
535 continue;
536 reportDeadCode(Block, I.second, CB);
537 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
538 }
539 }
540
541 return count;
542 }
543
GetUnreachableLoc(const Stmt * S,SourceRange & R1,SourceRange & R2)544 static SourceLocation GetUnreachableLoc(const Stmt *S,
545 SourceRange &R1,
546 SourceRange &R2) {
547 R1 = R2 = SourceRange();
548
549 if (const Expr *Ex = dyn_cast<Expr>(S))
550 S = Ex->IgnoreParenImpCasts();
551
552 switch (S->getStmtClass()) {
553 case Expr::BinaryOperatorClass: {
554 const BinaryOperator *BO = cast<BinaryOperator>(S);
555 return BO->getOperatorLoc();
556 }
557 case Expr::UnaryOperatorClass: {
558 const UnaryOperator *UO = cast<UnaryOperator>(S);
559 R1 = UO->getSubExpr()->getSourceRange();
560 return UO->getOperatorLoc();
561 }
562 case Expr::CompoundAssignOperatorClass: {
563 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
564 R1 = CAO->getLHS()->getSourceRange();
565 R2 = CAO->getRHS()->getSourceRange();
566 return CAO->getOperatorLoc();
567 }
568 case Expr::BinaryConditionalOperatorClass:
569 case Expr::ConditionalOperatorClass: {
570 const AbstractConditionalOperator *CO =
571 cast<AbstractConditionalOperator>(S);
572 return CO->getQuestionLoc();
573 }
574 case Expr::MemberExprClass: {
575 const MemberExpr *ME = cast<MemberExpr>(S);
576 R1 = ME->getSourceRange();
577 return ME->getMemberLoc();
578 }
579 case Expr::ArraySubscriptExprClass: {
580 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
581 R1 = ASE->getLHS()->getSourceRange();
582 R2 = ASE->getRHS()->getSourceRange();
583 return ASE->getRBracketLoc();
584 }
585 case Expr::CStyleCastExprClass: {
586 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
587 R1 = CSC->getSubExpr()->getSourceRange();
588 return CSC->getLParenLoc();
589 }
590 case Expr::CXXFunctionalCastExprClass: {
591 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
592 R1 = CE->getSubExpr()->getSourceRange();
593 return CE->getBeginLoc();
594 }
595 case Stmt::CXXTryStmtClass: {
596 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
597 }
598 case Expr::ObjCBridgedCastExprClass: {
599 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
600 R1 = CSC->getSubExpr()->getSourceRange();
601 return CSC->getLParenLoc();
602 }
603 default: ;
604 }
605 R1 = S->getSourceRange();
606 return S->getBeginLoc();
607 }
608
reportDeadCode(const CFGBlock * B,const Stmt * S,clang::reachable_code::Callback & CB)609 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
610 const Stmt *S,
611 clang::reachable_code::Callback &CB) {
612 // Classify the unreachable code found, or suppress it in some cases.
613 reachable_code::UnreachableKind UK = reachable_code::UK_Other;
614
615 if (isa<BreakStmt>(S)) {
616 UK = reachable_code::UK_Break;
617 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
618 isBuiltinAssumeFalse(B, S, C)) {
619 return;
620 }
621 else if (isDeadReturn(B, S)) {
622 UK = reachable_code::UK_Return;
623 }
624
625 SourceRange SilenceableCondVal;
626
627 if (UK == reachable_code::UK_Other) {
628 // Check if the dead code is part of the "loop target" of
629 // a for/for-range loop. This is the block that contains
630 // the increment code.
631 if (const Stmt *LoopTarget = B->getLoopTarget()) {
632 SourceLocation Loc = LoopTarget->getBeginLoc();
633 SourceRange R1(Loc, Loc), R2;
634
635 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
636 const Expr *Inc = FS->getInc();
637 Loc = Inc->getBeginLoc();
638 R2 = Inc->getSourceRange();
639 }
640
641 CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
642 Loc, SourceRange(), SourceRange(Loc, Loc), R2);
643 return;
644 }
645
646 // Check if the dead block has a predecessor whose branch has
647 // a configuration value that *could* be modified to
648 // silence the warning.
649 CFGBlock::const_pred_iterator PI = B->pred_begin();
650 if (PI != B->pred_end()) {
651 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
652 const Stmt *TermCond =
653 PredBlock->getTerminatorCondition(/* strip parens */ false);
654 isConfigurationValue(TermCond, PP, &SilenceableCondVal);
655 }
656 }
657 }
658
659 SourceRange R1, R2;
660 SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
661 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
662 }
663
664 //===----------------------------------------------------------------------===//
665 // Reachability APIs.
666 //===----------------------------------------------------------------------===//
667
668 namespace clang { namespace reachable_code {
669
anchor()670 void Callback::anchor() { }
671
ScanReachableFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable)672 unsigned ScanReachableFromBlock(const CFGBlock *Start,
673 llvm::BitVector &Reachable) {
674 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
675 }
676
FindUnreachableCode(AnalysisDeclContext & AC,Preprocessor & PP,Callback & CB)677 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
678 Callback &CB) {
679
680 CFG *cfg = AC.getCFG();
681 if (!cfg)
682 return;
683
684 // Scan for reachable blocks from the entrance of the CFG.
685 // If there are no unreachable blocks, we're done.
686 llvm::BitVector reachable(cfg->getNumBlockIDs());
687 unsigned numReachable =
688 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
689 if (numReachable == cfg->getNumBlockIDs())
690 return;
691
692 // If there aren't explicit EH edges, we should include the 'try' dispatch
693 // blocks as roots.
694 if (!AC.getCFGBuildOptions().AddEHEdges) {
695 for (const CFGBlock *B : cfg->try_blocks())
696 numReachable += scanMaybeReachableFromBlock(B, PP, reachable);
697 if (numReachable == cfg->getNumBlockIDs())
698 return;
699 }
700
701 // There are some unreachable blocks. We need to find the root blocks that
702 // contain code that should be considered unreachable.
703 for (const CFGBlock *block : *cfg) {
704 // A block may have been marked reachable during this loop.
705 if (reachable[block->getBlockID()])
706 continue;
707
708 DeadCodeScan DS(reachable, PP, AC.getASTContext());
709 numReachable += DS.scanBackwards(block, CB);
710
711 if (numReachable == cfg->getNumBlockIDs())
712 return;
713 }
714 }
715
716 }} // end namespace clang::reachable_code
717