1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/MemoryLocation.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/DiagnosticInfo.h"
32 #include "llvm/IR/DiagnosticPrinter.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicsRISCV.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/KnownBits.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41
42 using namespace llvm;
43
44 #define DEBUG_TYPE "riscv-lower"
45
46 STATISTIC(NumTailCalls, "Number of tail calls");
47
RISCVTargetLowering(const TargetMachine & TM,const RISCVSubtarget & STI)48 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
49 const RISCVSubtarget &STI)
50 : TargetLowering(TM), Subtarget(STI) {
51
52 if (Subtarget.isRV32E())
53 report_fatal_error("Codegen not yet implemented for RV32E");
54
55 RISCVABI::ABI ABI = Subtarget.getTargetABI();
56 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
57
58 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
59 !Subtarget.hasStdExtF()) {
60 errs() << "Hard-float 'f' ABI can't be used for a target that "
61 "doesn't support the F instruction set extension (ignoring "
62 "target-abi)\n";
63 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
64 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
65 !Subtarget.hasStdExtD()) {
66 errs() << "Hard-float 'd' ABI can't be used for a target that "
67 "doesn't support the D instruction set extension (ignoring "
68 "target-abi)\n";
69 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
70 }
71
72 switch (ABI) {
73 default:
74 report_fatal_error("Don't know how to lower this ABI");
75 case RISCVABI::ABI_ILP32:
76 case RISCVABI::ABI_ILP32F:
77 case RISCVABI::ABI_ILP32D:
78 case RISCVABI::ABI_LP64:
79 case RISCVABI::ABI_LP64F:
80 case RISCVABI::ABI_LP64D:
81 break;
82 }
83
84 MVT XLenVT = Subtarget.getXLenVT();
85
86 // Set up the register classes.
87 addRegisterClass(XLenVT, &RISCV::GPRRegClass);
88
89 if (Subtarget.hasStdExtZfh())
90 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
91 if (Subtarget.hasStdExtF())
92 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
93 if (Subtarget.hasStdExtD())
94 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
95
96 static const MVT::SimpleValueType BoolVecVTs[] = {
97 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1,
98 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
99 static const MVT::SimpleValueType IntVecVTs[] = {
100 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8,
101 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16,
102 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
103 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
104 MVT::nxv4i64, MVT::nxv8i64};
105 static const MVT::SimpleValueType F16VecVTs[] = {
106 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16,
107 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
108 static const MVT::SimpleValueType F32VecVTs[] = {
109 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
110 static const MVT::SimpleValueType F64VecVTs[] = {
111 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
112
113 if (Subtarget.hasVInstructions()) {
114 auto addRegClassForRVV = [this](MVT VT) {
115 // Disable the smallest fractional LMUL types if ELEN is less than
116 // RVVBitsPerBlock.
117 unsigned MinElts = RISCV::RVVBitsPerBlock / Subtarget.getELEN();
118 if (VT.getVectorMinNumElements() < MinElts)
119 return;
120
121 unsigned Size = VT.getSizeInBits().getKnownMinValue();
122 const TargetRegisterClass *RC;
123 if (Size <= RISCV::RVVBitsPerBlock)
124 RC = &RISCV::VRRegClass;
125 else if (Size == 2 * RISCV::RVVBitsPerBlock)
126 RC = &RISCV::VRM2RegClass;
127 else if (Size == 4 * RISCV::RVVBitsPerBlock)
128 RC = &RISCV::VRM4RegClass;
129 else if (Size == 8 * RISCV::RVVBitsPerBlock)
130 RC = &RISCV::VRM8RegClass;
131 else
132 llvm_unreachable("Unexpected size");
133
134 addRegisterClass(VT, RC);
135 };
136
137 for (MVT VT : BoolVecVTs)
138 addRegClassForRVV(VT);
139 for (MVT VT : IntVecVTs) {
140 if (VT.getVectorElementType() == MVT::i64 &&
141 !Subtarget.hasVInstructionsI64())
142 continue;
143 addRegClassForRVV(VT);
144 }
145
146 if (Subtarget.hasVInstructionsF16())
147 for (MVT VT : F16VecVTs)
148 addRegClassForRVV(VT);
149
150 if (Subtarget.hasVInstructionsF32())
151 for (MVT VT : F32VecVTs)
152 addRegClassForRVV(VT);
153
154 if (Subtarget.hasVInstructionsF64())
155 for (MVT VT : F64VecVTs)
156 addRegClassForRVV(VT);
157
158 if (Subtarget.useRVVForFixedLengthVectors()) {
159 auto addRegClassForFixedVectors = [this](MVT VT) {
160 MVT ContainerVT = getContainerForFixedLengthVector(VT);
161 unsigned RCID = getRegClassIDForVecVT(ContainerVT);
162 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
163 addRegisterClass(VT, TRI.getRegClass(RCID));
164 };
165 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
166 if (useRVVForFixedLengthVectorVT(VT))
167 addRegClassForFixedVectors(VT);
168
169 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
170 if (useRVVForFixedLengthVectorVT(VT))
171 addRegClassForFixedVectors(VT);
172 }
173 }
174
175 // Compute derived properties from the register classes.
176 computeRegisterProperties(STI.getRegisterInfo());
177
178 setStackPointerRegisterToSaveRestore(RISCV::X2);
179
180 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, XLenVT,
181 MVT::i1, Promote);
182
183 // TODO: add all necessary setOperationAction calls.
184 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
185
186 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
187 setOperationAction(ISD::BR_CC, XLenVT, Expand);
188 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
189 setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
190
191 setOperationAction({ISD::STACKSAVE, ISD::STACKRESTORE}, MVT::Other, Expand);
192
193 setOperationAction(ISD::VASTART, MVT::Other, Custom);
194 setOperationAction({ISD::VAARG, ISD::VACOPY, ISD::VAEND}, MVT::Other, Expand);
195
196 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
197
198 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
199
200 if (!Subtarget.hasStdExtZbb())
201 setOperationAction(ISD::SIGN_EXTEND_INREG, {MVT::i8, MVT::i16}, Expand);
202
203 if (Subtarget.is64Bit()) {
204 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
205
206 setOperationAction({ISD::ADD, ISD::SUB, ISD::SHL, ISD::SRA, ISD::SRL},
207 MVT::i32, Custom);
208
209 setOperationAction({ISD::UADDO, ISD::USUBO, ISD::UADDSAT, ISD::USUBSAT},
210 MVT::i32, Custom);
211 } else {
212 setLibcallName(
213 {RTLIB::SHL_I128, RTLIB::SRL_I128, RTLIB::SRA_I128, RTLIB::MUL_I128},
214 nullptr);
215 setLibcallName(RTLIB::MULO_I64, nullptr);
216 }
217
218 if (!Subtarget.hasStdExtM() && !Subtarget.hasStdExtZmmul()) {
219 setOperationAction({ISD::MUL, ISD::MULHS, ISD::MULHU}, XLenVT, Expand);
220 } else {
221 if (Subtarget.is64Bit()) {
222 setOperationAction(ISD::MUL, {MVT::i32, MVT::i128}, Custom);
223 } else {
224 setOperationAction(ISD::MUL, MVT::i64, Custom);
225 }
226 }
227
228 if (!Subtarget.hasStdExtM()) {
229 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM},
230 XLenVT, Expand);
231 } else {
232 if (Subtarget.is64Bit()) {
233 setOperationAction({ISD::SDIV, ISD::UDIV, ISD::UREM},
234 {MVT::i8, MVT::i16, MVT::i32}, Custom);
235 }
236 }
237
238 setOperationAction(
239 {ISD::SDIVREM, ISD::UDIVREM, ISD::SMUL_LOHI, ISD::UMUL_LOHI}, XLenVT,
240 Expand);
241
242 setOperationAction({ISD::SHL_PARTS, ISD::SRL_PARTS, ISD::SRA_PARTS}, XLenVT,
243 Custom);
244
245 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
246 Subtarget.hasStdExtZbkb()) {
247 if (Subtarget.is64Bit())
248 setOperationAction({ISD::ROTL, ISD::ROTR}, MVT::i32, Custom);
249 } else {
250 setOperationAction({ISD::ROTL, ISD::ROTR}, XLenVT, Expand);
251 }
252
253 if (Subtarget.hasStdExtZbp()) {
254 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
255 // more combining.
256 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, XLenVT, Custom);
257
258 // BSWAP i8 doesn't exist.
259 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
260
261 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i16, Custom);
262
263 if (Subtarget.is64Bit())
264 setOperationAction({ISD::BITREVERSE, ISD::BSWAP}, MVT::i32, Custom);
265 } else {
266 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
267 // pattern match it directly in isel.
268 setOperationAction(ISD::BSWAP, XLenVT,
269 (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbkb())
270 ? Legal
271 : Expand);
272 // Zbkb can use rev8+brev8 to implement bitreverse.
273 setOperationAction(ISD::BITREVERSE, XLenVT,
274 Subtarget.hasStdExtZbkb() ? Custom : Expand);
275 }
276
277 if (Subtarget.hasStdExtZbb()) {
278 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, XLenVT,
279 Legal);
280
281 if (Subtarget.is64Bit())
282 setOperationAction(
283 {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF},
284 MVT::i32, Custom);
285 } else {
286 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP}, XLenVT, Expand);
287
288 if (Subtarget.is64Bit())
289 setOperationAction(ISD::ABS, MVT::i32, Custom);
290 }
291
292 if (Subtarget.hasStdExtZbt()) {
293 setOperationAction({ISD::FSHL, ISD::FSHR}, XLenVT, Custom);
294 setOperationAction(ISD::SELECT, XLenVT, Legal);
295
296 if (Subtarget.is64Bit())
297 setOperationAction({ISD::FSHL, ISD::FSHR}, MVT::i32, Custom);
298 } else {
299 setOperationAction(ISD::SELECT, XLenVT, Custom);
300 }
301
302 static const unsigned FPLegalNodeTypes[] = {
303 ISD::FMINNUM, ISD::FMAXNUM, ISD::LRINT,
304 ISD::LLRINT, ISD::LROUND, ISD::LLROUND,
305 ISD::STRICT_LRINT, ISD::STRICT_LLRINT, ISD::STRICT_LROUND,
306 ISD::STRICT_LLROUND, ISD::STRICT_FMA, ISD::STRICT_FADD,
307 ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV,
308 ISD::STRICT_FSQRT, ISD::STRICT_FSETCC, ISD::STRICT_FSETCCS};
309
310 static const ISD::CondCode FPCCToExpand[] = {
311 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
312 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
313 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO};
314
315 static const unsigned FPOpToExpand[] = {
316 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW,
317 ISD::FREM, ISD::FP16_TO_FP, ISD::FP_TO_FP16};
318
319 if (Subtarget.hasStdExtZfh())
320 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
321
322 if (Subtarget.hasStdExtZfh()) {
323 setOperationAction(FPLegalNodeTypes, MVT::f16, Legal);
324 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Legal);
325 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
326 setCondCodeAction(FPCCToExpand, MVT::f16, Expand);
327 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
328 setOperationAction(ISD::SELECT, MVT::f16, Custom);
329 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
330
331 setOperationAction({ISD::FREM, ISD::FCEIL, ISD::FFLOOR, ISD::FNEARBYINT,
332 ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, ISD::FTRUNC,
333 ISD::FPOW, ISD::FPOWI, ISD::FCOS, ISD::FSIN,
334 ISD::FSINCOS, ISD::FEXP, ISD::FEXP2, ISD::FLOG,
335 ISD::FLOG2, ISD::FLOG10},
336 MVT::f16, Promote);
337
338 // FIXME: Need to promote f16 STRICT_* to f32 libcalls, but we don't have
339 // complete support for all operations in LegalizeDAG.
340
341 // We need to custom promote this.
342 if (Subtarget.is64Bit())
343 setOperationAction(ISD::FPOWI, MVT::i32, Custom);
344 }
345
346 if (Subtarget.hasStdExtF()) {
347 setOperationAction(FPLegalNodeTypes, MVT::f32, Legal);
348 setCondCodeAction(FPCCToExpand, MVT::f32, Expand);
349 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
350 setOperationAction(ISD::SELECT, MVT::f32, Custom);
351 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
352 setOperationAction(FPOpToExpand, MVT::f32, Expand);
353 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
354 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
355 }
356
357 if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
358 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
359
360 if (Subtarget.hasStdExtD()) {
361 setOperationAction(FPLegalNodeTypes, MVT::f64, Legal);
362 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
363 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
364 setCondCodeAction(FPCCToExpand, MVT::f64, Expand);
365 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
366 setOperationAction(ISD::SELECT, MVT::f64, Custom);
367 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
368 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
369 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
370 setOperationAction(FPOpToExpand, MVT::f64, Expand);
371 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
372 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
373 }
374
375 if (Subtarget.is64Bit())
376 setOperationAction({ISD::FP_TO_UINT, ISD::FP_TO_SINT,
377 ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT},
378 MVT::i32, Custom);
379
380 if (Subtarget.hasStdExtF()) {
381 setOperationAction({ISD::FP_TO_UINT_SAT, ISD::FP_TO_SINT_SAT}, XLenVT,
382 Custom);
383
384 setOperationAction({ISD::STRICT_FP_TO_UINT, ISD::STRICT_FP_TO_SINT,
385 ISD::STRICT_UINT_TO_FP, ISD::STRICT_SINT_TO_FP},
386 XLenVT, Legal);
387
388 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
389 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
390 }
391
392 setOperationAction({ISD::GlobalAddress, ISD::BlockAddress, ISD::ConstantPool,
393 ISD::JumpTable},
394 XLenVT, Custom);
395
396 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
397
398 if (Subtarget.is64Bit())
399 setOperationAction(ISD::Constant, MVT::i64, Custom);
400
401 // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
402 // Unfortunately this can't be determined just from the ISA naming string.
403 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
404 Subtarget.is64Bit() ? Legal : Custom);
405
406 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Legal);
407 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
408 if (Subtarget.is64Bit())
409 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
410
411 if (Subtarget.hasStdExtA()) {
412 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
413 setMinCmpXchgSizeInBits(32);
414 } else {
415 setMaxAtomicSizeInBitsSupported(0);
416 }
417
418 setBooleanContents(ZeroOrOneBooleanContent);
419
420 if (Subtarget.hasVInstructions()) {
421 setBooleanVectorContents(ZeroOrOneBooleanContent);
422
423 setOperationAction(ISD::VSCALE, XLenVT, Custom);
424
425 // RVV intrinsics may have illegal operands.
426 // We also need to custom legalize vmv.x.s.
427 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
428 {MVT::i8, MVT::i16}, Custom);
429 if (Subtarget.is64Bit())
430 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
431 else
432 setOperationAction({ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN},
433 MVT::i64, Custom);
434
435 setOperationAction({ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID},
436 MVT::Other, Custom);
437
438 static const unsigned IntegerVPOps[] = {
439 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL,
440 ISD::VP_SDIV, ISD::VP_UDIV, ISD::VP_SREM,
441 ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR,
442 ISD::VP_XOR, ISD::VP_ASHR, ISD::VP_LSHR,
443 ISD::VP_SHL, ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
444 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR, ISD::VP_REDUCE_SMAX,
445 ISD::VP_REDUCE_SMIN, ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN,
446 ISD::VP_MERGE, ISD::VP_SELECT, ISD::VP_FPTOSI,
447 ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_SIGN_EXTEND,
448 ISD::VP_ZERO_EXTEND, ISD::VP_TRUNCATE};
449
450 static const unsigned FloatingPointVPOps[] = {
451 ISD::VP_FADD, ISD::VP_FSUB,
452 ISD::VP_FMUL, ISD::VP_FDIV,
453 ISD::VP_FNEG, ISD::VP_FMA,
454 ISD::VP_REDUCE_FADD, ISD::VP_REDUCE_SEQ_FADD,
455 ISD::VP_REDUCE_FMIN, ISD::VP_REDUCE_FMAX,
456 ISD::VP_MERGE, ISD::VP_SELECT,
457 ISD::VP_SITOFP, ISD::VP_UITOFP,
458 ISD::VP_SETCC, ISD::VP_FP_ROUND,
459 ISD::VP_FP_EXTEND};
460
461 static const unsigned IntegerVecReduceOps[] = {
462 ISD::VECREDUCE_ADD, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
463 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
464 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN};
465
466 static const unsigned FloatingPointVecReduceOps[] = {
467 ISD::VECREDUCE_FADD, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_FMIN,
468 ISD::VECREDUCE_FMAX};
469
470 if (!Subtarget.is64Bit()) {
471 // We must custom-lower certain vXi64 operations on RV32 due to the vector
472 // element type being illegal.
473 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
474 MVT::i64, Custom);
475
476 setOperationAction(IntegerVecReduceOps, MVT::i64, Custom);
477
478 setOperationAction({ISD::VP_REDUCE_ADD, ISD::VP_REDUCE_AND,
479 ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR,
480 ISD::VP_REDUCE_SMAX, ISD::VP_REDUCE_SMIN,
481 ISD::VP_REDUCE_UMAX, ISD::VP_REDUCE_UMIN},
482 MVT::i64, Custom);
483 }
484
485 for (MVT VT : BoolVecVTs) {
486 if (!isTypeLegal(VT))
487 continue;
488
489 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
490
491 // Mask VTs are custom-expanded into a series of standard nodes
492 setOperationAction({ISD::TRUNCATE, ISD::CONCAT_VECTORS,
493 ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
494 VT, Custom);
495
496 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
497 Custom);
498
499 setOperationAction(ISD::SELECT, VT, Custom);
500 setOperationAction(
501 {ISD::SELECT_CC, ISD::VSELECT, ISD::VP_MERGE, ISD::VP_SELECT}, VT,
502 Expand);
503
504 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR}, VT, Custom);
505
506 setOperationAction(
507 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
508 Custom);
509
510 setOperationAction(
511 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
512 Custom);
513
514 // RVV has native int->float & float->int conversions where the
515 // element type sizes are within one power-of-two of each other. Any
516 // wider distances between type sizes have to be lowered as sequences
517 // which progressively narrow the gap in stages.
518 setOperationAction(
519 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
520 VT, Custom);
521
522 // Expand all extending loads to types larger than this, and truncating
523 // stores from types larger than this.
524 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
525 setTruncStoreAction(OtherVT, VT, Expand);
526 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
527 VT, Expand);
528 }
529
530 setOperationAction(
531 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_TRUNCATE, ISD::VP_SETCC}, VT,
532 Custom);
533 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
534
535 setOperationPromotedToType(
536 ISD::VECTOR_SPLICE, VT,
537 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount()));
538 }
539
540 for (MVT VT : IntVecVTs) {
541 if (!isTypeLegal(VT))
542 continue;
543
544 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
545 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
546
547 // Vectors implement MULHS/MULHU.
548 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand);
549
550 // nxvXi64 MULHS/MULHU requires the V extension instead of Zve64*.
551 if (VT.getVectorElementType() == MVT::i64 && !Subtarget.hasStdExtV())
552 setOperationAction({ISD::MULHU, ISD::MULHS}, VT, Expand);
553
554 setOperationAction({ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}, VT,
555 Legal);
556
557 setOperationAction({ISD::ROTL, ISD::ROTR}, VT, Expand);
558
559 setOperationAction({ISD::CTTZ, ISD::CTLZ, ISD::CTPOP, ISD::BSWAP}, VT,
560 Expand);
561
562 setOperationAction(ISD::BSWAP, VT, Expand);
563
564 // Custom-lower extensions and truncations from/to mask types.
565 setOperationAction({ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND},
566 VT, Custom);
567
568 // RVV has native int->float & float->int conversions where the
569 // element type sizes are within one power-of-two of each other. Any
570 // wider distances between type sizes have to be lowered as sequences
571 // which progressively narrow the gap in stages.
572 setOperationAction(
573 {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT},
574 VT, Custom);
575
576 setOperationAction(
577 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT, Legal);
578
579 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
580 // nodes which truncate by one power of two at a time.
581 setOperationAction(ISD::TRUNCATE, VT, Custom);
582
583 // Custom-lower insert/extract operations to simplify patterns.
584 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
585 Custom);
586
587 // Custom-lower reduction operations to set up the corresponding custom
588 // nodes' operands.
589 setOperationAction(IntegerVecReduceOps, VT, Custom);
590
591 setOperationAction(IntegerVPOps, VT, Custom);
592
593 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
594
595 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
596 VT, Custom);
597
598 setOperationAction(
599 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
600 Custom);
601
602 setOperationAction(
603 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
604 VT, Custom);
605
606 setOperationAction(ISD::SELECT, VT, Custom);
607 setOperationAction(ISD::SELECT_CC, VT, Expand);
608
609 setOperationAction({ISD::STEP_VECTOR, ISD::VECTOR_REVERSE}, VT, Custom);
610
611 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
612 setTruncStoreAction(VT, OtherVT, Expand);
613 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, OtherVT,
614 VT, Expand);
615 }
616
617 // Splice
618 setOperationAction(ISD::VECTOR_SPLICE, VT, Custom);
619
620 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
621 // type that can represent the value exactly.
622 if (VT.getVectorElementType() != MVT::i64) {
623 MVT FloatEltVT =
624 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
625 EVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
626 if (isTypeLegal(FloatVT)) {
627 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
628 Custom);
629 }
630 }
631 }
632
633 // Expand various CCs to best match the RVV ISA, which natively supports UNE
634 // but no other unordered comparisons, and supports all ordered comparisons
635 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
636 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
637 // and we pattern-match those back to the "original", swapping operands once
638 // more. This way we catch both operations and both "vf" and "fv" forms with
639 // fewer patterns.
640 static const ISD::CondCode VFPCCToExpand[] = {
641 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
642 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
643 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE,
644 };
645
646 // Sets common operation actions on RVV floating-point vector types.
647 const auto SetCommonVFPActions = [&](MVT VT) {
648 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
649 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
650 // sizes are within one power-of-two of each other. Therefore conversions
651 // between vXf16 and vXf64 must be lowered as sequences which convert via
652 // vXf32.
653 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
654 // Custom-lower insert/extract operations to simplify patterns.
655 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT}, VT,
656 Custom);
657 // Expand various condition codes (explained above).
658 setCondCodeAction(VFPCCToExpand, VT, Expand);
659
660 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, VT, Legal);
661
662 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
663 VT, Custom);
664
665 setOperationAction(FloatingPointVecReduceOps, VT, Custom);
666
667 // Expand FP operations that need libcalls.
668 setOperationAction(ISD::FREM, VT, Expand);
669 setOperationAction(ISD::FPOW, VT, Expand);
670 setOperationAction(ISD::FCOS, VT, Expand);
671 setOperationAction(ISD::FSIN, VT, Expand);
672 setOperationAction(ISD::FSINCOS, VT, Expand);
673 setOperationAction(ISD::FEXP, VT, Expand);
674 setOperationAction(ISD::FEXP2, VT, Expand);
675 setOperationAction(ISD::FLOG, VT, Expand);
676 setOperationAction(ISD::FLOG2, VT, Expand);
677 setOperationAction(ISD::FLOG10, VT, Expand);
678 setOperationAction(ISD::FRINT, VT, Expand);
679 setOperationAction(ISD::FNEARBYINT, VT, Expand);
680
681 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
682 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
683 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
684 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
685
686 setOperationAction(ISD::FCOPYSIGN, VT, Legal);
687
688 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
689
690 setOperationAction({ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER},
691 VT, Custom);
692
693 setOperationAction(
694 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
695 Custom);
696
697 setOperationAction(ISD::SELECT, VT, Custom);
698 setOperationAction(ISD::SELECT_CC, VT, Expand);
699
700 setOperationAction(
701 {ISD::CONCAT_VECTORS, ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR},
702 VT, Custom);
703
704 setOperationAction({ISD::VECTOR_REVERSE, ISD::VECTOR_SPLICE}, VT, Custom);
705
706 setOperationAction(FloatingPointVPOps, VT, Custom);
707 };
708
709 // Sets common extload/truncstore actions on RVV floating-point vector
710 // types.
711 const auto SetCommonVFPExtLoadTruncStoreActions =
712 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
713 for (auto SmallVT : SmallerVTs) {
714 setTruncStoreAction(VT, SmallVT, Expand);
715 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
716 }
717 };
718
719 if (Subtarget.hasVInstructionsF16()) {
720 for (MVT VT : F16VecVTs) {
721 if (!isTypeLegal(VT))
722 continue;
723 SetCommonVFPActions(VT);
724 }
725 }
726
727 if (Subtarget.hasVInstructionsF32()) {
728 for (MVT VT : F32VecVTs) {
729 if (!isTypeLegal(VT))
730 continue;
731 SetCommonVFPActions(VT);
732 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
733 }
734 }
735
736 if (Subtarget.hasVInstructionsF64()) {
737 for (MVT VT : F64VecVTs) {
738 if (!isTypeLegal(VT))
739 continue;
740 SetCommonVFPActions(VT);
741 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
742 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
743 }
744 }
745
746 if (Subtarget.useRVVForFixedLengthVectors()) {
747 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
748 if (!useRVVForFixedLengthVectorVT(VT))
749 continue;
750
751 // By default everything must be expanded.
752 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
753 setOperationAction(Op, VT, Expand);
754 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
755 setTruncStoreAction(VT, OtherVT, Expand);
756 setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD},
757 OtherVT, VT, Expand);
758 }
759
760 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
761 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
762 Custom);
763
764 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS}, VT,
765 Custom);
766
767 setOperationAction({ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT},
768 VT, Custom);
769
770 setOperationAction({ISD::LOAD, ISD::STORE}, VT, Custom);
771
772 setOperationAction(ISD::SETCC, VT, Custom);
773
774 setOperationAction(ISD::SELECT, VT, Custom);
775
776 setOperationAction(ISD::TRUNCATE, VT, Custom);
777
778 setOperationAction(ISD::BITCAST, VT, Custom);
779
780 setOperationAction(
781 {ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, ISD::VECREDUCE_XOR}, VT,
782 Custom);
783
784 setOperationAction(
785 {ISD::VP_REDUCE_AND, ISD::VP_REDUCE_OR, ISD::VP_REDUCE_XOR}, VT,
786 Custom);
787
788 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT,
789 ISD::FP_TO_UINT},
790 VT, Custom);
791
792 // Operations below are different for between masks and other vectors.
793 if (VT.getVectorElementType() == MVT::i1) {
794 setOperationAction({ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR, ISD::AND,
795 ISD::OR, ISD::XOR},
796 VT, Custom);
797
798 setOperationAction(
799 {ISD::VP_FPTOSI, ISD::VP_FPTOUI, ISD::VP_SETCC, ISD::VP_TRUNCATE},
800 VT, Custom);
801 continue;
802 }
803
804 // Make SPLAT_VECTOR Legal so DAGCombine will convert splat vectors to
805 // it before type legalization for i64 vectors on RV32. It will then be
806 // type legalized to SPLAT_VECTOR_PARTS which we need to Custom handle.
807 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
808 // improvements first.
809 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
810 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
811 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
812 }
813
814 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
815 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
816
817 setOperationAction(
818 {ISD::MLOAD, ISD::MSTORE, ISD::MGATHER, ISD::MSCATTER}, VT, Custom);
819
820 setOperationAction(
821 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
822 Custom);
823
824 setOperationAction({ISD::ADD, ISD::MUL, ISD::SUB, ISD::AND, ISD::OR,
825 ISD::XOR, ISD::SDIV, ISD::SREM, ISD::UDIV,
826 ISD::UREM, ISD::SHL, ISD::SRA, ISD::SRL},
827 VT, Custom);
828
829 setOperationAction(
830 {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX, ISD::ABS}, VT, Custom);
831
832 // vXi64 MULHS/MULHU requires the V extension instead of Zve64*.
833 if (VT.getVectorElementType() != MVT::i64 || Subtarget.hasStdExtV())
834 setOperationAction({ISD::MULHS, ISD::MULHU}, VT, Custom);
835
836 setOperationAction(
837 {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT}, VT,
838 Custom);
839
840 setOperationAction(ISD::VSELECT, VT, Custom);
841 setOperationAction(ISD::SELECT_CC, VT, Expand);
842
843 setOperationAction(
844 {ISD::ANY_EXTEND, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND}, VT, Custom);
845
846 // Custom-lower reduction operations to set up the corresponding custom
847 // nodes' operands.
848 setOperationAction({ISD::VECREDUCE_ADD, ISD::VECREDUCE_SMAX,
849 ISD::VECREDUCE_SMIN, ISD::VECREDUCE_UMAX,
850 ISD::VECREDUCE_UMIN},
851 VT, Custom);
852
853 setOperationAction(IntegerVPOps, VT, Custom);
854
855 // Lower CTLZ_ZERO_UNDEF and CTTZ_ZERO_UNDEF if we have a floating point
856 // type that can represent the value exactly.
857 if (VT.getVectorElementType() != MVT::i64) {
858 MVT FloatEltVT =
859 VT.getVectorElementType() == MVT::i32 ? MVT::f64 : MVT::f32;
860 EVT FloatVT =
861 MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
862 if (isTypeLegal(FloatVT))
863 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
864 Custom);
865 }
866 }
867
868 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
869 if (!useRVVForFixedLengthVectorVT(VT))
870 continue;
871
872 // By default everything must be expanded.
873 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
874 setOperationAction(Op, VT, Expand);
875 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
876 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
877 setTruncStoreAction(VT, OtherVT, Expand);
878 }
879
880 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
881 setOperationAction({ISD::INSERT_SUBVECTOR, ISD::EXTRACT_SUBVECTOR}, VT,
882 Custom);
883
884 setOperationAction({ISD::BUILD_VECTOR, ISD::CONCAT_VECTORS,
885 ISD::VECTOR_SHUFFLE, ISD::INSERT_VECTOR_ELT,
886 ISD::EXTRACT_VECTOR_ELT},
887 VT, Custom);
888
889 setOperationAction({ISD::LOAD, ISD::STORE, ISD::MLOAD, ISD::MSTORE,
890 ISD::MGATHER, ISD::MSCATTER},
891 VT, Custom);
892
893 setOperationAction(
894 {ISD::VP_LOAD, ISD::VP_STORE, ISD::VP_GATHER, ISD::VP_SCATTER}, VT,
895 Custom);
896
897 setOperationAction({ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
898 ISD::FNEG, ISD::FABS, ISD::FCOPYSIGN, ISD::FSQRT,
899 ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM},
900 VT, Custom);
901
902 setOperationAction({ISD::FP_ROUND, ISD::FP_EXTEND}, VT, Custom);
903
904 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FFLOOR, ISD::FROUND},
905 VT, Custom);
906
907 setCondCodeAction(VFPCCToExpand, VT, Expand);
908
909 setOperationAction({ISD::VSELECT, ISD::SELECT}, VT, Custom);
910 setOperationAction(ISD::SELECT_CC, VT, Expand);
911
912 setOperationAction(ISD::BITCAST, VT, Custom);
913
914 setOperationAction(FloatingPointVecReduceOps, VT, Custom);
915
916 setOperationAction(FloatingPointVPOps, VT, Custom);
917 }
918
919 // Custom-legalize bitcasts from fixed-length vectors to scalar types.
920 setOperationAction(ISD::BITCAST, {MVT::i8, MVT::i16, MVT::i32, MVT::i64},
921 Custom);
922 if (Subtarget.hasStdExtZfh())
923 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
924 if (Subtarget.hasStdExtF())
925 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
926 if (Subtarget.hasStdExtD())
927 setOperationAction(ISD::BITCAST, MVT::f64, Custom);
928 }
929 }
930
931 // Function alignments.
932 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
933 setMinFunctionAlignment(FunctionAlignment);
934 setPrefFunctionAlignment(FunctionAlignment);
935
936 setMinimumJumpTableEntries(5);
937
938 // Jumps are expensive, compared to logic
939 setJumpIsExpensive();
940
941 setTargetDAGCombine({ISD::INTRINSIC_WO_CHAIN, ISD::ADD, ISD::SUB, ISD::AND,
942 ISD::OR, ISD::XOR, ISD::SETCC});
943 if (Subtarget.is64Bit())
944 setTargetDAGCombine(ISD::SRA);
945
946 if (Subtarget.hasStdExtF())
947 setTargetDAGCombine({ISD::FADD, ISD::FMAXNUM, ISD::FMINNUM});
948
949 if (Subtarget.hasStdExtZbp())
950 setTargetDAGCombine({ISD::ROTL, ISD::ROTR});
951
952 if (Subtarget.hasStdExtZbb())
953 setTargetDAGCombine({ISD::UMAX, ISD::UMIN, ISD::SMAX, ISD::SMIN});
954
955 if (Subtarget.hasStdExtZbkb())
956 setTargetDAGCombine(ISD::BITREVERSE);
957 if (Subtarget.hasStdExtZfh() || Subtarget.hasStdExtZbb())
958 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
959 if (Subtarget.hasStdExtF())
960 setTargetDAGCombine({ISD::ZERO_EXTEND, ISD::FP_TO_SINT, ISD::FP_TO_UINT,
961 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT});
962 if (Subtarget.hasVInstructions())
963 setTargetDAGCombine({ISD::FCOPYSIGN, ISD::MGATHER, ISD::MSCATTER,
964 ISD::VP_GATHER, ISD::VP_SCATTER, ISD::SRA, ISD::SRL,
965 ISD::SHL, ISD::STORE, ISD::SPLAT_VECTOR});
966 if (Subtarget.useRVVForFixedLengthVectors())
967 setTargetDAGCombine(ISD::BITCAST);
968
969 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
970 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
971 }
972
getSetCCResultType(const DataLayout & DL,LLVMContext & Context,EVT VT) const973 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
974 LLVMContext &Context,
975 EVT VT) const {
976 if (!VT.isVector())
977 return getPointerTy(DL);
978 if (Subtarget.hasVInstructions() &&
979 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
980 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
981 return VT.changeVectorElementTypeToInteger();
982 }
983
getVPExplicitVectorLengthTy() const984 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
985 return Subtarget.getXLenVT();
986 }
987
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const988 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
989 const CallInst &I,
990 MachineFunction &MF,
991 unsigned Intrinsic) const {
992 auto &DL = I.getModule()->getDataLayout();
993 switch (Intrinsic) {
994 default:
995 return false;
996 case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
997 case Intrinsic::riscv_masked_atomicrmw_add_i32:
998 case Intrinsic::riscv_masked_atomicrmw_sub_i32:
999 case Intrinsic::riscv_masked_atomicrmw_nand_i32:
1000 case Intrinsic::riscv_masked_atomicrmw_max_i32:
1001 case Intrinsic::riscv_masked_atomicrmw_min_i32:
1002 case Intrinsic::riscv_masked_atomicrmw_umax_i32:
1003 case Intrinsic::riscv_masked_atomicrmw_umin_i32:
1004 case Intrinsic::riscv_masked_cmpxchg_i32:
1005 Info.opc = ISD::INTRINSIC_W_CHAIN;
1006 Info.memVT = MVT::i32;
1007 Info.ptrVal = I.getArgOperand(0);
1008 Info.offset = 0;
1009 Info.align = Align(4);
1010 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1011 MachineMemOperand::MOVolatile;
1012 return true;
1013 case Intrinsic::riscv_masked_strided_load:
1014 Info.opc = ISD::INTRINSIC_W_CHAIN;
1015 Info.ptrVal = I.getArgOperand(1);
1016 Info.memVT = getValueType(DL, I.getType()->getScalarType());
1017 Info.align = Align(DL.getTypeSizeInBits(I.getType()->getScalarType()) / 8);
1018 Info.size = MemoryLocation::UnknownSize;
1019 Info.flags |= MachineMemOperand::MOLoad;
1020 return true;
1021 case Intrinsic::riscv_masked_strided_store:
1022 Info.opc = ISD::INTRINSIC_VOID;
1023 Info.ptrVal = I.getArgOperand(1);
1024 Info.memVT =
1025 getValueType(DL, I.getArgOperand(0)->getType()->getScalarType());
1026 Info.align = Align(
1027 DL.getTypeSizeInBits(I.getArgOperand(0)->getType()->getScalarType()) /
1028 8);
1029 Info.size = MemoryLocation::UnknownSize;
1030 Info.flags |= MachineMemOperand::MOStore;
1031 return true;
1032 case Intrinsic::riscv_seg2_load:
1033 case Intrinsic::riscv_seg3_load:
1034 case Intrinsic::riscv_seg4_load:
1035 case Intrinsic::riscv_seg5_load:
1036 case Intrinsic::riscv_seg6_load:
1037 case Intrinsic::riscv_seg7_load:
1038 case Intrinsic::riscv_seg8_load:
1039 Info.opc = ISD::INTRINSIC_W_CHAIN;
1040 Info.ptrVal = I.getArgOperand(0);
1041 Info.memVT =
1042 getValueType(DL, I.getType()->getStructElementType(0)->getScalarType());
1043 Info.align =
1044 Align(DL.getTypeSizeInBits(
1045 I.getType()->getStructElementType(0)->getScalarType()) /
1046 8);
1047 Info.size = MemoryLocation::UnknownSize;
1048 Info.flags |= MachineMemOperand::MOLoad;
1049 return true;
1050 }
1051 }
1052
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1053 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1054 const AddrMode &AM, Type *Ty,
1055 unsigned AS,
1056 Instruction *I) const {
1057 // No global is ever allowed as a base.
1058 if (AM.BaseGV)
1059 return false;
1060
1061 // RVV instructions only support register addressing.
1062 if (Subtarget.hasVInstructions() && isa<VectorType>(Ty))
1063 return AM.HasBaseReg && AM.Scale == 0 && !AM.BaseOffs;
1064
1065 // Require a 12-bit signed offset.
1066 if (!isInt<12>(AM.BaseOffs))
1067 return false;
1068
1069 switch (AM.Scale) {
1070 case 0: // "r+i" or just "i", depending on HasBaseReg.
1071 break;
1072 case 1:
1073 if (!AM.HasBaseReg) // allow "r+i".
1074 break;
1075 return false; // disallow "r+r" or "r+r+i".
1076 default:
1077 return false;
1078 }
1079
1080 return true;
1081 }
1082
isLegalICmpImmediate(int64_t Imm) const1083 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1084 return isInt<12>(Imm);
1085 }
1086
isLegalAddImmediate(int64_t Imm) const1087 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
1088 return isInt<12>(Imm);
1089 }
1090
1091 // On RV32, 64-bit integers are split into their high and low parts and held
1092 // in two different registers, so the trunc is free since the low register can
1093 // just be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const1094 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
1095 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
1096 return false;
1097 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
1098 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
1099 return (SrcBits == 64 && DestBits == 32);
1100 }
1101
isTruncateFree(EVT SrcVT,EVT DstVT) const1102 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
1103 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
1104 !SrcVT.isInteger() || !DstVT.isInteger())
1105 return false;
1106 unsigned SrcBits = SrcVT.getSizeInBits();
1107 unsigned DestBits = DstVT.getSizeInBits();
1108 return (SrcBits == 64 && DestBits == 32);
1109 }
1110
isZExtFree(SDValue Val,EVT VT2) const1111 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
1112 // Zexts are free if they can be combined with a load.
1113 // Don't advertise i32->i64 zextload as being free for RV64. It interacts
1114 // poorly with type legalization of compares preferring sext.
1115 if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
1116 EVT MemVT = LD->getMemoryVT();
1117 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
1118 (LD->getExtensionType() == ISD::NON_EXTLOAD ||
1119 LD->getExtensionType() == ISD::ZEXTLOAD))
1120 return true;
1121 }
1122
1123 return TargetLowering::isZExtFree(Val, VT2);
1124 }
1125
isSExtCheaperThanZExt(EVT SrcVT,EVT DstVT) const1126 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
1127 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
1128 }
1129
signExtendConstant(const ConstantInt * CI) const1130 bool RISCVTargetLowering::signExtendConstant(const ConstantInt *CI) const {
1131 return Subtarget.is64Bit() && CI->getType()->isIntegerTy(32);
1132 }
1133
isCheapToSpeculateCttz() const1134 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
1135 return Subtarget.hasStdExtZbb();
1136 }
1137
isCheapToSpeculateCtlz() const1138 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
1139 return Subtarget.hasStdExtZbb();
1140 }
1141
hasAndNotCompare(SDValue Y) const1142 bool RISCVTargetLowering::hasAndNotCompare(SDValue Y) const {
1143 EVT VT = Y.getValueType();
1144
1145 // FIXME: Support vectors once we have tests.
1146 if (VT.isVector())
1147 return false;
1148
1149 return (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp() ||
1150 Subtarget.hasStdExtZbkb()) &&
1151 !isa<ConstantSDNode>(Y);
1152 }
1153
hasBitTest(SDValue X,SDValue Y) const1154 bool RISCVTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1155 // We can use ANDI+SEQZ/SNEZ as a bit test. Y contains the bit position.
1156 auto *C = dyn_cast<ConstantSDNode>(Y);
1157 return C && C->getAPIntValue().ule(10);
1158 }
1159
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const1160 bool RISCVTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1161 Type *Ty) const {
1162 assert(Ty->isIntegerTy());
1163
1164 unsigned BitSize = Ty->getIntegerBitWidth();
1165 if (BitSize > Subtarget.getXLen())
1166 return false;
1167
1168 // Fast path, assume 32-bit immediates are cheap.
1169 int64_t Val = Imm.getSExtValue();
1170 if (isInt<32>(Val))
1171 return true;
1172
1173 // A constant pool entry may be more aligned thant he load we're trying to
1174 // replace. If we don't support unaligned scalar mem, prefer the constant
1175 // pool.
1176 // TODO: Can the caller pass down the alignment?
1177 if (!Subtarget.enableUnalignedScalarMem())
1178 return true;
1179
1180 // Prefer to keep the load if it would require many instructions.
1181 // This uses the same threshold we use for constant pools but doesn't
1182 // check useConstantPoolForLargeInts.
1183 // TODO: Should we keep the load only when we're definitely going to emit a
1184 // constant pool?
1185
1186 RISCVMatInt::InstSeq Seq =
1187 RISCVMatInt::generateInstSeq(Val, Subtarget.getFeatureBits());
1188 return Seq.size() <= Subtarget.getMaxBuildIntsCost();
1189 }
1190
1191 bool RISCVTargetLowering::
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X,ConstantSDNode * XC,ConstantSDNode * CC,SDValue Y,unsigned OldShiftOpcode,unsigned NewShiftOpcode,SelectionDAG & DAG) const1192 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
1193 SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
1194 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1195 SelectionDAG &DAG) const {
1196 // One interesting pattern that we'd want to form is 'bit extract':
1197 // ((1 >> Y) & 1) ==/!= 0
1198 // But we also need to be careful not to try to reverse that fold.
1199
1200 // Is this '((1 >> Y) & 1)'?
1201 if (XC && OldShiftOpcode == ISD::SRL && XC->isOne())
1202 return false; // Keep the 'bit extract' pattern.
1203
1204 // Will this be '((1 >> Y) & 1)' after the transform?
1205 if (NewShiftOpcode == ISD::SRL && CC->isOne())
1206 return true; // Do form the 'bit extract' pattern.
1207
1208 // If 'X' is a constant, and we transform, then we will immediately
1209 // try to undo the fold, thus causing endless combine loop.
1210 // So only do the transform if X is not a constant. This matches the default
1211 // implementation of this function.
1212 return !XC;
1213 }
1214
1215 /// Check if sinking \p I's operands to I's basic block is profitable, because
1216 /// the operands can be folded into a target instruction, e.g.
1217 /// splats of scalars can fold into vector instructions.
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops) const1218 bool RISCVTargetLowering::shouldSinkOperands(
1219 Instruction *I, SmallVectorImpl<Use *> &Ops) const {
1220 using namespace llvm::PatternMatch;
1221
1222 if (!I->getType()->isVectorTy() || !Subtarget.hasVInstructions())
1223 return false;
1224
1225 auto IsSinker = [&](Instruction *I, int Operand) {
1226 switch (I->getOpcode()) {
1227 case Instruction::Add:
1228 case Instruction::Sub:
1229 case Instruction::Mul:
1230 case Instruction::And:
1231 case Instruction::Or:
1232 case Instruction::Xor:
1233 case Instruction::FAdd:
1234 case Instruction::FSub:
1235 case Instruction::FMul:
1236 case Instruction::FDiv:
1237 case Instruction::ICmp:
1238 case Instruction::FCmp:
1239 return true;
1240 case Instruction::Shl:
1241 case Instruction::LShr:
1242 case Instruction::AShr:
1243 case Instruction::UDiv:
1244 case Instruction::SDiv:
1245 case Instruction::URem:
1246 case Instruction::SRem:
1247 return Operand == 1;
1248 case Instruction::Call:
1249 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1250 switch (II->getIntrinsicID()) {
1251 case Intrinsic::fma:
1252 case Intrinsic::vp_fma:
1253 return Operand == 0 || Operand == 1;
1254 // FIXME: Our patterns can only match vx/vf instructions when the splat
1255 // it on the RHS, because TableGen doesn't recognize our VP operations
1256 // as commutative.
1257 case Intrinsic::vp_add:
1258 case Intrinsic::vp_mul:
1259 case Intrinsic::vp_and:
1260 case Intrinsic::vp_or:
1261 case Intrinsic::vp_xor:
1262 case Intrinsic::vp_fadd:
1263 case Intrinsic::vp_fmul:
1264 case Intrinsic::vp_shl:
1265 case Intrinsic::vp_lshr:
1266 case Intrinsic::vp_ashr:
1267 case Intrinsic::vp_udiv:
1268 case Intrinsic::vp_sdiv:
1269 case Intrinsic::vp_urem:
1270 case Intrinsic::vp_srem:
1271 return Operand == 1;
1272 // ... with the exception of vp.sub/vp.fsub/vp.fdiv, which have
1273 // explicit patterns for both LHS and RHS (as 'vr' versions).
1274 case Intrinsic::vp_sub:
1275 case Intrinsic::vp_fsub:
1276 case Intrinsic::vp_fdiv:
1277 return Operand == 0 || Operand == 1;
1278 default:
1279 return false;
1280 }
1281 }
1282 return false;
1283 default:
1284 return false;
1285 }
1286 };
1287
1288 for (auto OpIdx : enumerate(I->operands())) {
1289 if (!IsSinker(I, OpIdx.index()))
1290 continue;
1291
1292 Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
1293 // Make sure we are not already sinking this operand
1294 if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
1295 continue;
1296
1297 // We are looking for a splat that can be sunk.
1298 if (!match(Op, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
1299 m_Undef(), m_ZeroMask())))
1300 continue;
1301
1302 // All uses of the shuffle should be sunk to avoid duplicating it across gpr
1303 // and vector registers
1304 for (Use &U : Op->uses()) {
1305 Instruction *Insn = cast<Instruction>(U.getUser());
1306 if (!IsSinker(Insn, U.getOperandNo()))
1307 return false;
1308 }
1309
1310 Ops.push_back(&Op->getOperandUse(0));
1311 Ops.push_back(&OpIdx.value());
1312 }
1313 return true;
1314 }
1315
shouldScalarizeBinop(SDValue VecOp) const1316 bool RISCVTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
1317 unsigned Opc = VecOp.getOpcode();
1318
1319 // Assume target opcodes can't be scalarized.
1320 // TODO - do we have any exceptions?
1321 if (Opc >= ISD::BUILTIN_OP_END)
1322 return false;
1323
1324 // If the vector op is not supported, try to convert to scalar.
1325 EVT VecVT = VecOp.getValueType();
1326 if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
1327 return true;
1328
1329 // If the vector op is supported, but the scalar op is not, the transform may
1330 // not be worthwhile.
1331 EVT ScalarVT = VecVT.getScalarType();
1332 return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
1333 }
1334
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const1335 bool RISCVTargetLowering::isOffsetFoldingLegal(
1336 const GlobalAddressSDNode *GA) const {
1337 // In order to maximise the opportunity for common subexpression elimination,
1338 // keep a separate ADD node for the global address offset instead of folding
1339 // it in the global address node. Later peephole optimisations may choose to
1340 // fold it back in when profitable.
1341 return false;
1342 }
1343
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const1344 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
1345 bool ForCodeSize) const {
1346 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1347 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1348 return false;
1349 if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1350 return false;
1351 if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1352 return false;
1353 return Imm.isZero();
1354 }
1355
hasBitPreservingFPLogic(EVT VT) const1356 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1357 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1358 (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1359 (VT == MVT::f64 && Subtarget.hasStdExtD());
1360 }
1361
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1362 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1363 CallingConv::ID CC,
1364 EVT VT) const {
1365 // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1366 // We might still end up using a GPR but that will be decided based on ABI.
1367 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1368 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1369 return MVT::f32;
1370
1371 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1372 }
1373
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1374 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1375 CallingConv::ID CC,
1376 EVT VT) const {
1377 // Use f32 to pass f16 if it is legal and Zfh is not enabled.
1378 // We might still end up using a GPR but that will be decided based on ABI.
1379 // FIXME: Change to Zfhmin once f16 becomes a legal type with Zfhmin.
1380 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1381 return 1;
1382
1383 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1384 }
1385
1386 // Changes the condition code and swaps operands if necessary, so the SetCC
1387 // operation matches one of the comparisons supported directly by branches
1388 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1389 // with 1/-1.
translateSetCCForBranch(const SDLoc & DL,SDValue & LHS,SDValue & RHS,ISD::CondCode & CC,SelectionDAG & DAG)1390 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1391 ISD::CondCode &CC, SelectionDAG &DAG) {
1392 // If this is a single bit test that can't be handled by ANDI, shift the
1393 // bit to be tested to the MSB and perform a signed compare with 0.
1394 if (isIntEqualitySetCC(CC) && isNullConstant(RHS) &&
1395 LHS.getOpcode() == ISD::AND && LHS.hasOneUse() &&
1396 isa<ConstantSDNode>(LHS.getOperand(1))) {
1397 uint64_t Mask = LHS.getConstantOperandVal(1);
1398 if (isPowerOf2_64(Mask) && !isInt<12>(Mask)) {
1399 CC = CC == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
1400 unsigned ShAmt = LHS.getValueSizeInBits() - 1 - Log2_64(Mask);
1401 LHS = LHS.getOperand(0);
1402 if (ShAmt != 0)
1403 LHS = DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS,
1404 DAG.getConstant(ShAmt, DL, LHS.getValueType()));
1405 return;
1406 }
1407 }
1408
1409 if (auto *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1410 int64_t C = RHSC->getSExtValue();
1411 switch (CC) {
1412 default: break;
1413 case ISD::SETGT:
1414 // Convert X > -1 to X >= 0.
1415 if (C == -1) {
1416 RHS = DAG.getConstant(0, DL, RHS.getValueType());
1417 CC = ISD::SETGE;
1418 return;
1419 }
1420 break;
1421 case ISD::SETLT:
1422 // Convert X < 1 to 0 <= X.
1423 if (C == 1) {
1424 RHS = LHS;
1425 LHS = DAG.getConstant(0, DL, RHS.getValueType());
1426 CC = ISD::SETGE;
1427 return;
1428 }
1429 break;
1430 }
1431 }
1432
1433 switch (CC) {
1434 default:
1435 break;
1436 case ISD::SETGT:
1437 case ISD::SETLE:
1438 case ISD::SETUGT:
1439 case ISD::SETULE:
1440 CC = ISD::getSetCCSwappedOperands(CC);
1441 std::swap(LHS, RHS);
1442 break;
1443 }
1444 }
1445
getLMUL(MVT VT)1446 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1447 assert(VT.isScalableVector() && "Expecting a scalable vector type");
1448 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1449 if (VT.getVectorElementType() == MVT::i1)
1450 KnownSize *= 8;
1451
1452 switch (KnownSize) {
1453 default:
1454 llvm_unreachable("Invalid LMUL.");
1455 case 8:
1456 return RISCVII::VLMUL::LMUL_F8;
1457 case 16:
1458 return RISCVII::VLMUL::LMUL_F4;
1459 case 32:
1460 return RISCVII::VLMUL::LMUL_F2;
1461 case 64:
1462 return RISCVII::VLMUL::LMUL_1;
1463 case 128:
1464 return RISCVII::VLMUL::LMUL_2;
1465 case 256:
1466 return RISCVII::VLMUL::LMUL_4;
1467 case 512:
1468 return RISCVII::VLMUL::LMUL_8;
1469 }
1470 }
1471
getRegClassIDForLMUL(RISCVII::VLMUL LMul)1472 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1473 switch (LMul) {
1474 default:
1475 llvm_unreachable("Invalid LMUL.");
1476 case RISCVII::VLMUL::LMUL_F8:
1477 case RISCVII::VLMUL::LMUL_F4:
1478 case RISCVII::VLMUL::LMUL_F2:
1479 case RISCVII::VLMUL::LMUL_1:
1480 return RISCV::VRRegClassID;
1481 case RISCVII::VLMUL::LMUL_2:
1482 return RISCV::VRM2RegClassID;
1483 case RISCVII::VLMUL::LMUL_4:
1484 return RISCV::VRM4RegClassID;
1485 case RISCVII::VLMUL::LMUL_8:
1486 return RISCV::VRM8RegClassID;
1487 }
1488 }
1489
getSubregIndexByMVT(MVT VT,unsigned Index)1490 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1491 RISCVII::VLMUL LMUL = getLMUL(VT);
1492 if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1493 LMUL == RISCVII::VLMUL::LMUL_F4 ||
1494 LMUL == RISCVII::VLMUL::LMUL_F2 ||
1495 LMUL == RISCVII::VLMUL::LMUL_1) {
1496 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1497 "Unexpected subreg numbering");
1498 return RISCV::sub_vrm1_0 + Index;
1499 }
1500 if (LMUL == RISCVII::VLMUL::LMUL_2) {
1501 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1502 "Unexpected subreg numbering");
1503 return RISCV::sub_vrm2_0 + Index;
1504 }
1505 if (LMUL == RISCVII::VLMUL::LMUL_4) {
1506 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1507 "Unexpected subreg numbering");
1508 return RISCV::sub_vrm4_0 + Index;
1509 }
1510 llvm_unreachable("Invalid vector type.");
1511 }
1512
getRegClassIDForVecVT(MVT VT)1513 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1514 if (VT.getVectorElementType() == MVT::i1)
1515 return RISCV::VRRegClassID;
1516 return getRegClassIDForLMUL(getLMUL(VT));
1517 }
1518
1519 // Attempt to decompose a subvector insert/extract between VecVT and
1520 // SubVecVT via subregister indices. Returns the subregister index that
1521 // can perform the subvector insert/extract with the given element index, as
1522 // well as the index corresponding to any leftover subvectors that must be
1523 // further inserted/extracted within the register class for SubVecVT.
1524 std::pair<unsigned, unsigned>
decomposeSubvectorInsertExtractToSubRegs(MVT VecVT,MVT SubVecVT,unsigned InsertExtractIdx,const RISCVRegisterInfo * TRI)1525 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1526 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1527 const RISCVRegisterInfo *TRI) {
1528 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1529 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1530 RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1531 "Register classes not ordered");
1532 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1533 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1534 // Try to compose a subregister index that takes us from the incoming
1535 // LMUL>1 register class down to the outgoing one. At each step we half
1536 // the LMUL:
1537 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1538 // Note that this is not guaranteed to find a subregister index, such as
1539 // when we are extracting from one VR type to another.
1540 unsigned SubRegIdx = RISCV::NoSubRegister;
1541 for (const unsigned RCID :
1542 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1543 if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1544 VecVT = VecVT.getHalfNumVectorElementsVT();
1545 bool IsHi =
1546 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1547 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1548 getSubregIndexByMVT(VecVT, IsHi));
1549 if (IsHi)
1550 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1551 }
1552 return {SubRegIdx, InsertExtractIdx};
1553 }
1554
1555 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1556 // stores for those types.
mergeStoresAfterLegalization(EVT VT) const1557 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1558 return !Subtarget.useRVVForFixedLengthVectors() ||
1559 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1560 }
1561
isLegalElementTypeForRVV(Type * ScalarTy) const1562 bool RISCVTargetLowering::isLegalElementTypeForRVV(Type *ScalarTy) const {
1563 if (ScalarTy->isPointerTy())
1564 return true;
1565
1566 if (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
1567 ScalarTy->isIntegerTy(32))
1568 return true;
1569
1570 if (ScalarTy->isIntegerTy(64))
1571 return Subtarget.hasVInstructionsI64();
1572
1573 if (ScalarTy->isHalfTy())
1574 return Subtarget.hasVInstructionsF16();
1575 if (ScalarTy->isFloatTy())
1576 return Subtarget.hasVInstructionsF32();
1577 if (ScalarTy->isDoubleTy())
1578 return Subtarget.hasVInstructionsF64();
1579
1580 return false;
1581 }
1582
getVLOperand(SDValue Op)1583 static SDValue getVLOperand(SDValue Op) {
1584 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1585 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
1586 "Unexpected opcode");
1587 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
1588 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
1589 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
1590 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
1591 if (!II)
1592 return SDValue();
1593 return Op.getOperand(II->VLOperand + 1 + HasChain);
1594 }
1595
useRVVForFixedLengthVectorVT(MVT VT,const RISCVSubtarget & Subtarget)1596 static bool useRVVForFixedLengthVectorVT(MVT VT,
1597 const RISCVSubtarget &Subtarget) {
1598 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1599 if (!Subtarget.useRVVForFixedLengthVectors())
1600 return false;
1601
1602 // We only support a set of vector types with a consistent maximum fixed size
1603 // across all supported vector element types to avoid legalization issues.
1604 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1605 // fixed-length vector type we support is 1024 bytes.
1606 if (VT.getFixedSizeInBits() > 1024 * 8)
1607 return false;
1608
1609 unsigned MinVLen = Subtarget.getRealMinVLen();
1610
1611 MVT EltVT = VT.getVectorElementType();
1612
1613 // Don't use RVV for vectors we cannot scalarize if required.
1614 switch (EltVT.SimpleTy) {
1615 // i1 is supported but has different rules.
1616 default:
1617 return false;
1618 case MVT::i1:
1619 // Masks can only use a single register.
1620 if (VT.getVectorNumElements() > MinVLen)
1621 return false;
1622 MinVLen /= 8;
1623 break;
1624 case MVT::i8:
1625 case MVT::i16:
1626 case MVT::i32:
1627 break;
1628 case MVT::i64:
1629 if (!Subtarget.hasVInstructionsI64())
1630 return false;
1631 break;
1632 case MVT::f16:
1633 if (!Subtarget.hasVInstructionsF16())
1634 return false;
1635 break;
1636 case MVT::f32:
1637 if (!Subtarget.hasVInstructionsF32())
1638 return false;
1639 break;
1640 case MVT::f64:
1641 if (!Subtarget.hasVInstructionsF64())
1642 return false;
1643 break;
1644 }
1645
1646 // Reject elements larger than ELEN.
1647 if (EltVT.getSizeInBits() > Subtarget.getELEN())
1648 return false;
1649
1650 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1651 // Don't use RVV for types that don't fit.
1652 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1653 return false;
1654
1655 // TODO: Perhaps an artificial restriction, but worth having whilst getting
1656 // the base fixed length RVV support in place.
1657 if (!VT.isPow2VectorType())
1658 return false;
1659
1660 return true;
1661 }
1662
useRVVForFixedLengthVectorVT(MVT VT) const1663 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1664 return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1665 }
1666
1667 // Return the largest legal scalable vector type that matches VT's element type.
getContainerForFixedLengthVector(const TargetLowering & TLI,MVT VT,const RISCVSubtarget & Subtarget)1668 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1669 const RISCVSubtarget &Subtarget) {
1670 // This may be called before legal types are setup.
1671 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1672 useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1673 "Expected legal fixed length vector!");
1674
1675 unsigned MinVLen = Subtarget.getRealMinVLen();
1676 unsigned MaxELen = Subtarget.getELEN();
1677
1678 MVT EltVT = VT.getVectorElementType();
1679 switch (EltVT.SimpleTy) {
1680 default:
1681 llvm_unreachable("unexpected element type for RVV container");
1682 case MVT::i1:
1683 case MVT::i8:
1684 case MVT::i16:
1685 case MVT::i32:
1686 case MVT::i64:
1687 case MVT::f16:
1688 case MVT::f32:
1689 case MVT::f64: {
1690 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1691 // narrower types. The smallest fractional LMUL we support is 8/ELEN. Within
1692 // each fractional LMUL we support SEW between 8 and LMUL*ELEN.
1693 unsigned NumElts =
1694 (VT.getVectorNumElements() * RISCV::RVVBitsPerBlock) / MinVLen;
1695 NumElts = std::max(NumElts, RISCV::RVVBitsPerBlock / MaxELen);
1696 assert(isPowerOf2_32(NumElts) && "Expected power of 2 NumElts");
1697 return MVT::getScalableVectorVT(EltVT, NumElts);
1698 }
1699 }
1700 }
1701
getContainerForFixedLengthVector(SelectionDAG & DAG,MVT VT,const RISCVSubtarget & Subtarget)1702 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1703 const RISCVSubtarget &Subtarget) {
1704 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1705 Subtarget);
1706 }
1707
getContainerForFixedLengthVector(MVT VT) const1708 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1709 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1710 }
1711
1712 // Grow V to consume an entire RVV register.
convertToScalableVector(EVT VT,SDValue V,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1713 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1714 const RISCVSubtarget &Subtarget) {
1715 assert(VT.isScalableVector() &&
1716 "Expected to convert into a scalable vector!");
1717 assert(V.getValueType().isFixedLengthVector() &&
1718 "Expected a fixed length vector operand!");
1719 SDLoc DL(V);
1720 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1721 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1722 }
1723
1724 // Shrink V so it's just big enough to maintain a VT's worth of data.
convertFromScalableVector(EVT VT,SDValue V,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1725 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1726 const RISCVSubtarget &Subtarget) {
1727 assert(VT.isFixedLengthVector() &&
1728 "Expected to convert into a fixed length vector!");
1729 assert(V.getValueType().isScalableVector() &&
1730 "Expected a scalable vector operand!");
1731 SDLoc DL(V);
1732 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1733 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1734 }
1735
1736 /// Return the type of the mask type suitable for masking the provided
1737 /// vector type. This is simply an i1 element type vector of the same
1738 /// (possibly scalable) length.
getMaskTypeFor(MVT VecVT)1739 static MVT getMaskTypeFor(MVT VecVT) {
1740 assert(VecVT.isVector());
1741 ElementCount EC = VecVT.getVectorElementCount();
1742 return MVT::getVectorVT(MVT::i1, EC);
1743 }
1744
1745 /// Creates an all ones mask suitable for masking a vector of type VecTy with
1746 /// vector length VL. .
getAllOnesMask(MVT VecVT,SDValue VL,SDLoc DL,SelectionDAG & DAG)1747 static SDValue getAllOnesMask(MVT VecVT, SDValue VL, SDLoc DL,
1748 SelectionDAG &DAG) {
1749 MVT MaskVT = getMaskTypeFor(VecVT);
1750 return DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1751 }
1752
1753 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1754 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1755 // the vector type that it is contained in.
1756 static std::pair<SDValue, SDValue>
getDefaultVLOps(MVT VecVT,MVT ContainerVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1757 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1758 const RISCVSubtarget &Subtarget) {
1759 assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1760 MVT XLenVT = Subtarget.getXLenVT();
1761 SDValue VL = VecVT.isFixedLengthVector()
1762 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1763 : DAG.getRegister(RISCV::X0, XLenVT);
1764 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
1765 return {Mask, VL};
1766 }
1767
1768 // As above but assuming the given type is a scalable vector type.
1769 static std::pair<SDValue, SDValue>
getDefaultScalableVLOps(MVT VecVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1770 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1771 const RISCVSubtarget &Subtarget) {
1772 assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1773 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1774 }
1775
1776 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1777 // of either is (currently) supported. This can get us into an infinite loop
1778 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1779 // as a ..., etc.
1780 // Until either (or both) of these can reliably lower any node, reporting that
1781 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1782 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1783 // which is not desirable.
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const1784 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1785 EVT VT, unsigned DefinedValues) const {
1786 return false;
1787 }
1788
lowerFP_TO_INT_SAT(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1789 static SDValue lowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
1790 const RISCVSubtarget &Subtarget) {
1791 // RISCV FP-to-int conversions saturate to the destination register size, but
1792 // don't produce 0 for nan. We can use a conversion instruction and fix the
1793 // nan case with a compare and a select.
1794 SDValue Src = Op.getOperand(0);
1795
1796 EVT DstVT = Op.getValueType();
1797 EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1798
1799 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
1800 unsigned Opc;
1801 if (SatVT == DstVT)
1802 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
1803 else if (DstVT == MVT::i64 && SatVT == MVT::i32)
1804 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
1805 else
1806 return SDValue();
1807 // FIXME: Support other SatVTs by clamping before or after the conversion.
1808
1809 SDLoc DL(Op);
1810 SDValue FpToInt = DAG.getNode(
1811 Opc, DL, DstVT, Src,
1812 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, Subtarget.getXLenVT()));
1813
1814 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
1815 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
1816 }
1817
1818 // Expand vector FTRUNC, FCEIL, and FFLOOR by converting to the integer domain
1819 // and back. Taking care to avoid converting values that are nan or already
1820 // correct.
1821 // TODO: Floor and ceil could be shorter by changing rounding mode, but we don't
1822 // have FRM dependencies modeled yet.
lowerFTRUNC_FCEIL_FFLOOR(SDValue Op,SelectionDAG & DAG)1823 static SDValue lowerFTRUNC_FCEIL_FFLOOR(SDValue Op, SelectionDAG &DAG) {
1824 MVT VT = Op.getSimpleValueType();
1825 assert(VT.isVector() && "Unexpected type");
1826
1827 SDLoc DL(Op);
1828
1829 // Freeze the source since we are increasing the number of uses.
1830 SDValue Src = DAG.getFreeze(Op.getOperand(0));
1831
1832 // Truncate to integer and convert back to FP.
1833 MVT IntVT = VT.changeVectorElementTypeToInteger();
1834 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Src);
1835 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1836
1837 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1838
1839 if (Op.getOpcode() == ISD::FCEIL) {
1840 // If the truncated value is the greater than or equal to the original
1841 // value, we've computed the ceil. Otherwise, we went the wrong way and
1842 // need to increase by 1.
1843 // FIXME: This should use a masked operation. Handle here or in isel?
1844 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Truncated,
1845 DAG.getConstantFP(1.0, DL, VT));
1846 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOLT);
1847 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1848 } else if (Op.getOpcode() == ISD::FFLOOR) {
1849 // If the truncated value is the less than or equal to the original value,
1850 // we've computed the floor. Otherwise, we went the wrong way and need to
1851 // decrease by 1.
1852 // FIXME: This should use a masked operation. Handle here or in isel?
1853 SDValue Adjust = DAG.getNode(ISD::FSUB, DL, VT, Truncated,
1854 DAG.getConstantFP(1.0, DL, VT));
1855 SDValue NeedAdjust = DAG.getSetCC(DL, SetccVT, Truncated, Src, ISD::SETOGT);
1856 Truncated = DAG.getSelect(DL, VT, NeedAdjust, Adjust, Truncated);
1857 }
1858
1859 // Restore the original sign so that -0.0 is preserved.
1860 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1861
1862 // Determine the largest integer that can be represented exactly. This and
1863 // values larger than it don't have any fractional bits so don't need to
1864 // be converted.
1865 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1866 unsigned Precision = APFloat::semanticsPrecision(FltSem);
1867 APFloat MaxVal = APFloat(FltSem);
1868 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1869 /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1870 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1871
1872 // If abs(Src) was larger than MaxVal or nan, keep it.
1873 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1874 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1875 return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1876 }
1877
1878 // ISD::FROUND is defined to round to nearest with ties rounding away from 0.
1879 // This mode isn't supported in vector hardware on RISCV. But as long as we
1880 // aren't compiling with trapping math, we can emulate this with
1881 // floor(X + copysign(nextafter(0.5, 0.0), X)).
1882 // FIXME: Could be shorter by changing rounding mode, but we don't have FRM
1883 // dependencies modeled yet.
1884 // FIXME: Use masked operations to avoid final merge.
lowerFROUND(SDValue Op,SelectionDAG & DAG)1885 static SDValue lowerFROUND(SDValue Op, SelectionDAG &DAG) {
1886 MVT VT = Op.getSimpleValueType();
1887 assert(VT.isVector() && "Unexpected type");
1888
1889 SDLoc DL(Op);
1890
1891 // Freeze the source since we are increasing the number of uses.
1892 SDValue Src = DAG.getFreeze(Op.getOperand(0));
1893
1894 // We do the conversion on the absolute value and fix the sign at the end.
1895 SDValue Abs = DAG.getNode(ISD::FABS, DL, VT, Src);
1896
1897 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
1898 bool Ignored;
1899 APFloat Point5Pred = APFloat(0.5f);
1900 Point5Pred.convert(FltSem, APFloat::rmNearestTiesToEven, &Ignored);
1901 Point5Pred.next(/*nextDown*/ true);
1902
1903 // Add the adjustment.
1904 SDValue Adjust = DAG.getNode(ISD::FADD, DL, VT, Abs,
1905 DAG.getConstantFP(Point5Pred, DL, VT));
1906
1907 // Truncate to integer and convert back to fp.
1908 MVT IntVT = VT.changeVectorElementTypeToInteger();
1909 SDValue Truncated = DAG.getNode(ISD::FP_TO_SINT, DL, IntVT, Adjust);
1910 Truncated = DAG.getNode(ISD::SINT_TO_FP, DL, VT, Truncated);
1911
1912 // Restore the original sign.
1913 Truncated = DAG.getNode(ISD::FCOPYSIGN, DL, VT, Truncated, Src);
1914
1915 // Determine the largest integer that can be represented exactly. This and
1916 // values larger than it don't have any fractional bits so don't need to
1917 // be converted.
1918 unsigned Precision = APFloat::semanticsPrecision(FltSem);
1919 APFloat MaxVal = APFloat(FltSem);
1920 MaxVal.convertFromAPInt(APInt::getOneBitSet(Precision, Precision - 1),
1921 /*IsSigned*/ false, APFloat::rmNearestTiesToEven);
1922 SDValue MaxValNode = DAG.getConstantFP(MaxVal, DL, VT);
1923
1924 // If abs(Src) was larger than MaxVal or nan, keep it.
1925 MVT SetccVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1926 SDValue Setcc = DAG.getSetCC(DL, SetccVT, Abs, MaxValNode, ISD::SETOLT);
1927 return DAG.getSelect(DL, VT, Setcc, Truncated, Src);
1928 }
1929
1930 struct VIDSequence {
1931 int64_t StepNumerator;
1932 unsigned StepDenominator;
1933 int64_t Addend;
1934 };
1935
1936 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1937 // to the (non-zero) step S and start value X. This can be then lowered as the
1938 // RVV sequence (VID * S) + X, for example.
1939 // The step S is represented as an integer numerator divided by a positive
1940 // denominator. Note that the implementation currently only identifies
1941 // sequences in which either the numerator is +/- 1 or the denominator is 1. It
1942 // cannot detect 2/3, for example.
1943 // Note that this method will also match potentially unappealing index
1944 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1945 // determine whether this is worth generating code for.
isSimpleVIDSequence(SDValue Op)1946 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1947 unsigned NumElts = Op.getNumOperands();
1948 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1949 if (!Op.getValueType().isInteger())
1950 return None;
1951
1952 Optional<unsigned> SeqStepDenom;
1953 Optional<int64_t> SeqStepNum, SeqAddend;
1954 Optional<std::pair<uint64_t, unsigned>> PrevElt;
1955 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1956 for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1957 // Assume undef elements match the sequence; we just have to be careful
1958 // when interpolating across them.
1959 if (Op.getOperand(Idx).isUndef())
1960 continue;
1961 // The BUILD_VECTOR must be all constants.
1962 if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1963 return None;
1964
1965 uint64_t Val = Op.getConstantOperandVal(Idx) &
1966 maskTrailingOnes<uint64_t>(EltSizeInBits);
1967
1968 if (PrevElt) {
1969 // Calculate the step since the last non-undef element, and ensure
1970 // it's consistent across the entire sequence.
1971 unsigned IdxDiff = Idx - PrevElt->second;
1972 int64_t ValDiff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1973
1974 // A zero-value value difference means that we're somewhere in the middle
1975 // of a fractional step, e.g. <0,0,0*,0,1,1,1,1>. Wait until we notice a
1976 // step change before evaluating the sequence.
1977 if (ValDiff == 0)
1978 continue;
1979
1980 int64_t Remainder = ValDiff % IdxDiff;
1981 // Normalize the step if it's greater than 1.
1982 if (Remainder != ValDiff) {
1983 // The difference must cleanly divide the element span.
1984 if (Remainder != 0)
1985 return None;
1986 ValDiff /= IdxDiff;
1987 IdxDiff = 1;
1988 }
1989
1990 if (!SeqStepNum)
1991 SeqStepNum = ValDiff;
1992 else if (ValDiff != SeqStepNum)
1993 return None;
1994
1995 if (!SeqStepDenom)
1996 SeqStepDenom = IdxDiff;
1997 else if (IdxDiff != *SeqStepDenom)
1998 return None;
1999 }
2000
2001 // Record this non-undef element for later.
2002 if (!PrevElt || PrevElt->first != Val)
2003 PrevElt = std::make_pair(Val, Idx);
2004 }
2005
2006 // We need to have logged a step for this to count as a legal index sequence.
2007 if (!SeqStepNum || !SeqStepDenom)
2008 return None;
2009
2010 // Loop back through the sequence and validate elements we might have skipped
2011 // while waiting for a valid step. While doing this, log any sequence addend.
2012 for (unsigned Idx = 0; Idx < NumElts; Idx++) {
2013 if (Op.getOperand(Idx).isUndef())
2014 continue;
2015 uint64_t Val = Op.getConstantOperandVal(Idx) &
2016 maskTrailingOnes<uint64_t>(EltSizeInBits);
2017 uint64_t ExpectedVal =
2018 (int64_t)(Idx * (uint64_t)*SeqStepNum) / *SeqStepDenom;
2019 int64_t Addend = SignExtend64(Val - ExpectedVal, EltSizeInBits);
2020 if (!SeqAddend)
2021 SeqAddend = Addend;
2022 else if (Addend != SeqAddend)
2023 return None;
2024 }
2025
2026 assert(SeqAddend && "Must have an addend if we have a step");
2027
2028 return VIDSequence{*SeqStepNum, *SeqStepDenom, *SeqAddend};
2029 }
2030
2031 // Match a splatted value (SPLAT_VECTOR/BUILD_VECTOR) of an EXTRACT_VECTOR_ELT
2032 // and lower it as a VRGATHER_VX_VL from the source vector.
matchSplatAsGather(SDValue SplatVal,MVT VT,const SDLoc & DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)2033 static SDValue matchSplatAsGather(SDValue SplatVal, MVT VT, const SDLoc &DL,
2034 SelectionDAG &DAG,
2035 const RISCVSubtarget &Subtarget) {
2036 if (SplatVal.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
2037 return SDValue();
2038 SDValue Vec = SplatVal.getOperand(0);
2039 // Only perform this optimization on vectors of the same size for simplicity.
2040 // Don't perform this optimization for i1 vectors.
2041 // FIXME: Support i1 vectors, maybe by promoting to i8?
2042 if (Vec.getValueType() != VT || VT.getVectorElementType() == MVT::i1)
2043 return SDValue();
2044 SDValue Idx = SplatVal.getOperand(1);
2045 // The index must be a legal type.
2046 if (Idx.getValueType() != Subtarget.getXLenVT())
2047 return SDValue();
2048
2049 MVT ContainerVT = VT;
2050 if (VT.isFixedLengthVector()) {
2051 ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2052 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
2053 }
2054
2055 SDValue Mask, VL;
2056 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2057
2058 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, Vec,
2059 Idx, Mask, DAG.getUNDEF(ContainerVT), VL);
2060
2061 if (!VT.isFixedLengthVector())
2062 return Gather;
2063
2064 return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2065 }
2066
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)2067 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
2068 const RISCVSubtarget &Subtarget) {
2069 MVT VT = Op.getSimpleValueType();
2070 assert(VT.isFixedLengthVector() && "Unexpected vector!");
2071
2072 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2073
2074 SDLoc DL(Op);
2075 SDValue Mask, VL;
2076 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2077
2078 MVT XLenVT = Subtarget.getXLenVT();
2079 unsigned NumElts = Op.getNumOperands();
2080
2081 if (VT.getVectorElementType() == MVT::i1) {
2082 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
2083 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
2084 return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
2085 }
2086
2087 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
2088 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
2089 return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
2090 }
2091
2092 // Lower constant mask BUILD_VECTORs via an integer vector type, in
2093 // scalar integer chunks whose bit-width depends on the number of mask
2094 // bits and XLEN.
2095 // First, determine the most appropriate scalar integer type to use. This
2096 // is at most XLenVT, but may be shrunk to a smaller vector element type
2097 // according to the size of the final vector - use i8 chunks rather than
2098 // XLenVT if we're producing a v8i1. This results in more consistent
2099 // codegen across RV32 and RV64.
2100 unsigned NumViaIntegerBits =
2101 std::min(std::max(NumElts, 8u), Subtarget.getXLen());
2102 NumViaIntegerBits = std::min(NumViaIntegerBits, Subtarget.getELEN());
2103 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
2104 // If we have to use more than one INSERT_VECTOR_ELT then this
2105 // optimization is likely to increase code size; avoid peforming it in
2106 // such a case. We can use a load from a constant pool in this case.
2107 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
2108 return SDValue();
2109 // Now we can create our integer vector type. Note that it may be larger
2110 // than the resulting mask type: v4i1 would use v1i8 as its integer type.
2111 MVT IntegerViaVecVT =
2112 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
2113 divideCeil(NumElts, NumViaIntegerBits));
2114
2115 uint64_t Bits = 0;
2116 unsigned BitPos = 0, IntegerEltIdx = 0;
2117 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
2118
2119 for (unsigned I = 0; I < NumElts; I++, BitPos++) {
2120 // Once we accumulate enough bits to fill our scalar type, insert into
2121 // our vector and clear our accumulated data.
2122 if (I != 0 && I % NumViaIntegerBits == 0) {
2123 if (NumViaIntegerBits <= 32)
2124 Bits = SignExtend64<32>(Bits);
2125 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2126 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
2127 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2128 Bits = 0;
2129 BitPos = 0;
2130 IntegerEltIdx++;
2131 }
2132 SDValue V = Op.getOperand(I);
2133 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
2134 Bits |= ((uint64_t)BitValue << BitPos);
2135 }
2136
2137 // Insert the (remaining) scalar value into position in our integer
2138 // vector type.
2139 if (NumViaIntegerBits <= 32)
2140 Bits = SignExtend64<32>(Bits);
2141 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
2142 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
2143 DAG.getConstant(IntegerEltIdx, DL, XLenVT));
2144
2145 if (NumElts < NumViaIntegerBits) {
2146 // If we're producing a smaller vector than our minimum legal integer
2147 // type, bitcast to the equivalent (known-legal) mask type, and extract
2148 // our final mask.
2149 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
2150 Vec = DAG.getBitcast(MVT::v8i1, Vec);
2151 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
2152 DAG.getConstant(0, DL, XLenVT));
2153 } else {
2154 // Else we must have produced an integer type with the same size as the
2155 // mask type; bitcast for the final result.
2156 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
2157 Vec = DAG.getBitcast(VT, Vec);
2158 }
2159
2160 return Vec;
2161 }
2162
2163 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
2164 // vector type, we have a legal equivalently-sized i8 type, so we can use
2165 // that.
2166 MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
2167 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
2168
2169 SDValue WideVec;
2170 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2171 // For a splat, perform a scalar truncate before creating the wider
2172 // vector.
2173 assert(Splat.getValueType() == XLenVT &&
2174 "Unexpected type for i1 splat value");
2175 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
2176 DAG.getConstant(1, DL, XLenVT));
2177 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
2178 } else {
2179 SmallVector<SDValue, 8> Ops(Op->op_values());
2180 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
2181 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
2182 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
2183 }
2184
2185 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
2186 }
2187
2188 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
2189 if (auto Gather = matchSplatAsGather(Splat, VT, DL, DAG, Subtarget))
2190 return Gather;
2191 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
2192 : RISCVISD::VMV_V_X_VL;
2193 Splat =
2194 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Splat, VL);
2195 return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2196 }
2197
2198 // Try and match index sequences, which we can lower to the vid instruction
2199 // with optional modifications. An all-undef vector is matched by
2200 // getSplatValue, above.
2201 if (auto SimpleVID = isSimpleVIDSequence(Op)) {
2202 int64_t StepNumerator = SimpleVID->StepNumerator;
2203 unsigned StepDenominator = SimpleVID->StepDenominator;
2204 int64_t Addend = SimpleVID->Addend;
2205
2206 assert(StepNumerator != 0 && "Invalid step");
2207 bool Negate = false;
2208 int64_t SplatStepVal = StepNumerator;
2209 unsigned StepOpcode = ISD::MUL;
2210 if (StepNumerator != 1) {
2211 if (isPowerOf2_64(std::abs(StepNumerator))) {
2212 Negate = StepNumerator < 0;
2213 StepOpcode = ISD::SHL;
2214 SplatStepVal = Log2_64(std::abs(StepNumerator));
2215 }
2216 }
2217
2218 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
2219 // threshold since it's the immediate value many RVV instructions accept.
2220 // There is no vmul.vi instruction so ensure multiply constant can fit in
2221 // a single addi instruction.
2222 if (((StepOpcode == ISD::MUL && isInt<12>(SplatStepVal)) ||
2223 (StepOpcode == ISD::SHL && isUInt<5>(SplatStepVal))) &&
2224 isPowerOf2_32(StepDenominator) &&
2225 (SplatStepVal >= 0 || StepDenominator == 1) && isInt<5>(Addend)) {
2226 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
2227 // Convert right out of the scalable type so we can use standard ISD
2228 // nodes for the rest of the computation. If we used scalable types with
2229 // these, we'd lose the fixed-length vector info and generate worse
2230 // vsetvli code.
2231 VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
2232 if ((StepOpcode == ISD::MUL && SplatStepVal != 1) ||
2233 (StepOpcode == ISD::SHL && SplatStepVal != 0)) {
2234 SDValue SplatStep = DAG.getSplatBuildVector(
2235 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
2236 VID = DAG.getNode(StepOpcode, DL, VT, VID, SplatStep);
2237 }
2238 if (StepDenominator != 1) {
2239 SDValue SplatStep = DAG.getSplatBuildVector(
2240 VT, DL, DAG.getConstant(Log2_64(StepDenominator), DL, XLenVT));
2241 VID = DAG.getNode(ISD::SRL, DL, VT, VID, SplatStep);
2242 }
2243 if (Addend != 0 || Negate) {
2244 SDValue SplatAddend = DAG.getSplatBuildVector(
2245 VT, DL, DAG.getConstant(Addend, DL, XLenVT));
2246 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
2247 }
2248 return VID;
2249 }
2250 }
2251
2252 // Attempt to detect "hidden" splats, which only reveal themselves as splats
2253 // when re-interpreted as a vector with a larger element type. For example,
2254 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
2255 // could be instead splat as
2256 // v2i32 = build_vector i32 0x00010000, i32 0x00010000
2257 // TODO: This optimization could also work on non-constant splats, but it
2258 // would require bit-manipulation instructions to construct the splat value.
2259 SmallVector<SDValue> Sequence;
2260 unsigned EltBitSize = VT.getScalarSizeInBits();
2261 const auto *BV = cast<BuildVectorSDNode>(Op);
2262 if (VT.isInteger() && EltBitSize < 64 &&
2263 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
2264 BV->getRepeatedSequence(Sequence) &&
2265 (Sequence.size() * EltBitSize) <= 64) {
2266 unsigned SeqLen = Sequence.size();
2267 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
2268 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
2269 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
2270 ViaIntVT == MVT::i64) &&
2271 "Unexpected sequence type");
2272
2273 unsigned EltIdx = 0;
2274 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
2275 uint64_t SplatValue = 0;
2276 // Construct the amalgamated value which can be splatted as this larger
2277 // vector type.
2278 for (const auto &SeqV : Sequence) {
2279 if (!SeqV.isUndef())
2280 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
2281 << (EltIdx * EltBitSize));
2282 EltIdx++;
2283 }
2284
2285 // On RV64, sign-extend from 32 to 64 bits where possible in order to
2286 // achieve better constant materializion.
2287 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
2288 SplatValue = SignExtend64<32>(SplatValue);
2289
2290 // Since we can't introduce illegal i64 types at this stage, we can only
2291 // perform an i64 splat on RV32 if it is its own sign-extended value. That
2292 // way we can use RVV instructions to splat.
2293 assert((ViaIntVT.bitsLE(XLenVT) ||
2294 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
2295 "Unexpected bitcast sequence");
2296 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
2297 SDValue ViaVL =
2298 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
2299 MVT ViaContainerVT =
2300 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
2301 SDValue Splat =
2302 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
2303 DAG.getUNDEF(ViaContainerVT),
2304 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
2305 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
2306 return DAG.getBitcast(VT, Splat);
2307 }
2308 }
2309
2310 // Try and optimize BUILD_VECTORs with "dominant values" - these are values
2311 // which constitute a large proportion of the elements. In such cases we can
2312 // splat a vector with the dominant element and make up the shortfall with
2313 // INSERT_VECTOR_ELTs.
2314 // Note that this includes vectors of 2 elements by association. The
2315 // upper-most element is the "dominant" one, allowing us to use a splat to
2316 // "insert" the upper element, and an insert of the lower element at position
2317 // 0, which improves codegen.
2318 SDValue DominantValue;
2319 unsigned MostCommonCount = 0;
2320 DenseMap<SDValue, unsigned> ValueCounts;
2321 unsigned NumUndefElts =
2322 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
2323
2324 // Track the number of scalar loads we know we'd be inserting, estimated as
2325 // any non-zero floating-point constant. Other kinds of element are either
2326 // already in registers or are materialized on demand. The threshold at which
2327 // a vector load is more desirable than several scalar materializion and
2328 // vector-insertion instructions is not known.
2329 unsigned NumScalarLoads = 0;
2330
2331 for (SDValue V : Op->op_values()) {
2332 if (V.isUndef())
2333 continue;
2334
2335 ValueCounts.insert(std::make_pair(V, 0));
2336 unsigned &Count = ValueCounts[V];
2337
2338 if (auto *CFP = dyn_cast<ConstantFPSDNode>(V))
2339 NumScalarLoads += !CFP->isExactlyValue(+0.0);
2340
2341 // Is this value dominant? In case of a tie, prefer the highest element as
2342 // it's cheaper to insert near the beginning of a vector than it is at the
2343 // end.
2344 if (++Count >= MostCommonCount) {
2345 DominantValue = V;
2346 MostCommonCount = Count;
2347 }
2348 }
2349
2350 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
2351 unsigned NumDefElts = NumElts - NumUndefElts;
2352 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
2353
2354 // Don't perform this optimization when optimizing for size, since
2355 // materializing elements and inserting them tends to cause code bloat.
2356 if (!DAG.shouldOptForSize() && NumScalarLoads < NumElts &&
2357 ((MostCommonCount > DominantValueCountThreshold) ||
2358 (ValueCounts.size() <= Log2_32(NumDefElts)))) {
2359 // Start by splatting the most common element.
2360 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
2361
2362 DenseSet<SDValue> Processed{DominantValue};
2363 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
2364 for (const auto &OpIdx : enumerate(Op->ops())) {
2365 const SDValue &V = OpIdx.value();
2366 if (V.isUndef() || !Processed.insert(V).second)
2367 continue;
2368 if (ValueCounts[V] == 1) {
2369 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
2370 DAG.getConstant(OpIdx.index(), DL, XLenVT));
2371 } else {
2372 // Blend in all instances of this value using a VSELECT, using a
2373 // mask where each bit signals whether that element is the one
2374 // we're after.
2375 SmallVector<SDValue> Ops;
2376 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
2377 return DAG.getConstant(V == V1, DL, XLenVT);
2378 });
2379 Vec = DAG.getNode(ISD::VSELECT, DL, VT,
2380 DAG.getBuildVector(SelMaskTy, DL, Ops),
2381 DAG.getSplatBuildVector(VT, DL, V), Vec);
2382 }
2383 }
2384
2385 return Vec;
2386 }
2387
2388 return SDValue();
2389 }
2390
splatPartsI64WithVL(const SDLoc & DL,MVT VT,SDValue Passthru,SDValue Lo,SDValue Hi,SDValue VL,SelectionDAG & DAG)2391 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2392 SDValue Lo, SDValue Hi, SDValue VL,
2393 SelectionDAG &DAG) {
2394 if (!Passthru)
2395 Passthru = DAG.getUNDEF(VT);
2396 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
2397 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
2398 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
2399 // If Hi constant is all the same sign bit as Lo, lower this as a custom
2400 // node in order to try and match RVV vector/scalar instructions.
2401 if ((LoC >> 31) == HiC)
2402 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Lo, VL);
2403
2404 // If vl is equal to XLEN_MAX and Hi constant is equal to Lo, we could use
2405 // vmv.v.x whose EEW = 32 to lower it.
2406 auto *Const = dyn_cast<ConstantSDNode>(VL);
2407 if (LoC == HiC && Const && Const->isAllOnesValue()) {
2408 MVT InterVT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
2409 // TODO: if vl <= min(VLMAX), we can also do this. But we could not
2410 // access the subtarget here now.
2411 auto InterVec = DAG.getNode(
2412 RISCVISD::VMV_V_X_VL, DL, InterVT, DAG.getUNDEF(InterVT), Lo,
2413 DAG.getRegister(RISCV::X0, MVT::i32));
2414 return DAG.getNode(ISD::BITCAST, DL, VT, InterVec);
2415 }
2416 }
2417
2418 // Fall back to a stack store and stride x0 vector load.
2419 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Passthru, Lo,
2420 Hi, VL);
2421 }
2422
2423 // Called by type legalization to handle splat of i64 on RV32.
2424 // FIXME: We can optimize this when the type has sign or zero bits in one
2425 // of the halves.
splatSplitI64WithVL(const SDLoc & DL,MVT VT,SDValue Passthru,SDValue Scalar,SDValue VL,SelectionDAG & DAG)2426 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Passthru,
2427 SDValue Scalar, SDValue VL,
2428 SelectionDAG &DAG) {
2429 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
2430 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2431 DAG.getConstant(0, DL, MVT::i32));
2432 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
2433 DAG.getConstant(1, DL, MVT::i32));
2434 return splatPartsI64WithVL(DL, VT, Passthru, Lo, Hi, VL, DAG);
2435 }
2436
2437 // This function lowers a splat of a scalar operand Splat with the vector
2438 // length VL. It ensures the final sequence is type legal, which is useful when
2439 // lowering a splat after type legalization.
lowerScalarSplat(SDValue Passthru,SDValue Scalar,SDValue VL,MVT VT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)2440 static SDValue lowerScalarSplat(SDValue Passthru, SDValue Scalar, SDValue VL,
2441 MVT VT, SDLoc DL, SelectionDAG &DAG,
2442 const RISCVSubtarget &Subtarget) {
2443 bool HasPassthru = Passthru && !Passthru.isUndef();
2444 if (!HasPassthru && !Passthru)
2445 Passthru = DAG.getUNDEF(VT);
2446 if (VT.isFloatingPoint()) {
2447 // If VL is 1, we could use vfmv.s.f.
2448 if (isOneConstant(VL))
2449 return DAG.getNode(RISCVISD::VFMV_S_F_VL, DL, VT, Passthru, Scalar, VL);
2450 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Passthru, Scalar, VL);
2451 }
2452
2453 MVT XLenVT = Subtarget.getXLenVT();
2454
2455 // Simplest case is that the operand needs to be promoted to XLenVT.
2456 if (Scalar.getValueType().bitsLE(XLenVT)) {
2457 // If the operand is a constant, sign extend to increase our chances
2458 // of being able to use a .vi instruction. ANY_EXTEND would become a
2459 // a zero extend and the simm5 check in isel would fail.
2460 // FIXME: Should we ignore the upper bits in isel instead?
2461 unsigned ExtOpc =
2462 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
2463 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
2464 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Scalar);
2465 // If VL is 1 and the scalar value won't benefit from immediate, we could
2466 // use vmv.s.x.
2467 if (isOneConstant(VL) &&
2468 (!Const || isNullConstant(Scalar) || !isInt<5>(Const->getSExtValue())))
2469 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru, Scalar, VL);
2470 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Passthru, Scalar, VL);
2471 }
2472
2473 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
2474 "Unexpected scalar for splat lowering!");
2475
2476 if (isOneConstant(VL) && isNullConstant(Scalar))
2477 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, VT, Passthru,
2478 DAG.getConstant(0, DL, XLenVT), VL);
2479
2480 // Otherwise use the more complicated splatting algorithm.
2481 return splatSplitI64WithVL(DL, VT, Passthru, Scalar, VL, DAG);
2482 }
2483
isInterleaveShuffle(ArrayRef<int> Mask,MVT VT,bool & SwapSources,const RISCVSubtarget & Subtarget)2484 static bool isInterleaveShuffle(ArrayRef<int> Mask, MVT VT, bool &SwapSources,
2485 const RISCVSubtarget &Subtarget) {
2486 // We need to be able to widen elements to the next larger integer type.
2487 if (VT.getScalarSizeInBits() >= Subtarget.getELEN())
2488 return false;
2489
2490 int Size = Mask.size();
2491 assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
2492
2493 int Srcs[] = {-1, -1};
2494 for (int i = 0; i != Size; ++i) {
2495 // Ignore undef elements.
2496 if (Mask[i] < 0)
2497 continue;
2498
2499 // Is this an even or odd element.
2500 int Pol = i % 2;
2501
2502 // Ensure we consistently use the same source for this element polarity.
2503 int Src = Mask[i] / Size;
2504 if (Srcs[Pol] < 0)
2505 Srcs[Pol] = Src;
2506 if (Srcs[Pol] != Src)
2507 return false;
2508
2509 // Make sure the element within the source is appropriate for this element
2510 // in the destination.
2511 int Elt = Mask[i] % Size;
2512 if (Elt != i / 2)
2513 return false;
2514 }
2515
2516 // We need to find a source for each polarity and they can't be the same.
2517 if (Srcs[0] < 0 || Srcs[1] < 0 || Srcs[0] == Srcs[1])
2518 return false;
2519
2520 // Swap the sources if the second source was in the even polarity.
2521 SwapSources = Srcs[0] > Srcs[1];
2522
2523 return true;
2524 }
2525
2526 /// Match shuffles that concatenate two vectors, rotate the concatenation,
2527 /// and then extract the original number of elements from the rotated result.
2528 /// This is equivalent to vector.splice or X86's PALIGNR instruction. The
2529 /// returned rotation amount is for a rotate right, where elements move from
2530 /// higher elements to lower elements. \p LoSrc indicates the first source
2531 /// vector of the rotate or -1 for undef. \p HiSrc indicates the second vector
2532 /// of the rotate or -1 for undef. At least one of \p LoSrc and \p HiSrc will be
2533 /// 0 or 1 if a rotation is found.
2534 ///
2535 /// NOTE: We talk about rotate to the right which matches how bit shift and
2536 /// rotate instructions are described where LSBs are on the right, but LLVM IR
2537 /// and the table below write vectors with the lowest elements on the left.
isElementRotate(int & LoSrc,int & HiSrc,ArrayRef<int> Mask)2538 static int isElementRotate(int &LoSrc, int &HiSrc, ArrayRef<int> Mask) {
2539 int Size = Mask.size();
2540
2541 // We need to detect various ways of spelling a rotation:
2542 // [11, 12, 13, 14, 15, 0, 1, 2]
2543 // [-1, 12, 13, 14, -1, -1, 1, -1]
2544 // [-1, -1, -1, -1, -1, -1, 1, 2]
2545 // [ 3, 4, 5, 6, 7, 8, 9, 10]
2546 // [-1, 4, 5, 6, -1, -1, 9, -1]
2547 // [-1, 4, 5, 6, -1, -1, -1, -1]
2548 int Rotation = 0;
2549 LoSrc = -1;
2550 HiSrc = -1;
2551 for (int i = 0; i != Size; ++i) {
2552 int M = Mask[i];
2553 if (M < 0)
2554 continue;
2555
2556 // Determine where a rotate vector would have started.
2557 int StartIdx = i - (M % Size);
2558 // The identity rotation isn't interesting, stop.
2559 if (StartIdx == 0)
2560 return -1;
2561
2562 // If we found the tail of a vector the rotation must be the missing
2563 // front. If we found the head of a vector, it must be how much of the
2564 // head.
2565 int CandidateRotation = StartIdx < 0 ? -StartIdx : Size - StartIdx;
2566
2567 if (Rotation == 0)
2568 Rotation = CandidateRotation;
2569 else if (Rotation != CandidateRotation)
2570 // The rotations don't match, so we can't match this mask.
2571 return -1;
2572
2573 // Compute which value this mask is pointing at.
2574 int MaskSrc = M < Size ? 0 : 1;
2575
2576 // Compute which of the two target values this index should be assigned to.
2577 // This reflects whether the high elements are remaining or the low elemnts
2578 // are remaining.
2579 int &TargetSrc = StartIdx < 0 ? HiSrc : LoSrc;
2580
2581 // Either set up this value if we've not encountered it before, or check
2582 // that it remains consistent.
2583 if (TargetSrc < 0)
2584 TargetSrc = MaskSrc;
2585 else if (TargetSrc != MaskSrc)
2586 // This may be a rotation, but it pulls from the inputs in some
2587 // unsupported interleaving.
2588 return -1;
2589 }
2590
2591 // Check that we successfully analyzed the mask, and normalize the results.
2592 assert(Rotation != 0 && "Failed to locate a viable rotation!");
2593 assert((LoSrc >= 0 || HiSrc >= 0) &&
2594 "Failed to find a rotated input vector!");
2595
2596 return Rotation;
2597 }
2598
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)2599 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
2600 const RISCVSubtarget &Subtarget) {
2601 SDValue V1 = Op.getOperand(0);
2602 SDValue V2 = Op.getOperand(1);
2603 SDLoc DL(Op);
2604 MVT XLenVT = Subtarget.getXLenVT();
2605 MVT VT = Op.getSimpleValueType();
2606 unsigned NumElts = VT.getVectorNumElements();
2607 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
2608
2609 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
2610
2611 SDValue TrueMask, VL;
2612 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2613
2614 if (SVN->isSplat()) {
2615 const int Lane = SVN->getSplatIndex();
2616 if (Lane >= 0) {
2617 MVT SVT = VT.getVectorElementType();
2618
2619 // Turn splatted vector load into a strided load with an X0 stride.
2620 SDValue V = V1;
2621 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
2622 // with undef.
2623 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
2624 int Offset = Lane;
2625 if (V.getOpcode() == ISD::CONCAT_VECTORS) {
2626 int OpElements =
2627 V.getOperand(0).getSimpleValueType().getVectorNumElements();
2628 V = V.getOperand(Offset / OpElements);
2629 Offset %= OpElements;
2630 }
2631
2632 // We need to ensure the load isn't atomic or volatile.
2633 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
2634 auto *Ld = cast<LoadSDNode>(V);
2635 Offset *= SVT.getStoreSize();
2636 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
2637 TypeSize::Fixed(Offset), DL);
2638
2639 // If this is SEW=64 on RV32, use a strided load with a stride of x0.
2640 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
2641 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
2642 SDValue IntID =
2643 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
2644 SDValue Ops[] = {Ld->getChain(),
2645 IntID,
2646 DAG.getUNDEF(ContainerVT),
2647 NewAddr,
2648 DAG.getRegister(RISCV::X0, XLenVT),
2649 VL};
2650 SDValue NewLoad = DAG.getMemIntrinsicNode(
2651 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
2652 DAG.getMachineFunction().getMachineMemOperand(
2653 Ld->getMemOperand(), Offset, SVT.getStoreSize()));
2654 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
2655 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
2656 }
2657
2658 // Otherwise use a scalar load and splat. This will give the best
2659 // opportunity to fold a splat into the operation. ISel can turn it into
2660 // the x0 strided load if we aren't able to fold away the select.
2661 if (SVT.isFloatingPoint())
2662 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
2663 Ld->getPointerInfo().getWithOffset(Offset),
2664 Ld->getOriginalAlign(),
2665 Ld->getMemOperand()->getFlags());
2666 else
2667 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
2668 Ld->getPointerInfo().getWithOffset(Offset), SVT,
2669 Ld->getOriginalAlign(),
2670 Ld->getMemOperand()->getFlags());
2671 DAG.makeEquivalentMemoryOrdering(Ld, V);
2672
2673 unsigned Opc =
2674 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
2675 SDValue Splat =
2676 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), V, VL);
2677 return convertFromScalableVector(VT, Splat, DAG, Subtarget);
2678 }
2679
2680 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2681 assert(Lane < (int)NumElts && "Unexpected lane!");
2682 SDValue Gather = DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT,
2683 V1, DAG.getConstant(Lane, DL, XLenVT),
2684 TrueMask, DAG.getUNDEF(ContainerVT), VL);
2685 return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2686 }
2687 }
2688
2689 ArrayRef<int> Mask = SVN->getMask();
2690
2691 // Lower rotations to a SLIDEDOWN and a SLIDEUP. One of the source vectors may
2692 // be undef which can be handled with a single SLIDEDOWN/UP.
2693 int LoSrc, HiSrc;
2694 int Rotation = isElementRotate(LoSrc, HiSrc, Mask);
2695 if (Rotation > 0) {
2696 SDValue LoV, HiV;
2697 if (LoSrc >= 0) {
2698 LoV = LoSrc == 0 ? V1 : V2;
2699 LoV = convertToScalableVector(ContainerVT, LoV, DAG, Subtarget);
2700 }
2701 if (HiSrc >= 0) {
2702 HiV = HiSrc == 0 ? V1 : V2;
2703 HiV = convertToScalableVector(ContainerVT, HiV, DAG, Subtarget);
2704 }
2705
2706 // We found a rotation. We need to slide HiV down by Rotation. Then we need
2707 // to slide LoV up by (NumElts - Rotation).
2708 unsigned InvRotate = NumElts - Rotation;
2709
2710 SDValue Res = DAG.getUNDEF(ContainerVT);
2711 if (HiV) {
2712 // If we are doing a SLIDEDOWN+SLIDEUP, reduce the VL for the SLIDEDOWN.
2713 // FIXME: If we are only doing a SLIDEDOWN, don't reduce the VL as it
2714 // causes multiple vsetvlis in some test cases such as lowering
2715 // reduce.mul
2716 SDValue DownVL = VL;
2717 if (LoV)
2718 DownVL = DAG.getConstant(InvRotate, DL, XLenVT);
2719 Res =
2720 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT, Res, HiV,
2721 DAG.getConstant(Rotation, DL, XLenVT), TrueMask, DownVL);
2722 }
2723 if (LoV)
2724 Res = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Res, LoV,
2725 DAG.getConstant(InvRotate, DL, XLenVT), TrueMask, VL);
2726
2727 return convertFromScalableVector(VT, Res, DAG, Subtarget);
2728 }
2729
2730 // Detect an interleave shuffle and lower to
2731 // (vmaccu.vx (vwaddu.vx lohalf(V1), lohalf(V2)), lohalf(V2), (2^eltbits - 1))
2732 bool SwapSources;
2733 if (isInterleaveShuffle(Mask, VT, SwapSources, Subtarget)) {
2734 // Swap sources if needed.
2735 if (SwapSources)
2736 std::swap(V1, V2);
2737
2738 // Extract the lower half of the vectors.
2739 MVT HalfVT = VT.getHalfNumVectorElementsVT();
2740 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
2741 DAG.getConstant(0, DL, XLenVT));
2742 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V2,
2743 DAG.getConstant(0, DL, XLenVT));
2744
2745 // Double the element width and halve the number of elements in an int type.
2746 unsigned EltBits = VT.getScalarSizeInBits();
2747 MVT WideIntEltVT = MVT::getIntegerVT(EltBits * 2);
2748 MVT WideIntVT =
2749 MVT::getVectorVT(WideIntEltVT, VT.getVectorNumElements() / 2);
2750 // Convert this to a scalable vector. We need to base this on the
2751 // destination size to ensure there's always a type with a smaller LMUL.
2752 MVT WideIntContainerVT =
2753 getContainerForFixedLengthVector(DAG, WideIntVT, Subtarget);
2754
2755 // Convert sources to scalable vectors with the same element count as the
2756 // larger type.
2757 MVT HalfContainerVT = MVT::getVectorVT(
2758 VT.getVectorElementType(), WideIntContainerVT.getVectorElementCount());
2759 V1 = convertToScalableVector(HalfContainerVT, V1, DAG, Subtarget);
2760 V2 = convertToScalableVector(HalfContainerVT, V2, DAG, Subtarget);
2761
2762 // Cast sources to integer.
2763 MVT IntEltVT = MVT::getIntegerVT(EltBits);
2764 MVT IntHalfVT =
2765 MVT::getVectorVT(IntEltVT, HalfContainerVT.getVectorElementCount());
2766 V1 = DAG.getBitcast(IntHalfVT, V1);
2767 V2 = DAG.getBitcast(IntHalfVT, V2);
2768
2769 // Freeze V2 since we use it twice and we need to be sure that the add and
2770 // multiply see the same value.
2771 V2 = DAG.getFreeze(V2);
2772
2773 // Recreate TrueMask using the widened type's element count.
2774 TrueMask = getAllOnesMask(HalfContainerVT, VL, DL, DAG);
2775
2776 // Widen V1 and V2 with 0s and add one copy of V2 to V1.
2777 SDValue Add = DAG.getNode(RISCVISD::VWADDU_VL, DL, WideIntContainerVT, V1,
2778 V2, TrueMask, VL);
2779 // Create 2^eltbits - 1 copies of V2 by multiplying by the largest integer.
2780 SDValue Multiplier = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntHalfVT,
2781 DAG.getUNDEF(IntHalfVT),
2782 DAG.getAllOnesConstant(DL, XLenVT));
2783 SDValue WidenMul = DAG.getNode(RISCVISD::VWMULU_VL, DL, WideIntContainerVT,
2784 V2, Multiplier, TrueMask, VL);
2785 // Add the new copies to our previous addition giving us 2^eltbits copies of
2786 // V2. This is equivalent to shifting V2 left by eltbits. This should
2787 // combine with the vwmulu.vv above to form vwmaccu.vv.
2788 Add = DAG.getNode(RISCVISD::ADD_VL, DL, WideIntContainerVT, Add, WidenMul,
2789 TrueMask, VL);
2790 // Cast back to ContainerVT. We need to re-create a new ContainerVT in case
2791 // WideIntContainerVT is a larger fractional LMUL than implied by the fixed
2792 // vector VT.
2793 ContainerVT =
2794 MVT::getVectorVT(VT.getVectorElementType(),
2795 WideIntContainerVT.getVectorElementCount() * 2);
2796 Add = DAG.getBitcast(ContainerVT, Add);
2797 return convertFromScalableVector(VT, Add, DAG, Subtarget);
2798 }
2799
2800 // Detect shuffles which can be re-expressed as vector selects; these are
2801 // shuffles in which each element in the destination is taken from an element
2802 // at the corresponding index in either source vectors.
2803 bool IsSelect = all_of(enumerate(Mask), [&](const auto &MaskIdx) {
2804 int MaskIndex = MaskIdx.value();
2805 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
2806 });
2807
2808 assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
2809
2810 SmallVector<SDValue> MaskVals;
2811 // As a backup, shuffles can be lowered via a vrgather instruction, possibly
2812 // merged with a second vrgather.
2813 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
2814
2815 // By default we preserve the original operand order, and use a mask to
2816 // select LHS as true and RHS as false. However, since RVV vector selects may
2817 // feature splats but only on the LHS, we may choose to invert our mask and
2818 // instead select between RHS and LHS.
2819 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
2820 bool InvertMask = IsSelect == SwapOps;
2821
2822 // Keep a track of which non-undef indices are used by each LHS/RHS shuffle
2823 // half.
2824 DenseMap<int, unsigned> LHSIndexCounts, RHSIndexCounts;
2825
2826 // Now construct the mask that will be used by the vselect or blended
2827 // vrgather operation. For vrgathers, construct the appropriate indices into
2828 // each vector.
2829 for (int MaskIndex : Mask) {
2830 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
2831 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
2832 if (!IsSelect) {
2833 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
2834 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
2835 ? DAG.getConstant(MaskIndex, DL, XLenVT)
2836 : DAG.getUNDEF(XLenVT));
2837 GatherIndicesRHS.push_back(
2838 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
2839 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
2840 if (IsLHSOrUndefIndex && MaskIndex >= 0)
2841 ++LHSIndexCounts[MaskIndex];
2842 if (!IsLHSOrUndefIndex)
2843 ++RHSIndexCounts[MaskIndex - NumElts];
2844 }
2845 }
2846
2847 if (SwapOps) {
2848 std::swap(V1, V2);
2849 std::swap(GatherIndicesLHS, GatherIndicesRHS);
2850 }
2851
2852 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
2853 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
2854 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
2855
2856 if (IsSelect)
2857 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
2858
2859 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
2860 // On such a large vector we're unable to use i8 as the index type.
2861 // FIXME: We could promote the index to i16 and use vrgatherei16, but that
2862 // may involve vector splitting if we're already at LMUL=8, or our
2863 // user-supplied maximum fixed-length LMUL.
2864 return SDValue();
2865 }
2866
2867 unsigned GatherVXOpc = RISCVISD::VRGATHER_VX_VL;
2868 unsigned GatherVVOpc = RISCVISD::VRGATHER_VV_VL;
2869 MVT IndexVT = VT.changeTypeToInteger();
2870 // Since we can't introduce illegal index types at this stage, use i16 and
2871 // vrgatherei16 if the corresponding index type for plain vrgather is greater
2872 // than XLenVT.
2873 if (IndexVT.getScalarType().bitsGT(XLenVT)) {
2874 GatherVVOpc = RISCVISD::VRGATHEREI16_VV_VL;
2875 IndexVT = IndexVT.changeVectorElementType(MVT::i16);
2876 }
2877
2878 MVT IndexContainerVT =
2879 ContainerVT.changeVectorElementType(IndexVT.getScalarType());
2880
2881 SDValue Gather;
2882 // TODO: This doesn't trigger for i64 vectors on RV32, since there we
2883 // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
2884 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
2885 Gather = lowerScalarSplat(SDValue(), SplatValue, VL, ContainerVT, DL, DAG,
2886 Subtarget);
2887 } else {
2888 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
2889 // If only one index is used, we can use a "splat" vrgather.
2890 // TODO: We can splat the most-common index and fix-up any stragglers, if
2891 // that's beneficial.
2892 if (LHSIndexCounts.size() == 1) {
2893 int SplatIndex = LHSIndexCounts.begin()->getFirst();
2894 Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V1,
2895 DAG.getConstant(SplatIndex, DL, XLenVT), TrueMask,
2896 DAG.getUNDEF(ContainerVT), VL);
2897 } else {
2898 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
2899 LHSIndices =
2900 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
2901
2902 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V1, LHSIndices,
2903 TrueMask, DAG.getUNDEF(ContainerVT), VL);
2904 }
2905 }
2906
2907 // If a second vector operand is used by this shuffle, blend it in with an
2908 // additional vrgather.
2909 if (!V2.isUndef()) {
2910 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2911
2912 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
2913 SelectMask =
2914 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2915
2916 // If only one index is used, we can use a "splat" vrgather.
2917 // TODO: We can splat the most-common index and fix-up any stragglers, if
2918 // that's beneficial.
2919 if (RHSIndexCounts.size() == 1) {
2920 int SplatIndex = RHSIndexCounts.begin()->getFirst();
2921 Gather = DAG.getNode(GatherVXOpc, DL, ContainerVT, V2,
2922 DAG.getConstant(SplatIndex, DL, XLenVT), SelectMask,
2923 Gather, VL);
2924 } else {
2925 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2926 RHSIndices =
2927 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2928 Gather = DAG.getNode(GatherVVOpc, DL, ContainerVT, V2, RHSIndices,
2929 SelectMask, Gather, VL);
2930 }
2931 }
2932
2933 return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2934 }
2935
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const2936 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
2937 // Support splats for any type. These should type legalize well.
2938 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
2939 return true;
2940
2941 // Only support legal VTs for other shuffles for now.
2942 if (!isTypeLegal(VT))
2943 return false;
2944
2945 MVT SVT = VT.getSimpleVT();
2946
2947 bool SwapSources;
2948 int LoSrc, HiSrc;
2949 return (isElementRotate(LoSrc, HiSrc, M) > 0) ||
2950 isInterleaveShuffle(M, SVT, SwapSources, Subtarget);
2951 }
2952
2953 // Lower CTLZ_ZERO_UNDEF or CTTZ_ZERO_UNDEF by converting to FP and extracting
2954 // the exponent.
lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op,SelectionDAG & DAG)2955 static SDValue lowerCTLZ_CTTZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
2956 MVT VT = Op.getSimpleValueType();
2957 unsigned EltSize = VT.getScalarSizeInBits();
2958 SDValue Src = Op.getOperand(0);
2959 SDLoc DL(Op);
2960
2961 // We need a FP type that can represent the value.
2962 // TODO: Use f16 for i8 when possible?
2963 MVT FloatEltVT = EltSize == 32 ? MVT::f64 : MVT::f32;
2964 MVT FloatVT = MVT::getVectorVT(FloatEltVT, VT.getVectorElementCount());
2965
2966 // Legal types should have been checked in the RISCVTargetLowering
2967 // constructor.
2968 // TODO: Splitting may make sense in some cases.
2969 assert(DAG.getTargetLoweringInfo().isTypeLegal(FloatVT) &&
2970 "Expected legal float type!");
2971
2972 // For CTTZ_ZERO_UNDEF, we need to extract the lowest set bit using X & -X.
2973 // The trailing zero count is equal to log2 of this single bit value.
2974 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
2975 SDValue Neg =
2976 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
2977 Src = DAG.getNode(ISD::AND, DL, VT, Src, Neg);
2978 }
2979
2980 // We have a legal FP type, convert to it.
2981 SDValue FloatVal = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVT, Src);
2982 // Bitcast to integer and shift the exponent to the LSB.
2983 EVT IntVT = FloatVT.changeVectorElementTypeToInteger();
2984 SDValue Bitcast = DAG.getBitcast(IntVT, FloatVal);
2985 unsigned ShiftAmt = FloatEltVT == MVT::f64 ? 52 : 23;
2986 SDValue Shift = DAG.getNode(ISD::SRL, DL, IntVT, Bitcast,
2987 DAG.getConstant(ShiftAmt, DL, IntVT));
2988 // Truncate back to original type to allow vnsrl.
2989 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, Shift);
2990 // The exponent contains log2 of the value in biased form.
2991 unsigned ExponentBias = FloatEltVT == MVT::f64 ? 1023 : 127;
2992
2993 // For trailing zeros, we just need to subtract the bias.
2994 if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF)
2995 return DAG.getNode(ISD::SUB, DL, VT, Trunc,
2996 DAG.getConstant(ExponentBias, DL, VT));
2997
2998 // For leading zeros, we need to remove the bias and convert from log2 to
2999 // leading zeros. We can do this by subtracting from (Bias + (EltSize - 1)).
3000 unsigned Adjust = ExponentBias + (EltSize - 1);
3001 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(Adjust, DL, VT), Trunc);
3002 }
3003
3004 // While RVV has alignment restrictions, we should always be able to load as a
3005 // legal equivalently-sized byte-typed vector instead. This method is
3006 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
3007 // the load is already correctly-aligned, it returns SDValue().
expandUnalignedRVVLoad(SDValue Op,SelectionDAG & DAG) const3008 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
3009 SelectionDAG &DAG) const {
3010 auto *Load = cast<LoadSDNode>(Op);
3011 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
3012
3013 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3014 Load->getMemoryVT(),
3015 *Load->getMemOperand()))
3016 return SDValue();
3017
3018 SDLoc DL(Op);
3019 MVT VT = Op.getSimpleValueType();
3020 unsigned EltSizeBits = VT.getScalarSizeInBits();
3021 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3022 "Unexpected unaligned RVV load type");
3023 MVT NewVT =
3024 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3025 assert(NewVT.isValid() &&
3026 "Expecting equally-sized RVV vector types to be legal");
3027 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
3028 Load->getPointerInfo(), Load->getOriginalAlign(),
3029 Load->getMemOperand()->getFlags());
3030 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
3031 }
3032
3033 // While RVV has alignment restrictions, we should always be able to store as a
3034 // legal equivalently-sized byte-typed vector instead. This method is
3035 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
3036 // returns SDValue() if the store is already correctly aligned.
expandUnalignedRVVStore(SDValue Op,SelectionDAG & DAG) const3037 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
3038 SelectionDAG &DAG) const {
3039 auto *Store = cast<StoreSDNode>(Op);
3040 assert(Store && Store->getValue().getValueType().isVector() &&
3041 "Expected vector store");
3042
3043 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
3044 Store->getMemoryVT(),
3045 *Store->getMemOperand()))
3046 return SDValue();
3047
3048 SDLoc DL(Op);
3049 SDValue StoredVal = Store->getValue();
3050 MVT VT = StoredVal.getSimpleValueType();
3051 unsigned EltSizeBits = VT.getScalarSizeInBits();
3052 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
3053 "Unexpected unaligned RVV store type");
3054 MVT NewVT =
3055 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
3056 assert(NewVT.isValid() &&
3057 "Expecting equally-sized RVV vector types to be legal");
3058 StoredVal = DAG.getBitcast(NewVT, StoredVal);
3059 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
3060 Store->getPointerInfo(), Store->getOriginalAlign(),
3061 Store->getMemOperand()->getFlags());
3062 }
3063
lowerConstant(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)3064 static SDValue lowerConstant(SDValue Op, SelectionDAG &DAG,
3065 const RISCVSubtarget &Subtarget) {
3066 assert(Op.getValueType() == MVT::i64 && "Unexpected VT");
3067
3068 int64_t Imm = cast<ConstantSDNode>(Op)->getSExtValue();
3069
3070 // All simm32 constants should be handled by isel.
3071 // NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
3072 // this check redundant, but small immediates are common so this check
3073 // should have better compile time.
3074 if (isInt<32>(Imm))
3075 return Op;
3076
3077 // We only need to cost the immediate, if constant pool lowering is enabled.
3078 if (!Subtarget.useConstantPoolForLargeInts())
3079 return Op;
3080
3081 RISCVMatInt::InstSeq Seq =
3082 RISCVMatInt::generateInstSeq(Imm, Subtarget.getFeatureBits());
3083 if (Seq.size() <= Subtarget.getMaxBuildIntsCost())
3084 return Op;
3085
3086 // Expand to a constant pool using the default expansion code.
3087 return SDValue();
3088 }
3089
LowerOperation(SDValue Op,SelectionDAG & DAG) const3090 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
3091 SelectionDAG &DAG) const {
3092 switch (Op.getOpcode()) {
3093 default:
3094 report_fatal_error("unimplemented operand");
3095 case ISD::GlobalAddress:
3096 return lowerGlobalAddress(Op, DAG);
3097 case ISD::BlockAddress:
3098 return lowerBlockAddress(Op, DAG);
3099 case ISD::ConstantPool:
3100 return lowerConstantPool(Op, DAG);
3101 case ISD::JumpTable:
3102 return lowerJumpTable(Op, DAG);
3103 case ISD::GlobalTLSAddress:
3104 return lowerGlobalTLSAddress(Op, DAG);
3105 case ISD::Constant:
3106 return lowerConstant(Op, DAG, Subtarget);
3107 case ISD::SELECT:
3108 return lowerSELECT(Op, DAG);
3109 case ISD::BRCOND:
3110 return lowerBRCOND(Op, DAG);
3111 case ISD::VASTART:
3112 return lowerVASTART(Op, DAG);
3113 case ISD::FRAMEADDR:
3114 return lowerFRAMEADDR(Op, DAG);
3115 case ISD::RETURNADDR:
3116 return lowerRETURNADDR(Op, DAG);
3117 case ISD::SHL_PARTS:
3118 return lowerShiftLeftParts(Op, DAG);
3119 case ISD::SRA_PARTS:
3120 return lowerShiftRightParts(Op, DAG, true);
3121 case ISD::SRL_PARTS:
3122 return lowerShiftRightParts(Op, DAG, false);
3123 case ISD::BITCAST: {
3124 SDLoc DL(Op);
3125 EVT VT = Op.getValueType();
3126 SDValue Op0 = Op.getOperand(0);
3127 EVT Op0VT = Op0.getValueType();
3128 MVT XLenVT = Subtarget.getXLenVT();
3129 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
3130 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
3131 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
3132 return FPConv;
3133 }
3134 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
3135 Subtarget.hasStdExtF()) {
3136 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
3137 SDValue FPConv =
3138 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
3139 return FPConv;
3140 }
3141
3142 // Consider other scalar<->scalar casts as legal if the types are legal.
3143 // Otherwise expand them.
3144 if (!VT.isVector() && !Op0VT.isVector()) {
3145 if (isTypeLegal(VT) && isTypeLegal(Op0VT))
3146 return Op;
3147 return SDValue();
3148 }
3149
3150 assert(!VT.isScalableVector() && !Op0VT.isScalableVector() &&
3151 "Unexpected types");
3152
3153 if (VT.isFixedLengthVector()) {
3154 // We can handle fixed length vector bitcasts with a simple replacement
3155 // in isel.
3156 if (Op0VT.isFixedLengthVector())
3157 return Op;
3158 // When bitcasting from scalar to fixed-length vector, insert the scalar
3159 // into a one-element vector of the result type, and perform a vector
3160 // bitcast.
3161 if (!Op0VT.isVector()) {
3162 EVT BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
3163 if (!isTypeLegal(BVT))
3164 return SDValue();
3165 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
3166 DAG.getUNDEF(BVT), Op0,
3167 DAG.getConstant(0, DL, XLenVT)));
3168 }
3169 return SDValue();
3170 }
3171 // Custom-legalize bitcasts from fixed-length vector types to scalar types
3172 // thus: bitcast the vector to a one-element vector type whose element type
3173 // is the same as the result type, and extract the first element.
3174 if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
3175 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
3176 if (!isTypeLegal(BVT))
3177 return SDValue();
3178 SDValue BVec = DAG.getBitcast(BVT, Op0);
3179 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
3180 DAG.getConstant(0, DL, XLenVT));
3181 }
3182 return SDValue();
3183 }
3184 case ISD::INTRINSIC_WO_CHAIN:
3185 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3186 case ISD::INTRINSIC_W_CHAIN:
3187 return LowerINTRINSIC_W_CHAIN(Op, DAG);
3188 case ISD::INTRINSIC_VOID:
3189 return LowerINTRINSIC_VOID(Op, DAG);
3190 case ISD::BSWAP:
3191 case ISD::BITREVERSE: {
3192 MVT VT = Op.getSimpleValueType();
3193 SDLoc DL(Op);
3194 if (Subtarget.hasStdExtZbp()) {
3195 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
3196 // Start with the maximum immediate value which is the bitwidth - 1.
3197 unsigned Imm = VT.getSizeInBits() - 1;
3198 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
3199 if (Op.getOpcode() == ISD::BSWAP)
3200 Imm &= ~0x7U;
3201 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
3202 DAG.getConstant(Imm, DL, VT));
3203 }
3204 assert(Subtarget.hasStdExtZbkb() && "Unexpected custom legalization");
3205 assert(Op.getOpcode() == ISD::BITREVERSE && "Unexpected opcode");
3206 // Expand bitreverse to a bswap(rev8) followed by brev8.
3207 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Op.getOperand(0));
3208 // We use the Zbp grevi encoding for rev.b/brev8 which will be recognized
3209 // as brev8 by an isel pattern.
3210 return DAG.getNode(RISCVISD::GREV, DL, VT, BSwap,
3211 DAG.getConstant(7, DL, VT));
3212 }
3213 case ISD::FSHL:
3214 case ISD::FSHR: {
3215 MVT VT = Op.getSimpleValueType();
3216 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
3217 SDLoc DL(Op);
3218 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
3219 // use log(XLen) bits. Mask the shift amount accordingly to prevent
3220 // accidentally setting the extra bit.
3221 unsigned ShAmtWidth = Subtarget.getXLen() - 1;
3222 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
3223 DAG.getConstant(ShAmtWidth, DL, VT));
3224 // fshl and fshr concatenate their operands in the same order. fsr and fsl
3225 // instruction use different orders. fshl will return its first operand for
3226 // shift of zero, fshr will return its second operand. fsl and fsr both
3227 // return rs1 so the ISD nodes need to have different operand orders.
3228 // Shift amount is in rs2.
3229 SDValue Op0 = Op.getOperand(0);
3230 SDValue Op1 = Op.getOperand(1);
3231 unsigned Opc = RISCVISD::FSL;
3232 if (Op.getOpcode() == ISD::FSHR) {
3233 std::swap(Op0, Op1);
3234 Opc = RISCVISD::FSR;
3235 }
3236 return DAG.getNode(Opc, DL, VT, Op0, Op1, ShAmt);
3237 }
3238 case ISD::TRUNCATE:
3239 // Only custom-lower vector truncates
3240 if (!Op.getSimpleValueType().isVector())
3241 return Op;
3242 return lowerVectorTruncLike(Op, DAG);
3243 case ISD::ANY_EXTEND:
3244 case ISD::ZERO_EXTEND:
3245 if (Op.getOperand(0).getValueType().isVector() &&
3246 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3247 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
3248 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
3249 case ISD::SIGN_EXTEND:
3250 if (Op.getOperand(0).getValueType().isVector() &&
3251 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3252 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
3253 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
3254 case ISD::SPLAT_VECTOR_PARTS:
3255 return lowerSPLAT_VECTOR_PARTS(Op, DAG);
3256 case ISD::INSERT_VECTOR_ELT:
3257 return lowerINSERT_VECTOR_ELT(Op, DAG);
3258 case ISD::EXTRACT_VECTOR_ELT:
3259 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
3260 case ISD::VSCALE: {
3261 MVT VT = Op.getSimpleValueType();
3262 SDLoc DL(Op);
3263 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
3264 // We define our scalable vector types for lmul=1 to use a 64 bit known
3265 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
3266 // vscale as VLENB / 8.
3267 static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
3268 if (Subtarget.getRealMinVLen() < RISCV::RVVBitsPerBlock)
3269 report_fatal_error("Support for VLEN==32 is incomplete.");
3270 // We assume VLENB is a multiple of 8. We manually choose the best shift
3271 // here because SimplifyDemandedBits isn't always able to simplify it.
3272 uint64_t Val = Op.getConstantOperandVal(0);
3273 if (isPowerOf2_64(Val)) {
3274 uint64_t Log2 = Log2_64(Val);
3275 if (Log2 < 3)
3276 return DAG.getNode(ISD::SRL, DL, VT, VLENB,
3277 DAG.getConstant(3 - Log2, DL, VT));
3278 if (Log2 > 3)
3279 return DAG.getNode(ISD::SHL, DL, VT, VLENB,
3280 DAG.getConstant(Log2 - 3, DL, VT));
3281 return VLENB;
3282 }
3283 // If the multiplier is a multiple of 8, scale it down to avoid needing
3284 // to shift the VLENB value.
3285 if ((Val % 8) == 0)
3286 return DAG.getNode(ISD::MUL, DL, VT, VLENB,
3287 DAG.getConstant(Val / 8, DL, VT));
3288
3289 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
3290 DAG.getConstant(3, DL, VT));
3291 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
3292 }
3293 case ISD::FPOWI: {
3294 // Custom promote f16 powi with illegal i32 integer type on RV64. Once
3295 // promoted this will be legalized into a libcall by LegalizeIntegerTypes.
3296 if (Op.getValueType() == MVT::f16 && Subtarget.is64Bit() &&
3297 Op.getOperand(1).getValueType() == MVT::i32) {
3298 SDLoc DL(Op);
3299 SDValue Op0 = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Op.getOperand(0));
3300 SDValue Powi =
3301 DAG.getNode(ISD::FPOWI, DL, MVT::f32, Op0, Op.getOperand(1));
3302 return DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, Powi,
3303 DAG.getIntPtrConstant(0, DL));
3304 }
3305 return SDValue();
3306 }
3307 case ISD::FP_EXTEND:
3308 case ISD::FP_ROUND:
3309 if (!Op.getValueType().isVector())
3310 return Op;
3311 return lowerVectorFPExtendOrRoundLike(Op, DAG);
3312 case ISD::FP_TO_SINT:
3313 case ISD::FP_TO_UINT:
3314 case ISD::SINT_TO_FP:
3315 case ISD::UINT_TO_FP: {
3316 // RVV can only do fp<->int conversions to types half/double the size as
3317 // the source. We custom-lower any conversions that do two hops into
3318 // sequences.
3319 MVT VT = Op.getSimpleValueType();
3320 if (!VT.isVector())
3321 return Op;
3322 SDLoc DL(Op);
3323 SDValue Src = Op.getOperand(0);
3324 MVT EltVT = VT.getVectorElementType();
3325 MVT SrcVT = Src.getSimpleValueType();
3326 MVT SrcEltVT = SrcVT.getVectorElementType();
3327 unsigned EltSize = EltVT.getSizeInBits();
3328 unsigned SrcEltSize = SrcEltVT.getSizeInBits();
3329 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
3330 "Unexpected vector element types");
3331
3332 bool IsInt2FP = SrcEltVT.isInteger();
3333 // Widening conversions
3334 if (EltSize > (2 * SrcEltSize)) {
3335 if (IsInt2FP) {
3336 // Do a regular integer sign/zero extension then convert to float.
3337 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize),
3338 VT.getVectorElementCount());
3339 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
3340 ? ISD::ZERO_EXTEND
3341 : ISD::SIGN_EXTEND;
3342 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
3343 return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
3344 }
3345 // FP2Int
3346 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
3347 // Do one doubling fp_extend then complete the operation by converting
3348 // to int.
3349 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3350 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
3351 return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
3352 }
3353
3354 // Narrowing conversions
3355 if (SrcEltSize > (2 * EltSize)) {
3356 if (IsInt2FP) {
3357 // One narrowing int_to_fp, then an fp_round.
3358 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
3359 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
3360 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
3361 return DAG.getFPExtendOrRound(Int2FP, DL, VT);
3362 }
3363 // FP2Int
3364 // One narrowing fp_to_int, then truncate the integer. If the float isn't
3365 // representable by the integer, the result is poison.
3366 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
3367 VT.getVectorElementCount());
3368 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
3369 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
3370 }
3371
3372 // Scalable vectors can exit here. Patterns will handle equally-sized
3373 // conversions halving/doubling ones.
3374 if (!VT.isFixedLengthVector())
3375 return Op;
3376
3377 // For fixed-length vectors we lower to a custom "VL" node.
3378 unsigned RVVOpc = 0;
3379 switch (Op.getOpcode()) {
3380 default:
3381 llvm_unreachable("Impossible opcode");
3382 case ISD::FP_TO_SINT:
3383 RVVOpc = RISCVISD::FP_TO_SINT_VL;
3384 break;
3385 case ISD::FP_TO_UINT:
3386 RVVOpc = RISCVISD::FP_TO_UINT_VL;
3387 break;
3388 case ISD::SINT_TO_FP:
3389 RVVOpc = RISCVISD::SINT_TO_FP_VL;
3390 break;
3391 case ISD::UINT_TO_FP:
3392 RVVOpc = RISCVISD::UINT_TO_FP_VL;
3393 break;
3394 }
3395
3396 MVT ContainerVT, SrcContainerVT;
3397 // Derive the reference container type from the larger vector type.
3398 if (SrcEltSize > EltSize) {
3399 SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
3400 ContainerVT =
3401 SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
3402 } else {
3403 ContainerVT = getContainerForFixedLengthVector(VT);
3404 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
3405 }
3406
3407 SDValue Mask, VL;
3408 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3409
3410 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
3411 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
3412 return convertFromScalableVector(VT, Src, DAG, Subtarget);
3413 }
3414 case ISD::FP_TO_SINT_SAT:
3415 case ISD::FP_TO_UINT_SAT:
3416 return lowerFP_TO_INT_SAT(Op, DAG, Subtarget);
3417 case ISD::FTRUNC:
3418 case ISD::FCEIL:
3419 case ISD::FFLOOR:
3420 return lowerFTRUNC_FCEIL_FFLOOR(Op, DAG);
3421 case ISD::FROUND:
3422 return lowerFROUND(Op, DAG);
3423 case ISD::VECREDUCE_ADD:
3424 case ISD::VECREDUCE_UMAX:
3425 case ISD::VECREDUCE_SMAX:
3426 case ISD::VECREDUCE_UMIN:
3427 case ISD::VECREDUCE_SMIN:
3428 return lowerVECREDUCE(Op, DAG);
3429 case ISD::VECREDUCE_AND:
3430 case ISD::VECREDUCE_OR:
3431 case ISD::VECREDUCE_XOR:
3432 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
3433 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ false);
3434 return lowerVECREDUCE(Op, DAG);
3435 case ISD::VECREDUCE_FADD:
3436 case ISD::VECREDUCE_SEQ_FADD:
3437 case ISD::VECREDUCE_FMIN:
3438 case ISD::VECREDUCE_FMAX:
3439 return lowerFPVECREDUCE(Op, DAG);
3440 case ISD::VP_REDUCE_ADD:
3441 case ISD::VP_REDUCE_UMAX:
3442 case ISD::VP_REDUCE_SMAX:
3443 case ISD::VP_REDUCE_UMIN:
3444 case ISD::VP_REDUCE_SMIN:
3445 case ISD::VP_REDUCE_FADD:
3446 case ISD::VP_REDUCE_SEQ_FADD:
3447 case ISD::VP_REDUCE_FMIN:
3448 case ISD::VP_REDUCE_FMAX:
3449 return lowerVPREDUCE(Op, DAG);
3450 case ISD::VP_REDUCE_AND:
3451 case ISD::VP_REDUCE_OR:
3452 case ISD::VP_REDUCE_XOR:
3453 if (Op.getOperand(1).getValueType().getVectorElementType() == MVT::i1)
3454 return lowerVectorMaskVecReduction(Op, DAG, /*IsVP*/ true);
3455 return lowerVPREDUCE(Op, DAG);
3456 case ISD::INSERT_SUBVECTOR:
3457 return lowerINSERT_SUBVECTOR(Op, DAG);
3458 case ISD::EXTRACT_SUBVECTOR:
3459 return lowerEXTRACT_SUBVECTOR(Op, DAG);
3460 case ISD::STEP_VECTOR:
3461 return lowerSTEP_VECTOR(Op, DAG);
3462 case ISD::VECTOR_REVERSE:
3463 return lowerVECTOR_REVERSE(Op, DAG);
3464 case ISD::VECTOR_SPLICE:
3465 return lowerVECTOR_SPLICE(Op, DAG);
3466 case ISD::BUILD_VECTOR:
3467 return lowerBUILD_VECTOR(Op, DAG, Subtarget);
3468 case ISD::SPLAT_VECTOR:
3469 if (Op.getValueType().getVectorElementType() == MVT::i1)
3470 return lowerVectorMaskSplat(Op, DAG);
3471 return SDValue();
3472 case ISD::VECTOR_SHUFFLE:
3473 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
3474 case ISD::CONCAT_VECTORS: {
3475 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
3476 // better than going through the stack, as the default expansion does.
3477 SDLoc DL(Op);
3478 MVT VT = Op.getSimpleValueType();
3479 unsigned NumOpElts =
3480 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
3481 SDValue Vec = DAG.getUNDEF(VT);
3482 for (const auto &OpIdx : enumerate(Op->ops())) {
3483 SDValue SubVec = OpIdx.value();
3484 // Don't insert undef subvectors.
3485 if (SubVec.isUndef())
3486 continue;
3487 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, SubVec,
3488 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
3489 }
3490 return Vec;
3491 }
3492 case ISD::LOAD:
3493 if (auto V = expandUnalignedRVVLoad(Op, DAG))
3494 return V;
3495 if (Op.getValueType().isFixedLengthVector())
3496 return lowerFixedLengthVectorLoadToRVV(Op, DAG);
3497 return Op;
3498 case ISD::STORE:
3499 if (auto V = expandUnalignedRVVStore(Op, DAG))
3500 return V;
3501 if (Op.getOperand(1).getValueType().isFixedLengthVector())
3502 return lowerFixedLengthVectorStoreToRVV(Op, DAG);
3503 return Op;
3504 case ISD::MLOAD:
3505 case ISD::VP_LOAD:
3506 return lowerMaskedLoad(Op, DAG);
3507 case ISD::MSTORE:
3508 case ISD::VP_STORE:
3509 return lowerMaskedStore(Op, DAG);
3510 case ISD::SETCC:
3511 return lowerFixedLengthVectorSetccToRVV(Op, DAG);
3512 case ISD::ADD:
3513 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
3514 case ISD::SUB:
3515 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
3516 case ISD::MUL:
3517 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
3518 case ISD::MULHS:
3519 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
3520 case ISD::MULHU:
3521 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
3522 case ISD::AND:
3523 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
3524 RISCVISD::AND_VL);
3525 case ISD::OR:
3526 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
3527 RISCVISD::OR_VL);
3528 case ISD::XOR:
3529 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
3530 RISCVISD::XOR_VL);
3531 case ISD::SDIV:
3532 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
3533 case ISD::SREM:
3534 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
3535 case ISD::UDIV:
3536 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
3537 case ISD::UREM:
3538 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
3539 case ISD::SHL:
3540 case ISD::SRA:
3541 case ISD::SRL:
3542 if (Op.getSimpleValueType().isFixedLengthVector())
3543 return lowerFixedLengthVectorShiftToRVV(Op, DAG);
3544 // This can be called for an i32 shift amount that needs to be promoted.
3545 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
3546 "Unexpected custom legalisation");
3547 return SDValue();
3548 case ISD::SADDSAT:
3549 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
3550 case ISD::UADDSAT:
3551 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
3552 case ISD::SSUBSAT:
3553 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
3554 case ISD::USUBSAT:
3555 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
3556 case ISD::FADD:
3557 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
3558 case ISD::FSUB:
3559 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
3560 case ISD::FMUL:
3561 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
3562 case ISD::FDIV:
3563 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
3564 case ISD::FNEG:
3565 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
3566 case ISD::FABS:
3567 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
3568 case ISD::FSQRT:
3569 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
3570 case ISD::FMA:
3571 return lowerToScalableOp(Op, DAG, RISCVISD::VFMADD_VL);
3572 case ISD::SMIN:
3573 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
3574 case ISD::SMAX:
3575 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
3576 case ISD::UMIN:
3577 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
3578 case ISD::UMAX:
3579 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
3580 case ISD::FMINNUM:
3581 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
3582 case ISD::FMAXNUM:
3583 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
3584 case ISD::ABS:
3585 return lowerABS(Op, DAG);
3586 case ISD::CTLZ_ZERO_UNDEF:
3587 case ISD::CTTZ_ZERO_UNDEF:
3588 return lowerCTLZ_CTTZ_ZERO_UNDEF(Op, DAG);
3589 case ISD::VSELECT:
3590 return lowerFixedLengthVectorSelectToRVV(Op, DAG);
3591 case ISD::FCOPYSIGN:
3592 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
3593 case ISD::MGATHER:
3594 case ISD::VP_GATHER:
3595 return lowerMaskedGather(Op, DAG);
3596 case ISD::MSCATTER:
3597 case ISD::VP_SCATTER:
3598 return lowerMaskedScatter(Op, DAG);
3599 case ISD::FLT_ROUNDS_:
3600 return lowerGET_ROUNDING(Op, DAG);
3601 case ISD::SET_ROUNDING:
3602 return lowerSET_ROUNDING(Op, DAG);
3603 case ISD::EH_DWARF_CFA:
3604 return lowerEH_DWARF_CFA(Op, DAG);
3605 case ISD::VP_SELECT:
3606 return lowerVPOp(Op, DAG, RISCVISD::VSELECT_VL);
3607 case ISD::VP_MERGE:
3608 return lowerVPOp(Op, DAG, RISCVISD::VP_MERGE_VL);
3609 case ISD::VP_ADD:
3610 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
3611 case ISD::VP_SUB:
3612 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
3613 case ISD::VP_MUL:
3614 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
3615 case ISD::VP_SDIV:
3616 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
3617 case ISD::VP_UDIV:
3618 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
3619 case ISD::VP_SREM:
3620 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
3621 case ISD::VP_UREM:
3622 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
3623 case ISD::VP_AND:
3624 return lowerLogicVPOp(Op, DAG, RISCVISD::VMAND_VL, RISCVISD::AND_VL);
3625 case ISD::VP_OR:
3626 return lowerLogicVPOp(Op, DAG, RISCVISD::VMOR_VL, RISCVISD::OR_VL);
3627 case ISD::VP_XOR:
3628 return lowerLogicVPOp(Op, DAG, RISCVISD::VMXOR_VL, RISCVISD::XOR_VL);
3629 case ISD::VP_ASHR:
3630 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
3631 case ISD::VP_LSHR:
3632 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
3633 case ISD::VP_SHL:
3634 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
3635 case ISD::VP_FADD:
3636 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
3637 case ISD::VP_FSUB:
3638 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
3639 case ISD::VP_FMUL:
3640 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
3641 case ISD::VP_FDIV:
3642 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
3643 case ISD::VP_FNEG:
3644 return lowerVPOp(Op, DAG, RISCVISD::FNEG_VL);
3645 case ISD::VP_FMA:
3646 return lowerVPOp(Op, DAG, RISCVISD::VFMADD_VL);
3647 case ISD::VP_SIGN_EXTEND:
3648 case ISD::VP_ZERO_EXTEND:
3649 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3650 return lowerVPExtMaskOp(Op, DAG);
3651 return lowerVPOp(Op, DAG,
3652 Op.getOpcode() == ISD::VP_SIGN_EXTEND
3653 ? RISCVISD::VSEXT_VL
3654 : RISCVISD::VZEXT_VL);
3655 case ISD::VP_TRUNCATE:
3656 return lowerVectorTruncLike(Op, DAG);
3657 case ISD::VP_FP_EXTEND:
3658 case ISD::VP_FP_ROUND:
3659 return lowerVectorFPExtendOrRoundLike(Op, DAG);
3660 case ISD::VP_FPTOSI:
3661 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_SINT_VL);
3662 case ISD::VP_FPTOUI:
3663 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::FP_TO_UINT_VL);
3664 case ISD::VP_SITOFP:
3665 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::SINT_TO_FP_VL);
3666 case ISD::VP_UITOFP:
3667 return lowerVPFPIntConvOp(Op, DAG, RISCVISD::UINT_TO_FP_VL);
3668 case ISD::VP_SETCC:
3669 if (Op.getOperand(0).getSimpleValueType().getVectorElementType() == MVT::i1)
3670 return lowerVPSetCCMaskOp(Op, DAG);
3671 return lowerVPOp(Op, DAG, RISCVISD::SETCC_VL);
3672 }
3673 }
3674
getTargetNode(GlobalAddressSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)3675 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
3676 SelectionDAG &DAG, unsigned Flags) {
3677 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
3678 }
3679
getTargetNode(BlockAddressSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)3680 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
3681 SelectionDAG &DAG, unsigned Flags) {
3682 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
3683 Flags);
3684 }
3685
getTargetNode(ConstantPoolSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)3686 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
3687 SelectionDAG &DAG, unsigned Flags) {
3688 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
3689 N->getOffset(), Flags);
3690 }
3691
getTargetNode(JumpTableSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)3692 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
3693 SelectionDAG &DAG, unsigned Flags) {
3694 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
3695 }
3696
3697 template <class NodeTy>
getAddr(NodeTy * N,SelectionDAG & DAG,bool IsLocal) const3698 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
3699 bool IsLocal) const {
3700 SDLoc DL(N);
3701 EVT Ty = getPointerTy(DAG.getDataLayout());
3702
3703 if (isPositionIndependent()) {
3704 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3705 if (IsLocal)
3706 // Use PC-relative addressing to access the symbol. This generates the
3707 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
3708 // %pcrel_lo(auipc)).
3709 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3710
3711 // Use PC-relative addressing to access the GOT for this symbol, then load
3712 // the address from the GOT. This generates the pattern (PseudoLA sym),
3713 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
3714 MachineFunction &MF = DAG.getMachineFunction();
3715 MachineMemOperand *MemOp = MF.getMachineMemOperand(
3716 MachinePointerInfo::getGOT(MF),
3717 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3718 MachineMemOperand::MOInvariant,
3719 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3720 SDValue Load =
3721 DAG.getMemIntrinsicNode(RISCVISD::LA, DL, DAG.getVTList(Ty, MVT::Other),
3722 {DAG.getEntryNode(), Addr}, Ty, MemOp);
3723 return Load;
3724 }
3725
3726 switch (getTargetMachine().getCodeModel()) {
3727 default:
3728 report_fatal_error("Unsupported code model for lowering");
3729 case CodeModel::Small: {
3730 // Generate a sequence for accessing addresses within the first 2 GiB of
3731 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
3732 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
3733 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
3734 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3735 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNHi, AddrLo);
3736 }
3737 case CodeModel::Medium: {
3738 // Generate a sequence for accessing addresses within any 2GiB range within
3739 // the address space. This generates the pattern (PseudoLLA sym), which
3740 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
3741 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
3742 return DAG.getNode(RISCVISD::LLA, DL, Ty, Addr);
3743 }
3744 }
3745 }
3746
lowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3747 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
3748 SelectionDAG &DAG) const {
3749 SDLoc DL(Op);
3750 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3751 assert(N->getOffset() == 0 && "unexpected offset in global node");
3752 return getAddr(N, DAG, N->getGlobal()->isDSOLocal());
3753 }
3754
lowerBlockAddress(SDValue Op,SelectionDAG & DAG) const3755 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
3756 SelectionDAG &DAG) const {
3757 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
3758
3759 return getAddr(N, DAG);
3760 }
3761
lowerConstantPool(SDValue Op,SelectionDAG & DAG) const3762 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
3763 SelectionDAG &DAG) const {
3764 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
3765
3766 return getAddr(N, DAG);
3767 }
3768
lowerJumpTable(SDValue Op,SelectionDAG & DAG) const3769 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
3770 SelectionDAG &DAG) const {
3771 JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
3772
3773 return getAddr(N, DAG);
3774 }
3775
getStaticTLSAddr(GlobalAddressSDNode * N,SelectionDAG & DAG,bool UseGOT) const3776 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
3777 SelectionDAG &DAG,
3778 bool UseGOT) const {
3779 SDLoc DL(N);
3780 EVT Ty = getPointerTy(DAG.getDataLayout());
3781 const GlobalValue *GV = N->getGlobal();
3782 MVT XLenVT = Subtarget.getXLenVT();
3783
3784 if (UseGOT) {
3785 // Use PC-relative addressing to access the GOT for this TLS symbol, then
3786 // load the address from the GOT and add the thread pointer. This generates
3787 // the pattern (PseudoLA_TLS_IE sym), which expands to
3788 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
3789 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3790 MachineFunction &MF = DAG.getMachineFunction();
3791 MachineMemOperand *MemOp = MF.getMachineMemOperand(
3792 MachinePointerInfo::getGOT(MF),
3793 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
3794 MachineMemOperand::MOInvariant,
3795 LLT(Ty.getSimpleVT()), Align(Ty.getFixedSizeInBits() / 8));
3796 SDValue Load = DAG.getMemIntrinsicNode(
3797 RISCVISD::LA_TLS_IE, DL, DAG.getVTList(Ty, MVT::Other),
3798 {DAG.getEntryNode(), Addr}, Ty, MemOp);
3799
3800 // Add the thread pointer.
3801 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3802 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
3803 }
3804
3805 // Generate a sequence for accessing the address relative to the thread
3806 // pointer, with the appropriate adjustment for the thread pointer offset.
3807 // This generates the pattern
3808 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
3809 SDValue AddrHi =
3810 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
3811 SDValue AddrAdd =
3812 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
3813 SDValue AddrLo =
3814 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
3815
3816 SDValue MNHi = DAG.getNode(RISCVISD::HI, DL, Ty, AddrHi);
3817 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
3818 SDValue MNAdd =
3819 DAG.getNode(RISCVISD::ADD_TPREL, DL, Ty, MNHi, TPReg, AddrAdd);
3820 return DAG.getNode(RISCVISD::ADD_LO, DL, Ty, MNAdd, AddrLo);
3821 }
3822
getDynamicTLSAddr(GlobalAddressSDNode * N,SelectionDAG & DAG) const3823 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
3824 SelectionDAG &DAG) const {
3825 SDLoc DL(N);
3826 EVT Ty = getPointerTy(DAG.getDataLayout());
3827 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
3828 const GlobalValue *GV = N->getGlobal();
3829
3830 // Use a PC-relative addressing mode to access the global dynamic GOT address.
3831 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
3832 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
3833 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
3834 SDValue Load = DAG.getNode(RISCVISD::LA_TLS_GD, DL, Ty, Addr);
3835
3836 // Prepare argument list to generate call.
3837 ArgListTy Args;
3838 ArgListEntry Entry;
3839 Entry.Node = Load;
3840 Entry.Ty = CallTy;
3841 Args.push_back(Entry);
3842
3843 // Setup call to __tls_get_addr.
3844 TargetLowering::CallLoweringInfo CLI(DAG);
3845 CLI.setDebugLoc(DL)
3846 .setChain(DAG.getEntryNode())
3847 .setLibCallee(CallingConv::C, CallTy,
3848 DAG.getExternalSymbol("__tls_get_addr", Ty),
3849 std::move(Args));
3850
3851 return LowerCallTo(CLI).first;
3852 }
3853
lowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3854 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
3855 SelectionDAG &DAG) const {
3856 SDLoc DL(Op);
3857 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
3858 assert(N->getOffset() == 0 && "unexpected offset in global node");
3859
3860 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
3861
3862 if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3863 CallingConv::GHC)
3864 report_fatal_error("In GHC calling convention TLS is not supported");
3865
3866 SDValue Addr;
3867 switch (Model) {
3868 case TLSModel::LocalExec:
3869 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
3870 break;
3871 case TLSModel::InitialExec:
3872 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
3873 break;
3874 case TLSModel::LocalDynamic:
3875 case TLSModel::GeneralDynamic:
3876 Addr = getDynamicTLSAddr(N, DAG);
3877 break;
3878 }
3879
3880 return Addr;
3881 }
3882
lowerSELECT(SDValue Op,SelectionDAG & DAG) const3883 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3884 SDValue CondV = Op.getOperand(0);
3885 SDValue TrueV = Op.getOperand(1);
3886 SDValue FalseV = Op.getOperand(2);
3887 SDLoc DL(Op);
3888 MVT VT = Op.getSimpleValueType();
3889 MVT XLenVT = Subtarget.getXLenVT();
3890
3891 // Lower vector SELECTs to VSELECTs by splatting the condition.
3892 if (VT.isVector()) {
3893 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
3894 SDValue CondSplat = VT.isScalableVector()
3895 ? DAG.getSplatVector(SplatCondVT, DL, CondV)
3896 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
3897 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
3898 }
3899
3900 // If the result type is XLenVT and CondV is the output of a SETCC node
3901 // which also operated on XLenVT inputs, then merge the SETCC node into the
3902 // lowered RISCVISD::SELECT_CC to take advantage of the integer
3903 // compare+branch instructions. i.e.:
3904 // (select (setcc lhs, rhs, cc), truev, falsev)
3905 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
3906 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
3907 CondV.getOperand(0).getSimpleValueType() == XLenVT) {
3908 SDValue LHS = CondV.getOperand(0);
3909 SDValue RHS = CondV.getOperand(1);
3910 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
3911 ISD::CondCode CCVal = CC->get();
3912
3913 // Special case for a select of 2 constants that have a diffence of 1.
3914 // Normally this is done by DAGCombine, but if the select is introduced by
3915 // type legalization or op legalization, we miss it. Restricting to SETLT
3916 // case for now because that is what signed saturating add/sub need.
3917 // FIXME: We don't need the condition to be SETLT or even a SETCC,
3918 // but we would probably want to swap the true/false values if the condition
3919 // is SETGE/SETLE to avoid an XORI.
3920 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
3921 CCVal == ISD::SETLT) {
3922 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
3923 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
3924 if (TrueVal - 1 == FalseVal)
3925 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
3926 if (TrueVal + 1 == FalseVal)
3927 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
3928 }
3929
3930 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3931
3932 SDValue TargetCC = DAG.getCondCode(CCVal);
3933 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
3934 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3935 }
3936
3937 // Otherwise:
3938 // (select condv, truev, falsev)
3939 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
3940 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3941 SDValue SetNE = DAG.getCondCode(ISD::SETNE);
3942
3943 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
3944
3945 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
3946 }
3947
lowerBRCOND(SDValue Op,SelectionDAG & DAG) const3948 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
3949 SDValue CondV = Op.getOperand(1);
3950 SDLoc DL(Op);
3951 MVT XLenVT = Subtarget.getXLenVT();
3952
3953 if (CondV.getOpcode() == ISD::SETCC &&
3954 CondV.getOperand(0).getValueType() == XLenVT) {
3955 SDValue LHS = CondV.getOperand(0);
3956 SDValue RHS = CondV.getOperand(1);
3957 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
3958
3959 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
3960
3961 SDValue TargetCC = DAG.getCondCode(CCVal);
3962 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3963 LHS, RHS, TargetCC, Op.getOperand(2));
3964 }
3965
3966 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
3967 CondV, DAG.getConstant(0, DL, XLenVT),
3968 DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
3969 }
3970
lowerVASTART(SDValue Op,SelectionDAG & DAG) const3971 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3972 MachineFunction &MF = DAG.getMachineFunction();
3973 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
3974
3975 SDLoc DL(Op);
3976 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3977 getPointerTy(MF.getDataLayout()));
3978
3979 // vastart just stores the address of the VarArgsFrameIndex slot into the
3980 // memory location argument.
3981 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3982 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
3983 MachinePointerInfo(SV));
3984 }
3985
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const3986 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
3987 SelectionDAG &DAG) const {
3988 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3989 MachineFunction &MF = DAG.getMachineFunction();
3990 MachineFrameInfo &MFI = MF.getFrameInfo();
3991 MFI.setFrameAddressIsTaken(true);
3992 Register FrameReg = RI.getFrameRegister(MF);
3993 int XLenInBytes = Subtarget.getXLen() / 8;
3994
3995 EVT VT = Op.getValueType();
3996 SDLoc DL(Op);
3997 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3998 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3999 while (Depth--) {
4000 int Offset = -(XLenInBytes * 2);
4001 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
4002 DAG.getIntPtrConstant(Offset, DL));
4003 FrameAddr =
4004 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
4005 }
4006 return FrameAddr;
4007 }
4008
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const4009 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
4010 SelectionDAG &DAG) const {
4011 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
4012 MachineFunction &MF = DAG.getMachineFunction();
4013 MachineFrameInfo &MFI = MF.getFrameInfo();
4014 MFI.setReturnAddressIsTaken(true);
4015 MVT XLenVT = Subtarget.getXLenVT();
4016 int XLenInBytes = Subtarget.getXLen() / 8;
4017
4018 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4019 return SDValue();
4020
4021 EVT VT = Op.getValueType();
4022 SDLoc DL(Op);
4023 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4024 if (Depth) {
4025 int Off = -XLenInBytes;
4026 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
4027 SDValue Offset = DAG.getConstant(Off, DL, VT);
4028 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
4029 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
4030 MachinePointerInfo());
4031 }
4032
4033 // Return the value of the return address register, marking it an implicit
4034 // live-in.
4035 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
4036 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
4037 }
4038
lowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const4039 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
4040 SelectionDAG &DAG) const {
4041 SDLoc DL(Op);
4042 SDValue Lo = Op.getOperand(0);
4043 SDValue Hi = Op.getOperand(1);
4044 SDValue Shamt = Op.getOperand(2);
4045 EVT VT = Lo.getValueType();
4046
4047 // if Shamt-XLEN < 0: // Shamt < XLEN
4048 // Lo = Lo << Shamt
4049 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 ^ Shamt))
4050 // else:
4051 // Lo = 0
4052 // Hi = Lo << (Shamt-XLEN)
4053
4054 SDValue Zero = DAG.getConstant(0, DL, VT);
4055 SDValue One = DAG.getConstant(1, DL, VT);
4056 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4057 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4058 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4059 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4060
4061 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
4062 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
4063 SDValue ShiftRightLo =
4064 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
4065 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
4066 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
4067 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
4068
4069 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4070
4071 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
4072 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4073
4074 SDValue Parts[2] = {Lo, Hi};
4075 return DAG.getMergeValues(Parts, DL);
4076 }
4077
lowerShiftRightParts(SDValue Op,SelectionDAG & DAG,bool IsSRA) const4078 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
4079 bool IsSRA) const {
4080 SDLoc DL(Op);
4081 SDValue Lo = Op.getOperand(0);
4082 SDValue Hi = Op.getOperand(1);
4083 SDValue Shamt = Op.getOperand(2);
4084 EVT VT = Lo.getValueType();
4085
4086 // SRA expansion:
4087 // if Shamt-XLEN < 0: // Shamt < XLEN
4088 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4089 // Hi = Hi >>s Shamt
4090 // else:
4091 // Lo = Hi >>s (Shamt-XLEN);
4092 // Hi = Hi >>s (XLEN-1)
4093 //
4094 // SRL expansion:
4095 // if Shamt-XLEN < 0: // Shamt < XLEN
4096 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (ShAmt ^ XLEN-1))
4097 // Hi = Hi >>u Shamt
4098 // else:
4099 // Lo = Hi >>u (Shamt-XLEN);
4100 // Hi = 0;
4101
4102 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
4103
4104 SDValue Zero = DAG.getConstant(0, DL, VT);
4105 SDValue One = DAG.getConstant(1, DL, VT);
4106 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
4107 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
4108 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
4109 SDValue XLenMinus1Shamt = DAG.getNode(ISD::XOR, DL, VT, Shamt, XLenMinus1);
4110
4111 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
4112 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
4113 SDValue ShiftLeftHi =
4114 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
4115 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
4116 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
4117 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
4118 SDValue HiFalse =
4119 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
4120
4121 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
4122
4123 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
4124 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
4125
4126 SDValue Parts[2] = {Lo, Hi};
4127 return DAG.getMergeValues(Parts, DL);
4128 }
4129
4130 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
4131 // legal equivalently-sized i8 type, so we can use that as a go-between.
lowerVectorMaskSplat(SDValue Op,SelectionDAG & DAG) const4132 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
4133 SelectionDAG &DAG) const {
4134 SDLoc DL(Op);
4135 MVT VT = Op.getSimpleValueType();
4136 SDValue SplatVal = Op.getOperand(0);
4137 // All-zeros or all-ones splats are handled specially.
4138 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
4139 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4140 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
4141 }
4142 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
4143 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
4144 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
4145 }
4146 MVT XLenVT = Subtarget.getXLenVT();
4147 assert(SplatVal.getValueType() == XLenVT &&
4148 "Unexpected type for i1 splat value");
4149 MVT InterVT = VT.changeVectorElementType(MVT::i8);
4150 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
4151 DAG.getConstant(1, DL, XLenVT));
4152 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
4153 SDValue Zero = DAG.getConstant(0, DL, InterVT);
4154 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
4155 }
4156
4157 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
4158 // illegal (currently only vXi64 RV32).
4159 // FIXME: We could also catch non-constant sign-extended i32 values and lower
4160 // them to VMV_V_X_VL.
lowerSPLAT_VECTOR_PARTS(SDValue Op,SelectionDAG & DAG) const4161 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
4162 SelectionDAG &DAG) const {
4163 SDLoc DL(Op);
4164 MVT VecVT = Op.getSimpleValueType();
4165 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
4166 "Unexpected SPLAT_VECTOR_PARTS lowering");
4167
4168 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
4169 SDValue Lo = Op.getOperand(0);
4170 SDValue Hi = Op.getOperand(1);
4171
4172 if (VecVT.isFixedLengthVector()) {
4173 MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4174 SDLoc DL(Op);
4175 SDValue Mask, VL;
4176 std::tie(Mask, VL) =
4177 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4178
4179 SDValue Res =
4180 splatPartsI64WithVL(DL, ContainerVT, SDValue(), Lo, Hi, VL, DAG);
4181 return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
4182 }
4183
4184 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
4185 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
4186 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
4187 // If Hi constant is all the same sign bit as Lo, lower this as a custom
4188 // node in order to try and match RVV vector/scalar instructions.
4189 if ((LoC >> 31) == HiC)
4190 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
4191 Lo, DAG.getRegister(RISCV::X0, MVT::i32));
4192 }
4193
4194 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
4195 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
4196 isa<ConstantSDNode>(Hi.getOperand(1)) &&
4197 Hi.getConstantOperandVal(1) == 31)
4198 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT), Lo,
4199 DAG.getRegister(RISCV::X0, MVT::i32));
4200
4201 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
4202 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT,
4203 DAG.getUNDEF(VecVT), Lo, Hi,
4204 DAG.getRegister(RISCV::X0, MVT::i32));
4205 }
4206
4207 // Custom-lower extensions from mask vectors by using a vselect either with 1
4208 // for zero/any-extension or -1 for sign-extension:
4209 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
4210 // Note that any-extension is lowered identically to zero-extension.
lowerVectorMaskExt(SDValue Op,SelectionDAG & DAG,int64_t ExtTrueVal) const4211 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
4212 int64_t ExtTrueVal) const {
4213 SDLoc DL(Op);
4214 MVT VecVT = Op.getSimpleValueType();
4215 SDValue Src = Op.getOperand(0);
4216 // Only custom-lower extensions from mask types
4217 assert(Src.getValueType().isVector() &&
4218 Src.getValueType().getVectorElementType() == MVT::i1);
4219
4220 if (VecVT.isScalableVector()) {
4221 SDValue SplatZero = DAG.getConstant(0, DL, VecVT);
4222 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, VecVT);
4223 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
4224 }
4225
4226 MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
4227 MVT I1ContainerVT =
4228 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4229
4230 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
4231
4232 SDValue Mask, VL;
4233 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4234
4235 MVT XLenVT = Subtarget.getXLenVT();
4236 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
4237 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
4238
4239 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4240 DAG.getUNDEF(ContainerVT), SplatZero, VL);
4241 SplatTrueVal = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4242 DAG.getUNDEF(ContainerVT), SplatTrueVal, VL);
4243 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
4244 SplatTrueVal, SplatZero, VL);
4245
4246 return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
4247 }
4248
lowerFixedLengthVectorExtendToRVV(SDValue Op,SelectionDAG & DAG,unsigned ExtendOpc) const4249 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
4250 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
4251 MVT ExtVT = Op.getSimpleValueType();
4252 // Only custom-lower extensions from fixed-length vector types.
4253 if (!ExtVT.isFixedLengthVector())
4254 return Op;
4255 MVT VT = Op.getOperand(0).getSimpleValueType();
4256 // Grab the canonical container type for the extended type. Infer the smaller
4257 // type from that to ensure the same number of vector elements, as we know
4258 // the LMUL will be sufficient to hold the smaller type.
4259 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
4260 // Get the extended container type manually to ensure the same number of
4261 // vector elements between source and dest.
4262 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4263 ContainerExtVT.getVectorElementCount());
4264
4265 SDValue Op1 =
4266 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4267
4268 SDLoc DL(Op);
4269 SDValue Mask, VL;
4270 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4271
4272 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
4273
4274 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
4275 }
4276
4277 // Custom-lower truncations from vectors to mask vectors by using a mask and a
4278 // setcc operation:
4279 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
lowerVectorMaskTruncLike(SDValue Op,SelectionDAG & DAG) const4280 SDValue RISCVTargetLowering::lowerVectorMaskTruncLike(SDValue Op,
4281 SelectionDAG &DAG) const {
4282 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4283 SDLoc DL(Op);
4284 EVT MaskVT = Op.getValueType();
4285 // Only expect to custom-lower truncations to mask types
4286 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
4287 "Unexpected type for vector mask lowering");
4288 SDValue Src = Op.getOperand(0);
4289 MVT VecVT = Src.getSimpleValueType();
4290 SDValue Mask, VL;
4291 if (IsVPTrunc) {
4292 Mask = Op.getOperand(1);
4293 VL = Op.getOperand(2);
4294 }
4295 // If this is a fixed vector, we need to convert it to a scalable vector.
4296 MVT ContainerVT = VecVT;
4297
4298 if (VecVT.isFixedLengthVector()) {
4299 ContainerVT = getContainerForFixedLengthVector(VecVT);
4300 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4301 if (IsVPTrunc) {
4302 MVT MaskContainerVT =
4303 getContainerForFixedLengthVector(Mask.getSimpleValueType());
4304 Mask = convertToScalableVector(MaskContainerVT, Mask, DAG, Subtarget);
4305 }
4306 }
4307
4308 if (!IsVPTrunc) {
4309 std::tie(Mask, VL) =
4310 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4311 }
4312
4313 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
4314 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
4315
4316 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4317 DAG.getUNDEF(ContainerVT), SplatOne, VL);
4318 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4319 DAG.getUNDEF(ContainerVT), SplatZero, VL);
4320
4321 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
4322 SDValue Trunc =
4323 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
4324 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
4325 DAG.getCondCode(ISD::SETNE), Mask, VL);
4326 if (MaskVT.isFixedLengthVector())
4327 Trunc = convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
4328 return Trunc;
4329 }
4330
lowerVectorTruncLike(SDValue Op,SelectionDAG & DAG) const4331 SDValue RISCVTargetLowering::lowerVectorTruncLike(SDValue Op,
4332 SelectionDAG &DAG) const {
4333 bool IsVPTrunc = Op.getOpcode() == ISD::VP_TRUNCATE;
4334 SDLoc DL(Op);
4335
4336 MVT VT = Op.getSimpleValueType();
4337 // Only custom-lower vector truncates
4338 assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4339
4340 // Truncates to mask types are handled differently
4341 if (VT.getVectorElementType() == MVT::i1)
4342 return lowerVectorMaskTruncLike(Op, DAG);
4343
4344 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
4345 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
4346 // truncate by one power of two at a time.
4347 MVT DstEltVT = VT.getVectorElementType();
4348
4349 SDValue Src = Op.getOperand(0);
4350 MVT SrcVT = Src.getSimpleValueType();
4351 MVT SrcEltVT = SrcVT.getVectorElementType();
4352
4353 assert(DstEltVT.bitsLT(SrcEltVT) && isPowerOf2_64(DstEltVT.getSizeInBits()) &&
4354 isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
4355 "Unexpected vector truncate lowering");
4356
4357 MVT ContainerVT = SrcVT;
4358 SDValue Mask, VL;
4359 if (IsVPTrunc) {
4360 Mask = Op.getOperand(1);
4361 VL = Op.getOperand(2);
4362 }
4363 if (SrcVT.isFixedLengthVector()) {
4364 ContainerVT = getContainerForFixedLengthVector(SrcVT);
4365 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
4366 if (IsVPTrunc) {
4367 MVT MaskVT = getMaskTypeFor(ContainerVT);
4368 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4369 }
4370 }
4371
4372 SDValue Result = Src;
4373 if (!IsVPTrunc) {
4374 std::tie(Mask, VL) =
4375 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4376 }
4377
4378 LLVMContext &Context = *DAG.getContext();
4379 const ElementCount Count = ContainerVT.getVectorElementCount();
4380 do {
4381 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
4382 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
4383 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
4384 Mask, VL);
4385 } while (SrcEltVT != DstEltVT);
4386
4387 if (SrcVT.isFixedLengthVector())
4388 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4389
4390 return Result;
4391 }
4392
4393 SDValue
lowerVectorFPExtendOrRoundLike(SDValue Op,SelectionDAG & DAG) const4394 RISCVTargetLowering::lowerVectorFPExtendOrRoundLike(SDValue Op,
4395 SelectionDAG &DAG) const {
4396 bool IsVP =
4397 Op.getOpcode() == ISD::VP_FP_ROUND || Op.getOpcode() == ISD::VP_FP_EXTEND;
4398 bool IsExtend =
4399 Op.getOpcode() == ISD::VP_FP_EXTEND || Op.getOpcode() == ISD::FP_EXTEND;
4400 // RVV can only do truncate fp to types half the size as the source. We
4401 // custom-lower f64->f16 rounds via RVV's round-to-odd float
4402 // conversion instruction.
4403 SDLoc DL(Op);
4404 MVT VT = Op.getSimpleValueType();
4405
4406 assert(VT.isVector() && "Unexpected type for vector truncate lowering");
4407
4408 SDValue Src = Op.getOperand(0);
4409 MVT SrcVT = Src.getSimpleValueType();
4410
4411 bool IsDirectExtend = IsExtend && (VT.getVectorElementType() != MVT::f64 ||
4412 SrcVT.getVectorElementType() != MVT::f16);
4413 bool IsDirectTrunc = !IsExtend && (VT.getVectorElementType() != MVT::f16 ||
4414 SrcVT.getVectorElementType() != MVT::f64);
4415
4416 bool IsDirectConv = IsDirectExtend || IsDirectTrunc;
4417
4418 // Prepare any fixed-length vector operands.
4419 MVT ContainerVT = VT;
4420 SDValue Mask, VL;
4421 if (IsVP) {
4422 Mask = Op.getOperand(1);
4423 VL = Op.getOperand(2);
4424 }
4425 if (VT.isFixedLengthVector()) {
4426 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
4427 ContainerVT =
4428 SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
4429 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
4430 if (IsVP) {
4431 MVT MaskVT = getMaskTypeFor(ContainerVT);
4432 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4433 }
4434 }
4435
4436 if (!IsVP)
4437 std::tie(Mask, VL) =
4438 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
4439
4440 unsigned ConvOpc = IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::FP_ROUND_VL;
4441
4442 if (IsDirectConv) {
4443 Src = DAG.getNode(ConvOpc, DL, ContainerVT, Src, Mask, VL);
4444 if (VT.isFixedLengthVector())
4445 Src = convertFromScalableVector(VT, Src, DAG, Subtarget);
4446 return Src;
4447 }
4448
4449 unsigned InterConvOpc =
4450 IsExtend ? RISCVISD::FP_EXTEND_VL : RISCVISD::VFNCVT_ROD_VL;
4451
4452 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
4453 SDValue IntermediateConv =
4454 DAG.getNode(InterConvOpc, DL, InterVT, Src, Mask, VL);
4455 SDValue Result =
4456 DAG.getNode(ConvOpc, DL, ContainerVT, IntermediateConv, Mask, VL);
4457 if (VT.isFixedLengthVector())
4458 return convertFromScalableVector(VT, Result, DAG, Subtarget);
4459 return Result;
4460 }
4461
4462 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
4463 // first position of a vector, and that vector is slid up to the insert index.
4464 // By limiting the active vector length to index+1 and merging with the
4465 // original vector (with an undisturbed tail policy for elements >= VL), we
4466 // achieve the desired result of leaving all elements untouched except the one
4467 // at VL-1, which is replaced with the desired value.
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4468 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4469 SelectionDAG &DAG) const {
4470 SDLoc DL(Op);
4471 MVT VecVT = Op.getSimpleValueType();
4472 SDValue Vec = Op.getOperand(0);
4473 SDValue Val = Op.getOperand(1);
4474 SDValue Idx = Op.getOperand(2);
4475
4476 if (VecVT.getVectorElementType() == MVT::i1) {
4477 // FIXME: For now we just promote to an i8 vector and insert into that,
4478 // but this is probably not optimal.
4479 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4480 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4481 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
4482 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
4483 }
4484
4485 MVT ContainerVT = VecVT;
4486 // If the operand is a fixed-length vector, convert to a scalable one.
4487 if (VecVT.isFixedLengthVector()) {
4488 ContainerVT = getContainerForFixedLengthVector(VecVT);
4489 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4490 }
4491
4492 MVT XLenVT = Subtarget.getXLenVT();
4493
4494 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
4495 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
4496 // Even i64-element vectors on RV32 can be lowered without scalar
4497 // legalization if the most-significant 32 bits of the value are not affected
4498 // by the sign-extension of the lower 32 bits.
4499 // TODO: We could also catch sign extensions of a 32-bit value.
4500 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
4501 const auto *CVal = cast<ConstantSDNode>(Val);
4502 if (isInt<32>(CVal->getSExtValue())) {
4503 IsLegalInsert = true;
4504 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
4505 }
4506 }
4507
4508 SDValue Mask, VL;
4509 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
4510
4511 SDValue ValInVec;
4512
4513 if (IsLegalInsert) {
4514 unsigned Opc =
4515 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
4516 if (isNullConstant(Idx)) {
4517 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
4518 if (!VecVT.isFixedLengthVector())
4519 return Vec;
4520 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
4521 }
4522 ValInVec =
4523 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
4524 } else {
4525 // On RV32, i64-element vectors must be specially handled to place the
4526 // value at element 0, by using two vslide1up instructions in sequence on
4527 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
4528 // this.
4529 SDValue One = DAG.getConstant(1, DL, XLenVT);
4530 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
4531 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
4532 MVT I32ContainerVT =
4533 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
4534 SDValue I32Mask =
4535 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
4536 // Limit the active VL to two.
4537 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
4538 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
4539 // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
4540 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT,
4541 DAG.getUNDEF(I32ContainerVT), Zero, InsertI64VL);
4542 // First slide in the hi value, then the lo in underneath it.
4543 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4544 DAG.getUNDEF(I32ContainerVT), ValInVec, ValHi,
4545 I32Mask, InsertI64VL);
4546 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT,
4547 DAG.getUNDEF(I32ContainerVT), ValInVec, ValLo,
4548 I32Mask, InsertI64VL);
4549 // Bitcast back to the right container type.
4550 ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
4551 }
4552
4553 // Now that the value is in a vector, slide it into position.
4554 SDValue InsertVL =
4555 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
4556 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
4557 ValInVec, Idx, Mask, InsertVL);
4558 if (!VecVT.isFixedLengthVector())
4559 return Slideup;
4560 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
4561 }
4562
4563 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
4564 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
4565 // types this is done using VMV_X_S to allow us to glean information about the
4566 // sign bits of the result.
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const4567 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4568 SelectionDAG &DAG) const {
4569 SDLoc DL(Op);
4570 SDValue Idx = Op.getOperand(1);
4571 SDValue Vec = Op.getOperand(0);
4572 EVT EltVT = Op.getValueType();
4573 MVT VecVT = Vec.getSimpleValueType();
4574 MVT XLenVT = Subtarget.getXLenVT();
4575
4576 if (VecVT.getVectorElementType() == MVT::i1) {
4577 if (VecVT.isFixedLengthVector()) {
4578 unsigned NumElts = VecVT.getVectorNumElements();
4579 if (NumElts >= 8) {
4580 MVT WideEltVT;
4581 unsigned WidenVecLen;
4582 SDValue ExtractElementIdx;
4583 SDValue ExtractBitIdx;
4584 unsigned MaxEEW = Subtarget.getELEN();
4585 MVT LargestEltVT = MVT::getIntegerVT(
4586 std::min(MaxEEW, unsigned(XLenVT.getSizeInBits())));
4587 if (NumElts <= LargestEltVT.getSizeInBits()) {
4588 assert(isPowerOf2_32(NumElts) &&
4589 "the number of elements should be power of 2");
4590 WideEltVT = MVT::getIntegerVT(NumElts);
4591 WidenVecLen = 1;
4592 ExtractElementIdx = DAG.getConstant(0, DL, XLenVT);
4593 ExtractBitIdx = Idx;
4594 } else {
4595 WideEltVT = LargestEltVT;
4596 WidenVecLen = NumElts / WideEltVT.getSizeInBits();
4597 // extract element index = index / element width
4598 ExtractElementIdx = DAG.getNode(
4599 ISD::SRL, DL, XLenVT, Idx,
4600 DAG.getConstant(Log2_64(WideEltVT.getSizeInBits()), DL, XLenVT));
4601 // mask bit index = index % element width
4602 ExtractBitIdx = DAG.getNode(
4603 ISD::AND, DL, XLenVT, Idx,
4604 DAG.getConstant(WideEltVT.getSizeInBits() - 1, DL, XLenVT));
4605 }
4606 MVT WideVT = MVT::getVectorVT(WideEltVT, WidenVecLen);
4607 Vec = DAG.getNode(ISD::BITCAST, DL, WideVT, Vec);
4608 SDValue ExtractElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, XLenVT,
4609 Vec, ExtractElementIdx);
4610 // Extract the bit from GPR.
4611 SDValue ShiftRight =
4612 DAG.getNode(ISD::SRL, DL, XLenVT, ExtractElt, ExtractBitIdx);
4613 return DAG.getNode(ISD::AND, DL, XLenVT, ShiftRight,
4614 DAG.getConstant(1, DL, XLenVT));
4615 }
4616 }
4617 // Otherwise, promote to an i8 vector and extract from that.
4618 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
4619 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
4620 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
4621 }
4622
4623 // If this is a fixed vector, we need to convert it to a scalable vector.
4624 MVT ContainerVT = VecVT;
4625 if (VecVT.isFixedLengthVector()) {
4626 ContainerVT = getContainerForFixedLengthVector(VecVT);
4627 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4628 }
4629
4630 // If the index is 0, the vector is already in the right position.
4631 if (!isNullConstant(Idx)) {
4632 // Use a VL of 1 to avoid processing more elements than we need.
4633 SDValue VL = DAG.getConstant(1, DL, XLenVT);
4634 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
4635 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4636 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
4637 }
4638
4639 if (!EltVT.isInteger()) {
4640 // Floating-point extracts are handled in TableGen.
4641 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
4642 DAG.getConstant(0, DL, XLenVT));
4643 }
4644
4645 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
4646 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
4647 }
4648
4649 // Some RVV intrinsics may claim that they want an integer operand to be
4650 // promoted or expanded.
lowerVectorIntrinsicScalars(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)4651 static SDValue lowerVectorIntrinsicScalars(SDValue Op, SelectionDAG &DAG,
4652 const RISCVSubtarget &Subtarget) {
4653 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
4654 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
4655 "Unexpected opcode");
4656
4657 if (!Subtarget.hasVInstructions())
4658 return SDValue();
4659
4660 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
4661 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
4662 SDLoc DL(Op);
4663
4664 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
4665 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
4666 if (!II || !II->hasScalarOperand())
4667 return SDValue();
4668
4669 unsigned SplatOp = II->ScalarOperand + 1 + HasChain;
4670 assert(SplatOp < Op.getNumOperands());
4671
4672 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
4673 SDValue &ScalarOp = Operands[SplatOp];
4674 MVT OpVT = ScalarOp.getSimpleValueType();
4675 MVT XLenVT = Subtarget.getXLenVT();
4676
4677 // If this isn't a scalar, or its type is XLenVT we're done.
4678 if (!OpVT.isScalarInteger() || OpVT == XLenVT)
4679 return SDValue();
4680
4681 // Simplest case is that the operand needs to be promoted to XLenVT.
4682 if (OpVT.bitsLT(XLenVT)) {
4683 // If the operand is a constant, sign extend to increase our chances
4684 // of being able to use a .vi instruction. ANY_EXTEND would become a
4685 // a zero extend and the simm5 check in isel would fail.
4686 // FIXME: Should we ignore the upper bits in isel instead?
4687 unsigned ExtOpc =
4688 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
4689 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
4690 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4691 }
4692
4693 // Use the previous operand to get the vXi64 VT. The result might be a mask
4694 // VT for compares. Using the previous operand assumes that the previous
4695 // operand will never have a smaller element size than a scalar operand and
4696 // that a widening operation never uses SEW=64.
4697 // NOTE: If this fails the below assert, we can probably just find the
4698 // element count from any operand or result and use it to construct the VT.
4699 assert(II->ScalarOperand > 0 && "Unexpected splat operand!");
4700 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
4701
4702 // The more complex case is when the scalar is larger than XLenVT.
4703 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
4704 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
4705
4706 // If this is a sign-extended 32-bit value, we can truncate it and rely on the
4707 // instruction to sign-extend since SEW>XLEN.
4708 if (DAG.ComputeNumSignBits(ScalarOp) > 32) {
4709 ScalarOp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, ScalarOp);
4710 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4711 }
4712
4713 switch (IntNo) {
4714 case Intrinsic::riscv_vslide1up:
4715 case Intrinsic::riscv_vslide1down:
4716 case Intrinsic::riscv_vslide1up_mask:
4717 case Intrinsic::riscv_vslide1down_mask: {
4718 // We need to special case these when the scalar is larger than XLen.
4719 unsigned NumOps = Op.getNumOperands();
4720 bool IsMasked = NumOps == 7;
4721
4722 // Convert the vector source to the equivalent nxvXi32 vector.
4723 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
4724 SDValue Vec = DAG.getBitcast(I32VT, Operands[2]);
4725
4726 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4727 DAG.getConstant(0, DL, XLenVT));
4728 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, ScalarOp,
4729 DAG.getConstant(1, DL, XLenVT));
4730
4731 // Double the VL since we halved SEW.
4732 SDValue AVL = getVLOperand(Op);
4733 SDValue I32VL;
4734
4735 // Optimize for constant AVL
4736 if (isa<ConstantSDNode>(AVL)) {
4737 unsigned EltSize = VT.getScalarSizeInBits();
4738 unsigned MinSize = VT.getSizeInBits().getKnownMinValue();
4739
4740 unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
4741 unsigned MaxVLMAX =
4742 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
4743
4744 unsigned VectorBitsMin = Subtarget.getRealMinVLen();
4745 unsigned MinVLMAX =
4746 RISCVTargetLowering::computeVLMAX(VectorBitsMin, EltSize, MinSize);
4747
4748 uint64_t AVLInt = cast<ConstantSDNode>(AVL)->getZExtValue();
4749 if (AVLInt <= MinVLMAX) {
4750 I32VL = DAG.getConstant(2 * AVLInt, DL, XLenVT);
4751 } else if (AVLInt >= 2 * MaxVLMAX) {
4752 // Just set vl to VLMAX in this situation
4753 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(I32VT);
4754 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4755 unsigned Sew = RISCVVType::encodeSEW(I32VT.getScalarSizeInBits());
4756 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4757 SDValue SETVLMAX = DAG.getTargetConstant(
4758 Intrinsic::riscv_vsetvlimax_opt, DL, MVT::i32);
4759 I32VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVLMAX, SEW,
4760 LMUL);
4761 } else {
4762 // For AVL between (MinVLMAX, 2 * MaxVLMAX), the actual working vl
4763 // is related to the hardware implementation.
4764 // So let the following code handle
4765 }
4766 }
4767 if (!I32VL) {
4768 RISCVII::VLMUL Lmul = RISCVTargetLowering::getLMUL(VT);
4769 SDValue LMUL = DAG.getConstant(Lmul, DL, XLenVT);
4770 unsigned Sew = RISCVVType::encodeSEW(VT.getScalarSizeInBits());
4771 SDValue SEW = DAG.getConstant(Sew, DL, XLenVT);
4772 SDValue SETVL =
4773 DAG.getTargetConstant(Intrinsic::riscv_vsetvli_opt, DL, MVT::i32);
4774 // Using vsetvli instruction to get actually used length which related to
4775 // the hardware implementation
4776 SDValue VL = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, XLenVT, SETVL, AVL,
4777 SEW, LMUL);
4778 I32VL =
4779 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
4780 }
4781
4782 SDValue I32Mask = getAllOnesMask(I32VT, I32VL, DL, DAG);
4783
4784 // Shift the two scalar parts in using SEW=32 slide1up/slide1down
4785 // instructions.
4786 SDValue Passthru;
4787 if (IsMasked)
4788 Passthru = DAG.getUNDEF(I32VT);
4789 else
4790 Passthru = DAG.getBitcast(I32VT, Operands[1]);
4791
4792 if (IntNo == Intrinsic::riscv_vslide1up ||
4793 IntNo == Intrinsic::riscv_vslide1up_mask) {
4794 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4795 ScalarHi, I32Mask, I32VL);
4796 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Passthru, Vec,
4797 ScalarLo, I32Mask, I32VL);
4798 } else {
4799 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4800 ScalarLo, I32Mask, I32VL);
4801 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Passthru, Vec,
4802 ScalarHi, I32Mask, I32VL);
4803 }
4804
4805 // Convert back to nxvXi64.
4806 Vec = DAG.getBitcast(VT, Vec);
4807
4808 if (!IsMasked)
4809 return Vec;
4810 // Apply mask after the operation.
4811 SDValue Mask = Operands[NumOps - 3];
4812 SDValue MaskedOff = Operands[1];
4813 // Assume Policy operand is the last operand.
4814 uint64_t Policy =
4815 cast<ConstantSDNode>(Operands[NumOps - 1])->getZExtValue();
4816 // We don't need to select maskedoff if it's undef.
4817 if (MaskedOff.isUndef())
4818 return Vec;
4819 // TAMU
4820 if (Policy == RISCVII::TAIL_AGNOSTIC)
4821 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff,
4822 AVL);
4823 // TUMA or TUMU: Currently we always emit tumu policy regardless of tuma.
4824 // It's fine because vmerge does not care mask policy.
4825 return DAG.getNode(RISCVISD::VP_MERGE_VL, DL, VT, Mask, Vec, MaskedOff,
4826 AVL);
4827 }
4828 }
4829
4830 // We need to convert the scalar to a splat vector.
4831 SDValue VL = getVLOperand(Op);
4832 assert(VL.getValueType() == XLenVT);
4833 ScalarOp = splatSplitI64WithVL(DL, VT, SDValue(), ScalarOp, VL, DAG);
4834 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
4835 }
4836
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const4837 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4838 SelectionDAG &DAG) const {
4839 unsigned IntNo = Op.getConstantOperandVal(0);
4840 SDLoc DL(Op);
4841 MVT XLenVT = Subtarget.getXLenVT();
4842
4843 switch (IntNo) {
4844 default:
4845 break; // Don't custom lower most intrinsics.
4846 case Intrinsic::thread_pointer: {
4847 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4848 return DAG.getRegister(RISCV::X4, PtrVT);
4849 }
4850 case Intrinsic::riscv_orc_b:
4851 case Intrinsic::riscv_brev8: {
4852 // Lower to the GORCI encoding for orc.b or the GREVI encoding for brev8.
4853 unsigned Opc =
4854 IntNo == Intrinsic::riscv_brev8 ? RISCVISD::GREV : RISCVISD::GORC;
4855 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4856 DAG.getConstant(7, DL, XLenVT));
4857 }
4858 case Intrinsic::riscv_grev:
4859 case Intrinsic::riscv_gorc: {
4860 unsigned Opc =
4861 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
4862 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4863 }
4864 case Intrinsic::riscv_zip:
4865 case Intrinsic::riscv_unzip: {
4866 // Lower to the SHFLI encoding for zip or the UNSHFLI encoding for unzip.
4867 // For i32 the immediate is 15. For i64 the immediate is 31.
4868 unsigned Opc =
4869 IntNo == Intrinsic::riscv_zip ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4870 unsigned BitWidth = Op.getValueSizeInBits();
4871 assert(isPowerOf2_32(BitWidth) && BitWidth >= 2 && "Unexpected bit width");
4872 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1),
4873 DAG.getConstant((BitWidth / 2) - 1, DL, XLenVT));
4874 }
4875 case Intrinsic::riscv_shfl:
4876 case Intrinsic::riscv_unshfl: {
4877 unsigned Opc =
4878 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
4879 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4880 }
4881 case Intrinsic::riscv_bcompress:
4882 case Intrinsic::riscv_bdecompress: {
4883 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
4884 : RISCVISD::BDECOMPRESS;
4885 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
4886 }
4887 case Intrinsic::riscv_bfp:
4888 return DAG.getNode(RISCVISD::BFP, DL, XLenVT, Op.getOperand(1),
4889 Op.getOperand(2));
4890 case Intrinsic::riscv_fsl:
4891 return DAG.getNode(RISCVISD::FSL, DL, XLenVT, Op.getOperand(1),
4892 Op.getOperand(2), Op.getOperand(3));
4893 case Intrinsic::riscv_fsr:
4894 return DAG.getNode(RISCVISD::FSR, DL, XLenVT, Op.getOperand(1),
4895 Op.getOperand(2), Op.getOperand(3));
4896 case Intrinsic::riscv_vmv_x_s:
4897 assert(Op.getValueType() == XLenVT && "Unexpected VT!");
4898 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
4899 Op.getOperand(1));
4900 case Intrinsic::riscv_vmv_v_x:
4901 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
4902 Op.getOperand(3), Op.getSimpleValueType(), DL, DAG,
4903 Subtarget);
4904 case Intrinsic::riscv_vfmv_v_f:
4905 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
4906 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4907 case Intrinsic::riscv_vmv_s_x: {
4908 SDValue Scalar = Op.getOperand(2);
4909
4910 if (Scalar.getValueType().bitsLE(XLenVT)) {
4911 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
4912 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
4913 Op.getOperand(1), Scalar, Op.getOperand(3));
4914 }
4915
4916 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
4917
4918 // This is an i64 value that lives in two scalar registers. We have to
4919 // insert this in a convoluted way. First we build vXi64 splat containing
4920 // the two values that we assemble using some bit math. Next we'll use
4921 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
4922 // to merge element 0 from our splat into the source vector.
4923 // FIXME: This is probably not the best way to do this, but it is
4924 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
4925 // point.
4926 // sw lo, (a0)
4927 // sw hi, 4(a0)
4928 // vlse vX, (a0)
4929 //
4930 // vid.v vVid
4931 // vmseq.vx mMask, vVid, 0
4932 // vmerge.vvm vDest, vSrc, vVal, mMask
4933 MVT VT = Op.getSimpleValueType();
4934 SDValue Vec = Op.getOperand(1);
4935 SDValue VL = getVLOperand(Op);
4936
4937 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, SDValue(), Scalar, VL, DAG);
4938 if (Op.getOperand(1).isUndef())
4939 return SplattedVal;
4940 SDValue SplattedIdx =
4941 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
4942 DAG.getConstant(0, DL, MVT::i32), VL);
4943
4944 MVT MaskVT = getMaskTypeFor(VT);
4945 SDValue Mask = getAllOnesMask(VT, VL, DL, DAG);
4946 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4947 SDValue SelectCond =
4948 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
4949 DAG.getCondCode(ISD::SETEQ), Mask, VL);
4950 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
4951 Vec, VL);
4952 }
4953 }
4954
4955 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
4956 }
4957
LowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const4958 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
4959 SelectionDAG &DAG) const {
4960 unsigned IntNo = Op.getConstantOperandVal(1);
4961 switch (IntNo) {
4962 default:
4963 break;
4964 case Intrinsic::riscv_masked_strided_load: {
4965 SDLoc DL(Op);
4966 MVT XLenVT = Subtarget.getXLenVT();
4967
4968 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4969 // the selection of the masked intrinsics doesn't do this for us.
4970 SDValue Mask = Op.getOperand(5);
4971 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4972
4973 MVT VT = Op->getSimpleValueType(0);
4974 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4975
4976 SDValue PassThru = Op.getOperand(2);
4977 if (!IsUnmasked) {
4978 MVT MaskVT = getMaskTypeFor(ContainerVT);
4979 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4980 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4981 }
4982
4983 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4984
4985 SDValue IntID = DAG.getTargetConstant(
4986 IsUnmasked ? Intrinsic::riscv_vlse : Intrinsic::riscv_vlse_mask, DL,
4987 XLenVT);
4988
4989 auto *Load = cast<MemIntrinsicSDNode>(Op);
4990 SmallVector<SDValue, 8> Ops{Load->getChain(), IntID};
4991 if (IsUnmasked)
4992 Ops.push_back(DAG.getUNDEF(ContainerVT));
4993 else
4994 Ops.push_back(PassThru);
4995 Ops.push_back(Op.getOperand(3)); // Ptr
4996 Ops.push_back(Op.getOperand(4)); // Stride
4997 if (!IsUnmasked)
4998 Ops.push_back(Mask);
4999 Ops.push_back(VL);
5000 if (!IsUnmasked) {
5001 SDValue Policy = DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT);
5002 Ops.push_back(Policy);
5003 }
5004
5005 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5006 SDValue Result =
5007 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5008 Load->getMemoryVT(), Load->getMemOperand());
5009 SDValue Chain = Result.getValue(1);
5010 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5011 return DAG.getMergeValues({Result, Chain}, DL);
5012 }
5013 case Intrinsic::riscv_seg2_load:
5014 case Intrinsic::riscv_seg3_load:
5015 case Intrinsic::riscv_seg4_load:
5016 case Intrinsic::riscv_seg5_load:
5017 case Intrinsic::riscv_seg6_load:
5018 case Intrinsic::riscv_seg7_load:
5019 case Intrinsic::riscv_seg8_load: {
5020 SDLoc DL(Op);
5021 static const Intrinsic::ID VlsegInts[7] = {
5022 Intrinsic::riscv_vlseg2, Intrinsic::riscv_vlseg3,
5023 Intrinsic::riscv_vlseg4, Intrinsic::riscv_vlseg5,
5024 Intrinsic::riscv_vlseg6, Intrinsic::riscv_vlseg7,
5025 Intrinsic::riscv_vlseg8};
5026 unsigned NF = Op->getNumValues() - 1;
5027 assert(NF >= 2 && NF <= 8 && "Unexpected seg number");
5028 MVT XLenVT = Subtarget.getXLenVT();
5029 MVT VT = Op->getSimpleValueType(0);
5030 MVT ContainerVT = getContainerForFixedLengthVector(VT);
5031
5032 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5033 SDValue IntID = DAG.getTargetConstant(VlsegInts[NF - 2], DL, XLenVT);
5034 auto *Load = cast<MemIntrinsicSDNode>(Op);
5035 SmallVector<EVT, 9> ContainerVTs(NF, ContainerVT);
5036 ContainerVTs.push_back(MVT::Other);
5037 SDVTList VTs = DAG.getVTList(ContainerVTs);
5038 SmallVector<SDValue, 12> Ops = {Load->getChain(), IntID};
5039 Ops.insert(Ops.end(), NF, DAG.getUNDEF(ContainerVT));
5040 Ops.push_back(Op.getOperand(2));
5041 Ops.push_back(VL);
5042 SDValue Result =
5043 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5044 Load->getMemoryVT(), Load->getMemOperand());
5045 SmallVector<SDValue, 9> Results;
5046 for (unsigned int RetIdx = 0; RetIdx < NF; RetIdx++)
5047 Results.push_back(convertFromScalableVector(VT, Result.getValue(RetIdx),
5048 DAG, Subtarget));
5049 Results.push_back(Result.getValue(NF));
5050 return DAG.getMergeValues(Results, DL);
5051 }
5052 }
5053
5054 return lowerVectorIntrinsicScalars(Op, DAG, Subtarget);
5055 }
5056
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const5057 SDValue RISCVTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
5058 SelectionDAG &DAG) const {
5059 unsigned IntNo = Op.getConstantOperandVal(1);
5060 switch (IntNo) {
5061 default:
5062 break;
5063 case Intrinsic::riscv_masked_strided_store: {
5064 SDLoc DL(Op);
5065 MVT XLenVT = Subtarget.getXLenVT();
5066
5067 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
5068 // the selection of the masked intrinsics doesn't do this for us.
5069 SDValue Mask = Op.getOperand(5);
5070 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5071
5072 SDValue Val = Op.getOperand(2);
5073 MVT VT = Val.getSimpleValueType();
5074 MVT ContainerVT = getContainerForFixedLengthVector(VT);
5075
5076 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5077 if (!IsUnmasked) {
5078 MVT MaskVT = getMaskTypeFor(ContainerVT);
5079 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5080 }
5081
5082 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5083
5084 SDValue IntID = DAG.getTargetConstant(
5085 IsUnmasked ? Intrinsic::riscv_vsse : Intrinsic::riscv_vsse_mask, DL,
5086 XLenVT);
5087
5088 auto *Store = cast<MemIntrinsicSDNode>(Op);
5089 SmallVector<SDValue, 8> Ops{Store->getChain(), IntID};
5090 Ops.push_back(Val);
5091 Ops.push_back(Op.getOperand(3)); // Ptr
5092 Ops.push_back(Op.getOperand(4)); // Stride
5093 if (!IsUnmasked)
5094 Ops.push_back(Mask);
5095 Ops.push_back(VL);
5096
5097 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, Store->getVTList(),
5098 Ops, Store->getMemoryVT(),
5099 Store->getMemOperand());
5100 }
5101 }
5102
5103 return SDValue();
5104 }
5105
getLMUL1VT(MVT VT)5106 static MVT getLMUL1VT(MVT VT) {
5107 assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
5108 "Unexpected vector MVT");
5109 return MVT::getScalableVectorVT(
5110 VT.getVectorElementType(),
5111 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
5112 }
5113
getRVVReductionOp(unsigned ISDOpcode)5114 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
5115 switch (ISDOpcode) {
5116 default:
5117 llvm_unreachable("Unhandled reduction");
5118 case ISD::VECREDUCE_ADD:
5119 return RISCVISD::VECREDUCE_ADD_VL;
5120 case ISD::VECREDUCE_UMAX:
5121 return RISCVISD::VECREDUCE_UMAX_VL;
5122 case ISD::VECREDUCE_SMAX:
5123 return RISCVISD::VECREDUCE_SMAX_VL;
5124 case ISD::VECREDUCE_UMIN:
5125 return RISCVISD::VECREDUCE_UMIN_VL;
5126 case ISD::VECREDUCE_SMIN:
5127 return RISCVISD::VECREDUCE_SMIN_VL;
5128 case ISD::VECREDUCE_AND:
5129 return RISCVISD::VECREDUCE_AND_VL;
5130 case ISD::VECREDUCE_OR:
5131 return RISCVISD::VECREDUCE_OR_VL;
5132 case ISD::VECREDUCE_XOR:
5133 return RISCVISD::VECREDUCE_XOR_VL;
5134 }
5135 }
5136
lowerVectorMaskVecReduction(SDValue Op,SelectionDAG & DAG,bool IsVP) const5137 SDValue RISCVTargetLowering::lowerVectorMaskVecReduction(SDValue Op,
5138 SelectionDAG &DAG,
5139 bool IsVP) const {
5140 SDLoc DL(Op);
5141 SDValue Vec = Op.getOperand(IsVP ? 1 : 0);
5142 MVT VecVT = Vec.getSimpleValueType();
5143 assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
5144 Op.getOpcode() == ISD::VECREDUCE_OR ||
5145 Op.getOpcode() == ISD::VECREDUCE_XOR ||
5146 Op.getOpcode() == ISD::VP_REDUCE_AND ||
5147 Op.getOpcode() == ISD::VP_REDUCE_OR ||
5148 Op.getOpcode() == ISD::VP_REDUCE_XOR) &&
5149 "Unexpected reduction lowering");
5150
5151 MVT XLenVT = Subtarget.getXLenVT();
5152 assert(Op.getValueType() == XLenVT &&
5153 "Expected reduction output to be legalized to XLenVT");
5154
5155 MVT ContainerVT = VecVT;
5156 if (VecVT.isFixedLengthVector()) {
5157 ContainerVT = getContainerForFixedLengthVector(VecVT);
5158 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5159 }
5160
5161 SDValue Mask, VL;
5162 if (IsVP) {
5163 Mask = Op.getOperand(2);
5164 VL = Op.getOperand(3);
5165 } else {
5166 std::tie(Mask, VL) =
5167 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5168 }
5169
5170 unsigned BaseOpc;
5171 ISD::CondCode CC;
5172 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
5173
5174 switch (Op.getOpcode()) {
5175 default:
5176 llvm_unreachable("Unhandled reduction");
5177 case ISD::VECREDUCE_AND:
5178 case ISD::VP_REDUCE_AND: {
5179 // vcpop ~x == 0
5180 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
5181 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, TrueMask, VL);
5182 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5183 CC = ISD::SETEQ;
5184 BaseOpc = ISD::AND;
5185 break;
5186 }
5187 case ISD::VECREDUCE_OR:
5188 case ISD::VP_REDUCE_OR:
5189 // vcpop x != 0
5190 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5191 CC = ISD::SETNE;
5192 BaseOpc = ISD::OR;
5193 break;
5194 case ISD::VECREDUCE_XOR:
5195 case ISD::VP_REDUCE_XOR: {
5196 // ((vcpop x) & 1) != 0
5197 SDValue One = DAG.getConstant(1, DL, XLenVT);
5198 Vec = DAG.getNode(RISCVISD::VCPOP_VL, DL, XLenVT, Vec, Mask, VL);
5199 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
5200 CC = ISD::SETNE;
5201 BaseOpc = ISD::XOR;
5202 break;
5203 }
5204 }
5205
5206 SDValue SetCC = DAG.getSetCC(DL, XLenVT, Vec, Zero, CC);
5207
5208 if (!IsVP)
5209 return SetCC;
5210
5211 // Now include the start value in the operation.
5212 // Note that we must return the start value when no elements are operated
5213 // upon. The vcpop instructions we've emitted in each case above will return
5214 // 0 for an inactive vector, and so we've already received the neutral value:
5215 // AND gives us (0 == 0) -> 1 and OR/XOR give us (0 != 0) -> 0. Therefore we
5216 // can simply include the start value.
5217 return DAG.getNode(BaseOpc, DL, XLenVT, SetCC, Op.getOperand(0));
5218 }
5219
lowerVECREDUCE(SDValue Op,SelectionDAG & DAG) const5220 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
5221 SelectionDAG &DAG) const {
5222 SDLoc DL(Op);
5223 SDValue Vec = Op.getOperand(0);
5224 EVT VecEVT = Vec.getValueType();
5225
5226 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
5227
5228 // Due to ordering in legalize types we may have a vector type that needs to
5229 // be split. Do that manually so we can get down to a legal type.
5230 while (getTypeAction(*DAG.getContext(), VecEVT) ==
5231 TargetLowering::TypeSplitVector) {
5232 SDValue Lo, Hi;
5233 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
5234 VecEVT = Lo.getValueType();
5235 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
5236 }
5237
5238 // TODO: The type may need to be widened rather than split. Or widened before
5239 // it can be split.
5240 if (!isTypeLegal(VecEVT))
5241 return SDValue();
5242
5243 MVT VecVT = VecEVT.getSimpleVT();
5244 MVT VecEltVT = VecVT.getVectorElementType();
5245 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
5246
5247 MVT ContainerVT = VecVT;
5248 if (VecVT.isFixedLengthVector()) {
5249 ContainerVT = getContainerForFixedLengthVector(VecVT);
5250 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5251 }
5252
5253 MVT M1VT = getLMUL1VT(ContainerVT);
5254 MVT XLenVT = Subtarget.getXLenVT();
5255
5256 SDValue Mask, VL;
5257 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5258
5259 SDValue NeutralElem =
5260 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
5261 SDValue IdentitySplat =
5262 lowerScalarSplat(SDValue(), NeutralElem, DAG.getConstant(1, DL, XLenVT),
5263 M1VT, DL, DAG, Subtarget);
5264 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT), Vec,
5265 IdentitySplat, Mask, VL);
5266 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5267 DAG.getConstant(0, DL, XLenVT));
5268 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5269 }
5270
5271 // Given a reduction op, this function returns the matching reduction opcode,
5272 // the vector SDValue and the scalar SDValue required to lower this to a
5273 // RISCVISD node.
5274 static std::tuple<unsigned, SDValue, SDValue>
getRVVFPReductionOpAndOperands(SDValue Op,SelectionDAG & DAG,EVT EltVT)5275 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
5276 SDLoc DL(Op);
5277 auto Flags = Op->getFlags();
5278 unsigned Opcode = Op.getOpcode();
5279 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
5280 switch (Opcode) {
5281 default:
5282 llvm_unreachable("Unhandled reduction");
5283 case ISD::VECREDUCE_FADD: {
5284 // Use positive zero if we can. It is cheaper to materialize.
5285 SDValue Zero =
5286 DAG.getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, EltVT);
5287 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0), Zero);
5288 }
5289 case ISD::VECREDUCE_SEQ_FADD:
5290 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
5291 Op.getOperand(0));
5292 case ISD::VECREDUCE_FMIN:
5293 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
5294 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5295 case ISD::VECREDUCE_FMAX:
5296 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
5297 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
5298 }
5299 }
5300
lowerFPVECREDUCE(SDValue Op,SelectionDAG & DAG) const5301 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
5302 SelectionDAG &DAG) const {
5303 SDLoc DL(Op);
5304 MVT VecEltVT = Op.getSimpleValueType();
5305
5306 unsigned RVVOpcode;
5307 SDValue VectorVal, ScalarVal;
5308 std::tie(RVVOpcode, VectorVal, ScalarVal) =
5309 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
5310 MVT VecVT = VectorVal.getSimpleValueType();
5311
5312 MVT ContainerVT = VecVT;
5313 if (VecVT.isFixedLengthVector()) {
5314 ContainerVT = getContainerForFixedLengthVector(VecVT);
5315 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
5316 }
5317
5318 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
5319 MVT XLenVT = Subtarget.getXLenVT();
5320
5321 SDValue Mask, VL;
5322 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
5323
5324 SDValue ScalarSplat =
5325 lowerScalarSplat(SDValue(), ScalarVal, DAG.getConstant(1, DL, XLenVT),
5326 M1VT, DL, DAG, Subtarget);
5327 SDValue Reduction = DAG.getNode(RVVOpcode, DL, M1VT, DAG.getUNDEF(M1VT),
5328 VectorVal, ScalarSplat, Mask, VL);
5329 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
5330 DAG.getConstant(0, DL, XLenVT));
5331 }
5332
getRVVVPReductionOp(unsigned ISDOpcode)5333 static unsigned getRVVVPReductionOp(unsigned ISDOpcode) {
5334 switch (ISDOpcode) {
5335 default:
5336 llvm_unreachable("Unhandled reduction");
5337 case ISD::VP_REDUCE_ADD:
5338 return RISCVISD::VECREDUCE_ADD_VL;
5339 case ISD::VP_REDUCE_UMAX:
5340 return RISCVISD::VECREDUCE_UMAX_VL;
5341 case ISD::VP_REDUCE_SMAX:
5342 return RISCVISD::VECREDUCE_SMAX_VL;
5343 case ISD::VP_REDUCE_UMIN:
5344 return RISCVISD::VECREDUCE_UMIN_VL;
5345 case ISD::VP_REDUCE_SMIN:
5346 return RISCVISD::VECREDUCE_SMIN_VL;
5347 case ISD::VP_REDUCE_AND:
5348 return RISCVISD::VECREDUCE_AND_VL;
5349 case ISD::VP_REDUCE_OR:
5350 return RISCVISD::VECREDUCE_OR_VL;
5351 case ISD::VP_REDUCE_XOR:
5352 return RISCVISD::VECREDUCE_XOR_VL;
5353 case ISD::VP_REDUCE_FADD:
5354 return RISCVISD::VECREDUCE_FADD_VL;
5355 case ISD::VP_REDUCE_SEQ_FADD:
5356 return RISCVISD::VECREDUCE_SEQ_FADD_VL;
5357 case ISD::VP_REDUCE_FMAX:
5358 return RISCVISD::VECREDUCE_FMAX_VL;
5359 case ISD::VP_REDUCE_FMIN:
5360 return RISCVISD::VECREDUCE_FMIN_VL;
5361 }
5362 }
5363
lowerVPREDUCE(SDValue Op,SelectionDAG & DAG) const5364 SDValue RISCVTargetLowering::lowerVPREDUCE(SDValue Op,
5365 SelectionDAG &DAG) const {
5366 SDLoc DL(Op);
5367 SDValue Vec = Op.getOperand(1);
5368 EVT VecEVT = Vec.getValueType();
5369
5370 // TODO: The type may need to be widened rather than split. Or widened before
5371 // it can be split.
5372 if (!isTypeLegal(VecEVT))
5373 return SDValue();
5374
5375 MVT VecVT = VecEVT.getSimpleVT();
5376 MVT VecEltVT = VecVT.getVectorElementType();
5377 unsigned RVVOpcode = getRVVVPReductionOp(Op.getOpcode());
5378
5379 MVT ContainerVT = VecVT;
5380 if (VecVT.isFixedLengthVector()) {
5381 ContainerVT = getContainerForFixedLengthVector(VecVT);
5382 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5383 }
5384
5385 SDValue VL = Op.getOperand(3);
5386 SDValue Mask = Op.getOperand(2);
5387
5388 MVT M1VT = getLMUL1VT(ContainerVT);
5389 MVT XLenVT = Subtarget.getXLenVT();
5390 MVT ResVT = !VecVT.isInteger() || VecEltVT.bitsGE(XLenVT) ? VecEltVT : XLenVT;
5391
5392 SDValue StartSplat = lowerScalarSplat(SDValue(), Op.getOperand(0),
5393 DAG.getConstant(1, DL, XLenVT), M1VT,
5394 DL, DAG, Subtarget);
5395 SDValue Reduction =
5396 DAG.getNode(RVVOpcode, DL, M1VT, StartSplat, Vec, StartSplat, Mask, VL);
5397 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Reduction,
5398 DAG.getConstant(0, DL, XLenVT));
5399 if (!VecVT.isInteger())
5400 return Elt0;
5401 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
5402 }
5403
lowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const5404 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5405 SelectionDAG &DAG) const {
5406 SDValue Vec = Op.getOperand(0);
5407 SDValue SubVec = Op.getOperand(1);
5408 MVT VecVT = Vec.getSimpleValueType();
5409 MVT SubVecVT = SubVec.getSimpleValueType();
5410
5411 SDLoc DL(Op);
5412 MVT XLenVT = Subtarget.getXLenVT();
5413 unsigned OrigIdx = Op.getConstantOperandVal(2);
5414 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5415
5416 // We don't have the ability to slide mask vectors up indexed by their i1
5417 // elements; the smallest we can do is i8. Often we are able to bitcast to
5418 // equivalent i8 vectors. Note that when inserting a fixed-length vector
5419 // into a scalable one, we might not necessarily have enough scalable
5420 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
5421 if (SubVecVT.getVectorElementType() == MVT::i1 &&
5422 (OrigIdx != 0 || !Vec.isUndef())) {
5423 if (VecVT.getVectorMinNumElements() >= 8 &&
5424 SubVecVT.getVectorMinNumElements() >= 8) {
5425 assert(OrigIdx % 8 == 0 && "Invalid index");
5426 assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5427 SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5428 "Unexpected mask vector lowering");
5429 OrigIdx /= 8;
5430 SubVecVT =
5431 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5432 SubVecVT.isScalableVector());
5433 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5434 VecVT.isScalableVector());
5435 Vec = DAG.getBitcast(VecVT, Vec);
5436 SubVec = DAG.getBitcast(SubVecVT, SubVec);
5437 } else {
5438 // We can't slide this mask vector up indexed by its i1 elements.
5439 // This poses a problem when we wish to insert a scalable vector which
5440 // can't be re-expressed as a larger type. Just choose the slow path and
5441 // extend to a larger type, then truncate back down.
5442 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5443 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5444 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5445 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
5446 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
5447 Op.getOperand(2));
5448 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
5449 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
5450 }
5451 }
5452
5453 // If the subvector vector is a fixed-length type, we cannot use subregister
5454 // manipulation to simplify the codegen; we don't know which register of a
5455 // LMUL group contains the specific subvector as we only know the minimum
5456 // register size. Therefore we must slide the vector group up the full
5457 // amount.
5458 if (SubVecVT.isFixedLengthVector()) {
5459 if (OrigIdx == 0 && Vec.isUndef() && !VecVT.isFixedLengthVector())
5460 return Op;
5461 MVT ContainerVT = VecVT;
5462 if (VecVT.isFixedLengthVector()) {
5463 ContainerVT = getContainerForFixedLengthVector(VecVT);
5464 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5465 }
5466 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
5467 DAG.getUNDEF(ContainerVT), SubVec,
5468 DAG.getConstant(0, DL, XLenVT));
5469 if (OrigIdx == 0 && Vec.isUndef() && VecVT.isFixedLengthVector()) {
5470 SubVec = convertFromScalableVector(VecVT, SubVec, DAG, Subtarget);
5471 return DAG.getBitcast(Op.getValueType(), SubVec);
5472 }
5473 SDValue Mask =
5474 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5475 // Set the vector length to only the number of elements we care about. Note
5476 // that for slideup this includes the offset.
5477 SDValue VL =
5478 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
5479 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5480 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
5481 SubVec, SlideupAmt, Mask, VL);
5482 if (VecVT.isFixedLengthVector())
5483 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
5484 return DAG.getBitcast(Op.getValueType(), Slideup);
5485 }
5486
5487 unsigned SubRegIdx, RemIdx;
5488 std::tie(SubRegIdx, RemIdx) =
5489 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5490 VecVT, SubVecVT, OrigIdx, TRI);
5491
5492 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
5493 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
5494 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
5495 SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
5496
5497 // 1. If the Idx has been completely eliminated and this subvector's size is
5498 // a vector register or a multiple thereof, or the surrounding elements are
5499 // undef, then this is a subvector insert which naturally aligns to a vector
5500 // register. These can easily be handled using subregister manipulation.
5501 // 2. If the subvector is smaller than a vector register, then the insertion
5502 // must preserve the undisturbed elements of the register. We do this by
5503 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
5504 // (which resolves to a subregister copy), performing a VSLIDEUP to place the
5505 // subvector within the vector register, and an INSERT_SUBVECTOR of that
5506 // LMUL=1 type back into the larger vector (resolving to another subregister
5507 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
5508 // to avoid allocating a large register group to hold our subvector.
5509 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
5510 return Op;
5511
5512 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
5513 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
5514 // (in our case undisturbed). This means we can set up a subvector insertion
5515 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
5516 // size of the subvector.
5517 MVT InterSubVT = VecVT;
5518 SDValue AlignedExtract = Vec;
5519 unsigned AlignedIdx = OrigIdx - RemIdx;
5520 if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5521 InterSubVT = getLMUL1VT(VecVT);
5522 // Extract a subvector equal to the nearest full vector register type. This
5523 // should resolve to a EXTRACT_SUBREG instruction.
5524 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5525 DAG.getConstant(AlignedIdx, DL, XLenVT));
5526 }
5527
5528 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5529 // For scalable vectors this must be further multiplied by vscale.
5530 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
5531
5532 SDValue Mask, VL;
5533 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5534
5535 // Construct the vector length corresponding to RemIdx + length(SubVecVT).
5536 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
5537 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
5538 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
5539
5540 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
5541 DAG.getUNDEF(InterSubVT), SubVec,
5542 DAG.getConstant(0, DL, XLenVT));
5543
5544 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
5545 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
5546
5547 // If required, insert this subvector back into the correct vector register.
5548 // This should resolve to an INSERT_SUBREG instruction.
5549 if (VecVT.bitsGT(InterSubVT))
5550 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
5551 DAG.getConstant(AlignedIdx, DL, XLenVT));
5552
5553 // We might have bitcast from a mask type: cast back to the original type if
5554 // required.
5555 return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
5556 }
5557
lowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const5558 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
5559 SelectionDAG &DAG) const {
5560 SDValue Vec = Op.getOperand(0);
5561 MVT SubVecVT = Op.getSimpleValueType();
5562 MVT VecVT = Vec.getSimpleValueType();
5563
5564 SDLoc DL(Op);
5565 MVT XLenVT = Subtarget.getXLenVT();
5566 unsigned OrigIdx = Op.getConstantOperandVal(1);
5567 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
5568
5569 // We don't have the ability to slide mask vectors down indexed by their i1
5570 // elements; the smallest we can do is i8. Often we are able to bitcast to
5571 // equivalent i8 vectors. Note that when extracting a fixed-length vector
5572 // from a scalable one, we might not necessarily have enough scalable
5573 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
5574 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
5575 if (VecVT.getVectorMinNumElements() >= 8 &&
5576 SubVecVT.getVectorMinNumElements() >= 8) {
5577 assert(OrigIdx % 8 == 0 && "Invalid index");
5578 assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
5579 SubVecVT.getVectorMinNumElements() % 8 == 0 &&
5580 "Unexpected mask vector lowering");
5581 OrigIdx /= 8;
5582 SubVecVT =
5583 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
5584 SubVecVT.isScalableVector());
5585 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
5586 VecVT.isScalableVector());
5587 Vec = DAG.getBitcast(VecVT, Vec);
5588 } else {
5589 // We can't slide this mask vector down, indexed by its i1 elements.
5590 // This poses a problem when we wish to extract a scalable vector which
5591 // can't be re-expressed as a larger type. Just choose the slow path and
5592 // extend to a larger type, then truncate back down.
5593 // TODO: We could probably improve this when extracting certain fixed
5594 // from fixed, where we can extract as i8 and shift the correct element
5595 // right to reach the desired subvector?
5596 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
5597 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
5598 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
5599 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
5600 Op.getOperand(1));
5601 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
5602 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
5603 }
5604 }
5605
5606 // If the subvector vector is a fixed-length type, we cannot use subregister
5607 // manipulation to simplify the codegen; we don't know which register of a
5608 // LMUL group contains the specific subvector as we only know the minimum
5609 // register size. Therefore we must slide the vector group down the full
5610 // amount.
5611 if (SubVecVT.isFixedLengthVector()) {
5612 // With an index of 0 this is a cast-like subvector, which can be performed
5613 // with subregister operations.
5614 if (OrigIdx == 0)
5615 return Op;
5616 MVT ContainerVT = VecVT;
5617 if (VecVT.isFixedLengthVector()) {
5618 ContainerVT = getContainerForFixedLengthVector(VecVT);
5619 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5620 }
5621 SDValue Mask =
5622 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
5623 // Set the vector length to only the number of elements we care about. This
5624 // avoids sliding down elements we're going to discard straight away.
5625 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
5626 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
5627 SDValue Slidedown =
5628 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5629 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
5630 // Now we can use a cast-like subvector extract to get the result.
5631 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5632 DAG.getConstant(0, DL, XLenVT));
5633 return DAG.getBitcast(Op.getValueType(), Slidedown);
5634 }
5635
5636 unsigned SubRegIdx, RemIdx;
5637 std::tie(SubRegIdx, RemIdx) =
5638 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
5639 VecVT, SubVecVT, OrigIdx, TRI);
5640
5641 // If the Idx has been completely eliminated then this is a subvector extract
5642 // which naturally aligns to a vector register. These can easily be handled
5643 // using subregister manipulation.
5644 if (RemIdx == 0)
5645 return Op;
5646
5647 // Else we must shift our vector register directly to extract the subvector.
5648 // Do this using VSLIDEDOWN.
5649
5650 // If the vector type is an LMUL-group type, extract a subvector equal to the
5651 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
5652 // instruction.
5653 MVT InterSubVT = VecVT;
5654 if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
5655 InterSubVT = getLMUL1VT(VecVT);
5656 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
5657 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
5658 }
5659
5660 // Slide this vector register down by the desired number of elements in order
5661 // to place the desired subvector starting at element 0.
5662 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
5663 // For scalable vectors this must be further multiplied by vscale.
5664 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
5665
5666 SDValue Mask, VL;
5667 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
5668 SDValue Slidedown =
5669 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
5670 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
5671
5672 // Now the vector is in the right position, extract our final subvector. This
5673 // should resolve to a COPY.
5674 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
5675 DAG.getConstant(0, DL, XLenVT));
5676
5677 // We might have bitcast from a mask type: cast back to the original type if
5678 // required.
5679 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
5680 }
5681
5682 // Lower step_vector to the vid instruction. Any non-identity step value must
5683 // be accounted for my manual expansion.
lowerSTEP_VECTOR(SDValue Op,SelectionDAG & DAG) const5684 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
5685 SelectionDAG &DAG) const {
5686 SDLoc DL(Op);
5687 MVT VT = Op.getSimpleValueType();
5688 MVT XLenVT = Subtarget.getXLenVT();
5689 SDValue Mask, VL;
5690 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
5691 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
5692 uint64_t StepValImm = Op.getConstantOperandVal(0);
5693 if (StepValImm != 1) {
5694 if (isPowerOf2_64(StepValImm)) {
5695 SDValue StepVal =
5696 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
5697 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
5698 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
5699 } else {
5700 SDValue StepVal = lowerScalarSplat(
5701 SDValue(), DAG.getConstant(StepValImm, DL, VT.getVectorElementType()),
5702 VL, VT, DL, DAG, Subtarget);
5703 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
5704 }
5705 }
5706 return StepVec;
5707 }
5708
5709 // Implement vector_reverse using vrgather.vv with indices determined by
5710 // subtracting the id of each element from (VLMAX-1). This will convert
5711 // the indices like so:
5712 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
5713 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
lowerVECTOR_REVERSE(SDValue Op,SelectionDAG & DAG) const5714 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
5715 SelectionDAG &DAG) const {
5716 SDLoc DL(Op);
5717 MVT VecVT = Op.getSimpleValueType();
5718 if (VecVT.getVectorElementType() == MVT::i1) {
5719 MVT WidenVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
5720 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenVT, Op.getOperand(0));
5721 SDValue Op2 = DAG.getNode(ISD::VECTOR_REVERSE, DL, WidenVT, Op1);
5722 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Op2);
5723 }
5724 unsigned EltSize = VecVT.getScalarSizeInBits();
5725 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
5726 unsigned VectorBitsMax = Subtarget.getRealMaxVLen();
5727 unsigned MaxVLMAX =
5728 RISCVTargetLowering::computeVLMAX(VectorBitsMax, EltSize, MinSize);
5729
5730 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
5731 MVT IntVT = VecVT.changeVectorElementTypeToInteger();
5732
5733 // If this is SEW=8 and VLMAX is potentially more than 256, we need
5734 // to use vrgatherei16.vv.
5735 // TODO: It's also possible to use vrgatherei16.vv for other types to
5736 // decrease register width for the index calculation.
5737 if (MaxVLMAX > 256 && EltSize == 8) {
5738 // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
5739 // Reverse each half, then reassemble them in reverse order.
5740 // NOTE: It's also possible that after splitting that VLMAX no longer
5741 // requires vrgatherei16.vv.
5742 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
5743 SDValue Lo, Hi;
5744 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
5745 EVT LoVT, HiVT;
5746 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
5747 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
5748 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
5749 // Reassemble the low and high pieces reversed.
5750 // FIXME: This is a CONCAT_VECTORS.
5751 SDValue Res =
5752 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
5753 DAG.getIntPtrConstant(0, DL));
5754 return DAG.getNode(
5755 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
5756 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
5757 }
5758
5759 // Just promote the int type to i16 which will double the LMUL.
5760 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
5761 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
5762 }
5763
5764 MVT XLenVT = Subtarget.getXLenVT();
5765 SDValue Mask, VL;
5766 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
5767
5768 // Calculate VLMAX-1 for the desired SEW.
5769 unsigned MinElts = VecVT.getVectorMinNumElements();
5770 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5771 DAG.getConstant(MinElts, DL, XLenVT));
5772 SDValue VLMinus1 =
5773 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
5774
5775 // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
5776 bool IsRV32E64 =
5777 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
5778 SDValue SplatVL;
5779 if (!IsRV32E64)
5780 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
5781 else
5782 SplatVL = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT, DAG.getUNDEF(IntVT),
5783 VLMinus1, DAG.getRegister(RISCV::X0, XLenVT));
5784
5785 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
5786 SDValue Indices =
5787 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
5788
5789 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask,
5790 DAG.getUNDEF(VecVT), VL);
5791 }
5792
lowerVECTOR_SPLICE(SDValue Op,SelectionDAG & DAG) const5793 SDValue RISCVTargetLowering::lowerVECTOR_SPLICE(SDValue Op,
5794 SelectionDAG &DAG) const {
5795 SDLoc DL(Op);
5796 SDValue V1 = Op.getOperand(0);
5797 SDValue V2 = Op.getOperand(1);
5798 MVT XLenVT = Subtarget.getXLenVT();
5799 MVT VecVT = Op.getSimpleValueType();
5800
5801 unsigned MinElts = VecVT.getVectorMinNumElements();
5802 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
5803 DAG.getConstant(MinElts, DL, XLenVT));
5804
5805 int64_t ImmValue = cast<ConstantSDNode>(Op.getOperand(2))->getSExtValue();
5806 SDValue DownOffset, UpOffset;
5807 if (ImmValue >= 0) {
5808 // The operand is a TargetConstant, we need to rebuild it as a regular
5809 // constant.
5810 DownOffset = DAG.getConstant(ImmValue, DL, XLenVT);
5811 UpOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DownOffset);
5812 } else {
5813 // The operand is a TargetConstant, we need to rebuild it as a regular
5814 // constant rather than negating the original operand.
5815 UpOffset = DAG.getConstant(-ImmValue, DL, XLenVT);
5816 DownOffset = DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, UpOffset);
5817 }
5818
5819 SDValue TrueMask = getAllOnesMask(VecVT, VLMax, DL, DAG);
5820
5821 SDValue SlideDown =
5822 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, VecVT, DAG.getUNDEF(VecVT), V1,
5823 DownOffset, TrueMask, UpOffset);
5824 return DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, VecVT, SlideDown, V2, UpOffset,
5825 TrueMask, DAG.getRegister(RISCV::X0, XLenVT));
5826 }
5827
5828 SDValue
lowerFixedLengthVectorLoadToRVV(SDValue Op,SelectionDAG & DAG) const5829 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
5830 SelectionDAG &DAG) const {
5831 SDLoc DL(Op);
5832 auto *Load = cast<LoadSDNode>(Op);
5833
5834 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5835 Load->getMemoryVT(),
5836 *Load->getMemOperand()) &&
5837 "Expecting a correctly-aligned load");
5838
5839 MVT VT = Op.getSimpleValueType();
5840 MVT XLenVT = Subtarget.getXLenVT();
5841 MVT ContainerVT = getContainerForFixedLengthVector(VT);
5842
5843 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5844
5845 bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5846 SDValue IntID = DAG.getTargetConstant(
5847 IsMaskOp ? Intrinsic::riscv_vlm : Intrinsic::riscv_vle, DL, XLenVT);
5848 SmallVector<SDValue, 4> Ops{Load->getChain(), IntID};
5849 if (!IsMaskOp)
5850 Ops.push_back(DAG.getUNDEF(ContainerVT));
5851 Ops.push_back(Load->getBasePtr());
5852 Ops.push_back(VL);
5853 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5854 SDValue NewLoad =
5855 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
5856 Load->getMemoryVT(), Load->getMemOperand());
5857
5858 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
5859 return DAG.getMergeValues({Result, NewLoad.getValue(1)}, DL);
5860 }
5861
5862 SDValue
lowerFixedLengthVectorStoreToRVV(SDValue Op,SelectionDAG & DAG) const5863 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
5864 SelectionDAG &DAG) const {
5865 SDLoc DL(Op);
5866 auto *Store = cast<StoreSDNode>(Op);
5867
5868 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
5869 Store->getMemoryVT(),
5870 *Store->getMemOperand()) &&
5871 "Expecting a correctly-aligned store");
5872
5873 SDValue StoreVal = Store->getValue();
5874 MVT VT = StoreVal.getSimpleValueType();
5875 MVT XLenVT = Subtarget.getXLenVT();
5876
5877 // If the size less than a byte, we need to pad with zeros to make a byte.
5878 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
5879 VT = MVT::v8i1;
5880 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
5881 DAG.getConstant(0, DL, VT), StoreVal,
5882 DAG.getIntPtrConstant(0, DL));
5883 }
5884
5885 MVT ContainerVT = getContainerForFixedLengthVector(VT);
5886
5887 SDValue VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
5888
5889 SDValue NewValue =
5890 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
5891
5892 bool IsMaskOp = VT.getVectorElementType() == MVT::i1;
5893 SDValue IntID = DAG.getTargetConstant(
5894 IsMaskOp ? Intrinsic::riscv_vsm : Intrinsic::riscv_vse, DL, XLenVT);
5895 return DAG.getMemIntrinsicNode(
5896 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
5897 {Store->getChain(), IntID, NewValue, Store->getBasePtr(), VL},
5898 Store->getMemoryVT(), Store->getMemOperand());
5899 }
5900
lowerMaskedLoad(SDValue Op,SelectionDAG & DAG) const5901 SDValue RISCVTargetLowering::lowerMaskedLoad(SDValue Op,
5902 SelectionDAG &DAG) const {
5903 SDLoc DL(Op);
5904 MVT VT = Op.getSimpleValueType();
5905
5906 const auto *MemSD = cast<MemSDNode>(Op);
5907 EVT MemVT = MemSD->getMemoryVT();
5908 MachineMemOperand *MMO = MemSD->getMemOperand();
5909 SDValue Chain = MemSD->getChain();
5910 SDValue BasePtr = MemSD->getBasePtr();
5911
5912 SDValue Mask, PassThru, VL;
5913 if (const auto *VPLoad = dyn_cast<VPLoadSDNode>(Op)) {
5914 Mask = VPLoad->getMask();
5915 PassThru = DAG.getUNDEF(VT);
5916 VL = VPLoad->getVectorLength();
5917 } else {
5918 const auto *MLoad = cast<MaskedLoadSDNode>(Op);
5919 Mask = MLoad->getMask();
5920 PassThru = MLoad->getPassThru();
5921 }
5922
5923 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5924
5925 MVT XLenVT = Subtarget.getXLenVT();
5926
5927 MVT ContainerVT = VT;
5928 if (VT.isFixedLengthVector()) {
5929 ContainerVT = getContainerForFixedLengthVector(VT);
5930 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
5931 if (!IsUnmasked) {
5932 MVT MaskVT = getMaskTypeFor(ContainerVT);
5933 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
5934 }
5935 }
5936
5937 if (!VL)
5938 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
5939
5940 unsigned IntID =
5941 IsUnmasked ? Intrinsic::riscv_vle : Intrinsic::riscv_vle_mask;
5942 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
5943 if (IsUnmasked)
5944 Ops.push_back(DAG.getUNDEF(ContainerVT));
5945 else
5946 Ops.push_back(PassThru);
5947 Ops.push_back(BasePtr);
5948 if (!IsUnmasked)
5949 Ops.push_back(Mask);
5950 Ops.push_back(VL);
5951 if (!IsUnmasked)
5952 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
5953
5954 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
5955
5956 SDValue Result =
5957 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
5958 Chain = Result.getValue(1);
5959
5960 if (VT.isFixedLengthVector())
5961 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
5962
5963 return DAG.getMergeValues({Result, Chain}, DL);
5964 }
5965
lowerMaskedStore(SDValue Op,SelectionDAG & DAG) const5966 SDValue RISCVTargetLowering::lowerMaskedStore(SDValue Op,
5967 SelectionDAG &DAG) const {
5968 SDLoc DL(Op);
5969
5970 const auto *MemSD = cast<MemSDNode>(Op);
5971 EVT MemVT = MemSD->getMemoryVT();
5972 MachineMemOperand *MMO = MemSD->getMemOperand();
5973 SDValue Chain = MemSD->getChain();
5974 SDValue BasePtr = MemSD->getBasePtr();
5975 SDValue Val, Mask, VL;
5976
5977 if (const auto *VPStore = dyn_cast<VPStoreSDNode>(Op)) {
5978 Val = VPStore->getValue();
5979 Mask = VPStore->getMask();
5980 VL = VPStore->getVectorLength();
5981 } else {
5982 const auto *MStore = cast<MaskedStoreSDNode>(Op);
5983 Val = MStore->getValue();
5984 Mask = MStore->getMask();
5985 }
5986
5987 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
5988
5989 MVT VT = Val.getSimpleValueType();
5990 MVT XLenVT = Subtarget.getXLenVT();
5991
5992 MVT ContainerVT = VT;
5993 if (VT.isFixedLengthVector()) {
5994 ContainerVT = getContainerForFixedLengthVector(VT);
5995
5996 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
5997 if (!IsUnmasked) {
5998 MVT MaskVT = getMaskTypeFor(ContainerVT);
5999 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6000 }
6001 }
6002
6003 if (!VL)
6004 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6005
6006 unsigned IntID =
6007 IsUnmasked ? Intrinsic::riscv_vse : Intrinsic::riscv_vse_mask;
6008 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6009 Ops.push_back(Val);
6010 Ops.push_back(BasePtr);
6011 if (!IsUnmasked)
6012 Ops.push_back(Mask);
6013 Ops.push_back(VL);
6014
6015 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6016 DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6017 }
6018
6019 SDValue
lowerFixedLengthVectorSetccToRVV(SDValue Op,SelectionDAG & DAG) const6020 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
6021 SelectionDAG &DAG) const {
6022 MVT InVT = Op.getOperand(0).getSimpleValueType();
6023 MVT ContainerVT = getContainerForFixedLengthVector(InVT);
6024
6025 MVT VT = Op.getSimpleValueType();
6026
6027 SDValue Op1 =
6028 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
6029 SDValue Op2 =
6030 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6031
6032 SDLoc DL(Op);
6033 SDValue VL =
6034 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
6035
6036 MVT MaskVT = getMaskTypeFor(ContainerVT);
6037 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
6038
6039 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
6040 Op.getOperand(2), Mask, VL);
6041
6042 return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
6043 }
6044
lowerFixedLengthVectorLogicOpToRVV(SDValue Op,SelectionDAG & DAG,unsigned MaskOpc,unsigned VecOpc) const6045 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
6046 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
6047 MVT VT = Op.getSimpleValueType();
6048
6049 if (VT.getVectorElementType() == MVT::i1)
6050 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
6051
6052 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
6053 }
6054
6055 SDValue
lowerFixedLengthVectorShiftToRVV(SDValue Op,SelectionDAG & DAG) const6056 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
6057 SelectionDAG &DAG) const {
6058 unsigned Opc;
6059 switch (Op.getOpcode()) {
6060 default: llvm_unreachable("Unexpected opcode!");
6061 case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
6062 case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
6063 case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
6064 }
6065
6066 return lowerToScalableOp(Op, DAG, Opc);
6067 }
6068
6069 // Lower vector ABS to smax(X, sub(0, X)).
lowerABS(SDValue Op,SelectionDAG & DAG) const6070 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
6071 SDLoc DL(Op);
6072 MVT VT = Op.getSimpleValueType();
6073 SDValue X = Op.getOperand(0);
6074
6075 assert(VT.isFixedLengthVector() && "Unexpected type");
6076
6077 MVT ContainerVT = getContainerForFixedLengthVector(VT);
6078 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
6079
6080 SDValue Mask, VL;
6081 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6082
6083 SDValue SplatZero = DAG.getNode(
6084 RISCVISD::VMV_V_X_VL, DL, ContainerVT, DAG.getUNDEF(ContainerVT),
6085 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
6086 SDValue NegX =
6087 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
6088 SDValue Max =
6089 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
6090
6091 return convertFromScalableVector(VT, Max, DAG, Subtarget);
6092 }
6093
lowerFixedLengthVectorFCOPYSIGNToRVV(SDValue Op,SelectionDAG & DAG) const6094 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
6095 SDValue Op, SelectionDAG &DAG) const {
6096 SDLoc DL(Op);
6097 MVT VT = Op.getSimpleValueType();
6098 SDValue Mag = Op.getOperand(0);
6099 SDValue Sign = Op.getOperand(1);
6100 assert(Mag.getValueType() == Sign.getValueType() &&
6101 "Can only handle COPYSIGN with matching types.");
6102
6103 MVT ContainerVT = getContainerForFixedLengthVector(VT);
6104 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
6105 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
6106
6107 SDValue Mask, VL;
6108 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6109
6110 SDValue CopySign =
6111 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
6112
6113 return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
6114 }
6115
lowerFixedLengthVectorSelectToRVV(SDValue Op,SelectionDAG & DAG) const6116 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
6117 SDValue Op, SelectionDAG &DAG) const {
6118 MVT VT = Op.getSimpleValueType();
6119 MVT ContainerVT = getContainerForFixedLengthVector(VT);
6120
6121 MVT I1ContainerVT =
6122 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6123
6124 SDValue CC =
6125 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
6126 SDValue Op1 =
6127 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
6128 SDValue Op2 =
6129 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
6130
6131 SDLoc DL(Op);
6132 SDValue Mask, VL;
6133 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6134
6135 SDValue Select =
6136 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
6137
6138 return convertFromScalableVector(VT, Select, DAG, Subtarget);
6139 }
6140
lowerToScalableOp(SDValue Op,SelectionDAG & DAG,unsigned NewOpc,bool HasMask) const6141 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
6142 unsigned NewOpc,
6143 bool HasMask) const {
6144 MVT VT = Op.getSimpleValueType();
6145 MVT ContainerVT = getContainerForFixedLengthVector(VT);
6146
6147 // Create list of operands by converting existing ones to scalable types.
6148 SmallVector<SDValue, 6> Ops;
6149 for (const SDValue &V : Op->op_values()) {
6150 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6151
6152 // Pass through non-vector operands.
6153 if (!V.getValueType().isVector()) {
6154 Ops.push_back(V);
6155 continue;
6156 }
6157
6158 // "cast" fixed length vector to a scalable vector.
6159 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
6160 "Only fixed length vectors are supported!");
6161 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6162 }
6163
6164 SDLoc DL(Op);
6165 SDValue Mask, VL;
6166 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
6167 if (HasMask)
6168 Ops.push_back(Mask);
6169 Ops.push_back(VL);
6170
6171 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
6172 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
6173 }
6174
6175 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
6176 // * Operands of each node are assumed to be in the same order.
6177 // * The EVL operand is promoted from i32 to i64 on RV64.
6178 // * Fixed-length vectors are converted to their scalable-vector container
6179 // types.
lowerVPOp(SDValue Op,SelectionDAG & DAG,unsigned RISCVISDOpc) const6180 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
6181 unsigned RISCVISDOpc) const {
6182 SDLoc DL(Op);
6183 MVT VT = Op.getSimpleValueType();
6184 SmallVector<SDValue, 4> Ops;
6185
6186 for (const auto &OpIdx : enumerate(Op->ops())) {
6187 SDValue V = OpIdx.value();
6188 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
6189 // Pass through operands which aren't fixed-length vectors.
6190 if (!V.getValueType().isFixedLengthVector()) {
6191 Ops.push_back(V);
6192 continue;
6193 }
6194 // "cast" fixed length vector to a scalable vector.
6195 MVT OpVT = V.getSimpleValueType();
6196 MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
6197 assert(useRVVForFixedLengthVectorVT(OpVT) &&
6198 "Only fixed length vectors are supported!");
6199 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
6200 }
6201
6202 if (!VT.isFixedLengthVector())
6203 return DAG.getNode(RISCVISDOpc, DL, VT, Ops, Op->getFlags());
6204
6205 MVT ContainerVT = getContainerForFixedLengthVector(VT);
6206
6207 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops, Op->getFlags());
6208
6209 return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
6210 }
6211
lowerVPExtMaskOp(SDValue Op,SelectionDAG & DAG) const6212 SDValue RISCVTargetLowering::lowerVPExtMaskOp(SDValue Op,
6213 SelectionDAG &DAG) const {
6214 SDLoc DL(Op);
6215 MVT VT = Op.getSimpleValueType();
6216
6217 SDValue Src = Op.getOperand(0);
6218 // NOTE: Mask is dropped.
6219 SDValue VL = Op.getOperand(2);
6220
6221 MVT ContainerVT = VT;
6222 if (VT.isFixedLengthVector()) {
6223 ContainerVT = getContainerForFixedLengthVector(VT);
6224 MVT SrcVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
6225 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6226 }
6227
6228 MVT XLenVT = Subtarget.getXLenVT();
6229 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6230 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6231 DAG.getUNDEF(ContainerVT), Zero, VL);
6232
6233 SDValue SplatValue = DAG.getConstant(
6234 Op.getOpcode() == ISD::VP_ZERO_EXTEND ? 1 : -1, DL, XLenVT);
6235 SDValue Splat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
6236 DAG.getUNDEF(ContainerVT), SplatValue, VL);
6237
6238 SDValue Result = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, Src,
6239 Splat, ZeroSplat, VL);
6240 if (!VT.isFixedLengthVector())
6241 return Result;
6242 return convertFromScalableVector(VT, Result, DAG, Subtarget);
6243 }
6244
lowerVPSetCCMaskOp(SDValue Op,SelectionDAG & DAG) const6245 SDValue RISCVTargetLowering::lowerVPSetCCMaskOp(SDValue Op,
6246 SelectionDAG &DAG) const {
6247 SDLoc DL(Op);
6248 MVT VT = Op.getSimpleValueType();
6249
6250 SDValue Op1 = Op.getOperand(0);
6251 SDValue Op2 = Op.getOperand(1);
6252 ISD::CondCode Condition = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6253 // NOTE: Mask is dropped.
6254 SDValue VL = Op.getOperand(4);
6255
6256 MVT ContainerVT = VT;
6257 if (VT.isFixedLengthVector()) {
6258 ContainerVT = getContainerForFixedLengthVector(VT);
6259 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6260 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6261 }
6262
6263 SDValue Result;
6264 SDValue AllOneMask = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
6265
6266 switch (Condition) {
6267 default:
6268 break;
6269 // X != Y --> (X^Y)
6270 case ISD::SETNE:
6271 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6272 break;
6273 // X == Y --> ~(X^Y)
6274 case ISD::SETEQ: {
6275 SDValue Temp =
6276 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, Op2, VL);
6277 Result =
6278 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, AllOneMask, VL);
6279 break;
6280 }
6281 // X >s Y --> X == 0 & Y == 1 --> ~X & Y
6282 // X <u Y --> X == 0 & Y == 1 --> ~X & Y
6283 case ISD::SETGT:
6284 case ISD::SETULT: {
6285 SDValue Temp =
6286 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6287 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Temp, Op2, VL);
6288 break;
6289 }
6290 // X <s Y --> X == 1 & Y == 0 --> ~Y & X
6291 // X >u Y --> X == 1 & Y == 0 --> ~Y & X
6292 case ISD::SETLT:
6293 case ISD::SETUGT: {
6294 SDValue Temp =
6295 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6296 Result = DAG.getNode(RISCVISD::VMAND_VL, DL, ContainerVT, Op1, Temp, VL);
6297 break;
6298 }
6299 // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
6300 // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
6301 case ISD::SETGE:
6302 case ISD::SETULE: {
6303 SDValue Temp =
6304 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op1, AllOneMask, VL);
6305 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op2, VL);
6306 break;
6307 }
6308 // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
6309 // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
6310 case ISD::SETLE:
6311 case ISD::SETUGE: {
6312 SDValue Temp =
6313 DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Op2, AllOneMask, VL);
6314 Result = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Temp, Op1, VL);
6315 break;
6316 }
6317 }
6318
6319 if (!VT.isFixedLengthVector())
6320 return Result;
6321 return convertFromScalableVector(VT, Result, DAG, Subtarget);
6322 }
6323
6324 // Lower Floating-Point/Integer Type-Convert VP SDNodes
lowerVPFPIntConvOp(SDValue Op,SelectionDAG & DAG,unsigned RISCVISDOpc) const6325 SDValue RISCVTargetLowering::lowerVPFPIntConvOp(SDValue Op, SelectionDAG &DAG,
6326 unsigned RISCVISDOpc) const {
6327 SDLoc DL(Op);
6328
6329 SDValue Src = Op.getOperand(0);
6330 SDValue Mask = Op.getOperand(1);
6331 SDValue VL = Op.getOperand(2);
6332
6333 MVT DstVT = Op.getSimpleValueType();
6334 MVT SrcVT = Src.getSimpleValueType();
6335 if (DstVT.isFixedLengthVector()) {
6336 DstVT = getContainerForFixedLengthVector(DstVT);
6337 SrcVT = getContainerForFixedLengthVector(SrcVT);
6338 Src = convertToScalableVector(SrcVT, Src, DAG, Subtarget);
6339 MVT MaskVT = getMaskTypeFor(DstVT);
6340 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6341 }
6342
6343 unsigned RISCVISDExtOpc = (RISCVISDOpc == RISCVISD::SINT_TO_FP_VL ||
6344 RISCVISDOpc == RISCVISD::FP_TO_SINT_VL)
6345 ? RISCVISD::VSEXT_VL
6346 : RISCVISD::VZEXT_VL;
6347
6348 unsigned DstEltSize = DstVT.getScalarSizeInBits();
6349 unsigned SrcEltSize = SrcVT.getScalarSizeInBits();
6350
6351 SDValue Result;
6352 if (DstEltSize >= SrcEltSize) { // Single-width and widening conversion.
6353 if (SrcVT.isInteger()) {
6354 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6355
6356 // Do we need to do any pre-widening before converting?
6357 if (SrcEltSize == 1) {
6358 MVT IntVT = DstVT.changeVectorElementTypeToInteger();
6359 MVT XLenVT = Subtarget.getXLenVT();
6360 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
6361 SDValue ZeroSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6362 DAG.getUNDEF(IntVT), Zero, VL);
6363 SDValue One = DAG.getConstant(
6364 RISCVISDExtOpc == RISCVISD::VZEXT_VL ? 1 : -1, DL, XLenVT);
6365 SDValue OneSplat = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, IntVT,
6366 DAG.getUNDEF(IntVT), One, VL);
6367 Src = DAG.getNode(RISCVISD::VSELECT_VL, DL, IntVT, Src, OneSplat,
6368 ZeroSplat, VL);
6369 } else if (DstEltSize > (2 * SrcEltSize)) {
6370 // Widen before converting.
6371 MVT IntVT = MVT::getVectorVT(MVT::getIntegerVT(DstEltSize / 2),
6372 DstVT.getVectorElementCount());
6373 Src = DAG.getNode(RISCVISDExtOpc, DL, IntVT, Src, Mask, VL);
6374 }
6375
6376 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6377 } else {
6378 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6379 "Wrong input/output vector types");
6380
6381 // Convert f16 to f32 then convert f32 to i64.
6382 if (DstEltSize > (2 * SrcEltSize)) {
6383 assert(SrcVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6384 MVT InterimFVT =
6385 MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6386 Src =
6387 DAG.getNode(RISCVISD::FP_EXTEND_VL, DL, InterimFVT, Src, Mask, VL);
6388 }
6389
6390 Result = DAG.getNode(RISCVISDOpc, DL, DstVT, Src, Mask, VL);
6391 }
6392 } else { // Narrowing + Conversion
6393 if (SrcVT.isInteger()) {
6394 assert(DstVT.isFloatingPoint() && "Wrong input/output vector types");
6395 // First do a narrowing convert to an FP type half the size, then round
6396 // the FP type to a small FP type if needed.
6397
6398 MVT InterimFVT = DstVT;
6399 if (SrcEltSize > (2 * DstEltSize)) {
6400 assert(SrcEltSize == (4 * DstEltSize) && "Unexpected types!");
6401 assert(DstVT.getVectorElementType() == MVT::f16 && "Unexpected type!");
6402 InterimFVT = MVT::getVectorVT(MVT::f32, DstVT.getVectorElementCount());
6403 }
6404
6405 Result = DAG.getNode(RISCVISDOpc, DL, InterimFVT, Src, Mask, VL);
6406
6407 if (InterimFVT != DstVT) {
6408 Src = Result;
6409 Result = DAG.getNode(RISCVISD::FP_ROUND_VL, DL, DstVT, Src, Mask, VL);
6410 }
6411 } else {
6412 assert(SrcVT.isFloatingPoint() && DstVT.isInteger() &&
6413 "Wrong input/output vector types");
6414 // First do a narrowing conversion to an integer half the size, then
6415 // truncate if needed.
6416
6417 if (DstEltSize == 1) {
6418 // First convert to the same size integer, then convert to mask using
6419 // setcc.
6420 assert(SrcEltSize >= 16 && "Unexpected FP type!");
6421 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize),
6422 DstVT.getVectorElementCount());
6423 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6424
6425 // Compare the integer result to 0. The integer should be 0 or 1/-1,
6426 // otherwise the conversion was undefined.
6427 MVT XLenVT = Subtarget.getXLenVT();
6428 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
6429 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, InterimIVT,
6430 DAG.getUNDEF(InterimIVT), SplatZero);
6431 Result = DAG.getNode(RISCVISD::SETCC_VL, DL, DstVT, Result, SplatZero,
6432 DAG.getCondCode(ISD::SETNE), Mask, VL);
6433 } else {
6434 MVT InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6435 DstVT.getVectorElementCount());
6436
6437 Result = DAG.getNode(RISCVISDOpc, DL, InterimIVT, Src, Mask, VL);
6438
6439 while (InterimIVT != DstVT) {
6440 SrcEltSize /= 2;
6441 Src = Result;
6442 InterimIVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize / 2),
6443 DstVT.getVectorElementCount());
6444 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, InterimIVT,
6445 Src, Mask, VL);
6446 }
6447 }
6448 }
6449 }
6450
6451 MVT VT = Op.getSimpleValueType();
6452 if (!VT.isFixedLengthVector())
6453 return Result;
6454 return convertFromScalableVector(VT, Result, DAG, Subtarget);
6455 }
6456
lowerLogicVPOp(SDValue Op,SelectionDAG & DAG,unsigned MaskOpc,unsigned VecOpc) const6457 SDValue RISCVTargetLowering::lowerLogicVPOp(SDValue Op, SelectionDAG &DAG,
6458 unsigned MaskOpc,
6459 unsigned VecOpc) const {
6460 MVT VT = Op.getSimpleValueType();
6461 if (VT.getVectorElementType() != MVT::i1)
6462 return lowerVPOp(Op, DAG, VecOpc);
6463
6464 // It is safe to drop mask parameter as masked-off elements are undef.
6465 SDValue Op1 = Op->getOperand(0);
6466 SDValue Op2 = Op->getOperand(1);
6467 SDValue VL = Op->getOperand(3);
6468
6469 MVT ContainerVT = VT;
6470 const bool IsFixed = VT.isFixedLengthVector();
6471 if (IsFixed) {
6472 ContainerVT = getContainerForFixedLengthVector(VT);
6473 Op1 = convertToScalableVector(ContainerVT, Op1, DAG, Subtarget);
6474 Op2 = convertToScalableVector(ContainerVT, Op2, DAG, Subtarget);
6475 }
6476
6477 SDLoc DL(Op);
6478 SDValue Val = DAG.getNode(MaskOpc, DL, ContainerVT, Op1, Op2, VL);
6479 if (!IsFixed)
6480 return Val;
6481 return convertFromScalableVector(VT, Val, DAG, Subtarget);
6482 }
6483
6484 // Custom lower MGATHER/VP_GATHER to a legalized form for RVV. It will then be
6485 // matched to a RVV indexed load. The RVV indexed load instructions only
6486 // support the "unsigned unscaled" addressing mode; indices are implicitly
6487 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6488 // signed or scaled indexing is extended to the XLEN value type and scaled
6489 // accordingly.
lowerMaskedGather(SDValue Op,SelectionDAG & DAG) const6490 SDValue RISCVTargetLowering::lowerMaskedGather(SDValue Op,
6491 SelectionDAG &DAG) const {
6492 SDLoc DL(Op);
6493 MVT VT = Op.getSimpleValueType();
6494
6495 const auto *MemSD = cast<MemSDNode>(Op.getNode());
6496 EVT MemVT = MemSD->getMemoryVT();
6497 MachineMemOperand *MMO = MemSD->getMemOperand();
6498 SDValue Chain = MemSD->getChain();
6499 SDValue BasePtr = MemSD->getBasePtr();
6500
6501 ISD::LoadExtType LoadExtType;
6502 SDValue Index, Mask, PassThru, VL;
6503
6504 if (auto *VPGN = dyn_cast<VPGatherSDNode>(Op.getNode())) {
6505 Index = VPGN->getIndex();
6506 Mask = VPGN->getMask();
6507 PassThru = DAG.getUNDEF(VT);
6508 VL = VPGN->getVectorLength();
6509 // VP doesn't support extending loads.
6510 LoadExtType = ISD::NON_EXTLOAD;
6511 } else {
6512 // Else it must be a MGATHER.
6513 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
6514 Index = MGN->getIndex();
6515 Mask = MGN->getMask();
6516 PassThru = MGN->getPassThru();
6517 LoadExtType = MGN->getExtensionType();
6518 }
6519
6520 MVT IndexVT = Index.getSimpleValueType();
6521 MVT XLenVT = Subtarget.getXLenVT();
6522
6523 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6524 "Unexpected VTs!");
6525 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6526 // Targets have to explicitly opt-in for extending vector loads.
6527 assert(LoadExtType == ISD::NON_EXTLOAD &&
6528 "Unexpected extending MGATHER/VP_GATHER");
6529 (void)LoadExtType;
6530
6531 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6532 // the selection of the masked intrinsics doesn't do this for us.
6533 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6534
6535 MVT ContainerVT = VT;
6536 if (VT.isFixedLengthVector()) {
6537 ContainerVT = getContainerForFixedLengthVector(VT);
6538 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6539 ContainerVT.getVectorElementCount());
6540
6541 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6542
6543 if (!IsUnmasked) {
6544 MVT MaskVT = getMaskTypeFor(ContainerVT);
6545 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6546 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
6547 }
6548 }
6549
6550 if (!VL)
6551 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6552
6553 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6554 IndexVT = IndexVT.changeVectorElementType(XLenVT);
6555 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6556 VL);
6557 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6558 TrueMask, VL);
6559 }
6560
6561 unsigned IntID =
6562 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
6563 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6564 if (IsUnmasked)
6565 Ops.push_back(DAG.getUNDEF(ContainerVT));
6566 else
6567 Ops.push_back(PassThru);
6568 Ops.push_back(BasePtr);
6569 Ops.push_back(Index);
6570 if (!IsUnmasked)
6571 Ops.push_back(Mask);
6572 Ops.push_back(VL);
6573 if (!IsUnmasked)
6574 Ops.push_back(DAG.getTargetConstant(RISCVII::TAIL_AGNOSTIC, DL, XLenVT));
6575
6576 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
6577 SDValue Result =
6578 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, MemVT, MMO);
6579 Chain = Result.getValue(1);
6580
6581 if (VT.isFixedLengthVector())
6582 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
6583
6584 return DAG.getMergeValues({Result, Chain}, DL);
6585 }
6586
6587 // Custom lower MSCATTER/VP_SCATTER to a legalized form for RVV. It will then be
6588 // matched to a RVV indexed store. The RVV indexed store instructions only
6589 // support the "unsigned unscaled" addressing mode; indices are implicitly
6590 // zero-extended or truncated to XLEN and are treated as byte offsets. Any
6591 // signed or scaled indexing is extended to the XLEN value type and scaled
6592 // accordingly.
lowerMaskedScatter(SDValue Op,SelectionDAG & DAG) const6593 SDValue RISCVTargetLowering::lowerMaskedScatter(SDValue Op,
6594 SelectionDAG &DAG) const {
6595 SDLoc DL(Op);
6596 const auto *MemSD = cast<MemSDNode>(Op.getNode());
6597 EVT MemVT = MemSD->getMemoryVT();
6598 MachineMemOperand *MMO = MemSD->getMemOperand();
6599 SDValue Chain = MemSD->getChain();
6600 SDValue BasePtr = MemSD->getBasePtr();
6601
6602 bool IsTruncatingStore = false;
6603 SDValue Index, Mask, Val, VL;
6604
6605 if (auto *VPSN = dyn_cast<VPScatterSDNode>(Op.getNode())) {
6606 Index = VPSN->getIndex();
6607 Mask = VPSN->getMask();
6608 Val = VPSN->getValue();
6609 VL = VPSN->getVectorLength();
6610 // VP doesn't support truncating stores.
6611 IsTruncatingStore = false;
6612 } else {
6613 // Else it must be a MSCATTER.
6614 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
6615 Index = MSN->getIndex();
6616 Mask = MSN->getMask();
6617 Val = MSN->getValue();
6618 IsTruncatingStore = MSN->isTruncatingStore();
6619 }
6620
6621 MVT VT = Val.getSimpleValueType();
6622 MVT IndexVT = Index.getSimpleValueType();
6623 MVT XLenVT = Subtarget.getXLenVT();
6624
6625 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
6626 "Unexpected VTs!");
6627 assert(BasePtr.getSimpleValueType() == XLenVT && "Unexpected pointer type");
6628 // Targets have to explicitly opt-in for extending vector loads and
6629 // truncating vector stores.
6630 assert(!IsTruncatingStore && "Unexpected truncating MSCATTER/VP_SCATTER");
6631 (void)IsTruncatingStore;
6632
6633 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
6634 // the selection of the masked intrinsics doesn't do this for us.
6635 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
6636
6637 MVT ContainerVT = VT;
6638 if (VT.isFixedLengthVector()) {
6639 ContainerVT = getContainerForFixedLengthVector(VT);
6640 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
6641 ContainerVT.getVectorElementCount());
6642
6643 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
6644 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
6645
6646 if (!IsUnmasked) {
6647 MVT MaskVT = getMaskTypeFor(ContainerVT);
6648 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
6649 }
6650 }
6651
6652 if (!VL)
6653 VL = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget).second;
6654
6655 if (XLenVT == MVT::i32 && IndexVT.getVectorElementType().bitsGT(XLenVT)) {
6656 IndexVT = IndexVT.changeVectorElementType(XLenVT);
6657 SDValue TrueMask = DAG.getNode(RISCVISD::VMSET_VL, DL, Mask.getValueType(),
6658 VL);
6659 Index = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, IndexVT, Index,
6660 TrueMask, VL);
6661 }
6662
6663 unsigned IntID =
6664 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
6665 SmallVector<SDValue, 8> Ops{Chain, DAG.getTargetConstant(IntID, DL, XLenVT)};
6666 Ops.push_back(Val);
6667 Ops.push_back(BasePtr);
6668 Ops.push_back(Index);
6669 if (!IsUnmasked)
6670 Ops.push_back(Mask);
6671 Ops.push_back(VL);
6672
6673 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL,
6674 DAG.getVTList(MVT::Other), Ops, MemVT, MMO);
6675 }
6676
lowerGET_ROUNDING(SDValue Op,SelectionDAG & DAG) const6677 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
6678 SelectionDAG &DAG) const {
6679 const MVT XLenVT = Subtarget.getXLenVT();
6680 SDLoc DL(Op);
6681 SDValue Chain = Op->getOperand(0);
6682 SDValue SysRegNo = DAG.getTargetConstant(
6683 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6684 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
6685 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
6686
6687 // Encoding used for rounding mode in RISCV differs from that used in
6688 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
6689 // table, which consists of a sequence of 4-bit fields, each representing
6690 // corresponding FLT_ROUNDS mode.
6691 static const int Table =
6692 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
6693 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
6694 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
6695 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
6696 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
6697
6698 SDValue Shift =
6699 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
6700 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6701 DAG.getConstant(Table, DL, XLenVT), Shift);
6702 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6703 DAG.getConstant(7, DL, XLenVT));
6704
6705 return DAG.getMergeValues({Masked, Chain}, DL);
6706 }
6707
lowerSET_ROUNDING(SDValue Op,SelectionDAG & DAG) const6708 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
6709 SelectionDAG &DAG) const {
6710 const MVT XLenVT = Subtarget.getXLenVT();
6711 SDLoc DL(Op);
6712 SDValue Chain = Op->getOperand(0);
6713 SDValue RMValue = Op->getOperand(1);
6714 SDValue SysRegNo = DAG.getTargetConstant(
6715 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
6716
6717 // Encoding used for rounding mode in RISCV differs from that used in
6718 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
6719 // a table, which consists of a sequence of 4-bit fields, each representing
6720 // corresponding RISCV mode.
6721 static const unsigned Table =
6722 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
6723 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
6724 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
6725 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
6726 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
6727
6728 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
6729 DAG.getConstant(2, DL, XLenVT));
6730 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
6731 DAG.getConstant(Table, DL, XLenVT), Shift);
6732 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
6733 DAG.getConstant(0x7, DL, XLenVT));
6734 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
6735 RMValue);
6736 }
6737
lowerEH_DWARF_CFA(SDValue Op,SelectionDAG & DAG) const6738 SDValue RISCVTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
6739 SelectionDAG &DAG) const {
6740 MachineFunction &MF = DAG.getMachineFunction();
6741
6742 bool isRISCV64 = Subtarget.is64Bit();
6743 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6744
6745 int FI = MF.getFrameInfo().CreateFixedObject(isRISCV64 ? 8 : 4, 0, false);
6746 return DAG.getFrameIndex(FI, PtrVT);
6747 }
6748
getRISCVWOpcodeByIntr(unsigned IntNo)6749 static RISCVISD::NodeType getRISCVWOpcodeByIntr(unsigned IntNo) {
6750 switch (IntNo) {
6751 default:
6752 llvm_unreachable("Unexpected Intrinsic");
6753 case Intrinsic::riscv_bcompress:
6754 return RISCVISD::BCOMPRESSW;
6755 case Intrinsic::riscv_bdecompress:
6756 return RISCVISD::BDECOMPRESSW;
6757 case Intrinsic::riscv_bfp:
6758 return RISCVISD::BFPW;
6759 case Intrinsic::riscv_fsl:
6760 return RISCVISD::FSLW;
6761 case Intrinsic::riscv_fsr:
6762 return RISCVISD::FSRW;
6763 }
6764 }
6765
6766 // Converts the given intrinsic to a i64 operation with any extension.
customLegalizeToWOpByIntr(SDNode * N,SelectionDAG & DAG,unsigned IntNo)6767 static SDValue customLegalizeToWOpByIntr(SDNode *N, SelectionDAG &DAG,
6768 unsigned IntNo) {
6769 SDLoc DL(N);
6770 RISCVISD::NodeType WOpcode = getRISCVWOpcodeByIntr(IntNo);
6771 // Deal with the Instruction Operands
6772 SmallVector<SDValue, 3> NewOps;
6773 for (SDValue Op : drop_begin(N->ops()))
6774 // Promote the operand to i64 type
6775 NewOps.push_back(DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op));
6776 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOps);
6777 // ReplaceNodeResults requires we maintain the same type for the return value.
6778 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6779 }
6780
6781 // Returns the opcode of the target-specific SDNode that implements the 32-bit
6782 // form of the given Opcode.
getRISCVWOpcode(unsigned Opcode)6783 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
6784 switch (Opcode) {
6785 default:
6786 llvm_unreachable("Unexpected opcode");
6787 case ISD::SHL:
6788 return RISCVISD::SLLW;
6789 case ISD::SRA:
6790 return RISCVISD::SRAW;
6791 case ISD::SRL:
6792 return RISCVISD::SRLW;
6793 case ISD::SDIV:
6794 return RISCVISD::DIVW;
6795 case ISD::UDIV:
6796 return RISCVISD::DIVUW;
6797 case ISD::UREM:
6798 return RISCVISD::REMUW;
6799 case ISD::ROTL:
6800 return RISCVISD::ROLW;
6801 case ISD::ROTR:
6802 return RISCVISD::RORW;
6803 }
6804 }
6805
6806 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
6807 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
6808 // otherwise be promoted to i64, making it difficult to select the
6809 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
6810 // type i8/i16/i32 is lost.
customLegalizeToWOp(SDNode * N,SelectionDAG & DAG,unsigned ExtOpc=ISD::ANY_EXTEND)6811 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
6812 unsigned ExtOpc = ISD::ANY_EXTEND) {
6813 SDLoc DL(N);
6814 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
6815 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
6816 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
6817 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
6818 // ReplaceNodeResults requires we maintain the same type for the return value.
6819 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
6820 }
6821
6822 // Converts the given 32-bit operation to a i64 operation with signed extension
6823 // semantic to reduce the signed extension instructions.
customLegalizeToWOpWithSExt(SDNode * N,SelectionDAG & DAG)6824 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
6825 SDLoc DL(N);
6826 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6827 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
6828 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
6829 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6830 DAG.getValueType(MVT::i32));
6831 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
6832 }
6833
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const6834 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
6835 SmallVectorImpl<SDValue> &Results,
6836 SelectionDAG &DAG) const {
6837 SDLoc DL(N);
6838 switch (N->getOpcode()) {
6839 default:
6840 llvm_unreachable("Don't know how to custom type legalize this operation!");
6841 case ISD::STRICT_FP_TO_SINT:
6842 case ISD::STRICT_FP_TO_UINT:
6843 case ISD::FP_TO_SINT:
6844 case ISD::FP_TO_UINT: {
6845 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6846 "Unexpected custom legalisation");
6847 bool IsStrict = N->isStrictFPOpcode();
6848 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
6849 N->getOpcode() == ISD::STRICT_FP_TO_SINT;
6850 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
6851 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
6852 TargetLowering::TypeSoftenFloat) {
6853 if (!isTypeLegal(Op0.getValueType()))
6854 return;
6855 if (IsStrict) {
6856 unsigned Opc = IsSigned ? RISCVISD::STRICT_FCVT_W_RV64
6857 : RISCVISD::STRICT_FCVT_WU_RV64;
6858 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
6859 SDValue Res = DAG.getNode(
6860 Opc, DL, VTs, N->getOperand(0), Op0,
6861 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6862 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6863 Results.push_back(Res.getValue(1));
6864 return;
6865 }
6866 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
6867 SDValue Res =
6868 DAG.getNode(Opc, DL, MVT::i64, Op0,
6869 DAG.getTargetConstant(RISCVFPRndMode::RTZ, DL, MVT::i64));
6870 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
6871 return;
6872 }
6873 // If the FP type needs to be softened, emit a library call using the 'si'
6874 // version. If we left it to default legalization we'd end up with 'di'. If
6875 // the FP type doesn't need to be softened just let generic type
6876 // legalization promote the result type.
6877 RTLIB::Libcall LC;
6878 if (IsSigned)
6879 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
6880 else
6881 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
6882 MakeLibCallOptions CallOptions;
6883 EVT OpVT = Op0.getValueType();
6884 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
6885 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
6886 SDValue Result;
6887 std::tie(Result, Chain) =
6888 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
6889 Results.push_back(Result);
6890 if (IsStrict)
6891 Results.push_back(Chain);
6892 break;
6893 }
6894 case ISD::READCYCLECOUNTER: {
6895 assert(!Subtarget.is64Bit() &&
6896 "READCYCLECOUNTER only has custom type legalization on riscv32");
6897
6898 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6899 SDValue RCW =
6900 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
6901
6902 Results.push_back(
6903 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
6904 Results.push_back(RCW.getValue(2));
6905 break;
6906 }
6907 case ISD::MUL: {
6908 unsigned Size = N->getSimpleValueType(0).getSizeInBits();
6909 unsigned XLen = Subtarget.getXLen();
6910 // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
6911 if (Size > XLen) {
6912 assert(Size == (XLen * 2) && "Unexpected custom legalisation");
6913 SDValue LHS = N->getOperand(0);
6914 SDValue RHS = N->getOperand(1);
6915 APInt HighMask = APInt::getHighBitsSet(Size, XLen);
6916
6917 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
6918 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
6919 // We need exactly one side to be unsigned.
6920 if (LHSIsU == RHSIsU)
6921 return;
6922
6923 auto MakeMULPair = [&](SDValue S, SDValue U) {
6924 MVT XLenVT = Subtarget.getXLenVT();
6925 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
6926 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
6927 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
6928 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
6929 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
6930 };
6931
6932 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
6933 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
6934
6935 // The other operand should be signed, but still prefer MULH when
6936 // possible.
6937 if (RHSIsU && LHSIsS && !RHSIsS)
6938 Results.push_back(MakeMULPair(LHS, RHS));
6939 else if (LHSIsU && RHSIsS && !LHSIsS)
6940 Results.push_back(MakeMULPair(RHS, LHS));
6941
6942 return;
6943 }
6944 LLVM_FALLTHROUGH;
6945 }
6946 case ISD::ADD:
6947 case ISD::SUB:
6948 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6949 "Unexpected custom legalisation");
6950 Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
6951 break;
6952 case ISD::SHL:
6953 case ISD::SRA:
6954 case ISD::SRL:
6955 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6956 "Unexpected custom legalisation");
6957 if (N->getOperand(1).getOpcode() != ISD::Constant) {
6958 // If we can use a BSET instruction, allow default promotion to apply.
6959 if (N->getOpcode() == ISD::SHL && Subtarget.hasStdExtZbs() &&
6960 isOneConstant(N->getOperand(0)))
6961 break;
6962 Results.push_back(customLegalizeToWOp(N, DAG));
6963 break;
6964 }
6965
6966 // Custom legalize ISD::SHL by placing a SIGN_EXTEND_INREG after. This is
6967 // similar to customLegalizeToWOpWithSExt, but we must zero_extend the
6968 // shift amount.
6969 if (N->getOpcode() == ISD::SHL) {
6970 SDLoc DL(N);
6971 SDValue NewOp0 =
6972 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6973 SDValue NewOp1 =
6974 DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1));
6975 SDValue NewWOp = DAG.getNode(ISD::SHL, DL, MVT::i64, NewOp0, NewOp1);
6976 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
6977 DAG.getValueType(MVT::i32));
6978 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
6979 }
6980
6981 break;
6982 case ISD::ROTL:
6983 case ISD::ROTR:
6984 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6985 "Unexpected custom legalisation");
6986 Results.push_back(customLegalizeToWOp(N, DAG));
6987 break;
6988 case ISD::CTTZ:
6989 case ISD::CTTZ_ZERO_UNDEF:
6990 case ISD::CTLZ:
6991 case ISD::CTLZ_ZERO_UNDEF: {
6992 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
6993 "Unexpected custom legalisation");
6994
6995 SDValue NewOp0 =
6996 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
6997 bool IsCTZ =
6998 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
6999 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
7000 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
7001 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7002 return;
7003 }
7004 case ISD::SDIV:
7005 case ISD::UDIV:
7006 case ISD::UREM: {
7007 MVT VT = N->getSimpleValueType(0);
7008 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
7009 Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
7010 "Unexpected custom legalisation");
7011 // Don't promote division/remainder by constant since we should expand those
7012 // to multiply by magic constant.
7013 // FIXME: What if the expansion is disabled for minsize.
7014 if (N->getOperand(1).getOpcode() == ISD::Constant)
7015 return;
7016
7017 // If the input is i32, use ANY_EXTEND since the W instructions don't read
7018 // the upper 32 bits. For other types we need to sign or zero extend
7019 // based on the opcode.
7020 unsigned ExtOpc = ISD::ANY_EXTEND;
7021 if (VT != MVT::i32)
7022 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
7023 : ISD::ZERO_EXTEND;
7024
7025 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
7026 break;
7027 }
7028 case ISD::UADDO:
7029 case ISD::USUBO: {
7030 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7031 "Unexpected custom legalisation");
7032 bool IsAdd = N->getOpcode() == ISD::UADDO;
7033 // Create an ADDW or SUBW.
7034 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7035 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7036 SDValue Res =
7037 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
7038 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
7039 DAG.getValueType(MVT::i32));
7040
7041 SDValue Overflow;
7042 if (IsAdd && isOneConstant(RHS)) {
7043 // Special case uaddo X, 1 overflowed if the addition result is 0.
7044 // The general case (X + C) < C is not necessarily beneficial. Although we
7045 // reduce the live range of X, we may introduce the materialization of
7046 // constant C, especially when the setcc result is used by branch. We have
7047 // no compare with constant and branch instructions.
7048 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res,
7049 DAG.getConstant(0, DL, MVT::i64), ISD::SETEQ);
7050 } else {
7051 // Sign extend the LHS and perform an unsigned compare with the ADDW
7052 // result. Since the inputs are sign extended from i32, this is equivalent
7053 // to comparing the lower 32 bits.
7054 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7055 Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
7056 IsAdd ? ISD::SETULT : ISD::SETUGT);
7057 }
7058
7059 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7060 Results.push_back(Overflow);
7061 return;
7062 }
7063 case ISD::UADDSAT:
7064 case ISD::USUBSAT: {
7065 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7066 "Unexpected custom legalisation");
7067 if (Subtarget.hasStdExtZbb()) {
7068 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
7069 // sign extend allows overflow of the lower 32 bits to be detected on
7070 // the promoted size.
7071 SDValue LHS =
7072 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
7073 SDValue RHS =
7074 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
7075 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
7076 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7077 return;
7078 }
7079
7080 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
7081 // promotion for UADDO/USUBO.
7082 Results.push_back(expandAddSubSat(N, DAG));
7083 return;
7084 }
7085 case ISD::ABS: {
7086 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7087 "Unexpected custom legalisation");
7088
7089 // Expand abs to Y = (sraiw X, 31); subw(xor(X, Y), Y)
7090
7091 SDValue Src = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7092
7093 // Freeze the source so we can increase it's use count.
7094 Src = DAG.getFreeze(Src);
7095
7096 // Copy sign bit to all bits using the sraiw pattern.
7097 SDValue SignFill = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Src,
7098 DAG.getValueType(MVT::i32));
7099 SignFill = DAG.getNode(ISD::SRA, DL, MVT::i64, SignFill,
7100 DAG.getConstant(31, DL, MVT::i64));
7101
7102 SDValue NewRes = DAG.getNode(ISD::XOR, DL, MVT::i64, Src, SignFill);
7103 NewRes = DAG.getNode(ISD::SUB, DL, MVT::i64, NewRes, SignFill);
7104
7105 // NOTE: The result is only required to be anyextended, but sext is
7106 // consistent with type legalization of sub.
7107 NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewRes,
7108 DAG.getValueType(MVT::i32));
7109 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
7110 return;
7111 }
7112 case ISD::BITCAST: {
7113 EVT VT = N->getValueType(0);
7114 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
7115 SDValue Op0 = N->getOperand(0);
7116 EVT Op0VT = Op0.getValueType();
7117 MVT XLenVT = Subtarget.getXLenVT();
7118 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
7119 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
7120 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
7121 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
7122 Subtarget.hasStdExtF()) {
7123 SDValue FPConv =
7124 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
7125 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
7126 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
7127 isTypeLegal(Op0VT)) {
7128 // Custom-legalize bitcasts from fixed-length vector types to illegal
7129 // scalar types in order to improve codegen. Bitcast the vector to a
7130 // one-element vector type whose element type is the same as the result
7131 // type, and extract the first element.
7132 EVT BVT = EVT::getVectorVT(*DAG.getContext(), VT, 1);
7133 if (isTypeLegal(BVT)) {
7134 SDValue BVec = DAG.getBitcast(BVT, Op0);
7135 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
7136 DAG.getConstant(0, DL, XLenVT)));
7137 }
7138 }
7139 break;
7140 }
7141 case RISCVISD::GREV:
7142 case RISCVISD::GORC:
7143 case RISCVISD::SHFL: {
7144 MVT VT = N->getSimpleValueType(0);
7145 MVT XLenVT = Subtarget.getXLenVT();
7146 assert((VT == MVT::i16 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
7147 "Unexpected custom legalisation");
7148 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
7149 assert((Subtarget.hasStdExtZbp() ||
7150 (Subtarget.hasStdExtZbkb() && N->getOpcode() == RISCVISD::GREV &&
7151 N->getConstantOperandVal(1) == 7)) &&
7152 "Unexpected extension");
7153 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7154 SDValue NewOp1 =
7155 DAG.getNode(ISD::ZERO_EXTEND, DL, XLenVT, N->getOperand(1));
7156 SDValue NewRes = DAG.getNode(N->getOpcode(), DL, XLenVT, NewOp0, NewOp1);
7157 // ReplaceNodeResults requires we maintain the same type for the return
7158 // value.
7159 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NewRes));
7160 break;
7161 }
7162 case ISD::BSWAP:
7163 case ISD::BITREVERSE: {
7164 MVT VT = N->getSimpleValueType(0);
7165 MVT XLenVT = Subtarget.getXLenVT();
7166 assert((VT == MVT::i8 || VT == MVT::i16 ||
7167 (VT == MVT::i32 && Subtarget.is64Bit())) &&
7168 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
7169 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
7170 unsigned Imm = VT.getSizeInBits() - 1;
7171 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
7172 if (N->getOpcode() == ISD::BSWAP)
7173 Imm &= ~0x7U;
7174 SDValue GREVI = DAG.getNode(RISCVISD::GREV, DL, XLenVT, NewOp0,
7175 DAG.getConstant(Imm, DL, XLenVT));
7176 // ReplaceNodeResults requires we maintain the same type for the return
7177 // value.
7178 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
7179 break;
7180 }
7181 case ISD::FSHL:
7182 case ISD::FSHR: {
7183 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7184 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
7185 SDValue NewOp0 =
7186 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
7187 SDValue NewOp1 =
7188 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7189 SDValue NewShAmt =
7190 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7191 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
7192 // Mask the shift amount to 5 bits to prevent accidentally setting bit 5.
7193 NewShAmt = DAG.getNode(ISD::AND, DL, MVT::i64, NewShAmt,
7194 DAG.getConstant(0x1f, DL, MVT::i64));
7195 // fshl and fshr concatenate their operands in the same order. fsrw and fslw
7196 // instruction use different orders. fshl will return its first operand for
7197 // shift of zero, fshr will return its second operand. fsl and fsr both
7198 // return rs1 so the ISD nodes need to have different operand orders.
7199 // Shift amount is in rs2.
7200 unsigned Opc = RISCVISD::FSLW;
7201 if (N->getOpcode() == ISD::FSHR) {
7202 std::swap(NewOp0, NewOp1);
7203 Opc = RISCVISD::FSRW;
7204 }
7205 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewShAmt);
7206 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
7207 break;
7208 }
7209 case ISD::EXTRACT_VECTOR_ELT: {
7210 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
7211 // type is illegal (currently only vXi64 RV32).
7212 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
7213 // transferred to the destination register. We issue two of these from the
7214 // upper- and lower- halves of the SEW-bit vector element, slid down to the
7215 // first element.
7216 SDValue Vec = N->getOperand(0);
7217 SDValue Idx = N->getOperand(1);
7218
7219 // The vector type hasn't been legalized yet so we can't issue target
7220 // specific nodes if it needs legalization.
7221 // FIXME: We would manually legalize if it's important.
7222 if (!isTypeLegal(Vec.getValueType()))
7223 return;
7224
7225 MVT VecVT = Vec.getSimpleValueType();
7226
7227 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
7228 VecVT.getVectorElementType() == MVT::i64 &&
7229 "Unexpected EXTRACT_VECTOR_ELT legalization");
7230
7231 // If this is a fixed vector, we need to convert it to a scalable vector.
7232 MVT ContainerVT = VecVT;
7233 if (VecVT.isFixedLengthVector()) {
7234 ContainerVT = getContainerForFixedLengthVector(VecVT);
7235 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
7236 }
7237
7238 MVT XLenVT = Subtarget.getXLenVT();
7239
7240 // Use a VL of 1 to avoid processing more elements than we need.
7241 SDValue VL = DAG.getConstant(1, DL, XLenVT);
7242 SDValue Mask = getAllOnesMask(ContainerVT, VL, DL, DAG);
7243
7244 // Unless the index is known to be 0, we must slide the vector down to get
7245 // the desired element into index 0.
7246 if (!isNullConstant(Idx)) {
7247 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
7248 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
7249 }
7250
7251 // Extract the lower XLEN bits of the correct vector element.
7252 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7253
7254 // To extract the upper XLEN bits of the vector element, shift the first
7255 // element right by 32 bits and re-extract the lower XLEN bits.
7256 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
7257 DAG.getUNDEF(ContainerVT),
7258 DAG.getConstant(32, DL, XLenVT), VL);
7259 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
7260 ThirtyTwoV, Mask, VL);
7261
7262 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7263
7264 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7265 break;
7266 }
7267 case ISD::INTRINSIC_WO_CHAIN: {
7268 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
7269 switch (IntNo) {
7270 default:
7271 llvm_unreachable(
7272 "Don't know how to custom type legalize this intrinsic!");
7273 case Intrinsic::riscv_grev:
7274 case Intrinsic::riscv_gorc: {
7275 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7276 "Unexpected custom legalisation");
7277 SDValue NewOp1 =
7278 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7279 SDValue NewOp2 =
7280 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7281 unsigned Opc =
7282 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
7283 // If the control is a constant, promote the node by clearing any extra
7284 // bits bits in the control. isel will form greviw/gorciw if the result is
7285 // sign extended.
7286 if (isa<ConstantSDNode>(NewOp2)) {
7287 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7288 DAG.getConstant(0x1f, DL, MVT::i64));
7289 Opc = IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
7290 }
7291 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7292 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7293 break;
7294 }
7295 case Intrinsic::riscv_bcompress:
7296 case Intrinsic::riscv_bdecompress:
7297 case Intrinsic::riscv_bfp:
7298 case Intrinsic::riscv_fsl:
7299 case Intrinsic::riscv_fsr: {
7300 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7301 "Unexpected custom legalisation");
7302 Results.push_back(customLegalizeToWOpByIntr(N, DAG, IntNo));
7303 break;
7304 }
7305 case Intrinsic::riscv_orc_b: {
7306 // Lower to the GORCI encoding for orc.b with the operand extended.
7307 SDValue NewOp =
7308 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7309 SDValue Res = DAG.getNode(RISCVISD::GORC, DL, MVT::i64, NewOp,
7310 DAG.getConstant(7, DL, MVT::i64));
7311 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7312 return;
7313 }
7314 case Intrinsic::riscv_shfl:
7315 case Intrinsic::riscv_unshfl: {
7316 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
7317 "Unexpected custom legalisation");
7318 SDValue NewOp1 =
7319 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
7320 SDValue NewOp2 =
7321 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
7322 unsigned Opc =
7323 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
7324 // There is no (UN)SHFLIW. If the control word is a constant, we can use
7325 // (UN)SHFLI with bit 4 of the control word cleared. The upper 32 bit half
7326 // will be shuffled the same way as the lower 32 bit half, but the two
7327 // halves won't cross.
7328 if (isa<ConstantSDNode>(NewOp2)) {
7329 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
7330 DAG.getConstant(0xf, DL, MVT::i64));
7331 Opc =
7332 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
7333 }
7334 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
7335 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
7336 break;
7337 }
7338 case Intrinsic::riscv_vmv_x_s: {
7339 EVT VT = N->getValueType(0);
7340 MVT XLenVT = Subtarget.getXLenVT();
7341 if (VT.bitsLT(XLenVT)) {
7342 // Simple case just extract using vmv.x.s and truncate.
7343 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
7344 Subtarget.getXLenVT(), N->getOperand(1));
7345 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
7346 return;
7347 }
7348
7349 assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
7350 "Unexpected custom legalization");
7351
7352 // We need to do the move in two steps.
7353 SDValue Vec = N->getOperand(1);
7354 MVT VecVT = Vec.getSimpleValueType();
7355
7356 // First extract the lower XLEN bits of the element.
7357 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
7358
7359 // To extract the upper XLEN bits of the vector element, shift the first
7360 // element right by 32 bits and re-extract the lower XLEN bits.
7361 SDValue VL = DAG.getConstant(1, DL, XLenVT);
7362 SDValue Mask = getAllOnesMask(VecVT, VL, DL, DAG);
7363
7364 SDValue ThirtyTwoV =
7365 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT, DAG.getUNDEF(VecVT),
7366 DAG.getConstant(32, DL, XLenVT), VL);
7367 SDValue LShr32 =
7368 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
7369 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
7370
7371 Results.push_back(
7372 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
7373 break;
7374 }
7375 }
7376 break;
7377 }
7378 case ISD::VECREDUCE_ADD:
7379 case ISD::VECREDUCE_AND:
7380 case ISD::VECREDUCE_OR:
7381 case ISD::VECREDUCE_XOR:
7382 case ISD::VECREDUCE_SMAX:
7383 case ISD::VECREDUCE_UMAX:
7384 case ISD::VECREDUCE_SMIN:
7385 case ISD::VECREDUCE_UMIN:
7386 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
7387 Results.push_back(V);
7388 break;
7389 case ISD::VP_REDUCE_ADD:
7390 case ISD::VP_REDUCE_AND:
7391 case ISD::VP_REDUCE_OR:
7392 case ISD::VP_REDUCE_XOR:
7393 case ISD::VP_REDUCE_SMAX:
7394 case ISD::VP_REDUCE_UMAX:
7395 case ISD::VP_REDUCE_SMIN:
7396 case ISD::VP_REDUCE_UMIN:
7397 if (SDValue V = lowerVPREDUCE(SDValue(N, 0), DAG))
7398 Results.push_back(V);
7399 break;
7400 case ISD::FLT_ROUNDS_: {
7401 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
7402 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
7403 Results.push_back(Res.getValue(0));
7404 Results.push_back(Res.getValue(1));
7405 break;
7406 }
7407 }
7408 }
7409
7410 // A structure to hold one of the bit-manipulation patterns below. Together, a
7411 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
7412 // (or (and (shl x, 1), 0xAAAAAAAA),
7413 // (and (srl x, 1), 0x55555555))
7414 struct RISCVBitmanipPat {
7415 SDValue Op;
7416 unsigned ShAmt;
7417 bool IsSHL;
7418
formsPairWithRISCVBitmanipPat7419 bool formsPairWith(const RISCVBitmanipPat &Other) const {
7420 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
7421 }
7422 };
7423
7424 // Matches patterns of the form
7425 // (and (shl x, C2), (C1 << C2))
7426 // (and (srl x, C2), C1)
7427 // (shl (and x, C1), C2)
7428 // (srl (and x, (C1 << C2)), C2)
7429 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
7430 // The expected masks for each shift amount are specified in BitmanipMasks where
7431 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
7432 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
7433 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
7434 // XLen is 64.
7435 static Optional<RISCVBitmanipPat>
matchRISCVBitmanipPat(SDValue Op,ArrayRef<uint64_t> BitmanipMasks)7436 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
7437 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
7438 "Unexpected number of masks");
7439 Optional<uint64_t> Mask;
7440 // Optionally consume a mask around the shift operation.
7441 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
7442 Mask = Op.getConstantOperandVal(1);
7443 Op = Op.getOperand(0);
7444 }
7445 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
7446 return None;
7447 bool IsSHL = Op.getOpcode() == ISD::SHL;
7448
7449 if (!isa<ConstantSDNode>(Op.getOperand(1)))
7450 return None;
7451 uint64_t ShAmt = Op.getConstantOperandVal(1);
7452
7453 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7454 if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
7455 return None;
7456 // If we don't have enough masks for 64 bit, then we must be trying to
7457 // match SHFL so we're only allowed to shift 1/4 of the width.
7458 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
7459 return None;
7460
7461 SDValue Src = Op.getOperand(0);
7462
7463 // The expected mask is shifted left when the AND is found around SHL
7464 // patterns.
7465 // ((x >> 1) & 0x55555555)
7466 // ((x << 1) & 0xAAAAAAAA)
7467 bool SHLExpMask = IsSHL;
7468
7469 if (!Mask) {
7470 // Sometimes LLVM keeps the mask as an operand of the shift, typically when
7471 // the mask is all ones: consume that now.
7472 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
7473 Mask = Src.getConstantOperandVal(1);
7474 Src = Src.getOperand(0);
7475 // The expected mask is now in fact shifted left for SRL, so reverse the
7476 // decision.
7477 // ((x & 0xAAAAAAAA) >> 1)
7478 // ((x & 0x55555555) << 1)
7479 SHLExpMask = !SHLExpMask;
7480 } else {
7481 // Use a default shifted mask of all-ones if there's no AND, truncated
7482 // down to the expected width. This simplifies the logic later on.
7483 Mask = maskTrailingOnes<uint64_t>(Width);
7484 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
7485 }
7486 }
7487
7488 unsigned MaskIdx = Log2_32(ShAmt);
7489 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7490
7491 if (SHLExpMask)
7492 ExpMask <<= ShAmt;
7493
7494 if (Mask != ExpMask)
7495 return None;
7496
7497 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
7498 }
7499
7500 // Matches any of the following bit-manipulation patterns:
7501 // (and (shl x, 1), (0x55555555 << 1))
7502 // (and (srl x, 1), 0x55555555)
7503 // (shl (and x, 0x55555555), 1)
7504 // (srl (and x, (0x55555555 << 1)), 1)
7505 // where the shift amount and mask may vary thus:
7506 // [1] = 0x55555555 / 0xAAAAAAAA
7507 // [2] = 0x33333333 / 0xCCCCCCCC
7508 // [4] = 0x0F0F0F0F / 0xF0F0F0F0
7509 // [8] = 0x00FF00FF / 0xFF00FF00
7510 // [16] = 0x0000FFFF / 0xFFFFFFFF
7511 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
matchGREVIPat(SDValue Op)7512 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
7513 // These are the unshifted masks which we use to match bit-manipulation
7514 // patterns. They may be shifted left in certain circumstances.
7515 static const uint64_t BitmanipMasks[] = {
7516 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
7517 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
7518
7519 return matchRISCVBitmanipPat(Op, BitmanipMasks);
7520 }
7521
7522 // Try to fold (<bop> x, (reduction.<bop> vec, start))
combineBinOpToReduce(SDNode * N,SelectionDAG & DAG)7523 static SDValue combineBinOpToReduce(SDNode *N, SelectionDAG &DAG) {
7524 auto BinOpToRVVReduce = [](unsigned Opc) {
7525 switch (Opc) {
7526 default:
7527 llvm_unreachable("Unhandled binary to transfrom reduction");
7528 case ISD::ADD:
7529 return RISCVISD::VECREDUCE_ADD_VL;
7530 case ISD::UMAX:
7531 return RISCVISD::VECREDUCE_UMAX_VL;
7532 case ISD::SMAX:
7533 return RISCVISD::VECREDUCE_SMAX_VL;
7534 case ISD::UMIN:
7535 return RISCVISD::VECREDUCE_UMIN_VL;
7536 case ISD::SMIN:
7537 return RISCVISD::VECREDUCE_SMIN_VL;
7538 case ISD::AND:
7539 return RISCVISD::VECREDUCE_AND_VL;
7540 case ISD::OR:
7541 return RISCVISD::VECREDUCE_OR_VL;
7542 case ISD::XOR:
7543 return RISCVISD::VECREDUCE_XOR_VL;
7544 case ISD::FADD:
7545 return RISCVISD::VECREDUCE_FADD_VL;
7546 case ISD::FMAXNUM:
7547 return RISCVISD::VECREDUCE_FMAX_VL;
7548 case ISD::FMINNUM:
7549 return RISCVISD::VECREDUCE_FMIN_VL;
7550 }
7551 };
7552
7553 auto IsReduction = [&BinOpToRVVReduce](SDValue V, unsigned Opc) {
7554 return V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7555 isNullConstant(V.getOperand(1)) &&
7556 V.getOperand(0).getOpcode() == BinOpToRVVReduce(Opc);
7557 };
7558
7559 unsigned Opc = N->getOpcode();
7560 unsigned ReduceIdx;
7561 if (IsReduction(N->getOperand(0), Opc))
7562 ReduceIdx = 0;
7563 else if (IsReduction(N->getOperand(1), Opc))
7564 ReduceIdx = 1;
7565 else
7566 return SDValue();
7567
7568 // Skip if FADD disallows reassociation but the combiner needs.
7569 if (Opc == ISD::FADD && !N->getFlags().hasAllowReassociation())
7570 return SDValue();
7571
7572 SDValue Extract = N->getOperand(ReduceIdx);
7573 SDValue Reduce = Extract.getOperand(0);
7574 if (!Reduce.hasOneUse())
7575 return SDValue();
7576
7577 SDValue ScalarV = Reduce.getOperand(2);
7578
7579 // Make sure that ScalarV is a splat with VL=1.
7580 if (ScalarV.getOpcode() != RISCVISD::VFMV_S_F_VL &&
7581 ScalarV.getOpcode() != RISCVISD::VMV_S_X_VL &&
7582 ScalarV.getOpcode() != RISCVISD::VMV_V_X_VL)
7583 return SDValue();
7584
7585 if (!isOneConstant(ScalarV.getOperand(2)))
7586 return SDValue();
7587
7588 // TODO: Deal with value other than neutral element.
7589 auto IsRVVNeutralElement = [Opc, &DAG](SDNode *N, SDValue V) {
7590 if (Opc == ISD::FADD && N->getFlags().hasNoSignedZeros() &&
7591 isNullFPConstant(V))
7592 return true;
7593 return DAG.getNeutralElement(Opc, SDLoc(V), V.getSimpleValueType(),
7594 N->getFlags()) == V;
7595 };
7596
7597 // Check the scalar of ScalarV is neutral element
7598 if (!IsRVVNeutralElement(N, ScalarV.getOperand(1)))
7599 return SDValue();
7600
7601 if (!ScalarV.hasOneUse())
7602 return SDValue();
7603
7604 EVT SplatVT = ScalarV.getValueType();
7605 SDValue NewStart = N->getOperand(1 - ReduceIdx);
7606 unsigned SplatOpc = RISCVISD::VFMV_S_F_VL;
7607 if (SplatVT.isInteger()) {
7608 auto *C = dyn_cast<ConstantSDNode>(NewStart.getNode());
7609 if (!C || C->isZero() || !isInt<5>(C->getSExtValue()))
7610 SplatOpc = RISCVISD::VMV_S_X_VL;
7611 else
7612 SplatOpc = RISCVISD::VMV_V_X_VL;
7613 }
7614
7615 SDValue NewScalarV =
7616 DAG.getNode(SplatOpc, SDLoc(N), SplatVT, ScalarV.getOperand(0), NewStart,
7617 ScalarV.getOperand(2));
7618 SDValue NewReduce =
7619 DAG.getNode(Reduce.getOpcode(), SDLoc(Reduce), Reduce.getValueType(),
7620 Reduce.getOperand(0), Reduce.getOperand(1), NewScalarV,
7621 Reduce.getOperand(3), Reduce.getOperand(4));
7622 return DAG.getNode(Extract.getOpcode(), SDLoc(Extract),
7623 Extract.getValueType(), NewReduce, Extract.getOperand(1));
7624 }
7625
7626 // Match the following pattern as a GREVI(W) operation
7627 // (or (BITMANIP_SHL x), (BITMANIP_SRL x))
combineORToGREV(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)7628 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
7629 const RISCVSubtarget &Subtarget) {
7630 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7631 EVT VT = Op.getValueType();
7632
7633 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7634 auto LHS = matchGREVIPat(Op.getOperand(0));
7635 auto RHS = matchGREVIPat(Op.getOperand(1));
7636 if (LHS && RHS && LHS->formsPairWith(*RHS)) {
7637 SDLoc DL(Op);
7638 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
7639 DAG.getConstant(LHS->ShAmt, DL, VT));
7640 }
7641 }
7642 return SDValue();
7643 }
7644
7645 // Matches any the following pattern as a GORCI(W) operation
7646 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2
7647 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2
7648 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
7649 // Note that with the variant of 3.,
7650 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
7651 // the inner pattern will first be matched as GREVI and then the outer
7652 // pattern will be matched to GORC via the first rule above.
7653 // 4. (or (rotl/rotr x, bitwidth/2), x)
combineORToGORC(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)7654 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
7655 const RISCVSubtarget &Subtarget) {
7656 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7657 EVT VT = Op.getValueType();
7658
7659 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
7660 SDLoc DL(Op);
7661 SDValue Op0 = Op.getOperand(0);
7662 SDValue Op1 = Op.getOperand(1);
7663
7664 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
7665 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
7666 isa<ConstantSDNode>(Reverse.getOperand(1)) &&
7667 isPowerOf2_32(Reverse.getConstantOperandVal(1)))
7668 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
7669 // We can also form GORCI from ROTL/ROTR by half the bitwidth.
7670 if ((Reverse.getOpcode() == ISD::ROTL ||
7671 Reverse.getOpcode() == ISD::ROTR) &&
7672 Reverse.getOperand(0) == X &&
7673 isa<ConstantSDNode>(Reverse.getOperand(1))) {
7674 uint64_t RotAmt = Reverse.getConstantOperandVal(1);
7675 if (RotAmt == (VT.getSizeInBits() / 2))
7676 return DAG.getNode(RISCVISD::GORC, DL, VT, X,
7677 DAG.getConstant(RotAmt, DL, VT));
7678 }
7679 return SDValue();
7680 };
7681
7682 // Check for either commutable permutation of (or (GREVI x, shamt), x)
7683 if (SDValue V = MatchOROfReverse(Op0, Op1))
7684 return V;
7685 if (SDValue V = MatchOROfReverse(Op1, Op0))
7686 return V;
7687
7688 // OR is commutable so canonicalize its OR operand to the left
7689 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
7690 std::swap(Op0, Op1);
7691 if (Op0.getOpcode() != ISD::OR)
7692 return SDValue();
7693 SDValue OrOp0 = Op0.getOperand(0);
7694 SDValue OrOp1 = Op0.getOperand(1);
7695 auto LHS = matchGREVIPat(OrOp0);
7696 // OR is commutable so swap the operands and try again: x might have been
7697 // on the left
7698 if (!LHS) {
7699 std::swap(OrOp0, OrOp1);
7700 LHS = matchGREVIPat(OrOp0);
7701 }
7702 auto RHS = matchGREVIPat(Op1);
7703 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
7704 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
7705 DAG.getConstant(LHS->ShAmt, DL, VT));
7706 }
7707 }
7708 return SDValue();
7709 }
7710
7711 // Matches any of the following bit-manipulation patterns:
7712 // (and (shl x, 1), (0x22222222 << 1))
7713 // (and (srl x, 1), 0x22222222)
7714 // (shl (and x, 0x22222222), 1)
7715 // (srl (and x, (0x22222222 << 1)), 1)
7716 // where the shift amount and mask may vary thus:
7717 // [1] = 0x22222222 / 0x44444444
7718 // [2] = 0x0C0C0C0C / 0x3C3C3C3C
7719 // [4] = 0x00F000F0 / 0x0F000F00
7720 // [8] = 0x0000FF00 / 0x00FF0000
7721 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
matchSHFLPat(SDValue Op)7722 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
7723 // These are the unshifted masks which we use to match bit-manipulation
7724 // patterns. They may be shifted left in certain circumstances.
7725 static const uint64_t BitmanipMasks[] = {
7726 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
7727 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
7728
7729 return matchRISCVBitmanipPat(Op, BitmanipMasks);
7730 }
7731
7732 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
combineORToSHFL(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)7733 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
7734 const RISCVSubtarget &Subtarget) {
7735 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
7736 EVT VT = Op.getValueType();
7737
7738 if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
7739 return SDValue();
7740
7741 SDValue Op0 = Op.getOperand(0);
7742 SDValue Op1 = Op.getOperand(1);
7743
7744 // Or is commutable so canonicalize the second OR to the LHS.
7745 if (Op0.getOpcode() != ISD::OR)
7746 std::swap(Op0, Op1);
7747 if (Op0.getOpcode() != ISD::OR)
7748 return SDValue();
7749
7750 // We found an inner OR, so our operands are the operands of the inner OR
7751 // and the other operand of the outer OR.
7752 SDValue A = Op0.getOperand(0);
7753 SDValue B = Op0.getOperand(1);
7754 SDValue C = Op1;
7755
7756 auto Match1 = matchSHFLPat(A);
7757 auto Match2 = matchSHFLPat(B);
7758
7759 // If neither matched, we failed.
7760 if (!Match1 && !Match2)
7761 return SDValue();
7762
7763 // We had at least one match. if one failed, try the remaining C operand.
7764 if (!Match1) {
7765 std::swap(A, C);
7766 Match1 = matchSHFLPat(A);
7767 if (!Match1)
7768 return SDValue();
7769 } else if (!Match2) {
7770 std::swap(B, C);
7771 Match2 = matchSHFLPat(B);
7772 if (!Match2)
7773 return SDValue();
7774 }
7775 assert(Match1 && Match2);
7776
7777 // Make sure our matches pair up.
7778 if (!Match1->formsPairWith(*Match2))
7779 return SDValue();
7780
7781 // All the remains is to make sure C is an AND with the same input, that masks
7782 // out the bits that are being shuffled.
7783 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
7784 C.getOperand(0) != Match1->Op)
7785 return SDValue();
7786
7787 uint64_t Mask = C.getConstantOperandVal(1);
7788
7789 static const uint64_t BitmanipMasks[] = {
7790 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
7791 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
7792 };
7793
7794 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
7795 unsigned MaskIdx = Log2_32(Match1->ShAmt);
7796 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
7797
7798 if (Mask != ExpMask)
7799 return SDValue();
7800
7801 SDLoc DL(Op);
7802 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
7803 DAG.getConstant(Match1->ShAmt, DL, VT));
7804 }
7805
7806 // Optimize (add (shl x, c0), (shl y, c1)) ->
7807 // (SLLI (SH*ADD x, y), c0), if c1-c0 equals to [1|2|3].
transformAddShlImm(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)7808 static SDValue transformAddShlImm(SDNode *N, SelectionDAG &DAG,
7809 const RISCVSubtarget &Subtarget) {
7810 // Perform this optimization only in the zba extension.
7811 if (!Subtarget.hasStdExtZba())
7812 return SDValue();
7813
7814 // Skip for vector types and larger types.
7815 EVT VT = N->getValueType(0);
7816 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
7817 return SDValue();
7818
7819 // The two operand nodes must be SHL and have no other use.
7820 SDValue N0 = N->getOperand(0);
7821 SDValue N1 = N->getOperand(1);
7822 if (N0->getOpcode() != ISD::SHL || N1->getOpcode() != ISD::SHL ||
7823 !N0->hasOneUse() || !N1->hasOneUse())
7824 return SDValue();
7825
7826 // Check c0 and c1.
7827 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
7828 auto *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(1));
7829 if (!N0C || !N1C)
7830 return SDValue();
7831 int64_t C0 = N0C->getSExtValue();
7832 int64_t C1 = N1C->getSExtValue();
7833 if (C0 <= 0 || C1 <= 0)
7834 return SDValue();
7835
7836 // Skip if SH1ADD/SH2ADD/SH3ADD are not applicable.
7837 int64_t Bits = std::min(C0, C1);
7838 int64_t Diff = std::abs(C0 - C1);
7839 if (Diff != 1 && Diff != 2 && Diff != 3)
7840 return SDValue();
7841
7842 // Build nodes.
7843 SDLoc DL(N);
7844 SDValue NS = (C0 < C1) ? N0->getOperand(0) : N1->getOperand(0);
7845 SDValue NL = (C0 > C1) ? N0->getOperand(0) : N1->getOperand(0);
7846 SDValue NA0 =
7847 DAG.getNode(ISD::SHL, DL, VT, NL, DAG.getConstant(Diff, DL, VT));
7848 SDValue NA1 = DAG.getNode(ISD::ADD, DL, VT, NA0, NS);
7849 return DAG.getNode(ISD::SHL, DL, VT, NA1, DAG.getConstant(Bits, DL, VT));
7850 }
7851
7852 // Combine
7853 // ROTR ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7854 // ROTL ((GREVI x, 24), 16) -> (GREVI x, 8) for RV32
7855 // ROTR ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7856 // ROTL ((GREVI x, 56), 32) -> (GREVI x, 24) for RV64
7857 // RORW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7858 // ROLW ((GREVI x, 24), 16) -> (GREVIW x, 8) for RV64
7859 // The grev patterns represents BSWAP.
7860 // FIXME: This can be generalized to any GREV. We just need to toggle the MSB
7861 // off the grev.
combineROTR_ROTL_RORW_ROLW(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)7862 static SDValue combineROTR_ROTL_RORW_ROLW(SDNode *N, SelectionDAG &DAG,
7863 const RISCVSubtarget &Subtarget) {
7864 bool IsWInstruction =
7865 N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW;
7866 assert((N->getOpcode() == ISD::ROTR || N->getOpcode() == ISD::ROTL ||
7867 IsWInstruction) &&
7868 "Unexpected opcode!");
7869 SDValue Src = N->getOperand(0);
7870 EVT VT = N->getValueType(0);
7871 SDLoc DL(N);
7872
7873 if (!Subtarget.hasStdExtZbp() || Src.getOpcode() != RISCVISD::GREV)
7874 return SDValue();
7875
7876 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7877 !isa<ConstantSDNode>(Src.getOperand(1)))
7878 return SDValue();
7879
7880 unsigned BitWidth = IsWInstruction ? 32 : VT.getSizeInBits();
7881 assert(isPowerOf2_32(BitWidth) && "Expected a power of 2");
7882
7883 // Needs to be a rotate by half the bitwidth for ROTR/ROTL or by 16 for
7884 // RORW/ROLW. And the grev should be the encoding for bswap for this width.
7885 unsigned ShAmt1 = N->getConstantOperandVal(1);
7886 unsigned ShAmt2 = Src.getConstantOperandVal(1);
7887 if (BitWidth < 32 || ShAmt1 != (BitWidth / 2) || ShAmt2 != (BitWidth - 8))
7888 return SDValue();
7889
7890 Src = Src.getOperand(0);
7891
7892 // Toggle bit the MSB of the shift.
7893 unsigned CombinedShAmt = ShAmt1 ^ ShAmt2;
7894 if (CombinedShAmt == 0)
7895 return Src;
7896
7897 SDValue Res = DAG.getNode(
7898 RISCVISD::GREV, DL, VT, Src,
7899 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7900 if (!IsWInstruction)
7901 return Res;
7902
7903 // Sign extend the result to match the behavior of the rotate. This will be
7904 // selected to GREVIW in isel.
7905 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Res,
7906 DAG.getValueType(MVT::i32));
7907 }
7908
7909 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
7910 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
7911 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
7912 // not undo itself, but they are redundant.
combineGREVI_GORCI(SDNode * N,SelectionDAG & DAG)7913 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
7914 bool IsGORC = N->getOpcode() == RISCVISD::GORC;
7915 assert((IsGORC || N->getOpcode() == RISCVISD::GREV) && "Unexpected opcode");
7916 SDValue Src = N->getOperand(0);
7917
7918 if (Src.getOpcode() != N->getOpcode())
7919 return SDValue();
7920
7921 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
7922 !isa<ConstantSDNode>(Src.getOperand(1)))
7923 return SDValue();
7924
7925 unsigned ShAmt1 = N->getConstantOperandVal(1);
7926 unsigned ShAmt2 = Src.getConstantOperandVal(1);
7927 Src = Src.getOperand(0);
7928
7929 unsigned CombinedShAmt;
7930 if (IsGORC)
7931 CombinedShAmt = ShAmt1 | ShAmt2;
7932 else
7933 CombinedShAmt = ShAmt1 ^ ShAmt2;
7934
7935 if (CombinedShAmt == 0)
7936 return Src;
7937
7938 SDLoc DL(N);
7939 return DAG.getNode(
7940 N->getOpcode(), DL, N->getValueType(0), Src,
7941 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
7942 }
7943
7944 // Combine a constant select operand into its use:
7945 //
7946 // (and (select cond, -1, c), x)
7947 // -> (select cond, x, (and x, c)) [AllOnes=1]
7948 // (or (select cond, 0, c), x)
7949 // -> (select cond, x, (or x, c)) [AllOnes=0]
7950 // (xor (select cond, 0, c), x)
7951 // -> (select cond, x, (xor x, c)) [AllOnes=0]
7952 // (add (select cond, 0, c), x)
7953 // -> (select cond, x, (add x, c)) [AllOnes=0]
7954 // (sub x, (select cond, 0, c))
7955 // -> (select cond, x, (sub x, c)) [AllOnes=0]
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,SelectionDAG & DAG,bool AllOnes)7956 static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7957 SelectionDAG &DAG, bool AllOnes) {
7958 EVT VT = N->getValueType(0);
7959
7960 // Skip vectors.
7961 if (VT.isVector())
7962 return SDValue();
7963
7964 if ((Slct.getOpcode() != ISD::SELECT &&
7965 Slct.getOpcode() != RISCVISD::SELECT_CC) ||
7966 !Slct.hasOneUse())
7967 return SDValue();
7968
7969 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
7970 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
7971 };
7972
7973 bool SwapSelectOps;
7974 unsigned OpOffset = Slct.getOpcode() == RISCVISD::SELECT_CC ? 2 : 0;
7975 SDValue TrueVal = Slct.getOperand(1 + OpOffset);
7976 SDValue FalseVal = Slct.getOperand(2 + OpOffset);
7977 SDValue NonConstantVal;
7978 if (isZeroOrAllOnes(TrueVal, AllOnes)) {
7979 SwapSelectOps = false;
7980 NonConstantVal = FalseVal;
7981 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
7982 SwapSelectOps = true;
7983 NonConstantVal = TrueVal;
7984 } else
7985 return SDValue();
7986
7987 // Slct is now know to be the desired identity constant when CC is true.
7988 TrueVal = OtherOp;
7989 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
7990 // Unless SwapSelectOps says the condition should be false.
7991 if (SwapSelectOps)
7992 std::swap(TrueVal, FalseVal);
7993
7994 if (Slct.getOpcode() == RISCVISD::SELECT_CC)
7995 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
7996 {Slct.getOperand(0), Slct.getOperand(1),
7997 Slct.getOperand(2), TrueVal, FalseVal});
7998
7999 return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
8000 {Slct.getOperand(0), TrueVal, FalseVal});
8001 }
8002
8003 // Attempt combineSelectAndUse on each operand of a commutative operator N.
combineSelectAndUseCommutative(SDNode * N,SelectionDAG & DAG,bool AllOnes)8004 static SDValue combineSelectAndUseCommutative(SDNode *N, SelectionDAG &DAG,
8005 bool AllOnes) {
8006 SDValue N0 = N->getOperand(0);
8007 SDValue N1 = N->getOperand(1);
8008 if (SDValue Result = combineSelectAndUse(N, N0, N1, DAG, AllOnes))
8009 return Result;
8010 if (SDValue Result = combineSelectAndUse(N, N1, N0, DAG, AllOnes))
8011 return Result;
8012 return SDValue();
8013 }
8014
8015 // Transform (add (mul x, c0), c1) ->
8016 // (add (mul (add x, c1/c0), c0), c1%c0).
8017 // if c1/c0 and c1%c0 are simm12, while c1 is not. A special corner case
8018 // that should be excluded is when c0*(c1/c0) is simm12, which will lead
8019 // to an infinite loop in DAGCombine if transformed.
8020 // Or transform (add (mul x, c0), c1) ->
8021 // (add (mul (add x, c1/c0+1), c0), c1%c0-c0),
8022 // if c1/c0+1 and c1%c0-c0 are simm12, while c1 is not. A special corner
8023 // case that should be excluded is when c0*(c1/c0+1) is simm12, which will
8024 // lead to an infinite loop in DAGCombine if transformed.
8025 // Or transform (add (mul x, c0), c1) ->
8026 // (add (mul (add x, c1/c0-1), c0), c1%c0+c0),
8027 // if c1/c0-1 and c1%c0+c0 are simm12, while c1 is not. A special corner
8028 // case that should be excluded is when c0*(c1/c0-1) is simm12, which will
8029 // lead to an infinite loop in DAGCombine if transformed.
8030 // Or transform (add (mul x, c0), c1) ->
8031 // (mul (add x, c1/c0), c0).
8032 // if c1%c0 is zero, and c1/c0 is simm12 while c1 is not.
transformAddImmMulImm(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8033 static SDValue transformAddImmMulImm(SDNode *N, SelectionDAG &DAG,
8034 const RISCVSubtarget &Subtarget) {
8035 // Skip for vector types and larger types.
8036 EVT VT = N->getValueType(0);
8037 if (VT.isVector() || VT.getSizeInBits() > Subtarget.getXLen())
8038 return SDValue();
8039 // The first operand node must be a MUL and has no other use.
8040 SDValue N0 = N->getOperand(0);
8041 if (!N0->hasOneUse() || N0->getOpcode() != ISD::MUL)
8042 return SDValue();
8043 // Check if c0 and c1 match above conditions.
8044 auto *N0C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
8045 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8046 if (!N0C || !N1C)
8047 return SDValue();
8048 // If N0C has multiple uses it's possible one of the cases in
8049 // DAGCombiner::isMulAddWithConstProfitable will be true, which would result
8050 // in an infinite loop.
8051 if (!N0C->hasOneUse())
8052 return SDValue();
8053 int64_t C0 = N0C->getSExtValue();
8054 int64_t C1 = N1C->getSExtValue();
8055 int64_t CA, CB;
8056 if (C0 == -1 || C0 == 0 || C0 == 1 || isInt<12>(C1))
8057 return SDValue();
8058 // Search for proper CA (non-zero) and CB that both are simm12.
8059 if ((C1 / C0) != 0 && isInt<12>(C1 / C0) && isInt<12>(C1 % C0) &&
8060 !isInt<12>(C0 * (C1 / C0))) {
8061 CA = C1 / C0;
8062 CB = C1 % C0;
8063 } else if ((C1 / C0 + 1) != 0 && isInt<12>(C1 / C0 + 1) &&
8064 isInt<12>(C1 % C0 - C0) && !isInt<12>(C0 * (C1 / C0 + 1))) {
8065 CA = C1 / C0 + 1;
8066 CB = C1 % C0 - C0;
8067 } else if ((C1 / C0 - 1) != 0 && isInt<12>(C1 / C0 - 1) &&
8068 isInt<12>(C1 % C0 + C0) && !isInt<12>(C0 * (C1 / C0 - 1))) {
8069 CA = C1 / C0 - 1;
8070 CB = C1 % C0 + C0;
8071 } else
8072 return SDValue();
8073 // Build new nodes (add (mul (add x, c1/c0), c0), c1%c0).
8074 SDLoc DL(N);
8075 SDValue New0 = DAG.getNode(ISD::ADD, DL, VT, N0->getOperand(0),
8076 DAG.getConstant(CA, DL, VT));
8077 SDValue New1 =
8078 DAG.getNode(ISD::MUL, DL, VT, New0, DAG.getConstant(C0, DL, VT));
8079 return DAG.getNode(ISD::ADD, DL, VT, New1, DAG.getConstant(CB, DL, VT));
8080 }
8081
performADDCombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8082 static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
8083 const RISCVSubtarget &Subtarget) {
8084 if (SDValue V = transformAddImmMulImm(N, DAG, Subtarget))
8085 return V;
8086 if (SDValue V = transformAddShlImm(N, DAG, Subtarget))
8087 return V;
8088 if (SDValue V = combineBinOpToReduce(N, DAG))
8089 return V;
8090 // fold (add (select lhs, rhs, cc, 0, y), x) ->
8091 // (select lhs, rhs, cc, x, (add x, y))
8092 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8093 }
8094
performSUBCombine(SDNode * N,SelectionDAG & DAG)8095 static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG) {
8096 // fold (sub x, (select lhs, rhs, cc, 0, y)) ->
8097 // (select lhs, rhs, cc, x, (sub x, y))
8098 SDValue N0 = N->getOperand(0);
8099 SDValue N1 = N->getOperand(1);
8100 return combineSelectAndUse(N, N1, N0, DAG, /*AllOnes*/ false);
8101 }
8102
performANDCombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8103 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
8104 const RISCVSubtarget &Subtarget) {
8105 SDValue N0 = N->getOperand(0);
8106 // Pre-promote (i32 (and (srl X, Y), 1)) on RV64 with Zbs without zero
8107 // extending X. This is safe since we only need the LSB after the shift and
8108 // shift amounts larger than 31 would produce poison. If we wait until
8109 // type legalization, we'll create RISCVISD::SRLW and we can't recover it
8110 // to use a BEXT instruction.
8111 if (Subtarget.is64Bit() && Subtarget.hasStdExtZbs() &&
8112 N->getValueType(0) == MVT::i32 && isOneConstant(N->getOperand(1)) &&
8113 N0.getOpcode() == ISD::SRL && !isa<ConstantSDNode>(N0.getOperand(1)) &&
8114 N0.hasOneUse()) {
8115 SDLoc DL(N);
8116 SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N0.getOperand(0));
8117 SDValue Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N0.getOperand(1));
8118 SDValue Srl = DAG.getNode(ISD::SRL, DL, MVT::i64, Op0, Op1);
8119 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i64, Srl,
8120 DAG.getConstant(1, DL, MVT::i64));
8121 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, And);
8122 }
8123
8124 if (SDValue V = combineBinOpToReduce(N, DAG))
8125 return V;
8126
8127 // fold (and (select lhs, rhs, cc, -1, y), x) ->
8128 // (select lhs, rhs, cc, x, (and x, y))
8129 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ true);
8130 }
8131
performORCombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8132 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
8133 const RISCVSubtarget &Subtarget) {
8134 if (Subtarget.hasStdExtZbp()) {
8135 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
8136 return GREV;
8137 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
8138 return GORC;
8139 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
8140 return SHFL;
8141 }
8142
8143 if (SDValue V = combineBinOpToReduce(N, DAG))
8144 return V;
8145 // fold (or (select cond, 0, y), x) ->
8146 // (select cond, x, (or x, y))
8147 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8148 }
8149
performXORCombine(SDNode * N,SelectionDAG & DAG)8150 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG) {
8151 SDValue N0 = N->getOperand(0);
8152 SDValue N1 = N->getOperand(1);
8153
8154 // fold (xor (sllw 1, x), -1) -> (rolw ~1, x)
8155 // NOTE: Assumes ROL being legal means ROLW is legal.
8156 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8157 if (N0.getOpcode() == RISCVISD::SLLW &&
8158 isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0)) &&
8159 TLI.isOperationLegal(ISD::ROTL, MVT::i64)) {
8160 SDLoc DL(N);
8161 return DAG.getNode(RISCVISD::ROLW, DL, MVT::i64,
8162 DAG.getConstant(~1, DL, MVT::i64), N0.getOperand(1));
8163 }
8164
8165 if (SDValue V = combineBinOpToReduce(N, DAG))
8166 return V;
8167 // fold (xor (select cond, 0, y), x) ->
8168 // (select cond, x, (xor x, y))
8169 return combineSelectAndUseCommutative(N, DAG, /*AllOnes*/ false);
8170 }
8171
8172 // Replace (seteq (i64 (and X, 0xffffffff)), C1) with
8173 // (seteq (i64 (sext_inreg (X, i32)), C1')) where C1' is C1 sign extended from
8174 // bit 31. Same for setne. C1' may be cheaper to materialize and the sext_inreg
8175 // can become a sext.w instead of a shift pair.
performSETCCCombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8176 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG,
8177 const RISCVSubtarget &Subtarget) {
8178 SDValue N0 = N->getOperand(0);
8179 SDValue N1 = N->getOperand(1);
8180 EVT VT = N->getValueType(0);
8181 EVT OpVT = N0.getValueType();
8182
8183 if (OpVT != MVT::i64 || !Subtarget.is64Bit())
8184 return SDValue();
8185
8186 // RHS needs to be a constant.
8187 auto *N1C = dyn_cast<ConstantSDNode>(N1);
8188 if (!N1C)
8189 return SDValue();
8190
8191 // LHS needs to be (and X, 0xffffffff).
8192 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse() ||
8193 !isa<ConstantSDNode>(N0.getOperand(1)) ||
8194 N0.getConstantOperandVal(1) != UINT64_C(0xffffffff))
8195 return SDValue();
8196
8197 // Looking for an equality compare.
8198 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
8199 if (!isIntEqualitySetCC(Cond))
8200 return SDValue();
8201
8202 // Don't do this if the sign bit is provably zero, it will be turned back into
8203 // an AND.
8204 APInt SignMask = APInt::getOneBitSet(64, 31);
8205 if (DAG.MaskedValueIsZero(N0.getOperand(0), SignMask))
8206 return SDValue();
8207
8208 const APInt &C1 = N1C->getAPIntValue();
8209
8210 SDLoc dl(N);
8211 // If the constant is larger than 2^32 - 1 it is impossible for both sides
8212 // to be equal.
8213 if (C1.getActiveBits() > 32)
8214 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
8215
8216 SDValue SExtOp = DAG.getNode(ISD::SIGN_EXTEND_INREG, N, OpVT,
8217 N0.getOperand(0), DAG.getValueType(MVT::i32));
8218 return DAG.getSetCC(dl, VT, SExtOp, DAG.getConstant(C1.trunc(32).sext(64),
8219 dl, OpVT), Cond);
8220 }
8221
8222 static SDValue
performSIGN_EXTEND_INREGCombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8223 performSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
8224 const RISCVSubtarget &Subtarget) {
8225 SDValue Src = N->getOperand(0);
8226 EVT VT = N->getValueType(0);
8227
8228 // Fold (sext_inreg (fmv_x_anyexth X), i16) -> (fmv_x_signexth X)
8229 if (Src.getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8230 cast<VTSDNode>(N->getOperand(1))->getVT().bitsGE(MVT::i16))
8231 return DAG.getNode(RISCVISD::FMV_X_SIGNEXTH, SDLoc(N), VT,
8232 Src.getOperand(0));
8233
8234 // Fold (i64 (sext_inreg (abs X), i32)) ->
8235 // (i64 (smax (sext_inreg (neg X), i32), X)) if X has more than 32 sign bits.
8236 // The (sext_inreg (neg X), i32) will be selected to negw by isel. This
8237 // pattern occurs after type legalization of (i32 (abs X)) on RV64 if the user
8238 // of the (i32 (abs X)) is a sext or setcc or something else that causes type
8239 // legalization to add a sext_inreg after the abs. The (i32 (abs X)) will have
8240 // been type legalized to (i64 (abs (sext_inreg X, i32))), but the sext_inreg
8241 // may get combined into an earlier operation so we need to use
8242 // ComputeNumSignBits.
8243 // NOTE: (i64 (sext_inreg (abs X), i32)) can also be created for
8244 // (i64 (ashr (shl (abs X), 32), 32)) without any type legalization so
8245 // we can't assume that X has 33 sign bits. We must check.
8246 if (Subtarget.hasStdExtZbb() && Subtarget.is64Bit() &&
8247 Src.getOpcode() == ISD::ABS && Src.hasOneUse() && VT == MVT::i64 &&
8248 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32 &&
8249 DAG.ComputeNumSignBits(Src.getOperand(0)) > 32) {
8250 SDLoc DL(N);
8251 SDValue Freeze = DAG.getFreeze(Src.getOperand(0));
8252 SDValue Neg =
8253 DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, MVT::i64), Freeze);
8254 Neg = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Neg,
8255 DAG.getValueType(MVT::i32));
8256 return DAG.getNode(ISD::SMAX, DL, MVT::i64, Freeze, Neg);
8257 }
8258
8259 return SDValue();
8260 }
8261
8262 // Try to form vwadd(u).wv/wx or vwsub(u).wv/wx. It might later be optimized to
8263 // vwadd(u).vv/vx or vwsub(u).vv/vx.
combineADDSUB_VLToVWADDSUB_VL(SDNode * N,SelectionDAG & DAG,bool Commute=false)8264 static SDValue combineADDSUB_VLToVWADDSUB_VL(SDNode *N, SelectionDAG &DAG,
8265 bool Commute = false) {
8266 assert((N->getOpcode() == RISCVISD::ADD_VL ||
8267 N->getOpcode() == RISCVISD::SUB_VL) &&
8268 "Unexpected opcode");
8269 bool IsAdd = N->getOpcode() == RISCVISD::ADD_VL;
8270 SDValue Op0 = N->getOperand(0);
8271 SDValue Op1 = N->getOperand(1);
8272 if (Commute)
8273 std::swap(Op0, Op1);
8274
8275 MVT VT = N->getSimpleValueType(0);
8276
8277 // Determine the narrow size for a widening add/sub.
8278 unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8279 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8280 VT.getVectorElementCount());
8281
8282 SDValue Mask = N->getOperand(2);
8283 SDValue VL = N->getOperand(3);
8284
8285 SDLoc DL(N);
8286
8287 // If the RHS is a sext or zext, we can form a widening op.
8288 if ((Op1.getOpcode() == RISCVISD::VZEXT_VL ||
8289 Op1.getOpcode() == RISCVISD::VSEXT_VL) &&
8290 Op1.hasOneUse() && Op1.getOperand(1) == Mask && Op1.getOperand(2) == VL) {
8291 unsigned ExtOpc = Op1.getOpcode();
8292 Op1 = Op1.getOperand(0);
8293 // Re-introduce narrower extends if needed.
8294 if (Op1.getValueType() != NarrowVT)
8295 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8296
8297 unsigned WOpc;
8298 if (ExtOpc == RISCVISD::VSEXT_VL)
8299 WOpc = IsAdd ? RISCVISD::VWADD_W_VL : RISCVISD::VWSUB_W_VL;
8300 else
8301 WOpc = IsAdd ? RISCVISD::VWADDU_W_VL : RISCVISD::VWSUBU_W_VL;
8302
8303 return DAG.getNode(WOpc, DL, VT, Op0, Op1, Mask, VL);
8304 }
8305
8306 // FIXME: Is it useful to form a vwadd.wx or vwsub.wx if it removes a scalar
8307 // sext/zext?
8308
8309 return SDValue();
8310 }
8311
8312 // Try to convert vwadd(u).wv/wx or vwsub(u).wv/wx to vwadd(u).vv/vx or
8313 // vwsub(u).vv/vx.
combineVWADD_W_VL_VWSUB_W_VL(SDNode * N,SelectionDAG & DAG)8314 static SDValue combineVWADD_W_VL_VWSUB_W_VL(SDNode *N, SelectionDAG &DAG) {
8315 SDValue Op0 = N->getOperand(0);
8316 SDValue Op1 = N->getOperand(1);
8317 SDValue Mask = N->getOperand(2);
8318 SDValue VL = N->getOperand(3);
8319
8320 MVT VT = N->getSimpleValueType(0);
8321 MVT NarrowVT = Op1.getSimpleValueType();
8322 unsigned NarrowSize = NarrowVT.getScalarSizeInBits();
8323
8324 unsigned VOpc;
8325 switch (N->getOpcode()) {
8326 default: llvm_unreachable("Unexpected opcode");
8327 case RISCVISD::VWADD_W_VL: VOpc = RISCVISD::VWADD_VL; break;
8328 case RISCVISD::VWSUB_W_VL: VOpc = RISCVISD::VWSUB_VL; break;
8329 case RISCVISD::VWADDU_W_VL: VOpc = RISCVISD::VWADDU_VL; break;
8330 case RISCVISD::VWSUBU_W_VL: VOpc = RISCVISD::VWSUBU_VL; break;
8331 }
8332
8333 bool IsSigned = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8334 N->getOpcode() == RISCVISD::VWSUB_W_VL;
8335
8336 SDLoc DL(N);
8337
8338 // If the LHS is a sext or zext, we can narrow this op to the same size as
8339 // the RHS.
8340 if (((Op0.getOpcode() == RISCVISD::VZEXT_VL && !IsSigned) ||
8341 (Op0.getOpcode() == RISCVISD::VSEXT_VL && IsSigned)) &&
8342 Op0.hasOneUse() && Op0.getOperand(1) == Mask && Op0.getOperand(2) == VL) {
8343 unsigned ExtOpc = Op0.getOpcode();
8344 Op0 = Op0.getOperand(0);
8345 // Re-introduce narrower extends if needed.
8346 if (Op0.getValueType() != NarrowVT)
8347 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8348 return DAG.getNode(VOpc, DL, VT, Op0, Op1, Mask, VL);
8349 }
8350
8351 bool IsAdd = N->getOpcode() == RISCVISD::VWADD_W_VL ||
8352 N->getOpcode() == RISCVISD::VWADDU_W_VL;
8353
8354 // Look for splats on the left hand side of a vwadd(u).wv. We might be able
8355 // to commute and use a vwadd(u).vx instead.
8356 if (IsAdd && Op0.getOpcode() == RISCVISD::VMV_V_X_VL &&
8357 Op0.getOperand(0).isUndef() && Op0.getOperand(2) == VL) {
8358 Op0 = Op0.getOperand(1);
8359
8360 // See if have enough sign bits or zero bits in the scalar to use a
8361 // widening add/sub by splatting to smaller element size.
8362 unsigned EltBits = VT.getScalarSizeInBits();
8363 unsigned ScalarBits = Op0.getValueSizeInBits();
8364 // Make sure we're getting all element bits from the scalar register.
8365 // FIXME: Support implicit sign extension of vmv.v.x?
8366 if (ScalarBits < EltBits)
8367 return SDValue();
8368
8369 if (IsSigned) {
8370 if (DAG.ComputeNumSignBits(Op0) <= (ScalarBits - NarrowSize))
8371 return SDValue();
8372 } else {
8373 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8374 if (!DAG.MaskedValueIsZero(Op0, Mask))
8375 return SDValue();
8376 }
8377
8378 Op0 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8379 DAG.getUNDEF(NarrowVT), Op0, VL);
8380 return DAG.getNode(VOpc, DL, VT, Op1, Op0, Mask, VL);
8381 }
8382
8383 return SDValue();
8384 }
8385
8386 // Try to form VWMUL, VWMULU or VWMULSU.
8387 // TODO: Support VWMULSU.vx with a sign extend Op and a splat of scalar Op.
combineMUL_VLToVWMUL_VL(SDNode * N,SelectionDAG & DAG,bool Commute)8388 static SDValue combineMUL_VLToVWMUL_VL(SDNode *N, SelectionDAG &DAG,
8389 bool Commute) {
8390 assert(N->getOpcode() == RISCVISD::MUL_VL && "Unexpected opcode");
8391 SDValue Op0 = N->getOperand(0);
8392 SDValue Op1 = N->getOperand(1);
8393 if (Commute)
8394 std::swap(Op0, Op1);
8395
8396 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
8397 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
8398 bool IsVWMULSU = IsSignExt && Op1.getOpcode() == RISCVISD::VZEXT_VL;
8399 if ((!IsSignExt && !IsZeroExt) || !Op0.hasOneUse())
8400 return SDValue();
8401
8402 SDValue Mask = N->getOperand(2);
8403 SDValue VL = N->getOperand(3);
8404
8405 // Make sure the mask and VL match.
8406 if (Op0.getOperand(1) != Mask || Op0.getOperand(2) != VL)
8407 return SDValue();
8408
8409 MVT VT = N->getSimpleValueType(0);
8410
8411 // Determine the narrow size for a widening multiply.
8412 unsigned NarrowSize = VT.getScalarSizeInBits() / 2;
8413 MVT NarrowVT = MVT::getVectorVT(MVT::getIntegerVT(NarrowSize),
8414 VT.getVectorElementCount());
8415
8416 SDLoc DL(N);
8417
8418 // See if the other operand is the same opcode.
8419 if (IsVWMULSU || Op0.getOpcode() == Op1.getOpcode()) {
8420 if (!Op1.hasOneUse())
8421 return SDValue();
8422
8423 // Make sure the mask and VL match.
8424 if (Op1.getOperand(1) != Mask || Op1.getOperand(2) != VL)
8425 return SDValue();
8426
8427 Op1 = Op1.getOperand(0);
8428 } else if (Op1.getOpcode() == RISCVISD::VMV_V_X_VL) {
8429 // The operand is a splat of a scalar.
8430
8431 // The pasthru must be undef for tail agnostic
8432 if (!Op1.getOperand(0).isUndef())
8433 return SDValue();
8434 // The VL must be the same.
8435 if (Op1.getOperand(2) != VL)
8436 return SDValue();
8437
8438 // Get the scalar value.
8439 Op1 = Op1.getOperand(1);
8440
8441 // See if have enough sign bits or zero bits in the scalar to use a
8442 // widening multiply by splatting to smaller element size.
8443 unsigned EltBits = VT.getScalarSizeInBits();
8444 unsigned ScalarBits = Op1.getValueSizeInBits();
8445 // Make sure we're getting all element bits from the scalar register.
8446 // FIXME: Support implicit sign extension of vmv.v.x?
8447 if (ScalarBits < EltBits)
8448 return SDValue();
8449
8450 // If the LHS is a sign extend, try to use vwmul.
8451 if (IsSignExt && DAG.ComputeNumSignBits(Op1) > (ScalarBits - NarrowSize)) {
8452 // Can use vwmul.
8453 } else {
8454 // Otherwise try to use vwmulu or vwmulsu.
8455 APInt Mask = APInt::getBitsSetFrom(ScalarBits, NarrowSize);
8456 if (DAG.MaskedValueIsZero(Op1, Mask))
8457 IsVWMULSU = IsSignExt;
8458 else
8459 return SDValue();
8460 }
8461
8462 Op1 = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, NarrowVT,
8463 DAG.getUNDEF(NarrowVT), Op1, VL);
8464 } else
8465 return SDValue();
8466
8467 Op0 = Op0.getOperand(0);
8468
8469 // Re-introduce narrower extends if needed.
8470 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
8471 if (Op0.getValueType() != NarrowVT)
8472 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
8473 // vwmulsu requires second operand to be zero extended.
8474 ExtOpc = IsVWMULSU ? RISCVISD::VZEXT_VL : ExtOpc;
8475 if (Op1.getValueType() != NarrowVT)
8476 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
8477
8478 unsigned WMulOpc = RISCVISD::VWMULSU_VL;
8479 if (!IsVWMULSU)
8480 WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
8481 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
8482 }
8483
matchRoundingOp(SDValue Op)8484 static RISCVFPRndMode::RoundingMode matchRoundingOp(SDValue Op) {
8485 switch (Op.getOpcode()) {
8486 case ISD::FROUNDEVEN: return RISCVFPRndMode::RNE;
8487 case ISD::FTRUNC: return RISCVFPRndMode::RTZ;
8488 case ISD::FFLOOR: return RISCVFPRndMode::RDN;
8489 case ISD::FCEIL: return RISCVFPRndMode::RUP;
8490 case ISD::FROUND: return RISCVFPRndMode::RMM;
8491 }
8492
8493 return RISCVFPRndMode::Invalid;
8494 }
8495
8496 // Fold
8497 // (fp_to_int (froundeven X)) -> fcvt X, rne
8498 // (fp_to_int (ftrunc X)) -> fcvt X, rtz
8499 // (fp_to_int (ffloor X)) -> fcvt X, rdn
8500 // (fp_to_int (fceil X)) -> fcvt X, rup
8501 // (fp_to_int (fround X)) -> fcvt X, rmm
performFP_TO_INTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)8502 static SDValue performFP_TO_INTCombine(SDNode *N,
8503 TargetLowering::DAGCombinerInfo &DCI,
8504 const RISCVSubtarget &Subtarget) {
8505 SelectionDAG &DAG = DCI.DAG;
8506 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8507 MVT XLenVT = Subtarget.getXLenVT();
8508
8509 // Only handle XLen or i32 types. Other types narrower than XLen will
8510 // eventually be legalized to XLenVT.
8511 EVT VT = N->getValueType(0);
8512 if (VT != MVT::i32 && VT != XLenVT)
8513 return SDValue();
8514
8515 SDValue Src = N->getOperand(0);
8516
8517 // Ensure the FP type is also legal.
8518 if (!TLI.isTypeLegal(Src.getValueType()))
8519 return SDValue();
8520
8521 // Don't do this for f16 with Zfhmin and not Zfh.
8522 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8523 return SDValue();
8524
8525 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8526 if (FRM == RISCVFPRndMode::Invalid)
8527 return SDValue();
8528
8529 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
8530
8531 unsigned Opc;
8532 if (VT == XLenVT)
8533 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8534 else
8535 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8536
8537 SDLoc DL(N);
8538 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src.getOperand(0),
8539 DAG.getTargetConstant(FRM, DL, XLenVT));
8540 return DAG.getNode(ISD::TRUNCATE, DL, VT, FpToInt);
8541 }
8542
8543 // Fold
8544 // (fp_to_int_sat (froundeven X)) -> (select X == nan, 0, (fcvt X, rne))
8545 // (fp_to_int_sat (ftrunc X)) -> (select X == nan, 0, (fcvt X, rtz))
8546 // (fp_to_int_sat (ffloor X)) -> (select X == nan, 0, (fcvt X, rdn))
8547 // (fp_to_int_sat (fceil X)) -> (select X == nan, 0, (fcvt X, rup))
8548 // (fp_to_int_sat (fround X)) -> (select X == nan, 0, (fcvt X, rmm))
performFP_TO_INT_SATCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)8549 static SDValue performFP_TO_INT_SATCombine(SDNode *N,
8550 TargetLowering::DAGCombinerInfo &DCI,
8551 const RISCVSubtarget &Subtarget) {
8552 SelectionDAG &DAG = DCI.DAG;
8553 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8554 MVT XLenVT = Subtarget.getXLenVT();
8555
8556 // Only handle XLen types. Other types narrower than XLen will eventually be
8557 // legalized to XLenVT.
8558 EVT DstVT = N->getValueType(0);
8559 if (DstVT != XLenVT)
8560 return SDValue();
8561
8562 SDValue Src = N->getOperand(0);
8563
8564 // Ensure the FP type is also legal.
8565 if (!TLI.isTypeLegal(Src.getValueType()))
8566 return SDValue();
8567
8568 // Don't do this for f16 with Zfhmin and not Zfh.
8569 if (Src.getValueType() == MVT::f16 && !Subtarget.hasStdExtZfh())
8570 return SDValue();
8571
8572 EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT();
8573
8574 RISCVFPRndMode::RoundingMode FRM = matchRoundingOp(Src);
8575 if (FRM == RISCVFPRndMode::Invalid)
8576 return SDValue();
8577
8578 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT_SAT;
8579
8580 unsigned Opc;
8581 if (SatVT == DstVT)
8582 Opc = IsSigned ? RISCVISD::FCVT_X : RISCVISD::FCVT_XU;
8583 else if (DstVT == MVT::i64 && SatVT == MVT::i32)
8584 Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
8585 else
8586 return SDValue();
8587 // FIXME: Support other SatVTs by clamping before or after the conversion.
8588
8589 Src = Src.getOperand(0);
8590
8591 SDLoc DL(N);
8592 SDValue FpToInt = DAG.getNode(Opc, DL, XLenVT, Src,
8593 DAG.getTargetConstant(FRM, DL, XLenVT));
8594
8595 // RISCV FP-to-int conversions saturate to the destination register size, but
8596 // don't produce 0 for nan.
8597 SDValue ZeroInt = DAG.getConstant(0, DL, DstVT);
8598 return DAG.getSelectCC(DL, Src, Src, ZeroInt, FpToInt, ISD::CondCode::SETUO);
8599 }
8600
8601 // Combine (bitreverse (bswap X)) to the BREV8 GREVI encoding if the type is
8602 // smaller than XLenVT.
performBITREVERSECombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8603 static SDValue performBITREVERSECombine(SDNode *N, SelectionDAG &DAG,
8604 const RISCVSubtarget &Subtarget) {
8605 assert(Subtarget.hasStdExtZbkb() && "Unexpected extension");
8606
8607 SDValue Src = N->getOperand(0);
8608 if (Src.getOpcode() != ISD::BSWAP)
8609 return SDValue();
8610
8611 EVT VT = N->getValueType(0);
8612 if (!VT.isScalarInteger() || VT.getSizeInBits() >= Subtarget.getXLen() ||
8613 !isPowerOf2_32(VT.getSizeInBits()))
8614 return SDValue();
8615
8616 SDLoc DL(N);
8617 return DAG.getNode(RISCVISD::GREV, DL, VT, Src.getOperand(0),
8618 DAG.getConstant(7, DL, VT));
8619 }
8620
8621 // Convert from one FMA opcode to another based on whether we are negating the
8622 // multiply result and/or the accumulator.
8623 // NOTE: Only supports RVV operations with VL.
negateFMAOpcode(unsigned Opcode,bool NegMul,bool NegAcc)8624 static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc) {
8625 assert((NegMul || NegAcc) && "Not negating anything?");
8626
8627 // Negating the multiply result changes ADD<->SUB and toggles 'N'.
8628 if (NegMul) {
8629 // clang-format off
8630 switch (Opcode) {
8631 default: llvm_unreachable("Unexpected opcode");
8632 case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
8633 case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break;
8634 case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break;
8635 case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
8636 }
8637 // clang-format on
8638 }
8639
8640 // Negating the accumulator changes ADD<->SUB.
8641 if (NegAcc) {
8642 // clang-format off
8643 switch (Opcode) {
8644 default: llvm_unreachable("Unexpected opcode");
8645 case RISCVISD::VFMADD_VL: Opcode = RISCVISD::VFMSUB_VL; break;
8646 case RISCVISD::VFMSUB_VL: Opcode = RISCVISD::VFMADD_VL; break;
8647 case RISCVISD::VFNMADD_VL: Opcode = RISCVISD::VFNMSUB_VL; break;
8648 case RISCVISD::VFNMSUB_VL: Opcode = RISCVISD::VFNMADD_VL; break;
8649 }
8650 // clang-format on
8651 }
8652
8653 return Opcode;
8654 }
8655
performSRACombine(SDNode * N,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8656 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
8657 const RISCVSubtarget &Subtarget) {
8658 assert(N->getOpcode() == ISD::SRA && "Unexpected opcode");
8659
8660 if (N->getValueType(0) != MVT::i64 || !Subtarget.is64Bit())
8661 return SDValue();
8662
8663 if (!isa<ConstantSDNode>(N->getOperand(1)))
8664 return SDValue();
8665 uint64_t ShAmt = N->getConstantOperandVal(1);
8666 if (ShAmt > 32)
8667 return SDValue();
8668
8669 SDValue N0 = N->getOperand(0);
8670
8671 // Combine (sra (sext_inreg (shl X, C1), i32), C2) ->
8672 // (sra (shl X, C1+32), C2+32) so it gets selected as SLLI+SRAI instead of
8673 // SLLIW+SRAIW. SLLI+SRAI have compressed forms.
8674 if (ShAmt < 32 &&
8675 N0.getOpcode() == ISD::SIGN_EXTEND_INREG && N0.hasOneUse() &&
8676 cast<VTSDNode>(N0.getOperand(1))->getVT() == MVT::i32 &&
8677 N0.getOperand(0).getOpcode() == ISD::SHL && N0.getOperand(0).hasOneUse() &&
8678 isa<ConstantSDNode>(N0.getOperand(0).getOperand(1))) {
8679 uint64_t LShAmt = N0.getOperand(0).getConstantOperandVal(1);
8680 if (LShAmt < 32) {
8681 SDLoc ShlDL(N0.getOperand(0));
8682 SDValue Shl = DAG.getNode(ISD::SHL, ShlDL, MVT::i64,
8683 N0.getOperand(0).getOperand(0),
8684 DAG.getConstant(LShAmt + 32, ShlDL, MVT::i64));
8685 SDLoc DL(N);
8686 return DAG.getNode(ISD::SRA, DL, MVT::i64, Shl,
8687 DAG.getConstant(ShAmt + 32, DL, MVT::i64));
8688 }
8689 }
8690
8691 // Combine (sra (shl X, 32), 32 - C) -> (shl (sext_inreg X, i32), C)
8692 // FIXME: Should this be a generic combine? There's a similar combine on X86.
8693 //
8694 // Also try these folds where an add or sub is in the middle.
8695 // (sra (add (shl X, 32), C1), 32 - C) -> (shl (sext_inreg (add X, C1), C)
8696 // (sra (sub C1, (shl X, 32)), 32 - C) -> (shl (sext_inreg (sub C1, X), C)
8697 SDValue Shl;
8698 ConstantSDNode *AddC = nullptr;
8699
8700 // We might have an ADD or SUB between the SRA and SHL.
8701 bool IsAdd = N0.getOpcode() == ISD::ADD;
8702 if ((IsAdd || N0.getOpcode() == ISD::SUB)) {
8703 if (!N0.hasOneUse())
8704 return SDValue();
8705 // Other operand needs to be a constant we can modify.
8706 AddC = dyn_cast<ConstantSDNode>(N0.getOperand(IsAdd ? 1 : 0));
8707 if (!AddC)
8708 return SDValue();
8709
8710 // AddC needs to have at least 32 trailing zeros.
8711 if (AddC->getAPIntValue().countTrailingZeros() < 32)
8712 return SDValue();
8713
8714 Shl = N0.getOperand(IsAdd ? 0 : 1);
8715 } else {
8716 // Not an ADD or SUB.
8717 Shl = N0;
8718 }
8719
8720 // Look for a shift left by 32.
8721 if (Shl.getOpcode() != ISD::SHL || !Shl.hasOneUse() ||
8722 !isa<ConstantSDNode>(Shl.getOperand(1)) ||
8723 Shl.getConstantOperandVal(1) != 32)
8724 return SDValue();
8725
8726 SDLoc DL(N);
8727 SDValue In = Shl.getOperand(0);
8728
8729 // If we looked through an ADD or SUB, we need to rebuild it with the shifted
8730 // constant.
8731 if (AddC) {
8732 SDValue ShiftedAddC =
8733 DAG.getConstant(AddC->getAPIntValue().lshr(32), DL, MVT::i64);
8734 if (IsAdd)
8735 In = DAG.getNode(ISD::ADD, DL, MVT::i64, In, ShiftedAddC);
8736 else
8737 In = DAG.getNode(ISD::SUB, DL, MVT::i64, ShiftedAddC, In);
8738 }
8739
8740 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, In,
8741 DAG.getValueType(MVT::i32));
8742 if (ShAmt == 32)
8743 return SExt;
8744
8745 return DAG.getNode(
8746 ISD::SHL, DL, MVT::i64, SExt,
8747 DAG.getConstant(32 - ShAmt, DL, MVT::i64));
8748 }
8749
8750 // Perform common combines for BR_CC and SELECT_CC condtions.
combine_CC(SDValue & LHS,SDValue & RHS,SDValue & CC,const SDLoc & DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)8751 static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL,
8752 SelectionDAG &DAG, const RISCVSubtarget &Subtarget) {
8753 ISD::CondCode CCVal = cast<CondCodeSDNode>(CC)->get();
8754 if (!ISD::isIntEqualitySetCC(CCVal))
8755 return false;
8756
8757 // Fold ((setlt X, Y), 0, ne) -> (X, Y, lt)
8758 // Sometimes the setcc is introduced after br_cc/select_cc has been formed.
8759 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
8760 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
8761 // If we're looking for eq 0 instead of ne 0, we need to invert the
8762 // condition.
8763 bool Invert = CCVal == ISD::SETEQ;
8764 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8765 if (Invert)
8766 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8767
8768 RHS = LHS.getOperand(1);
8769 LHS = LHS.getOperand(0);
8770 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
8771
8772 CC = DAG.getCondCode(CCVal);
8773 return true;
8774 }
8775
8776 // Fold ((xor X, Y), 0, eq/ne) -> (X, Y, eq/ne)
8777 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS)) {
8778 RHS = LHS.getOperand(1);
8779 LHS = LHS.getOperand(0);
8780 return true;
8781 }
8782
8783 // Fold ((srl (and X, 1<<C), C), 0, eq/ne) -> ((shl X, XLen-1-C), 0, ge/lt)
8784 if (isNullConstant(RHS) && LHS.getOpcode() == ISD::SRL && LHS.hasOneUse() &&
8785 LHS.getOperand(1).getOpcode() == ISD::Constant) {
8786 SDValue LHS0 = LHS.getOperand(0);
8787 if (LHS0.getOpcode() == ISD::AND &&
8788 LHS0.getOperand(1).getOpcode() == ISD::Constant) {
8789 uint64_t Mask = LHS0.getConstantOperandVal(1);
8790 uint64_t ShAmt = LHS.getConstantOperandVal(1);
8791 if (isPowerOf2_64(Mask) && Log2_64(Mask) == ShAmt) {
8792 CCVal = CCVal == ISD::SETEQ ? ISD::SETGE : ISD::SETLT;
8793 CC = DAG.getCondCode(CCVal);
8794
8795 ShAmt = LHS.getValueSizeInBits() - 1 - ShAmt;
8796 LHS = LHS0.getOperand(0);
8797 if (ShAmt != 0)
8798 LHS =
8799 DAG.getNode(ISD::SHL, DL, LHS.getValueType(), LHS0.getOperand(0),
8800 DAG.getConstant(ShAmt, DL, LHS.getValueType()));
8801 return true;
8802 }
8803 }
8804 }
8805
8806 // (X, 1, setne) -> // (X, 0, seteq) if we can prove X is 0/1.
8807 // This can occur when legalizing some floating point comparisons.
8808 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
8809 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
8810 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
8811 CC = DAG.getCondCode(CCVal);
8812 RHS = DAG.getConstant(0, DL, LHS.getValueType());
8813 return true;
8814 }
8815
8816 return false;
8817 }
8818
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const8819 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
8820 DAGCombinerInfo &DCI) const {
8821 SelectionDAG &DAG = DCI.DAG;
8822
8823 // Helper to call SimplifyDemandedBits on an operand of N where only some low
8824 // bits are demanded. N will be added to the Worklist if it was not deleted.
8825 // Caller should return SDValue(N, 0) if this returns true.
8826 auto SimplifyDemandedLowBitsHelper = [&](unsigned OpNo, unsigned LowBits) {
8827 SDValue Op = N->getOperand(OpNo);
8828 APInt Mask = APInt::getLowBitsSet(Op.getValueSizeInBits(), LowBits);
8829 if (!SimplifyDemandedBits(Op, Mask, DCI))
8830 return false;
8831
8832 if (N->getOpcode() != ISD::DELETED_NODE)
8833 DCI.AddToWorklist(N);
8834 return true;
8835 };
8836
8837 switch (N->getOpcode()) {
8838 default:
8839 break;
8840 case RISCVISD::SplitF64: {
8841 SDValue Op0 = N->getOperand(0);
8842 // If the input to SplitF64 is just BuildPairF64 then the operation is
8843 // redundant. Instead, use BuildPairF64's operands directly.
8844 if (Op0->getOpcode() == RISCVISD::BuildPairF64)
8845 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
8846
8847 if (Op0->isUndef()) {
8848 SDValue Lo = DAG.getUNDEF(MVT::i32);
8849 SDValue Hi = DAG.getUNDEF(MVT::i32);
8850 return DCI.CombineTo(N, Lo, Hi);
8851 }
8852
8853 SDLoc DL(N);
8854
8855 // It's cheaper to materialise two 32-bit integers than to load a double
8856 // from the constant pool and transfer it to integer registers through the
8857 // stack.
8858 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
8859 APInt V = C->getValueAPF().bitcastToAPInt();
8860 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
8861 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
8862 return DCI.CombineTo(N, Lo, Hi);
8863 }
8864
8865 // This is a target-specific version of a DAGCombine performed in
8866 // DAGCombiner::visitBITCAST. It performs the equivalent of:
8867 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
8868 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
8869 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
8870 !Op0.getNode()->hasOneUse())
8871 break;
8872 SDValue NewSplitF64 =
8873 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
8874 Op0.getOperand(0));
8875 SDValue Lo = NewSplitF64.getValue(0);
8876 SDValue Hi = NewSplitF64.getValue(1);
8877 APInt SignBit = APInt::getSignMask(32);
8878 if (Op0.getOpcode() == ISD::FNEG) {
8879 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
8880 DAG.getConstant(SignBit, DL, MVT::i32));
8881 return DCI.CombineTo(N, Lo, NewHi);
8882 }
8883 assert(Op0.getOpcode() == ISD::FABS);
8884 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
8885 DAG.getConstant(~SignBit, DL, MVT::i32));
8886 return DCI.CombineTo(N, Lo, NewHi);
8887 }
8888 case RISCVISD::SLLW:
8889 case RISCVISD::SRAW:
8890 case RISCVISD::SRLW: {
8891 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8892 if (SimplifyDemandedLowBitsHelper(0, 32) ||
8893 SimplifyDemandedLowBitsHelper(1, 5))
8894 return SDValue(N, 0);
8895
8896 break;
8897 }
8898 case ISD::ROTR:
8899 case ISD::ROTL:
8900 case RISCVISD::RORW:
8901 case RISCVISD::ROLW: {
8902 if (N->getOpcode() == RISCVISD::RORW || N->getOpcode() == RISCVISD::ROLW) {
8903 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8904 if (SimplifyDemandedLowBitsHelper(0, 32) ||
8905 SimplifyDemandedLowBitsHelper(1, 5))
8906 return SDValue(N, 0);
8907 }
8908
8909 return combineROTR_ROTL_RORW_ROLW(N, DAG, Subtarget);
8910 }
8911 case RISCVISD::CLZW:
8912 case RISCVISD::CTZW: {
8913 // Only the lower 32 bits of the first operand are read
8914 if (SimplifyDemandedLowBitsHelper(0, 32))
8915 return SDValue(N, 0);
8916 break;
8917 }
8918 case RISCVISD::GREV:
8919 case RISCVISD::GORC: {
8920 // Only the lower log2(Bitwidth) bits of the the shift amount are read.
8921 unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8922 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8923 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth)))
8924 return SDValue(N, 0);
8925
8926 return combineGREVI_GORCI(N, DAG);
8927 }
8928 case RISCVISD::GREVW:
8929 case RISCVISD::GORCW: {
8930 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
8931 if (SimplifyDemandedLowBitsHelper(0, 32) ||
8932 SimplifyDemandedLowBitsHelper(1, 5))
8933 return SDValue(N, 0);
8934
8935 break;
8936 }
8937 case RISCVISD::SHFL:
8938 case RISCVISD::UNSHFL: {
8939 // Only the lower log2(Bitwidth)-1 bits of the the shift amount are read.
8940 unsigned BitWidth = N->getOperand(1).getValueSizeInBits();
8941 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8942 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) - 1))
8943 return SDValue(N, 0);
8944
8945 break;
8946 }
8947 case RISCVISD::SHFLW:
8948 case RISCVISD::UNSHFLW: {
8949 // Only the lower 32 bits of LHS and lower 4 bits of RHS are read.
8950 if (SimplifyDemandedLowBitsHelper(0, 32) ||
8951 SimplifyDemandedLowBitsHelper(1, 4))
8952 return SDValue(N, 0);
8953
8954 break;
8955 }
8956 case RISCVISD::BCOMPRESSW:
8957 case RISCVISD::BDECOMPRESSW: {
8958 // Only the lower 32 bits of LHS and RHS are read.
8959 if (SimplifyDemandedLowBitsHelper(0, 32) ||
8960 SimplifyDemandedLowBitsHelper(1, 32))
8961 return SDValue(N, 0);
8962
8963 break;
8964 }
8965 case RISCVISD::FSR:
8966 case RISCVISD::FSL:
8967 case RISCVISD::FSRW:
8968 case RISCVISD::FSLW: {
8969 bool IsWInstruction =
8970 N->getOpcode() == RISCVISD::FSRW || N->getOpcode() == RISCVISD::FSLW;
8971 unsigned BitWidth =
8972 IsWInstruction ? 32 : N->getSimpleValueType(0).getSizeInBits();
8973 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
8974 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
8975 if (SimplifyDemandedLowBitsHelper(1, Log2_32(BitWidth) + 1))
8976 return SDValue(N, 0);
8977
8978 break;
8979 }
8980 case RISCVISD::FMV_X_ANYEXTH:
8981 case RISCVISD::FMV_X_ANYEXTW_RV64: {
8982 SDLoc DL(N);
8983 SDValue Op0 = N->getOperand(0);
8984 MVT VT = N->getSimpleValueType(0);
8985 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
8986 // conversion is unnecessary and can be replaced with the FMV_W_X_RV64
8987 // operand. Similar for FMV_X_ANYEXTH and FMV_H_X.
8988 if ((N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 &&
8989 Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) ||
8990 (N->getOpcode() == RISCVISD::FMV_X_ANYEXTH &&
8991 Op0->getOpcode() == RISCVISD::FMV_H_X)) {
8992 assert(Op0.getOperand(0).getValueType() == VT &&
8993 "Unexpected value type!");
8994 return Op0.getOperand(0);
8995 }
8996
8997 // This is a target-specific version of a DAGCombine performed in
8998 // DAGCombiner::visitBITCAST. It performs the equivalent of:
8999 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
9000 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
9001 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
9002 !Op0.getNode()->hasOneUse())
9003 break;
9004 SDValue NewFMV = DAG.getNode(N->getOpcode(), DL, VT, Op0.getOperand(0));
9005 unsigned FPBits = N->getOpcode() == RISCVISD::FMV_X_ANYEXTW_RV64 ? 32 : 16;
9006 APInt SignBit = APInt::getSignMask(FPBits).sext(VT.getSizeInBits());
9007 if (Op0.getOpcode() == ISD::FNEG)
9008 return DAG.getNode(ISD::XOR, DL, VT, NewFMV,
9009 DAG.getConstant(SignBit, DL, VT));
9010
9011 assert(Op0.getOpcode() == ISD::FABS);
9012 return DAG.getNode(ISD::AND, DL, VT, NewFMV,
9013 DAG.getConstant(~SignBit, DL, VT));
9014 }
9015 case ISD::ADD:
9016 return performADDCombine(N, DAG, Subtarget);
9017 case ISD::SUB:
9018 return performSUBCombine(N, DAG);
9019 case ISD::AND:
9020 return performANDCombine(N, DAG, Subtarget);
9021 case ISD::OR:
9022 return performORCombine(N, DAG, Subtarget);
9023 case ISD::XOR:
9024 return performXORCombine(N, DAG);
9025 case ISD::FADD:
9026 case ISD::UMAX:
9027 case ISD::UMIN:
9028 case ISD::SMAX:
9029 case ISD::SMIN:
9030 case ISD::FMAXNUM:
9031 case ISD::FMINNUM:
9032 return combineBinOpToReduce(N, DAG);
9033 case ISD::SETCC:
9034 return performSETCCCombine(N, DAG, Subtarget);
9035 case ISD::SIGN_EXTEND_INREG:
9036 return performSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
9037 case ISD::ZERO_EXTEND:
9038 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
9039 // type legalization. This is safe because fp_to_uint produces poison if
9040 // it overflows.
9041 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit()) {
9042 SDValue Src = N->getOperand(0);
9043 if (Src.getOpcode() == ISD::FP_TO_UINT &&
9044 isTypeLegal(Src.getOperand(0).getValueType()))
9045 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
9046 Src.getOperand(0));
9047 if (Src.getOpcode() == ISD::STRICT_FP_TO_UINT && Src.hasOneUse() &&
9048 isTypeLegal(Src.getOperand(1).getValueType())) {
9049 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
9050 SDValue Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, SDLoc(N), VTs,
9051 Src.getOperand(0), Src.getOperand(1));
9052 DCI.CombineTo(N, Res);
9053 DAG.ReplaceAllUsesOfValueWith(Src.getValue(1), Res.getValue(1));
9054 DCI.recursivelyDeleteUnusedNodes(Src.getNode());
9055 return SDValue(N, 0); // Return N so it doesn't get rechecked.
9056 }
9057 }
9058 return SDValue();
9059 case RISCVISD::SELECT_CC: {
9060 // Transform
9061 SDValue LHS = N->getOperand(0);
9062 SDValue RHS = N->getOperand(1);
9063 SDValue CC = N->getOperand(2);
9064 SDValue TrueV = N->getOperand(3);
9065 SDValue FalseV = N->getOperand(4);
9066 SDLoc DL(N);
9067
9068 // If the True and False values are the same, we don't need a select_cc.
9069 if (TrueV == FalseV)
9070 return TrueV;
9071
9072 if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
9073 return DAG.getNode(RISCVISD::SELECT_CC, DL, N->getValueType(0),
9074 {LHS, RHS, CC, TrueV, FalseV});
9075
9076 return SDValue();
9077 }
9078 case RISCVISD::BR_CC: {
9079 SDValue LHS = N->getOperand(1);
9080 SDValue RHS = N->getOperand(2);
9081 SDValue CC = N->getOperand(3);
9082 SDLoc DL(N);
9083
9084 if (combine_CC(LHS, RHS, CC, DL, DAG, Subtarget))
9085 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
9086 N->getOperand(0), LHS, RHS, CC, N->getOperand(4));
9087
9088 return SDValue();
9089 }
9090 case ISD::BITREVERSE:
9091 return performBITREVERSECombine(N, DAG, Subtarget);
9092 case ISD::FP_TO_SINT:
9093 case ISD::FP_TO_UINT:
9094 return performFP_TO_INTCombine(N, DCI, Subtarget);
9095 case ISD::FP_TO_SINT_SAT:
9096 case ISD::FP_TO_UINT_SAT:
9097 return performFP_TO_INT_SATCombine(N, DCI, Subtarget);
9098 case ISD::FCOPYSIGN: {
9099 EVT VT = N->getValueType(0);
9100 if (!VT.isVector())
9101 break;
9102 // There is a form of VFSGNJ which injects the negated sign of its second
9103 // operand. Try and bubble any FNEG up after the extend/round to produce
9104 // this optimized pattern. Avoid modifying cases where FP_ROUND and
9105 // TRUNC=1.
9106 SDValue In2 = N->getOperand(1);
9107 // Avoid cases where the extend/round has multiple uses, as duplicating
9108 // those is typically more expensive than removing a fneg.
9109 if (!In2.hasOneUse())
9110 break;
9111 if (In2.getOpcode() != ISD::FP_EXTEND &&
9112 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
9113 break;
9114 In2 = In2.getOperand(0);
9115 if (In2.getOpcode() != ISD::FNEG)
9116 break;
9117 SDLoc DL(N);
9118 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
9119 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
9120 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
9121 }
9122 case ISD::MGATHER:
9123 case ISD::MSCATTER:
9124 case ISD::VP_GATHER:
9125 case ISD::VP_SCATTER: {
9126 if (!DCI.isBeforeLegalize())
9127 break;
9128 SDValue Index, ScaleOp;
9129 bool IsIndexScaled = false;
9130 bool IsIndexSigned = false;
9131 if (const auto *VPGSN = dyn_cast<VPGatherScatterSDNode>(N)) {
9132 Index = VPGSN->getIndex();
9133 ScaleOp = VPGSN->getScale();
9134 IsIndexScaled = VPGSN->isIndexScaled();
9135 IsIndexSigned = VPGSN->isIndexSigned();
9136 } else {
9137 const auto *MGSN = cast<MaskedGatherScatterSDNode>(N);
9138 Index = MGSN->getIndex();
9139 ScaleOp = MGSN->getScale();
9140 IsIndexScaled = MGSN->isIndexScaled();
9141 IsIndexSigned = MGSN->isIndexSigned();
9142 }
9143 EVT IndexVT = Index.getValueType();
9144 MVT XLenVT = Subtarget.getXLenVT();
9145 // RISCV indexed loads only support the "unsigned unscaled" addressing
9146 // mode, so anything else must be manually legalized.
9147 bool NeedsIdxLegalization =
9148 IsIndexScaled ||
9149 (IsIndexSigned && IndexVT.getVectorElementType().bitsLT(XLenVT));
9150 if (!NeedsIdxLegalization)
9151 break;
9152
9153 SDLoc DL(N);
9154
9155 // Any index legalization should first promote to XLenVT, so we don't lose
9156 // bits when scaling. This may create an illegal index type so we let
9157 // LLVM's legalization take care of the splitting.
9158 // FIXME: LLVM can't split VP_GATHER or VP_SCATTER yet.
9159 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
9160 IndexVT = IndexVT.changeVectorElementType(XLenVT);
9161 Index = DAG.getNode(IsIndexSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9162 DL, IndexVT, Index);
9163 }
9164
9165 if (IsIndexScaled) {
9166 // Manually scale the indices.
9167 // TODO: Sanitize the scale operand here?
9168 // TODO: For VP nodes, should we use VP_SHL here?
9169 unsigned Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue();
9170 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
9171 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
9172 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
9173 ScaleOp = DAG.getTargetConstant(1, DL, ScaleOp.getValueType());
9174 }
9175
9176 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_SCALED;
9177 if (const auto *VPGN = dyn_cast<VPGatherSDNode>(N))
9178 return DAG.getGatherVP(N->getVTList(), VPGN->getMemoryVT(), DL,
9179 {VPGN->getChain(), VPGN->getBasePtr(), Index,
9180 ScaleOp, VPGN->getMask(),
9181 VPGN->getVectorLength()},
9182 VPGN->getMemOperand(), NewIndexTy);
9183 if (const auto *VPSN = dyn_cast<VPScatterSDNode>(N))
9184 return DAG.getScatterVP(N->getVTList(), VPSN->getMemoryVT(), DL,
9185 {VPSN->getChain(), VPSN->getValue(),
9186 VPSN->getBasePtr(), Index, ScaleOp,
9187 VPSN->getMask(), VPSN->getVectorLength()},
9188 VPSN->getMemOperand(), NewIndexTy);
9189 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N))
9190 return DAG.getMaskedGather(
9191 N->getVTList(), MGN->getMemoryVT(), DL,
9192 {MGN->getChain(), MGN->getPassThru(), MGN->getMask(),
9193 MGN->getBasePtr(), Index, ScaleOp},
9194 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
9195 const auto *MSN = cast<MaskedScatterSDNode>(N);
9196 return DAG.getMaskedScatter(
9197 N->getVTList(), MSN->getMemoryVT(), DL,
9198 {MSN->getChain(), MSN->getValue(), MSN->getMask(), MSN->getBasePtr(),
9199 Index, ScaleOp},
9200 MSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
9201 }
9202 case RISCVISD::SRA_VL:
9203 case RISCVISD::SRL_VL:
9204 case RISCVISD::SHL_VL: {
9205 SDValue ShAmt = N->getOperand(1);
9206 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9207 // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9208 SDLoc DL(N);
9209 SDValue VL = N->getOperand(3);
9210 EVT VT = N->getValueType(0);
9211 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9212 ShAmt.getOperand(1), VL);
9213 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
9214 N->getOperand(2), N->getOperand(3));
9215 }
9216 break;
9217 }
9218 case ISD::SRA:
9219 if (SDValue V = performSRACombine(N, DAG, Subtarget))
9220 return V;
9221 LLVM_FALLTHROUGH;
9222 case ISD::SRL:
9223 case ISD::SHL: {
9224 SDValue ShAmt = N->getOperand(1);
9225 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
9226 // We don't need the upper 32 bits of a 64-bit element for a shift amount.
9227 SDLoc DL(N);
9228 EVT VT = N->getValueType(0);
9229 ShAmt = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, DAG.getUNDEF(VT),
9230 ShAmt.getOperand(1),
9231 DAG.getRegister(RISCV::X0, Subtarget.getXLenVT()));
9232 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
9233 }
9234 break;
9235 }
9236 case RISCVISD::ADD_VL:
9237 if (SDValue V = combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ false))
9238 return V;
9239 return combineADDSUB_VLToVWADDSUB_VL(N, DAG, /*Commute*/ true);
9240 case RISCVISD::SUB_VL:
9241 return combineADDSUB_VLToVWADDSUB_VL(N, DAG);
9242 case RISCVISD::VWADD_W_VL:
9243 case RISCVISD::VWADDU_W_VL:
9244 case RISCVISD::VWSUB_W_VL:
9245 case RISCVISD::VWSUBU_W_VL:
9246 return combineVWADD_W_VL_VWSUB_W_VL(N, DAG);
9247 case RISCVISD::MUL_VL:
9248 if (SDValue V = combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ false))
9249 return V;
9250 // Mul is commutative.
9251 return combineMUL_VLToVWMUL_VL(N, DAG, /*Commute*/ true);
9252 case RISCVISD::VFMADD_VL:
9253 case RISCVISD::VFNMADD_VL:
9254 case RISCVISD::VFMSUB_VL:
9255 case RISCVISD::VFNMSUB_VL: {
9256 // Fold FNEG_VL into FMA opcodes.
9257 SDValue A = N->getOperand(0);
9258 SDValue B = N->getOperand(1);
9259 SDValue C = N->getOperand(2);
9260 SDValue Mask = N->getOperand(3);
9261 SDValue VL = N->getOperand(4);
9262
9263 auto invertIfNegative = [&Mask, &VL](SDValue &V) {
9264 if (V.getOpcode() == RISCVISD::FNEG_VL && V.getOperand(1) == Mask &&
9265 V.getOperand(2) == VL) {
9266 // Return the negated input.
9267 V = V.getOperand(0);
9268 return true;
9269 }
9270
9271 return false;
9272 };
9273
9274 bool NegA = invertIfNegative(A);
9275 bool NegB = invertIfNegative(B);
9276 bool NegC = invertIfNegative(C);
9277
9278 // If no operands are negated, we're done.
9279 if (!NegA && !NegB && !NegC)
9280 return SDValue();
9281
9282 unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC);
9283 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), A, B, C, Mask,
9284 VL);
9285 }
9286 case ISD::STORE: {
9287 auto *Store = cast<StoreSDNode>(N);
9288 SDValue Val = Store->getValue();
9289 // Combine store of vmv.x.s to vse with VL of 1.
9290 // FIXME: Support FP.
9291 if (Val.getOpcode() == RISCVISD::VMV_X_S) {
9292 SDValue Src = Val.getOperand(0);
9293 MVT VecVT = Src.getSimpleValueType();
9294 EVT MemVT = Store->getMemoryVT();
9295 // The memory VT and the element type must match.
9296 if (MemVT == VecVT.getVectorElementType()) {
9297 SDLoc DL(N);
9298 MVT MaskVT = getMaskTypeFor(VecVT);
9299 return DAG.getStoreVP(
9300 Store->getChain(), DL, Src, Store->getBasePtr(), Store->getOffset(),
9301 DAG.getConstant(1, DL, MaskVT),
9302 DAG.getConstant(1, DL, Subtarget.getXLenVT()), MemVT,
9303 Store->getMemOperand(), Store->getAddressingMode(),
9304 Store->isTruncatingStore(), /*IsCompress*/ false);
9305 }
9306 }
9307
9308 break;
9309 }
9310 case ISD::SPLAT_VECTOR: {
9311 EVT VT = N->getValueType(0);
9312 // Only perform this combine on legal MVT types.
9313 if (!isTypeLegal(VT))
9314 break;
9315 if (auto Gather = matchSplatAsGather(N->getOperand(0), VT.getSimpleVT(), N,
9316 DAG, Subtarget))
9317 return Gather;
9318 break;
9319 }
9320 case RISCVISD::VMV_V_X_VL: {
9321 // Tail agnostic VMV.V.X only demands the vector element bitwidth from the
9322 // scalar input.
9323 unsigned ScalarSize = N->getOperand(1).getValueSizeInBits();
9324 unsigned EltWidth = N->getValueType(0).getScalarSizeInBits();
9325 if (ScalarSize > EltWidth && N->getOperand(0).isUndef())
9326 if (SimplifyDemandedLowBitsHelper(1, EltWidth))
9327 return SDValue(N, 0);
9328
9329 break;
9330 }
9331 case ISD::INTRINSIC_WO_CHAIN: {
9332 unsigned IntNo = N->getConstantOperandVal(0);
9333 switch (IntNo) {
9334 // By default we do not combine any intrinsic.
9335 default:
9336 return SDValue();
9337 case Intrinsic::riscv_vcpop:
9338 case Intrinsic::riscv_vcpop_mask:
9339 case Intrinsic::riscv_vfirst:
9340 case Intrinsic::riscv_vfirst_mask: {
9341 SDValue VL = N->getOperand(2);
9342 if (IntNo == Intrinsic::riscv_vcpop_mask ||
9343 IntNo == Intrinsic::riscv_vfirst_mask)
9344 VL = N->getOperand(3);
9345 if (!isNullConstant(VL))
9346 return SDValue();
9347 // If VL is 0, vcpop -> li 0, vfirst -> li -1.
9348 SDLoc DL(N);
9349 EVT VT = N->getValueType(0);
9350 if (IntNo == Intrinsic::riscv_vfirst ||
9351 IntNo == Intrinsic::riscv_vfirst_mask)
9352 return DAG.getConstant(-1, DL, VT);
9353 return DAG.getConstant(0, DL, VT);
9354 }
9355 }
9356 }
9357 case ISD::BITCAST: {
9358 assert(Subtarget.useRVVForFixedLengthVectors());
9359 SDValue N0 = N->getOperand(0);
9360 EVT VT = N->getValueType(0);
9361 EVT SrcVT = N0.getValueType();
9362 // If this is a bitcast between a MVT::v4i1/v2i1/v1i1 and an illegal integer
9363 // type, widen both sides to avoid a trip through memory.
9364 if ((SrcVT == MVT::v1i1 || SrcVT == MVT::v2i1 || SrcVT == MVT::v4i1) &&
9365 VT.isScalarInteger()) {
9366 unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
9367 SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
9368 Ops[0] = N0;
9369 SDLoc DL(N);
9370 N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i1, Ops);
9371 N0 = DAG.getBitcast(MVT::i8, N0);
9372 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
9373 }
9374
9375 return SDValue();
9376 }
9377 }
9378
9379 return SDValue();
9380 }
9381
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const9382 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
9383 const SDNode *N, CombineLevel Level) const {
9384 assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
9385 N->getOpcode() == ISD::SRL) &&
9386 "Expected shift op");
9387
9388 // The following folds are only desirable if `(OP _, c1 << c2)` can be
9389 // materialised in fewer instructions than `(OP _, c1)`:
9390 //
9391 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
9392 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
9393 SDValue N0 = N->getOperand(0);
9394 EVT Ty = N0.getValueType();
9395 if (Ty.isScalarInteger() &&
9396 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
9397 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
9398 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
9399 if (C1 && C2) {
9400 const APInt &C1Int = C1->getAPIntValue();
9401 APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
9402
9403 // We can materialise `c1 << c2` into an add immediate, so it's "free",
9404 // and the combine should happen, to potentially allow further combines
9405 // later.
9406 if (ShiftedC1Int.getMinSignedBits() <= 64 &&
9407 isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
9408 return true;
9409
9410 // We can materialise `c1` in an add immediate, so it's "free", and the
9411 // combine should be prevented.
9412 if (C1Int.getMinSignedBits() <= 64 &&
9413 isLegalAddImmediate(C1Int.getSExtValue()))
9414 return false;
9415
9416 // Neither constant will fit into an immediate, so find materialisation
9417 // costs.
9418 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
9419 Subtarget.getFeatureBits(),
9420 /*CompressionCost*/true);
9421 int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
9422 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
9423 /*CompressionCost*/true);
9424
9425 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
9426 // combine should be prevented.
9427 if (C1Cost < ShiftedC1Cost)
9428 return false;
9429 }
9430 }
9431 return true;
9432 }
9433
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const9434 bool RISCVTargetLowering::targetShrinkDemandedConstant(
9435 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
9436 TargetLoweringOpt &TLO) const {
9437 // Delay this optimization as late as possible.
9438 if (!TLO.LegalOps)
9439 return false;
9440
9441 EVT VT = Op.getValueType();
9442 if (VT.isVector())
9443 return false;
9444
9445 // Only handle AND for now.
9446 unsigned Opcode = Op.getOpcode();
9447 if (Opcode != ISD::AND && Opcode != ISD::OR && Opcode != ISD::XOR)
9448 return false;
9449
9450 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9451 if (!C)
9452 return false;
9453
9454 const APInt &Mask = C->getAPIntValue();
9455
9456 // Clear all non-demanded bits initially.
9457 APInt ShrunkMask = Mask & DemandedBits;
9458
9459 // Try to make a smaller immediate by setting undemanded bits.
9460
9461 APInt ExpandedMask = Mask | ~DemandedBits;
9462
9463 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
9464 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
9465 };
9466 auto UseMask = [Mask, Op, &TLO](const APInt &NewMask) -> bool {
9467 if (NewMask == Mask)
9468 return true;
9469 SDLoc DL(Op);
9470 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, Op.getValueType());
9471 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), DL, Op.getValueType(),
9472 Op.getOperand(0), NewC);
9473 return TLO.CombineTo(Op, NewOp);
9474 };
9475
9476 // If the shrunk mask fits in sign extended 12 bits, let the target
9477 // independent code apply it.
9478 if (ShrunkMask.isSignedIntN(12))
9479 return false;
9480
9481 // And has a few special cases for zext.
9482 if (Opcode == ISD::AND) {
9483 // Preserve (and X, 0xffff) when zext.h is supported.
9484 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
9485 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
9486 if (IsLegalMask(NewMask))
9487 return UseMask(NewMask);
9488 }
9489
9490 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
9491 if (VT == MVT::i64) {
9492 APInt NewMask = APInt(64, 0xffffffff);
9493 if (IsLegalMask(NewMask))
9494 return UseMask(NewMask);
9495 }
9496 }
9497
9498 // For the remaining optimizations, we need to be able to make a negative
9499 // number through a combination of mask and undemanded bits.
9500 if (!ExpandedMask.isNegative())
9501 return false;
9502
9503 // What is the fewest number of bits we need to represent the negative number.
9504 unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
9505
9506 // Try to make a 12 bit negative immediate. If that fails try to make a 32
9507 // bit negative immediate unless the shrunk immediate already fits in 32 bits.
9508 // If we can't create a simm12, we shouldn't change opaque constants.
9509 APInt NewMask = ShrunkMask;
9510 if (MinSignedBits <= 12)
9511 NewMask.setBitsFrom(11);
9512 else if (!C->isOpaque() && MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
9513 NewMask.setBitsFrom(31);
9514 else
9515 return false;
9516
9517 // Check that our new mask is a subset of the demanded mask.
9518 assert(IsLegalMask(NewMask));
9519 return UseMask(NewMask);
9520 }
9521
computeGREVOrGORC(uint64_t x,unsigned ShAmt,bool IsGORC)9522 static uint64_t computeGREVOrGORC(uint64_t x, unsigned ShAmt, bool IsGORC) {
9523 static const uint64_t GREVMasks[] = {
9524 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
9525 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
9526
9527 for (unsigned Stage = 0; Stage != 6; ++Stage) {
9528 unsigned Shift = 1 << Stage;
9529 if (ShAmt & Shift) {
9530 uint64_t Mask = GREVMasks[Stage];
9531 uint64_t Res = ((x & Mask) << Shift) | ((x >> Shift) & Mask);
9532 if (IsGORC)
9533 Res |= x;
9534 x = Res;
9535 }
9536 }
9537
9538 return x;
9539 }
9540
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const9541 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
9542 KnownBits &Known,
9543 const APInt &DemandedElts,
9544 const SelectionDAG &DAG,
9545 unsigned Depth) const {
9546 unsigned BitWidth = Known.getBitWidth();
9547 unsigned Opc = Op.getOpcode();
9548 assert((Opc >= ISD::BUILTIN_OP_END ||
9549 Opc == ISD::INTRINSIC_WO_CHAIN ||
9550 Opc == ISD::INTRINSIC_W_CHAIN ||
9551 Opc == ISD::INTRINSIC_VOID) &&
9552 "Should use MaskedValueIsZero if you don't know whether Op"
9553 " is a target node!");
9554
9555 Known.resetAll();
9556 switch (Opc) {
9557 default: break;
9558 case RISCVISD::SELECT_CC: {
9559 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
9560 // If we don't know any bits, early out.
9561 if (Known.isUnknown())
9562 break;
9563 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
9564
9565 // Only known if known in both the LHS and RHS.
9566 Known = KnownBits::commonBits(Known, Known2);
9567 break;
9568 }
9569 case RISCVISD::REMUW: {
9570 KnownBits Known2;
9571 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9572 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9573 // We only care about the lower 32 bits.
9574 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
9575 // Restore the original width by sign extending.
9576 Known = Known.sext(BitWidth);
9577 break;
9578 }
9579 case RISCVISD::DIVUW: {
9580 KnownBits Known2;
9581 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
9582 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
9583 // We only care about the lower 32 bits.
9584 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
9585 // Restore the original width by sign extending.
9586 Known = Known.sext(BitWidth);
9587 break;
9588 }
9589 case RISCVISD::CTZW: {
9590 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9591 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
9592 unsigned LowBits = Log2_32(PossibleTZ) + 1;
9593 Known.Zero.setBitsFrom(LowBits);
9594 break;
9595 }
9596 case RISCVISD::CLZW: {
9597 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9598 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
9599 unsigned LowBits = Log2_32(PossibleLZ) + 1;
9600 Known.Zero.setBitsFrom(LowBits);
9601 break;
9602 }
9603 case RISCVISD::GREV:
9604 case RISCVISD::GORC: {
9605 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9606 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
9607 unsigned ShAmt = C->getZExtValue() & (Known.getBitWidth() - 1);
9608 bool IsGORC = Op.getOpcode() == RISCVISD::GORC;
9609 // To compute zeros, we need to invert the value and invert it back after.
9610 Known.Zero =
9611 ~computeGREVOrGORC(~Known.Zero.getZExtValue(), ShAmt, IsGORC);
9612 Known.One = computeGREVOrGORC(Known.One.getZExtValue(), ShAmt, IsGORC);
9613 }
9614 break;
9615 }
9616 case RISCVISD::READ_VLENB: {
9617 // We can use the minimum and maximum VLEN values to bound VLENB. We
9618 // know VLEN must be a power of two.
9619 const unsigned MinVLenB = Subtarget.getRealMinVLen() / 8;
9620 const unsigned MaxVLenB = Subtarget.getRealMaxVLen() / 8;
9621 assert(MinVLenB > 0 && "READ_VLENB without vector extension enabled?");
9622 Known.Zero.setLowBits(Log2_32(MinVLenB));
9623 Known.Zero.setBitsFrom(Log2_32(MaxVLenB)+1);
9624 if (MaxVLenB == MinVLenB)
9625 Known.One.setBit(Log2_32(MinVLenB));
9626 break;
9627 }
9628 case ISD::INTRINSIC_W_CHAIN:
9629 case ISD::INTRINSIC_WO_CHAIN: {
9630 unsigned IntNo =
9631 Op.getConstantOperandVal(Opc == ISD::INTRINSIC_WO_CHAIN ? 0 : 1);
9632 switch (IntNo) {
9633 default:
9634 // We can't do anything for most intrinsics.
9635 break;
9636 case Intrinsic::riscv_vsetvli:
9637 case Intrinsic::riscv_vsetvlimax:
9638 case Intrinsic::riscv_vsetvli_opt:
9639 case Intrinsic::riscv_vsetvlimax_opt:
9640 // Assume that VL output is positive and would fit in an int32_t.
9641 // TODO: VLEN might be capped at 16 bits in a future V spec update.
9642 if (BitWidth >= 32)
9643 Known.Zero.setBitsFrom(31);
9644 break;
9645 }
9646 break;
9647 }
9648 }
9649 }
9650
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const9651 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
9652 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
9653 unsigned Depth) const {
9654 switch (Op.getOpcode()) {
9655 default:
9656 break;
9657 case RISCVISD::SELECT_CC: {
9658 unsigned Tmp =
9659 DAG.ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth + 1);
9660 if (Tmp == 1) return 1; // Early out.
9661 unsigned Tmp2 =
9662 DAG.ComputeNumSignBits(Op.getOperand(4), DemandedElts, Depth + 1);
9663 return std::min(Tmp, Tmp2);
9664 }
9665 case RISCVISD::SLLW:
9666 case RISCVISD::SRAW:
9667 case RISCVISD::SRLW:
9668 case RISCVISD::DIVW:
9669 case RISCVISD::DIVUW:
9670 case RISCVISD::REMUW:
9671 case RISCVISD::ROLW:
9672 case RISCVISD::RORW:
9673 case RISCVISD::GREVW:
9674 case RISCVISD::GORCW:
9675 case RISCVISD::FSLW:
9676 case RISCVISD::FSRW:
9677 case RISCVISD::SHFLW:
9678 case RISCVISD::UNSHFLW:
9679 case RISCVISD::BCOMPRESSW:
9680 case RISCVISD::BDECOMPRESSW:
9681 case RISCVISD::BFPW:
9682 case RISCVISD::FCVT_W_RV64:
9683 case RISCVISD::FCVT_WU_RV64:
9684 case RISCVISD::STRICT_FCVT_W_RV64:
9685 case RISCVISD::STRICT_FCVT_WU_RV64:
9686 // TODO: As the result is sign-extended, this is conservatively correct. A
9687 // more precise answer could be calculated for SRAW depending on known
9688 // bits in the shift amount.
9689 return 33;
9690 case RISCVISD::SHFL:
9691 case RISCVISD::UNSHFL: {
9692 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
9693 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
9694 // will stay within the upper 32 bits. If there were more than 32 sign bits
9695 // before there will be at least 33 sign bits after.
9696 if (Op.getValueType() == MVT::i64 &&
9697 isa<ConstantSDNode>(Op.getOperand(1)) &&
9698 (Op.getConstantOperandVal(1) & 0x10) == 0) {
9699 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
9700 if (Tmp > 32)
9701 return 33;
9702 }
9703 break;
9704 }
9705 case RISCVISD::VMV_X_S: {
9706 // The number of sign bits of the scalar result is computed by obtaining the
9707 // element type of the input vector operand, subtracting its width from the
9708 // XLEN, and then adding one (sign bit within the element type). If the
9709 // element type is wider than XLen, the least-significant XLEN bits are
9710 // taken.
9711 unsigned XLen = Subtarget.getXLen();
9712 unsigned EltBits = Op.getOperand(0).getScalarValueSizeInBits();
9713 if (EltBits <= XLen)
9714 return XLen - EltBits + 1;
9715 break;
9716 }
9717 }
9718
9719 return 1;
9720 }
9721
9722 const Constant *
getTargetConstantFromLoad(LoadSDNode * Ld) const9723 RISCVTargetLowering::getTargetConstantFromLoad(LoadSDNode *Ld) const {
9724 assert(Ld && "Unexpected null LoadSDNode");
9725 if (!ISD::isNormalLoad(Ld))
9726 return nullptr;
9727
9728 SDValue Ptr = Ld->getBasePtr();
9729
9730 // Only constant pools with no offset are supported.
9731 auto GetSupportedConstantPool = [](SDValue Ptr) -> ConstantPoolSDNode * {
9732 auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
9733 if (!CNode || CNode->isMachineConstantPoolEntry() ||
9734 CNode->getOffset() != 0)
9735 return nullptr;
9736
9737 return CNode;
9738 };
9739
9740 // Simple case, LLA.
9741 if (Ptr.getOpcode() == RISCVISD::LLA) {
9742 auto *CNode = GetSupportedConstantPool(Ptr);
9743 if (!CNode || CNode->getTargetFlags() != 0)
9744 return nullptr;
9745
9746 return CNode->getConstVal();
9747 }
9748
9749 // Look for a HI and ADD_LO pair.
9750 if (Ptr.getOpcode() != RISCVISD::ADD_LO ||
9751 Ptr.getOperand(0).getOpcode() != RISCVISD::HI)
9752 return nullptr;
9753
9754 auto *CNodeLo = GetSupportedConstantPool(Ptr.getOperand(1));
9755 auto *CNodeHi = GetSupportedConstantPool(Ptr.getOperand(0).getOperand(0));
9756
9757 if (!CNodeLo || CNodeLo->getTargetFlags() != RISCVII::MO_LO ||
9758 !CNodeHi || CNodeHi->getTargetFlags() != RISCVII::MO_HI)
9759 return nullptr;
9760
9761 if (CNodeLo->getConstVal() != CNodeHi->getConstVal())
9762 return nullptr;
9763
9764 return CNodeLo->getConstVal();
9765 }
9766
emitReadCycleWidePseudo(MachineInstr & MI,MachineBasicBlock * BB)9767 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
9768 MachineBasicBlock *BB) {
9769 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
9770
9771 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
9772 // Should the count have wrapped while it was being read, we need to try
9773 // again.
9774 // ...
9775 // read:
9776 // rdcycleh x3 # load high word of cycle
9777 // rdcycle x2 # load low word of cycle
9778 // rdcycleh x4 # load high word of cycle
9779 // bne x3, x4, read # check if high word reads match, otherwise try again
9780 // ...
9781
9782 MachineFunction &MF = *BB->getParent();
9783 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9784 MachineFunction::iterator It = ++BB->getIterator();
9785
9786 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9787 MF.insert(It, LoopMBB);
9788
9789 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
9790 MF.insert(It, DoneMBB);
9791
9792 // Transfer the remainder of BB and its successor edges to DoneMBB.
9793 DoneMBB->splice(DoneMBB->begin(), BB,
9794 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9795 DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
9796
9797 BB->addSuccessor(LoopMBB);
9798
9799 MachineRegisterInfo &RegInfo = MF.getRegInfo();
9800 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
9801 Register LoReg = MI.getOperand(0).getReg();
9802 Register HiReg = MI.getOperand(1).getReg();
9803 DebugLoc DL = MI.getDebugLoc();
9804
9805 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
9806 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
9807 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9808 .addReg(RISCV::X0);
9809 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
9810 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
9811 .addReg(RISCV::X0);
9812 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
9813 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
9814 .addReg(RISCV::X0);
9815
9816 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
9817 .addReg(HiReg)
9818 .addReg(ReadAgainReg)
9819 .addMBB(LoopMBB);
9820
9821 LoopMBB->addSuccessor(LoopMBB);
9822 LoopMBB->addSuccessor(DoneMBB);
9823
9824 MI.eraseFromParent();
9825
9826 return DoneMBB;
9827 }
9828
emitSplitF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)9829 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
9830 MachineBasicBlock *BB) {
9831 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
9832
9833 MachineFunction &MF = *BB->getParent();
9834 DebugLoc DL = MI.getDebugLoc();
9835 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9836 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9837 Register LoReg = MI.getOperand(0).getReg();
9838 Register HiReg = MI.getOperand(1).getReg();
9839 Register SrcReg = MI.getOperand(2).getReg();
9840 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
9841 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9842
9843 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
9844 RI);
9845 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9846 MachineMemOperand *MMOLo =
9847 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
9848 MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9849 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
9850 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
9851 .addFrameIndex(FI)
9852 .addImm(0)
9853 .addMemOperand(MMOLo);
9854 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
9855 .addFrameIndex(FI)
9856 .addImm(4)
9857 .addMemOperand(MMOHi);
9858 MI.eraseFromParent(); // The pseudo instruction is gone now.
9859 return BB;
9860 }
9861
emitBuildPairF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)9862 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
9863 MachineBasicBlock *BB) {
9864 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
9865 "Unexpected instruction");
9866
9867 MachineFunction &MF = *BB->getParent();
9868 DebugLoc DL = MI.getDebugLoc();
9869 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
9870 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
9871 Register DstReg = MI.getOperand(0).getReg();
9872 Register LoReg = MI.getOperand(1).getReg();
9873 Register HiReg = MI.getOperand(2).getReg();
9874 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
9875 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
9876
9877 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
9878 MachineMemOperand *MMOLo =
9879 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
9880 MachineMemOperand *MMOHi = MF.getMachineMemOperand(
9881 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
9882 BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9883 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
9884 .addFrameIndex(FI)
9885 .addImm(0)
9886 .addMemOperand(MMOLo);
9887 BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
9888 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
9889 .addFrameIndex(FI)
9890 .addImm(4)
9891 .addMemOperand(MMOHi);
9892 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
9893 MI.eraseFromParent(); // The pseudo instruction is gone now.
9894 return BB;
9895 }
9896
isSelectPseudo(MachineInstr & MI)9897 static bool isSelectPseudo(MachineInstr &MI) {
9898 switch (MI.getOpcode()) {
9899 default:
9900 return false;
9901 case RISCV::Select_GPR_Using_CC_GPR:
9902 case RISCV::Select_FPR16_Using_CC_GPR:
9903 case RISCV::Select_FPR32_Using_CC_GPR:
9904 case RISCV::Select_FPR64_Using_CC_GPR:
9905 return true;
9906 }
9907 }
9908
emitQuietFCMP(MachineInstr & MI,MachineBasicBlock * BB,unsigned RelOpcode,unsigned EqOpcode,const RISCVSubtarget & Subtarget)9909 static MachineBasicBlock *emitQuietFCMP(MachineInstr &MI, MachineBasicBlock *BB,
9910 unsigned RelOpcode, unsigned EqOpcode,
9911 const RISCVSubtarget &Subtarget) {
9912 DebugLoc DL = MI.getDebugLoc();
9913 Register DstReg = MI.getOperand(0).getReg();
9914 Register Src1Reg = MI.getOperand(1).getReg();
9915 Register Src2Reg = MI.getOperand(2).getReg();
9916 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9917 Register SavedFFlags = MRI.createVirtualRegister(&RISCV::GPRRegClass);
9918 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
9919
9920 // Save the current FFLAGS.
9921 BuildMI(*BB, MI, DL, TII.get(RISCV::ReadFFLAGS), SavedFFlags);
9922
9923 auto MIB = BuildMI(*BB, MI, DL, TII.get(RelOpcode), DstReg)
9924 .addReg(Src1Reg)
9925 .addReg(Src2Reg);
9926 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9927 MIB->setFlag(MachineInstr::MIFlag::NoFPExcept);
9928
9929 // Restore the FFLAGS.
9930 BuildMI(*BB, MI, DL, TII.get(RISCV::WriteFFLAGS))
9931 .addReg(SavedFFlags, RegState::Kill);
9932
9933 // Issue a dummy FEQ opcode to raise exception for signaling NaNs.
9934 auto MIB2 = BuildMI(*BB, MI, DL, TII.get(EqOpcode), RISCV::X0)
9935 .addReg(Src1Reg, getKillRegState(MI.getOperand(1).isKill()))
9936 .addReg(Src2Reg, getKillRegState(MI.getOperand(2).isKill()));
9937 if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept))
9938 MIB2->setFlag(MachineInstr::MIFlag::NoFPExcept);
9939
9940 // Erase the pseudoinstruction.
9941 MI.eraseFromParent();
9942 return BB;
9943 }
9944
9945 static MachineBasicBlock *
EmitLoweredCascadedSelect(MachineInstr & First,MachineInstr & Second,MachineBasicBlock * ThisMBB,const RISCVSubtarget & Subtarget)9946 EmitLoweredCascadedSelect(MachineInstr &First, MachineInstr &Second,
9947 MachineBasicBlock *ThisMBB,
9948 const RISCVSubtarget &Subtarget) {
9949 // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5)
9950 // Without this, custom-inserter would have generated:
9951 //
9952 // A
9953 // | \
9954 // | B
9955 // | /
9956 // C
9957 // | \
9958 // | D
9959 // | /
9960 // E
9961 //
9962 // A: X = ...; Y = ...
9963 // B: empty
9964 // C: Z = PHI [X, A], [Y, B]
9965 // D: empty
9966 // E: PHI [X, C], [Z, D]
9967 //
9968 // If we lower both Select_FPRX_ in a single step, we can instead generate:
9969 //
9970 // A
9971 // | \
9972 // | C
9973 // | /|
9974 // |/ |
9975 // | |
9976 // | D
9977 // | /
9978 // E
9979 //
9980 // A: X = ...; Y = ...
9981 // D: empty
9982 // E: PHI [X, A], [X, C], [Y, D]
9983
9984 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
9985 const DebugLoc &DL = First.getDebugLoc();
9986 const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
9987 MachineFunction *F = ThisMBB->getParent();
9988 MachineBasicBlock *FirstMBB = F->CreateMachineBasicBlock(LLVM_BB);
9989 MachineBasicBlock *SecondMBB = F->CreateMachineBasicBlock(LLVM_BB);
9990 MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9991 MachineFunction::iterator It = ++ThisMBB->getIterator();
9992 F->insert(It, FirstMBB);
9993 F->insert(It, SecondMBB);
9994 F->insert(It, SinkMBB);
9995
9996 // Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
9997 SinkMBB->splice(SinkMBB->begin(), ThisMBB,
9998 std::next(MachineBasicBlock::iterator(First)),
9999 ThisMBB->end());
10000 SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
10001
10002 // Fallthrough block for ThisMBB.
10003 ThisMBB->addSuccessor(FirstMBB);
10004 // Fallthrough block for FirstMBB.
10005 FirstMBB->addSuccessor(SecondMBB);
10006 ThisMBB->addSuccessor(SinkMBB);
10007 FirstMBB->addSuccessor(SinkMBB);
10008 // This is fallthrough.
10009 SecondMBB->addSuccessor(SinkMBB);
10010
10011 auto FirstCC = static_cast<RISCVCC::CondCode>(First.getOperand(3).getImm());
10012 Register FLHS = First.getOperand(1).getReg();
10013 Register FRHS = First.getOperand(2).getReg();
10014 // Insert appropriate branch.
10015 BuildMI(FirstMBB, DL, TII.getBrCond(FirstCC))
10016 .addReg(FLHS)
10017 .addReg(FRHS)
10018 .addMBB(SinkMBB);
10019
10020 Register SLHS = Second.getOperand(1).getReg();
10021 Register SRHS = Second.getOperand(2).getReg();
10022 Register Op1Reg4 = First.getOperand(4).getReg();
10023 Register Op1Reg5 = First.getOperand(5).getReg();
10024
10025 auto SecondCC = static_cast<RISCVCC::CondCode>(Second.getOperand(3).getImm());
10026 // Insert appropriate branch.
10027 BuildMI(ThisMBB, DL, TII.getBrCond(SecondCC))
10028 .addReg(SLHS)
10029 .addReg(SRHS)
10030 .addMBB(SinkMBB);
10031
10032 Register DestReg = Second.getOperand(0).getReg();
10033 Register Op2Reg4 = Second.getOperand(4).getReg();
10034 BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII.get(RISCV::PHI), DestReg)
10035 .addReg(Op2Reg4)
10036 .addMBB(ThisMBB)
10037 .addReg(Op1Reg4)
10038 .addMBB(FirstMBB)
10039 .addReg(Op1Reg5)
10040 .addMBB(SecondMBB);
10041
10042 // Now remove the Select_FPRX_s.
10043 First.eraseFromParent();
10044 Second.eraseFromParent();
10045 return SinkMBB;
10046 }
10047
emitSelectPseudo(MachineInstr & MI,MachineBasicBlock * BB,const RISCVSubtarget & Subtarget)10048 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
10049 MachineBasicBlock *BB,
10050 const RISCVSubtarget &Subtarget) {
10051 // To "insert" Select_* instructions, we actually have to insert the triangle
10052 // control-flow pattern. The incoming instructions know the destination vreg
10053 // to set, the condition code register to branch on, the true/false values to
10054 // select between, and the condcode to use to select the appropriate branch.
10055 //
10056 // We produce the following control flow:
10057 // HeadMBB
10058 // | \
10059 // | IfFalseMBB
10060 // | /
10061 // TailMBB
10062 //
10063 // When we find a sequence of selects we attempt to optimize their emission
10064 // by sharing the control flow. Currently we only handle cases where we have
10065 // multiple selects with the exact same condition (same LHS, RHS and CC).
10066 // The selects may be interleaved with other instructions if the other
10067 // instructions meet some requirements we deem safe:
10068 // - They are debug instructions. Otherwise,
10069 // - They do not have side-effects, do not access memory and their inputs do
10070 // not depend on the results of the select pseudo-instructions.
10071 // The TrueV/FalseV operands of the selects cannot depend on the result of
10072 // previous selects in the sequence.
10073 // These conditions could be further relaxed. See the X86 target for a
10074 // related approach and more information.
10075 //
10076 // Select_FPRX_ (rs1, rs2, imm, rs4, (Select_FPRX_ rs1, rs2, imm, rs4, rs5))
10077 // is checked here and handled by a separate function -
10078 // EmitLoweredCascadedSelect.
10079 Register LHS = MI.getOperand(1).getReg();
10080 Register RHS = MI.getOperand(2).getReg();
10081 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
10082
10083 SmallVector<MachineInstr *, 4> SelectDebugValues;
10084 SmallSet<Register, 4> SelectDests;
10085 SelectDests.insert(MI.getOperand(0).getReg());
10086
10087 MachineInstr *LastSelectPseudo = &MI;
10088 auto Next = next_nodbg(MI.getIterator(), BB->instr_end());
10089 if (MI.getOpcode() != RISCV::Select_GPR_Using_CC_GPR && Next != BB->end() &&
10090 Next->getOpcode() == MI.getOpcode() &&
10091 Next->getOperand(5).getReg() == MI.getOperand(0).getReg() &&
10092 Next->getOperand(5).isKill()) {
10093 return EmitLoweredCascadedSelect(MI, *Next, BB, Subtarget);
10094 }
10095
10096 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
10097 SequenceMBBI != E; ++SequenceMBBI) {
10098 if (SequenceMBBI->isDebugInstr())
10099 continue;
10100 if (isSelectPseudo(*SequenceMBBI)) {
10101 if (SequenceMBBI->getOperand(1).getReg() != LHS ||
10102 SequenceMBBI->getOperand(2).getReg() != RHS ||
10103 SequenceMBBI->getOperand(3).getImm() != CC ||
10104 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
10105 SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
10106 break;
10107 LastSelectPseudo = &*SequenceMBBI;
10108 SequenceMBBI->collectDebugValues(SelectDebugValues);
10109 SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
10110 continue;
10111 }
10112 if (SequenceMBBI->hasUnmodeledSideEffects() ||
10113 SequenceMBBI->mayLoadOrStore())
10114 break;
10115 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
10116 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
10117 }))
10118 break;
10119 }
10120
10121 const RISCVInstrInfo &TII = *Subtarget.getInstrInfo();
10122 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10123 DebugLoc DL = MI.getDebugLoc();
10124 MachineFunction::iterator I = ++BB->getIterator();
10125
10126 MachineBasicBlock *HeadMBB = BB;
10127 MachineFunction *F = BB->getParent();
10128 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
10129 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
10130
10131 F->insert(I, IfFalseMBB);
10132 F->insert(I, TailMBB);
10133
10134 // Transfer debug instructions associated with the selects to TailMBB.
10135 for (MachineInstr *DebugInstr : SelectDebugValues) {
10136 TailMBB->push_back(DebugInstr->removeFromParent());
10137 }
10138
10139 // Move all instructions after the sequence to TailMBB.
10140 TailMBB->splice(TailMBB->end(), HeadMBB,
10141 std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
10142 // Update machine-CFG edges by transferring all successors of the current
10143 // block to the new block which will contain the Phi nodes for the selects.
10144 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
10145 // Set the successors for HeadMBB.
10146 HeadMBB->addSuccessor(IfFalseMBB);
10147 HeadMBB->addSuccessor(TailMBB);
10148
10149 // Insert appropriate branch.
10150 BuildMI(HeadMBB, DL, TII.getBrCond(CC))
10151 .addReg(LHS)
10152 .addReg(RHS)
10153 .addMBB(TailMBB);
10154
10155 // IfFalseMBB just falls through to TailMBB.
10156 IfFalseMBB->addSuccessor(TailMBB);
10157
10158 // Create PHIs for all of the select pseudo-instructions.
10159 auto SelectMBBI = MI.getIterator();
10160 auto SelectEnd = std::next(LastSelectPseudo->getIterator());
10161 auto InsertionPoint = TailMBB->begin();
10162 while (SelectMBBI != SelectEnd) {
10163 auto Next = std::next(SelectMBBI);
10164 if (isSelectPseudo(*SelectMBBI)) {
10165 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
10166 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
10167 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
10168 .addReg(SelectMBBI->getOperand(4).getReg())
10169 .addMBB(HeadMBB)
10170 .addReg(SelectMBBI->getOperand(5).getReg())
10171 .addMBB(IfFalseMBB);
10172 SelectMBBI->eraseFromParent();
10173 }
10174 SelectMBBI = Next;
10175 }
10176
10177 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
10178 return TailMBB;
10179 }
10180
10181 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const10182 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10183 MachineBasicBlock *BB) const {
10184 switch (MI.getOpcode()) {
10185 default:
10186 llvm_unreachable("Unexpected instr type to insert");
10187 case RISCV::ReadCycleWide:
10188 assert(!Subtarget.is64Bit() &&
10189 "ReadCycleWrite is only to be used on riscv32");
10190 return emitReadCycleWidePseudo(MI, BB);
10191 case RISCV::Select_GPR_Using_CC_GPR:
10192 case RISCV::Select_FPR16_Using_CC_GPR:
10193 case RISCV::Select_FPR32_Using_CC_GPR:
10194 case RISCV::Select_FPR64_Using_CC_GPR:
10195 return emitSelectPseudo(MI, BB, Subtarget);
10196 case RISCV::BuildPairF64Pseudo:
10197 return emitBuildPairF64Pseudo(MI, BB);
10198 case RISCV::SplitF64Pseudo:
10199 return emitSplitF64Pseudo(MI, BB);
10200 case RISCV::PseudoQuietFLE_H:
10201 return emitQuietFCMP(MI, BB, RISCV::FLE_H, RISCV::FEQ_H, Subtarget);
10202 case RISCV::PseudoQuietFLT_H:
10203 return emitQuietFCMP(MI, BB, RISCV::FLT_H, RISCV::FEQ_H, Subtarget);
10204 case RISCV::PseudoQuietFLE_S:
10205 return emitQuietFCMP(MI, BB, RISCV::FLE_S, RISCV::FEQ_S, Subtarget);
10206 case RISCV::PseudoQuietFLT_S:
10207 return emitQuietFCMP(MI, BB, RISCV::FLT_S, RISCV::FEQ_S, Subtarget);
10208 case RISCV::PseudoQuietFLE_D:
10209 return emitQuietFCMP(MI, BB, RISCV::FLE_D, RISCV::FEQ_D, Subtarget);
10210 case RISCV::PseudoQuietFLT_D:
10211 return emitQuietFCMP(MI, BB, RISCV::FLT_D, RISCV::FEQ_D, Subtarget);
10212 }
10213 }
10214
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const10215 void RISCVTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10216 SDNode *Node) const {
10217 // Add FRM dependency to any instructions with dynamic rounding mode.
10218 unsigned Opc = MI.getOpcode();
10219 auto Idx = RISCV::getNamedOperandIdx(Opc, RISCV::OpName::frm);
10220 if (Idx < 0)
10221 return;
10222 if (MI.getOperand(Idx).getImm() != RISCVFPRndMode::DYN)
10223 return;
10224 // If the instruction already reads FRM, don't add another read.
10225 if (MI.readsRegister(RISCV::FRM))
10226 return;
10227 MI.addOperand(
10228 MachineOperand::CreateReg(RISCV::FRM, /*isDef*/ false, /*isImp*/ true));
10229 }
10230
10231 // Calling Convention Implementation.
10232 // The expectations for frontend ABI lowering vary from target to target.
10233 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
10234 // details, but this is a longer term goal. For now, we simply try to keep the
10235 // role of the frontend as simple and well-defined as possible. The rules can
10236 // be summarised as:
10237 // * Never split up large scalar arguments. We handle them here.
10238 // * If a hardfloat calling convention is being used, and the struct may be
10239 // passed in a pair of registers (fp+fp, int+fp), and both registers are
10240 // available, then pass as two separate arguments. If either the GPRs or FPRs
10241 // are exhausted, then pass according to the rule below.
10242 // * If a struct could never be passed in registers or directly in a stack
10243 // slot (as it is larger than 2*XLEN and the floating point rules don't
10244 // apply), then pass it using a pointer with the byval attribute.
10245 // * If a struct is less than 2*XLEN, then coerce to either a two-element
10246 // word-sized array or a 2*XLEN scalar (depending on alignment).
10247 // * The frontend can determine whether a struct is returned by reference or
10248 // not based on its size and fields. If it will be returned by reference, the
10249 // frontend must modify the prototype so a pointer with the sret annotation is
10250 // passed as the first argument. This is not necessary for large scalar
10251 // returns.
10252 // * Struct return values and varargs should be coerced to structs containing
10253 // register-size fields in the same situations they would be for fixed
10254 // arguments.
10255
10256 static const MCPhysReg ArgGPRs[] = {
10257 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
10258 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
10259 };
10260 static const MCPhysReg ArgFPR16s[] = {
10261 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
10262 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
10263 };
10264 static const MCPhysReg ArgFPR32s[] = {
10265 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
10266 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
10267 };
10268 static const MCPhysReg ArgFPR64s[] = {
10269 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
10270 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
10271 };
10272 // This is an interim calling convention and it may be changed in the future.
10273 static const MCPhysReg ArgVRs[] = {
10274 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
10275 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
10276 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
10277 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2,
10278 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
10279 RISCV::V20M2, RISCV::V22M2};
10280 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
10281 RISCV::V20M4};
10282 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
10283
10284 // Pass a 2*XLEN argument that has been split into two XLEN values through
10285 // registers or the stack as necessary.
CC_RISCVAssign2XLen(unsigned XLen,CCState & State,CCValAssign VA1,ISD::ArgFlagsTy ArgFlags1,unsigned ValNo2,MVT ValVT2,MVT LocVT2,ISD::ArgFlagsTy ArgFlags2)10286 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
10287 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
10288 MVT ValVT2, MVT LocVT2,
10289 ISD::ArgFlagsTy ArgFlags2) {
10290 unsigned XLenInBytes = XLen / 8;
10291 if (Register Reg = State.AllocateReg(ArgGPRs)) {
10292 // At least one half can be passed via register.
10293 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
10294 VA1.getLocVT(), CCValAssign::Full));
10295 } else {
10296 // Both halves must be passed on the stack, with proper alignment.
10297 Align StackAlign =
10298 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
10299 State.addLoc(
10300 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
10301 State.AllocateStack(XLenInBytes, StackAlign),
10302 VA1.getLocVT(), CCValAssign::Full));
10303 State.addLoc(CCValAssign::getMem(
10304 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10305 LocVT2, CCValAssign::Full));
10306 return false;
10307 }
10308
10309 if (Register Reg = State.AllocateReg(ArgGPRs)) {
10310 // The second half can also be passed via register.
10311 State.addLoc(
10312 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
10313 } else {
10314 // The second half is passed via the stack, without additional alignment.
10315 State.addLoc(CCValAssign::getMem(
10316 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
10317 LocVT2, CCValAssign::Full));
10318 }
10319
10320 return false;
10321 }
10322
allocateRVVReg(MVT ValVT,unsigned ValNo,Optional<unsigned> FirstMaskArgument,CCState & State,const RISCVTargetLowering & TLI)10323 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
10324 Optional<unsigned> FirstMaskArgument,
10325 CCState &State, const RISCVTargetLowering &TLI) {
10326 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
10327 if (RC == &RISCV::VRRegClass) {
10328 // Assign the first mask argument to V0.
10329 // This is an interim calling convention and it may be changed in the
10330 // future.
10331 if (FirstMaskArgument && ValNo == *FirstMaskArgument)
10332 return State.AllocateReg(RISCV::V0);
10333 return State.AllocateReg(ArgVRs);
10334 }
10335 if (RC == &RISCV::VRM2RegClass)
10336 return State.AllocateReg(ArgVRM2s);
10337 if (RC == &RISCV::VRM4RegClass)
10338 return State.AllocateReg(ArgVRM4s);
10339 if (RC == &RISCV::VRM8RegClass)
10340 return State.AllocateReg(ArgVRM8s);
10341 llvm_unreachable("Unhandled register class for ValueType");
10342 }
10343
10344 // Implements the RISC-V calling convention. Returns true upon failure.
CC_RISCV(const DataLayout & DL,RISCVABI::ABI ABI,unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,bool IsFixed,bool IsRet,Type * OrigTy,const RISCVTargetLowering & TLI,Optional<unsigned> FirstMaskArgument)10345 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
10346 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
10347 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
10348 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
10349 Optional<unsigned> FirstMaskArgument) {
10350 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
10351 assert(XLen == 32 || XLen == 64);
10352 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
10353
10354 // Any return value split in to more than two values can't be returned
10355 // directly. Vectors are returned via the available vector registers.
10356 if (!LocVT.isVector() && IsRet && ValNo > 1)
10357 return true;
10358
10359 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
10360 // variadic argument, or if no F16/F32 argument registers are available.
10361 bool UseGPRForF16_F32 = true;
10362 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
10363 // variadic argument, or if no F64 argument registers are available.
10364 bool UseGPRForF64 = true;
10365
10366 switch (ABI) {
10367 default:
10368 llvm_unreachable("Unexpected ABI");
10369 case RISCVABI::ABI_ILP32:
10370 case RISCVABI::ABI_LP64:
10371 break;
10372 case RISCVABI::ABI_ILP32F:
10373 case RISCVABI::ABI_LP64F:
10374 UseGPRForF16_F32 = !IsFixed;
10375 break;
10376 case RISCVABI::ABI_ILP32D:
10377 case RISCVABI::ABI_LP64D:
10378 UseGPRForF16_F32 = !IsFixed;
10379 UseGPRForF64 = !IsFixed;
10380 break;
10381 }
10382
10383 // FPR16, FPR32, and FPR64 alias each other.
10384 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
10385 UseGPRForF16_F32 = true;
10386 UseGPRForF64 = true;
10387 }
10388
10389 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
10390 // similar local variables rather than directly checking against the target
10391 // ABI.
10392
10393 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
10394 LocVT = XLenVT;
10395 LocInfo = CCValAssign::BCvt;
10396 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
10397 LocVT = MVT::i64;
10398 LocInfo = CCValAssign::BCvt;
10399 }
10400
10401 // If this is a variadic argument, the RISC-V calling convention requires
10402 // that it is assigned an 'even' or 'aligned' register if it has 8-byte
10403 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
10404 // be used regardless of whether the original argument was split during
10405 // legalisation or not. The argument will not be passed by registers if the
10406 // original type is larger than 2*XLEN, so the register alignment rule does
10407 // not apply.
10408 unsigned TwoXLenInBytes = (2 * XLen) / 8;
10409 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
10410 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
10411 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
10412 // Skip 'odd' register if necessary.
10413 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
10414 State.AllocateReg(ArgGPRs);
10415 }
10416
10417 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
10418 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
10419 State.getPendingArgFlags();
10420
10421 assert(PendingLocs.size() == PendingArgFlags.size() &&
10422 "PendingLocs and PendingArgFlags out of sync");
10423
10424 // Handle passing f64 on RV32D with a soft float ABI or when floating point
10425 // registers are exhausted.
10426 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
10427 assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
10428 "Can't lower f64 if it is split");
10429 // Depending on available argument GPRS, f64 may be passed in a pair of
10430 // GPRs, split between a GPR and the stack, or passed completely on the
10431 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
10432 // cases.
10433 Register Reg = State.AllocateReg(ArgGPRs);
10434 LocVT = MVT::i32;
10435 if (!Reg) {
10436 unsigned StackOffset = State.AllocateStack(8, Align(8));
10437 State.addLoc(
10438 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10439 return false;
10440 }
10441 if (!State.AllocateReg(ArgGPRs))
10442 State.AllocateStack(4, Align(4));
10443 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10444 return false;
10445 }
10446
10447 // Fixed-length vectors are located in the corresponding scalable-vector
10448 // container types.
10449 if (ValVT.isFixedLengthVector())
10450 LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10451
10452 // Split arguments might be passed indirectly, so keep track of the pending
10453 // values. Split vectors are passed via a mix of registers and indirectly, so
10454 // treat them as we would any other argument.
10455 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
10456 LocVT = XLenVT;
10457 LocInfo = CCValAssign::Indirect;
10458 PendingLocs.push_back(
10459 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
10460 PendingArgFlags.push_back(ArgFlags);
10461 if (!ArgFlags.isSplitEnd()) {
10462 return false;
10463 }
10464 }
10465
10466 // If the split argument only had two elements, it should be passed directly
10467 // in registers or on the stack.
10468 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
10469 PendingLocs.size() <= 2) {
10470 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
10471 // Apply the normal calling convention rules to the first half of the
10472 // split argument.
10473 CCValAssign VA = PendingLocs[0];
10474 ISD::ArgFlagsTy AF = PendingArgFlags[0];
10475 PendingLocs.clear();
10476 PendingArgFlags.clear();
10477 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
10478 ArgFlags);
10479 }
10480
10481 // Allocate to a register if possible, or else a stack slot.
10482 Register Reg;
10483 unsigned StoreSizeBytes = XLen / 8;
10484 Align StackAlign = Align(XLen / 8);
10485
10486 if (ValVT == MVT::f16 && !UseGPRForF16_F32)
10487 Reg = State.AllocateReg(ArgFPR16s);
10488 else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
10489 Reg = State.AllocateReg(ArgFPR32s);
10490 else if (ValVT == MVT::f64 && !UseGPRForF64)
10491 Reg = State.AllocateReg(ArgFPR64s);
10492 else if (ValVT.isVector()) {
10493 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
10494 if (!Reg) {
10495 // For return values, the vector must be passed fully via registers or
10496 // via the stack.
10497 // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
10498 // but we're using all of them.
10499 if (IsRet)
10500 return true;
10501 // Try using a GPR to pass the address
10502 if ((Reg = State.AllocateReg(ArgGPRs))) {
10503 LocVT = XLenVT;
10504 LocInfo = CCValAssign::Indirect;
10505 } else if (ValVT.isScalableVector()) {
10506 LocVT = XLenVT;
10507 LocInfo = CCValAssign::Indirect;
10508 } else {
10509 // Pass fixed-length vectors on the stack.
10510 LocVT = ValVT;
10511 StoreSizeBytes = ValVT.getStoreSize();
10512 // Align vectors to their element sizes, being careful for vXi1
10513 // vectors.
10514 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10515 }
10516 }
10517 } else {
10518 Reg = State.AllocateReg(ArgGPRs);
10519 }
10520
10521 unsigned StackOffset =
10522 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
10523
10524 // If we reach this point and PendingLocs is non-empty, we must be at the
10525 // end of a split argument that must be passed indirectly.
10526 if (!PendingLocs.empty()) {
10527 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
10528 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
10529
10530 for (auto &It : PendingLocs) {
10531 if (Reg)
10532 It.convertToReg(Reg);
10533 else
10534 It.convertToMem(StackOffset);
10535 State.addLoc(It);
10536 }
10537 PendingLocs.clear();
10538 PendingArgFlags.clear();
10539 return false;
10540 }
10541
10542 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
10543 (TLI.getSubtarget().hasVInstructions() && ValVT.isVector())) &&
10544 "Expected an XLenVT or vector types at this stage");
10545
10546 if (Reg) {
10547 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10548 return false;
10549 }
10550
10551 // When a floating-point value is passed on the stack, no bit-conversion is
10552 // needed.
10553 if (ValVT.isFloatingPoint()) {
10554 LocVT = ValVT;
10555 LocInfo = CCValAssign::Full;
10556 }
10557 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10558 return false;
10559 }
10560
10561 template <typename ArgTy>
preAssignMask(const ArgTy & Args)10562 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
10563 for (const auto &ArgIdx : enumerate(Args)) {
10564 MVT ArgVT = ArgIdx.value().VT;
10565 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
10566 return ArgIdx.index();
10567 }
10568 return None;
10569 }
10570
analyzeInputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::InputArg> & Ins,bool IsRet,RISCVCCAssignFn Fn) const10571 void RISCVTargetLowering::analyzeInputArgs(
10572 MachineFunction &MF, CCState &CCInfo,
10573 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
10574 RISCVCCAssignFn Fn) const {
10575 unsigned NumArgs = Ins.size();
10576 FunctionType *FType = MF.getFunction().getFunctionType();
10577
10578 Optional<unsigned> FirstMaskArgument;
10579 if (Subtarget.hasVInstructions())
10580 FirstMaskArgument = preAssignMask(Ins);
10581
10582 for (unsigned i = 0; i != NumArgs; ++i) {
10583 MVT ArgVT = Ins[i].VT;
10584 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
10585
10586 Type *ArgTy = nullptr;
10587 if (IsRet)
10588 ArgTy = FType->getReturnType();
10589 else if (Ins[i].isOrigArg())
10590 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
10591
10592 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10593 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10594 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
10595 FirstMaskArgument)) {
10596 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
10597 << EVT(ArgVT).getEVTString() << '\n');
10598 llvm_unreachable(nullptr);
10599 }
10600 }
10601 }
10602
analyzeOutputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::OutputArg> & Outs,bool IsRet,CallLoweringInfo * CLI,RISCVCCAssignFn Fn) const10603 void RISCVTargetLowering::analyzeOutputArgs(
10604 MachineFunction &MF, CCState &CCInfo,
10605 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
10606 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
10607 unsigned NumArgs = Outs.size();
10608
10609 Optional<unsigned> FirstMaskArgument;
10610 if (Subtarget.hasVInstructions())
10611 FirstMaskArgument = preAssignMask(Outs);
10612
10613 for (unsigned i = 0; i != NumArgs; i++) {
10614 MVT ArgVT = Outs[i].VT;
10615 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
10616 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
10617
10618 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
10619 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
10620 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
10621 FirstMaskArgument)) {
10622 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
10623 << EVT(ArgVT).getEVTString() << "\n");
10624 llvm_unreachable(nullptr);
10625 }
10626 }
10627 }
10628
10629 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
10630 // values.
convertLocVTToValVT(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL,const RISCVSubtarget & Subtarget)10631 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
10632 const CCValAssign &VA, const SDLoc &DL,
10633 const RISCVSubtarget &Subtarget) {
10634 switch (VA.getLocInfo()) {
10635 default:
10636 llvm_unreachable("Unexpected CCValAssign::LocInfo");
10637 case CCValAssign::Full:
10638 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
10639 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
10640 break;
10641 case CCValAssign::BCvt:
10642 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10643 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
10644 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10645 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
10646 else
10647 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
10648 break;
10649 }
10650 return Val;
10651 }
10652
10653 // The caller is responsible for loading the full value if the argument is
10654 // passed with CCValAssign::Indirect.
unpackFromRegLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL,const RISCVTargetLowering & TLI)10655 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
10656 const CCValAssign &VA, const SDLoc &DL,
10657 const RISCVTargetLowering &TLI) {
10658 MachineFunction &MF = DAG.getMachineFunction();
10659 MachineRegisterInfo &RegInfo = MF.getRegInfo();
10660 EVT LocVT = VA.getLocVT();
10661 SDValue Val;
10662 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
10663 Register VReg = RegInfo.createVirtualRegister(RC);
10664 RegInfo.addLiveIn(VA.getLocReg(), VReg);
10665 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
10666
10667 if (VA.getLocInfo() == CCValAssign::Indirect)
10668 return Val;
10669
10670 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
10671 }
10672
convertValVTToLocVT(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL,const RISCVSubtarget & Subtarget)10673 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
10674 const CCValAssign &VA, const SDLoc &DL,
10675 const RISCVSubtarget &Subtarget) {
10676 EVT LocVT = VA.getLocVT();
10677
10678 switch (VA.getLocInfo()) {
10679 default:
10680 llvm_unreachable("Unexpected CCValAssign::LocInfo");
10681 case CCValAssign::Full:
10682 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
10683 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
10684 break;
10685 case CCValAssign::BCvt:
10686 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
10687 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
10688 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
10689 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
10690 else
10691 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
10692 break;
10693 }
10694 return Val;
10695 }
10696
10697 // The caller is responsible for loading the full value if the argument is
10698 // passed with CCValAssign::Indirect.
unpackFromMemLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)10699 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
10700 const CCValAssign &VA, const SDLoc &DL) {
10701 MachineFunction &MF = DAG.getMachineFunction();
10702 MachineFrameInfo &MFI = MF.getFrameInfo();
10703 EVT LocVT = VA.getLocVT();
10704 EVT ValVT = VA.getValVT();
10705 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
10706 if (ValVT.isScalableVector()) {
10707 // When the value is a scalable vector, we save the pointer which points to
10708 // the scalable vector value in the stack. The ValVT will be the pointer
10709 // type, instead of the scalable vector type.
10710 ValVT = LocVT;
10711 }
10712 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
10713 /*IsImmutable=*/true);
10714 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
10715 SDValue Val;
10716
10717 ISD::LoadExtType ExtType;
10718 switch (VA.getLocInfo()) {
10719 default:
10720 llvm_unreachable("Unexpected CCValAssign::LocInfo");
10721 case CCValAssign::Full:
10722 case CCValAssign::Indirect:
10723 case CCValAssign::BCvt:
10724 ExtType = ISD::NON_EXTLOAD;
10725 break;
10726 }
10727 Val = DAG.getExtLoad(
10728 ExtType, DL, LocVT, Chain, FIN,
10729 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
10730 return Val;
10731 }
10732
unpackF64OnRV32DSoftABI(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)10733 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
10734 const CCValAssign &VA, const SDLoc &DL) {
10735 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
10736 "Unexpected VA");
10737 MachineFunction &MF = DAG.getMachineFunction();
10738 MachineFrameInfo &MFI = MF.getFrameInfo();
10739 MachineRegisterInfo &RegInfo = MF.getRegInfo();
10740
10741 if (VA.isMemLoc()) {
10742 // f64 is passed on the stack.
10743 int FI =
10744 MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*IsImmutable=*/true);
10745 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10746 return DAG.getLoad(MVT::f64, DL, Chain, FIN,
10747 MachinePointerInfo::getFixedStack(MF, FI));
10748 }
10749
10750 assert(VA.isRegLoc() && "Expected register VA assignment");
10751
10752 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10753 RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
10754 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
10755 SDValue Hi;
10756 if (VA.getLocReg() == RISCV::X17) {
10757 // Second half of f64 is passed on the stack.
10758 int FI = MFI.CreateFixedObject(4, 0, /*IsImmutable=*/true);
10759 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
10760 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
10761 MachinePointerInfo::getFixedStack(MF, FI));
10762 } else {
10763 // Second half of f64 is passed in another GPR.
10764 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
10765 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
10766 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
10767 }
10768 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
10769 }
10770
10771 // FastCC has less than 1% performance improvement for some particular
10772 // benchmark. But theoretically, it may has benenfit for some cases.
CC_RISCV_FastCC(const DataLayout & DL,RISCVABI::ABI ABI,unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,bool IsFixed,bool IsRet,Type * OrigTy,const RISCVTargetLowering & TLI,Optional<unsigned> FirstMaskArgument)10773 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
10774 unsigned ValNo, MVT ValVT, MVT LocVT,
10775 CCValAssign::LocInfo LocInfo,
10776 ISD::ArgFlagsTy ArgFlags, CCState &State,
10777 bool IsFixed, bool IsRet, Type *OrigTy,
10778 const RISCVTargetLowering &TLI,
10779 Optional<unsigned> FirstMaskArgument) {
10780
10781 // X5 and X6 might be used for save-restore libcall.
10782 static const MCPhysReg GPRList[] = {
10783 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
10784 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28,
10785 RISCV::X29, RISCV::X30, RISCV::X31};
10786
10787 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10788 if (unsigned Reg = State.AllocateReg(GPRList)) {
10789 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10790 return false;
10791 }
10792 }
10793
10794 if (LocVT == MVT::f16) {
10795 static const MCPhysReg FPR16List[] = {
10796 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
10797 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H,
10798 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H,
10799 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
10800 if (unsigned Reg = State.AllocateReg(FPR16List)) {
10801 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10802 return false;
10803 }
10804 }
10805
10806 if (LocVT == MVT::f32) {
10807 static const MCPhysReg FPR32List[] = {
10808 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
10809 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
10810 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
10811 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
10812 if (unsigned Reg = State.AllocateReg(FPR32List)) {
10813 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10814 return false;
10815 }
10816 }
10817
10818 if (LocVT == MVT::f64) {
10819 static const MCPhysReg FPR64List[] = {
10820 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
10821 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
10822 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
10823 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
10824 if (unsigned Reg = State.AllocateReg(FPR64List)) {
10825 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10826 return false;
10827 }
10828 }
10829
10830 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
10831 unsigned Offset4 = State.AllocateStack(4, Align(4));
10832 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
10833 return false;
10834 }
10835
10836 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
10837 unsigned Offset5 = State.AllocateStack(8, Align(8));
10838 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
10839 return false;
10840 }
10841
10842 if (LocVT.isVector()) {
10843 if (unsigned Reg =
10844 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
10845 // Fixed-length vectors are located in the corresponding scalable-vector
10846 // container types.
10847 if (ValVT.isFixedLengthVector())
10848 LocVT = TLI.getContainerForFixedLengthVector(LocVT);
10849 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10850 } else {
10851 // Try and pass the address via a "fast" GPR.
10852 if (unsigned GPRReg = State.AllocateReg(GPRList)) {
10853 LocInfo = CCValAssign::Indirect;
10854 LocVT = TLI.getSubtarget().getXLenVT();
10855 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
10856 } else if (ValVT.isFixedLengthVector()) {
10857 auto StackAlign =
10858 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
10859 unsigned StackOffset =
10860 State.AllocateStack(ValVT.getStoreSize(), StackAlign);
10861 State.addLoc(
10862 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
10863 } else {
10864 // Can't pass scalable vectors on the stack.
10865 return true;
10866 }
10867 }
10868
10869 return false;
10870 }
10871
10872 return true; // CC didn't match.
10873 }
10874
CC_RISCV_GHC(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)10875 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
10876 CCValAssign::LocInfo LocInfo,
10877 ISD::ArgFlagsTy ArgFlags, CCState &State) {
10878
10879 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
10880 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
10881 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
10882 static const MCPhysReg GPRList[] = {
10883 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
10884 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
10885 if (unsigned Reg = State.AllocateReg(GPRList)) {
10886 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10887 return false;
10888 }
10889 }
10890
10891 if (LocVT == MVT::f32) {
10892 // Pass in STG registers: F1, ..., F6
10893 // fs0 ... fs5
10894 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
10895 RISCV::F18_F, RISCV::F19_F,
10896 RISCV::F20_F, RISCV::F21_F};
10897 if (unsigned Reg = State.AllocateReg(FPR32List)) {
10898 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10899 return false;
10900 }
10901 }
10902
10903 if (LocVT == MVT::f64) {
10904 // Pass in STG registers: D1, ..., D6
10905 // fs6 ... fs11
10906 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
10907 RISCV::F24_D, RISCV::F25_D,
10908 RISCV::F26_D, RISCV::F27_D};
10909 if (unsigned Reg = State.AllocateReg(FPR64List)) {
10910 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
10911 return false;
10912 }
10913 }
10914
10915 report_fatal_error("No registers left in GHC calling convention");
10916 return true;
10917 }
10918
10919 // Transform physical registers into virtual registers.
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const10920 SDValue RISCVTargetLowering::LowerFormalArguments(
10921 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
10922 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
10923 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
10924
10925 MachineFunction &MF = DAG.getMachineFunction();
10926
10927 switch (CallConv) {
10928 default:
10929 report_fatal_error("Unsupported calling convention");
10930 case CallingConv::C:
10931 case CallingConv::Fast:
10932 break;
10933 case CallingConv::GHC:
10934 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
10935 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
10936 report_fatal_error(
10937 "GHC calling convention requires the F and D instruction set extensions");
10938 }
10939
10940 const Function &Func = MF.getFunction();
10941 if (Func.hasFnAttribute("interrupt")) {
10942 if (!Func.arg_empty())
10943 report_fatal_error(
10944 "Functions with the interrupt attribute cannot have arguments!");
10945
10946 StringRef Kind =
10947 MF.getFunction().getFnAttribute("interrupt").getValueAsString();
10948
10949 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
10950 report_fatal_error(
10951 "Function interrupt attribute argument not supported!");
10952 }
10953
10954 EVT PtrVT = getPointerTy(DAG.getDataLayout());
10955 MVT XLenVT = Subtarget.getXLenVT();
10956 unsigned XLenInBytes = Subtarget.getXLen() / 8;
10957 // Used with vargs to acumulate store chains.
10958 std::vector<SDValue> OutChains;
10959
10960 // Assign locations to all of the incoming arguments.
10961 SmallVector<CCValAssign, 16> ArgLocs;
10962 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
10963
10964 if (CallConv == CallingConv::GHC)
10965 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
10966 else
10967 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
10968 CallConv == CallingConv::Fast ? CC_RISCV_FastCC
10969 : CC_RISCV);
10970
10971 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
10972 CCValAssign &VA = ArgLocs[i];
10973 SDValue ArgValue;
10974 // Passing f64 on RV32D with a soft float ABI must be handled as a special
10975 // case.
10976 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
10977 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
10978 else if (VA.isRegLoc())
10979 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
10980 else
10981 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
10982
10983 if (VA.getLocInfo() == CCValAssign::Indirect) {
10984 // If the original argument was split and passed by reference (e.g. i128
10985 // on RV32), we need to load all parts of it here (using the same
10986 // address). Vectors may be partly split to registers and partly to the
10987 // stack, in which case the base address is partly offset and subsequent
10988 // stores are relative to that.
10989 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
10990 MachinePointerInfo()));
10991 unsigned ArgIndex = Ins[i].OrigArgIndex;
10992 unsigned ArgPartOffset = Ins[i].PartOffset;
10993 assert(VA.getValVT().isVector() || ArgPartOffset == 0);
10994 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
10995 CCValAssign &PartVA = ArgLocs[i + 1];
10996 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
10997 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
10998 if (PartVA.getValVT().isScalableVector())
10999 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
11000 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
11001 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
11002 MachinePointerInfo()));
11003 ++i;
11004 }
11005 continue;
11006 }
11007 InVals.push_back(ArgValue);
11008 }
11009
11010 if (IsVarArg) {
11011 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
11012 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
11013 const TargetRegisterClass *RC = &RISCV::GPRRegClass;
11014 MachineFrameInfo &MFI = MF.getFrameInfo();
11015 MachineRegisterInfo &RegInfo = MF.getRegInfo();
11016 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
11017
11018 // Offset of the first variable argument from stack pointer, and size of
11019 // the vararg save area. For now, the varargs save area is either zero or
11020 // large enough to hold a0-a7.
11021 int VaArgOffset, VarArgsSaveSize;
11022
11023 // If all registers are allocated, then all varargs must be passed on the
11024 // stack and we don't need to save any argregs.
11025 if (ArgRegs.size() == Idx) {
11026 VaArgOffset = CCInfo.getNextStackOffset();
11027 VarArgsSaveSize = 0;
11028 } else {
11029 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
11030 VaArgOffset = -VarArgsSaveSize;
11031 }
11032
11033 // Record the frame index of the first variable argument
11034 // which is a value necessary to VASTART.
11035 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
11036 RVFI->setVarArgsFrameIndex(FI);
11037
11038 // If saving an odd number of registers then create an extra stack slot to
11039 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
11040 // offsets to even-numbered registered remain 2*XLEN-aligned.
11041 if (Idx % 2) {
11042 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
11043 VarArgsSaveSize += XLenInBytes;
11044 }
11045
11046 // Copy the integer registers that may have been used for passing varargs
11047 // to the vararg save area.
11048 for (unsigned I = Idx; I < ArgRegs.size();
11049 ++I, VaArgOffset += XLenInBytes) {
11050 const Register Reg = RegInfo.createVirtualRegister(RC);
11051 RegInfo.addLiveIn(ArgRegs[I], Reg);
11052 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
11053 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
11054 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
11055 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
11056 MachinePointerInfo::getFixedStack(MF, FI));
11057 cast<StoreSDNode>(Store.getNode())
11058 ->getMemOperand()
11059 ->setValue((Value *)nullptr);
11060 OutChains.push_back(Store);
11061 }
11062 RVFI->setVarArgsSaveSize(VarArgsSaveSize);
11063 }
11064
11065 // All stores are grouped in one node to allow the matching between
11066 // the size of Ins and InVals. This only happens for vararg functions.
11067 if (!OutChains.empty()) {
11068 OutChains.push_back(Chain);
11069 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
11070 }
11071
11072 return Chain;
11073 }
11074
11075 /// isEligibleForTailCallOptimization - Check whether the call is eligible
11076 /// for tail call optimization.
11077 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
isEligibleForTailCallOptimization(CCState & CCInfo,CallLoweringInfo & CLI,MachineFunction & MF,const SmallVector<CCValAssign,16> & ArgLocs) const11078 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
11079 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
11080 const SmallVector<CCValAssign, 16> &ArgLocs) const {
11081
11082 auto &Callee = CLI.Callee;
11083 auto CalleeCC = CLI.CallConv;
11084 auto &Outs = CLI.Outs;
11085 auto &Caller = MF.getFunction();
11086 auto CallerCC = Caller.getCallingConv();
11087
11088 // Exception-handling functions need a special set of instructions to
11089 // indicate a return to the hardware. Tail-calling another function would
11090 // probably break this.
11091 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
11092 // should be expanded as new function attributes are introduced.
11093 if (Caller.hasFnAttribute("interrupt"))
11094 return false;
11095
11096 // Do not tail call opt if the stack is used to pass parameters.
11097 if (CCInfo.getNextStackOffset() != 0)
11098 return false;
11099
11100 // Do not tail call opt if any parameters need to be passed indirectly.
11101 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
11102 // passed indirectly. So the address of the value will be passed in a
11103 // register, or if not available, then the address is put on the stack. In
11104 // order to pass indirectly, space on the stack often needs to be allocated
11105 // in order to store the value. In this case the CCInfo.getNextStackOffset()
11106 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
11107 // are passed CCValAssign::Indirect.
11108 for (auto &VA : ArgLocs)
11109 if (VA.getLocInfo() == CCValAssign::Indirect)
11110 return false;
11111
11112 // Do not tail call opt if either caller or callee uses struct return
11113 // semantics.
11114 auto IsCallerStructRet = Caller.hasStructRetAttr();
11115 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
11116 if (IsCallerStructRet || IsCalleeStructRet)
11117 return false;
11118
11119 // Externally-defined functions with weak linkage should not be
11120 // tail-called. The behaviour of branch instructions in this situation (as
11121 // used for tail calls) is implementation-defined, so we cannot rely on the
11122 // linker replacing the tail call with a return.
11123 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
11124 const GlobalValue *GV = G->getGlobal();
11125 if (GV->hasExternalWeakLinkage())
11126 return false;
11127 }
11128
11129 // The callee has to preserve all registers the caller needs to preserve.
11130 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
11131 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
11132 if (CalleeCC != CallerCC) {
11133 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
11134 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
11135 return false;
11136 }
11137
11138 // Byval parameters hand the function a pointer directly into the stack area
11139 // we want to reuse during a tail call. Working around this *is* possible
11140 // but less efficient and uglier in LowerCall.
11141 for (auto &Arg : Outs)
11142 if (Arg.Flags.isByVal())
11143 return false;
11144
11145 return true;
11146 }
11147
getPrefTypeAlign(EVT VT,SelectionDAG & DAG)11148 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
11149 return DAG.getDataLayout().getPrefTypeAlign(
11150 VT.getTypeForEVT(*DAG.getContext()));
11151 }
11152
11153 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
11154 // and output parameter nodes.
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const11155 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
11156 SmallVectorImpl<SDValue> &InVals) const {
11157 SelectionDAG &DAG = CLI.DAG;
11158 SDLoc &DL = CLI.DL;
11159 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
11160 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
11161 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
11162 SDValue Chain = CLI.Chain;
11163 SDValue Callee = CLI.Callee;
11164 bool &IsTailCall = CLI.IsTailCall;
11165 CallingConv::ID CallConv = CLI.CallConv;
11166 bool IsVarArg = CLI.IsVarArg;
11167 EVT PtrVT = getPointerTy(DAG.getDataLayout());
11168 MVT XLenVT = Subtarget.getXLenVT();
11169
11170 MachineFunction &MF = DAG.getMachineFunction();
11171
11172 // Analyze the operands of the call, assigning locations to each operand.
11173 SmallVector<CCValAssign, 16> ArgLocs;
11174 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
11175
11176 if (CallConv == CallingConv::GHC)
11177 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
11178 else
11179 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
11180 CallConv == CallingConv::Fast ? CC_RISCV_FastCC
11181 : CC_RISCV);
11182
11183 // Check if it's really possible to do a tail call.
11184 if (IsTailCall)
11185 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
11186
11187 if (IsTailCall)
11188 ++NumTailCalls;
11189 else if (CLI.CB && CLI.CB->isMustTailCall())
11190 report_fatal_error("failed to perform tail call elimination on a call "
11191 "site marked musttail");
11192
11193 // Get a count of how many bytes are to be pushed on the stack.
11194 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
11195
11196 // Create local copies for byval args
11197 SmallVector<SDValue, 8> ByValArgs;
11198 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11199 ISD::ArgFlagsTy Flags = Outs[i].Flags;
11200 if (!Flags.isByVal())
11201 continue;
11202
11203 SDValue Arg = OutVals[i];
11204 unsigned Size = Flags.getByValSize();
11205 Align Alignment = Flags.getNonZeroByValAlign();
11206
11207 int FI =
11208 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
11209 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
11210 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
11211
11212 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
11213 /*IsVolatile=*/false,
11214 /*AlwaysInline=*/false, IsTailCall,
11215 MachinePointerInfo(), MachinePointerInfo());
11216 ByValArgs.push_back(FIPtr);
11217 }
11218
11219 if (!IsTailCall)
11220 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
11221
11222 // Copy argument values to their designated locations.
11223 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
11224 SmallVector<SDValue, 8> MemOpChains;
11225 SDValue StackPtr;
11226 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
11227 CCValAssign &VA = ArgLocs[i];
11228 SDValue ArgValue = OutVals[i];
11229 ISD::ArgFlagsTy Flags = Outs[i].Flags;
11230
11231 // Handle passing f64 on RV32D with a soft float ABI as a special case.
11232 bool IsF64OnRV32DSoftABI =
11233 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
11234 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
11235 SDValue SplitF64 = DAG.getNode(
11236 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
11237 SDValue Lo = SplitF64.getValue(0);
11238 SDValue Hi = SplitF64.getValue(1);
11239
11240 Register RegLo = VA.getLocReg();
11241 RegsToPass.push_back(std::make_pair(RegLo, Lo));
11242
11243 if (RegLo == RISCV::X17) {
11244 // Second half of f64 is passed on the stack.
11245 // Work out the address of the stack slot.
11246 if (!StackPtr.getNode())
11247 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11248 // Emit the store.
11249 MemOpChains.push_back(
11250 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
11251 } else {
11252 // Second half of f64 is passed in another GPR.
11253 assert(RegLo < RISCV::X31 && "Invalid register pair");
11254 Register RegHigh = RegLo + 1;
11255 RegsToPass.push_back(std::make_pair(RegHigh, Hi));
11256 }
11257 continue;
11258 }
11259
11260 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
11261 // as any other MemLoc.
11262
11263 // Promote the value if needed.
11264 // For now, only handle fully promoted and indirect arguments.
11265 if (VA.getLocInfo() == CCValAssign::Indirect) {
11266 // Store the argument in a stack slot and pass its address.
11267 Align StackAlign =
11268 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
11269 getPrefTypeAlign(ArgValue.getValueType(), DAG));
11270 TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
11271 // If the original argument was split (e.g. i128), we need
11272 // to store the required parts of it here (and pass just one address).
11273 // Vectors may be partly split to registers and partly to the stack, in
11274 // which case the base address is partly offset and subsequent stores are
11275 // relative to that.
11276 unsigned ArgIndex = Outs[i].OrigArgIndex;
11277 unsigned ArgPartOffset = Outs[i].PartOffset;
11278 assert(VA.getValVT().isVector() || ArgPartOffset == 0);
11279 // Calculate the total size to store. We don't have access to what we're
11280 // actually storing other than performing the loop and collecting the
11281 // info.
11282 SmallVector<std::pair<SDValue, SDValue>> Parts;
11283 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
11284 SDValue PartValue = OutVals[i + 1];
11285 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
11286 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
11287 EVT PartVT = PartValue.getValueType();
11288 if (PartVT.isScalableVector())
11289 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
11290 StoredSize += PartVT.getStoreSize();
11291 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
11292 Parts.push_back(std::make_pair(PartValue, Offset));
11293 ++i;
11294 }
11295 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
11296 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
11297 MemOpChains.push_back(
11298 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
11299 MachinePointerInfo::getFixedStack(MF, FI)));
11300 for (const auto &Part : Parts) {
11301 SDValue PartValue = Part.first;
11302 SDValue PartOffset = Part.second;
11303 SDValue Address =
11304 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
11305 MemOpChains.push_back(
11306 DAG.getStore(Chain, DL, PartValue, Address,
11307 MachinePointerInfo::getFixedStack(MF, FI)));
11308 }
11309 ArgValue = SpillSlot;
11310 } else {
11311 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
11312 }
11313
11314 // Use local copy if it is a byval arg.
11315 if (Flags.isByVal())
11316 ArgValue = ByValArgs[j++];
11317
11318 if (VA.isRegLoc()) {
11319 // Queue up the argument copies and emit them at the end.
11320 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
11321 } else {
11322 assert(VA.isMemLoc() && "Argument not register or memory");
11323 assert(!IsTailCall && "Tail call not allowed if stack is used "
11324 "for passing parameters");
11325
11326 // Work out the address of the stack slot.
11327 if (!StackPtr.getNode())
11328 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
11329 SDValue Address =
11330 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
11331 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
11332
11333 // Emit the store.
11334 MemOpChains.push_back(
11335 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
11336 }
11337 }
11338
11339 // Join the stores, which are independent of one another.
11340 if (!MemOpChains.empty())
11341 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
11342
11343 SDValue Glue;
11344
11345 // Build a sequence of copy-to-reg nodes, chained and glued together.
11346 for (auto &Reg : RegsToPass) {
11347 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
11348 Glue = Chain.getValue(1);
11349 }
11350
11351 // Validate that none of the argument registers have been marked as
11352 // reserved, if so report an error. Do the same for the return address if this
11353 // is not a tailcall.
11354 validateCCReservedRegs(RegsToPass, MF);
11355 if (!IsTailCall &&
11356 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
11357 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11358 MF.getFunction(),
11359 "Return address register required, but has been reserved."});
11360
11361 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
11362 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
11363 // split it and then direct call can be matched by PseudoCALL.
11364 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
11365 const GlobalValue *GV = S->getGlobal();
11366
11367 unsigned OpFlags = RISCVII::MO_CALL;
11368 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
11369 OpFlags = RISCVII::MO_PLT;
11370
11371 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
11372 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
11373 unsigned OpFlags = RISCVII::MO_CALL;
11374
11375 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
11376 nullptr))
11377 OpFlags = RISCVII::MO_PLT;
11378
11379 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
11380 }
11381
11382 // The first call operand is the chain and the second is the target address.
11383 SmallVector<SDValue, 8> Ops;
11384 Ops.push_back(Chain);
11385 Ops.push_back(Callee);
11386
11387 // Add argument registers to the end of the list so that they are
11388 // known live into the call.
11389 for (auto &Reg : RegsToPass)
11390 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
11391
11392 if (!IsTailCall) {
11393 // Add a register mask operand representing the call-preserved registers.
11394 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
11395 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
11396 assert(Mask && "Missing call preserved mask for calling convention");
11397 Ops.push_back(DAG.getRegisterMask(Mask));
11398 }
11399
11400 // Glue the call to the argument copies, if any.
11401 if (Glue.getNode())
11402 Ops.push_back(Glue);
11403
11404 // Emit the call.
11405 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
11406
11407 if (IsTailCall) {
11408 MF.getFrameInfo().setHasTailCall();
11409 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
11410 }
11411
11412 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
11413 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
11414 Glue = Chain.getValue(1);
11415
11416 // Mark the end of the call, which is glued to the call itself.
11417 Chain = DAG.getCALLSEQ_END(Chain,
11418 DAG.getConstant(NumBytes, DL, PtrVT, true),
11419 DAG.getConstant(0, DL, PtrVT, true),
11420 Glue, DL);
11421 Glue = Chain.getValue(1);
11422
11423 // Assign locations to each value returned by this call.
11424 SmallVector<CCValAssign, 16> RVLocs;
11425 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
11426 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
11427
11428 // Copy all of the result registers out of their specified physreg.
11429 for (auto &VA : RVLocs) {
11430 // Copy the value out
11431 SDValue RetValue =
11432 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
11433 // Glue the RetValue to the end of the call sequence
11434 Chain = RetValue.getValue(1);
11435 Glue = RetValue.getValue(2);
11436
11437 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11438 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
11439 SDValue RetValue2 =
11440 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
11441 Chain = RetValue2.getValue(1);
11442 Glue = RetValue2.getValue(2);
11443 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
11444 RetValue2);
11445 }
11446
11447 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
11448
11449 InVals.push_back(RetValue);
11450 }
11451
11452 return Chain;
11453 }
11454
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const11455 bool RISCVTargetLowering::CanLowerReturn(
11456 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
11457 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
11458 SmallVector<CCValAssign, 16> RVLocs;
11459 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
11460
11461 Optional<unsigned> FirstMaskArgument;
11462 if (Subtarget.hasVInstructions())
11463 FirstMaskArgument = preAssignMask(Outs);
11464
11465 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
11466 MVT VT = Outs[i].VT;
11467 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
11468 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
11469 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
11470 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
11471 *this, FirstMaskArgument))
11472 return false;
11473 }
11474 return true;
11475 }
11476
11477 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const11478 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
11479 bool IsVarArg,
11480 const SmallVectorImpl<ISD::OutputArg> &Outs,
11481 const SmallVectorImpl<SDValue> &OutVals,
11482 const SDLoc &DL, SelectionDAG &DAG) const {
11483 const MachineFunction &MF = DAG.getMachineFunction();
11484 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11485
11486 // Stores the assignment of the return value to a location.
11487 SmallVector<CCValAssign, 16> RVLocs;
11488
11489 // Info about the registers and stack slot.
11490 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
11491 *DAG.getContext());
11492
11493 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
11494 nullptr, CC_RISCV);
11495
11496 if (CallConv == CallingConv::GHC && !RVLocs.empty())
11497 report_fatal_error("GHC functions return void only");
11498
11499 SDValue Glue;
11500 SmallVector<SDValue, 4> RetOps(1, Chain);
11501
11502 // Copy the result values into the output registers.
11503 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
11504 SDValue Val = OutVals[i];
11505 CCValAssign &VA = RVLocs[i];
11506 assert(VA.isRegLoc() && "Can only return in registers!");
11507
11508 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
11509 // Handle returning f64 on RV32D with a soft float ABI.
11510 assert(VA.isRegLoc() && "Expected return via registers");
11511 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
11512 DAG.getVTList(MVT::i32, MVT::i32), Val);
11513 SDValue Lo = SplitF64.getValue(0);
11514 SDValue Hi = SplitF64.getValue(1);
11515 Register RegLo = VA.getLocReg();
11516 assert(RegLo < RISCV::X31 && "Invalid register pair");
11517 Register RegHi = RegLo + 1;
11518
11519 if (STI.isRegisterReservedByUser(RegLo) ||
11520 STI.isRegisterReservedByUser(RegHi))
11521 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11522 MF.getFunction(),
11523 "Return value register required, but has been reserved."});
11524
11525 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
11526 Glue = Chain.getValue(1);
11527 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
11528 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
11529 Glue = Chain.getValue(1);
11530 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
11531 } else {
11532 // Handle a 'normal' return.
11533 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
11534 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
11535
11536 if (STI.isRegisterReservedByUser(VA.getLocReg()))
11537 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
11538 MF.getFunction(),
11539 "Return value register required, but has been reserved."});
11540
11541 // Guarantee that all emitted copies are stuck together.
11542 Glue = Chain.getValue(1);
11543 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
11544 }
11545 }
11546
11547 RetOps[0] = Chain; // Update chain.
11548
11549 // Add the glue node if we have it.
11550 if (Glue.getNode()) {
11551 RetOps.push_back(Glue);
11552 }
11553
11554 unsigned RetOpc = RISCVISD::RET_FLAG;
11555 // Interrupt service routines use different return instructions.
11556 const Function &Func = DAG.getMachineFunction().getFunction();
11557 if (Func.hasFnAttribute("interrupt")) {
11558 if (!Func.getReturnType()->isVoidTy())
11559 report_fatal_error(
11560 "Functions with the interrupt attribute must have void return type!");
11561
11562 MachineFunction &MF = DAG.getMachineFunction();
11563 StringRef Kind =
11564 MF.getFunction().getFnAttribute("interrupt").getValueAsString();
11565
11566 if (Kind == "user")
11567 RetOpc = RISCVISD::URET_FLAG;
11568 else if (Kind == "supervisor")
11569 RetOpc = RISCVISD::SRET_FLAG;
11570 else
11571 RetOpc = RISCVISD::MRET_FLAG;
11572 }
11573
11574 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
11575 }
11576
validateCCReservedRegs(const SmallVectorImpl<std::pair<llvm::Register,llvm::SDValue>> & Regs,MachineFunction & MF) const11577 void RISCVTargetLowering::validateCCReservedRegs(
11578 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
11579 MachineFunction &MF) const {
11580 const Function &F = MF.getFunction();
11581 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
11582
11583 if (llvm::any_of(Regs, [&STI](auto Reg) {
11584 return STI.isRegisterReservedByUser(Reg.first);
11585 }))
11586 F.getContext().diagnose(DiagnosticInfoUnsupported{
11587 F, "Argument register required, but has been reserved."});
11588 }
11589
mayBeEmittedAsTailCall(const CallInst * CI) const11590 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
11591 return CI->isTailCall();
11592 }
11593
getTargetNodeName(unsigned Opcode) const11594 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
11595 #define NODE_NAME_CASE(NODE) \
11596 case RISCVISD::NODE: \
11597 return "RISCVISD::" #NODE;
11598 // clang-format off
11599 switch ((RISCVISD::NodeType)Opcode) {
11600 case RISCVISD::FIRST_NUMBER:
11601 break;
11602 NODE_NAME_CASE(RET_FLAG)
11603 NODE_NAME_CASE(URET_FLAG)
11604 NODE_NAME_CASE(SRET_FLAG)
11605 NODE_NAME_CASE(MRET_FLAG)
11606 NODE_NAME_CASE(CALL)
11607 NODE_NAME_CASE(SELECT_CC)
11608 NODE_NAME_CASE(BR_CC)
11609 NODE_NAME_CASE(BuildPairF64)
11610 NODE_NAME_CASE(SplitF64)
11611 NODE_NAME_CASE(TAIL)
11612 NODE_NAME_CASE(ADD_LO)
11613 NODE_NAME_CASE(HI)
11614 NODE_NAME_CASE(LLA)
11615 NODE_NAME_CASE(ADD_TPREL)
11616 NODE_NAME_CASE(LA)
11617 NODE_NAME_CASE(LA_TLS_IE)
11618 NODE_NAME_CASE(LA_TLS_GD)
11619 NODE_NAME_CASE(MULHSU)
11620 NODE_NAME_CASE(SLLW)
11621 NODE_NAME_CASE(SRAW)
11622 NODE_NAME_CASE(SRLW)
11623 NODE_NAME_CASE(DIVW)
11624 NODE_NAME_CASE(DIVUW)
11625 NODE_NAME_CASE(REMUW)
11626 NODE_NAME_CASE(ROLW)
11627 NODE_NAME_CASE(RORW)
11628 NODE_NAME_CASE(CLZW)
11629 NODE_NAME_CASE(CTZW)
11630 NODE_NAME_CASE(FSLW)
11631 NODE_NAME_CASE(FSRW)
11632 NODE_NAME_CASE(FSL)
11633 NODE_NAME_CASE(FSR)
11634 NODE_NAME_CASE(FMV_H_X)
11635 NODE_NAME_CASE(FMV_X_ANYEXTH)
11636 NODE_NAME_CASE(FMV_X_SIGNEXTH)
11637 NODE_NAME_CASE(FMV_W_X_RV64)
11638 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
11639 NODE_NAME_CASE(FCVT_X)
11640 NODE_NAME_CASE(FCVT_XU)
11641 NODE_NAME_CASE(FCVT_W_RV64)
11642 NODE_NAME_CASE(FCVT_WU_RV64)
11643 NODE_NAME_CASE(STRICT_FCVT_W_RV64)
11644 NODE_NAME_CASE(STRICT_FCVT_WU_RV64)
11645 NODE_NAME_CASE(READ_CYCLE_WIDE)
11646 NODE_NAME_CASE(GREV)
11647 NODE_NAME_CASE(GREVW)
11648 NODE_NAME_CASE(GORC)
11649 NODE_NAME_CASE(GORCW)
11650 NODE_NAME_CASE(SHFL)
11651 NODE_NAME_CASE(SHFLW)
11652 NODE_NAME_CASE(UNSHFL)
11653 NODE_NAME_CASE(UNSHFLW)
11654 NODE_NAME_CASE(BFP)
11655 NODE_NAME_CASE(BFPW)
11656 NODE_NAME_CASE(BCOMPRESS)
11657 NODE_NAME_CASE(BCOMPRESSW)
11658 NODE_NAME_CASE(BDECOMPRESS)
11659 NODE_NAME_CASE(BDECOMPRESSW)
11660 NODE_NAME_CASE(VMV_V_X_VL)
11661 NODE_NAME_CASE(VFMV_V_F_VL)
11662 NODE_NAME_CASE(VMV_X_S)
11663 NODE_NAME_CASE(VMV_S_X_VL)
11664 NODE_NAME_CASE(VFMV_S_F_VL)
11665 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
11666 NODE_NAME_CASE(READ_VLENB)
11667 NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
11668 NODE_NAME_CASE(VSLIDEUP_VL)
11669 NODE_NAME_CASE(VSLIDE1UP_VL)
11670 NODE_NAME_CASE(VSLIDEDOWN_VL)
11671 NODE_NAME_CASE(VSLIDE1DOWN_VL)
11672 NODE_NAME_CASE(VID_VL)
11673 NODE_NAME_CASE(VFNCVT_ROD_VL)
11674 NODE_NAME_CASE(VECREDUCE_ADD_VL)
11675 NODE_NAME_CASE(VECREDUCE_UMAX_VL)
11676 NODE_NAME_CASE(VECREDUCE_SMAX_VL)
11677 NODE_NAME_CASE(VECREDUCE_UMIN_VL)
11678 NODE_NAME_CASE(VECREDUCE_SMIN_VL)
11679 NODE_NAME_CASE(VECREDUCE_AND_VL)
11680 NODE_NAME_CASE(VECREDUCE_OR_VL)
11681 NODE_NAME_CASE(VECREDUCE_XOR_VL)
11682 NODE_NAME_CASE(VECREDUCE_FADD_VL)
11683 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
11684 NODE_NAME_CASE(VECREDUCE_FMIN_VL)
11685 NODE_NAME_CASE(VECREDUCE_FMAX_VL)
11686 NODE_NAME_CASE(ADD_VL)
11687 NODE_NAME_CASE(AND_VL)
11688 NODE_NAME_CASE(MUL_VL)
11689 NODE_NAME_CASE(OR_VL)
11690 NODE_NAME_CASE(SDIV_VL)
11691 NODE_NAME_CASE(SHL_VL)
11692 NODE_NAME_CASE(SREM_VL)
11693 NODE_NAME_CASE(SRA_VL)
11694 NODE_NAME_CASE(SRL_VL)
11695 NODE_NAME_CASE(SUB_VL)
11696 NODE_NAME_CASE(UDIV_VL)
11697 NODE_NAME_CASE(UREM_VL)
11698 NODE_NAME_CASE(XOR_VL)
11699 NODE_NAME_CASE(SADDSAT_VL)
11700 NODE_NAME_CASE(UADDSAT_VL)
11701 NODE_NAME_CASE(SSUBSAT_VL)
11702 NODE_NAME_CASE(USUBSAT_VL)
11703 NODE_NAME_CASE(FADD_VL)
11704 NODE_NAME_CASE(FSUB_VL)
11705 NODE_NAME_CASE(FMUL_VL)
11706 NODE_NAME_CASE(FDIV_VL)
11707 NODE_NAME_CASE(FNEG_VL)
11708 NODE_NAME_CASE(FABS_VL)
11709 NODE_NAME_CASE(FSQRT_VL)
11710 NODE_NAME_CASE(VFMADD_VL)
11711 NODE_NAME_CASE(VFNMADD_VL)
11712 NODE_NAME_CASE(VFMSUB_VL)
11713 NODE_NAME_CASE(VFNMSUB_VL)
11714 NODE_NAME_CASE(FCOPYSIGN_VL)
11715 NODE_NAME_CASE(SMIN_VL)
11716 NODE_NAME_CASE(SMAX_VL)
11717 NODE_NAME_CASE(UMIN_VL)
11718 NODE_NAME_CASE(UMAX_VL)
11719 NODE_NAME_CASE(FMINNUM_VL)
11720 NODE_NAME_CASE(FMAXNUM_VL)
11721 NODE_NAME_CASE(MULHS_VL)
11722 NODE_NAME_CASE(MULHU_VL)
11723 NODE_NAME_CASE(FP_TO_SINT_VL)
11724 NODE_NAME_CASE(FP_TO_UINT_VL)
11725 NODE_NAME_CASE(SINT_TO_FP_VL)
11726 NODE_NAME_CASE(UINT_TO_FP_VL)
11727 NODE_NAME_CASE(FP_EXTEND_VL)
11728 NODE_NAME_CASE(FP_ROUND_VL)
11729 NODE_NAME_CASE(VWMUL_VL)
11730 NODE_NAME_CASE(VWMULU_VL)
11731 NODE_NAME_CASE(VWMULSU_VL)
11732 NODE_NAME_CASE(VWADD_VL)
11733 NODE_NAME_CASE(VWADDU_VL)
11734 NODE_NAME_CASE(VWSUB_VL)
11735 NODE_NAME_CASE(VWSUBU_VL)
11736 NODE_NAME_CASE(VWADD_W_VL)
11737 NODE_NAME_CASE(VWADDU_W_VL)
11738 NODE_NAME_CASE(VWSUB_W_VL)
11739 NODE_NAME_CASE(VWSUBU_W_VL)
11740 NODE_NAME_CASE(SETCC_VL)
11741 NODE_NAME_CASE(VSELECT_VL)
11742 NODE_NAME_CASE(VP_MERGE_VL)
11743 NODE_NAME_CASE(VMAND_VL)
11744 NODE_NAME_CASE(VMOR_VL)
11745 NODE_NAME_CASE(VMXOR_VL)
11746 NODE_NAME_CASE(VMCLR_VL)
11747 NODE_NAME_CASE(VMSET_VL)
11748 NODE_NAME_CASE(VRGATHER_VX_VL)
11749 NODE_NAME_CASE(VRGATHER_VV_VL)
11750 NODE_NAME_CASE(VRGATHEREI16_VV_VL)
11751 NODE_NAME_CASE(VSEXT_VL)
11752 NODE_NAME_CASE(VZEXT_VL)
11753 NODE_NAME_CASE(VCPOP_VL)
11754 NODE_NAME_CASE(READ_CSR)
11755 NODE_NAME_CASE(WRITE_CSR)
11756 NODE_NAME_CASE(SWAP_CSR)
11757 }
11758 // clang-format on
11759 return nullptr;
11760 #undef NODE_NAME_CASE
11761 }
11762
11763 /// getConstraintType - Given a constraint letter, return the type of
11764 /// constraint it is for this target.
11765 RISCVTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const11766 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
11767 if (Constraint.size() == 1) {
11768 switch (Constraint[0]) {
11769 default:
11770 break;
11771 case 'f':
11772 return C_RegisterClass;
11773 case 'I':
11774 case 'J':
11775 case 'K':
11776 return C_Immediate;
11777 case 'A':
11778 return C_Memory;
11779 case 'S': // A symbolic address
11780 return C_Other;
11781 }
11782 } else {
11783 if (Constraint == "vr" || Constraint == "vm")
11784 return C_RegisterClass;
11785 }
11786 return TargetLowering::getConstraintType(Constraint);
11787 }
11788
11789 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const11790 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11791 StringRef Constraint,
11792 MVT VT) const {
11793 // First, see if this is a constraint that directly corresponds to a
11794 // RISCV register class.
11795 if (Constraint.size() == 1) {
11796 switch (Constraint[0]) {
11797 case 'r':
11798 // TODO: Support fixed vectors up to XLen for P extension?
11799 if (VT.isVector())
11800 break;
11801 return std::make_pair(0U, &RISCV::GPRRegClass);
11802 case 'f':
11803 if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
11804 return std::make_pair(0U, &RISCV::FPR16RegClass);
11805 if (Subtarget.hasStdExtF() && VT == MVT::f32)
11806 return std::make_pair(0U, &RISCV::FPR32RegClass);
11807 if (Subtarget.hasStdExtD() && VT == MVT::f64)
11808 return std::make_pair(0U, &RISCV::FPR64RegClass);
11809 break;
11810 default:
11811 break;
11812 }
11813 } else if (Constraint == "vr") {
11814 for (const auto *RC : {&RISCV::VRRegClass, &RISCV::VRM2RegClass,
11815 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11816 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
11817 return std::make_pair(0U, RC);
11818 }
11819 } else if (Constraint == "vm") {
11820 if (TRI->isTypeLegalForClass(RISCV::VMV0RegClass, VT.SimpleTy))
11821 return std::make_pair(0U, &RISCV::VMV0RegClass);
11822 }
11823
11824 // Clang will correctly decode the usage of register name aliases into their
11825 // official names. However, other frontends like `rustc` do not. This allows
11826 // users of these frontends to use the ABI names for registers in LLVM-style
11827 // register constraints.
11828 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
11829 .Case("{zero}", RISCV::X0)
11830 .Case("{ra}", RISCV::X1)
11831 .Case("{sp}", RISCV::X2)
11832 .Case("{gp}", RISCV::X3)
11833 .Case("{tp}", RISCV::X4)
11834 .Case("{t0}", RISCV::X5)
11835 .Case("{t1}", RISCV::X6)
11836 .Case("{t2}", RISCV::X7)
11837 .Cases("{s0}", "{fp}", RISCV::X8)
11838 .Case("{s1}", RISCV::X9)
11839 .Case("{a0}", RISCV::X10)
11840 .Case("{a1}", RISCV::X11)
11841 .Case("{a2}", RISCV::X12)
11842 .Case("{a3}", RISCV::X13)
11843 .Case("{a4}", RISCV::X14)
11844 .Case("{a5}", RISCV::X15)
11845 .Case("{a6}", RISCV::X16)
11846 .Case("{a7}", RISCV::X17)
11847 .Case("{s2}", RISCV::X18)
11848 .Case("{s3}", RISCV::X19)
11849 .Case("{s4}", RISCV::X20)
11850 .Case("{s5}", RISCV::X21)
11851 .Case("{s6}", RISCV::X22)
11852 .Case("{s7}", RISCV::X23)
11853 .Case("{s8}", RISCV::X24)
11854 .Case("{s9}", RISCV::X25)
11855 .Case("{s10}", RISCV::X26)
11856 .Case("{s11}", RISCV::X27)
11857 .Case("{t3}", RISCV::X28)
11858 .Case("{t4}", RISCV::X29)
11859 .Case("{t5}", RISCV::X30)
11860 .Case("{t6}", RISCV::X31)
11861 .Default(RISCV::NoRegister);
11862 if (XRegFromAlias != RISCV::NoRegister)
11863 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
11864
11865 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
11866 // TableGen record rather than the AsmName to choose registers for InlineAsm
11867 // constraints, plus we want to match those names to the widest floating point
11868 // register type available, manually select floating point registers here.
11869 //
11870 // The second case is the ABI name of the register, so that frontends can also
11871 // use the ABI names in register constraint lists.
11872 if (Subtarget.hasStdExtF()) {
11873 unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
11874 .Cases("{f0}", "{ft0}", RISCV::F0_F)
11875 .Cases("{f1}", "{ft1}", RISCV::F1_F)
11876 .Cases("{f2}", "{ft2}", RISCV::F2_F)
11877 .Cases("{f3}", "{ft3}", RISCV::F3_F)
11878 .Cases("{f4}", "{ft4}", RISCV::F4_F)
11879 .Cases("{f5}", "{ft5}", RISCV::F5_F)
11880 .Cases("{f6}", "{ft6}", RISCV::F6_F)
11881 .Cases("{f7}", "{ft7}", RISCV::F7_F)
11882 .Cases("{f8}", "{fs0}", RISCV::F8_F)
11883 .Cases("{f9}", "{fs1}", RISCV::F9_F)
11884 .Cases("{f10}", "{fa0}", RISCV::F10_F)
11885 .Cases("{f11}", "{fa1}", RISCV::F11_F)
11886 .Cases("{f12}", "{fa2}", RISCV::F12_F)
11887 .Cases("{f13}", "{fa3}", RISCV::F13_F)
11888 .Cases("{f14}", "{fa4}", RISCV::F14_F)
11889 .Cases("{f15}", "{fa5}", RISCV::F15_F)
11890 .Cases("{f16}", "{fa6}", RISCV::F16_F)
11891 .Cases("{f17}", "{fa7}", RISCV::F17_F)
11892 .Cases("{f18}", "{fs2}", RISCV::F18_F)
11893 .Cases("{f19}", "{fs3}", RISCV::F19_F)
11894 .Cases("{f20}", "{fs4}", RISCV::F20_F)
11895 .Cases("{f21}", "{fs5}", RISCV::F21_F)
11896 .Cases("{f22}", "{fs6}", RISCV::F22_F)
11897 .Cases("{f23}", "{fs7}", RISCV::F23_F)
11898 .Cases("{f24}", "{fs8}", RISCV::F24_F)
11899 .Cases("{f25}", "{fs9}", RISCV::F25_F)
11900 .Cases("{f26}", "{fs10}", RISCV::F26_F)
11901 .Cases("{f27}", "{fs11}", RISCV::F27_F)
11902 .Cases("{f28}", "{ft8}", RISCV::F28_F)
11903 .Cases("{f29}", "{ft9}", RISCV::F29_F)
11904 .Cases("{f30}", "{ft10}", RISCV::F30_F)
11905 .Cases("{f31}", "{ft11}", RISCV::F31_F)
11906 .Default(RISCV::NoRegister);
11907 if (FReg != RISCV::NoRegister) {
11908 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
11909 if (Subtarget.hasStdExtD() && (VT == MVT::f64 || VT == MVT::Other)) {
11910 unsigned RegNo = FReg - RISCV::F0_F;
11911 unsigned DReg = RISCV::F0_D + RegNo;
11912 return std::make_pair(DReg, &RISCV::FPR64RegClass);
11913 }
11914 if (VT == MVT::f32 || VT == MVT::Other)
11915 return std::make_pair(FReg, &RISCV::FPR32RegClass);
11916 if (Subtarget.hasStdExtZfh() && VT == MVT::f16) {
11917 unsigned RegNo = FReg - RISCV::F0_F;
11918 unsigned HReg = RISCV::F0_H + RegNo;
11919 return std::make_pair(HReg, &RISCV::FPR16RegClass);
11920 }
11921 }
11922 }
11923
11924 if (Subtarget.hasVInstructions()) {
11925 Register VReg = StringSwitch<Register>(Constraint.lower())
11926 .Case("{v0}", RISCV::V0)
11927 .Case("{v1}", RISCV::V1)
11928 .Case("{v2}", RISCV::V2)
11929 .Case("{v3}", RISCV::V3)
11930 .Case("{v4}", RISCV::V4)
11931 .Case("{v5}", RISCV::V5)
11932 .Case("{v6}", RISCV::V6)
11933 .Case("{v7}", RISCV::V7)
11934 .Case("{v8}", RISCV::V8)
11935 .Case("{v9}", RISCV::V9)
11936 .Case("{v10}", RISCV::V10)
11937 .Case("{v11}", RISCV::V11)
11938 .Case("{v12}", RISCV::V12)
11939 .Case("{v13}", RISCV::V13)
11940 .Case("{v14}", RISCV::V14)
11941 .Case("{v15}", RISCV::V15)
11942 .Case("{v16}", RISCV::V16)
11943 .Case("{v17}", RISCV::V17)
11944 .Case("{v18}", RISCV::V18)
11945 .Case("{v19}", RISCV::V19)
11946 .Case("{v20}", RISCV::V20)
11947 .Case("{v21}", RISCV::V21)
11948 .Case("{v22}", RISCV::V22)
11949 .Case("{v23}", RISCV::V23)
11950 .Case("{v24}", RISCV::V24)
11951 .Case("{v25}", RISCV::V25)
11952 .Case("{v26}", RISCV::V26)
11953 .Case("{v27}", RISCV::V27)
11954 .Case("{v28}", RISCV::V28)
11955 .Case("{v29}", RISCV::V29)
11956 .Case("{v30}", RISCV::V30)
11957 .Case("{v31}", RISCV::V31)
11958 .Default(RISCV::NoRegister);
11959 if (VReg != RISCV::NoRegister) {
11960 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
11961 return std::make_pair(VReg, &RISCV::VMRegClass);
11962 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
11963 return std::make_pair(VReg, &RISCV::VRRegClass);
11964 for (const auto *RC :
11965 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
11966 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
11967 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
11968 return std::make_pair(VReg, RC);
11969 }
11970 }
11971 }
11972 }
11973
11974 std::pair<Register, const TargetRegisterClass *> Res =
11975 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11976
11977 // If we picked one of the Zfinx register classes, remap it to the GPR class.
11978 // FIXME: When Zfinx is supported in CodeGen this will need to take the
11979 // Subtarget into account.
11980 if (Res.second == &RISCV::GPRF16RegClass ||
11981 Res.second == &RISCV::GPRF32RegClass ||
11982 Res.second == &RISCV::GPRF64RegClass)
11983 return std::make_pair(Res.first, &RISCV::GPRRegClass);
11984
11985 return Res;
11986 }
11987
11988 unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const11989 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
11990 // Currently only support length 1 constraints.
11991 if (ConstraintCode.size() == 1) {
11992 switch (ConstraintCode[0]) {
11993 case 'A':
11994 return InlineAsm::Constraint_A;
11995 default:
11996 break;
11997 }
11998 }
11999
12000 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
12001 }
12002
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const12003 void RISCVTargetLowering::LowerAsmOperandForConstraint(
12004 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
12005 SelectionDAG &DAG) const {
12006 // Currently only support length 1 constraints.
12007 if (Constraint.length() == 1) {
12008 switch (Constraint[0]) {
12009 case 'I':
12010 // Validate & create a 12-bit signed immediate operand.
12011 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
12012 uint64_t CVal = C->getSExtValue();
12013 if (isInt<12>(CVal))
12014 Ops.push_back(
12015 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
12016 }
12017 return;
12018 case 'J':
12019 // Validate & create an integer zero operand.
12020 if (auto *C = dyn_cast<ConstantSDNode>(Op))
12021 if (C->getZExtValue() == 0)
12022 Ops.push_back(
12023 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
12024 return;
12025 case 'K':
12026 // Validate & create a 5-bit unsigned immediate operand.
12027 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
12028 uint64_t CVal = C->getZExtValue();
12029 if (isUInt<5>(CVal))
12030 Ops.push_back(
12031 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
12032 }
12033 return;
12034 case 'S':
12035 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
12036 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
12037 GA->getValueType(0)));
12038 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
12039 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
12040 BA->getValueType(0)));
12041 }
12042 return;
12043 default:
12044 break;
12045 }
12046 }
12047 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12048 }
12049
emitLeadingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const12050 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
12051 Instruction *Inst,
12052 AtomicOrdering Ord) const {
12053 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
12054 return Builder.CreateFence(Ord);
12055 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
12056 return Builder.CreateFence(AtomicOrdering::Release);
12057 return nullptr;
12058 }
12059
emitTrailingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const12060 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
12061 Instruction *Inst,
12062 AtomicOrdering Ord) const {
12063 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
12064 return Builder.CreateFence(AtomicOrdering::Acquire);
12065 return nullptr;
12066 }
12067
12068 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const12069 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12070 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
12071 // point operations can't be used in an lr/sc sequence without breaking the
12072 // forward-progress guarantee.
12073 if (AI->isFloatingPointOperation())
12074 return AtomicExpansionKind::CmpXChg;
12075
12076 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12077 if (Size == 8 || Size == 16)
12078 return AtomicExpansionKind::MaskedIntrinsic;
12079 return AtomicExpansionKind::None;
12080 }
12081
12082 static Intrinsic::ID
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen,AtomicRMWInst::BinOp BinOp)12083 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
12084 if (XLen == 32) {
12085 switch (BinOp) {
12086 default:
12087 llvm_unreachable("Unexpected AtomicRMW BinOp");
12088 case AtomicRMWInst::Xchg:
12089 return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
12090 case AtomicRMWInst::Add:
12091 return Intrinsic::riscv_masked_atomicrmw_add_i32;
12092 case AtomicRMWInst::Sub:
12093 return Intrinsic::riscv_masked_atomicrmw_sub_i32;
12094 case AtomicRMWInst::Nand:
12095 return Intrinsic::riscv_masked_atomicrmw_nand_i32;
12096 case AtomicRMWInst::Max:
12097 return Intrinsic::riscv_masked_atomicrmw_max_i32;
12098 case AtomicRMWInst::Min:
12099 return Intrinsic::riscv_masked_atomicrmw_min_i32;
12100 case AtomicRMWInst::UMax:
12101 return Intrinsic::riscv_masked_atomicrmw_umax_i32;
12102 case AtomicRMWInst::UMin:
12103 return Intrinsic::riscv_masked_atomicrmw_umin_i32;
12104 }
12105 }
12106
12107 if (XLen == 64) {
12108 switch (BinOp) {
12109 default:
12110 llvm_unreachable("Unexpected AtomicRMW BinOp");
12111 case AtomicRMWInst::Xchg:
12112 return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
12113 case AtomicRMWInst::Add:
12114 return Intrinsic::riscv_masked_atomicrmw_add_i64;
12115 case AtomicRMWInst::Sub:
12116 return Intrinsic::riscv_masked_atomicrmw_sub_i64;
12117 case AtomicRMWInst::Nand:
12118 return Intrinsic::riscv_masked_atomicrmw_nand_i64;
12119 case AtomicRMWInst::Max:
12120 return Intrinsic::riscv_masked_atomicrmw_max_i64;
12121 case AtomicRMWInst::Min:
12122 return Intrinsic::riscv_masked_atomicrmw_min_i64;
12123 case AtomicRMWInst::UMax:
12124 return Intrinsic::riscv_masked_atomicrmw_umax_i64;
12125 case AtomicRMWInst::UMin:
12126 return Intrinsic::riscv_masked_atomicrmw_umin_i64;
12127 }
12128 }
12129
12130 llvm_unreachable("Unexpected XLen\n");
12131 }
12132
emitMaskedAtomicRMWIntrinsic(IRBuilderBase & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord) const12133 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
12134 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
12135 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
12136 unsigned XLen = Subtarget.getXLen();
12137 Value *Ordering =
12138 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
12139 Type *Tys[] = {AlignedAddr->getType()};
12140 Function *LrwOpScwLoop = Intrinsic::getDeclaration(
12141 AI->getModule(),
12142 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
12143
12144 if (XLen == 64) {
12145 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
12146 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
12147 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
12148 }
12149
12150 Value *Result;
12151
12152 // Must pass the shift amount needed to sign extend the loaded value prior
12153 // to performing a signed comparison for min/max. ShiftAmt is the number of
12154 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
12155 // is the number of bits to left+right shift the value in order to
12156 // sign-extend.
12157 if (AI->getOperation() == AtomicRMWInst::Min ||
12158 AI->getOperation() == AtomicRMWInst::Max) {
12159 const DataLayout &DL = AI->getModule()->getDataLayout();
12160 unsigned ValWidth =
12161 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
12162 Value *SextShamt =
12163 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
12164 Result = Builder.CreateCall(LrwOpScwLoop,
12165 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
12166 } else {
12167 Result =
12168 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
12169 }
12170
12171 if (XLen == 64)
12172 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
12173 return Result;
12174 }
12175
12176 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * CI) const12177 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
12178 AtomicCmpXchgInst *CI) const {
12179 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
12180 if (Size == 8 || Size == 16)
12181 return AtomicExpansionKind::MaskedIntrinsic;
12182 return AtomicExpansionKind::None;
12183 }
12184
emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord) const12185 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
12186 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
12187 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
12188 unsigned XLen = Subtarget.getXLen();
12189 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
12190 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
12191 if (XLen == 64) {
12192 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
12193 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
12194 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
12195 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
12196 }
12197 Type *Tys[] = {AlignedAddr->getType()};
12198 Function *MaskedCmpXchg =
12199 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
12200 Value *Result = Builder.CreateCall(
12201 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
12202 if (XLen == 64)
12203 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
12204 return Result;
12205 }
12206
shouldRemoveExtendFromGSIndex(EVT IndexVT,EVT DataVT) const12207 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT,
12208 EVT DataVT) const {
12209 return false;
12210 }
12211
shouldConvertFpToSat(unsigned Op,EVT FPVT,EVT VT) const12212 bool RISCVTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
12213 EVT VT) const {
12214 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
12215 return false;
12216
12217 switch (FPVT.getSimpleVT().SimpleTy) {
12218 case MVT::f16:
12219 return Subtarget.hasStdExtZfh();
12220 case MVT::f32:
12221 return Subtarget.hasStdExtF();
12222 case MVT::f64:
12223 return Subtarget.hasStdExtD();
12224 default:
12225 return false;
12226 }
12227 }
12228
getJumpTableEncoding() const12229 unsigned RISCVTargetLowering::getJumpTableEncoding() const {
12230 // If we are using the small code model, we can reduce size of jump table
12231 // entry to 4 bytes.
12232 if (Subtarget.is64Bit() && !isPositionIndependent() &&
12233 getTargetMachine().getCodeModel() == CodeModel::Small) {
12234 return MachineJumpTableInfo::EK_Custom32;
12235 }
12236 return TargetLowering::getJumpTableEncoding();
12237 }
12238
LowerCustomJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned uid,MCContext & Ctx) const12239 const MCExpr *RISCVTargetLowering::LowerCustomJumpTableEntry(
12240 const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
12241 unsigned uid, MCContext &Ctx) const {
12242 assert(Subtarget.is64Bit() && !isPositionIndependent() &&
12243 getTargetMachine().getCodeModel() == CodeModel::Small);
12244 return MCSymbolRefExpr::create(MBB->getSymbol(), Ctx);
12245 }
12246
isVScaleKnownToBeAPowerOfTwo() const12247 bool RISCVTargetLowering::isVScaleKnownToBeAPowerOfTwo() const {
12248 // We define vscale to be VLEN/RVVBitsPerBlock. VLEN is always a power
12249 // of two >= 64, and RVVBitsPerBlock is 64. Thus, vscale must be
12250 // a power of two as well.
12251 // FIXME: This doesn't work for zve32, but that's already broken
12252 // elsewhere for the same reason.
12253 assert(Subtarget.getRealMinVLen() >= 64 && "zve32* unsupported");
12254 static_assert(RISCV::RVVBitsPerBlock == 64,
12255 "RVVBitsPerBlock changed, audit needed");
12256 return true;
12257 }
12258
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const12259 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
12260 EVT VT) const {
12261 VT = VT.getScalarType();
12262
12263 if (!VT.isSimple())
12264 return false;
12265
12266 switch (VT.getSimpleVT().SimpleTy) {
12267 case MVT::f16:
12268 return Subtarget.hasStdExtZfh();
12269 case MVT::f32:
12270 return Subtarget.hasStdExtF();
12271 case MVT::f64:
12272 return Subtarget.hasStdExtD();
12273 default:
12274 break;
12275 }
12276
12277 return false;
12278 }
12279
getExceptionPointerRegister(const Constant * PersonalityFn) const12280 Register RISCVTargetLowering::getExceptionPointerRegister(
12281 const Constant *PersonalityFn) const {
12282 return RISCV::X10;
12283 }
12284
getExceptionSelectorRegister(const Constant * PersonalityFn) const12285 Register RISCVTargetLowering::getExceptionSelectorRegister(
12286 const Constant *PersonalityFn) const {
12287 return RISCV::X11;
12288 }
12289
shouldExtendTypeInLibCall(EVT Type) const12290 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
12291 // Return false to suppress the unnecessary extensions if the LibCall
12292 // arguments or return value is f32 type for LP64 ABI.
12293 RISCVABI::ABI ABI = Subtarget.getTargetABI();
12294 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
12295 return false;
12296
12297 return true;
12298 }
12299
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned) const12300 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
12301 if (Subtarget.is64Bit() && Type == MVT::i32)
12302 return true;
12303
12304 return IsSigned;
12305 }
12306
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C) const12307 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
12308 SDValue C) const {
12309 // Check integral scalar types.
12310 const bool HasExtMOrZmmul =
12311 Subtarget.hasStdExtM() || Subtarget.hasStdExtZmmul();
12312 if (VT.isScalarInteger()) {
12313 // Omit the optimization if the sub target has the M extension and the data
12314 // size exceeds XLen.
12315 if (HasExtMOrZmmul && VT.getSizeInBits() > Subtarget.getXLen())
12316 return false;
12317 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
12318 // Break the MUL to a SLLI and an ADD/SUB.
12319 const APInt &Imm = ConstNode->getAPIntValue();
12320 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
12321 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
12322 return true;
12323 // Optimize the MUL to (SH*ADD x, (SLLI x, bits)) if Imm is not simm12.
12324 if (Subtarget.hasStdExtZba() && !Imm.isSignedIntN(12) &&
12325 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
12326 (Imm - 8).isPowerOf2()))
12327 return true;
12328 // Omit the following optimization if the sub target has the M extension
12329 // and the data size >= XLen.
12330 if (HasExtMOrZmmul && VT.getSizeInBits() >= Subtarget.getXLen())
12331 return false;
12332 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
12333 // a pair of LUI/ADDI.
12334 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
12335 APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
12336 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
12337 (1 - ImmS).isPowerOf2())
12338 return true;
12339 }
12340 }
12341 }
12342
12343 return false;
12344 }
12345
isMulAddWithConstProfitable(SDValue AddNode,SDValue ConstNode) const12346 bool RISCVTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
12347 SDValue ConstNode) const {
12348 // Let the DAGCombiner decide for vectors.
12349 EVT VT = AddNode.getValueType();
12350 if (VT.isVector())
12351 return true;
12352
12353 // Let the DAGCombiner decide for larger types.
12354 if (VT.getScalarSizeInBits() > Subtarget.getXLen())
12355 return true;
12356
12357 // It is worse if c1 is simm12 while c1*c2 is not.
12358 ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1));
12359 ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode);
12360 const APInt &C1 = C1Node->getAPIntValue();
12361 const APInt &C2 = C2Node->getAPIntValue();
12362 if (C1.isSignedIntN(12) && !(C1 * C2).isSignedIntN(12))
12363 return false;
12364
12365 // Default to true and let the DAGCombiner decide.
12366 return true;
12367 }
12368
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const12369 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
12370 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
12371 bool *Fast) const {
12372 if (!VT.isVector()) {
12373 if (Fast)
12374 *Fast = false;
12375 return Subtarget.enableUnalignedScalarMem();
12376 }
12377
12378 // All vector implementations must support element alignment
12379 EVT ElemVT = VT.getVectorElementType();
12380 if (Alignment >= ElemVT.getStoreSize()) {
12381 if (Fast)
12382 *Fast = true;
12383 return true;
12384 }
12385
12386 return false;
12387 }
12388
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC) const12389 bool RISCVTargetLowering::splitValueIntoRegisterParts(
12390 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
12391 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
12392 bool IsABIRegCopy = CC.has_value();
12393 EVT ValueVT = Val.getValueType();
12394 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12395 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
12396 // and cast to f32.
12397 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
12398 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
12399 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
12400 DAG.getConstant(0xFFFF0000, DL, MVT::i32));
12401 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
12402 Parts[0] = Val;
12403 return true;
12404 }
12405
12406 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12407 LLVMContext &Context = *DAG.getContext();
12408 EVT ValueEltVT = ValueVT.getVectorElementType();
12409 EVT PartEltVT = PartVT.getVectorElementType();
12410 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12411 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12412 if (PartVTBitSize % ValueVTBitSize == 0) {
12413 assert(PartVTBitSize >= ValueVTBitSize);
12414 // If the element types are different, bitcast to the same element type of
12415 // PartVT first.
12416 // Give an example here, we want copy a <vscale x 1 x i8> value to
12417 // <vscale x 4 x i16>.
12418 // We need to convert <vscale x 1 x i8> to <vscale x 8 x i8> by insert
12419 // subvector, then we can bitcast to <vscale x 4 x i16>.
12420 if (ValueEltVT != PartEltVT) {
12421 if (PartVTBitSize > ValueVTBitSize) {
12422 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12423 assert(Count != 0 && "The number of element should not be zero.");
12424 EVT SameEltTypeVT =
12425 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12426 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SameEltTypeVT,
12427 DAG.getUNDEF(SameEltTypeVT), Val,
12428 DAG.getVectorIdxConstant(0, DL));
12429 }
12430 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
12431 } else {
12432 Val =
12433 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
12434 Val, DAG.getVectorIdxConstant(0, DL));
12435 }
12436 Parts[0] = Val;
12437 return true;
12438 }
12439 }
12440 return false;
12441 }
12442
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC) const12443 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
12444 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
12445 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
12446 bool IsABIRegCopy = CC.has_value();
12447 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
12448 SDValue Val = Parts[0];
12449
12450 // Cast the f32 to i32, truncate to i16, and cast back to f16.
12451 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
12452 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
12453 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
12454 return Val;
12455 }
12456
12457 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
12458 LLVMContext &Context = *DAG.getContext();
12459 SDValue Val = Parts[0];
12460 EVT ValueEltVT = ValueVT.getVectorElementType();
12461 EVT PartEltVT = PartVT.getVectorElementType();
12462 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
12463 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
12464 if (PartVTBitSize % ValueVTBitSize == 0) {
12465 assert(PartVTBitSize >= ValueVTBitSize);
12466 EVT SameEltTypeVT = ValueVT;
12467 // If the element types are different, convert it to the same element type
12468 // of PartVT.
12469 // Give an example here, we want copy a <vscale x 1 x i8> value from
12470 // <vscale x 4 x i16>.
12471 // We need to convert <vscale x 4 x i16> to <vscale x 8 x i8> first,
12472 // then we can extract <vscale x 1 x i8>.
12473 if (ValueEltVT != PartEltVT) {
12474 unsigned Count = PartVTBitSize / ValueEltVT.getFixedSizeInBits();
12475 assert(Count != 0 && "The number of element should not be zero.");
12476 SameEltTypeVT =
12477 EVT::getVectorVT(Context, ValueEltVT, Count, /*IsScalable=*/true);
12478 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
12479 }
12480 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
12481 DAG.getVectorIdxConstant(0, DL));
12482 return Val;
12483 }
12484 }
12485 return SDValue();
12486 }
12487
12488 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const12489 RISCVTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
12490 SelectionDAG &DAG,
12491 SmallVectorImpl<SDNode *> &Created) const {
12492 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
12493 if (isIntDivCheap(N->getValueType(0), Attr))
12494 return SDValue(N, 0); // Lower SDIV as SDIV
12495
12496 assert((Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()) &&
12497 "Unexpected divisor!");
12498
12499 // Conditional move is needed, so do the transformation iff Zbt is enabled.
12500 if (!Subtarget.hasStdExtZbt())
12501 return SDValue();
12502
12503 // When |Divisor| >= 2 ^ 12, it isn't profitable to do such transformation.
12504 // Besides, more critical path instructions will be generated when dividing
12505 // by 2. So we keep using the original DAGs for these cases.
12506 unsigned Lg2 = Divisor.countTrailingZeros();
12507 if (Lg2 == 1 || Lg2 >= 12)
12508 return SDValue();
12509
12510 // fold (sdiv X, pow2)
12511 EVT VT = N->getValueType(0);
12512 if (VT != MVT::i32 && !(Subtarget.is64Bit() && VT == MVT::i64))
12513 return SDValue();
12514
12515 SDLoc DL(N);
12516 SDValue N0 = N->getOperand(0);
12517 SDValue Zero = DAG.getConstant(0, DL, VT);
12518 SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT);
12519
12520 // Add (N0 < 0) ? Pow2 - 1 : 0;
12521 SDValue Cmp = DAG.getSetCC(DL, VT, N0, Zero, ISD::SETLT);
12522 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
12523 SDValue Sel = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
12524
12525 Created.push_back(Cmp.getNode());
12526 Created.push_back(Add.getNode());
12527 Created.push_back(Sel.getNode());
12528
12529 // Divide by pow2.
12530 SDValue SRA =
12531 DAG.getNode(ISD::SRA, DL, VT, Sel, DAG.getConstant(Lg2, DL, VT));
12532
12533 // If we're dividing by a positive value, we're done. Otherwise, we must
12534 // negate the result.
12535 if (Divisor.isNonNegative())
12536 return SRA;
12537
12538 Created.push_back(SRA.getNode());
12539 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA);
12540 }
12541
12542 #define GET_REGISTER_MATCHER
12543 #include "RISCVGenAsmMatcher.inc"
12544
12545 Register
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const12546 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
12547 const MachineFunction &MF) const {
12548 Register Reg = MatchRegisterAltName(RegName);
12549 if (Reg == RISCV::NoRegister)
12550 Reg = MatchRegisterName(RegName);
12551 if (Reg == RISCV::NoRegister)
12552 report_fatal_error(
12553 Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
12554 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
12555 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
12556 report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
12557 StringRef(RegName) + "\"."));
12558 return Reg;
12559 }
12560
12561 namespace llvm {
12562 namespace RISCVVIntrinsicsTable {
12563
12564 #define GET_RISCVVIntrinsicsTable_IMPL
12565 #include "RISCVGenSearchableTables.inc"
12566
12567 } // namespace RISCVVIntrinsicsTable
12568
12569 } // namespace llvm
12570