1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that RISCV uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RISCVISelLowering.h"
15 #include "MCTargetDesc/RISCVMatInt.h"
16 #include "RISCV.h"
17 #include "RISCVMachineFunctionInfo.h"
18 #include "RISCVRegisterInfo.h"
19 #include "RISCVSubtarget.h"
20 #include "RISCVTargetMachine.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28 #include "llvm/CodeGen/ValueTypes.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/DiagnosticPrinter.h"
31 #include "llvm/IR/IntrinsicsRISCV.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "riscv-lower"
42
43 STATISTIC(NumTailCalls, "Number of tail calls");
44
RISCVTargetLowering(const TargetMachine & TM,const RISCVSubtarget & STI)45 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
46 const RISCVSubtarget &STI)
47 : TargetLowering(TM), Subtarget(STI) {
48
49 if (Subtarget.isRV32E())
50 report_fatal_error("Codegen not yet implemented for RV32E");
51
52 RISCVABI::ABI ABI = Subtarget.getTargetABI();
53 assert(ABI != RISCVABI::ABI_Unknown && "Improperly initialised target ABI");
54
55 if ((ABI == RISCVABI::ABI_ILP32F || ABI == RISCVABI::ABI_LP64F) &&
56 !Subtarget.hasStdExtF()) {
57 errs() << "Hard-float 'f' ABI can't be used for a target that "
58 "doesn't support the F instruction set extension (ignoring "
59 "target-abi)\n";
60 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
61 } else if ((ABI == RISCVABI::ABI_ILP32D || ABI == RISCVABI::ABI_LP64D) &&
62 !Subtarget.hasStdExtD()) {
63 errs() << "Hard-float 'd' ABI can't be used for a target that "
64 "doesn't support the D instruction set extension (ignoring "
65 "target-abi)\n";
66 ABI = Subtarget.is64Bit() ? RISCVABI::ABI_LP64 : RISCVABI::ABI_ILP32;
67 }
68
69 switch (ABI) {
70 default:
71 report_fatal_error("Don't know how to lower this ABI");
72 case RISCVABI::ABI_ILP32:
73 case RISCVABI::ABI_ILP32F:
74 case RISCVABI::ABI_ILP32D:
75 case RISCVABI::ABI_LP64:
76 case RISCVABI::ABI_LP64F:
77 case RISCVABI::ABI_LP64D:
78 break;
79 }
80
81 MVT XLenVT = Subtarget.getXLenVT();
82
83 // Set up the register classes.
84 addRegisterClass(XLenVT, &RISCV::GPRRegClass);
85
86 if (Subtarget.hasStdExtZfh())
87 addRegisterClass(MVT::f16, &RISCV::FPR16RegClass);
88 if (Subtarget.hasStdExtF())
89 addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
90 if (Subtarget.hasStdExtD())
91 addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
92
93 static const MVT::SimpleValueType BoolVecVTs[] = {
94 MVT::nxv1i1, MVT::nxv2i1, MVT::nxv4i1, MVT::nxv8i1,
95 MVT::nxv16i1, MVT::nxv32i1, MVT::nxv64i1};
96 static const MVT::SimpleValueType IntVecVTs[] = {
97 MVT::nxv1i8, MVT::nxv2i8, MVT::nxv4i8, MVT::nxv8i8, MVT::nxv16i8,
98 MVT::nxv32i8, MVT::nxv64i8, MVT::nxv1i16, MVT::nxv2i16, MVT::nxv4i16,
99 MVT::nxv8i16, MVT::nxv16i16, MVT::nxv32i16, MVT::nxv1i32, MVT::nxv2i32,
100 MVT::nxv4i32, MVT::nxv8i32, MVT::nxv16i32, MVT::nxv1i64, MVT::nxv2i64,
101 MVT::nxv4i64, MVT::nxv8i64};
102 static const MVT::SimpleValueType F16VecVTs[] = {
103 MVT::nxv1f16, MVT::nxv2f16, MVT::nxv4f16,
104 MVT::nxv8f16, MVT::nxv16f16, MVT::nxv32f16};
105 static const MVT::SimpleValueType F32VecVTs[] = {
106 MVT::nxv1f32, MVT::nxv2f32, MVT::nxv4f32, MVT::nxv8f32, MVT::nxv16f32};
107 static const MVT::SimpleValueType F64VecVTs[] = {
108 MVT::nxv1f64, MVT::nxv2f64, MVT::nxv4f64, MVT::nxv8f64};
109
110 if (Subtarget.hasStdExtV()) {
111 auto addRegClassForRVV = [this](MVT VT) {
112 unsigned Size = VT.getSizeInBits().getKnownMinValue();
113 assert(Size <= 512 && isPowerOf2_32(Size));
114 const TargetRegisterClass *RC;
115 if (Size <= 64)
116 RC = &RISCV::VRRegClass;
117 else if (Size == 128)
118 RC = &RISCV::VRM2RegClass;
119 else if (Size == 256)
120 RC = &RISCV::VRM4RegClass;
121 else
122 RC = &RISCV::VRM8RegClass;
123
124 addRegisterClass(VT, RC);
125 };
126
127 for (MVT VT : BoolVecVTs)
128 addRegClassForRVV(VT);
129 for (MVT VT : IntVecVTs)
130 addRegClassForRVV(VT);
131
132 if (Subtarget.hasStdExtZfh())
133 for (MVT VT : F16VecVTs)
134 addRegClassForRVV(VT);
135
136 if (Subtarget.hasStdExtF())
137 for (MVT VT : F32VecVTs)
138 addRegClassForRVV(VT);
139
140 if (Subtarget.hasStdExtD())
141 for (MVT VT : F64VecVTs)
142 addRegClassForRVV(VT);
143
144 if (Subtarget.useRVVForFixedLengthVectors()) {
145 auto addRegClassForFixedVectors = [this](MVT VT) {
146 MVT ContainerVT = getContainerForFixedLengthVector(VT);
147 unsigned RCID = getRegClassIDForVecVT(ContainerVT);
148 const RISCVRegisterInfo &TRI = *Subtarget.getRegisterInfo();
149 addRegisterClass(VT, TRI.getRegClass(RCID));
150 };
151 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes())
152 if (useRVVForFixedLengthVectorVT(VT))
153 addRegClassForFixedVectors(VT);
154
155 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes())
156 if (useRVVForFixedLengthVectorVT(VT))
157 addRegClassForFixedVectors(VT);
158 }
159 }
160
161 // Compute derived properties from the register classes.
162 computeRegisterProperties(STI.getRegisterInfo());
163
164 setStackPointerRegisterToSaveRestore(RISCV::X2);
165
166 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
167 setLoadExtAction(N, XLenVT, MVT::i1, Promote);
168
169 // TODO: add all necessary setOperationAction calls.
170 setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
171
172 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
173 setOperationAction(ISD::BR_CC, XLenVT, Expand);
174 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
175 setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
176
177 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
178 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
179
180 setOperationAction(ISD::VASTART, MVT::Other, Custom);
181 setOperationAction(ISD::VAARG, MVT::Other, Expand);
182 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
183 setOperationAction(ISD::VAEND, MVT::Other, Expand);
184
185 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
186 if (!Subtarget.hasStdExtZbb()) {
187 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
188 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
189 }
190
191 if (Subtarget.is64Bit()) {
192 setOperationAction(ISD::ADD, MVT::i32, Custom);
193 setOperationAction(ISD::SUB, MVT::i32, Custom);
194 setOperationAction(ISD::SHL, MVT::i32, Custom);
195 setOperationAction(ISD::SRA, MVT::i32, Custom);
196 setOperationAction(ISD::SRL, MVT::i32, Custom);
197
198 setOperationAction(ISD::UADDO, MVT::i32, Custom);
199 setOperationAction(ISD::USUBO, MVT::i32, Custom);
200 setOperationAction(ISD::UADDSAT, MVT::i32, Custom);
201 setOperationAction(ISD::USUBSAT, MVT::i32, Custom);
202 }
203
204 if (!Subtarget.hasStdExtM()) {
205 setOperationAction(ISD::MUL, XLenVT, Expand);
206 setOperationAction(ISD::MULHS, XLenVT, Expand);
207 setOperationAction(ISD::MULHU, XLenVT, Expand);
208 setOperationAction(ISD::SDIV, XLenVT, Expand);
209 setOperationAction(ISD::UDIV, XLenVT, Expand);
210 setOperationAction(ISD::SREM, XLenVT, Expand);
211 setOperationAction(ISD::UREM, XLenVT, Expand);
212 } else {
213 if (Subtarget.is64Bit()) {
214 setOperationAction(ISD::MUL, MVT::i32, Custom);
215 setOperationAction(ISD::MUL, MVT::i128, Custom);
216
217 setOperationAction(ISD::SDIV, MVT::i8, Custom);
218 setOperationAction(ISD::UDIV, MVT::i8, Custom);
219 setOperationAction(ISD::UREM, MVT::i8, Custom);
220 setOperationAction(ISD::SDIV, MVT::i16, Custom);
221 setOperationAction(ISD::UDIV, MVT::i16, Custom);
222 setOperationAction(ISD::UREM, MVT::i16, Custom);
223 setOperationAction(ISD::SDIV, MVT::i32, Custom);
224 setOperationAction(ISD::UDIV, MVT::i32, Custom);
225 setOperationAction(ISD::UREM, MVT::i32, Custom);
226 } else {
227 setOperationAction(ISD::MUL, MVT::i64, Custom);
228 }
229 }
230
231 setOperationAction(ISD::SDIVREM, XLenVT, Expand);
232 setOperationAction(ISD::UDIVREM, XLenVT, Expand);
233 setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
234 setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
235
236 setOperationAction(ISD::SHL_PARTS, XLenVT, Custom);
237 setOperationAction(ISD::SRL_PARTS, XLenVT, Custom);
238 setOperationAction(ISD::SRA_PARTS, XLenVT, Custom);
239
240 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
241 if (Subtarget.is64Bit()) {
242 setOperationAction(ISD::ROTL, MVT::i32, Custom);
243 setOperationAction(ISD::ROTR, MVT::i32, Custom);
244 }
245 } else {
246 setOperationAction(ISD::ROTL, XLenVT, Expand);
247 setOperationAction(ISD::ROTR, XLenVT, Expand);
248 }
249
250 if (Subtarget.hasStdExtZbp()) {
251 // Custom lower bswap/bitreverse so we can convert them to GREVI to enable
252 // more combining.
253 setOperationAction(ISD::BITREVERSE, XLenVT, Custom);
254 setOperationAction(ISD::BSWAP, XLenVT, Custom);
255 setOperationAction(ISD::BITREVERSE, MVT::i8, Custom);
256 // BSWAP i8 doesn't exist.
257 setOperationAction(ISD::BITREVERSE, MVT::i16, Custom);
258 setOperationAction(ISD::BSWAP, MVT::i16, Custom);
259
260 if (Subtarget.is64Bit()) {
261 setOperationAction(ISD::BITREVERSE, MVT::i32, Custom);
262 setOperationAction(ISD::BSWAP, MVT::i32, Custom);
263 }
264 } else {
265 // With Zbb we have an XLen rev8 instruction, but not GREVI. So we'll
266 // pattern match it directly in isel.
267 setOperationAction(ISD::BSWAP, XLenVT,
268 Subtarget.hasStdExtZbb() ? Legal : Expand);
269 }
270
271 if (Subtarget.hasStdExtZbb()) {
272 setOperationAction(ISD::SMIN, XLenVT, Legal);
273 setOperationAction(ISD::SMAX, XLenVT, Legal);
274 setOperationAction(ISD::UMIN, XLenVT, Legal);
275 setOperationAction(ISD::UMAX, XLenVT, Legal);
276
277 if (Subtarget.is64Bit()) {
278 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
279 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
280 setOperationAction(ISD::CTLZ, MVT::i32, Custom);
281 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
282 }
283 } else {
284 setOperationAction(ISD::CTTZ, XLenVT, Expand);
285 setOperationAction(ISD::CTLZ, XLenVT, Expand);
286 setOperationAction(ISD::CTPOP, XLenVT, Expand);
287 }
288
289 if (Subtarget.hasStdExtZbt()) {
290 setOperationAction(ISD::FSHL, XLenVT, Custom);
291 setOperationAction(ISD::FSHR, XLenVT, Custom);
292 setOperationAction(ISD::SELECT, XLenVT, Legal);
293
294 if (Subtarget.is64Bit()) {
295 setOperationAction(ISD::FSHL, MVT::i32, Custom);
296 setOperationAction(ISD::FSHR, MVT::i32, Custom);
297 }
298 } else {
299 setOperationAction(ISD::SELECT, XLenVT, Custom);
300 }
301
302 ISD::CondCode FPCCToExpand[] = {
303 ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
304 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE, ISD::SETGT,
305 ISD::SETGE, ISD::SETNE, ISD::SETO, ISD::SETUO};
306
307 ISD::NodeType FPOpToExpand[] = {
308 ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FP16_TO_FP,
309 ISD::FP_TO_FP16};
310
311 if (Subtarget.hasStdExtZfh())
312 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
313
314 if (Subtarget.hasStdExtZfh()) {
315 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
316 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
317 setOperationAction(ISD::LRINT, MVT::f16, Legal);
318 setOperationAction(ISD::LLRINT, MVT::f16, Legal);
319 setOperationAction(ISD::LROUND, MVT::f16, Legal);
320 setOperationAction(ISD::LLROUND, MVT::f16, Legal);
321 for (auto CC : FPCCToExpand)
322 setCondCodeAction(CC, MVT::f16, Expand);
323 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
324 setOperationAction(ISD::SELECT, MVT::f16, Custom);
325 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
326 for (auto Op : FPOpToExpand)
327 setOperationAction(Op, MVT::f16, Expand);
328 }
329
330 if (Subtarget.hasStdExtF()) {
331 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
332 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
333 setOperationAction(ISD::LRINT, MVT::f32, Legal);
334 setOperationAction(ISD::LLRINT, MVT::f32, Legal);
335 setOperationAction(ISD::LROUND, MVT::f32, Legal);
336 setOperationAction(ISD::LLROUND, MVT::f32, Legal);
337 for (auto CC : FPCCToExpand)
338 setCondCodeAction(CC, MVT::f32, Expand);
339 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
340 setOperationAction(ISD::SELECT, MVT::f32, Custom);
341 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
342 for (auto Op : FPOpToExpand)
343 setOperationAction(Op, MVT::f32, Expand);
344 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
345 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
346 }
347
348 if (Subtarget.hasStdExtF() && Subtarget.is64Bit())
349 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
350
351 if (Subtarget.hasStdExtD()) {
352 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
353 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
354 setOperationAction(ISD::LRINT, MVT::f64, Legal);
355 setOperationAction(ISD::LLRINT, MVT::f64, Legal);
356 setOperationAction(ISD::LROUND, MVT::f64, Legal);
357 setOperationAction(ISD::LLROUND, MVT::f64, Legal);
358 for (auto CC : FPCCToExpand)
359 setCondCodeAction(CC, MVT::f64, Expand);
360 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
361 setOperationAction(ISD::SELECT, MVT::f64, Custom);
362 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
363 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
364 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
365 for (auto Op : FPOpToExpand)
366 setOperationAction(Op, MVT::f64, Expand);
367 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
368 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
369 }
370
371 if (Subtarget.is64Bit()) {
372 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
373 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
374 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
375 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
376 }
377
378 if (Subtarget.hasStdExtF()) {
379 setOperationAction(ISD::FLT_ROUNDS_, XLenVT, Custom);
380 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
381 }
382
383 setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
384 setOperationAction(ISD::BlockAddress, XLenVT, Custom);
385 setOperationAction(ISD::ConstantPool, XLenVT, Custom);
386 setOperationAction(ISD::JumpTable, XLenVT, Custom);
387
388 setOperationAction(ISD::GlobalTLSAddress, XLenVT, Custom);
389
390 // TODO: On M-mode only targets, the cycle[h] CSR may not be present.
391 // Unfortunately this can't be determined just from the ISA naming string.
392 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64,
393 Subtarget.is64Bit() ? Legal : Custom);
394
395 setOperationAction(ISD::TRAP, MVT::Other, Legal);
396 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
397 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
398 if (Subtarget.is64Bit())
399 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i32, Custom);
400
401 if (Subtarget.hasStdExtA()) {
402 setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
403 setMinCmpXchgSizeInBits(32);
404 } else {
405 setMaxAtomicSizeInBitsSupported(0);
406 }
407
408 setBooleanContents(ZeroOrOneBooleanContent);
409
410 if (Subtarget.hasStdExtV()) {
411 setBooleanVectorContents(ZeroOrOneBooleanContent);
412
413 setOperationAction(ISD::VSCALE, XLenVT, Custom);
414
415 // RVV intrinsics may have illegal operands.
416 // We also need to custom legalize vmv.x.s.
417 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom);
418 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
419 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
420 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
421 if (Subtarget.is64Bit()) {
422 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i32, Custom);
423 } else {
424 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
425 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
426 }
427
428 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
429
430 static unsigned IntegerVPOps[] = {
431 ISD::VP_ADD, ISD::VP_SUB, ISD::VP_MUL, ISD::VP_SDIV, ISD::VP_UDIV,
432 ISD::VP_SREM, ISD::VP_UREM, ISD::VP_AND, ISD::VP_OR, ISD::VP_XOR,
433 ISD::VP_ASHR, ISD::VP_LSHR, ISD::VP_SHL};
434
435 static unsigned FloatingPointVPOps[] = {ISD::VP_FADD, ISD::VP_FSUB,
436 ISD::VP_FMUL, ISD::VP_FDIV};
437
438 if (!Subtarget.is64Bit()) {
439 // We must custom-lower certain vXi64 operations on RV32 due to the vector
440 // element type being illegal.
441 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::i64, Custom);
442 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::i64, Custom);
443
444 setOperationAction(ISD::VECREDUCE_ADD, MVT::i64, Custom);
445 setOperationAction(ISD::VECREDUCE_AND, MVT::i64, Custom);
446 setOperationAction(ISD::VECREDUCE_OR, MVT::i64, Custom);
447 setOperationAction(ISD::VECREDUCE_XOR, MVT::i64, Custom);
448 setOperationAction(ISD::VECREDUCE_SMAX, MVT::i64, Custom);
449 setOperationAction(ISD::VECREDUCE_SMIN, MVT::i64, Custom);
450 setOperationAction(ISD::VECREDUCE_UMAX, MVT::i64, Custom);
451 setOperationAction(ISD::VECREDUCE_UMIN, MVT::i64, Custom);
452 }
453
454 for (MVT VT : BoolVecVTs) {
455 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
456
457 // Mask VTs are custom-expanded into a series of standard nodes
458 setOperationAction(ISD::TRUNCATE, VT, Custom);
459 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
460 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
461 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
462
463 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
464 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
465
466 setOperationAction(ISD::SELECT, VT, Custom);
467 setOperationAction(ISD::SELECT_CC, VT, Expand);
468 setOperationAction(ISD::VSELECT, VT, Expand);
469
470 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
471 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
472 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
473
474 // RVV has native int->float & float->int conversions where the
475 // element type sizes are within one power-of-two of each other. Any
476 // wider distances between type sizes have to be lowered as sequences
477 // which progressively narrow the gap in stages.
478 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
479 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
480 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
481 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
482
483 // Expand all extending loads to types larger than this, and truncating
484 // stores from types larger than this.
485 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
486 setTruncStoreAction(OtherVT, VT, Expand);
487 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
488 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
489 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
490 }
491 }
492
493 for (MVT VT : IntVecVTs) {
494 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
495 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
496
497 setOperationAction(ISD::SMIN, VT, Legal);
498 setOperationAction(ISD::SMAX, VT, Legal);
499 setOperationAction(ISD::UMIN, VT, Legal);
500 setOperationAction(ISD::UMAX, VT, Legal);
501
502 setOperationAction(ISD::ROTL, VT, Expand);
503 setOperationAction(ISD::ROTR, VT, Expand);
504
505 // Custom-lower extensions and truncations from/to mask types.
506 setOperationAction(ISD::ANY_EXTEND, VT, Custom);
507 setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
508 setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
509
510 // RVV has native int->float & float->int conversions where the
511 // element type sizes are within one power-of-two of each other. Any
512 // wider distances between type sizes have to be lowered as sequences
513 // which progressively narrow the gap in stages.
514 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
515 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
516 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
517 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
518
519 setOperationAction(ISD::SADDSAT, VT, Legal);
520 setOperationAction(ISD::UADDSAT, VT, Legal);
521 setOperationAction(ISD::SSUBSAT, VT, Legal);
522 setOperationAction(ISD::USUBSAT, VT, Legal);
523
524 // Integer VTs are lowered as a series of "RISCVISD::TRUNCATE_VECTOR_VL"
525 // nodes which truncate by one power of two at a time.
526 setOperationAction(ISD::TRUNCATE, VT, Custom);
527
528 // Custom-lower insert/extract operations to simplify patterns.
529 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
530 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
531
532 // Custom-lower reduction operations to set up the corresponding custom
533 // nodes' operands.
534 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
535 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
536 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
537 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
538 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
539 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
540 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
541 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
542
543 for (unsigned VPOpc : IntegerVPOps)
544 setOperationAction(VPOpc, VT, Custom);
545
546 setOperationAction(ISD::LOAD, VT, Custom);
547 setOperationAction(ISD::STORE, VT, Custom);
548
549 setOperationAction(ISD::MLOAD, VT, Custom);
550 setOperationAction(ISD::MSTORE, VT, Custom);
551 setOperationAction(ISD::MGATHER, VT, Custom);
552 setOperationAction(ISD::MSCATTER, VT, Custom);
553
554 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
555 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
556 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
557
558 setOperationAction(ISD::SELECT, VT, Custom);
559 setOperationAction(ISD::SELECT_CC, VT, Expand);
560
561 setOperationAction(ISD::STEP_VECTOR, VT, Custom);
562 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
563
564 for (MVT OtherVT : MVT::integer_scalable_vector_valuetypes()) {
565 setTruncStoreAction(VT, OtherVT, Expand);
566 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
567 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
568 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
569 }
570 }
571
572 // Expand various CCs to best match the RVV ISA, which natively supports UNE
573 // but no other unordered comparisons, and supports all ordered comparisons
574 // except ONE. Additionally, we expand GT,OGT,GE,OGE for optimization
575 // purposes; they are expanded to their swapped-operand CCs (LT,OLT,LE,OLE),
576 // and we pattern-match those back to the "original", swapping operands once
577 // more. This way we catch both operations and both "vf" and "fv" forms with
578 // fewer patterns.
579 ISD::CondCode VFPCCToExpand[] = {
580 ISD::SETO, ISD::SETONE, ISD::SETUEQ, ISD::SETUGT,
581 ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUO,
582 ISD::SETGT, ISD::SETOGT, ISD::SETGE, ISD::SETOGE,
583 };
584
585 // Sets common operation actions on RVV floating-point vector types.
586 const auto SetCommonVFPActions = [&](MVT VT) {
587 setOperationAction(ISD::SPLAT_VECTOR, VT, Legal);
588 // RVV has native FP_ROUND & FP_EXTEND conversions where the element type
589 // sizes are within one power-of-two of each other. Therefore conversions
590 // between vXf16 and vXf64 must be lowered as sequences which convert via
591 // vXf32.
592 setOperationAction(ISD::FP_ROUND, VT, Custom);
593 setOperationAction(ISD::FP_EXTEND, VT, Custom);
594 // Custom-lower insert/extract operations to simplify patterns.
595 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
596 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
597 // Expand various condition codes (explained above).
598 for (auto CC : VFPCCToExpand)
599 setCondCodeAction(CC, VT, Expand);
600
601 setOperationAction(ISD::FMINNUM, VT, Legal);
602 setOperationAction(ISD::FMAXNUM, VT, Legal);
603
604 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
605 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
606 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
607 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
608 setOperationAction(ISD::FCOPYSIGN, VT, Legal);
609
610 setOperationAction(ISD::LOAD, VT, Custom);
611 setOperationAction(ISD::STORE, VT, Custom);
612
613 setOperationAction(ISD::MLOAD, VT, Custom);
614 setOperationAction(ISD::MSTORE, VT, Custom);
615 setOperationAction(ISD::MGATHER, VT, Custom);
616 setOperationAction(ISD::MSCATTER, VT, Custom);
617
618 setOperationAction(ISD::SELECT, VT, Custom);
619 setOperationAction(ISD::SELECT_CC, VT, Expand);
620
621 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
622 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
623 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
624
625 setOperationAction(ISD::VECTOR_REVERSE, VT, Custom);
626
627 for (unsigned VPOpc : FloatingPointVPOps)
628 setOperationAction(VPOpc, VT, Custom);
629 };
630
631 // Sets common extload/truncstore actions on RVV floating-point vector
632 // types.
633 const auto SetCommonVFPExtLoadTruncStoreActions =
634 [&](MVT VT, ArrayRef<MVT::SimpleValueType> SmallerVTs) {
635 for (auto SmallVT : SmallerVTs) {
636 setTruncStoreAction(VT, SmallVT, Expand);
637 setLoadExtAction(ISD::EXTLOAD, VT, SmallVT, Expand);
638 }
639 };
640
641 if (Subtarget.hasStdExtZfh())
642 for (MVT VT : F16VecVTs)
643 SetCommonVFPActions(VT);
644
645 for (MVT VT : F32VecVTs) {
646 if (Subtarget.hasStdExtF())
647 SetCommonVFPActions(VT);
648 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
649 }
650
651 for (MVT VT : F64VecVTs) {
652 if (Subtarget.hasStdExtD())
653 SetCommonVFPActions(VT);
654 SetCommonVFPExtLoadTruncStoreActions(VT, F16VecVTs);
655 SetCommonVFPExtLoadTruncStoreActions(VT, F32VecVTs);
656 }
657
658 if (Subtarget.useRVVForFixedLengthVectors()) {
659 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
660 if (!useRVVForFixedLengthVectorVT(VT))
661 continue;
662
663 // By default everything must be expanded.
664 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
665 setOperationAction(Op, VT, Expand);
666 for (MVT OtherVT : MVT::integer_fixedlen_vector_valuetypes()) {
667 setTruncStoreAction(VT, OtherVT, Expand);
668 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
669 setLoadExtAction(ISD::SEXTLOAD, OtherVT, VT, Expand);
670 setLoadExtAction(ISD::ZEXTLOAD, OtherVT, VT, Expand);
671 }
672
673 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
674 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
675 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
676
677 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
678 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
679
680 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
681 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
682
683 setOperationAction(ISD::LOAD, VT, Custom);
684 setOperationAction(ISD::STORE, VT, Custom);
685
686 setOperationAction(ISD::SETCC, VT, Custom);
687
688 setOperationAction(ISD::SELECT, VT, Custom);
689
690 setOperationAction(ISD::TRUNCATE, VT, Custom);
691
692 setOperationAction(ISD::BITCAST, VT, Custom);
693
694 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
695 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
696 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
697
698 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
699 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
700 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
701 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
702
703 // Operations below are different for between masks and other vectors.
704 if (VT.getVectorElementType() == MVT::i1) {
705 setOperationAction(ISD::AND, VT, Custom);
706 setOperationAction(ISD::OR, VT, Custom);
707 setOperationAction(ISD::XOR, VT, Custom);
708 continue;
709 }
710
711 // Use SPLAT_VECTOR to prevent type legalization from destroying the
712 // splats when type legalizing i64 scalar on RV32.
713 // FIXME: Use SPLAT_VECTOR for all types? DAGCombine probably needs
714 // improvements first.
715 if (!Subtarget.is64Bit() && VT.getVectorElementType() == MVT::i64) {
716 setOperationAction(ISD::SPLAT_VECTOR, VT, Custom);
717 setOperationAction(ISD::SPLAT_VECTOR_PARTS, VT, Custom);
718 }
719
720 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
721 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
722
723 setOperationAction(ISD::MLOAD, VT, Custom);
724 setOperationAction(ISD::MSTORE, VT, Custom);
725 setOperationAction(ISD::MGATHER, VT, Custom);
726 setOperationAction(ISD::MSCATTER, VT, Custom);
727 setOperationAction(ISD::ADD, VT, Custom);
728 setOperationAction(ISD::MUL, VT, Custom);
729 setOperationAction(ISD::SUB, VT, Custom);
730 setOperationAction(ISD::AND, VT, Custom);
731 setOperationAction(ISD::OR, VT, Custom);
732 setOperationAction(ISD::XOR, VT, Custom);
733 setOperationAction(ISD::SDIV, VT, Custom);
734 setOperationAction(ISD::SREM, VT, Custom);
735 setOperationAction(ISD::UDIV, VT, Custom);
736 setOperationAction(ISD::UREM, VT, Custom);
737 setOperationAction(ISD::SHL, VT, Custom);
738 setOperationAction(ISD::SRA, VT, Custom);
739 setOperationAction(ISD::SRL, VT, Custom);
740
741 setOperationAction(ISD::SMIN, VT, Custom);
742 setOperationAction(ISD::SMAX, VT, Custom);
743 setOperationAction(ISD::UMIN, VT, Custom);
744 setOperationAction(ISD::UMAX, VT, Custom);
745 setOperationAction(ISD::ABS, VT, Custom);
746
747 setOperationAction(ISD::MULHS, VT, Custom);
748 setOperationAction(ISD::MULHU, VT, Custom);
749
750 setOperationAction(ISD::SADDSAT, VT, Custom);
751 setOperationAction(ISD::UADDSAT, VT, Custom);
752 setOperationAction(ISD::SSUBSAT, VT, Custom);
753 setOperationAction(ISD::USUBSAT, VT, Custom);
754
755 setOperationAction(ISD::VSELECT, VT, Custom);
756 setOperationAction(ISD::SELECT_CC, VT, Expand);
757
758 setOperationAction(ISD::ANY_EXTEND, VT, Custom);
759 setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
760 setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
761
762 // Custom-lower reduction operations to set up the corresponding custom
763 // nodes' operands.
764 setOperationAction(ISD::VECREDUCE_ADD, VT, Custom);
765 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
766 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
767 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
768 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
769
770 for (unsigned VPOpc : IntegerVPOps)
771 setOperationAction(VPOpc, VT, Custom);
772 }
773
774 for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) {
775 if (!useRVVForFixedLengthVectorVT(VT))
776 continue;
777
778 // By default everything must be expanded.
779 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op)
780 setOperationAction(Op, VT, Expand);
781 for (MVT OtherVT : MVT::fp_fixedlen_vector_valuetypes()) {
782 setLoadExtAction(ISD::EXTLOAD, OtherVT, VT, Expand);
783 setTruncStoreAction(VT, OtherVT, Expand);
784 }
785
786 // We use EXTRACT_SUBVECTOR as a "cast" from scalable to fixed.
787 setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
788 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
789
790 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
791 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
792 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
793 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
794
795 setOperationAction(ISD::LOAD, VT, Custom);
796 setOperationAction(ISD::STORE, VT, Custom);
797 setOperationAction(ISD::MLOAD, VT, Custom);
798 setOperationAction(ISD::MSTORE, VT, Custom);
799 setOperationAction(ISD::MGATHER, VT, Custom);
800 setOperationAction(ISD::MSCATTER, VT, Custom);
801 setOperationAction(ISD::FADD, VT, Custom);
802 setOperationAction(ISD::FSUB, VT, Custom);
803 setOperationAction(ISD::FMUL, VT, Custom);
804 setOperationAction(ISD::FDIV, VT, Custom);
805 setOperationAction(ISD::FNEG, VT, Custom);
806 setOperationAction(ISD::FABS, VT, Custom);
807 setOperationAction(ISD::FCOPYSIGN, VT, Custom);
808 setOperationAction(ISD::FSQRT, VT, Custom);
809 setOperationAction(ISD::FMA, VT, Custom);
810 setOperationAction(ISD::FMINNUM, VT, Custom);
811 setOperationAction(ISD::FMAXNUM, VT, Custom);
812
813 setOperationAction(ISD::FP_ROUND, VT, Custom);
814 setOperationAction(ISD::FP_EXTEND, VT, Custom);
815
816 for (auto CC : VFPCCToExpand)
817 setCondCodeAction(CC, VT, Expand);
818
819 setOperationAction(ISD::VSELECT, VT, Custom);
820 setOperationAction(ISD::SELECT, VT, Custom);
821 setOperationAction(ISD::SELECT_CC, VT, Expand);
822
823 setOperationAction(ISD::BITCAST, VT, Custom);
824
825 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
826 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom);
827 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
828 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
829
830 for (unsigned VPOpc : FloatingPointVPOps)
831 setOperationAction(VPOpc, VT, Custom);
832 }
833
834 // Custom-legalize bitcasts from fixed-length vectors to scalar types.
835 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
836 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
837 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
838 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
839 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
840 setOperationAction(ISD::BITCAST, MVT::f32, Custom);
841 setOperationAction(ISD::BITCAST, MVT::f64, Custom);
842 }
843 }
844
845 // Function alignments.
846 const Align FunctionAlignment(Subtarget.hasStdExtC() ? 2 : 4);
847 setMinFunctionAlignment(FunctionAlignment);
848 setPrefFunctionAlignment(FunctionAlignment);
849
850 setMinimumJumpTableEntries(5);
851
852 // Jumps are expensive, compared to logic
853 setJumpIsExpensive();
854
855 // We can use any register for comparisons
856 setHasMultipleConditionRegisters();
857
858 setTargetDAGCombine(ISD::AND);
859 setTargetDAGCombine(ISD::OR);
860 setTargetDAGCombine(ISD::XOR);
861 setTargetDAGCombine(ISD::ANY_EXTEND);
862 setTargetDAGCombine(ISD::ZERO_EXTEND);
863 if (Subtarget.hasStdExtV()) {
864 setTargetDAGCombine(ISD::FCOPYSIGN);
865 setTargetDAGCombine(ISD::MGATHER);
866 setTargetDAGCombine(ISD::MSCATTER);
867 setTargetDAGCombine(ISD::SRA);
868 setTargetDAGCombine(ISD::SRL);
869 setTargetDAGCombine(ISD::SHL);
870 }
871 }
872
getSetCCResultType(const DataLayout & DL,LLVMContext & Context,EVT VT) const873 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL,
874 LLVMContext &Context,
875 EVT VT) const {
876 if (!VT.isVector())
877 return getPointerTy(DL);
878 if (Subtarget.hasStdExtV() &&
879 (VT.isScalableVector() || Subtarget.useRVVForFixedLengthVectors()))
880 return EVT::getVectorVT(Context, MVT::i1, VT.getVectorElementCount());
881 return VT.changeVectorElementTypeToInteger();
882 }
883
getVPExplicitVectorLengthTy() const884 MVT RISCVTargetLowering::getVPExplicitVectorLengthTy() const {
885 return Subtarget.getXLenVT();
886 }
887
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const888 bool RISCVTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
889 const CallInst &I,
890 MachineFunction &MF,
891 unsigned Intrinsic) const {
892 switch (Intrinsic) {
893 default:
894 return false;
895 case Intrinsic::riscv_masked_atomicrmw_xchg_i32:
896 case Intrinsic::riscv_masked_atomicrmw_add_i32:
897 case Intrinsic::riscv_masked_atomicrmw_sub_i32:
898 case Intrinsic::riscv_masked_atomicrmw_nand_i32:
899 case Intrinsic::riscv_masked_atomicrmw_max_i32:
900 case Intrinsic::riscv_masked_atomicrmw_min_i32:
901 case Intrinsic::riscv_masked_atomicrmw_umax_i32:
902 case Intrinsic::riscv_masked_atomicrmw_umin_i32:
903 case Intrinsic::riscv_masked_cmpxchg_i32: {
904 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
905 Info.opc = ISD::INTRINSIC_W_CHAIN;
906 Info.memVT = MVT::getVT(PtrTy->getElementType());
907 Info.ptrVal = I.getArgOperand(0);
908 Info.offset = 0;
909 Info.align = Align(4);
910 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
911 MachineMemOperand::MOVolatile;
912 return true;
913 }
914 }
915 }
916
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const917 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
918 const AddrMode &AM, Type *Ty,
919 unsigned AS,
920 Instruction *I) const {
921 // No global is ever allowed as a base.
922 if (AM.BaseGV)
923 return false;
924
925 // Require a 12-bit signed offset.
926 if (!isInt<12>(AM.BaseOffs))
927 return false;
928
929 switch (AM.Scale) {
930 case 0: // "r+i" or just "i", depending on HasBaseReg.
931 break;
932 case 1:
933 if (!AM.HasBaseReg) // allow "r+i".
934 break;
935 return false; // disallow "r+r" or "r+r+i".
936 default:
937 return false;
938 }
939
940 return true;
941 }
942
isLegalICmpImmediate(int64_t Imm) const943 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
944 return isInt<12>(Imm);
945 }
946
isLegalAddImmediate(int64_t Imm) const947 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
948 return isInt<12>(Imm);
949 }
950
951 // On RV32, 64-bit integers are split into their high and low parts and held
952 // in two different registers, so the trunc is free since the low register can
953 // just be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const954 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
955 if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
956 return false;
957 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
958 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
959 return (SrcBits == 64 && DestBits == 32);
960 }
961
isTruncateFree(EVT SrcVT,EVT DstVT) const962 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
963 if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
964 !SrcVT.isInteger() || !DstVT.isInteger())
965 return false;
966 unsigned SrcBits = SrcVT.getSizeInBits();
967 unsigned DestBits = DstVT.getSizeInBits();
968 return (SrcBits == 64 && DestBits == 32);
969 }
970
isZExtFree(SDValue Val,EVT VT2) const971 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
972 // Zexts are free if they can be combined with a load.
973 if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
974 EVT MemVT = LD->getMemoryVT();
975 if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
976 (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
977 (LD->getExtensionType() == ISD::NON_EXTLOAD ||
978 LD->getExtensionType() == ISD::ZEXTLOAD))
979 return true;
980 }
981
982 return TargetLowering::isZExtFree(Val, VT2);
983 }
984
isSExtCheaperThanZExt(EVT SrcVT,EVT DstVT) const985 bool RISCVTargetLowering::isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const {
986 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
987 }
988
isCheapToSpeculateCttz() const989 bool RISCVTargetLowering::isCheapToSpeculateCttz() const {
990 return Subtarget.hasStdExtZbb();
991 }
992
isCheapToSpeculateCtlz() const993 bool RISCVTargetLowering::isCheapToSpeculateCtlz() const {
994 return Subtarget.hasStdExtZbb();
995 }
996
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const997 bool RISCVTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
998 bool ForCodeSize) const {
999 if (VT == MVT::f16 && !Subtarget.hasStdExtZfh())
1000 return false;
1001 if (VT == MVT::f32 && !Subtarget.hasStdExtF())
1002 return false;
1003 if (VT == MVT::f64 && !Subtarget.hasStdExtD())
1004 return false;
1005 if (Imm.isNegZero())
1006 return false;
1007 return Imm.isZero();
1008 }
1009
hasBitPreservingFPLogic(EVT VT) const1010 bool RISCVTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
1011 return (VT == MVT::f16 && Subtarget.hasStdExtZfh()) ||
1012 (VT == MVT::f32 && Subtarget.hasStdExtF()) ||
1013 (VT == MVT::f64 && Subtarget.hasStdExtD());
1014 }
1015
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1016 MVT RISCVTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1017 CallingConv::ID CC,
1018 EVT VT) const {
1019 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1020 // end up using a GPR but that will be decided based on ABI.
1021 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1022 return MVT::f32;
1023
1024 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1025 }
1026
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1027 unsigned RISCVTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1028 CallingConv::ID CC,
1029 EVT VT) const {
1030 // Use f32 to pass f16 if it is legal and Zfh is not enabled. We might still
1031 // end up using a GPR but that will be decided based on ABI.
1032 if (VT == MVT::f16 && Subtarget.hasStdExtF() && !Subtarget.hasStdExtZfh())
1033 return 1;
1034
1035 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1036 }
1037
1038 // Changes the condition code and swaps operands if necessary, so the SetCC
1039 // operation matches one of the comparisons supported directly by branches
1040 // in the RISC-V ISA. May adjust compares to favor compare with 0 over compare
1041 // with 1/-1.
translateSetCCForBranch(const SDLoc & DL,SDValue & LHS,SDValue & RHS,ISD::CondCode & CC,SelectionDAG & DAG)1042 static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS,
1043 ISD::CondCode &CC, SelectionDAG &DAG) {
1044 // Convert X > -1 to X >= 0.
1045 if (CC == ISD::SETGT && isAllOnesConstant(RHS)) {
1046 RHS = DAG.getConstant(0, DL, RHS.getValueType());
1047 CC = ISD::SETGE;
1048 return;
1049 }
1050 // Convert X < 1 to 0 >= X.
1051 if (CC == ISD::SETLT && isOneConstant(RHS)) {
1052 RHS = LHS;
1053 LHS = DAG.getConstant(0, DL, RHS.getValueType());
1054 CC = ISD::SETGE;
1055 return;
1056 }
1057
1058 switch (CC) {
1059 default:
1060 break;
1061 case ISD::SETGT:
1062 case ISD::SETLE:
1063 case ISD::SETUGT:
1064 case ISD::SETULE:
1065 CC = ISD::getSetCCSwappedOperands(CC);
1066 std::swap(LHS, RHS);
1067 break;
1068 }
1069 }
1070
1071 // Return the RISC-V branch opcode that matches the given DAG integer
1072 // condition code. The CondCode must be one of those supported by the RISC-V
1073 // ISA (see translateSetCCForBranch).
getBranchOpcodeForIntCondCode(ISD::CondCode CC)1074 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
1075 switch (CC) {
1076 default:
1077 llvm_unreachable("Unsupported CondCode");
1078 case ISD::SETEQ:
1079 return RISCV::BEQ;
1080 case ISD::SETNE:
1081 return RISCV::BNE;
1082 case ISD::SETLT:
1083 return RISCV::BLT;
1084 case ISD::SETGE:
1085 return RISCV::BGE;
1086 case ISD::SETULT:
1087 return RISCV::BLTU;
1088 case ISD::SETUGE:
1089 return RISCV::BGEU;
1090 }
1091 }
1092
getLMUL(MVT VT)1093 RISCVII::VLMUL RISCVTargetLowering::getLMUL(MVT VT) {
1094 assert(VT.isScalableVector() && "Expecting a scalable vector type");
1095 unsigned KnownSize = VT.getSizeInBits().getKnownMinValue();
1096 if (VT.getVectorElementType() == MVT::i1)
1097 KnownSize *= 8;
1098
1099 switch (KnownSize) {
1100 default:
1101 llvm_unreachable("Invalid LMUL.");
1102 case 8:
1103 return RISCVII::VLMUL::LMUL_F8;
1104 case 16:
1105 return RISCVII::VLMUL::LMUL_F4;
1106 case 32:
1107 return RISCVII::VLMUL::LMUL_F2;
1108 case 64:
1109 return RISCVII::VLMUL::LMUL_1;
1110 case 128:
1111 return RISCVII::VLMUL::LMUL_2;
1112 case 256:
1113 return RISCVII::VLMUL::LMUL_4;
1114 case 512:
1115 return RISCVII::VLMUL::LMUL_8;
1116 }
1117 }
1118
getRegClassIDForLMUL(RISCVII::VLMUL LMul)1119 unsigned RISCVTargetLowering::getRegClassIDForLMUL(RISCVII::VLMUL LMul) {
1120 switch (LMul) {
1121 default:
1122 llvm_unreachable("Invalid LMUL.");
1123 case RISCVII::VLMUL::LMUL_F8:
1124 case RISCVII::VLMUL::LMUL_F4:
1125 case RISCVII::VLMUL::LMUL_F2:
1126 case RISCVII::VLMUL::LMUL_1:
1127 return RISCV::VRRegClassID;
1128 case RISCVII::VLMUL::LMUL_2:
1129 return RISCV::VRM2RegClassID;
1130 case RISCVII::VLMUL::LMUL_4:
1131 return RISCV::VRM4RegClassID;
1132 case RISCVII::VLMUL::LMUL_8:
1133 return RISCV::VRM8RegClassID;
1134 }
1135 }
1136
getSubregIndexByMVT(MVT VT,unsigned Index)1137 unsigned RISCVTargetLowering::getSubregIndexByMVT(MVT VT, unsigned Index) {
1138 RISCVII::VLMUL LMUL = getLMUL(VT);
1139 if (LMUL == RISCVII::VLMUL::LMUL_F8 ||
1140 LMUL == RISCVII::VLMUL::LMUL_F4 ||
1141 LMUL == RISCVII::VLMUL::LMUL_F2 ||
1142 LMUL == RISCVII::VLMUL::LMUL_1) {
1143 static_assert(RISCV::sub_vrm1_7 == RISCV::sub_vrm1_0 + 7,
1144 "Unexpected subreg numbering");
1145 return RISCV::sub_vrm1_0 + Index;
1146 }
1147 if (LMUL == RISCVII::VLMUL::LMUL_2) {
1148 static_assert(RISCV::sub_vrm2_3 == RISCV::sub_vrm2_0 + 3,
1149 "Unexpected subreg numbering");
1150 return RISCV::sub_vrm2_0 + Index;
1151 }
1152 if (LMUL == RISCVII::VLMUL::LMUL_4) {
1153 static_assert(RISCV::sub_vrm4_1 == RISCV::sub_vrm4_0 + 1,
1154 "Unexpected subreg numbering");
1155 return RISCV::sub_vrm4_0 + Index;
1156 }
1157 llvm_unreachable("Invalid vector type.");
1158 }
1159
getRegClassIDForVecVT(MVT VT)1160 unsigned RISCVTargetLowering::getRegClassIDForVecVT(MVT VT) {
1161 if (VT.getVectorElementType() == MVT::i1)
1162 return RISCV::VRRegClassID;
1163 return getRegClassIDForLMUL(getLMUL(VT));
1164 }
1165
1166 // Attempt to decompose a subvector insert/extract between VecVT and
1167 // SubVecVT via subregister indices. Returns the subregister index that
1168 // can perform the subvector insert/extract with the given element index, as
1169 // well as the index corresponding to any leftover subvectors that must be
1170 // further inserted/extracted within the register class for SubVecVT.
1171 std::pair<unsigned, unsigned>
decomposeSubvectorInsertExtractToSubRegs(MVT VecVT,MVT SubVecVT,unsigned InsertExtractIdx,const RISCVRegisterInfo * TRI)1172 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
1173 MVT VecVT, MVT SubVecVT, unsigned InsertExtractIdx,
1174 const RISCVRegisterInfo *TRI) {
1175 static_assert((RISCV::VRM8RegClassID > RISCV::VRM4RegClassID &&
1176 RISCV::VRM4RegClassID > RISCV::VRM2RegClassID &&
1177 RISCV::VRM2RegClassID > RISCV::VRRegClassID),
1178 "Register classes not ordered");
1179 unsigned VecRegClassID = getRegClassIDForVecVT(VecVT);
1180 unsigned SubRegClassID = getRegClassIDForVecVT(SubVecVT);
1181 // Try to compose a subregister index that takes us from the incoming
1182 // LMUL>1 register class down to the outgoing one. At each step we half
1183 // the LMUL:
1184 // nxv16i32@12 -> nxv2i32: sub_vrm4_1_then_sub_vrm2_1_then_sub_vrm1_0
1185 // Note that this is not guaranteed to find a subregister index, such as
1186 // when we are extracting from one VR type to another.
1187 unsigned SubRegIdx = RISCV::NoSubRegister;
1188 for (const unsigned RCID :
1189 {RISCV::VRM4RegClassID, RISCV::VRM2RegClassID, RISCV::VRRegClassID})
1190 if (VecRegClassID > RCID && SubRegClassID <= RCID) {
1191 VecVT = VecVT.getHalfNumVectorElementsVT();
1192 bool IsHi =
1193 InsertExtractIdx >= VecVT.getVectorElementCount().getKnownMinValue();
1194 SubRegIdx = TRI->composeSubRegIndices(SubRegIdx,
1195 getSubregIndexByMVT(VecVT, IsHi));
1196 if (IsHi)
1197 InsertExtractIdx -= VecVT.getVectorElementCount().getKnownMinValue();
1198 }
1199 return {SubRegIdx, InsertExtractIdx};
1200 }
1201
1202 // Permit combining of mask vectors as BUILD_VECTOR never expands to scalar
1203 // stores for those types.
mergeStoresAfterLegalization(EVT VT) const1204 bool RISCVTargetLowering::mergeStoresAfterLegalization(EVT VT) const {
1205 return !Subtarget.useRVVForFixedLengthVectors() ||
1206 (VT.isFixedLengthVector() && VT.getVectorElementType() == MVT::i1);
1207 }
1208
useRVVForFixedLengthVectorVT(MVT VT,const RISCVSubtarget & Subtarget)1209 static bool useRVVForFixedLengthVectorVT(MVT VT,
1210 const RISCVSubtarget &Subtarget) {
1211 assert(VT.isFixedLengthVector() && "Expected a fixed length vector type!");
1212 if (!Subtarget.useRVVForFixedLengthVectors())
1213 return false;
1214
1215 // We only support a set of vector types with a consistent maximum fixed size
1216 // across all supported vector element types to avoid legalization issues.
1217 // Therefore -- since the largest is v1024i8/v512i16/etc -- the largest
1218 // fixed-length vector type we support is 1024 bytes.
1219 if (VT.getFixedSizeInBits() > 1024 * 8)
1220 return false;
1221
1222 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1223
1224 // Don't use RVV for vectors we cannot scalarize if required.
1225 switch (VT.getVectorElementType().SimpleTy) {
1226 // i1 is supported but has different rules.
1227 default:
1228 return false;
1229 case MVT::i1:
1230 // Masks can only use a single register.
1231 if (VT.getVectorNumElements() > MinVLen)
1232 return false;
1233 MinVLen /= 8;
1234 break;
1235 case MVT::i8:
1236 case MVT::i16:
1237 case MVT::i32:
1238 case MVT::i64:
1239 break;
1240 case MVT::f16:
1241 if (!Subtarget.hasStdExtZfh())
1242 return false;
1243 break;
1244 case MVT::f32:
1245 if (!Subtarget.hasStdExtF())
1246 return false;
1247 break;
1248 case MVT::f64:
1249 if (!Subtarget.hasStdExtD())
1250 return false;
1251 break;
1252 }
1253
1254 unsigned LMul = divideCeil(VT.getSizeInBits(), MinVLen);
1255 // Don't use RVV for types that don't fit.
1256 if (LMul > Subtarget.getMaxLMULForFixedLengthVectors())
1257 return false;
1258
1259 // TODO: Perhaps an artificial restriction, but worth having whilst getting
1260 // the base fixed length RVV support in place.
1261 if (!VT.isPow2VectorType())
1262 return false;
1263
1264 return true;
1265 }
1266
useRVVForFixedLengthVectorVT(MVT VT) const1267 bool RISCVTargetLowering::useRVVForFixedLengthVectorVT(MVT VT) const {
1268 return ::useRVVForFixedLengthVectorVT(VT, Subtarget);
1269 }
1270
1271 // Return the largest legal scalable vector type that matches VT's element type.
getContainerForFixedLengthVector(const TargetLowering & TLI,MVT VT,const RISCVSubtarget & Subtarget)1272 static MVT getContainerForFixedLengthVector(const TargetLowering &TLI, MVT VT,
1273 const RISCVSubtarget &Subtarget) {
1274 // This may be called before legal types are setup.
1275 assert(((VT.isFixedLengthVector() && TLI.isTypeLegal(VT)) ||
1276 useRVVForFixedLengthVectorVT(VT, Subtarget)) &&
1277 "Expected legal fixed length vector!");
1278
1279 unsigned MinVLen = Subtarget.getMinRVVVectorSizeInBits();
1280
1281 MVT EltVT = VT.getVectorElementType();
1282 switch (EltVT.SimpleTy) {
1283 default:
1284 llvm_unreachable("unexpected element type for RVV container");
1285 case MVT::i1:
1286 case MVT::i8:
1287 case MVT::i16:
1288 case MVT::i32:
1289 case MVT::i64:
1290 case MVT::f16:
1291 case MVT::f32:
1292 case MVT::f64: {
1293 // We prefer to use LMUL=1 for VLEN sized types. Use fractional lmuls for
1294 // narrower types, but we can't have a fractional LMUL with demoninator less
1295 // than 64/SEW.
1296 unsigned NumElts =
1297 divideCeil(VT.getVectorNumElements(), MinVLen / RISCV::RVVBitsPerBlock);
1298 return MVT::getScalableVectorVT(EltVT, NumElts);
1299 }
1300 }
1301 }
1302
getContainerForFixedLengthVector(SelectionDAG & DAG,MVT VT,const RISCVSubtarget & Subtarget)1303 static MVT getContainerForFixedLengthVector(SelectionDAG &DAG, MVT VT,
1304 const RISCVSubtarget &Subtarget) {
1305 return getContainerForFixedLengthVector(DAG.getTargetLoweringInfo(), VT,
1306 Subtarget);
1307 }
1308
getContainerForFixedLengthVector(MVT VT) const1309 MVT RISCVTargetLowering::getContainerForFixedLengthVector(MVT VT) const {
1310 return ::getContainerForFixedLengthVector(*this, VT, getSubtarget());
1311 }
1312
1313 // Grow V to consume an entire RVV register.
convertToScalableVector(EVT VT,SDValue V,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1314 static SDValue convertToScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1315 const RISCVSubtarget &Subtarget) {
1316 assert(VT.isScalableVector() &&
1317 "Expected to convert into a scalable vector!");
1318 assert(V.getValueType().isFixedLengthVector() &&
1319 "Expected a fixed length vector operand!");
1320 SDLoc DL(V);
1321 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1322 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero);
1323 }
1324
1325 // Shrink V so it's just big enough to maintain a VT's worth of data.
convertFromScalableVector(EVT VT,SDValue V,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1326 static SDValue convertFromScalableVector(EVT VT, SDValue V, SelectionDAG &DAG,
1327 const RISCVSubtarget &Subtarget) {
1328 assert(VT.isFixedLengthVector() &&
1329 "Expected to convert into a fixed length vector!");
1330 assert(V.getValueType().isScalableVector() &&
1331 "Expected a scalable vector operand!");
1332 SDLoc DL(V);
1333 SDValue Zero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
1334 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero);
1335 }
1336
1337 // Gets the two common "VL" operands: an all-ones mask and the vector length.
1338 // VecVT is a vector type, either fixed-length or scalable, and ContainerVT is
1339 // the vector type that it is contained in.
1340 static std::pair<SDValue, SDValue>
getDefaultVLOps(MVT VecVT,MVT ContainerVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1341 getDefaultVLOps(MVT VecVT, MVT ContainerVT, SDLoc DL, SelectionDAG &DAG,
1342 const RISCVSubtarget &Subtarget) {
1343 assert(ContainerVT.isScalableVector() && "Expecting scalable container type");
1344 MVT XLenVT = Subtarget.getXLenVT();
1345 SDValue VL = VecVT.isFixedLengthVector()
1346 ? DAG.getConstant(VecVT.getVectorNumElements(), DL, XLenVT)
1347 : DAG.getRegister(RISCV::X0, XLenVT);
1348 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
1349 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
1350 return {Mask, VL};
1351 }
1352
1353 // As above but assuming the given type is a scalable vector type.
1354 static std::pair<SDValue, SDValue>
getDefaultScalableVLOps(MVT VecVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1355 getDefaultScalableVLOps(MVT VecVT, SDLoc DL, SelectionDAG &DAG,
1356 const RISCVSubtarget &Subtarget) {
1357 assert(VecVT.isScalableVector() && "Expecting a scalable vector");
1358 return getDefaultVLOps(VecVT, VecVT, DL, DAG, Subtarget);
1359 }
1360
1361 // The state of RVV BUILD_VECTOR and VECTOR_SHUFFLE lowering is that very few
1362 // of either is (currently) supported. This can get us into an infinite loop
1363 // where we try to lower a BUILD_VECTOR as a VECTOR_SHUFFLE as a BUILD_VECTOR
1364 // as a ..., etc.
1365 // Until either (or both) of these can reliably lower any node, reporting that
1366 // we don't want to expand BUILD_VECTORs via VECTOR_SHUFFLEs at least breaks
1367 // the infinite loop. Note that this lowers BUILD_VECTOR through the stack,
1368 // which is not desirable.
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const1369 bool RISCVTargetLowering::shouldExpandBuildVectorWithShuffles(
1370 EVT VT, unsigned DefinedValues) const {
1371 return false;
1372 }
1373
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const1374 bool RISCVTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
1375 // Only splats are currently supported.
1376 if (ShuffleVectorSDNode::isSplatMask(M.data(), VT))
1377 return true;
1378
1379 return false;
1380 }
1381
lowerSPLAT_VECTOR(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1382 static SDValue lowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG,
1383 const RISCVSubtarget &Subtarget) {
1384 MVT VT = Op.getSimpleValueType();
1385 assert(VT.isFixedLengthVector() && "Unexpected vector!");
1386
1387 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1388
1389 SDLoc DL(Op);
1390 SDValue Mask, VL;
1391 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1392
1393 unsigned Opc =
1394 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1395 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, Op.getOperand(0), VL);
1396 return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1397 }
1398
1399 struct VIDSequence {
1400 int64_t Step;
1401 int64_t Addend;
1402 };
1403
1404 // Try to match an arithmetic-sequence BUILD_VECTOR [X,X+S,X+2*S,...,X+(N-1)*S]
1405 // to the (non-zero) step S and start value X. This can be then lowered as the
1406 // RVV sequence (VID * S) + X, for example.
1407 // Note that this method will also match potentially unappealing index
1408 // sequences, like <i32 0, i32 50939494>, however it is left to the caller to
1409 // determine whether this is worth generating code for.
isSimpleVIDSequence(SDValue Op)1410 static Optional<VIDSequence> isSimpleVIDSequence(SDValue Op) {
1411 unsigned NumElts = Op.getNumOperands();
1412 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unexpected BUILD_VECTOR");
1413 if (!Op.getValueType().isInteger())
1414 return None;
1415
1416 Optional<int64_t> SeqStep, SeqAddend;
1417 Optional<std::pair<uint64_t, unsigned>> PrevElt;
1418 unsigned EltSizeInBits = Op.getValueType().getScalarSizeInBits();
1419 for (unsigned Idx = 0; Idx < NumElts; Idx++) {
1420 // Assume undef elements match the sequence; we just have to be careful
1421 // when interpolating across them.
1422 if (Op.getOperand(Idx).isUndef())
1423 continue;
1424 // The BUILD_VECTOR must be all constants.
1425 if (!isa<ConstantSDNode>(Op.getOperand(Idx)))
1426 return None;
1427
1428 uint64_t Val = Op.getConstantOperandVal(Idx) &
1429 maskTrailingOnes<uint64_t>(EltSizeInBits);
1430
1431 if (PrevElt) {
1432 // Calculate the step since the last non-undef element, and ensure
1433 // it's consistent across the entire sequence.
1434 int64_t Diff = SignExtend64(Val - PrevElt->first, EltSizeInBits);
1435 // The difference must cleanly divide the element span.
1436 if (Diff % (Idx - PrevElt->second) != 0)
1437 return None;
1438 int64_t Step = Diff / (Idx - PrevElt->second);
1439 // A zero step indicates we're either a not an index sequence, or we
1440 // have a fractional step. This must be handled by a more complex
1441 // pattern recognition (undefs complicate things here).
1442 if (Step == 0)
1443 return None;
1444 if (!SeqStep)
1445 SeqStep = Step;
1446 else if (Step != SeqStep)
1447 return None;
1448 }
1449
1450 // Record and/or check any addend.
1451 if (SeqStep) {
1452 int64_t Addend =
1453 SignExtend64(Val - (Idx * (uint64_t)*SeqStep), EltSizeInBits);
1454 if (!SeqAddend)
1455 SeqAddend = Addend;
1456 else if (SeqAddend != Addend)
1457 return None;
1458 }
1459
1460 // Record this non-undef element for later.
1461 PrevElt = std::make_pair(Val, Idx);
1462 }
1463 // We need to have logged both a step and an addend for this to count as
1464 // a legal index sequence.
1465 if (!SeqStep || !SeqAddend)
1466 return None;
1467
1468 return VIDSequence{*SeqStep, *SeqAddend};
1469 }
1470
lowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1471 static SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
1472 const RISCVSubtarget &Subtarget) {
1473 MVT VT = Op.getSimpleValueType();
1474 assert(VT.isFixedLengthVector() && "Unexpected vector!");
1475
1476 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1477
1478 SDLoc DL(Op);
1479 SDValue Mask, VL;
1480 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1481
1482 MVT XLenVT = Subtarget.getXLenVT();
1483 unsigned NumElts = Op.getNumOperands();
1484
1485 if (VT.getVectorElementType() == MVT::i1) {
1486 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
1487 SDValue VMClr = DAG.getNode(RISCVISD::VMCLR_VL, DL, ContainerVT, VL);
1488 return convertFromScalableVector(VT, VMClr, DAG, Subtarget);
1489 }
1490
1491 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
1492 SDValue VMSet = DAG.getNode(RISCVISD::VMSET_VL, DL, ContainerVT, VL);
1493 return convertFromScalableVector(VT, VMSet, DAG, Subtarget);
1494 }
1495
1496 // Lower constant mask BUILD_VECTORs via an integer vector type, in
1497 // scalar integer chunks whose bit-width depends on the number of mask
1498 // bits and XLEN.
1499 // First, determine the most appropriate scalar integer type to use. This
1500 // is at most XLenVT, but may be shrunk to a smaller vector element type
1501 // according to the size of the final vector - use i8 chunks rather than
1502 // XLenVT if we're producing a v8i1. This results in more consistent
1503 // codegen across RV32 and RV64.
1504 unsigned NumViaIntegerBits =
1505 std::min(std::max(NumElts, 8u), Subtarget.getXLen());
1506 if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
1507 // If we have to use more than one INSERT_VECTOR_ELT then this
1508 // optimization is likely to increase code size; avoid peforming it in
1509 // such a case. We can use a load from a constant pool in this case.
1510 if (DAG.shouldOptForSize() && NumElts > NumViaIntegerBits)
1511 return SDValue();
1512 // Now we can create our integer vector type. Note that it may be larger
1513 // than the resulting mask type: v4i1 would use v1i8 as its integer type.
1514 MVT IntegerViaVecVT =
1515 MVT::getVectorVT(MVT::getIntegerVT(NumViaIntegerBits),
1516 divideCeil(NumElts, NumViaIntegerBits));
1517
1518 uint64_t Bits = 0;
1519 unsigned BitPos = 0, IntegerEltIdx = 0;
1520 SDValue Vec = DAG.getUNDEF(IntegerViaVecVT);
1521
1522 for (unsigned I = 0; I < NumElts; I++, BitPos++) {
1523 // Once we accumulate enough bits to fill our scalar type, insert into
1524 // our vector and clear our accumulated data.
1525 if (I != 0 && I % NumViaIntegerBits == 0) {
1526 if (NumViaIntegerBits <= 32)
1527 Bits = SignExtend64(Bits, 32);
1528 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1529 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec,
1530 Elt, DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1531 Bits = 0;
1532 BitPos = 0;
1533 IntegerEltIdx++;
1534 }
1535 SDValue V = Op.getOperand(I);
1536 bool BitValue = !V.isUndef() && cast<ConstantSDNode>(V)->getZExtValue();
1537 Bits |= ((uint64_t)BitValue << BitPos);
1538 }
1539
1540 // Insert the (remaining) scalar value into position in our integer
1541 // vector type.
1542 if (NumViaIntegerBits <= 32)
1543 Bits = SignExtend64(Bits, 32);
1544 SDValue Elt = DAG.getConstant(Bits, DL, XLenVT);
1545 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntegerViaVecVT, Vec, Elt,
1546 DAG.getConstant(IntegerEltIdx, DL, XLenVT));
1547
1548 if (NumElts < NumViaIntegerBits) {
1549 // If we're producing a smaller vector than our minimum legal integer
1550 // type, bitcast to the equivalent (known-legal) mask type, and extract
1551 // our final mask.
1552 assert(IntegerViaVecVT == MVT::v1i8 && "Unexpected mask vector type");
1553 Vec = DAG.getBitcast(MVT::v8i1, Vec);
1554 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Vec,
1555 DAG.getConstant(0, DL, XLenVT));
1556 } else {
1557 // Else we must have produced an integer type with the same size as the
1558 // mask type; bitcast for the final result.
1559 assert(VT.getSizeInBits() == IntegerViaVecVT.getSizeInBits());
1560 Vec = DAG.getBitcast(VT, Vec);
1561 }
1562
1563 return Vec;
1564 }
1565
1566 // A BUILD_VECTOR can be lowered as a SETCC. For each fixed-length mask
1567 // vector type, we have a legal equivalently-sized i8 type, so we can use
1568 // that.
1569 MVT WideVecVT = VT.changeVectorElementType(MVT::i8);
1570 SDValue VecZero = DAG.getConstant(0, DL, WideVecVT);
1571
1572 SDValue WideVec;
1573 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1574 // For a splat, perform a scalar truncate before creating the wider
1575 // vector.
1576 assert(Splat.getValueType() == XLenVT &&
1577 "Unexpected type for i1 splat value");
1578 Splat = DAG.getNode(ISD::AND, DL, XLenVT, Splat,
1579 DAG.getConstant(1, DL, XLenVT));
1580 WideVec = DAG.getSplatBuildVector(WideVecVT, DL, Splat);
1581 } else {
1582 SmallVector<SDValue, 8> Ops(Op->op_values());
1583 WideVec = DAG.getBuildVector(WideVecVT, DL, Ops);
1584 SDValue VecOne = DAG.getConstant(1, DL, WideVecVT);
1585 WideVec = DAG.getNode(ISD::AND, DL, WideVecVT, WideVec, VecOne);
1586 }
1587
1588 return DAG.getSetCC(DL, VT, WideVec, VecZero, ISD::SETNE);
1589 }
1590
1591 if (SDValue Splat = cast<BuildVectorSDNode>(Op)->getSplatValue()) {
1592 unsigned Opc = VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL
1593 : RISCVISD::VMV_V_X_VL;
1594 Splat = DAG.getNode(Opc, DL, ContainerVT, Splat, VL);
1595 return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1596 }
1597
1598 // Try and match index sequences, which we can lower to the vid instruction
1599 // with optional modifications. An all-undef vector is matched by
1600 // getSplatValue, above.
1601 if (auto SimpleVID = isSimpleVIDSequence(Op)) {
1602 int64_t Step = SimpleVID->Step;
1603 int64_t Addend = SimpleVID->Addend;
1604 // Only emit VIDs with suitably-small steps/addends. We use imm5 is a
1605 // threshold since it's the immediate value many RVV instructions accept.
1606 if (isInt<5>(Step) && isInt<5>(Addend)) {
1607 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, ContainerVT, Mask, VL);
1608 // Convert right out of the scalable type so we can use standard ISD
1609 // nodes for the rest of the computation. If we used scalable types with
1610 // these, we'd lose the fixed-length vector info and generate worse
1611 // vsetvli code.
1612 VID = convertFromScalableVector(VT, VID, DAG, Subtarget);
1613 assert(Step != 0 && "Invalid step");
1614 bool Negate = false;
1615 if (Step != 1) {
1616 int64_t SplatStepVal = Step;
1617 unsigned Opcode = ISD::MUL;
1618 if (isPowerOf2_64(std::abs(Step))) {
1619 Negate = Step < 0;
1620 Opcode = ISD::SHL;
1621 SplatStepVal = Log2_64(std::abs(Step));
1622 }
1623 SDValue SplatStep = DAG.getSplatVector(
1624 VT, DL, DAG.getConstant(SplatStepVal, DL, XLenVT));
1625 VID = DAG.getNode(Opcode, DL, VT, VID, SplatStep);
1626 }
1627 if (Addend != 0 || Negate) {
1628 SDValue SplatAddend =
1629 DAG.getSplatVector(VT, DL, DAG.getConstant(Addend, DL, XLenVT));
1630 VID = DAG.getNode(Negate ? ISD::SUB : ISD::ADD, DL, VT, SplatAddend, VID);
1631 }
1632 return VID;
1633 }
1634 }
1635
1636 // Attempt to detect "hidden" splats, which only reveal themselves as splats
1637 // when re-interpreted as a vector with a larger element type. For example,
1638 // v4i16 = build_vector i16 0, i16 1, i16 0, i16 1
1639 // could be instead splat as
1640 // v2i32 = build_vector i32 0x00010000, i32 0x00010000
1641 // TODO: This optimization could also work on non-constant splats, but it
1642 // would require bit-manipulation instructions to construct the splat value.
1643 SmallVector<SDValue> Sequence;
1644 unsigned EltBitSize = VT.getScalarSizeInBits();
1645 const auto *BV = cast<BuildVectorSDNode>(Op);
1646 if (VT.isInteger() && EltBitSize < 64 &&
1647 ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
1648 BV->getRepeatedSequence(Sequence) &&
1649 (Sequence.size() * EltBitSize) <= 64) {
1650 unsigned SeqLen = Sequence.size();
1651 MVT ViaIntVT = MVT::getIntegerVT(EltBitSize * SeqLen);
1652 MVT ViaVecVT = MVT::getVectorVT(ViaIntVT, NumElts / SeqLen);
1653 assert((ViaIntVT == MVT::i16 || ViaIntVT == MVT::i32 ||
1654 ViaIntVT == MVT::i64) &&
1655 "Unexpected sequence type");
1656
1657 unsigned EltIdx = 0;
1658 uint64_t EltMask = maskTrailingOnes<uint64_t>(EltBitSize);
1659 uint64_t SplatValue = 0;
1660 // Construct the amalgamated value which can be splatted as this larger
1661 // vector type.
1662 for (const auto &SeqV : Sequence) {
1663 if (!SeqV.isUndef())
1664 SplatValue |= ((cast<ConstantSDNode>(SeqV)->getZExtValue() & EltMask)
1665 << (EltIdx * EltBitSize));
1666 EltIdx++;
1667 }
1668
1669 // On RV64, sign-extend from 32 to 64 bits where possible in order to
1670 // achieve better constant materializion.
1671 if (Subtarget.is64Bit() && ViaIntVT == MVT::i32)
1672 SplatValue = SignExtend64(SplatValue, 32);
1673
1674 // Since we can't introduce illegal i64 types at this stage, we can only
1675 // perform an i64 splat on RV32 if it is its own sign-extended value. That
1676 // way we can use RVV instructions to splat.
1677 assert((ViaIntVT.bitsLE(XLenVT) ||
1678 (!Subtarget.is64Bit() && ViaIntVT == MVT::i64)) &&
1679 "Unexpected bitcast sequence");
1680 if (ViaIntVT.bitsLE(XLenVT) || isInt<32>(SplatValue)) {
1681 SDValue ViaVL =
1682 DAG.getConstant(ViaVecVT.getVectorNumElements(), DL, XLenVT);
1683 MVT ViaContainerVT =
1684 getContainerForFixedLengthVector(DAG, ViaVecVT, Subtarget);
1685 SDValue Splat =
1686 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ViaContainerVT,
1687 DAG.getConstant(SplatValue, DL, XLenVT), ViaVL);
1688 Splat = convertFromScalableVector(ViaVecVT, Splat, DAG, Subtarget);
1689 return DAG.getBitcast(VT, Splat);
1690 }
1691 }
1692
1693 // Try and optimize BUILD_VECTORs with "dominant values" - these are values
1694 // which constitute a large proportion of the elements. In such cases we can
1695 // splat a vector with the dominant element and make up the shortfall with
1696 // INSERT_VECTOR_ELTs.
1697 // Note that this includes vectors of 2 elements by association. The
1698 // upper-most element is the "dominant" one, allowing us to use a splat to
1699 // "insert" the upper element, and an insert of the lower element at position
1700 // 0, which improves codegen.
1701 SDValue DominantValue;
1702 unsigned MostCommonCount = 0;
1703 DenseMap<SDValue, unsigned> ValueCounts;
1704 unsigned NumUndefElts =
1705 count_if(Op->op_values(), [](const SDValue &V) { return V.isUndef(); });
1706
1707 for (SDValue V : Op->op_values()) {
1708 if (V.isUndef())
1709 continue;
1710
1711 ValueCounts.insert(std::make_pair(V, 0));
1712 unsigned &Count = ValueCounts[V];
1713
1714 // Is this value dominant? In case of a tie, prefer the highest element as
1715 // it's cheaper to insert near the beginning of a vector than it is at the
1716 // end.
1717 if (++Count >= MostCommonCount) {
1718 DominantValue = V;
1719 MostCommonCount = Count;
1720 }
1721 }
1722
1723 assert(DominantValue && "Not expecting an all-undef BUILD_VECTOR");
1724 unsigned NumDefElts = NumElts - NumUndefElts;
1725 unsigned DominantValueCountThreshold = NumDefElts <= 2 ? 0 : NumDefElts - 2;
1726
1727 // Don't perform this optimization when optimizing for size, since
1728 // materializing elements and inserting them tends to cause code bloat.
1729 if (!DAG.shouldOptForSize() &&
1730 ((MostCommonCount > DominantValueCountThreshold) ||
1731 (ValueCounts.size() <= Log2_32(NumDefElts)))) {
1732 // Start by splatting the most common element.
1733 SDValue Vec = DAG.getSplatBuildVector(VT, DL, DominantValue);
1734
1735 DenseSet<SDValue> Processed{DominantValue};
1736 MVT SelMaskTy = VT.changeVectorElementType(MVT::i1);
1737 for (const auto &OpIdx : enumerate(Op->ops())) {
1738 const SDValue &V = OpIdx.value();
1739 if (V.isUndef() || !Processed.insert(V).second)
1740 continue;
1741 if (ValueCounts[V] == 1) {
1742 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Vec, V,
1743 DAG.getConstant(OpIdx.index(), DL, XLenVT));
1744 } else {
1745 // Blend in all instances of this value using a VSELECT, using a
1746 // mask where each bit signals whether that element is the one
1747 // we're after.
1748 SmallVector<SDValue> Ops;
1749 transform(Op->op_values(), std::back_inserter(Ops), [&](SDValue V1) {
1750 return DAG.getConstant(V == V1, DL, XLenVT);
1751 });
1752 Vec = DAG.getNode(ISD::VSELECT, DL, VT,
1753 DAG.getBuildVector(SelMaskTy, DL, Ops),
1754 DAG.getSplatBuildVector(VT, DL, V), Vec);
1755 }
1756 }
1757
1758 return Vec;
1759 }
1760
1761 return SDValue();
1762 }
1763
splatPartsI64WithVL(const SDLoc & DL,MVT VT,SDValue Lo,SDValue Hi,SDValue VL,SelectionDAG & DAG)1764 static SDValue splatPartsI64WithVL(const SDLoc &DL, MVT VT, SDValue Lo,
1765 SDValue Hi, SDValue VL, SelectionDAG &DAG) {
1766 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
1767 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
1768 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
1769 // If Hi constant is all the same sign bit as Lo, lower this as a custom
1770 // node in order to try and match RVV vector/scalar instructions.
1771 if ((LoC >> 31) == HiC)
1772 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Lo, VL);
1773 }
1774
1775 // Fall back to a stack store and stride x0 vector load.
1776 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VT, Lo, Hi, VL);
1777 }
1778
1779 // Called by type legalization to handle splat of i64 on RV32.
1780 // FIXME: We can optimize this when the type has sign or zero bits in one
1781 // of the halves.
splatSplitI64WithVL(const SDLoc & DL,MVT VT,SDValue Scalar,SDValue VL,SelectionDAG & DAG)1782 static SDValue splatSplitI64WithVL(const SDLoc &DL, MVT VT, SDValue Scalar,
1783 SDValue VL, SelectionDAG &DAG) {
1784 assert(Scalar.getValueType() == MVT::i64 && "Unexpected VT!");
1785 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1786 DAG.getConstant(0, DL, MVT::i32));
1787 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
1788 DAG.getConstant(1, DL, MVT::i32));
1789 return splatPartsI64WithVL(DL, VT, Lo, Hi, VL, DAG);
1790 }
1791
1792 // This function lowers a splat of a scalar operand Splat with the vector
1793 // length VL. It ensures the final sequence is type legal, which is useful when
1794 // lowering a splat after type legalization.
lowerScalarSplat(SDValue Scalar,SDValue VL,MVT VT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1795 static SDValue lowerScalarSplat(SDValue Scalar, SDValue VL, MVT VT, SDLoc DL,
1796 SelectionDAG &DAG,
1797 const RISCVSubtarget &Subtarget) {
1798 if (VT.isFloatingPoint())
1799 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, VT, Scalar, VL);
1800
1801 MVT XLenVT = Subtarget.getXLenVT();
1802
1803 // Simplest case is that the operand needs to be promoted to XLenVT.
1804 if (Scalar.getValueType().bitsLE(XLenVT)) {
1805 // If the operand is a constant, sign extend to increase our chances
1806 // of being able to use a .vi instruction. ANY_EXTEND would become a
1807 // a zero extend and the simm5 check in isel would fail.
1808 // FIXME: Should we ignore the upper bits in isel instead?
1809 unsigned ExtOpc =
1810 isa<ConstantSDNode>(Scalar) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
1811 Scalar = DAG.getNode(ExtOpc, DL, XLenVT, Scalar);
1812 return DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, Scalar, VL);
1813 }
1814
1815 assert(XLenVT == MVT::i32 && Scalar.getValueType() == MVT::i64 &&
1816 "Unexpected scalar for splat lowering!");
1817
1818 // Otherwise use the more complicated splatting algorithm.
1819 return splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
1820 }
1821
lowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)1822 static SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
1823 const RISCVSubtarget &Subtarget) {
1824 SDValue V1 = Op.getOperand(0);
1825 SDValue V2 = Op.getOperand(1);
1826 SDLoc DL(Op);
1827 MVT XLenVT = Subtarget.getXLenVT();
1828 MVT VT = Op.getSimpleValueType();
1829 unsigned NumElts = VT.getVectorNumElements();
1830 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
1831
1832 MVT ContainerVT = getContainerForFixedLengthVector(DAG, VT, Subtarget);
1833
1834 SDValue TrueMask, VL;
1835 std::tie(TrueMask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
1836
1837 if (SVN->isSplat()) {
1838 const int Lane = SVN->getSplatIndex();
1839 if (Lane >= 0) {
1840 MVT SVT = VT.getVectorElementType();
1841
1842 // Turn splatted vector load into a strided load with an X0 stride.
1843 SDValue V = V1;
1844 // Peek through CONCAT_VECTORS as VectorCombine can concat a vector
1845 // with undef.
1846 // FIXME: Peek through INSERT_SUBVECTOR, EXTRACT_SUBVECTOR, bitcasts?
1847 int Offset = Lane;
1848 if (V.getOpcode() == ISD::CONCAT_VECTORS) {
1849 int OpElements =
1850 V.getOperand(0).getSimpleValueType().getVectorNumElements();
1851 V = V.getOperand(Offset / OpElements);
1852 Offset %= OpElements;
1853 }
1854
1855 // We need to ensure the load isn't atomic or volatile.
1856 if (ISD::isNormalLoad(V.getNode()) && cast<LoadSDNode>(V)->isSimple()) {
1857 auto *Ld = cast<LoadSDNode>(V);
1858 Offset *= SVT.getStoreSize();
1859 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(),
1860 TypeSize::Fixed(Offset), DL);
1861
1862 // If this is SEW=64 on RV32, use a strided load with a stride of x0.
1863 if (SVT.isInteger() && SVT.bitsGT(XLenVT)) {
1864 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
1865 SDValue IntID =
1866 DAG.getTargetConstant(Intrinsic::riscv_vlse, DL, XLenVT);
1867 SDValue Ops[] = {Ld->getChain(), IntID, NewAddr,
1868 DAG.getRegister(RISCV::X0, XLenVT), VL};
1869 SDValue NewLoad = DAG.getMemIntrinsicNode(
1870 ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops, SVT,
1871 DAG.getMachineFunction().getMachineMemOperand(
1872 Ld->getMemOperand(), Offset, SVT.getStoreSize()));
1873 DAG.makeEquivalentMemoryOrdering(Ld, NewLoad);
1874 return convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
1875 }
1876
1877 // Otherwise use a scalar load and splat. This will give the best
1878 // opportunity to fold a splat into the operation. ISel can turn it into
1879 // the x0 strided load if we aren't able to fold away the select.
1880 if (SVT.isFloatingPoint())
1881 V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
1882 Ld->getPointerInfo().getWithOffset(Offset),
1883 Ld->getOriginalAlign(),
1884 Ld->getMemOperand()->getFlags());
1885 else
1886 V = DAG.getExtLoad(ISD::SEXTLOAD, DL, XLenVT, Ld->getChain(), NewAddr,
1887 Ld->getPointerInfo().getWithOffset(Offset), SVT,
1888 Ld->getOriginalAlign(),
1889 Ld->getMemOperand()->getFlags());
1890 DAG.makeEquivalentMemoryOrdering(Ld, V);
1891
1892 unsigned Opc =
1893 VT.isFloatingPoint() ? RISCVISD::VFMV_V_F_VL : RISCVISD::VMV_V_X_VL;
1894 SDValue Splat = DAG.getNode(Opc, DL, ContainerVT, V, VL);
1895 return convertFromScalableVector(VT, Splat, DAG, Subtarget);
1896 }
1897
1898 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1899 assert(Lane < (int)NumElts && "Unexpected lane!");
1900 SDValue Gather =
1901 DAG.getNode(RISCVISD::VRGATHER_VX_VL, DL, ContainerVT, V1,
1902 DAG.getConstant(Lane, DL, XLenVT), TrueMask, VL);
1903 return convertFromScalableVector(VT, Gather, DAG, Subtarget);
1904 }
1905 }
1906
1907 // Detect shuffles which can be re-expressed as vector selects; these are
1908 // shuffles in which each element in the destination is taken from an element
1909 // at the corresponding index in either source vectors.
1910 bool IsSelect = all_of(enumerate(SVN->getMask()), [&](const auto &MaskIdx) {
1911 int MaskIndex = MaskIdx.value();
1912 return MaskIndex < 0 || MaskIdx.index() == (unsigned)MaskIndex % NumElts;
1913 });
1914
1915 assert(!V1.isUndef() && "Unexpected shuffle canonicalization");
1916
1917 SmallVector<SDValue> MaskVals;
1918 // As a backup, shuffles can be lowered via a vrgather instruction, possibly
1919 // merged with a second vrgather.
1920 SmallVector<SDValue> GatherIndicesLHS, GatherIndicesRHS;
1921
1922 // By default we preserve the original operand order, and use a mask to
1923 // select LHS as true and RHS as false. However, since RVV vector selects may
1924 // feature splats but only on the LHS, we may choose to invert our mask and
1925 // instead select between RHS and LHS.
1926 bool SwapOps = DAG.isSplatValue(V2) && !DAG.isSplatValue(V1);
1927 bool InvertMask = IsSelect == SwapOps;
1928
1929 // Now construct the mask that will be used by the vselect or blended
1930 // vrgather operation. For vrgathers, construct the appropriate indices into
1931 // each vector.
1932 for (int MaskIndex : SVN->getMask()) {
1933 bool SelectMaskVal = (MaskIndex < (int)NumElts) ^ InvertMask;
1934 MaskVals.push_back(DAG.getConstant(SelectMaskVal, DL, XLenVT));
1935 if (!IsSelect) {
1936 bool IsLHSOrUndefIndex = MaskIndex < (int)NumElts;
1937 GatherIndicesLHS.push_back(IsLHSOrUndefIndex && MaskIndex >= 0
1938 ? DAG.getConstant(MaskIndex, DL, XLenVT)
1939 : DAG.getUNDEF(XLenVT));
1940 GatherIndicesRHS.push_back(
1941 IsLHSOrUndefIndex ? DAG.getUNDEF(XLenVT)
1942 : DAG.getConstant(MaskIndex - NumElts, DL, XLenVT));
1943 }
1944 }
1945
1946 if (SwapOps) {
1947 std::swap(V1, V2);
1948 std::swap(GatherIndicesLHS, GatherIndicesRHS);
1949 }
1950
1951 assert(MaskVals.size() == NumElts && "Unexpected select-like shuffle");
1952 MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
1953 SDValue SelectMask = DAG.getBuildVector(MaskVT, DL, MaskVals);
1954
1955 if (IsSelect)
1956 return DAG.getNode(ISD::VSELECT, DL, VT, SelectMask, V1, V2);
1957
1958 if (VT.getScalarSizeInBits() == 8 && VT.getVectorNumElements() > 256) {
1959 // On such a large vector we're unable to use i8 as the index type.
1960 // FIXME: We could promote the index to i16 and use vrgatherei16, but that
1961 // may involve vector splitting if we're already at LMUL=8, or our
1962 // user-supplied maximum fixed-length LMUL.
1963 return SDValue();
1964 }
1965
1966 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
1967 MVT IndexVT = VT.changeTypeToInteger();
1968 // Since we can't introduce illegal index types at this stage, use i16 and
1969 // vrgatherei16 if the corresponding index type for plain vrgather is greater
1970 // than XLenVT.
1971 if (IndexVT.getScalarType().bitsGT(XLenVT)) {
1972 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
1973 IndexVT = IndexVT.changeVectorElementType(MVT::i16);
1974 }
1975
1976 MVT IndexContainerVT =
1977 ContainerVT.changeVectorElementType(IndexVT.getScalarType());
1978
1979 SDValue Gather;
1980 // TODO: This doesn't trigger for i64 vectors on RV32, since there we
1981 // encounter a bitcasted BUILD_VECTOR with low/high i32 values.
1982 if (SDValue SplatValue = DAG.getSplatValue(V1, /*LegalTypes*/ true)) {
1983 Gather = lowerScalarSplat(SplatValue, VL, ContainerVT, DL, DAG, Subtarget);
1984 } else {
1985 SDValue LHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesLHS);
1986 LHSIndices =
1987 convertToScalableVector(IndexContainerVT, LHSIndices, DAG, Subtarget);
1988
1989 V1 = convertToScalableVector(ContainerVT, V1, DAG, Subtarget);
1990 Gather =
1991 DAG.getNode(GatherOpc, DL, ContainerVT, V1, LHSIndices, TrueMask, VL);
1992 }
1993
1994 // If a second vector operand is used by this shuffle, blend it in with an
1995 // additional vrgather.
1996 if (!V2.isUndef()) {
1997 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
1998 SelectMask =
1999 convertToScalableVector(MaskContainerVT, SelectMask, DAG, Subtarget);
2000
2001 SDValue RHSIndices = DAG.getBuildVector(IndexVT, DL, GatherIndicesRHS);
2002 RHSIndices =
2003 convertToScalableVector(IndexContainerVT, RHSIndices, DAG, Subtarget);
2004
2005 V2 = convertToScalableVector(ContainerVT, V2, DAG, Subtarget);
2006 V2 = DAG.getNode(GatherOpc, DL, ContainerVT, V2, RHSIndices, TrueMask, VL);
2007 Gather = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, SelectMask, V2,
2008 Gather, VL);
2009 }
2010
2011 return convertFromScalableVector(VT, Gather, DAG, Subtarget);
2012 }
2013
getRVVFPExtendOrRound(SDValue Op,MVT VT,MVT ContainerVT,SDLoc DL,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)2014 static SDValue getRVVFPExtendOrRound(SDValue Op, MVT VT, MVT ContainerVT,
2015 SDLoc DL, SelectionDAG &DAG,
2016 const RISCVSubtarget &Subtarget) {
2017 if (VT.isScalableVector())
2018 return DAG.getFPExtendOrRound(Op, DL, VT);
2019 assert(VT.isFixedLengthVector() &&
2020 "Unexpected value type for RVV FP extend/round lowering");
2021 SDValue Mask, VL;
2022 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2023 unsigned RVVOpc = ContainerVT.bitsGT(Op.getSimpleValueType())
2024 ? RISCVISD::FP_EXTEND_VL
2025 : RISCVISD::FP_ROUND_VL;
2026 return DAG.getNode(RVVOpc, DL, ContainerVT, Op, Mask, VL);
2027 }
2028
2029 // While RVV has alignment restrictions, we should always be able to load as a
2030 // legal equivalently-sized byte-typed vector instead. This method is
2031 // responsible for re-expressing a ISD::LOAD via a correctly-aligned type. If
2032 // the load is already correctly-aligned, it returns SDValue().
expandUnalignedRVVLoad(SDValue Op,SelectionDAG & DAG) const2033 SDValue RISCVTargetLowering::expandUnalignedRVVLoad(SDValue Op,
2034 SelectionDAG &DAG) const {
2035 auto *Load = cast<LoadSDNode>(Op);
2036 assert(Load && Load->getMemoryVT().isVector() && "Expected vector load");
2037
2038 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2039 Load->getMemoryVT(),
2040 *Load->getMemOperand()))
2041 return SDValue();
2042
2043 SDLoc DL(Op);
2044 MVT VT = Op.getSimpleValueType();
2045 unsigned EltSizeBits = VT.getScalarSizeInBits();
2046 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2047 "Unexpected unaligned RVV load type");
2048 MVT NewVT =
2049 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2050 assert(NewVT.isValid() &&
2051 "Expecting equally-sized RVV vector types to be legal");
2052 SDValue L = DAG.getLoad(NewVT, DL, Load->getChain(), Load->getBasePtr(),
2053 Load->getPointerInfo(), Load->getOriginalAlign(),
2054 Load->getMemOperand()->getFlags());
2055 return DAG.getMergeValues({DAG.getBitcast(VT, L), L.getValue(1)}, DL);
2056 }
2057
2058 // While RVV has alignment restrictions, we should always be able to store as a
2059 // legal equivalently-sized byte-typed vector instead. This method is
2060 // responsible for re-expressing a ISD::STORE via a correctly-aligned type. It
2061 // returns SDValue() if the store is already correctly aligned.
expandUnalignedRVVStore(SDValue Op,SelectionDAG & DAG) const2062 SDValue RISCVTargetLowering::expandUnalignedRVVStore(SDValue Op,
2063 SelectionDAG &DAG) const {
2064 auto *Store = cast<StoreSDNode>(Op);
2065 assert(Store && Store->getValue().getValueType().isVector() &&
2066 "Expected vector store");
2067
2068 if (allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
2069 Store->getMemoryVT(),
2070 *Store->getMemOperand()))
2071 return SDValue();
2072
2073 SDLoc DL(Op);
2074 SDValue StoredVal = Store->getValue();
2075 MVT VT = StoredVal.getSimpleValueType();
2076 unsigned EltSizeBits = VT.getScalarSizeInBits();
2077 assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
2078 "Unexpected unaligned RVV store type");
2079 MVT NewVT =
2080 MVT::getVectorVT(MVT::i8, VT.getVectorElementCount() * (EltSizeBits / 8));
2081 assert(NewVT.isValid() &&
2082 "Expecting equally-sized RVV vector types to be legal");
2083 StoredVal = DAG.getBitcast(NewVT, StoredVal);
2084 return DAG.getStore(Store->getChain(), DL, StoredVal, Store->getBasePtr(),
2085 Store->getPointerInfo(), Store->getOriginalAlign(),
2086 Store->getMemOperand()->getFlags());
2087 }
2088
LowerOperation(SDValue Op,SelectionDAG & DAG) const2089 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
2090 SelectionDAG &DAG) const {
2091 switch (Op.getOpcode()) {
2092 default:
2093 report_fatal_error("unimplemented operand");
2094 case ISD::GlobalAddress:
2095 return lowerGlobalAddress(Op, DAG);
2096 case ISD::BlockAddress:
2097 return lowerBlockAddress(Op, DAG);
2098 case ISD::ConstantPool:
2099 return lowerConstantPool(Op, DAG);
2100 case ISD::JumpTable:
2101 return lowerJumpTable(Op, DAG);
2102 case ISD::GlobalTLSAddress:
2103 return lowerGlobalTLSAddress(Op, DAG);
2104 case ISD::SELECT:
2105 return lowerSELECT(Op, DAG);
2106 case ISD::BRCOND:
2107 return lowerBRCOND(Op, DAG);
2108 case ISD::VASTART:
2109 return lowerVASTART(Op, DAG);
2110 case ISD::FRAMEADDR:
2111 return lowerFRAMEADDR(Op, DAG);
2112 case ISD::RETURNADDR:
2113 return lowerRETURNADDR(Op, DAG);
2114 case ISD::SHL_PARTS:
2115 return lowerShiftLeftParts(Op, DAG);
2116 case ISD::SRA_PARTS:
2117 return lowerShiftRightParts(Op, DAG, true);
2118 case ISD::SRL_PARTS:
2119 return lowerShiftRightParts(Op, DAG, false);
2120 case ISD::BITCAST: {
2121 SDLoc DL(Op);
2122 EVT VT = Op.getValueType();
2123 SDValue Op0 = Op.getOperand(0);
2124 EVT Op0VT = Op0.getValueType();
2125 MVT XLenVT = Subtarget.getXLenVT();
2126 if (VT.isFixedLengthVector()) {
2127 // We can handle fixed length vector bitcasts with a simple replacement
2128 // in isel.
2129 if (Op0VT.isFixedLengthVector())
2130 return Op;
2131 // When bitcasting from scalar to fixed-length vector, insert the scalar
2132 // into a one-element vector of the result type, and perform a vector
2133 // bitcast.
2134 if (!Op0VT.isVector()) {
2135 auto BVT = EVT::getVectorVT(*DAG.getContext(), Op0VT, 1);
2136 return DAG.getBitcast(VT, DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, BVT,
2137 DAG.getUNDEF(BVT), Op0,
2138 DAG.getConstant(0, DL, XLenVT)));
2139 }
2140 return SDValue();
2141 }
2142 // Custom-legalize bitcasts from fixed-length vector types to scalar types
2143 // thus: bitcast the vector to a one-element vector type whose element type
2144 // is the same as the result type, and extract the first element.
2145 if (!VT.isVector() && Op0VT.isFixedLengthVector()) {
2146 LLVMContext &Context = *DAG.getContext();
2147 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
2148 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
2149 DAG.getConstant(0, DL, XLenVT));
2150 }
2151 if (VT == MVT::f16 && Op0VT == MVT::i16 && Subtarget.hasStdExtZfh()) {
2152 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Op0);
2153 SDValue FPConv = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, NewOp0);
2154 return FPConv;
2155 }
2156 if (VT == MVT::f32 && Op0VT == MVT::i32 && Subtarget.is64Bit() &&
2157 Subtarget.hasStdExtF()) {
2158 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
2159 SDValue FPConv =
2160 DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, NewOp0);
2161 return FPConv;
2162 }
2163 return SDValue();
2164 }
2165 case ISD::INTRINSIC_WO_CHAIN:
2166 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2167 case ISD::INTRINSIC_W_CHAIN:
2168 return LowerINTRINSIC_W_CHAIN(Op, DAG);
2169 case ISD::BSWAP:
2170 case ISD::BITREVERSE: {
2171 // Convert BSWAP/BITREVERSE to GREVI to enable GREVI combinining.
2172 assert(Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
2173 MVT VT = Op.getSimpleValueType();
2174 SDLoc DL(Op);
2175 // Start with the maximum immediate value which is the bitwidth - 1.
2176 unsigned Imm = VT.getSizeInBits() - 1;
2177 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
2178 if (Op.getOpcode() == ISD::BSWAP)
2179 Imm &= ~0x7U;
2180 return DAG.getNode(RISCVISD::GREV, DL, VT, Op.getOperand(0),
2181 DAG.getConstant(Imm, DL, VT));
2182 }
2183 case ISD::FSHL:
2184 case ISD::FSHR: {
2185 MVT VT = Op.getSimpleValueType();
2186 assert(VT == Subtarget.getXLenVT() && "Unexpected custom legalization");
2187 SDLoc DL(Op);
2188 if (Op.getOperand(2).getOpcode() == ISD::Constant)
2189 return Op;
2190 // FSL/FSR take a log2(XLen)+1 bit shift amount but XLenVT FSHL/FSHR only
2191 // use log(XLen) bits. Mask the shift amount accordingly.
2192 unsigned ShAmtWidth = Subtarget.getXLen() - 1;
2193 SDValue ShAmt = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(2),
2194 DAG.getConstant(ShAmtWidth, DL, VT));
2195 unsigned Opc = Op.getOpcode() == ISD::FSHL ? RISCVISD::FSL : RISCVISD::FSR;
2196 return DAG.getNode(Opc, DL, VT, Op.getOperand(0), Op.getOperand(1), ShAmt);
2197 }
2198 case ISD::TRUNCATE: {
2199 SDLoc DL(Op);
2200 MVT VT = Op.getSimpleValueType();
2201 // Only custom-lower vector truncates
2202 if (!VT.isVector())
2203 return Op;
2204
2205 // Truncates to mask types are handled differently
2206 if (VT.getVectorElementType() == MVT::i1)
2207 return lowerVectorMaskTrunc(Op, DAG);
2208
2209 // RVV only has truncates which operate from SEW*2->SEW, so lower arbitrary
2210 // truncates as a series of "RISCVISD::TRUNCATE_VECTOR_VL" nodes which
2211 // truncate by one power of two at a time.
2212 MVT DstEltVT = VT.getVectorElementType();
2213
2214 SDValue Src = Op.getOperand(0);
2215 MVT SrcVT = Src.getSimpleValueType();
2216 MVT SrcEltVT = SrcVT.getVectorElementType();
2217
2218 assert(DstEltVT.bitsLT(SrcEltVT) &&
2219 isPowerOf2_64(DstEltVT.getSizeInBits()) &&
2220 isPowerOf2_64(SrcEltVT.getSizeInBits()) &&
2221 "Unexpected vector truncate lowering");
2222
2223 MVT ContainerVT = SrcVT;
2224 if (SrcVT.isFixedLengthVector()) {
2225 ContainerVT = getContainerForFixedLengthVector(SrcVT);
2226 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
2227 }
2228
2229 SDValue Result = Src;
2230 SDValue Mask, VL;
2231 std::tie(Mask, VL) =
2232 getDefaultVLOps(SrcVT, ContainerVT, DL, DAG, Subtarget);
2233 LLVMContext &Context = *DAG.getContext();
2234 const ElementCount Count = ContainerVT.getVectorElementCount();
2235 do {
2236 SrcEltVT = MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2);
2237 EVT ResultVT = EVT::getVectorVT(Context, SrcEltVT, Count);
2238 Result = DAG.getNode(RISCVISD::TRUNCATE_VECTOR_VL, DL, ResultVT, Result,
2239 Mask, VL);
2240 } while (SrcEltVT != DstEltVT);
2241
2242 if (SrcVT.isFixedLengthVector())
2243 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
2244
2245 return Result;
2246 }
2247 case ISD::ANY_EXTEND:
2248 case ISD::ZERO_EXTEND:
2249 if (Op.getOperand(0).getValueType().isVector() &&
2250 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2251 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ 1);
2252 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VZEXT_VL);
2253 case ISD::SIGN_EXTEND:
2254 if (Op.getOperand(0).getValueType().isVector() &&
2255 Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2256 return lowerVectorMaskExt(Op, DAG, /*ExtVal*/ -1);
2257 return lowerFixedLengthVectorExtendToRVV(Op, DAG, RISCVISD::VSEXT_VL);
2258 case ISD::SPLAT_VECTOR_PARTS:
2259 return lowerSPLAT_VECTOR_PARTS(Op, DAG);
2260 case ISD::INSERT_VECTOR_ELT:
2261 return lowerINSERT_VECTOR_ELT(Op, DAG);
2262 case ISD::EXTRACT_VECTOR_ELT:
2263 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
2264 case ISD::VSCALE: {
2265 MVT VT = Op.getSimpleValueType();
2266 SDLoc DL(Op);
2267 SDValue VLENB = DAG.getNode(RISCVISD::READ_VLENB, DL, VT);
2268 // We define our scalable vector types for lmul=1 to use a 64 bit known
2269 // minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
2270 // vscale as VLENB / 8.
2271 assert(RISCV::RVVBitsPerBlock == 64 && "Unexpected bits per block!");
2272 if (isa<ConstantSDNode>(Op.getOperand(0))) {
2273 // We assume VLENB is a multiple of 8. We manually choose the best shift
2274 // here because SimplifyDemandedBits isn't always able to simplify it.
2275 uint64_t Val = Op.getConstantOperandVal(0);
2276 if (isPowerOf2_64(Val)) {
2277 uint64_t Log2 = Log2_64(Val);
2278 if (Log2 < 3)
2279 return DAG.getNode(ISD::SRL, DL, VT, VLENB,
2280 DAG.getConstant(3 - Log2, DL, VT));
2281 if (Log2 > 3)
2282 return DAG.getNode(ISD::SHL, DL, VT, VLENB,
2283 DAG.getConstant(Log2 - 3, DL, VT));
2284 return VLENB;
2285 }
2286 // If the multiplier is a multiple of 8, scale it down to avoid needing
2287 // to shift the VLENB value.
2288 if ((Val % 8) == 0)
2289 return DAG.getNode(ISD::MUL, DL, VT, VLENB,
2290 DAG.getConstant(Val / 8, DL, VT));
2291 }
2292
2293 SDValue VScale = DAG.getNode(ISD::SRL, DL, VT, VLENB,
2294 DAG.getConstant(3, DL, VT));
2295 return DAG.getNode(ISD::MUL, DL, VT, VScale, Op.getOperand(0));
2296 }
2297 case ISD::FP_EXTEND: {
2298 // RVV can only do fp_extend to types double the size as the source. We
2299 // custom-lower f16->f64 extensions to two hops of ISD::FP_EXTEND, going
2300 // via f32.
2301 SDLoc DL(Op);
2302 MVT VT = Op.getSimpleValueType();
2303 SDValue Src = Op.getOperand(0);
2304 MVT SrcVT = Src.getSimpleValueType();
2305
2306 // Prepare any fixed-length vector operands.
2307 MVT ContainerVT = VT;
2308 if (SrcVT.isFixedLengthVector()) {
2309 ContainerVT = getContainerForFixedLengthVector(VT);
2310 MVT SrcContainerVT =
2311 ContainerVT.changeVectorElementType(SrcVT.getVectorElementType());
2312 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2313 }
2314
2315 if (!VT.isVector() || VT.getVectorElementType() != MVT::f64 ||
2316 SrcVT.getVectorElementType() != MVT::f16) {
2317 // For scalable vectors, we only need to close the gap between
2318 // vXf16->vXf64.
2319 if (!VT.isFixedLengthVector())
2320 return Op;
2321 // For fixed-length vectors, lower the FP_EXTEND to a custom "VL" version.
2322 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2323 return convertFromScalableVector(VT, Src, DAG, Subtarget);
2324 }
2325
2326 MVT InterVT = VT.changeVectorElementType(MVT::f32);
2327 MVT InterContainerVT = ContainerVT.changeVectorElementType(MVT::f32);
2328 SDValue IntermediateExtend = getRVVFPExtendOrRound(
2329 Src, InterVT, InterContainerVT, DL, DAG, Subtarget);
2330
2331 SDValue Extend = getRVVFPExtendOrRound(IntermediateExtend, VT, ContainerVT,
2332 DL, DAG, Subtarget);
2333 if (VT.isFixedLengthVector())
2334 return convertFromScalableVector(VT, Extend, DAG, Subtarget);
2335 return Extend;
2336 }
2337 case ISD::FP_ROUND: {
2338 // RVV can only do fp_round to types half the size as the source. We
2339 // custom-lower f64->f16 rounds via RVV's round-to-odd float
2340 // conversion instruction.
2341 SDLoc DL(Op);
2342 MVT VT = Op.getSimpleValueType();
2343 SDValue Src = Op.getOperand(0);
2344 MVT SrcVT = Src.getSimpleValueType();
2345
2346 // Prepare any fixed-length vector operands.
2347 MVT ContainerVT = VT;
2348 if (VT.isFixedLengthVector()) {
2349 MVT SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2350 ContainerVT =
2351 SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2352 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2353 }
2354
2355 if (!VT.isVector() || VT.getVectorElementType() != MVT::f16 ||
2356 SrcVT.getVectorElementType() != MVT::f64) {
2357 // For scalable vectors, we only need to close the gap between
2358 // vXf64<->vXf16.
2359 if (!VT.isFixedLengthVector())
2360 return Op;
2361 // For fixed-length vectors, lower the FP_ROUND to a custom "VL" version.
2362 Src = getRVVFPExtendOrRound(Src, VT, ContainerVT, DL, DAG, Subtarget);
2363 return convertFromScalableVector(VT, Src, DAG, Subtarget);
2364 }
2365
2366 SDValue Mask, VL;
2367 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2368
2369 MVT InterVT = ContainerVT.changeVectorElementType(MVT::f32);
2370 SDValue IntermediateRound =
2371 DAG.getNode(RISCVISD::VFNCVT_ROD_VL, DL, InterVT, Src, Mask, VL);
2372 SDValue Round = getRVVFPExtendOrRound(IntermediateRound, VT, ContainerVT,
2373 DL, DAG, Subtarget);
2374
2375 if (VT.isFixedLengthVector())
2376 return convertFromScalableVector(VT, Round, DAG, Subtarget);
2377 return Round;
2378 }
2379 case ISD::FP_TO_SINT:
2380 case ISD::FP_TO_UINT:
2381 case ISD::SINT_TO_FP:
2382 case ISD::UINT_TO_FP: {
2383 // RVV can only do fp<->int conversions to types half/double the size as
2384 // the source. We custom-lower any conversions that do two hops into
2385 // sequences.
2386 MVT VT = Op.getSimpleValueType();
2387 if (!VT.isVector())
2388 return Op;
2389 SDLoc DL(Op);
2390 SDValue Src = Op.getOperand(0);
2391 MVT EltVT = VT.getVectorElementType();
2392 MVT SrcVT = Src.getSimpleValueType();
2393 MVT SrcEltVT = SrcVT.getVectorElementType();
2394 unsigned EltSize = EltVT.getSizeInBits();
2395 unsigned SrcEltSize = SrcEltVT.getSizeInBits();
2396 assert(isPowerOf2_32(EltSize) && isPowerOf2_32(SrcEltSize) &&
2397 "Unexpected vector element types");
2398
2399 bool IsInt2FP = SrcEltVT.isInteger();
2400 // Widening conversions
2401 if (EltSize > SrcEltSize && (EltSize / SrcEltSize >= 4)) {
2402 if (IsInt2FP) {
2403 // Do a regular integer sign/zero extension then convert to float.
2404 MVT IVecVT = MVT::getVectorVT(MVT::getIntegerVT(EltVT.getSizeInBits()),
2405 VT.getVectorElementCount());
2406 unsigned ExtOpcode = Op.getOpcode() == ISD::UINT_TO_FP
2407 ? ISD::ZERO_EXTEND
2408 : ISD::SIGN_EXTEND;
2409 SDValue Ext = DAG.getNode(ExtOpcode, DL, IVecVT, Src);
2410 return DAG.getNode(Op.getOpcode(), DL, VT, Ext);
2411 }
2412 // FP2Int
2413 assert(SrcEltVT == MVT::f16 && "Unexpected FP_TO_[US]INT lowering");
2414 // Do one doubling fp_extend then complete the operation by converting
2415 // to int.
2416 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2417 SDValue FExt = DAG.getFPExtendOrRound(Src, DL, InterimFVT);
2418 return DAG.getNode(Op.getOpcode(), DL, VT, FExt);
2419 }
2420
2421 // Narrowing conversions
2422 if (SrcEltSize > EltSize && (SrcEltSize / EltSize >= 4)) {
2423 if (IsInt2FP) {
2424 // One narrowing int_to_fp, then an fp_round.
2425 assert(EltVT == MVT::f16 && "Unexpected [US]_TO_FP lowering");
2426 MVT InterimFVT = MVT::getVectorVT(MVT::f32, VT.getVectorElementCount());
2427 SDValue Int2FP = DAG.getNode(Op.getOpcode(), DL, InterimFVT, Src);
2428 return DAG.getFPExtendOrRound(Int2FP, DL, VT);
2429 }
2430 // FP2Int
2431 // One narrowing fp_to_int, then truncate the integer. If the float isn't
2432 // representable by the integer, the result is poison.
2433 MVT IVecVT =
2434 MVT::getVectorVT(MVT::getIntegerVT(SrcEltVT.getSizeInBits() / 2),
2435 VT.getVectorElementCount());
2436 SDValue FP2Int = DAG.getNode(Op.getOpcode(), DL, IVecVT, Src);
2437 return DAG.getNode(ISD::TRUNCATE, DL, VT, FP2Int);
2438 }
2439
2440 // Scalable vectors can exit here. Patterns will handle equally-sized
2441 // conversions halving/doubling ones.
2442 if (!VT.isFixedLengthVector())
2443 return Op;
2444
2445 // For fixed-length vectors we lower to a custom "VL" node.
2446 unsigned RVVOpc = 0;
2447 switch (Op.getOpcode()) {
2448 default:
2449 llvm_unreachable("Impossible opcode");
2450 case ISD::FP_TO_SINT:
2451 RVVOpc = RISCVISD::FP_TO_SINT_VL;
2452 break;
2453 case ISD::FP_TO_UINT:
2454 RVVOpc = RISCVISD::FP_TO_UINT_VL;
2455 break;
2456 case ISD::SINT_TO_FP:
2457 RVVOpc = RISCVISD::SINT_TO_FP_VL;
2458 break;
2459 case ISD::UINT_TO_FP:
2460 RVVOpc = RISCVISD::UINT_TO_FP_VL;
2461 break;
2462 }
2463
2464 MVT ContainerVT, SrcContainerVT;
2465 // Derive the reference container type from the larger vector type.
2466 if (SrcEltSize > EltSize) {
2467 SrcContainerVT = getContainerForFixedLengthVector(SrcVT);
2468 ContainerVT =
2469 SrcContainerVT.changeVectorElementType(VT.getVectorElementType());
2470 } else {
2471 ContainerVT = getContainerForFixedLengthVector(VT);
2472 SrcContainerVT = ContainerVT.changeVectorElementType(SrcEltVT);
2473 }
2474
2475 SDValue Mask, VL;
2476 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
2477
2478 Src = convertToScalableVector(SrcContainerVT, Src, DAG, Subtarget);
2479 Src = DAG.getNode(RVVOpc, DL, ContainerVT, Src, Mask, VL);
2480 return convertFromScalableVector(VT, Src, DAG, Subtarget);
2481 }
2482 case ISD::VECREDUCE_ADD:
2483 case ISD::VECREDUCE_UMAX:
2484 case ISD::VECREDUCE_SMAX:
2485 case ISD::VECREDUCE_UMIN:
2486 case ISD::VECREDUCE_SMIN:
2487 return lowerVECREDUCE(Op, DAG);
2488 case ISD::VECREDUCE_AND:
2489 case ISD::VECREDUCE_OR:
2490 case ISD::VECREDUCE_XOR:
2491 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
2492 return lowerVectorMaskVECREDUCE(Op, DAG);
2493 return lowerVECREDUCE(Op, DAG);
2494 case ISD::VECREDUCE_FADD:
2495 case ISD::VECREDUCE_SEQ_FADD:
2496 case ISD::VECREDUCE_FMIN:
2497 case ISD::VECREDUCE_FMAX:
2498 return lowerFPVECREDUCE(Op, DAG);
2499 case ISD::INSERT_SUBVECTOR:
2500 return lowerINSERT_SUBVECTOR(Op, DAG);
2501 case ISD::EXTRACT_SUBVECTOR:
2502 return lowerEXTRACT_SUBVECTOR(Op, DAG);
2503 case ISD::STEP_VECTOR:
2504 return lowerSTEP_VECTOR(Op, DAG);
2505 case ISD::VECTOR_REVERSE:
2506 return lowerVECTOR_REVERSE(Op, DAG);
2507 case ISD::BUILD_VECTOR:
2508 return lowerBUILD_VECTOR(Op, DAG, Subtarget);
2509 case ISD::SPLAT_VECTOR:
2510 if (Op.getValueType().getVectorElementType() == MVT::i1)
2511 return lowerVectorMaskSplat(Op, DAG);
2512 return lowerSPLAT_VECTOR(Op, DAG, Subtarget);
2513 case ISD::VECTOR_SHUFFLE:
2514 return lowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
2515 case ISD::CONCAT_VECTORS: {
2516 // Split CONCAT_VECTORS into a series of INSERT_SUBVECTOR nodes. This is
2517 // better than going through the stack, as the default expansion does.
2518 SDLoc DL(Op);
2519 MVT VT = Op.getSimpleValueType();
2520 unsigned NumOpElts =
2521 Op.getOperand(0).getSimpleValueType().getVectorMinNumElements();
2522 SDValue Vec = DAG.getUNDEF(VT);
2523 for (const auto &OpIdx : enumerate(Op->ops()))
2524 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, Vec, OpIdx.value(),
2525 DAG.getIntPtrConstant(OpIdx.index() * NumOpElts, DL));
2526 return Vec;
2527 }
2528 case ISD::LOAD:
2529 if (auto V = expandUnalignedRVVLoad(Op, DAG))
2530 return V;
2531 if (Op.getValueType().isFixedLengthVector())
2532 return lowerFixedLengthVectorLoadToRVV(Op, DAG);
2533 return Op;
2534 case ISD::STORE:
2535 if (auto V = expandUnalignedRVVStore(Op, DAG))
2536 return V;
2537 if (Op.getOperand(1).getValueType().isFixedLengthVector())
2538 return lowerFixedLengthVectorStoreToRVV(Op, DAG);
2539 return Op;
2540 case ISD::MLOAD:
2541 return lowerMLOAD(Op, DAG);
2542 case ISD::MSTORE:
2543 return lowerMSTORE(Op, DAG);
2544 case ISD::SETCC:
2545 return lowerFixedLengthVectorSetccToRVV(Op, DAG);
2546 case ISD::ADD:
2547 return lowerToScalableOp(Op, DAG, RISCVISD::ADD_VL);
2548 case ISD::SUB:
2549 return lowerToScalableOp(Op, DAG, RISCVISD::SUB_VL);
2550 case ISD::MUL:
2551 return lowerToScalableOp(Op, DAG, RISCVISD::MUL_VL);
2552 case ISD::MULHS:
2553 return lowerToScalableOp(Op, DAG, RISCVISD::MULHS_VL);
2554 case ISD::MULHU:
2555 return lowerToScalableOp(Op, DAG, RISCVISD::MULHU_VL);
2556 case ISD::AND:
2557 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMAND_VL,
2558 RISCVISD::AND_VL);
2559 case ISD::OR:
2560 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMOR_VL,
2561 RISCVISD::OR_VL);
2562 case ISD::XOR:
2563 return lowerFixedLengthVectorLogicOpToRVV(Op, DAG, RISCVISD::VMXOR_VL,
2564 RISCVISD::XOR_VL);
2565 case ISD::SDIV:
2566 return lowerToScalableOp(Op, DAG, RISCVISD::SDIV_VL);
2567 case ISD::SREM:
2568 return lowerToScalableOp(Op, DAG, RISCVISD::SREM_VL);
2569 case ISD::UDIV:
2570 return lowerToScalableOp(Op, DAG, RISCVISD::UDIV_VL);
2571 case ISD::UREM:
2572 return lowerToScalableOp(Op, DAG, RISCVISD::UREM_VL);
2573 case ISD::SHL:
2574 case ISD::SRA:
2575 case ISD::SRL:
2576 if (Op.getSimpleValueType().isFixedLengthVector())
2577 return lowerFixedLengthVectorShiftToRVV(Op, DAG);
2578 // This can be called for an i32 shift amount that needs to be promoted.
2579 assert(Op.getOperand(1).getValueType() == MVT::i32 && Subtarget.is64Bit() &&
2580 "Unexpected custom legalisation");
2581 return SDValue();
2582 case ISD::SADDSAT:
2583 return lowerToScalableOp(Op, DAG, RISCVISD::SADDSAT_VL);
2584 case ISD::UADDSAT:
2585 return lowerToScalableOp(Op, DAG, RISCVISD::UADDSAT_VL);
2586 case ISD::SSUBSAT:
2587 return lowerToScalableOp(Op, DAG, RISCVISD::SSUBSAT_VL);
2588 case ISD::USUBSAT:
2589 return lowerToScalableOp(Op, DAG, RISCVISD::USUBSAT_VL);
2590 case ISD::FADD:
2591 return lowerToScalableOp(Op, DAG, RISCVISD::FADD_VL);
2592 case ISD::FSUB:
2593 return lowerToScalableOp(Op, DAG, RISCVISD::FSUB_VL);
2594 case ISD::FMUL:
2595 return lowerToScalableOp(Op, DAG, RISCVISD::FMUL_VL);
2596 case ISD::FDIV:
2597 return lowerToScalableOp(Op, DAG, RISCVISD::FDIV_VL);
2598 case ISD::FNEG:
2599 return lowerToScalableOp(Op, DAG, RISCVISD::FNEG_VL);
2600 case ISD::FABS:
2601 return lowerToScalableOp(Op, DAG, RISCVISD::FABS_VL);
2602 case ISD::FSQRT:
2603 return lowerToScalableOp(Op, DAG, RISCVISD::FSQRT_VL);
2604 case ISD::FMA:
2605 return lowerToScalableOp(Op, DAG, RISCVISD::FMA_VL);
2606 case ISD::SMIN:
2607 return lowerToScalableOp(Op, DAG, RISCVISD::SMIN_VL);
2608 case ISD::SMAX:
2609 return lowerToScalableOp(Op, DAG, RISCVISD::SMAX_VL);
2610 case ISD::UMIN:
2611 return lowerToScalableOp(Op, DAG, RISCVISD::UMIN_VL);
2612 case ISD::UMAX:
2613 return lowerToScalableOp(Op, DAG, RISCVISD::UMAX_VL);
2614 case ISD::FMINNUM:
2615 return lowerToScalableOp(Op, DAG, RISCVISD::FMINNUM_VL);
2616 case ISD::FMAXNUM:
2617 return lowerToScalableOp(Op, DAG, RISCVISD::FMAXNUM_VL);
2618 case ISD::ABS:
2619 return lowerABS(Op, DAG);
2620 case ISD::VSELECT:
2621 return lowerFixedLengthVectorSelectToRVV(Op, DAG);
2622 case ISD::FCOPYSIGN:
2623 return lowerFixedLengthVectorFCOPYSIGNToRVV(Op, DAG);
2624 case ISD::MGATHER:
2625 return lowerMGATHER(Op, DAG);
2626 case ISD::MSCATTER:
2627 return lowerMSCATTER(Op, DAG);
2628 case ISD::FLT_ROUNDS_:
2629 return lowerGET_ROUNDING(Op, DAG);
2630 case ISD::SET_ROUNDING:
2631 return lowerSET_ROUNDING(Op, DAG);
2632 case ISD::VP_ADD:
2633 return lowerVPOp(Op, DAG, RISCVISD::ADD_VL);
2634 case ISD::VP_SUB:
2635 return lowerVPOp(Op, DAG, RISCVISD::SUB_VL);
2636 case ISD::VP_MUL:
2637 return lowerVPOp(Op, DAG, RISCVISD::MUL_VL);
2638 case ISD::VP_SDIV:
2639 return lowerVPOp(Op, DAG, RISCVISD::SDIV_VL);
2640 case ISD::VP_UDIV:
2641 return lowerVPOp(Op, DAG, RISCVISD::UDIV_VL);
2642 case ISD::VP_SREM:
2643 return lowerVPOp(Op, DAG, RISCVISD::SREM_VL);
2644 case ISD::VP_UREM:
2645 return lowerVPOp(Op, DAG, RISCVISD::UREM_VL);
2646 case ISD::VP_AND:
2647 return lowerVPOp(Op, DAG, RISCVISD::AND_VL);
2648 case ISD::VP_OR:
2649 return lowerVPOp(Op, DAG, RISCVISD::OR_VL);
2650 case ISD::VP_XOR:
2651 return lowerVPOp(Op, DAG, RISCVISD::XOR_VL);
2652 case ISD::VP_ASHR:
2653 return lowerVPOp(Op, DAG, RISCVISD::SRA_VL);
2654 case ISD::VP_LSHR:
2655 return lowerVPOp(Op, DAG, RISCVISD::SRL_VL);
2656 case ISD::VP_SHL:
2657 return lowerVPOp(Op, DAG, RISCVISD::SHL_VL);
2658 case ISD::VP_FADD:
2659 return lowerVPOp(Op, DAG, RISCVISD::FADD_VL);
2660 case ISD::VP_FSUB:
2661 return lowerVPOp(Op, DAG, RISCVISD::FSUB_VL);
2662 case ISD::VP_FMUL:
2663 return lowerVPOp(Op, DAG, RISCVISD::FMUL_VL);
2664 case ISD::VP_FDIV:
2665 return lowerVPOp(Op, DAG, RISCVISD::FDIV_VL);
2666 }
2667 }
2668
getTargetNode(GlobalAddressSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2669 static SDValue getTargetNode(GlobalAddressSDNode *N, SDLoc DL, EVT Ty,
2670 SelectionDAG &DAG, unsigned Flags) {
2671 return DAG.getTargetGlobalAddress(N->getGlobal(), DL, Ty, 0, Flags);
2672 }
2673
getTargetNode(BlockAddressSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2674 static SDValue getTargetNode(BlockAddressSDNode *N, SDLoc DL, EVT Ty,
2675 SelectionDAG &DAG, unsigned Flags) {
2676 return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, N->getOffset(),
2677 Flags);
2678 }
2679
getTargetNode(ConstantPoolSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2680 static SDValue getTargetNode(ConstantPoolSDNode *N, SDLoc DL, EVT Ty,
2681 SelectionDAG &DAG, unsigned Flags) {
2682 return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(),
2683 N->getOffset(), Flags);
2684 }
2685
getTargetNode(JumpTableSDNode * N,SDLoc DL,EVT Ty,SelectionDAG & DAG,unsigned Flags)2686 static SDValue getTargetNode(JumpTableSDNode *N, SDLoc DL, EVT Ty,
2687 SelectionDAG &DAG, unsigned Flags) {
2688 return DAG.getTargetJumpTable(N->getIndex(), Ty, Flags);
2689 }
2690
2691 template <class NodeTy>
getAddr(NodeTy * N,SelectionDAG & DAG,bool IsLocal) const2692 SDValue RISCVTargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG,
2693 bool IsLocal) const {
2694 SDLoc DL(N);
2695 EVT Ty = getPointerTy(DAG.getDataLayout());
2696
2697 if (isPositionIndependent()) {
2698 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2699 if (IsLocal)
2700 // Use PC-relative addressing to access the symbol. This generates the
2701 // pattern (PseudoLLA sym), which expands to (addi (auipc %pcrel_hi(sym))
2702 // %pcrel_lo(auipc)).
2703 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2704
2705 // Use PC-relative addressing to access the GOT for this symbol, then load
2706 // the address from the GOT. This generates the pattern (PseudoLA sym),
2707 // which expands to (ld (addi (auipc %got_pcrel_hi(sym)) %pcrel_lo(auipc))).
2708 return SDValue(DAG.getMachineNode(RISCV::PseudoLA, DL, Ty, Addr), 0);
2709 }
2710
2711 switch (getTargetMachine().getCodeModel()) {
2712 default:
2713 report_fatal_error("Unsupported code model for lowering");
2714 case CodeModel::Small: {
2715 // Generate a sequence for accessing addresses within the first 2 GiB of
2716 // address space. This generates the pattern (addi (lui %hi(sym)) %lo(sym)).
2717 SDValue AddrHi = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_HI);
2718 SDValue AddrLo = getTargetNode(N, DL, Ty, DAG, RISCVII::MO_LO);
2719 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2720 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, AddrLo), 0);
2721 }
2722 case CodeModel::Medium: {
2723 // Generate a sequence for accessing addresses within any 2GiB range within
2724 // the address space. This generates the pattern (PseudoLLA sym), which
2725 // expands to (addi (auipc %pcrel_hi(sym)) %pcrel_lo(auipc)).
2726 SDValue Addr = getTargetNode(N, DL, Ty, DAG, 0);
2727 return SDValue(DAG.getMachineNode(RISCV::PseudoLLA, DL, Ty, Addr), 0);
2728 }
2729 }
2730 }
2731
lowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2732 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
2733 SelectionDAG &DAG) const {
2734 SDLoc DL(Op);
2735 EVT Ty = Op.getValueType();
2736 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2737 int64_t Offset = N->getOffset();
2738 MVT XLenVT = Subtarget.getXLenVT();
2739
2740 const GlobalValue *GV = N->getGlobal();
2741 bool IsLocal = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
2742 SDValue Addr = getAddr(N, DAG, IsLocal);
2743
2744 // In order to maximise the opportunity for common subexpression elimination,
2745 // emit a separate ADD node for the global address offset instead of folding
2746 // it in the global address node. Later peephole optimisations may choose to
2747 // fold it back in when profitable.
2748 if (Offset != 0)
2749 return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2750 DAG.getConstant(Offset, DL, XLenVT));
2751 return Addr;
2752 }
2753
lowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2754 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
2755 SelectionDAG &DAG) const {
2756 BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
2757
2758 return getAddr(N, DAG);
2759 }
2760
lowerConstantPool(SDValue Op,SelectionDAG & DAG) const2761 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
2762 SelectionDAG &DAG) const {
2763 ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
2764
2765 return getAddr(N, DAG);
2766 }
2767
lowerJumpTable(SDValue Op,SelectionDAG & DAG) const2768 SDValue RISCVTargetLowering::lowerJumpTable(SDValue Op,
2769 SelectionDAG &DAG) const {
2770 JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
2771
2772 return getAddr(N, DAG);
2773 }
2774
getStaticTLSAddr(GlobalAddressSDNode * N,SelectionDAG & DAG,bool UseGOT) const2775 SDValue RISCVTargetLowering::getStaticTLSAddr(GlobalAddressSDNode *N,
2776 SelectionDAG &DAG,
2777 bool UseGOT) const {
2778 SDLoc DL(N);
2779 EVT Ty = getPointerTy(DAG.getDataLayout());
2780 const GlobalValue *GV = N->getGlobal();
2781 MVT XLenVT = Subtarget.getXLenVT();
2782
2783 if (UseGOT) {
2784 // Use PC-relative addressing to access the GOT for this TLS symbol, then
2785 // load the address from the GOT and add the thread pointer. This generates
2786 // the pattern (PseudoLA_TLS_IE sym), which expands to
2787 // (ld (auipc %tls_ie_pcrel_hi(sym)) %pcrel_lo(auipc)).
2788 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2789 SDValue Load =
2790 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_IE, DL, Ty, Addr), 0);
2791
2792 // Add the thread pointer.
2793 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2794 return DAG.getNode(ISD::ADD, DL, Ty, Load, TPReg);
2795 }
2796
2797 // Generate a sequence for accessing the address relative to the thread
2798 // pointer, with the appropriate adjustment for the thread pointer offset.
2799 // This generates the pattern
2800 // (add (add_tprel (lui %tprel_hi(sym)) tp %tprel_add(sym)) %tprel_lo(sym))
2801 SDValue AddrHi =
2802 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_HI);
2803 SDValue AddrAdd =
2804 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_ADD);
2805 SDValue AddrLo =
2806 DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_TPREL_LO);
2807
2808 SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, AddrHi), 0);
2809 SDValue TPReg = DAG.getRegister(RISCV::X4, XLenVT);
2810 SDValue MNAdd = SDValue(
2811 DAG.getMachineNode(RISCV::PseudoAddTPRel, DL, Ty, MNHi, TPReg, AddrAdd),
2812 0);
2813 return SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNAdd, AddrLo), 0);
2814 }
2815
getDynamicTLSAddr(GlobalAddressSDNode * N,SelectionDAG & DAG) const2816 SDValue RISCVTargetLowering::getDynamicTLSAddr(GlobalAddressSDNode *N,
2817 SelectionDAG &DAG) const {
2818 SDLoc DL(N);
2819 EVT Ty = getPointerTy(DAG.getDataLayout());
2820 IntegerType *CallTy = Type::getIntNTy(*DAG.getContext(), Ty.getSizeInBits());
2821 const GlobalValue *GV = N->getGlobal();
2822
2823 // Use a PC-relative addressing mode to access the global dynamic GOT address.
2824 // This generates the pattern (PseudoLA_TLS_GD sym), which expands to
2825 // (addi (auipc %tls_gd_pcrel_hi(sym)) %pcrel_lo(auipc)).
2826 SDValue Addr = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, 0);
2827 SDValue Load =
2828 SDValue(DAG.getMachineNode(RISCV::PseudoLA_TLS_GD, DL, Ty, Addr), 0);
2829
2830 // Prepare argument list to generate call.
2831 ArgListTy Args;
2832 ArgListEntry Entry;
2833 Entry.Node = Load;
2834 Entry.Ty = CallTy;
2835 Args.push_back(Entry);
2836
2837 // Setup call to __tls_get_addr.
2838 TargetLowering::CallLoweringInfo CLI(DAG);
2839 CLI.setDebugLoc(DL)
2840 .setChain(DAG.getEntryNode())
2841 .setLibCallee(CallingConv::C, CallTy,
2842 DAG.getExternalSymbol("__tls_get_addr", Ty),
2843 std::move(Args));
2844
2845 return LowerCallTo(CLI).first;
2846 }
2847
lowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2848 SDValue RISCVTargetLowering::lowerGlobalTLSAddress(SDValue Op,
2849 SelectionDAG &DAG) const {
2850 SDLoc DL(Op);
2851 EVT Ty = Op.getValueType();
2852 GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
2853 int64_t Offset = N->getOffset();
2854 MVT XLenVT = Subtarget.getXLenVT();
2855
2856 TLSModel::Model Model = getTargetMachine().getTLSModel(N->getGlobal());
2857
2858 if (DAG.getMachineFunction().getFunction().getCallingConv() ==
2859 CallingConv::GHC)
2860 report_fatal_error("In GHC calling convention TLS is not supported");
2861
2862 SDValue Addr;
2863 switch (Model) {
2864 case TLSModel::LocalExec:
2865 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/false);
2866 break;
2867 case TLSModel::InitialExec:
2868 Addr = getStaticTLSAddr(N, DAG, /*UseGOT=*/true);
2869 break;
2870 case TLSModel::LocalDynamic:
2871 case TLSModel::GeneralDynamic:
2872 Addr = getDynamicTLSAddr(N, DAG);
2873 break;
2874 }
2875
2876 // In order to maximise the opportunity for common subexpression elimination,
2877 // emit a separate ADD node for the global address offset instead of folding
2878 // it in the global address node. Later peephole optimisations may choose to
2879 // fold it back in when profitable.
2880 if (Offset != 0)
2881 return DAG.getNode(ISD::ADD, DL, Ty, Addr,
2882 DAG.getConstant(Offset, DL, XLenVT));
2883 return Addr;
2884 }
2885
lowerSELECT(SDValue Op,SelectionDAG & DAG) const2886 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2887 SDValue CondV = Op.getOperand(0);
2888 SDValue TrueV = Op.getOperand(1);
2889 SDValue FalseV = Op.getOperand(2);
2890 SDLoc DL(Op);
2891 MVT VT = Op.getSimpleValueType();
2892 MVT XLenVT = Subtarget.getXLenVT();
2893
2894 // Lower vector SELECTs to VSELECTs by splatting the condition.
2895 if (VT.isVector()) {
2896 MVT SplatCondVT = VT.changeVectorElementType(MVT::i1);
2897 SDValue CondSplat = VT.isScalableVector()
2898 ? DAG.getSplatVector(SplatCondVT, DL, CondV)
2899 : DAG.getSplatBuildVector(SplatCondVT, DL, CondV);
2900 return DAG.getNode(ISD::VSELECT, DL, VT, CondSplat, TrueV, FalseV);
2901 }
2902
2903 // If the result type is XLenVT and CondV is the output of a SETCC node
2904 // which also operated on XLenVT inputs, then merge the SETCC node into the
2905 // lowered RISCVISD::SELECT_CC to take advantage of the integer
2906 // compare+branch instructions. i.e.:
2907 // (select (setcc lhs, rhs, cc), truev, falsev)
2908 // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
2909 if (VT == XLenVT && CondV.getOpcode() == ISD::SETCC &&
2910 CondV.getOperand(0).getSimpleValueType() == XLenVT) {
2911 SDValue LHS = CondV.getOperand(0);
2912 SDValue RHS = CondV.getOperand(1);
2913 const auto *CC = cast<CondCodeSDNode>(CondV.getOperand(2));
2914 ISD::CondCode CCVal = CC->get();
2915
2916 // Special case for a select of 2 constants that have a diffence of 1.
2917 // Normally this is done by DAGCombine, but if the select is introduced by
2918 // type legalization or op legalization, we miss it. Restricting to SETLT
2919 // case for now because that is what signed saturating add/sub need.
2920 // FIXME: We don't need the condition to be SETLT or even a SETCC,
2921 // but we would probably want to swap the true/false values if the condition
2922 // is SETGE/SETLE to avoid an XORI.
2923 if (isa<ConstantSDNode>(TrueV) && isa<ConstantSDNode>(FalseV) &&
2924 CCVal == ISD::SETLT) {
2925 const APInt &TrueVal = cast<ConstantSDNode>(TrueV)->getAPIntValue();
2926 const APInt &FalseVal = cast<ConstantSDNode>(FalseV)->getAPIntValue();
2927 if (TrueVal - 1 == FalseVal)
2928 return DAG.getNode(ISD::ADD, DL, Op.getValueType(), CondV, FalseV);
2929 if (TrueVal + 1 == FalseVal)
2930 return DAG.getNode(ISD::SUB, DL, Op.getValueType(), FalseV, CondV);
2931 }
2932
2933 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2934
2935 SDValue TargetCC = DAG.getTargetConstant(CCVal, DL, XLenVT);
2936 SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
2937 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2938 }
2939
2940 // Otherwise:
2941 // (select condv, truev, falsev)
2942 // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
2943 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
2944 SDValue SetNE = DAG.getTargetConstant(ISD::SETNE, DL, XLenVT);
2945
2946 SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
2947
2948 return DAG.getNode(RISCVISD::SELECT_CC, DL, Op.getValueType(), Ops);
2949 }
2950
lowerBRCOND(SDValue Op,SelectionDAG & DAG) const2951 SDValue RISCVTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
2952 SDValue CondV = Op.getOperand(1);
2953 SDLoc DL(Op);
2954 MVT XLenVT = Subtarget.getXLenVT();
2955
2956 if (CondV.getOpcode() == ISD::SETCC &&
2957 CondV.getOperand(0).getValueType() == XLenVT) {
2958 SDValue LHS = CondV.getOperand(0);
2959 SDValue RHS = CondV.getOperand(1);
2960 ISD::CondCode CCVal = cast<CondCodeSDNode>(CondV.getOperand(2))->get();
2961
2962 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
2963
2964 SDValue TargetCC = DAG.getCondCode(CCVal);
2965 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2966 LHS, RHS, TargetCC, Op.getOperand(2));
2967 }
2968
2969 return DAG.getNode(RISCVISD::BR_CC, DL, Op.getValueType(), Op.getOperand(0),
2970 CondV, DAG.getConstant(0, DL, XLenVT),
2971 DAG.getCondCode(ISD::SETNE), Op.getOperand(2));
2972 }
2973
lowerVASTART(SDValue Op,SelectionDAG & DAG) const2974 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2975 MachineFunction &MF = DAG.getMachineFunction();
2976 RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
2977
2978 SDLoc DL(Op);
2979 SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
2980 getPointerTy(MF.getDataLayout()));
2981
2982 // vastart just stores the address of the VarArgsFrameIndex slot into the
2983 // memory location argument.
2984 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2985 return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
2986 MachinePointerInfo(SV));
2987 }
2988
lowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const2989 SDValue RISCVTargetLowering::lowerFRAMEADDR(SDValue Op,
2990 SelectionDAG &DAG) const {
2991 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
2992 MachineFunction &MF = DAG.getMachineFunction();
2993 MachineFrameInfo &MFI = MF.getFrameInfo();
2994 MFI.setFrameAddressIsTaken(true);
2995 Register FrameReg = RI.getFrameRegister(MF);
2996 int XLenInBytes = Subtarget.getXLen() / 8;
2997
2998 EVT VT = Op.getValueType();
2999 SDLoc DL(Op);
3000 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
3001 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3002 while (Depth--) {
3003 int Offset = -(XLenInBytes * 2);
3004 SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
3005 DAG.getIntPtrConstant(Offset, DL));
3006 FrameAddr =
3007 DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3008 }
3009 return FrameAddr;
3010 }
3011
lowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const3012 SDValue RISCVTargetLowering::lowerRETURNADDR(SDValue Op,
3013 SelectionDAG &DAG) const {
3014 const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
3015 MachineFunction &MF = DAG.getMachineFunction();
3016 MachineFrameInfo &MFI = MF.getFrameInfo();
3017 MFI.setReturnAddressIsTaken(true);
3018 MVT XLenVT = Subtarget.getXLenVT();
3019 int XLenInBytes = Subtarget.getXLen() / 8;
3020
3021 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3022 return SDValue();
3023
3024 EVT VT = Op.getValueType();
3025 SDLoc DL(Op);
3026 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3027 if (Depth) {
3028 int Off = -XLenInBytes;
3029 SDValue FrameAddr = lowerFRAMEADDR(Op, DAG);
3030 SDValue Offset = DAG.getConstant(Off, DL, VT);
3031 return DAG.getLoad(VT, DL, DAG.getEntryNode(),
3032 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
3033 MachinePointerInfo());
3034 }
3035
3036 // Return the value of the return address register, marking it an implicit
3037 // live-in.
3038 Register Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
3039 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
3040 }
3041
lowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const3042 SDValue RISCVTargetLowering::lowerShiftLeftParts(SDValue Op,
3043 SelectionDAG &DAG) const {
3044 SDLoc DL(Op);
3045 SDValue Lo = Op.getOperand(0);
3046 SDValue Hi = Op.getOperand(1);
3047 SDValue Shamt = Op.getOperand(2);
3048 EVT VT = Lo.getValueType();
3049
3050 // if Shamt-XLEN < 0: // Shamt < XLEN
3051 // Lo = Lo << Shamt
3052 // Hi = (Hi << Shamt) | ((Lo >>u 1) >>u (XLEN-1 - Shamt))
3053 // else:
3054 // Lo = 0
3055 // Hi = Lo << (Shamt-XLEN)
3056
3057 SDValue Zero = DAG.getConstant(0, DL, VT);
3058 SDValue One = DAG.getConstant(1, DL, VT);
3059 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3060 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3061 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3062 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3063
3064 SDValue LoTrue = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
3065 SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo, One);
3066 SDValue ShiftRightLo =
3067 DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, XLenMinus1Shamt);
3068 SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
3069 SDValue HiTrue = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
3070 SDValue HiFalse = DAG.getNode(ISD::SHL, DL, VT, Lo, ShamtMinusXLen);
3071
3072 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3073
3074 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, Zero);
3075 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3076
3077 SDValue Parts[2] = {Lo, Hi};
3078 return DAG.getMergeValues(Parts, DL);
3079 }
3080
lowerShiftRightParts(SDValue Op,SelectionDAG & DAG,bool IsSRA) const3081 SDValue RISCVTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
3082 bool IsSRA) const {
3083 SDLoc DL(Op);
3084 SDValue Lo = Op.getOperand(0);
3085 SDValue Hi = Op.getOperand(1);
3086 SDValue Shamt = Op.getOperand(2);
3087 EVT VT = Lo.getValueType();
3088
3089 // SRA expansion:
3090 // if Shamt-XLEN < 0: // Shamt < XLEN
3091 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3092 // Hi = Hi >>s Shamt
3093 // else:
3094 // Lo = Hi >>s (Shamt-XLEN);
3095 // Hi = Hi >>s (XLEN-1)
3096 //
3097 // SRL expansion:
3098 // if Shamt-XLEN < 0: // Shamt < XLEN
3099 // Lo = (Lo >>u Shamt) | ((Hi << 1) << (XLEN-1 - Shamt))
3100 // Hi = Hi >>u Shamt
3101 // else:
3102 // Lo = Hi >>u (Shamt-XLEN);
3103 // Hi = 0;
3104
3105 unsigned ShiftRightOp = IsSRA ? ISD::SRA : ISD::SRL;
3106
3107 SDValue Zero = DAG.getConstant(0, DL, VT);
3108 SDValue One = DAG.getConstant(1, DL, VT);
3109 SDValue MinusXLen = DAG.getConstant(-(int)Subtarget.getXLen(), DL, VT);
3110 SDValue XLenMinus1 = DAG.getConstant(Subtarget.getXLen() - 1, DL, VT);
3111 SDValue ShamtMinusXLen = DAG.getNode(ISD::ADD, DL, VT, Shamt, MinusXLen);
3112 SDValue XLenMinus1Shamt = DAG.getNode(ISD::SUB, DL, VT, XLenMinus1, Shamt);
3113
3114 SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
3115 SDValue ShiftLeftHi1 = DAG.getNode(ISD::SHL, DL, VT, Hi, One);
3116 SDValue ShiftLeftHi =
3117 DAG.getNode(ISD::SHL, DL, VT, ShiftLeftHi1, XLenMinus1Shamt);
3118 SDValue LoTrue = DAG.getNode(ISD::OR, DL, VT, ShiftRightLo, ShiftLeftHi);
3119 SDValue HiTrue = DAG.getNode(ShiftRightOp, DL, VT, Hi, Shamt);
3120 SDValue LoFalse = DAG.getNode(ShiftRightOp, DL, VT, Hi, ShamtMinusXLen);
3121 SDValue HiFalse =
3122 IsSRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, XLenMinus1) : Zero;
3123
3124 SDValue CC = DAG.getSetCC(DL, VT, ShamtMinusXLen, Zero, ISD::SETLT);
3125
3126 Lo = DAG.getNode(ISD::SELECT, DL, VT, CC, LoTrue, LoFalse);
3127 Hi = DAG.getNode(ISD::SELECT, DL, VT, CC, HiTrue, HiFalse);
3128
3129 SDValue Parts[2] = {Lo, Hi};
3130 return DAG.getMergeValues(Parts, DL);
3131 }
3132
3133 // Lower splats of i1 types to SETCC. For each mask vector type, we have a
3134 // legal equivalently-sized i8 type, so we can use that as a go-between.
lowerVectorMaskSplat(SDValue Op,SelectionDAG & DAG) const3135 SDValue RISCVTargetLowering::lowerVectorMaskSplat(SDValue Op,
3136 SelectionDAG &DAG) const {
3137 SDLoc DL(Op);
3138 MVT VT = Op.getSimpleValueType();
3139 SDValue SplatVal = Op.getOperand(0);
3140 // All-zeros or all-ones splats are handled specially.
3141 if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) {
3142 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3143 return DAG.getNode(RISCVISD::VMSET_VL, DL, VT, VL);
3144 }
3145 if (ISD::isConstantSplatVectorAllZeros(Op.getNode())) {
3146 SDValue VL = getDefaultScalableVLOps(VT, DL, DAG, Subtarget).second;
3147 return DAG.getNode(RISCVISD::VMCLR_VL, DL, VT, VL);
3148 }
3149 MVT XLenVT = Subtarget.getXLenVT();
3150 assert(SplatVal.getValueType() == XLenVT &&
3151 "Unexpected type for i1 splat value");
3152 MVT InterVT = VT.changeVectorElementType(MVT::i8);
3153 SplatVal = DAG.getNode(ISD::AND, DL, XLenVT, SplatVal,
3154 DAG.getConstant(1, DL, XLenVT));
3155 SDValue LHS = DAG.getSplatVector(InterVT, DL, SplatVal);
3156 SDValue Zero = DAG.getConstant(0, DL, InterVT);
3157 return DAG.getSetCC(DL, VT, LHS, Zero, ISD::SETNE);
3158 }
3159
3160 // Custom-lower a SPLAT_VECTOR_PARTS where XLEN<SEW, as the SEW element type is
3161 // illegal (currently only vXi64 RV32).
3162 // FIXME: We could also catch non-constant sign-extended i32 values and lower
3163 // them to SPLAT_VECTOR_I64
lowerSPLAT_VECTOR_PARTS(SDValue Op,SelectionDAG & DAG) const3164 SDValue RISCVTargetLowering::lowerSPLAT_VECTOR_PARTS(SDValue Op,
3165 SelectionDAG &DAG) const {
3166 SDLoc DL(Op);
3167 MVT VecVT = Op.getSimpleValueType();
3168 assert(!Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64 &&
3169 "Unexpected SPLAT_VECTOR_PARTS lowering");
3170
3171 assert(Op.getNumOperands() == 2 && "Unexpected number of operands!");
3172 SDValue Lo = Op.getOperand(0);
3173 SDValue Hi = Op.getOperand(1);
3174
3175 if (VecVT.isFixedLengthVector()) {
3176 MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3177 SDLoc DL(Op);
3178 SDValue Mask, VL;
3179 std::tie(Mask, VL) =
3180 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3181
3182 SDValue Res = splatPartsI64WithVL(DL, ContainerVT, Lo, Hi, VL, DAG);
3183 return convertFromScalableVector(VecVT, Res, DAG, Subtarget);
3184 }
3185
3186 if (isa<ConstantSDNode>(Lo) && isa<ConstantSDNode>(Hi)) {
3187 int32_t LoC = cast<ConstantSDNode>(Lo)->getSExtValue();
3188 int32_t HiC = cast<ConstantSDNode>(Hi)->getSExtValue();
3189 // If Hi constant is all the same sign bit as Lo, lower this as a custom
3190 // node in order to try and match RVV vector/scalar instructions.
3191 if ((LoC >> 31) == HiC)
3192 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3193 }
3194
3195 // Detect cases where Hi is (SRA Lo, 31) which means Hi is Lo sign extended.
3196 if (Hi.getOpcode() == ISD::SRA && Hi.getOperand(0) == Lo &&
3197 isa<ConstantSDNode>(Hi.getOperand(1)) &&
3198 Hi.getConstantOperandVal(1) == 31)
3199 return DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, Lo);
3200
3201 // Fall back to use a stack store and stride x0 vector load. Use X0 as VL.
3202 return DAG.getNode(RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL, DL, VecVT, Lo, Hi,
3203 DAG.getRegister(RISCV::X0, MVT::i64));
3204 }
3205
3206 // Custom-lower extensions from mask vectors by using a vselect either with 1
3207 // for zero/any-extension or -1 for sign-extension:
3208 // (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
3209 // Note that any-extension is lowered identically to zero-extension.
lowerVectorMaskExt(SDValue Op,SelectionDAG & DAG,int64_t ExtTrueVal) const3210 SDValue RISCVTargetLowering::lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
3211 int64_t ExtTrueVal) const {
3212 SDLoc DL(Op);
3213 MVT VecVT = Op.getSimpleValueType();
3214 SDValue Src = Op.getOperand(0);
3215 // Only custom-lower extensions from mask types
3216 assert(Src.getValueType().isVector() &&
3217 Src.getValueType().getVectorElementType() == MVT::i1);
3218
3219 MVT XLenVT = Subtarget.getXLenVT();
3220 SDValue SplatZero = DAG.getConstant(0, DL, XLenVT);
3221 SDValue SplatTrueVal = DAG.getConstant(ExtTrueVal, DL, XLenVT);
3222
3223 if (VecVT.isScalableVector()) {
3224 // Be careful not to introduce illegal scalar types at this stage, and be
3225 // careful also about splatting constants as on RV32, vXi64 SPLAT_VECTOR is
3226 // illegal and must be expanded. Since we know that the constants are
3227 // sign-extended 32-bit values, we use SPLAT_VECTOR_I64 directly.
3228 bool IsRV32E64 =
3229 !Subtarget.is64Bit() && VecVT.getVectorElementType() == MVT::i64;
3230
3231 if (!IsRV32E64) {
3232 SplatZero = DAG.getSplatVector(VecVT, DL, SplatZero);
3233 SplatTrueVal = DAG.getSplatVector(VecVT, DL, SplatTrueVal);
3234 } else {
3235 SplatZero = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatZero);
3236 SplatTrueVal =
3237 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VecVT, SplatTrueVal);
3238 }
3239
3240 return DAG.getNode(ISD::VSELECT, DL, VecVT, Src, SplatTrueVal, SplatZero);
3241 }
3242
3243 MVT ContainerVT = getContainerForFixedLengthVector(VecVT);
3244 MVT I1ContainerVT =
3245 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3246
3247 SDValue CC = convertToScalableVector(I1ContainerVT, Src, DAG, Subtarget);
3248
3249 SDValue Mask, VL;
3250 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3251
3252 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero, VL);
3253 SplatTrueVal =
3254 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatTrueVal, VL);
3255 SDValue Select = DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC,
3256 SplatTrueVal, SplatZero, VL);
3257
3258 return convertFromScalableVector(VecVT, Select, DAG, Subtarget);
3259 }
3260
lowerFixedLengthVectorExtendToRVV(SDValue Op,SelectionDAG & DAG,unsigned ExtendOpc) const3261 SDValue RISCVTargetLowering::lowerFixedLengthVectorExtendToRVV(
3262 SDValue Op, SelectionDAG &DAG, unsigned ExtendOpc) const {
3263 MVT ExtVT = Op.getSimpleValueType();
3264 // Only custom-lower extensions from fixed-length vector types.
3265 if (!ExtVT.isFixedLengthVector())
3266 return Op;
3267 MVT VT = Op.getOperand(0).getSimpleValueType();
3268 // Grab the canonical container type for the extended type. Infer the smaller
3269 // type from that to ensure the same number of vector elements, as we know
3270 // the LMUL will be sufficient to hold the smaller type.
3271 MVT ContainerExtVT = getContainerForFixedLengthVector(ExtVT);
3272 // Get the extended container type manually to ensure the same number of
3273 // vector elements between source and dest.
3274 MVT ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
3275 ContainerExtVT.getVectorElementCount());
3276
3277 SDValue Op1 =
3278 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
3279
3280 SDLoc DL(Op);
3281 SDValue Mask, VL;
3282 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
3283
3284 SDValue Ext = DAG.getNode(ExtendOpc, DL, ContainerExtVT, Op1, Mask, VL);
3285
3286 return convertFromScalableVector(ExtVT, Ext, DAG, Subtarget);
3287 }
3288
3289 // Custom-lower truncations from vectors to mask vectors by using a mask and a
3290 // setcc operation:
3291 // (vXi1 = trunc vXiN vec) -> (vXi1 = setcc (and vec, 1), 0, ne)
lowerVectorMaskTrunc(SDValue Op,SelectionDAG & DAG) const3292 SDValue RISCVTargetLowering::lowerVectorMaskTrunc(SDValue Op,
3293 SelectionDAG &DAG) const {
3294 SDLoc DL(Op);
3295 EVT MaskVT = Op.getValueType();
3296 // Only expect to custom-lower truncations to mask types
3297 assert(MaskVT.isVector() && MaskVT.getVectorElementType() == MVT::i1 &&
3298 "Unexpected type for vector mask lowering");
3299 SDValue Src = Op.getOperand(0);
3300 MVT VecVT = Src.getSimpleValueType();
3301
3302 // If this is a fixed vector, we need to convert it to a scalable vector.
3303 MVT ContainerVT = VecVT;
3304 if (VecVT.isFixedLengthVector()) {
3305 ContainerVT = getContainerForFixedLengthVector(VecVT);
3306 Src = convertToScalableVector(ContainerVT, Src, DAG, Subtarget);
3307 }
3308
3309 SDValue SplatOne = DAG.getConstant(1, DL, Subtarget.getXLenVT());
3310 SDValue SplatZero = DAG.getConstant(0, DL, Subtarget.getXLenVT());
3311
3312 SplatOne = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatOne);
3313 SplatZero = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT, SplatZero);
3314
3315 if (VecVT.isScalableVector()) {
3316 SDValue Trunc = DAG.getNode(ISD::AND, DL, VecVT, Src, SplatOne);
3317 return DAG.getSetCC(DL, MaskVT, Trunc, SplatZero, ISD::SETNE);
3318 }
3319
3320 SDValue Mask, VL;
3321 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3322
3323 MVT MaskContainerVT = ContainerVT.changeVectorElementType(MVT::i1);
3324 SDValue Trunc =
3325 DAG.getNode(RISCVISD::AND_VL, DL, ContainerVT, Src, SplatOne, Mask, VL);
3326 Trunc = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskContainerVT, Trunc, SplatZero,
3327 DAG.getCondCode(ISD::SETNE), Mask, VL);
3328 return convertFromScalableVector(MaskVT, Trunc, DAG, Subtarget);
3329 }
3330
3331 // Custom-legalize INSERT_VECTOR_ELT so that the value is inserted into the
3332 // first position of a vector, and that vector is slid up to the insert index.
3333 // By limiting the active vector length to index+1 and merging with the
3334 // original vector (with an undisturbed tail policy for elements >= VL), we
3335 // achieve the desired result of leaving all elements untouched except the one
3336 // at VL-1, which is replaced with the desired value.
lowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const3337 SDValue RISCVTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
3338 SelectionDAG &DAG) const {
3339 SDLoc DL(Op);
3340 MVT VecVT = Op.getSimpleValueType();
3341 SDValue Vec = Op.getOperand(0);
3342 SDValue Val = Op.getOperand(1);
3343 SDValue Idx = Op.getOperand(2);
3344
3345 if (VecVT.getVectorElementType() == MVT::i1) {
3346 // FIXME: For now we just promote to an i8 vector and insert into that,
3347 // but this is probably not optimal.
3348 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3349 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3350 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideVT, Vec, Val, Idx);
3351 return DAG.getNode(ISD::TRUNCATE, DL, VecVT, Vec);
3352 }
3353
3354 MVT ContainerVT = VecVT;
3355 // If the operand is a fixed-length vector, convert to a scalable one.
3356 if (VecVT.isFixedLengthVector()) {
3357 ContainerVT = getContainerForFixedLengthVector(VecVT);
3358 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3359 }
3360
3361 MVT XLenVT = Subtarget.getXLenVT();
3362
3363 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3364 bool IsLegalInsert = Subtarget.is64Bit() || Val.getValueType() != MVT::i64;
3365 // Even i64-element vectors on RV32 can be lowered without scalar
3366 // legalization if the most-significant 32 bits of the value are not affected
3367 // by the sign-extension of the lower 32 bits.
3368 // TODO: We could also catch sign extensions of a 32-bit value.
3369 if (!IsLegalInsert && isa<ConstantSDNode>(Val)) {
3370 const auto *CVal = cast<ConstantSDNode>(Val);
3371 if (isInt<32>(CVal->getSExtValue())) {
3372 IsLegalInsert = true;
3373 Val = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3374 }
3375 }
3376
3377 SDValue Mask, VL;
3378 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3379
3380 SDValue ValInVec;
3381
3382 if (IsLegalInsert) {
3383 unsigned Opc =
3384 VecVT.isFloatingPoint() ? RISCVISD::VFMV_S_F_VL : RISCVISD::VMV_S_X_VL;
3385 if (isNullConstant(Idx)) {
3386 Vec = DAG.getNode(Opc, DL, ContainerVT, Vec, Val, VL);
3387 if (!VecVT.isFixedLengthVector())
3388 return Vec;
3389 return convertFromScalableVector(VecVT, Vec, DAG, Subtarget);
3390 }
3391 ValInVec =
3392 DAG.getNode(Opc, DL, ContainerVT, DAG.getUNDEF(ContainerVT), Val, VL);
3393 } else {
3394 // On RV32, i64-element vectors must be specially handled to place the
3395 // value at element 0, by using two vslide1up instructions in sequence on
3396 // the i32 split lo/hi value. Use an equivalently-sized i32 vector for
3397 // this.
3398 SDValue One = DAG.getConstant(1, DL, XLenVT);
3399 SDValue ValLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, Zero);
3400 SDValue ValHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Val, One);
3401 MVT I32ContainerVT =
3402 MVT::getVectorVT(MVT::i32, ContainerVT.getVectorElementCount() * 2);
3403 SDValue I32Mask =
3404 getDefaultScalableVLOps(I32ContainerVT, DL, DAG, Subtarget).first;
3405 // Limit the active VL to two.
3406 SDValue InsertI64VL = DAG.getConstant(2, DL, XLenVT);
3407 // Note: We can't pass a UNDEF to the first VSLIDE1UP_VL since an untied
3408 // undef doesn't obey the earlyclobber constraint. Just splat a zero value.
3409 ValInVec = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, I32ContainerVT, Zero,
3410 InsertI64VL);
3411 // First slide in the hi value, then the lo in underneath it.
3412 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3413 ValHi, I32Mask, InsertI64VL);
3414 ValInVec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32ContainerVT, ValInVec,
3415 ValLo, I32Mask, InsertI64VL);
3416 // Bitcast back to the right container type.
3417 ValInVec = DAG.getBitcast(ContainerVT, ValInVec);
3418 }
3419
3420 // Now that the value is in a vector, slide it into position.
3421 SDValue InsertVL =
3422 DAG.getNode(ISD::ADD, DL, XLenVT, Idx, DAG.getConstant(1, DL, XLenVT));
3423 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3424 ValInVec, Idx, Mask, InsertVL);
3425 if (!VecVT.isFixedLengthVector())
3426 return Slideup;
3427 return convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3428 }
3429
3430 // Custom-lower EXTRACT_VECTOR_ELT operations to slide the vector down, then
3431 // extract the first element: (extractelt (slidedown vec, idx), 0). For integer
3432 // types this is done using VMV_X_S to allow us to glean information about the
3433 // sign bits of the result.
lowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const3434 SDValue RISCVTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
3435 SelectionDAG &DAG) const {
3436 SDLoc DL(Op);
3437 SDValue Idx = Op.getOperand(1);
3438 SDValue Vec = Op.getOperand(0);
3439 EVT EltVT = Op.getValueType();
3440 MVT VecVT = Vec.getSimpleValueType();
3441 MVT XLenVT = Subtarget.getXLenVT();
3442
3443 if (VecVT.getVectorElementType() == MVT::i1) {
3444 // FIXME: For now we just promote to an i8 vector and extract from that,
3445 // but this is probably not optimal.
3446 MVT WideVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorElementCount());
3447 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT, Vec);
3448 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec, Idx);
3449 }
3450
3451 // If this is a fixed vector, we need to convert it to a scalable vector.
3452 MVT ContainerVT = VecVT;
3453 if (VecVT.isFixedLengthVector()) {
3454 ContainerVT = getContainerForFixedLengthVector(VecVT);
3455 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3456 }
3457
3458 // If the index is 0, the vector is already in the right position.
3459 if (!isNullConstant(Idx)) {
3460 // Use a VL of 1 to avoid processing more elements than we need.
3461 SDValue VL = DAG.getConstant(1, DL, XLenVT);
3462 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
3463 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3464 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
3465 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
3466 }
3467
3468 if (!EltVT.isInteger()) {
3469 // Floating-point extracts are handled in TableGen.
3470 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vec,
3471 DAG.getConstant(0, DL, XLenVT));
3472 }
3473
3474 SDValue Elt0 = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
3475 return DAG.getNode(ISD::TRUNCATE, DL, EltVT, Elt0);
3476 }
3477
3478 // Some RVV intrinsics may claim that they want an integer operand to be
3479 // promoted or expanded.
lowerVectorIntrinsicSplats(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)3480 static SDValue lowerVectorIntrinsicSplats(SDValue Op, SelectionDAG &DAG,
3481 const RISCVSubtarget &Subtarget) {
3482 assert((Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3483 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN) &&
3484 "Unexpected opcode");
3485
3486 if (!Subtarget.hasStdExtV())
3487 return SDValue();
3488
3489 bool HasChain = Op.getOpcode() == ISD::INTRINSIC_W_CHAIN;
3490 unsigned IntNo = Op.getConstantOperandVal(HasChain ? 1 : 0);
3491 SDLoc DL(Op);
3492
3493 const RISCVVIntrinsicsTable::RISCVVIntrinsicInfo *II =
3494 RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IntNo);
3495 if (!II || !II->SplatOperand)
3496 return SDValue();
3497
3498 unsigned SplatOp = II->SplatOperand + HasChain;
3499 assert(SplatOp < Op.getNumOperands());
3500
3501 SmallVector<SDValue, 8> Operands(Op->op_begin(), Op->op_end());
3502 SDValue &ScalarOp = Operands[SplatOp];
3503 MVT OpVT = ScalarOp.getSimpleValueType();
3504 MVT XLenVT = Subtarget.getXLenVT();
3505
3506 // If this isn't a scalar, or its type is XLenVT we're done.
3507 if (!OpVT.isScalarInteger() || OpVT == XLenVT)
3508 return SDValue();
3509
3510 // Simplest case is that the operand needs to be promoted to XLenVT.
3511 if (OpVT.bitsLT(XLenVT)) {
3512 // If the operand is a constant, sign extend to increase our chances
3513 // of being able to use a .vi instruction. ANY_EXTEND would become a
3514 // a zero extend and the simm5 check in isel would fail.
3515 // FIXME: Should we ignore the upper bits in isel instead?
3516 unsigned ExtOpc =
3517 isa<ConstantSDNode>(ScalarOp) ? ISD::SIGN_EXTEND : ISD::ANY_EXTEND;
3518 ScalarOp = DAG.getNode(ExtOpc, DL, XLenVT, ScalarOp);
3519 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3520 }
3521
3522 // Use the previous operand to get the vXi64 VT. The result might be a mask
3523 // VT for compares. Using the previous operand assumes that the previous
3524 // operand will never have a smaller element size than a scalar operand and
3525 // that a widening operation never uses SEW=64.
3526 // NOTE: If this fails the below assert, we can probably just find the
3527 // element count from any operand or result and use it to construct the VT.
3528 assert(II->SplatOperand > 1 && "Unexpected splat operand!");
3529 MVT VT = Op.getOperand(SplatOp - 1).getSimpleValueType();
3530
3531 // The more complex case is when the scalar is larger than XLenVT.
3532 assert(XLenVT == MVT::i32 && OpVT == MVT::i64 &&
3533 VT.getVectorElementType() == MVT::i64 && "Unexpected VTs!");
3534
3535 // If this is a sign-extended 32-bit constant, we can truncate it and rely
3536 // on the instruction to sign-extend since SEW>XLEN.
3537 if (auto *CVal = dyn_cast<ConstantSDNode>(ScalarOp)) {
3538 if (isInt<32>(CVal->getSExtValue())) {
3539 ScalarOp = DAG.getConstant(CVal->getSExtValue(), DL, MVT::i32);
3540 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3541 }
3542 }
3543
3544 // We need to convert the scalar to a splat vector.
3545 // FIXME: Can we implicitly truncate the scalar if it is known to
3546 // be sign extended?
3547 // VL should be the last operand.
3548 SDValue VL = Op.getOperand(Op.getNumOperands() - 1);
3549 assert(VL.getValueType() == XLenVT);
3550 ScalarOp = splatSplitI64WithVL(DL, VT, ScalarOp, VL, DAG);
3551 return DAG.getNode(Op->getOpcode(), DL, Op->getVTList(), Operands);
3552 }
3553
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const3554 SDValue RISCVTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3555 SelectionDAG &DAG) const {
3556 unsigned IntNo = Op.getConstantOperandVal(0);
3557 SDLoc DL(Op);
3558 MVT XLenVT = Subtarget.getXLenVT();
3559
3560 switch (IntNo) {
3561 default:
3562 break; // Don't custom lower most intrinsics.
3563 case Intrinsic::thread_pointer: {
3564 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3565 return DAG.getRegister(RISCV::X4, PtrVT);
3566 }
3567 case Intrinsic::riscv_orc_b:
3568 // Lower to the GORCI encoding for orc.b.
3569 return DAG.getNode(RISCVISD::GORC, DL, XLenVT, Op.getOperand(1),
3570 DAG.getConstant(7, DL, XLenVT));
3571 case Intrinsic::riscv_grev:
3572 case Intrinsic::riscv_gorc: {
3573 unsigned Opc =
3574 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREV : RISCVISD::GORC;
3575 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3576 }
3577 case Intrinsic::riscv_shfl:
3578 case Intrinsic::riscv_unshfl: {
3579 unsigned Opc =
3580 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
3581 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3582 }
3583 case Intrinsic::riscv_bcompress:
3584 case Intrinsic::riscv_bdecompress: {
3585 unsigned Opc = IntNo == Intrinsic::riscv_bcompress ? RISCVISD::BCOMPRESS
3586 : RISCVISD::BDECOMPRESS;
3587 return DAG.getNode(Opc, DL, XLenVT, Op.getOperand(1), Op.getOperand(2));
3588 }
3589 case Intrinsic::riscv_vmv_x_s:
3590 assert(Op.getValueType() == XLenVT && "Unexpected VT!");
3591 return DAG.getNode(RISCVISD::VMV_X_S, DL, Op.getValueType(),
3592 Op.getOperand(1));
3593 case Intrinsic::riscv_vmv_v_x:
3594 return lowerScalarSplat(Op.getOperand(1), Op.getOperand(2),
3595 Op.getSimpleValueType(), DL, DAG, Subtarget);
3596 case Intrinsic::riscv_vfmv_v_f:
3597 return DAG.getNode(RISCVISD::VFMV_V_F_VL, DL, Op.getValueType(),
3598 Op.getOperand(1), Op.getOperand(2));
3599 case Intrinsic::riscv_vmv_s_x: {
3600 SDValue Scalar = Op.getOperand(2);
3601
3602 if (Scalar.getValueType().bitsLE(XLenVT)) {
3603 Scalar = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, Scalar);
3604 return DAG.getNode(RISCVISD::VMV_S_X_VL, DL, Op.getValueType(),
3605 Op.getOperand(1), Scalar, Op.getOperand(3));
3606 }
3607
3608 assert(Scalar.getValueType() == MVT::i64 && "Unexpected scalar VT!");
3609
3610 // This is an i64 value that lives in two scalar registers. We have to
3611 // insert this in a convoluted way. First we build vXi64 splat containing
3612 // the/ two values that we assemble using some bit math. Next we'll use
3613 // vid.v and vmseq to build a mask with bit 0 set. Then we'll use that mask
3614 // to merge element 0 from our splat into the source vector.
3615 // FIXME: This is probably not the best way to do this, but it is
3616 // consistent with INSERT_VECTOR_ELT lowering so it is a good starting
3617 // point.
3618 // sw lo, (a0)
3619 // sw hi, 4(a0)
3620 // vlse vX, (a0)
3621 //
3622 // vid.v vVid
3623 // vmseq.vx mMask, vVid, 0
3624 // vmerge.vvm vDest, vSrc, vVal, mMask
3625 MVT VT = Op.getSimpleValueType();
3626 SDValue Vec = Op.getOperand(1);
3627 SDValue VL = Op.getOperand(3);
3628
3629 SDValue SplattedVal = splatSplitI64WithVL(DL, VT, Scalar, VL, DAG);
3630 SDValue SplattedIdx = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
3631 DAG.getConstant(0, DL, MVT::i32), VL);
3632
3633 MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
3634 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
3635 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
3636 SDValue SelectCond =
3637 DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, VID, SplattedIdx,
3638 DAG.getCondCode(ISD::SETEQ), Mask, VL);
3639 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, SelectCond, SplattedVal,
3640 Vec, VL);
3641 }
3642 case Intrinsic::riscv_vslide1up:
3643 case Intrinsic::riscv_vslide1down:
3644 case Intrinsic::riscv_vslide1up_mask:
3645 case Intrinsic::riscv_vslide1down_mask: {
3646 // We need to special case these when the scalar is larger than XLen.
3647 unsigned NumOps = Op.getNumOperands();
3648 bool IsMasked = NumOps == 6;
3649 unsigned OpOffset = IsMasked ? 1 : 0;
3650 SDValue Scalar = Op.getOperand(2 + OpOffset);
3651 if (Scalar.getValueType().bitsLE(XLenVT))
3652 break;
3653
3654 // Splatting a sign extended constant is fine.
3655 if (auto *CVal = dyn_cast<ConstantSDNode>(Scalar))
3656 if (isInt<32>(CVal->getSExtValue()))
3657 break;
3658
3659 MVT VT = Op.getSimpleValueType();
3660 assert(VT.getVectorElementType() == MVT::i64 &&
3661 Scalar.getValueType() == MVT::i64 && "Unexpected VTs");
3662
3663 // Convert the vector source to the equivalent nxvXi32 vector.
3664 MVT I32VT = MVT::getVectorVT(MVT::i32, VT.getVectorElementCount() * 2);
3665 SDValue Vec = DAG.getBitcast(I32VT, Op.getOperand(1 + OpOffset));
3666
3667 SDValue ScalarLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3668 DAG.getConstant(0, DL, XLenVT));
3669 SDValue ScalarHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Scalar,
3670 DAG.getConstant(1, DL, XLenVT));
3671
3672 // Double the VL since we halved SEW.
3673 SDValue VL = Op.getOperand(NumOps - 1);
3674 SDValue I32VL =
3675 DAG.getNode(ISD::SHL, DL, XLenVT, VL, DAG.getConstant(1, DL, XLenVT));
3676
3677 MVT I32MaskVT = MVT::getVectorVT(MVT::i1, I32VT.getVectorElementCount());
3678 SDValue I32Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, I32MaskVT, VL);
3679
3680 // Shift the two scalar parts in using SEW=32 slide1up/slide1down
3681 // instructions.
3682 if (IntNo == Intrinsic::riscv_vslide1up ||
3683 IntNo == Intrinsic::riscv_vslide1up_mask) {
3684 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarHi,
3685 I32Mask, I32VL);
3686 Vec = DAG.getNode(RISCVISD::VSLIDE1UP_VL, DL, I32VT, Vec, ScalarLo,
3687 I32Mask, I32VL);
3688 } else {
3689 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarLo,
3690 I32Mask, I32VL);
3691 Vec = DAG.getNode(RISCVISD::VSLIDE1DOWN_VL, DL, I32VT, Vec, ScalarHi,
3692 I32Mask, I32VL);
3693 }
3694
3695 // Convert back to nxvXi64.
3696 Vec = DAG.getBitcast(VT, Vec);
3697
3698 if (!IsMasked)
3699 return Vec;
3700
3701 // Apply mask after the operation.
3702 SDValue Mask = Op.getOperand(NumOps - 2);
3703 SDValue MaskedOff = Op.getOperand(1);
3704 return DAG.getNode(RISCVISD::VSELECT_VL, DL, VT, Mask, Vec, MaskedOff, VL);
3705 }
3706 }
3707
3708 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3709 }
3710
LowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const3711 SDValue RISCVTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
3712 SelectionDAG &DAG) const {
3713 return lowerVectorIntrinsicSplats(Op, DAG, Subtarget);
3714 }
3715
getLMUL1VT(MVT VT)3716 static MVT getLMUL1VT(MVT VT) {
3717 assert(VT.getVectorElementType().getSizeInBits() <= 64 &&
3718 "Unexpected vector MVT");
3719 return MVT::getScalableVectorVT(
3720 VT.getVectorElementType(),
3721 RISCV::RVVBitsPerBlock / VT.getVectorElementType().getSizeInBits());
3722 }
3723
getRVVReductionOp(unsigned ISDOpcode)3724 static unsigned getRVVReductionOp(unsigned ISDOpcode) {
3725 switch (ISDOpcode) {
3726 default:
3727 llvm_unreachable("Unhandled reduction");
3728 case ISD::VECREDUCE_ADD:
3729 return RISCVISD::VECREDUCE_ADD_VL;
3730 case ISD::VECREDUCE_UMAX:
3731 return RISCVISD::VECREDUCE_UMAX_VL;
3732 case ISD::VECREDUCE_SMAX:
3733 return RISCVISD::VECREDUCE_SMAX_VL;
3734 case ISD::VECREDUCE_UMIN:
3735 return RISCVISD::VECREDUCE_UMIN_VL;
3736 case ISD::VECREDUCE_SMIN:
3737 return RISCVISD::VECREDUCE_SMIN_VL;
3738 case ISD::VECREDUCE_AND:
3739 return RISCVISD::VECREDUCE_AND_VL;
3740 case ISD::VECREDUCE_OR:
3741 return RISCVISD::VECREDUCE_OR_VL;
3742 case ISD::VECREDUCE_XOR:
3743 return RISCVISD::VECREDUCE_XOR_VL;
3744 }
3745 }
3746
lowerVectorMaskVECREDUCE(SDValue Op,SelectionDAG & DAG) const3747 SDValue RISCVTargetLowering::lowerVectorMaskVECREDUCE(SDValue Op,
3748 SelectionDAG &DAG) const {
3749 SDLoc DL(Op);
3750 SDValue Vec = Op.getOperand(0);
3751 MVT VecVT = Vec.getSimpleValueType();
3752 assert((Op.getOpcode() == ISD::VECREDUCE_AND ||
3753 Op.getOpcode() == ISD::VECREDUCE_OR ||
3754 Op.getOpcode() == ISD::VECREDUCE_XOR) &&
3755 "Unexpected reduction lowering");
3756
3757 MVT XLenVT = Subtarget.getXLenVT();
3758 assert(Op.getValueType() == XLenVT &&
3759 "Expected reduction output to be legalized to XLenVT");
3760
3761 MVT ContainerVT = VecVT;
3762 if (VecVT.isFixedLengthVector()) {
3763 ContainerVT = getContainerForFixedLengthVector(VecVT);
3764 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3765 }
3766
3767 SDValue Mask, VL;
3768 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3769 SDValue Zero = DAG.getConstant(0, DL, XLenVT);
3770
3771 switch (Op.getOpcode()) {
3772 default:
3773 llvm_unreachable("Unhandled reduction");
3774 case ISD::VECREDUCE_AND:
3775 // vpopc ~x == 0
3776 Vec = DAG.getNode(RISCVISD::VMXOR_VL, DL, ContainerVT, Vec, Mask, VL);
3777 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3778 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETEQ);
3779 case ISD::VECREDUCE_OR:
3780 // vpopc x != 0
3781 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3782 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3783 case ISD::VECREDUCE_XOR: {
3784 // ((vpopc x) & 1) != 0
3785 SDValue One = DAG.getConstant(1, DL, XLenVT);
3786 Vec = DAG.getNode(RISCVISD::VPOPC_VL, DL, XLenVT, Vec, Mask, VL);
3787 Vec = DAG.getNode(ISD::AND, DL, XLenVT, Vec, One);
3788 return DAG.getSetCC(DL, XLenVT, Vec, Zero, ISD::SETNE);
3789 }
3790 }
3791 }
3792
lowerVECREDUCE(SDValue Op,SelectionDAG & DAG) const3793 SDValue RISCVTargetLowering::lowerVECREDUCE(SDValue Op,
3794 SelectionDAG &DAG) const {
3795 SDLoc DL(Op);
3796 SDValue Vec = Op.getOperand(0);
3797 EVT VecEVT = Vec.getValueType();
3798
3799 unsigned BaseOpc = ISD::getVecReduceBaseOpcode(Op.getOpcode());
3800
3801 // Due to ordering in legalize types we may have a vector type that needs to
3802 // be split. Do that manually so we can get down to a legal type.
3803 while (getTypeAction(*DAG.getContext(), VecEVT) ==
3804 TargetLowering::TypeSplitVector) {
3805 SDValue Lo, Hi;
3806 std::tie(Lo, Hi) = DAG.SplitVector(Vec, DL);
3807 VecEVT = Lo.getValueType();
3808 Vec = DAG.getNode(BaseOpc, DL, VecEVT, Lo, Hi);
3809 }
3810
3811 // TODO: The type may need to be widened rather than split. Or widened before
3812 // it can be split.
3813 if (!isTypeLegal(VecEVT))
3814 return SDValue();
3815
3816 MVT VecVT = VecEVT.getSimpleVT();
3817 MVT VecEltVT = VecVT.getVectorElementType();
3818 unsigned RVVOpcode = getRVVReductionOp(Op.getOpcode());
3819
3820 MVT ContainerVT = VecVT;
3821 if (VecVT.isFixedLengthVector()) {
3822 ContainerVT = getContainerForFixedLengthVector(VecVT);
3823 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3824 }
3825
3826 MVT M1VT = getLMUL1VT(ContainerVT);
3827
3828 SDValue Mask, VL;
3829 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3830
3831 // FIXME: This is a VLMAX splat which might be too large and can prevent
3832 // vsetvli removal.
3833 SDValue NeutralElem =
3834 DAG.getNeutralElement(BaseOpc, DL, VecEltVT, SDNodeFlags());
3835 SDValue IdentitySplat = DAG.getSplatVector(M1VT, DL, NeutralElem);
3836 SDValue Reduction =
3837 DAG.getNode(RVVOpcode, DL, M1VT, Vec, IdentitySplat, Mask, VL);
3838 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3839 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3840 return DAG.getSExtOrTrunc(Elt0, DL, Op.getValueType());
3841 }
3842
3843 // Given a reduction op, this function returns the matching reduction opcode,
3844 // the vector SDValue and the scalar SDValue required to lower this to a
3845 // RISCVISD node.
3846 static std::tuple<unsigned, SDValue, SDValue>
getRVVFPReductionOpAndOperands(SDValue Op,SelectionDAG & DAG,EVT EltVT)3847 getRVVFPReductionOpAndOperands(SDValue Op, SelectionDAG &DAG, EVT EltVT) {
3848 SDLoc DL(Op);
3849 auto Flags = Op->getFlags();
3850 unsigned Opcode = Op.getOpcode();
3851 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Opcode);
3852 switch (Opcode) {
3853 default:
3854 llvm_unreachable("Unhandled reduction");
3855 case ISD::VECREDUCE_FADD:
3856 return std::make_tuple(RISCVISD::VECREDUCE_FADD_VL, Op.getOperand(0),
3857 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3858 case ISD::VECREDUCE_SEQ_FADD:
3859 return std::make_tuple(RISCVISD::VECREDUCE_SEQ_FADD_VL, Op.getOperand(1),
3860 Op.getOperand(0));
3861 case ISD::VECREDUCE_FMIN:
3862 return std::make_tuple(RISCVISD::VECREDUCE_FMIN_VL, Op.getOperand(0),
3863 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3864 case ISD::VECREDUCE_FMAX:
3865 return std::make_tuple(RISCVISD::VECREDUCE_FMAX_VL, Op.getOperand(0),
3866 DAG.getNeutralElement(BaseOpcode, DL, EltVT, Flags));
3867 }
3868 }
3869
lowerFPVECREDUCE(SDValue Op,SelectionDAG & DAG) const3870 SDValue RISCVTargetLowering::lowerFPVECREDUCE(SDValue Op,
3871 SelectionDAG &DAG) const {
3872 SDLoc DL(Op);
3873 MVT VecEltVT = Op.getSimpleValueType();
3874
3875 unsigned RVVOpcode;
3876 SDValue VectorVal, ScalarVal;
3877 std::tie(RVVOpcode, VectorVal, ScalarVal) =
3878 getRVVFPReductionOpAndOperands(Op, DAG, VecEltVT);
3879 MVT VecVT = VectorVal.getSimpleValueType();
3880
3881 MVT ContainerVT = VecVT;
3882 if (VecVT.isFixedLengthVector()) {
3883 ContainerVT = getContainerForFixedLengthVector(VecVT);
3884 VectorVal = convertToScalableVector(ContainerVT, VectorVal, DAG, Subtarget);
3885 }
3886
3887 MVT M1VT = getLMUL1VT(VectorVal.getSimpleValueType());
3888
3889 SDValue Mask, VL;
3890 std::tie(Mask, VL) = getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget);
3891
3892 // FIXME: This is a VLMAX splat which might be too large and can prevent
3893 // vsetvli removal.
3894 SDValue ScalarSplat = DAG.getSplatVector(M1VT, DL, ScalarVal);
3895 SDValue Reduction =
3896 DAG.getNode(RVVOpcode, DL, M1VT, VectorVal, ScalarSplat, Mask, VL);
3897 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VecEltVT, Reduction,
3898 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
3899 }
3900
lowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const3901 SDValue RISCVTargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
3902 SelectionDAG &DAG) const {
3903 SDValue Vec = Op.getOperand(0);
3904 SDValue SubVec = Op.getOperand(1);
3905 MVT VecVT = Vec.getSimpleValueType();
3906 MVT SubVecVT = SubVec.getSimpleValueType();
3907
3908 SDLoc DL(Op);
3909 MVT XLenVT = Subtarget.getXLenVT();
3910 unsigned OrigIdx = Op.getConstantOperandVal(2);
3911 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
3912
3913 // We don't have the ability to slide mask vectors up indexed by their i1
3914 // elements; the smallest we can do is i8. Often we are able to bitcast to
3915 // equivalent i8 vectors. Note that when inserting a fixed-length vector
3916 // into a scalable one, we might not necessarily have enough scalable
3917 // elements to safely divide by 8: nxv1i1 = insert nxv1i1, v4i1 is valid.
3918 if (SubVecVT.getVectorElementType() == MVT::i1 &&
3919 (OrigIdx != 0 || !Vec.isUndef())) {
3920 if (VecVT.getVectorMinNumElements() >= 8 &&
3921 SubVecVT.getVectorMinNumElements() >= 8) {
3922 assert(OrigIdx % 8 == 0 && "Invalid index");
3923 assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
3924 SubVecVT.getVectorMinNumElements() % 8 == 0 &&
3925 "Unexpected mask vector lowering");
3926 OrigIdx /= 8;
3927 SubVecVT =
3928 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
3929 SubVecVT.isScalableVector());
3930 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
3931 VecVT.isScalableVector());
3932 Vec = DAG.getBitcast(VecVT, Vec);
3933 SubVec = DAG.getBitcast(SubVecVT, SubVec);
3934 } else {
3935 // We can't slide this mask vector up indexed by its i1 elements.
3936 // This poses a problem when we wish to insert a scalable vector which
3937 // can't be re-expressed as a larger type. Just choose the slow path and
3938 // extend to a larger type, then truncate back down.
3939 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
3940 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
3941 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
3942 SubVec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtSubVecVT, SubVec);
3943 Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ExtVecVT, Vec, SubVec,
3944 Op.getOperand(2));
3945 SDValue SplatZero = DAG.getConstant(0, DL, ExtVecVT);
3946 return DAG.getSetCC(DL, VecVT, Vec, SplatZero, ISD::SETNE);
3947 }
3948 }
3949
3950 // If the subvector vector is a fixed-length type, we cannot use subregister
3951 // manipulation to simplify the codegen; we don't know which register of a
3952 // LMUL group contains the specific subvector as we only know the minimum
3953 // register size. Therefore we must slide the vector group up the full
3954 // amount.
3955 if (SubVecVT.isFixedLengthVector()) {
3956 if (OrigIdx == 0 && Vec.isUndef())
3957 return Op;
3958 MVT ContainerVT = VecVT;
3959 if (VecVT.isFixedLengthVector()) {
3960 ContainerVT = getContainerForFixedLengthVector(VecVT);
3961 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
3962 }
3963 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ContainerVT,
3964 DAG.getUNDEF(ContainerVT), SubVec,
3965 DAG.getConstant(0, DL, XLenVT));
3966 SDValue Mask =
3967 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
3968 // Set the vector length to only the number of elements we care about. Note
3969 // that for slideup this includes the offset.
3970 SDValue VL =
3971 DAG.getConstant(OrigIdx + SubVecVT.getVectorNumElements(), DL, XLenVT);
3972 SDValue SlideupAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
3973 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, ContainerVT, Vec,
3974 SubVec, SlideupAmt, Mask, VL);
3975 if (VecVT.isFixedLengthVector())
3976 Slideup = convertFromScalableVector(VecVT, Slideup, DAG, Subtarget);
3977 return DAG.getBitcast(Op.getValueType(), Slideup);
3978 }
3979
3980 unsigned SubRegIdx, RemIdx;
3981 std::tie(SubRegIdx, RemIdx) =
3982 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
3983 VecVT, SubVecVT, OrigIdx, TRI);
3984
3985 RISCVII::VLMUL SubVecLMUL = RISCVTargetLowering::getLMUL(SubVecVT);
3986 bool IsSubVecPartReg = SubVecLMUL == RISCVII::VLMUL::LMUL_F2 ||
3987 SubVecLMUL == RISCVII::VLMUL::LMUL_F4 ||
3988 SubVecLMUL == RISCVII::VLMUL::LMUL_F8;
3989
3990 // 1. If the Idx has been completely eliminated and this subvector's size is
3991 // a vector register or a multiple thereof, or the surrounding elements are
3992 // undef, then this is a subvector insert which naturally aligns to a vector
3993 // register. These can easily be handled using subregister manipulation.
3994 // 2. If the subvector is smaller than a vector register, then the insertion
3995 // must preserve the undisturbed elements of the register. We do this by
3996 // lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
3997 // (which resolves to a subregister copy), performing a VSLIDEUP to place the
3998 // subvector within the vector register, and an INSERT_SUBVECTOR of that
3999 // LMUL=1 type back into the larger vector (resolving to another subregister
4000 // operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
4001 // to avoid allocating a large register group to hold our subvector.
4002 if (RemIdx == 0 && (!IsSubVecPartReg || Vec.isUndef()))
4003 return Op;
4004
4005 // VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
4006 // OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
4007 // (in our case undisturbed). This means we can set up a subvector insertion
4008 // where OFFSET is the insertion offset, and the VL is the OFFSET plus the
4009 // size of the subvector.
4010 MVT InterSubVT = VecVT;
4011 SDValue AlignedExtract = Vec;
4012 unsigned AlignedIdx = OrigIdx - RemIdx;
4013 if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4014 InterSubVT = getLMUL1VT(VecVT);
4015 // Extract a subvector equal to the nearest full vector register type. This
4016 // should resolve to a EXTRACT_SUBREG instruction.
4017 AlignedExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4018 DAG.getConstant(AlignedIdx, DL, XLenVT));
4019 }
4020
4021 SDValue SlideupAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4022 // For scalable vectors this must be further multiplied by vscale.
4023 SlideupAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlideupAmt);
4024
4025 SDValue Mask, VL;
4026 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4027
4028 // Construct the vector length corresponding to RemIdx + length(SubVecVT).
4029 VL = DAG.getConstant(SubVecVT.getVectorMinNumElements(), DL, XLenVT);
4030 VL = DAG.getNode(ISD::VSCALE, DL, XLenVT, VL);
4031 VL = DAG.getNode(ISD::ADD, DL, XLenVT, SlideupAmt, VL);
4032
4033 SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InterSubVT,
4034 DAG.getUNDEF(InterSubVT), SubVec,
4035 DAG.getConstant(0, DL, XLenVT));
4036
4037 SDValue Slideup = DAG.getNode(RISCVISD::VSLIDEUP_VL, DL, InterSubVT,
4038 AlignedExtract, SubVec, SlideupAmt, Mask, VL);
4039
4040 // If required, insert this subvector back into the correct vector register.
4041 // This should resolve to an INSERT_SUBREG instruction.
4042 if (VecVT.bitsGT(InterSubVT))
4043 Slideup = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, Vec, Slideup,
4044 DAG.getConstant(AlignedIdx, DL, XLenVT));
4045
4046 // We might have bitcast from a mask type: cast back to the original type if
4047 // required.
4048 return DAG.getBitcast(Op.getSimpleValueType(), Slideup);
4049 }
4050
lowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const4051 SDValue RISCVTargetLowering::lowerEXTRACT_SUBVECTOR(SDValue Op,
4052 SelectionDAG &DAG) const {
4053 SDValue Vec = Op.getOperand(0);
4054 MVT SubVecVT = Op.getSimpleValueType();
4055 MVT VecVT = Vec.getSimpleValueType();
4056
4057 SDLoc DL(Op);
4058 MVT XLenVT = Subtarget.getXLenVT();
4059 unsigned OrigIdx = Op.getConstantOperandVal(1);
4060 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
4061
4062 // We don't have the ability to slide mask vectors down indexed by their i1
4063 // elements; the smallest we can do is i8. Often we are able to bitcast to
4064 // equivalent i8 vectors. Note that when extracting a fixed-length vector
4065 // from a scalable one, we might not necessarily have enough scalable
4066 // elements to safely divide by 8: v8i1 = extract nxv1i1 is valid.
4067 if (SubVecVT.getVectorElementType() == MVT::i1 && OrigIdx != 0) {
4068 if (VecVT.getVectorMinNumElements() >= 8 &&
4069 SubVecVT.getVectorMinNumElements() >= 8) {
4070 assert(OrigIdx % 8 == 0 && "Invalid index");
4071 assert(VecVT.getVectorMinNumElements() % 8 == 0 &&
4072 SubVecVT.getVectorMinNumElements() % 8 == 0 &&
4073 "Unexpected mask vector lowering");
4074 OrigIdx /= 8;
4075 SubVecVT =
4076 MVT::getVectorVT(MVT::i8, SubVecVT.getVectorMinNumElements() / 8,
4077 SubVecVT.isScalableVector());
4078 VecVT = MVT::getVectorVT(MVT::i8, VecVT.getVectorMinNumElements() / 8,
4079 VecVT.isScalableVector());
4080 Vec = DAG.getBitcast(VecVT, Vec);
4081 } else {
4082 // We can't slide this mask vector down, indexed by its i1 elements.
4083 // This poses a problem when we wish to extract a scalable vector which
4084 // can't be re-expressed as a larger type. Just choose the slow path and
4085 // extend to a larger type, then truncate back down.
4086 // TODO: We could probably improve this when extracting certain fixed
4087 // from fixed, where we can extract as i8 and shift the correct element
4088 // right to reach the desired subvector?
4089 MVT ExtVecVT = VecVT.changeVectorElementType(MVT::i8);
4090 MVT ExtSubVecVT = SubVecVT.changeVectorElementType(MVT::i8);
4091 Vec = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVecVT, Vec);
4092 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtSubVecVT, Vec,
4093 Op.getOperand(1));
4094 SDValue SplatZero = DAG.getConstant(0, DL, ExtSubVecVT);
4095 return DAG.getSetCC(DL, SubVecVT, Vec, SplatZero, ISD::SETNE);
4096 }
4097 }
4098
4099 // If the subvector vector is a fixed-length type, we cannot use subregister
4100 // manipulation to simplify the codegen; we don't know which register of a
4101 // LMUL group contains the specific subvector as we only know the minimum
4102 // register size. Therefore we must slide the vector group down the full
4103 // amount.
4104 if (SubVecVT.isFixedLengthVector()) {
4105 // With an index of 0 this is a cast-like subvector, which can be performed
4106 // with subregister operations.
4107 if (OrigIdx == 0)
4108 return Op;
4109 MVT ContainerVT = VecVT;
4110 if (VecVT.isFixedLengthVector()) {
4111 ContainerVT = getContainerForFixedLengthVector(VecVT);
4112 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
4113 }
4114 SDValue Mask =
4115 getDefaultVLOps(VecVT, ContainerVT, DL, DAG, Subtarget).first;
4116 // Set the vector length to only the number of elements we care about. This
4117 // avoids sliding down elements we're going to discard straight away.
4118 SDValue VL = DAG.getConstant(SubVecVT.getVectorNumElements(), DL, XLenVT);
4119 SDValue SlidedownAmt = DAG.getConstant(OrigIdx, DL, XLenVT);
4120 SDValue Slidedown =
4121 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
4122 DAG.getUNDEF(ContainerVT), Vec, SlidedownAmt, Mask, VL);
4123 // Now we can use a cast-like subvector extract to get the result.
4124 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4125 DAG.getConstant(0, DL, XLenVT));
4126 return DAG.getBitcast(Op.getValueType(), Slidedown);
4127 }
4128
4129 unsigned SubRegIdx, RemIdx;
4130 std::tie(SubRegIdx, RemIdx) =
4131 RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
4132 VecVT, SubVecVT, OrigIdx, TRI);
4133
4134 // If the Idx has been completely eliminated then this is a subvector extract
4135 // which naturally aligns to a vector register. These can easily be handled
4136 // using subregister manipulation.
4137 if (RemIdx == 0)
4138 return Op;
4139
4140 // Else we must shift our vector register directly to extract the subvector.
4141 // Do this using VSLIDEDOWN.
4142
4143 // If the vector type is an LMUL-group type, extract a subvector equal to the
4144 // nearest full vector register type. This should resolve to a EXTRACT_SUBREG
4145 // instruction.
4146 MVT InterSubVT = VecVT;
4147 if (VecVT.bitsGT(getLMUL1VT(VecVT))) {
4148 InterSubVT = getLMUL1VT(VecVT);
4149 Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InterSubVT, Vec,
4150 DAG.getConstant(OrigIdx - RemIdx, DL, XLenVT));
4151 }
4152
4153 // Slide this vector register down by the desired number of elements in order
4154 // to place the desired subvector starting at element 0.
4155 SDValue SlidedownAmt = DAG.getConstant(RemIdx, DL, XLenVT);
4156 // For scalable vectors this must be further multiplied by vscale.
4157 SlidedownAmt = DAG.getNode(ISD::VSCALE, DL, XLenVT, SlidedownAmt);
4158
4159 SDValue Mask, VL;
4160 std::tie(Mask, VL) = getDefaultScalableVLOps(InterSubVT, DL, DAG, Subtarget);
4161 SDValue Slidedown =
4162 DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, InterSubVT,
4163 DAG.getUNDEF(InterSubVT), Vec, SlidedownAmt, Mask, VL);
4164
4165 // Now the vector is in the right position, extract our final subvector. This
4166 // should resolve to a COPY.
4167 Slidedown = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, Slidedown,
4168 DAG.getConstant(0, DL, XLenVT));
4169
4170 // We might have bitcast from a mask type: cast back to the original type if
4171 // required.
4172 return DAG.getBitcast(Op.getSimpleValueType(), Slidedown);
4173 }
4174
4175 // Lower step_vector to the vid instruction. Any non-identity step value must
4176 // be accounted for my manual expansion.
lowerSTEP_VECTOR(SDValue Op,SelectionDAG & DAG) const4177 SDValue RISCVTargetLowering::lowerSTEP_VECTOR(SDValue Op,
4178 SelectionDAG &DAG) const {
4179 SDLoc DL(Op);
4180 MVT VT = Op.getSimpleValueType();
4181 MVT XLenVT = Subtarget.getXLenVT();
4182 SDValue Mask, VL;
4183 std::tie(Mask, VL) = getDefaultScalableVLOps(VT, DL, DAG, Subtarget);
4184 SDValue StepVec = DAG.getNode(RISCVISD::VID_VL, DL, VT, Mask, VL);
4185 uint64_t StepValImm = Op.getConstantOperandVal(0);
4186 if (StepValImm != 1) {
4187 if (isPowerOf2_64(StepValImm)) {
4188 SDValue StepVal =
4189 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT,
4190 DAG.getConstant(Log2_64(StepValImm), DL, XLenVT));
4191 StepVec = DAG.getNode(ISD::SHL, DL, VT, StepVec, StepVal);
4192 } else {
4193 SDValue StepVal = lowerScalarSplat(
4194 DAG.getConstant(StepValImm, DL, VT.getVectorElementType()), VL, VT,
4195 DL, DAG, Subtarget);
4196 StepVec = DAG.getNode(ISD::MUL, DL, VT, StepVec, StepVal);
4197 }
4198 }
4199 return StepVec;
4200 }
4201
4202 // Implement vector_reverse using vrgather.vv with indices determined by
4203 // subtracting the id of each element from (VLMAX-1). This will convert
4204 // the indices like so:
4205 // (0, 1,..., VLMAX-2, VLMAX-1) -> (VLMAX-1, VLMAX-2,..., 1, 0).
4206 // TODO: This code assumes VLMAX <= 65536 for LMUL=8 SEW=16.
lowerVECTOR_REVERSE(SDValue Op,SelectionDAG & DAG) const4207 SDValue RISCVTargetLowering::lowerVECTOR_REVERSE(SDValue Op,
4208 SelectionDAG &DAG) const {
4209 SDLoc DL(Op);
4210 MVT VecVT = Op.getSimpleValueType();
4211 unsigned EltSize = VecVT.getScalarSizeInBits();
4212 unsigned MinSize = VecVT.getSizeInBits().getKnownMinValue();
4213
4214 unsigned MaxVLMAX = 0;
4215 unsigned VectorBitsMax = Subtarget.getMaxRVVVectorSizeInBits();
4216 if (VectorBitsMax != 0)
4217 MaxVLMAX = ((VectorBitsMax / EltSize) * MinSize) / RISCV::RVVBitsPerBlock;
4218
4219 unsigned GatherOpc = RISCVISD::VRGATHER_VV_VL;
4220 MVT IntVT = VecVT.changeVectorElementTypeToInteger();
4221
4222 // If this is SEW=8 and VLMAX is unknown or more than 256, we need
4223 // to use vrgatherei16.vv.
4224 // TODO: It's also possible to use vrgatherei16.vv for other types to
4225 // decrease register width for the index calculation.
4226 if ((MaxVLMAX == 0 || MaxVLMAX > 256) && EltSize == 8) {
4227 // If this is LMUL=8, we have to split before can use vrgatherei16.vv.
4228 // Reverse each half, then reassemble them in reverse order.
4229 // NOTE: It's also possible that after splitting that VLMAX no longer
4230 // requires vrgatherei16.vv.
4231 if (MinSize == (8 * RISCV::RVVBitsPerBlock)) {
4232 SDValue Lo, Hi;
4233 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4234 EVT LoVT, HiVT;
4235 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VecVT);
4236 Lo = DAG.getNode(ISD::VECTOR_REVERSE, DL, LoVT, Lo);
4237 Hi = DAG.getNode(ISD::VECTOR_REVERSE, DL, HiVT, Hi);
4238 // Reassemble the low and high pieces reversed.
4239 // FIXME: This is a CONCAT_VECTORS.
4240 SDValue Res =
4241 DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT, DAG.getUNDEF(VecVT), Hi,
4242 DAG.getIntPtrConstant(0, DL));
4243 return DAG.getNode(
4244 ISD::INSERT_SUBVECTOR, DL, VecVT, Res, Lo,
4245 DAG.getIntPtrConstant(LoVT.getVectorMinNumElements(), DL));
4246 }
4247
4248 // Just promote the int type to i16 which will double the LMUL.
4249 IntVT = MVT::getVectorVT(MVT::i16, VecVT.getVectorElementCount());
4250 GatherOpc = RISCVISD::VRGATHEREI16_VV_VL;
4251 }
4252
4253 MVT XLenVT = Subtarget.getXLenVT();
4254 SDValue Mask, VL;
4255 std::tie(Mask, VL) = getDefaultScalableVLOps(VecVT, DL, DAG, Subtarget);
4256
4257 // Calculate VLMAX-1 for the desired SEW.
4258 unsigned MinElts = VecVT.getVectorMinNumElements();
4259 SDValue VLMax = DAG.getNode(ISD::VSCALE, DL, XLenVT,
4260 DAG.getConstant(MinElts, DL, XLenVT));
4261 SDValue VLMinus1 =
4262 DAG.getNode(ISD::SUB, DL, XLenVT, VLMax, DAG.getConstant(1, DL, XLenVT));
4263
4264 // Splat VLMAX-1 taking care to handle SEW==64 on RV32.
4265 bool IsRV32E64 =
4266 !Subtarget.is64Bit() && IntVT.getVectorElementType() == MVT::i64;
4267 SDValue SplatVL;
4268 if (!IsRV32E64)
4269 SplatVL = DAG.getSplatVector(IntVT, DL, VLMinus1);
4270 else
4271 SplatVL = DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, IntVT, VLMinus1);
4272
4273 SDValue VID = DAG.getNode(RISCVISD::VID_VL, DL, IntVT, Mask, VL);
4274 SDValue Indices =
4275 DAG.getNode(RISCVISD::SUB_VL, DL, IntVT, SplatVL, VID, Mask, VL);
4276
4277 return DAG.getNode(GatherOpc, DL, VecVT, Op.getOperand(0), Indices, Mask, VL);
4278 }
4279
4280 SDValue
lowerFixedLengthVectorLoadToRVV(SDValue Op,SelectionDAG & DAG) const4281 RISCVTargetLowering::lowerFixedLengthVectorLoadToRVV(SDValue Op,
4282 SelectionDAG &DAG) const {
4283 SDLoc DL(Op);
4284 auto *Load = cast<LoadSDNode>(Op);
4285
4286 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4287 Load->getMemoryVT(),
4288 *Load->getMemOperand()) &&
4289 "Expecting a correctly-aligned load");
4290
4291 MVT VT = Op.getSimpleValueType();
4292 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4293
4294 SDValue VL =
4295 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4296
4297 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4298 SDValue NewLoad = DAG.getMemIntrinsicNode(
4299 RISCVISD::VLE_VL, DL, VTs, {Load->getChain(), Load->getBasePtr(), VL},
4300 Load->getMemoryVT(), Load->getMemOperand());
4301
4302 SDValue Result = convertFromScalableVector(VT, NewLoad, DAG, Subtarget);
4303 return DAG.getMergeValues({Result, Load->getChain()}, DL);
4304 }
4305
4306 SDValue
lowerFixedLengthVectorStoreToRVV(SDValue Op,SelectionDAG & DAG) const4307 RISCVTargetLowering::lowerFixedLengthVectorStoreToRVV(SDValue Op,
4308 SelectionDAG &DAG) const {
4309 SDLoc DL(Op);
4310 auto *Store = cast<StoreSDNode>(Op);
4311
4312 assert(allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
4313 Store->getMemoryVT(),
4314 *Store->getMemOperand()) &&
4315 "Expecting a correctly-aligned store");
4316
4317 SDValue StoreVal = Store->getValue();
4318 MVT VT = StoreVal.getSimpleValueType();
4319
4320 // If the size less than a byte, we need to pad with zeros to make a byte.
4321 if (VT.getVectorElementType() == MVT::i1 && VT.getVectorNumElements() < 8) {
4322 VT = MVT::v8i1;
4323 StoreVal = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
4324 DAG.getConstant(0, DL, VT), StoreVal,
4325 DAG.getIntPtrConstant(0, DL));
4326 }
4327
4328 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4329
4330 SDValue VL =
4331 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4332
4333 SDValue NewValue =
4334 convertToScalableVector(ContainerVT, StoreVal, DAG, Subtarget);
4335 return DAG.getMemIntrinsicNode(
4336 RISCVISD::VSE_VL, DL, DAG.getVTList(MVT::Other),
4337 {Store->getChain(), NewValue, Store->getBasePtr(), VL},
4338 Store->getMemoryVT(), Store->getMemOperand());
4339 }
4340
lowerMLOAD(SDValue Op,SelectionDAG & DAG) const4341 SDValue RISCVTargetLowering::lowerMLOAD(SDValue Op, SelectionDAG &DAG) const {
4342 auto *Load = cast<MaskedLoadSDNode>(Op);
4343
4344 SDLoc DL(Op);
4345 MVT VT = Op.getSimpleValueType();
4346 MVT XLenVT = Subtarget.getXLenVT();
4347
4348 SDValue Mask = Load->getMask();
4349 SDValue PassThru = Load->getPassThru();
4350 SDValue VL;
4351
4352 MVT ContainerVT = VT;
4353 if (VT.isFixedLengthVector()) {
4354 ContainerVT = getContainerForFixedLengthVector(VT);
4355 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4356
4357 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4358 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4359 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4360 } else
4361 VL = DAG.getRegister(RISCV::X0, XLenVT);
4362
4363 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4364 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vle_mask, DL, XLenVT);
4365 SDValue Ops[] = {Load->getChain(), IntID, PassThru,
4366 Load->getBasePtr(), Mask, VL};
4367 SDValue Result =
4368 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4369 Load->getMemoryVT(), Load->getMemOperand());
4370 SDValue Chain = Result.getValue(1);
4371
4372 if (VT.isFixedLengthVector())
4373 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4374
4375 return DAG.getMergeValues({Result, Chain}, DL);
4376 }
4377
lowerMSTORE(SDValue Op,SelectionDAG & DAG) const4378 SDValue RISCVTargetLowering::lowerMSTORE(SDValue Op, SelectionDAG &DAG) const {
4379 auto *Store = cast<MaskedStoreSDNode>(Op);
4380
4381 SDLoc DL(Op);
4382 SDValue Val = Store->getValue();
4383 SDValue Mask = Store->getMask();
4384 MVT VT = Val.getSimpleValueType();
4385 MVT XLenVT = Subtarget.getXLenVT();
4386 SDValue VL;
4387
4388 MVT ContainerVT = VT;
4389 if (VT.isFixedLengthVector()) {
4390 ContainerVT = getContainerForFixedLengthVector(VT);
4391 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4392
4393 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4394 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4395 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4396 } else
4397 VL = DAG.getRegister(RISCV::X0, XLenVT);
4398
4399 SDValue IntID = DAG.getTargetConstant(Intrinsic::riscv_vse_mask, DL, XLenVT);
4400 return DAG.getMemIntrinsicNode(
4401 ISD::INTRINSIC_VOID, DL, DAG.getVTList(MVT::Other),
4402 {Store->getChain(), IntID, Val, Store->getBasePtr(), Mask, VL},
4403 Store->getMemoryVT(), Store->getMemOperand());
4404 }
4405
4406 SDValue
lowerFixedLengthVectorSetccToRVV(SDValue Op,SelectionDAG & DAG) const4407 RISCVTargetLowering::lowerFixedLengthVectorSetccToRVV(SDValue Op,
4408 SelectionDAG &DAG) const {
4409 MVT InVT = Op.getOperand(0).getSimpleValueType();
4410 MVT ContainerVT = getContainerForFixedLengthVector(InVT);
4411
4412 MVT VT = Op.getSimpleValueType();
4413
4414 SDValue Op1 =
4415 convertToScalableVector(ContainerVT, Op.getOperand(0), DAG, Subtarget);
4416 SDValue Op2 =
4417 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4418
4419 SDLoc DL(Op);
4420 SDValue VL =
4421 DAG.getConstant(VT.getVectorNumElements(), DL, Subtarget.getXLenVT());
4422
4423 MVT MaskVT = MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4424 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
4425
4426 SDValue Cmp = DAG.getNode(RISCVISD::SETCC_VL, DL, MaskVT, Op1, Op2,
4427 Op.getOperand(2), Mask, VL);
4428
4429 return convertFromScalableVector(VT, Cmp, DAG, Subtarget);
4430 }
4431
lowerFixedLengthVectorLogicOpToRVV(SDValue Op,SelectionDAG & DAG,unsigned MaskOpc,unsigned VecOpc) const4432 SDValue RISCVTargetLowering::lowerFixedLengthVectorLogicOpToRVV(
4433 SDValue Op, SelectionDAG &DAG, unsigned MaskOpc, unsigned VecOpc) const {
4434 MVT VT = Op.getSimpleValueType();
4435
4436 if (VT.getVectorElementType() == MVT::i1)
4437 return lowerToScalableOp(Op, DAG, MaskOpc, /*HasMask*/ false);
4438
4439 return lowerToScalableOp(Op, DAG, VecOpc, /*HasMask*/ true);
4440 }
4441
4442 SDValue
lowerFixedLengthVectorShiftToRVV(SDValue Op,SelectionDAG & DAG) const4443 RISCVTargetLowering::lowerFixedLengthVectorShiftToRVV(SDValue Op,
4444 SelectionDAG &DAG) const {
4445 unsigned Opc;
4446 switch (Op.getOpcode()) {
4447 default: llvm_unreachable("Unexpected opcode!");
4448 case ISD::SHL: Opc = RISCVISD::SHL_VL; break;
4449 case ISD::SRA: Opc = RISCVISD::SRA_VL; break;
4450 case ISD::SRL: Opc = RISCVISD::SRL_VL; break;
4451 }
4452
4453 return lowerToScalableOp(Op, DAG, Opc);
4454 }
4455
4456 // Lower vector ABS to smax(X, sub(0, X)).
lowerABS(SDValue Op,SelectionDAG & DAG) const4457 SDValue RISCVTargetLowering::lowerABS(SDValue Op, SelectionDAG &DAG) const {
4458 SDLoc DL(Op);
4459 MVT VT = Op.getSimpleValueType();
4460 SDValue X = Op.getOperand(0);
4461
4462 assert(VT.isFixedLengthVector() && "Unexpected type");
4463
4464 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4465 X = convertToScalableVector(ContainerVT, X, DAG, Subtarget);
4466
4467 SDValue Mask, VL;
4468 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4469
4470 SDValue SplatZero =
4471 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
4472 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
4473 SDValue NegX =
4474 DAG.getNode(RISCVISD::SUB_VL, DL, ContainerVT, SplatZero, X, Mask, VL);
4475 SDValue Max =
4476 DAG.getNode(RISCVISD::SMAX_VL, DL, ContainerVT, X, NegX, Mask, VL);
4477
4478 return convertFromScalableVector(VT, Max, DAG, Subtarget);
4479 }
4480
lowerFixedLengthVectorFCOPYSIGNToRVV(SDValue Op,SelectionDAG & DAG) const4481 SDValue RISCVTargetLowering::lowerFixedLengthVectorFCOPYSIGNToRVV(
4482 SDValue Op, SelectionDAG &DAG) const {
4483 SDLoc DL(Op);
4484 MVT VT = Op.getSimpleValueType();
4485 SDValue Mag = Op.getOperand(0);
4486 SDValue Sign = Op.getOperand(1);
4487 assert(Mag.getValueType() == Sign.getValueType() &&
4488 "Can only handle COPYSIGN with matching types.");
4489
4490 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4491 Mag = convertToScalableVector(ContainerVT, Mag, DAG, Subtarget);
4492 Sign = convertToScalableVector(ContainerVT, Sign, DAG, Subtarget);
4493
4494 SDValue Mask, VL;
4495 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4496
4497 SDValue CopySign =
4498 DAG.getNode(RISCVISD::FCOPYSIGN_VL, DL, ContainerVT, Mag, Sign, Mask, VL);
4499
4500 return convertFromScalableVector(VT, CopySign, DAG, Subtarget);
4501 }
4502
lowerFixedLengthVectorSelectToRVV(SDValue Op,SelectionDAG & DAG) const4503 SDValue RISCVTargetLowering::lowerFixedLengthVectorSelectToRVV(
4504 SDValue Op, SelectionDAG &DAG) const {
4505 MVT VT = Op.getSimpleValueType();
4506 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4507
4508 MVT I1ContainerVT =
4509 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4510
4511 SDValue CC =
4512 convertToScalableVector(I1ContainerVT, Op.getOperand(0), DAG, Subtarget);
4513 SDValue Op1 =
4514 convertToScalableVector(ContainerVT, Op.getOperand(1), DAG, Subtarget);
4515 SDValue Op2 =
4516 convertToScalableVector(ContainerVT, Op.getOperand(2), DAG, Subtarget);
4517
4518 SDLoc DL(Op);
4519 SDValue Mask, VL;
4520 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4521
4522 SDValue Select =
4523 DAG.getNode(RISCVISD::VSELECT_VL, DL, ContainerVT, CC, Op1, Op2, VL);
4524
4525 return convertFromScalableVector(VT, Select, DAG, Subtarget);
4526 }
4527
lowerToScalableOp(SDValue Op,SelectionDAG & DAG,unsigned NewOpc,bool HasMask) const4528 SDValue RISCVTargetLowering::lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
4529 unsigned NewOpc,
4530 bool HasMask) const {
4531 MVT VT = Op.getSimpleValueType();
4532 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4533
4534 // Create list of operands by converting existing ones to scalable types.
4535 SmallVector<SDValue, 6> Ops;
4536 for (const SDValue &V : Op->op_values()) {
4537 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4538
4539 // Pass through non-vector operands.
4540 if (!V.getValueType().isVector()) {
4541 Ops.push_back(V);
4542 continue;
4543 }
4544
4545 // "cast" fixed length vector to a scalable vector.
4546 assert(useRVVForFixedLengthVectorVT(V.getSimpleValueType()) &&
4547 "Only fixed length vectors are supported!");
4548 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4549 }
4550
4551 SDLoc DL(Op);
4552 SDValue Mask, VL;
4553 std::tie(Mask, VL) = getDefaultVLOps(VT, ContainerVT, DL, DAG, Subtarget);
4554 if (HasMask)
4555 Ops.push_back(Mask);
4556 Ops.push_back(VL);
4557
4558 SDValue ScalableRes = DAG.getNode(NewOpc, DL, ContainerVT, Ops);
4559 return convertFromScalableVector(VT, ScalableRes, DAG, Subtarget);
4560 }
4561
4562 // Lower a VP_* ISD node to the corresponding RISCVISD::*_VL node:
4563 // * Operands of each node are assumed to be in the same order.
4564 // * The EVL operand is promoted from i32 to i64 on RV64.
4565 // * Fixed-length vectors are converted to their scalable-vector container
4566 // types.
lowerVPOp(SDValue Op,SelectionDAG & DAG,unsigned RISCVISDOpc) const4567 SDValue RISCVTargetLowering::lowerVPOp(SDValue Op, SelectionDAG &DAG,
4568 unsigned RISCVISDOpc) const {
4569 SDLoc DL(Op);
4570 MVT VT = Op.getSimpleValueType();
4571 SmallVector<SDValue, 4> Ops;
4572
4573 for (const auto &OpIdx : enumerate(Op->ops())) {
4574 SDValue V = OpIdx.value();
4575 assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!");
4576 // Pass through operands which aren't fixed-length vectors.
4577 if (!V.getValueType().isFixedLengthVector()) {
4578 Ops.push_back(V);
4579 continue;
4580 }
4581 // "cast" fixed length vector to a scalable vector.
4582 MVT OpVT = V.getSimpleValueType();
4583 MVT ContainerVT = getContainerForFixedLengthVector(OpVT);
4584 assert(useRVVForFixedLengthVectorVT(OpVT) &&
4585 "Only fixed length vectors are supported!");
4586 Ops.push_back(convertToScalableVector(ContainerVT, V, DAG, Subtarget));
4587 }
4588
4589 if (!VT.isFixedLengthVector())
4590 return DAG.getNode(RISCVISDOpc, DL, VT, Ops);
4591
4592 MVT ContainerVT = getContainerForFixedLengthVector(VT);
4593
4594 SDValue VPOp = DAG.getNode(RISCVISDOpc, DL, ContainerVT, Ops);
4595
4596 return convertFromScalableVector(VT, VPOp, DAG, Subtarget);
4597 }
4598
4599 // Custom lower MGATHER to a legalized form for RVV. It will then be matched to
4600 // a RVV indexed load. The RVV indexed load instructions only support the
4601 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4602 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4603 // indexing is extended to the XLEN value type and scaled accordingly.
lowerMGATHER(SDValue Op,SelectionDAG & DAG) const4604 SDValue RISCVTargetLowering::lowerMGATHER(SDValue Op, SelectionDAG &DAG) const {
4605 auto *MGN = cast<MaskedGatherSDNode>(Op.getNode());
4606 SDLoc DL(Op);
4607
4608 SDValue Index = MGN->getIndex();
4609 SDValue Mask = MGN->getMask();
4610 SDValue PassThru = MGN->getPassThru();
4611
4612 MVT VT = Op.getSimpleValueType();
4613 MVT IndexVT = Index.getSimpleValueType();
4614 MVT XLenVT = Subtarget.getXLenVT();
4615
4616 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4617 "Unexpected VTs!");
4618 assert(MGN->getBasePtr().getSimpleValueType() == XLenVT &&
4619 "Unexpected pointer type");
4620 // Targets have to explicitly opt-in for extending vector loads.
4621 assert(MGN->getExtensionType() == ISD::NON_EXTLOAD &&
4622 "Unexpected extending MGATHER");
4623
4624 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4625 // the selection of the masked intrinsics doesn't do this for us.
4626 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4627
4628 SDValue VL;
4629 MVT ContainerVT = VT;
4630 if (VT.isFixedLengthVector()) {
4631 // We need to use the larger of the result and index type to determine the
4632 // scalable type to use so we don't increase LMUL for any operand/result.
4633 if (VT.bitsGE(IndexVT)) {
4634 ContainerVT = getContainerForFixedLengthVector(VT);
4635 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4636 ContainerVT.getVectorElementCount());
4637 } else {
4638 IndexVT = getContainerForFixedLengthVector(IndexVT);
4639 ContainerVT = MVT::getVectorVT(ContainerVT.getVectorElementType(),
4640 IndexVT.getVectorElementCount());
4641 }
4642
4643 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4644
4645 if (!IsUnmasked) {
4646 MVT MaskVT =
4647 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4648 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4649 PassThru = convertToScalableVector(ContainerVT, PassThru, DAG, Subtarget);
4650 }
4651
4652 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4653 } else
4654 VL = DAG.getRegister(RISCV::X0, XLenVT);
4655
4656 unsigned IntID =
4657 IsUnmasked ? Intrinsic::riscv_vluxei : Intrinsic::riscv_vluxei_mask;
4658 SmallVector<SDValue, 8> Ops{MGN->getChain(),
4659 DAG.getTargetConstant(IntID, DL, XLenVT)};
4660 if (!IsUnmasked)
4661 Ops.push_back(PassThru);
4662 Ops.push_back(MGN->getBasePtr());
4663 Ops.push_back(Index);
4664 if (!IsUnmasked)
4665 Ops.push_back(Mask);
4666 Ops.push_back(VL);
4667
4668 SDVTList VTs = DAG.getVTList({ContainerVT, MVT::Other});
4669 SDValue Result =
4670 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, VTs, Ops,
4671 MGN->getMemoryVT(), MGN->getMemOperand());
4672 SDValue Chain = Result.getValue(1);
4673
4674 if (VT.isFixedLengthVector())
4675 Result = convertFromScalableVector(VT, Result, DAG, Subtarget);
4676
4677 return DAG.getMergeValues({Result, Chain}, DL);
4678 }
4679
4680 // Custom lower MSCATTER to a legalized form for RVV. It will then be matched to
4681 // a RVV indexed store. The RVV indexed store instructions only support the
4682 // "unsigned unscaled" addressing mode; indices are implicitly zero-extended or
4683 // truncated to XLEN and are treated as byte offsets. Any signed or scaled
4684 // indexing is extended to the XLEN value type and scaled accordingly.
lowerMSCATTER(SDValue Op,SelectionDAG & DAG) const4685 SDValue RISCVTargetLowering::lowerMSCATTER(SDValue Op,
4686 SelectionDAG &DAG) const {
4687 auto *MSN = cast<MaskedScatterSDNode>(Op.getNode());
4688 SDLoc DL(Op);
4689 SDValue Index = MSN->getIndex();
4690 SDValue Mask = MSN->getMask();
4691 SDValue Val = MSN->getValue();
4692
4693 MVT VT = Val.getSimpleValueType();
4694 MVT IndexVT = Index.getSimpleValueType();
4695 MVT XLenVT = Subtarget.getXLenVT();
4696
4697 assert(VT.getVectorElementCount() == IndexVT.getVectorElementCount() &&
4698 "Unexpected VTs!");
4699 assert(MSN->getBasePtr().getSimpleValueType() == XLenVT &&
4700 "Unexpected pointer type");
4701 // Targets have to explicitly opt-in for extending vector loads and
4702 // truncating vector stores.
4703 assert(!MSN->isTruncatingStore() && "Unexpected extending MSCATTER");
4704
4705 // If the mask is known to be all ones, optimize to an unmasked intrinsic;
4706 // the selection of the masked intrinsics doesn't do this for us.
4707 bool IsUnmasked = ISD::isConstantSplatVectorAllOnes(Mask.getNode());
4708
4709 SDValue VL;
4710 if (VT.isFixedLengthVector()) {
4711 // We need to use the larger of the value and index type to determine the
4712 // scalable type to use so we don't increase LMUL for any operand/result.
4713 MVT ContainerVT;
4714 if (VT.bitsGE(IndexVT)) {
4715 ContainerVT = getContainerForFixedLengthVector(VT);
4716 IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(),
4717 ContainerVT.getVectorElementCount());
4718 } else {
4719 IndexVT = getContainerForFixedLengthVector(IndexVT);
4720 ContainerVT = MVT::getVectorVT(VT.getVectorElementType(),
4721 IndexVT.getVectorElementCount());
4722 }
4723
4724 Index = convertToScalableVector(IndexVT, Index, DAG, Subtarget);
4725 Val = convertToScalableVector(ContainerVT, Val, DAG, Subtarget);
4726
4727 if (!IsUnmasked) {
4728 MVT MaskVT =
4729 MVT::getVectorVT(MVT::i1, ContainerVT.getVectorElementCount());
4730 Mask = convertToScalableVector(MaskVT, Mask, DAG, Subtarget);
4731 }
4732
4733 VL = DAG.getConstant(VT.getVectorNumElements(), DL, XLenVT);
4734 } else
4735 VL = DAG.getRegister(RISCV::X0, XLenVT);
4736
4737 unsigned IntID =
4738 IsUnmasked ? Intrinsic::riscv_vsoxei : Intrinsic::riscv_vsoxei_mask;
4739 SmallVector<SDValue, 8> Ops{MSN->getChain(),
4740 DAG.getTargetConstant(IntID, DL, XLenVT)};
4741 Ops.push_back(Val);
4742 Ops.push_back(MSN->getBasePtr());
4743 Ops.push_back(Index);
4744 if (!IsUnmasked)
4745 Ops.push_back(Mask);
4746 Ops.push_back(VL);
4747
4748 return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, DL, MSN->getVTList(), Ops,
4749 MSN->getMemoryVT(), MSN->getMemOperand());
4750 }
4751
lowerGET_ROUNDING(SDValue Op,SelectionDAG & DAG) const4752 SDValue RISCVTargetLowering::lowerGET_ROUNDING(SDValue Op,
4753 SelectionDAG &DAG) const {
4754 const MVT XLenVT = Subtarget.getXLenVT();
4755 SDLoc DL(Op);
4756 SDValue Chain = Op->getOperand(0);
4757 SDValue SysRegNo = DAG.getConstant(
4758 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4759 SDVTList VTs = DAG.getVTList(XLenVT, MVT::Other);
4760 SDValue RM = DAG.getNode(RISCVISD::READ_CSR, DL, VTs, Chain, SysRegNo);
4761
4762 // Encoding used for rounding mode in RISCV differs from that used in
4763 // FLT_ROUNDS. To convert it the RISCV rounding mode is used as an index in a
4764 // table, which consists of a sequence of 4-bit fields, each representing
4765 // corresponding FLT_ROUNDS mode.
4766 static const int Table =
4767 (int(RoundingMode::NearestTiesToEven) << 4 * RISCVFPRndMode::RNE) |
4768 (int(RoundingMode::TowardZero) << 4 * RISCVFPRndMode::RTZ) |
4769 (int(RoundingMode::TowardNegative) << 4 * RISCVFPRndMode::RDN) |
4770 (int(RoundingMode::TowardPositive) << 4 * RISCVFPRndMode::RUP) |
4771 (int(RoundingMode::NearestTiesToAway) << 4 * RISCVFPRndMode::RMM);
4772
4773 SDValue Shift =
4774 DAG.getNode(ISD::SHL, DL, XLenVT, RM, DAG.getConstant(2, DL, XLenVT));
4775 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4776 DAG.getConstant(Table, DL, XLenVT), Shift);
4777 SDValue Masked = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4778 DAG.getConstant(7, DL, XLenVT));
4779
4780 return DAG.getMergeValues({Masked, Chain}, DL);
4781 }
4782
lowerSET_ROUNDING(SDValue Op,SelectionDAG & DAG) const4783 SDValue RISCVTargetLowering::lowerSET_ROUNDING(SDValue Op,
4784 SelectionDAG &DAG) const {
4785 const MVT XLenVT = Subtarget.getXLenVT();
4786 SDLoc DL(Op);
4787 SDValue Chain = Op->getOperand(0);
4788 SDValue RMValue = Op->getOperand(1);
4789 SDValue SysRegNo = DAG.getConstant(
4790 RISCVSysReg::lookupSysRegByName("FRM")->Encoding, DL, XLenVT);
4791
4792 // Encoding used for rounding mode in RISCV differs from that used in
4793 // FLT_ROUNDS. To convert it the C rounding mode is used as an index in
4794 // a table, which consists of a sequence of 4-bit fields, each representing
4795 // corresponding RISCV mode.
4796 static const unsigned Table =
4797 (RISCVFPRndMode::RNE << 4 * int(RoundingMode::NearestTiesToEven)) |
4798 (RISCVFPRndMode::RTZ << 4 * int(RoundingMode::TowardZero)) |
4799 (RISCVFPRndMode::RDN << 4 * int(RoundingMode::TowardNegative)) |
4800 (RISCVFPRndMode::RUP << 4 * int(RoundingMode::TowardPositive)) |
4801 (RISCVFPRndMode::RMM << 4 * int(RoundingMode::NearestTiesToAway));
4802
4803 SDValue Shift = DAG.getNode(ISD::SHL, DL, XLenVT, RMValue,
4804 DAG.getConstant(2, DL, XLenVT));
4805 SDValue Shifted = DAG.getNode(ISD::SRL, DL, XLenVT,
4806 DAG.getConstant(Table, DL, XLenVT), Shift);
4807 RMValue = DAG.getNode(ISD::AND, DL, XLenVT, Shifted,
4808 DAG.getConstant(0x7, DL, XLenVT));
4809 return DAG.getNode(RISCVISD::WRITE_CSR, DL, MVT::Other, Chain, SysRegNo,
4810 RMValue);
4811 }
4812
4813 // Returns the opcode of the target-specific SDNode that implements the 32-bit
4814 // form of the given Opcode.
getRISCVWOpcode(unsigned Opcode)4815 static RISCVISD::NodeType getRISCVWOpcode(unsigned Opcode) {
4816 switch (Opcode) {
4817 default:
4818 llvm_unreachable("Unexpected opcode");
4819 case ISD::SHL:
4820 return RISCVISD::SLLW;
4821 case ISD::SRA:
4822 return RISCVISD::SRAW;
4823 case ISD::SRL:
4824 return RISCVISD::SRLW;
4825 case ISD::SDIV:
4826 return RISCVISD::DIVW;
4827 case ISD::UDIV:
4828 return RISCVISD::DIVUW;
4829 case ISD::UREM:
4830 return RISCVISD::REMUW;
4831 case ISD::ROTL:
4832 return RISCVISD::ROLW;
4833 case ISD::ROTR:
4834 return RISCVISD::RORW;
4835 case RISCVISD::GREV:
4836 return RISCVISD::GREVW;
4837 case RISCVISD::GORC:
4838 return RISCVISD::GORCW;
4839 }
4840 }
4841
4842 // Converts the given i8/i16/i32 operation to a target-specific SelectionDAG
4843 // node. Because i8/i16/i32 isn't a legal type for RV64, these operations would
4844 // otherwise be promoted to i64, making it difficult to select the
4845 // SLLW/DIVUW/.../*W later one because the fact the operation was originally of
4846 // type i8/i16/i32 is lost.
customLegalizeToWOp(SDNode * N,SelectionDAG & DAG,unsigned ExtOpc=ISD::ANY_EXTEND)4847 static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG,
4848 unsigned ExtOpc = ISD::ANY_EXTEND) {
4849 SDLoc DL(N);
4850 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
4851 SDValue NewOp0 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(0));
4852 SDValue NewOp1 = DAG.getNode(ExtOpc, DL, MVT::i64, N->getOperand(1));
4853 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
4854 // ReplaceNodeResults requires we maintain the same type for the return value.
4855 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewRes);
4856 }
4857
4858 // Converts the given 32-bit operation to a i64 operation with signed extension
4859 // semantic to reduce the signed extension instructions.
customLegalizeToWOpWithSExt(SDNode * N,SelectionDAG & DAG)4860 static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG) {
4861 SDLoc DL(N);
4862 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
4863 SDValue NewOp1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
4864 SDValue NewWOp = DAG.getNode(N->getOpcode(), DL, MVT::i64, NewOp0, NewOp1);
4865 SDValue NewRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, NewWOp,
4866 DAG.getValueType(MVT::i32));
4867 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes);
4868 }
4869
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4870 void RISCVTargetLowering::ReplaceNodeResults(SDNode *N,
4871 SmallVectorImpl<SDValue> &Results,
4872 SelectionDAG &DAG) const {
4873 SDLoc DL(N);
4874 switch (N->getOpcode()) {
4875 default:
4876 llvm_unreachable("Don't know how to custom type legalize this operation!");
4877 case ISD::STRICT_FP_TO_SINT:
4878 case ISD::STRICT_FP_TO_UINT:
4879 case ISD::FP_TO_SINT:
4880 case ISD::FP_TO_UINT: {
4881 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4882 "Unexpected custom legalisation");
4883 bool IsStrict = N->isStrictFPOpcode();
4884 bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
4885 N->getOpcode() == ISD::STRICT_FP_TO_SINT;
4886 SDValue Op0 = IsStrict ? N->getOperand(1) : N->getOperand(0);
4887 if (getTypeAction(*DAG.getContext(), Op0.getValueType()) !=
4888 TargetLowering::TypeSoftenFloat) {
4889 // FIXME: Support strict FP.
4890 if (IsStrict)
4891 return;
4892 if (!isTypeLegal(Op0.getValueType()))
4893 return;
4894 unsigned Opc = IsSigned ? RISCVISD::FCVT_W_RV64 : RISCVISD::FCVT_WU_RV64;
4895 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, Op0);
4896 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
4897 return;
4898 }
4899 // If the FP type needs to be softened, emit a library call using the 'si'
4900 // version. If we left it to default legalization we'd end up with 'di'. If
4901 // the FP type doesn't need to be softened just let generic type
4902 // legalization promote the result type.
4903 RTLIB::Libcall LC;
4904 if (IsSigned)
4905 LC = RTLIB::getFPTOSINT(Op0.getValueType(), N->getValueType(0));
4906 else
4907 LC = RTLIB::getFPTOUINT(Op0.getValueType(), N->getValueType(0));
4908 MakeLibCallOptions CallOptions;
4909 EVT OpVT = Op0.getValueType();
4910 CallOptions.setTypeListBeforeSoften(OpVT, N->getValueType(0), true);
4911 SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
4912 SDValue Result;
4913 std::tie(Result, Chain) =
4914 makeLibCall(DAG, LC, N->getValueType(0), Op0, CallOptions, DL, Chain);
4915 Results.push_back(Result);
4916 if (IsStrict)
4917 Results.push_back(Chain);
4918 break;
4919 }
4920 case ISD::READCYCLECOUNTER: {
4921 assert(!Subtarget.is64Bit() &&
4922 "READCYCLECOUNTER only has custom type legalization on riscv32");
4923
4924 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4925 SDValue RCW =
4926 DAG.getNode(RISCVISD::READ_CYCLE_WIDE, DL, VTs, N->getOperand(0));
4927
4928 Results.push_back(
4929 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, RCW, RCW.getValue(1)));
4930 Results.push_back(RCW.getValue(2));
4931 break;
4932 }
4933 case ISD::MUL: {
4934 unsigned Size = N->getSimpleValueType(0).getSizeInBits();
4935 unsigned XLen = Subtarget.getXLen();
4936 // This multiply needs to be expanded, try to use MULHSU+MUL if possible.
4937 if (Size > XLen) {
4938 assert(Size == (XLen * 2) && "Unexpected custom legalisation");
4939 SDValue LHS = N->getOperand(0);
4940 SDValue RHS = N->getOperand(1);
4941 APInt HighMask = APInt::getHighBitsSet(Size, XLen);
4942
4943 bool LHSIsU = DAG.MaskedValueIsZero(LHS, HighMask);
4944 bool RHSIsU = DAG.MaskedValueIsZero(RHS, HighMask);
4945 // We need exactly one side to be unsigned.
4946 if (LHSIsU == RHSIsU)
4947 return;
4948
4949 auto MakeMULPair = [&](SDValue S, SDValue U) {
4950 MVT XLenVT = Subtarget.getXLenVT();
4951 S = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, S);
4952 U = DAG.getNode(ISD::TRUNCATE, DL, XLenVT, U);
4953 SDValue Lo = DAG.getNode(ISD::MUL, DL, XLenVT, S, U);
4954 SDValue Hi = DAG.getNode(RISCVISD::MULHSU, DL, XLenVT, S, U);
4955 return DAG.getNode(ISD::BUILD_PAIR, DL, N->getValueType(0), Lo, Hi);
4956 };
4957
4958 bool LHSIsS = DAG.ComputeNumSignBits(LHS) > XLen;
4959 bool RHSIsS = DAG.ComputeNumSignBits(RHS) > XLen;
4960
4961 // The other operand should be signed, but still prefer MULH when
4962 // possible.
4963 if (RHSIsU && LHSIsS && !RHSIsS)
4964 Results.push_back(MakeMULPair(LHS, RHS));
4965 else if (LHSIsU && RHSIsS && !LHSIsS)
4966 Results.push_back(MakeMULPair(RHS, LHS));
4967
4968 return;
4969 }
4970 LLVM_FALLTHROUGH;
4971 }
4972 case ISD::ADD:
4973 case ISD::SUB:
4974 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4975 "Unexpected custom legalisation");
4976 if (N->getOperand(1).getOpcode() == ISD::Constant)
4977 return;
4978 Results.push_back(customLegalizeToWOpWithSExt(N, DAG));
4979 break;
4980 case ISD::SHL:
4981 case ISD::SRA:
4982 case ISD::SRL:
4983 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4984 "Unexpected custom legalisation");
4985 if (N->getOperand(1).getOpcode() == ISD::Constant)
4986 return;
4987 Results.push_back(customLegalizeToWOp(N, DAG));
4988 break;
4989 case ISD::ROTL:
4990 case ISD::ROTR:
4991 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4992 "Unexpected custom legalisation");
4993 Results.push_back(customLegalizeToWOp(N, DAG));
4994 break;
4995 case ISD::CTTZ:
4996 case ISD::CTTZ_ZERO_UNDEF:
4997 case ISD::CTLZ:
4998 case ISD::CTLZ_ZERO_UNDEF: {
4999 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5000 "Unexpected custom legalisation");
5001
5002 SDValue NewOp0 =
5003 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5004 bool IsCTZ =
5005 N->getOpcode() == ISD::CTTZ || N->getOpcode() == ISD::CTTZ_ZERO_UNDEF;
5006 unsigned Opc = IsCTZ ? RISCVISD::CTZW : RISCVISD::CLZW;
5007 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp0);
5008 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5009 return;
5010 }
5011 case ISD::SDIV:
5012 case ISD::UDIV:
5013 case ISD::UREM: {
5014 MVT VT = N->getSimpleValueType(0);
5015 assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
5016 Subtarget.is64Bit() && Subtarget.hasStdExtM() &&
5017 "Unexpected custom legalisation");
5018 // Don't promote division/remainder by constant since we should expand those
5019 // to multiply by magic constant.
5020 // FIXME: What if the expansion is disabled for minsize.
5021 if (N->getOperand(1).getOpcode() == ISD::Constant)
5022 return;
5023
5024 // If the input is i32, use ANY_EXTEND since the W instructions don't read
5025 // the upper 32 bits. For other types we need to sign or zero extend
5026 // based on the opcode.
5027 unsigned ExtOpc = ISD::ANY_EXTEND;
5028 if (VT != MVT::i32)
5029 ExtOpc = N->getOpcode() == ISD::SDIV ? ISD::SIGN_EXTEND
5030 : ISD::ZERO_EXTEND;
5031
5032 Results.push_back(customLegalizeToWOp(N, DAG, ExtOpc));
5033 break;
5034 }
5035 case ISD::UADDO:
5036 case ISD::USUBO: {
5037 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5038 "Unexpected custom legalisation");
5039 bool IsAdd = N->getOpcode() == ISD::UADDO;
5040 // Create an ADDW or SUBW.
5041 SDValue LHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5042 SDValue RHS = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5043 SDValue Res =
5044 DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, DL, MVT::i64, LHS, RHS);
5045 Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, Res,
5046 DAG.getValueType(MVT::i32));
5047
5048 // Sign extend the LHS and perform an unsigned compare with the ADDW result.
5049 // Since the inputs are sign extended from i32, this is equivalent to
5050 // comparing the lower 32 bits.
5051 LHS = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5052 SDValue Overflow = DAG.getSetCC(DL, N->getValueType(1), Res, LHS,
5053 IsAdd ? ISD::SETULT : ISD::SETUGT);
5054
5055 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5056 Results.push_back(Overflow);
5057 return;
5058 }
5059 case ISD::UADDSAT:
5060 case ISD::USUBSAT: {
5061 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5062 "Unexpected custom legalisation");
5063 if (Subtarget.hasStdExtZbb()) {
5064 // With Zbb we can sign extend and let LegalizeDAG use minu/maxu. Using
5065 // sign extend allows overflow of the lower 32 bits to be detected on
5066 // the promoted size.
5067 SDValue LHS =
5068 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(0));
5069 SDValue RHS =
5070 DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, N->getOperand(1));
5071 SDValue Res = DAG.getNode(N->getOpcode(), DL, MVT::i64, LHS, RHS);
5072 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5073 return;
5074 }
5075
5076 // Without Zbb, expand to UADDO/USUBO+select which will trigger our custom
5077 // promotion for UADDO/USUBO.
5078 Results.push_back(expandAddSubSat(N, DAG));
5079 return;
5080 }
5081 case ISD::BITCAST: {
5082 EVT VT = N->getValueType(0);
5083 assert(VT.isInteger() && !VT.isVector() && "Unexpected VT!");
5084 SDValue Op0 = N->getOperand(0);
5085 EVT Op0VT = Op0.getValueType();
5086 MVT XLenVT = Subtarget.getXLenVT();
5087 if (VT == MVT::i16 && Op0VT == MVT::f16 && Subtarget.hasStdExtZfh()) {
5088 SDValue FPConv = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, XLenVT, Op0);
5089 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FPConv));
5090 } else if (VT == MVT::i32 && Op0VT == MVT::f32 && Subtarget.is64Bit() &&
5091 Subtarget.hasStdExtF()) {
5092 SDValue FPConv =
5093 DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Op0);
5094 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, FPConv));
5095 } else if (!VT.isVector() && Op0VT.isFixedLengthVector() &&
5096 isTypeLegal(Op0VT)) {
5097 // Custom-legalize bitcasts from fixed-length vector types to illegal
5098 // scalar types in order to improve codegen. Bitcast the vector to a
5099 // one-element vector type whose element type is the same as the result
5100 // type, and extract the first element.
5101 LLVMContext &Context = *DAG.getContext();
5102 SDValue BVec = DAG.getBitcast(EVT::getVectorVT(Context, VT, 1), Op0);
5103 Results.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, BVec,
5104 DAG.getConstant(0, DL, XLenVT)));
5105 }
5106 break;
5107 }
5108 case RISCVISD::GREV:
5109 case RISCVISD::GORC: {
5110 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5111 "Unexpected custom legalisation");
5112 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5113 // This is similar to customLegalizeToWOp, except that we pass the second
5114 // operand (a TargetConstant) straight through: it is already of type
5115 // XLenVT.
5116 RISCVISD::NodeType WOpcode = getRISCVWOpcode(N->getOpcode());
5117 SDValue NewOp0 =
5118 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5119 SDValue NewOp1 =
5120 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5121 SDValue NewRes = DAG.getNode(WOpcode, DL, MVT::i64, NewOp0, NewOp1);
5122 // ReplaceNodeResults requires we maintain the same type for the return
5123 // value.
5124 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5125 break;
5126 }
5127 case RISCVISD::SHFL: {
5128 // There is no SHFLIW instruction, but we can just promote the operation.
5129 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5130 "Unexpected custom legalisation");
5131 assert(isa<ConstantSDNode>(N->getOperand(1)) && "Expected constant");
5132 SDValue NewOp0 =
5133 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5134 SDValue NewOp1 =
5135 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5136 SDValue NewRes = DAG.getNode(RISCVISD::SHFL, DL, MVT::i64, NewOp0, NewOp1);
5137 // ReplaceNodeResults requires we maintain the same type for the return
5138 // value.
5139 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewRes));
5140 break;
5141 }
5142 case ISD::BSWAP:
5143 case ISD::BITREVERSE: {
5144 MVT VT = N->getSimpleValueType(0);
5145 MVT XLenVT = Subtarget.getXLenVT();
5146 assert((VT == MVT::i8 || VT == MVT::i16 ||
5147 (VT == MVT::i32 && Subtarget.is64Bit())) &&
5148 Subtarget.hasStdExtZbp() && "Unexpected custom legalisation");
5149 SDValue NewOp0 = DAG.getNode(ISD::ANY_EXTEND, DL, XLenVT, N->getOperand(0));
5150 unsigned Imm = VT.getSizeInBits() - 1;
5151 // If this is BSWAP rather than BITREVERSE, clear the lower 3 bits.
5152 if (N->getOpcode() == ISD::BSWAP)
5153 Imm &= ~0x7U;
5154 unsigned Opc = Subtarget.is64Bit() ? RISCVISD::GREVW : RISCVISD::GREV;
5155 SDValue GREVI =
5156 DAG.getNode(Opc, DL, XLenVT, NewOp0, DAG.getConstant(Imm, DL, XLenVT));
5157 // ReplaceNodeResults requires we maintain the same type for the return
5158 // value.
5159 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, GREVI));
5160 break;
5161 }
5162 case ISD::FSHL:
5163 case ISD::FSHR: {
5164 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5165 Subtarget.hasStdExtZbt() && "Unexpected custom legalisation");
5166 SDValue NewOp0 =
5167 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(0));
5168 SDValue NewOp1 =
5169 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5170 SDValue NewOp2 =
5171 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5172 // FSLW/FSRW take a 6 bit shift amount but i32 FSHL/FSHR only use 5 bits.
5173 // Mask the shift amount to 5 bits.
5174 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5175 DAG.getConstant(0x1f, DL, MVT::i64));
5176 unsigned Opc =
5177 N->getOpcode() == ISD::FSHL ? RISCVISD::FSLW : RISCVISD::FSRW;
5178 SDValue NewOp = DAG.getNode(Opc, DL, MVT::i64, NewOp0, NewOp1, NewOp2);
5179 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, NewOp));
5180 break;
5181 }
5182 case ISD::EXTRACT_VECTOR_ELT: {
5183 // Custom-legalize an EXTRACT_VECTOR_ELT where XLEN<SEW, as the SEW element
5184 // type is illegal (currently only vXi64 RV32).
5185 // With vmv.x.s, when SEW > XLEN, only the least-significant XLEN bits are
5186 // transferred to the destination register. We issue two of these from the
5187 // upper- and lower- halves of the SEW-bit vector element, slid down to the
5188 // first element.
5189 SDValue Vec = N->getOperand(0);
5190 SDValue Idx = N->getOperand(1);
5191
5192 // The vector type hasn't been legalized yet so we can't issue target
5193 // specific nodes if it needs legalization.
5194 // FIXME: We would manually legalize if it's important.
5195 if (!isTypeLegal(Vec.getValueType()))
5196 return;
5197
5198 MVT VecVT = Vec.getSimpleValueType();
5199
5200 assert(!Subtarget.is64Bit() && N->getValueType(0) == MVT::i64 &&
5201 VecVT.getVectorElementType() == MVT::i64 &&
5202 "Unexpected EXTRACT_VECTOR_ELT legalization");
5203
5204 // If this is a fixed vector, we need to convert it to a scalable vector.
5205 MVT ContainerVT = VecVT;
5206 if (VecVT.isFixedLengthVector()) {
5207 ContainerVT = getContainerForFixedLengthVector(VecVT);
5208 Vec = convertToScalableVector(ContainerVT, Vec, DAG, Subtarget);
5209 }
5210
5211 MVT XLenVT = Subtarget.getXLenVT();
5212
5213 // Use a VL of 1 to avoid processing more elements than we need.
5214 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5215 SDValue VL = DAG.getConstant(1, DL, XLenVT);
5216 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5217
5218 // Unless the index is known to be 0, we must slide the vector down to get
5219 // the desired element into index 0.
5220 if (!isNullConstant(Idx)) {
5221 Vec = DAG.getNode(RISCVISD::VSLIDEDOWN_VL, DL, ContainerVT,
5222 DAG.getUNDEF(ContainerVT), Vec, Idx, Mask, VL);
5223 }
5224
5225 // Extract the lower XLEN bits of the correct vector element.
5226 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5227
5228 // To extract the upper XLEN bits of the vector element, shift the first
5229 // element right by 32 bits and re-extract the lower XLEN bits.
5230 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, ContainerVT,
5231 DAG.getConstant(32, DL, XLenVT), VL);
5232 SDValue LShr32 = DAG.getNode(RISCVISD::SRL_VL, DL, ContainerVT, Vec,
5233 ThirtyTwoV, Mask, VL);
5234
5235 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5236
5237 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5238 break;
5239 }
5240 case ISD::INTRINSIC_WO_CHAIN: {
5241 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5242 switch (IntNo) {
5243 default:
5244 llvm_unreachable(
5245 "Don't know how to custom type legalize this intrinsic!");
5246 case Intrinsic::riscv_orc_b: {
5247 // Lower to the GORCI encoding for orc.b with the operand extended.
5248 SDValue NewOp =
5249 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5250 // If Zbp is enabled, use GORCIW which will sign extend the result.
5251 unsigned Opc =
5252 Subtarget.hasStdExtZbp() ? RISCVISD::GORCW : RISCVISD::GORC;
5253 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp,
5254 DAG.getConstant(7, DL, MVT::i64));
5255 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5256 return;
5257 }
5258 case Intrinsic::riscv_grev:
5259 case Intrinsic::riscv_gorc: {
5260 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5261 "Unexpected custom legalisation");
5262 SDValue NewOp1 =
5263 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5264 SDValue NewOp2 =
5265 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5266 unsigned Opc =
5267 IntNo == Intrinsic::riscv_grev ? RISCVISD::GREVW : RISCVISD::GORCW;
5268 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5269 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5270 break;
5271 }
5272 case Intrinsic::riscv_shfl:
5273 case Intrinsic::riscv_unshfl: {
5274 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5275 "Unexpected custom legalisation");
5276 SDValue NewOp1 =
5277 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5278 SDValue NewOp2 =
5279 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5280 unsigned Opc =
5281 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFLW : RISCVISD::UNSHFLW;
5282 if (isa<ConstantSDNode>(N->getOperand(2))) {
5283 NewOp2 = DAG.getNode(ISD::AND, DL, MVT::i64, NewOp2,
5284 DAG.getConstant(0xf, DL, MVT::i64));
5285 Opc =
5286 IntNo == Intrinsic::riscv_shfl ? RISCVISD::SHFL : RISCVISD::UNSHFL;
5287 }
5288 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5289 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5290 break;
5291 }
5292 case Intrinsic::riscv_bcompress:
5293 case Intrinsic::riscv_bdecompress: {
5294 assert(N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
5295 "Unexpected custom legalisation");
5296 SDValue NewOp1 =
5297 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(1));
5298 SDValue NewOp2 =
5299 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(2));
5300 unsigned Opc = IntNo == Intrinsic::riscv_bcompress
5301 ? RISCVISD::BCOMPRESSW
5302 : RISCVISD::BDECOMPRESSW;
5303 SDValue Res = DAG.getNode(Opc, DL, MVT::i64, NewOp1, NewOp2);
5304 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Res));
5305 break;
5306 }
5307 case Intrinsic::riscv_vmv_x_s: {
5308 EVT VT = N->getValueType(0);
5309 MVT XLenVT = Subtarget.getXLenVT();
5310 if (VT.bitsLT(XLenVT)) {
5311 // Simple case just extract using vmv.x.s and truncate.
5312 SDValue Extract = DAG.getNode(RISCVISD::VMV_X_S, DL,
5313 Subtarget.getXLenVT(), N->getOperand(1));
5314 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Extract));
5315 return;
5316 }
5317
5318 assert(VT == MVT::i64 && !Subtarget.is64Bit() &&
5319 "Unexpected custom legalization");
5320
5321 // We need to do the move in two steps.
5322 SDValue Vec = N->getOperand(1);
5323 MVT VecVT = Vec.getSimpleValueType();
5324
5325 // First extract the lower XLEN bits of the element.
5326 SDValue EltLo = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, Vec);
5327
5328 // To extract the upper XLEN bits of the vector element, shift the first
5329 // element right by 32 bits and re-extract the lower XLEN bits.
5330 SDValue VL = DAG.getConstant(1, DL, XLenVT);
5331 MVT MaskVT = MVT::getVectorVT(MVT::i1, VecVT.getVectorElementCount());
5332 SDValue Mask = DAG.getNode(RISCVISD::VMSET_VL, DL, MaskVT, VL);
5333 SDValue ThirtyTwoV = DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VecVT,
5334 DAG.getConstant(32, DL, XLenVT), VL);
5335 SDValue LShr32 =
5336 DAG.getNode(RISCVISD::SRL_VL, DL, VecVT, Vec, ThirtyTwoV, Mask, VL);
5337 SDValue EltHi = DAG.getNode(RISCVISD::VMV_X_S, DL, XLenVT, LShr32);
5338
5339 Results.push_back(
5340 DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, EltLo, EltHi));
5341 break;
5342 }
5343 }
5344 break;
5345 }
5346 case ISD::VECREDUCE_ADD:
5347 case ISD::VECREDUCE_AND:
5348 case ISD::VECREDUCE_OR:
5349 case ISD::VECREDUCE_XOR:
5350 case ISD::VECREDUCE_SMAX:
5351 case ISD::VECREDUCE_UMAX:
5352 case ISD::VECREDUCE_SMIN:
5353 case ISD::VECREDUCE_UMIN:
5354 if (SDValue V = lowerVECREDUCE(SDValue(N, 0), DAG))
5355 Results.push_back(V);
5356 break;
5357 case ISD::FLT_ROUNDS_: {
5358 SDVTList VTs = DAG.getVTList(Subtarget.getXLenVT(), MVT::Other);
5359 SDValue Res = DAG.getNode(ISD::FLT_ROUNDS_, DL, VTs, N->getOperand(0));
5360 Results.push_back(Res.getValue(0));
5361 Results.push_back(Res.getValue(1));
5362 break;
5363 }
5364 }
5365 }
5366
5367 // A structure to hold one of the bit-manipulation patterns below. Together, a
5368 // SHL and non-SHL pattern may form a bit-manipulation pair on a single source:
5369 // (or (and (shl x, 1), 0xAAAAAAAA),
5370 // (and (srl x, 1), 0x55555555))
5371 struct RISCVBitmanipPat {
5372 SDValue Op;
5373 unsigned ShAmt;
5374 bool IsSHL;
5375
formsPairWithRISCVBitmanipPat5376 bool formsPairWith(const RISCVBitmanipPat &Other) const {
5377 return Op == Other.Op && ShAmt == Other.ShAmt && IsSHL != Other.IsSHL;
5378 }
5379 };
5380
5381 // Matches patterns of the form
5382 // (and (shl x, C2), (C1 << C2))
5383 // (and (srl x, C2), C1)
5384 // (shl (and x, C1), C2)
5385 // (srl (and x, (C1 << C2)), C2)
5386 // Where C2 is a power of 2 and C1 has at least that many leading zeroes.
5387 // The expected masks for each shift amount are specified in BitmanipMasks where
5388 // BitmanipMasks[log2(C2)] specifies the expected C1 value.
5389 // The max allowed shift amount is either XLen/2 or XLen/4 determined by whether
5390 // BitmanipMasks contains 6 or 5 entries assuming that the maximum possible
5391 // XLen is 64.
5392 static Optional<RISCVBitmanipPat>
matchRISCVBitmanipPat(SDValue Op,ArrayRef<uint64_t> BitmanipMasks)5393 matchRISCVBitmanipPat(SDValue Op, ArrayRef<uint64_t> BitmanipMasks) {
5394 assert((BitmanipMasks.size() == 5 || BitmanipMasks.size() == 6) &&
5395 "Unexpected number of masks");
5396 Optional<uint64_t> Mask;
5397 // Optionally consume a mask around the shift operation.
5398 if (Op.getOpcode() == ISD::AND && isa<ConstantSDNode>(Op.getOperand(1))) {
5399 Mask = Op.getConstantOperandVal(1);
5400 Op = Op.getOperand(0);
5401 }
5402 if (Op.getOpcode() != ISD::SHL && Op.getOpcode() != ISD::SRL)
5403 return None;
5404 bool IsSHL = Op.getOpcode() == ISD::SHL;
5405
5406 if (!isa<ConstantSDNode>(Op.getOperand(1)))
5407 return None;
5408 uint64_t ShAmt = Op.getConstantOperandVal(1);
5409
5410 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5411 if (ShAmt >= Width || !isPowerOf2_64(ShAmt))
5412 return None;
5413 // If we don't have enough masks for 64 bit, then we must be trying to
5414 // match SHFL so we're only allowed to shift 1/4 of the width.
5415 if (BitmanipMasks.size() == 5 && ShAmt >= (Width / 2))
5416 return None;
5417
5418 SDValue Src = Op.getOperand(0);
5419
5420 // The expected mask is shifted left when the AND is found around SHL
5421 // patterns.
5422 // ((x >> 1) & 0x55555555)
5423 // ((x << 1) & 0xAAAAAAAA)
5424 bool SHLExpMask = IsSHL;
5425
5426 if (!Mask) {
5427 // Sometimes LLVM keeps the mask as an operand of the shift, typically when
5428 // the mask is all ones: consume that now.
5429 if (Src.getOpcode() == ISD::AND && isa<ConstantSDNode>(Src.getOperand(1))) {
5430 Mask = Src.getConstantOperandVal(1);
5431 Src = Src.getOperand(0);
5432 // The expected mask is now in fact shifted left for SRL, so reverse the
5433 // decision.
5434 // ((x & 0xAAAAAAAA) >> 1)
5435 // ((x & 0x55555555) << 1)
5436 SHLExpMask = !SHLExpMask;
5437 } else {
5438 // Use a default shifted mask of all-ones if there's no AND, truncated
5439 // down to the expected width. This simplifies the logic later on.
5440 Mask = maskTrailingOnes<uint64_t>(Width);
5441 *Mask &= (IsSHL ? *Mask << ShAmt : *Mask >> ShAmt);
5442 }
5443 }
5444
5445 unsigned MaskIdx = Log2_32(ShAmt);
5446 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5447
5448 if (SHLExpMask)
5449 ExpMask <<= ShAmt;
5450
5451 if (Mask != ExpMask)
5452 return None;
5453
5454 return RISCVBitmanipPat{Src, (unsigned)ShAmt, IsSHL};
5455 }
5456
5457 // Matches any of the following bit-manipulation patterns:
5458 // (and (shl x, 1), (0x55555555 << 1))
5459 // (and (srl x, 1), 0x55555555)
5460 // (shl (and x, 0x55555555), 1)
5461 // (srl (and x, (0x55555555 << 1)), 1)
5462 // where the shift amount and mask may vary thus:
5463 // [1] = 0x55555555 / 0xAAAAAAAA
5464 // [2] = 0x33333333 / 0xCCCCCCCC
5465 // [4] = 0x0F0F0F0F / 0xF0F0F0F0
5466 // [8] = 0x00FF00FF / 0xFF00FF00
5467 // [16] = 0x0000FFFF / 0xFFFFFFFF
5468 // [32] = 0x00000000FFFFFFFF / 0xFFFFFFFF00000000 (for RV64)
matchGREVIPat(SDValue Op)5469 static Optional<RISCVBitmanipPat> matchGREVIPat(SDValue Op) {
5470 // These are the unshifted masks which we use to match bit-manipulation
5471 // patterns. They may be shifted left in certain circumstances.
5472 static const uint64_t BitmanipMasks[] = {
5473 0x5555555555555555ULL, 0x3333333333333333ULL, 0x0F0F0F0F0F0F0F0FULL,
5474 0x00FF00FF00FF00FFULL, 0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL};
5475
5476 return matchRISCVBitmanipPat(Op, BitmanipMasks);
5477 }
5478
5479 // Match the following pattern as a GREVI(W) operation
5480 // (or (BITMANIP_SHL x), (BITMANIP_SRL x))
combineORToGREV(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)5481 static SDValue combineORToGREV(SDValue Op, SelectionDAG &DAG,
5482 const RISCVSubtarget &Subtarget) {
5483 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5484 EVT VT = Op.getValueType();
5485
5486 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5487 auto LHS = matchGREVIPat(Op.getOperand(0));
5488 auto RHS = matchGREVIPat(Op.getOperand(1));
5489 if (LHS && RHS && LHS->formsPairWith(*RHS)) {
5490 SDLoc DL(Op);
5491 return DAG.getNode(RISCVISD::GREV, DL, VT, LHS->Op,
5492 DAG.getConstant(LHS->ShAmt, DL, VT));
5493 }
5494 }
5495 return SDValue();
5496 }
5497
5498 // Matches any the following pattern as a GORCI(W) operation
5499 // 1. (or (GREVI x, shamt), x) if shamt is a power of 2
5500 // 2. (or x, (GREVI x, shamt)) if shamt is a power of 2
5501 // 3. (or (or (BITMANIP_SHL x), x), (BITMANIP_SRL x))
5502 // Note that with the variant of 3.,
5503 // (or (or (BITMANIP_SHL x), (BITMANIP_SRL x)), x)
5504 // the inner pattern will first be matched as GREVI and then the outer
5505 // pattern will be matched to GORC via the first rule above.
5506 // 4. (or (rotl/rotr x, bitwidth/2), x)
combineORToGORC(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)5507 static SDValue combineORToGORC(SDValue Op, SelectionDAG &DAG,
5508 const RISCVSubtarget &Subtarget) {
5509 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5510 EVT VT = Op.getValueType();
5511
5512 if (VT == Subtarget.getXLenVT() || (Subtarget.is64Bit() && VT == MVT::i32)) {
5513 SDLoc DL(Op);
5514 SDValue Op0 = Op.getOperand(0);
5515 SDValue Op1 = Op.getOperand(1);
5516
5517 auto MatchOROfReverse = [&](SDValue Reverse, SDValue X) {
5518 if (Reverse.getOpcode() == RISCVISD::GREV && Reverse.getOperand(0) == X &&
5519 isa<ConstantSDNode>(Reverse.getOperand(1)) &&
5520 isPowerOf2_32(Reverse.getConstantOperandVal(1)))
5521 return DAG.getNode(RISCVISD::GORC, DL, VT, X, Reverse.getOperand(1));
5522 // We can also form GORCI from ROTL/ROTR by half the bitwidth.
5523 if ((Reverse.getOpcode() == ISD::ROTL ||
5524 Reverse.getOpcode() == ISD::ROTR) &&
5525 Reverse.getOperand(0) == X &&
5526 isa<ConstantSDNode>(Reverse.getOperand(1))) {
5527 uint64_t RotAmt = Reverse.getConstantOperandVal(1);
5528 if (RotAmt == (VT.getSizeInBits() / 2))
5529 return DAG.getNode(RISCVISD::GORC, DL, VT, X,
5530 DAG.getConstant(RotAmt, DL, VT));
5531 }
5532 return SDValue();
5533 };
5534
5535 // Check for either commutable permutation of (or (GREVI x, shamt), x)
5536 if (SDValue V = MatchOROfReverse(Op0, Op1))
5537 return V;
5538 if (SDValue V = MatchOROfReverse(Op1, Op0))
5539 return V;
5540
5541 // OR is commutable so canonicalize its OR operand to the left
5542 if (Op0.getOpcode() != ISD::OR && Op1.getOpcode() == ISD::OR)
5543 std::swap(Op0, Op1);
5544 if (Op0.getOpcode() != ISD::OR)
5545 return SDValue();
5546 SDValue OrOp0 = Op0.getOperand(0);
5547 SDValue OrOp1 = Op0.getOperand(1);
5548 auto LHS = matchGREVIPat(OrOp0);
5549 // OR is commutable so swap the operands and try again: x might have been
5550 // on the left
5551 if (!LHS) {
5552 std::swap(OrOp0, OrOp1);
5553 LHS = matchGREVIPat(OrOp0);
5554 }
5555 auto RHS = matchGREVIPat(Op1);
5556 if (LHS && RHS && LHS->formsPairWith(*RHS) && LHS->Op == OrOp1) {
5557 return DAG.getNode(RISCVISD::GORC, DL, VT, LHS->Op,
5558 DAG.getConstant(LHS->ShAmt, DL, VT));
5559 }
5560 }
5561 return SDValue();
5562 }
5563
5564 // Matches any of the following bit-manipulation patterns:
5565 // (and (shl x, 1), (0x22222222 << 1))
5566 // (and (srl x, 1), 0x22222222)
5567 // (shl (and x, 0x22222222), 1)
5568 // (srl (and x, (0x22222222 << 1)), 1)
5569 // where the shift amount and mask may vary thus:
5570 // [1] = 0x22222222 / 0x44444444
5571 // [2] = 0x0C0C0C0C / 0x3C3C3C3C
5572 // [4] = 0x00F000F0 / 0x0F000F00
5573 // [8] = 0x0000FF00 / 0x00FF0000
5574 // [16] = 0x00000000FFFF0000 / 0x0000FFFF00000000 (for RV64)
matchSHFLPat(SDValue Op)5575 static Optional<RISCVBitmanipPat> matchSHFLPat(SDValue Op) {
5576 // These are the unshifted masks which we use to match bit-manipulation
5577 // patterns. They may be shifted left in certain circumstances.
5578 static const uint64_t BitmanipMasks[] = {
5579 0x2222222222222222ULL, 0x0C0C0C0C0C0C0C0CULL, 0x00F000F000F000F0ULL,
5580 0x0000FF000000FF00ULL, 0x00000000FFFF0000ULL};
5581
5582 return matchRISCVBitmanipPat(Op, BitmanipMasks);
5583 }
5584
5585 // Match (or (or (SHFL_SHL x), (SHFL_SHR x)), (SHFL_AND x)
combineORToSHFL(SDValue Op,SelectionDAG & DAG,const RISCVSubtarget & Subtarget)5586 static SDValue combineORToSHFL(SDValue Op, SelectionDAG &DAG,
5587 const RISCVSubtarget &Subtarget) {
5588 assert(Subtarget.hasStdExtZbp() && "Expected Zbp extenson");
5589 EVT VT = Op.getValueType();
5590
5591 if (VT != MVT::i32 && VT != Subtarget.getXLenVT())
5592 return SDValue();
5593
5594 SDValue Op0 = Op.getOperand(0);
5595 SDValue Op1 = Op.getOperand(1);
5596
5597 // Or is commutable so canonicalize the second OR to the LHS.
5598 if (Op0.getOpcode() != ISD::OR)
5599 std::swap(Op0, Op1);
5600 if (Op0.getOpcode() != ISD::OR)
5601 return SDValue();
5602
5603 // We found an inner OR, so our operands are the operands of the inner OR
5604 // and the other operand of the outer OR.
5605 SDValue A = Op0.getOperand(0);
5606 SDValue B = Op0.getOperand(1);
5607 SDValue C = Op1;
5608
5609 auto Match1 = matchSHFLPat(A);
5610 auto Match2 = matchSHFLPat(B);
5611
5612 // If neither matched, we failed.
5613 if (!Match1 && !Match2)
5614 return SDValue();
5615
5616 // We had at least one match. if one failed, try the remaining C operand.
5617 if (!Match1) {
5618 std::swap(A, C);
5619 Match1 = matchSHFLPat(A);
5620 if (!Match1)
5621 return SDValue();
5622 } else if (!Match2) {
5623 std::swap(B, C);
5624 Match2 = matchSHFLPat(B);
5625 if (!Match2)
5626 return SDValue();
5627 }
5628 assert(Match1 && Match2);
5629
5630 // Make sure our matches pair up.
5631 if (!Match1->formsPairWith(*Match2))
5632 return SDValue();
5633
5634 // All the remains is to make sure C is an AND with the same input, that masks
5635 // out the bits that are being shuffled.
5636 if (C.getOpcode() != ISD::AND || !isa<ConstantSDNode>(C.getOperand(1)) ||
5637 C.getOperand(0) != Match1->Op)
5638 return SDValue();
5639
5640 uint64_t Mask = C.getConstantOperandVal(1);
5641
5642 static const uint64_t BitmanipMasks[] = {
5643 0x9999999999999999ULL, 0xC3C3C3C3C3C3C3C3ULL, 0xF00FF00FF00FF00FULL,
5644 0xFF0000FFFF0000FFULL, 0xFFFF00000000FFFFULL,
5645 };
5646
5647 unsigned Width = Op.getValueType() == MVT::i64 ? 64 : 32;
5648 unsigned MaskIdx = Log2_32(Match1->ShAmt);
5649 uint64_t ExpMask = BitmanipMasks[MaskIdx] & maskTrailingOnes<uint64_t>(Width);
5650
5651 if (Mask != ExpMask)
5652 return SDValue();
5653
5654 SDLoc DL(Op);
5655 return DAG.getNode(RISCVISD::SHFL, DL, VT, Match1->Op,
5656 DAG.getConstant(Match1->ShAmt, DL, VT));
5657 }
5658
5659 // Combine (GREVI (GREVI x, C2), C1) -> (GREVI x, C1^C2) when C1^C2 is
5660 // non-zero, and to x when it is. Any repeated GREVI stage undoes itself.
5661 // Combine (GORCI (GORCI x, C2), C1) -> (GORCI x, C1|C2). Repeated stage does
5662 // not undo itself, but they are redundant.
combineGREVI_GORCI(SDNode * N,SelectionDAG & DAG)5663 static SDValue combineGREVI_GORCI(SDNode *N, SelectionDAG &DAG) {
5664 SDValue Src = N->getOperand(0);
5665
5666 if (Src.getOpcode() != N->getOpcode())
5667 return SDValue();
5668
5669 if (!isa<ConstantSDNode>(N->getOperand(1)) ||
5670 !isa<ConstantSDNode>(Src.getOperand(1)))
5671 return SDValue();
5672
5673 unsigned ShAmt1 = N->getConstantOperandVal(1);
5674 unsigned ShAmt2 = Src.getConstantOperandVal(1);
5675 Src = Src.getOperand(0);
5676
5677 unsigned CombinedShAmt;
5678 if (N->getOpcode() == RISCVISD::GORC || N->getOpcode() == RISCVISD::GORCW)
5679 CombinedShAmt = ShAmt1 | ShAmt2;
5680 else
5681 CombinedShAmt = ShAmt1 ^ ShAmt2;
5682
5683 if (CombinedShAmt == 0)
5684 return Src;
5685
5686 SDLoc DL(N);
5687 return DAG.getNode(
5688 N->getOpcode(), DL, N->getValueType(0), Src,
5689 DAG.getConstant(CombinedShAmt, DL, N->getOperand(1).getValueType()));
5690 }
5691
5692 // Combine a constant select operand into its use:
5693 //
5694 // (and (select_cc lhs, rhs, cc, -1, c), x)
5695 // -> (select_cc lhs, rhs, cc, x, (and, x, c)) [AllOnes=1]
5696 // (or (select_cc lhs, rhs, cc, 0, c), x)
5697 // -> (select_cc lhs, rhs, cc, x, (or, x, c)) [AllOnes=0]
5698 // (xor (select_cc lhs, rhs, cc, 0, c), x)
5699 // -> (select_cc lhs, rhs, cc, x, (xor, x, c)) [AllOnes=0]
combineSelectCCAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,SelectionDAG & DAG,bool AllOnes)5700 static SDValue combineSelectCCAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
5701 SelectionDAG &DAG, bool AllOnes) {
5702 EVT VT = N->getValueType(0);
5703
5704 if (Slct.getOpcode() != RISCVISD::SELECT_CC || !Slct.hasOneUse())
5705 return SDValue();
5706
5707 auto isZeroOrAllOnes = [](SDValue N, bool AllOnes) {
5708 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
5709 };
5710
5711 bool SwapSelectOps;
5712 SDValue TrueVal = Slct.getOperand(3);
5713 SDValue FalseVal = Slct.getOperand(4);
5714 SDValue NonConstantVal;
5715 if (isZeroOrAllOnes(TrueVal, AllOnes)) {
5716 SwapSelectOps = false;
5717 NonConstantVal = FalseVal;
5718 } else if (isZeroOrAllOnes(FalseVal, AllOnes)) {
5719 SwapSelectOps = true;
5720 NonConstantVal = TrueVal;
5721 } else
5722 return SDValue();
5723
5724 // Slct is now know to be the desired identity constant when CC is true.
5725 TrueVal = OtherOp;
5726 FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
5727 // Unless SwapSelectOps says CC should be false.
5728 if (SwapSelectOps)
5729 std::swap(TrueVal, FalseVal);
5730
5731 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), VT,
5732 {Slct.getOperand(0), Slct.getOperand(1),
5733 Slct.getOperand(2), TrueVal, FalseVal});
5734 }
5735
5736 // Attempt combineSelectAndUse on each operand of a commutative operator N.
combineSelectCCAndUseCommutative(SDNode * N,SelectionDAG & DAG,bool AllOnes)5737 static SDValue combineSelectCCAndUseCommutative(SDNode *N, SelectionDAG &DAG,
5738 bool AllOnes) {
5739 SDValue N0 = N->getOperand(0);
5740 SDValue N1 = N->getOperand(1);
5741 if (SDValue Result = combineSelectCCAndUse(N, N0, N1, DAG, AllOnes))
5742 return Result;
5743 if (SDValue Result = combineSelectCCAndUse(N, N1, N0, DAG, AllOnes))
5744 return Result;
5745 return SDValue();
5746 }
5747
performANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)5748 static SDValue performANDCombine(SDNode *N,
5749 TargetLowering::DAGCombinerInfo &DCI,
5750 const RISCVSubtarget &Subtarget) {
5751 SelectionDAG &DAG = DCI.DAG;
5752
5753 // fold (and (select_cc lhs, rhs, cc, -1, y), x) ->
5754 // (select lhs, rhs, cc, x, (and x, y))
5755 return combineSelectCCAndUseCommutative(N, DAG, true);
5756 }
5757
performORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)5758 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
5759 const RISCVSubtarget &Subtarget) {
5760 SelectionDAG &DAG = DCI.DAG;
5761 if (Subtarget.hasStdExtZbp()) {
5762 if (auto GREV = combineORToGREV(SDValue(N, 0), DAG, Subtarget))
5763 return GREV;
5764 if (auto GORC = combineORToGORC(SDValue(N, 0), DAG, Subtarget))
5765 return GORC;
5766 if (auto SHFL = combineORToSHFL(SDValue(N, 0), DAG, Subtarget))
5767 return SHFL;
5768 }
5769
5770 // fold (or (select_cc lhs, rhs, cc, 0, y), x) ->
5771 // (select lhs, rhs, cc, x, (or x, y))
5772 return combineSelectCCAndUseCommutative(N, DAG, false);
5773 }
5774
performXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)5775 static SDValue performXORCombine(SDNode *N,
5776 TargetLowering::DAGCombinerInfo &DCI,
5777 const RISCVSubtarget &Subtarget) {
5778 SelectionDAG &DAG = DCI.DAG;
5779
5780 // fold (xor (select_cc lhs, rhs, cc, 0, y), x) ->
5781 // (select lhs, rhs, cc, x, (xor x, y))
5782 return combineSelectCCAndUseCommutative(N, DAG, false);
5783 }
5784
5785 // Attempt to turn ANY_EXTEND into SIGN_EXTEND if the input to the ANY_EXTEND
5786 // has users that require SIGN_EXTEND and the SIGN_EXTEND can be done for free
5787 // by an instruction like ADDW/SUBW/MULW. Without this the ANY_EXTEND would be
5788 // removed during type legalization leaving an ADD/SUB/MUL use that won't use
5789 // ADDW/SUBW/MULW.
performANY_EXTENDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const RISCVSubtarget & Subtarget)5790 static SDValue performANY_EXTENDCombine(SDNode *N,
5791 TargetLowering::DAGCombinerInfo &DCI,
5792 const RISCVSubtarget &Subtarget) {
5793 if (!Subtarget.is64Bit())
5794 return SDValue();
5795
5796 SelectionDAG &DAG = DCI.DAG;
5797
5798 SDValue Src = N->getOperand(0);
5799 EVT VT = N->getValueType(0);
5800 if (VT != MVT::i64 || Src.getValueType() != MVT::i32)
5801 return SDValue();
5802
5803 // The opcode must be one that can implicitly sign_extend.
5804 // FIXME: Additional opcodes.
5805 switch (Src.getOpcode()) {
5806 default:
5807 return SDValue();
5808 case ISD::MUL:
5809 if (!Subtarget.hasStdExtM())
5810 return SDValue();
5811 LLVM_FALLTHROUGH;
5812 case ISD::ADD:
5813 case ISD::SUB:
5814 break;
5815 }
5816
5817 // Only handle cases where the result is used by a CopyToReg that likely
5818 // means the value is a liveout of the basic block. This helps prevent
5819 // infinite combine loops like PR51206.
5820 if (none_of(N->uses(),
5821 [](SDNode *User) { return User->getOpcode() == ISD::CopyToReg; }))
5822 return SDValue();
5823
5824 SmallVector<SDNode *, 4> SetCCs;
5825 for (SDNode::use_iterator UI = Src.getNode()->use_begin(),
5826 UE = Src.getNode()->use_end();
5827 UI != UE; ++UI) {
5828 SDNode *User = *UI;
5829 if (User == N)
5830 continue;
5831 if (UI.getUse().getResNo() != Src.getResNo())
5832 continue;
5833 // All i32 setccs are legalized by sign extending operands.
5834 if (User->getOpcode() == ISD::SETCC) {
5835 SetCCs.push_back(User);
5836 continue;
5837 }
5838 // We don't know if we can extend this user.
5839 break;
5840 }
5841
5842 // If we don't have any SetCCs, this isn't worthwhile.
5843 if (SetCCs.empty())
5844 return SDValue();
5845
5846 SDLoc DL(N);
5847 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Src);
5848 DCI.CombineTo(N, SExt);
5849
5850 // Promote all the setccs.
5851 for (SDNode *SetCC : SetCCs) {
5852 SmallVector<SDValue, 4> Ops;
5853
5854 for (unsigned j = 0; j != 2; ++j) {
5855 SDValue SOp = SetCC->getOperand(j);
5856 if (SOp == Src)
5857 Ops.push_back(SExt);
5858 else
5859 Ops.push_back(DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, SOp));
5860 }
5861
5862 Ops.push_back(SetCC->getOperand(2));
5863 DCI.CombineTo(SetCC,
5864 DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
5865 }
5866 return SDValue(N, 0);
5867 }
5868
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const5869 SDValue RISCVTargetLowering::PerformDAGCombine(SDNode *N,
5870 DAGCombinerInfo &DCI) const {
5871 SelectionDAG &DAG = DCI.DAG;
5872
5873 switch (N->getOpcode()) {
5874 default:
5875 break;
5876 case RISCVISD::SplitF64: {
5877 SDValue Op0 = N->getOperand(0);
5878 // If the input to SplitF64 is just BuildPairF64 then the operation is
5879 // redundant. Instead, use BuildPairF64's operands directly.
5880 if (Op0->getOpcode() == RISCVISD::BuildPairF64)
5881 return DCI.CombineTo(N, Op0.getOperand(0), Op0.getOperand(1));
5882
5883 SDLoc DL(N);
5884
5885 // It's cheaper to materialise two 32-bit integers than to load a double
5886 // from the constant pool and transfer it to integer registers through the
5887 // stack.
5888 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op0)) {
5889 APInt V = C->getValueAPF().bitcastToAPInt();
5890 SDValue Lo = DAG.getConstant(V.trunc(32), DL, MVT::i32);
5891 SDValue Hi = DAG.getConstant(V.lshr(32).trunc(32), DL, MVT::i32);
5892 return DCI.CombineTo(N, Lo, Hi);
5893 }
5894
5895 // This is a target-specific version of a DAGCombine performed in
5896 // DAGCombiner::visitBITCAST. It performs the equivalent of:
5897 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
5898 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
5899 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
5900 !Op0.getNode()->hasOneUse())
5901 break;
5902 SDValue NewSplitF64 =
5903 DAG.getNode(RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32),
5904 Op0.getOperand(0));
5905 SDValue Lo = NewSplitF64.getValue(0);
5906 SDValue Hi = NewSplitF64.getValue(1);
5907 APInt SignBit = APInt::getSignMask(32);
5908 if (Op0.getOpcode() == ISD::FNEG) {
5909 SDValue NewHi = DAG.getNode(ISD::XOR, DL, MVT::i32, Hi,
5910 DAG.getConstant(SignBit, DL, MVT::i32));
5911 return DCI.CombineTo(N, Lo, NewHi);
5912 }
5913 assert(Op0.getOpcode() == ISD::FABS);
5914 SDValue NewHi = DAG.getNode(ISD::AND, DL, MVT::i32, Hi,
5915 DAG.getConstant(~SignBit, DL, MVT::i32));
5916 return DCI.CombineTo(N, Lo, NewHi);
5917 }
5918 case RISCVISD::SLLW:
5919 case RISCVISD::SRAW:
5920 case RISCVISD::SRLW:
5921 case RISCVISD::ROLW:
5922 case RISCVISD::RORW: {
5923 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5924 SDValue LHS = N->getOperand(0);
5925 SDValue RHS = N->getOperand(1);
5926 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
5927 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
5928 if (SimplifyDemandedBits(N->getOperand(0), LHSMask, DCI) ||
5929 SimplifyDemandedBits(N->getOperand(1), RHSMask, DCI)) {
5930 if (N->getOpcode() != ISD::DELETED_NODE)
5931 DCI.AddToWorklist(N);
5932 return SDValue(N, 0);
5933 }
5934 break;
5935 }
5936 case RISCVISD::CLZW:
5937 case RISCVISD::CTZW: {
5938 // Only the lower 32 bits of the first operand are read
5939 SDValue Op0 = N->getOperand(0);
5940 APInt Mask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5941 if (SimplifyDemandedBits(Op0, Mask, DCI)) {
5942 if (N->getOpcode() != ISD::DELETED_NODE)
5943 DCI.AddToWorklist(N);
5944 return SDValue(N, 0);
5945 }
5946 break;
5947 }
5948 case RISCVISD::FSL:
5949 case RISCVISD::FSR: {
5950 // Only the lower log2(Bitwidth)+1 bits of the the shift amount are read.
5951 SDValue ShAmt = N->getOperand(2);
5952 unsigned BitWidth = ShAmt.getValueSizeInBits();
5953 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5954 APInt ShAmtMask(BitWidth, (BitWidth * 2) - 1);
5955 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5956 if (N->getOpcode() != ISD::DELETED_NODE)
5957 DCI.AddToWorklist(N);
5958 return SDValue(N, 0);
5959 }
5960 break;
5961 }
5962 case RISCVISD::FSLW:
5963 case RISCVISD::FSRW: {
5964 // Only the lower 32 bits of Values and lower 6 bits of shift amount are
5965 // read.
5966 SDValue Op0 = N->getOperand(0);
5967 SDValue Op1 = N->getOperand(1);
5968 SDValue ShAmt = N->getOperand(2);
5969 APInt OpMask = APInt::getLowBitsSet(Op0.getValueSizeInBits(), 32);
5970 APInt ShAmtMask = APInt::getLowBitsSet(ShAmt.getValueSizeInBits(), 6);
5971 if (SimplifyDemandedBits(Op0, OpMask, DCI) ||
5972 SimplifyDemandedBits(Op1, OpMask, DCI) ||
5973 SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5974 if (N->getOpcode() != ISD::DELETED_NODE)
5975 DCI.AddToWorklist(N);
5976 return SDValue(N, 0);
5977 }
5978 break;
5979 }
5980 case RISCVISD::GREV:
5981 case RISCVISD::GORC: {
5982 // Only the lower log2(Bitwidth) bits of the the shift amount are read.
5983 SDValue ShAmt = N->getOperand(1);
5984 unsigned BitWidth = ShAmt.getValueSizeInBits();
5985 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
5986 APInt ShAmtMask(BitWidth, BitWidth - 1);
5987 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
5988 if (N->getOpcode() != ISD::DELETED_NODE)
5989 DCI.AddToWorklist(N);
5990 return SDValue(N, 0);
5991 }
5992
5993 return combineGREVI_GORCI(N, DCI.DAG);
5994 }
5995 case RISCVISD::GREVW:
5996 case RISCVISD::GORCW: {
5997 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
5998 SDValue LHS = N->getOperand(0);
5999 SDValue RHS = N->getOperand(1);
6000 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6001 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 5);
6002 if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
6003 SimplifyDemandedBits(RHS, RHSMask, DCI)) {
6004 if (N->getOpcode() != ISD::DELETED_NODE)
6005 DCI.AddToWorklist(N);
6006 return SDValue(N, 0);
6007 }
6008
6009 return combineGREVI_GORCI(N, DCI.DAG);
6010 }
6011 case RISCVISD::SHFL:
6012 case RISCVISD::UNSHFL: {
6013 // Only the lower log2(Bitwidth) bits of the the shift amount are read.
6014 SDValue ShAmt = N->getOperand(1);
6015 unsigned BitWidth = ShAmt.getValueSizeInBits();
6016 assert(isPowerOf2_32(BitWidth) && "Unexpected bit width");
6017 APInt ShAmtMask(BitWidth, (BitWidth / 2) - 1);
6018 if (SimplifyDemandedBits(ShAmt, ShAmtMask, DCI)) {
6019 if (N->getOpcode() != ISD::DELETED_NODE)
6020 DCI.AddToWorklist(N);
6021 return SDValue(N, 0);
6022 }
6023
6024 break;
6025 }
6026 case RISCVISD::SHFLW:
6027 case RISCVISD::UNSHFLW: {
6028 // Only the lower 32 bits of LHS and lower 5 bits of RHS are read.
6029 SDValue LHS = N->getOperand(0);
6030 SDValue RHS = N->getOperand(1);
6031 APInt LHSMask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6032 APInt RHSMask = APInt::getLowBitsSet(RHS.getValueSizeInBits(), 4);
6033 if (SimplifyDemandedBits(LHS, LHSMask, DCI) ||
6034 SimplifyDemandedBits(RHS, RHSMask, DCI)) {
6035 if (N->getOpcode() != ISD::DELETED_NODE)
6036 DCI.AddToWorklist(N);
6037 return SDValue(N, 0);
6038 }
6039
6040 break;
6041 }
6042 case RISCVISD::BCOMPRESSW:
6043 case RISCVISD::BDECOMPRESSW: {
6044 // Only the lower 32 bits of LHS and RHS are read.
6045 SDValue LHS = N->getOperand(0);
6046 SDValue RHS = N->getOperand(1);
6047 APInt Mask = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 32);
6048 if (SimplifyDemandedBits(LHS, Mask, DCI) ||
6049 SimplifyDemandedBits(RHS, Mask, DCI)) {
6050 if (N->getOpcode() != ISD::DELETED_NODE)
6051 DCI.AddToWorklist(N);
6052 return SDValue(N, 0);
6053 }
6054
6055 break;
6056 }
6057 case RISCVISD::FMV_X_ANYEXTW_RV64: {
6058 SDLoc DL(N);
6059 SDValue Op0 = N->getOperand(0);
6060 // If the input to FMV_X_ANYEXTW_RV64 is just FMV_W_X_RV64 then the
6061 // conversion is unnecessary and can be replaced with an ANY_EXTEND
6062 // of the FMV_W_X_RV64 operand.
6063 if (Op0->getOpcode() == RISCVISD::FMV_W_X_RV64) {
6064 assert(Op0.getOperand(0).getValueType() == MVT::i64 &&
6065 "Unexpected value type!");
6066 return Op0.getOperand(0);
6067 }
6068
6069 // This is a target-specific version of a DAGCombine performed in
6070 // DAGCombiner::visitBITCAST. It performs the equivalent of:
6071 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
6072 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
6073 if (!(Op0.getOpcode() == ISD::FNEG || Op0.getOpcode() == ISD::FABS) ||
6074 !Op0.getNode()->hasOneUse())
6075 break;
6076 SDValue NewFMV = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64,
6077 Op0.getOperand(0));
6078 APInt SignBit = APInt::getSignMask(32).sext(64);
6079 if (Op0.getOpcode() == ISD::FNEG)
6080 return DAG.getNode(ISD::XOR, DL, MVT::i64, NewFMV,
6081 DAG.getConstant(SignBit, DL, MVT::i64));
6082
6083 assert(Op0.getOpcode() == ISD::FABS);
6084 return DAG.getNode(ISD::AND, DL, MVT::i64, NewFMV,
6085 DAG.getConstant(~SignBit, DL, MVT::i64));
6086 }
6087 case ISD::AND:
6088 return performANDCombine(N, DCI, Subtarget);
6089 case ISD::OR:
6090 return performORCombine(N, DCI, Subtarget);
6091 case ISD::XOR:
6092 return performXORCombine(N, DCI, Subtarget);
6093 case ISD::ANY_EXTEND:
6094 return performANY_EXTENDCombine(N, DCI, Subtarget);
6095 case ISD::ZERO_EXTEND:
6096 // Fold (zero_extend (fp_to_uint X)) to prevent forming fcvt+zexti32 during
6097 // type legalization. This is safe because fp_to_uint produces poison if
6098 // it overflows.
6099 if (N->getValueType(0) == MVT::i64 && Subtarget.is64Bit() &&
6100 N->getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
6101 isTypeLegal(N->getOperand(0).getOperand(0).getValueType()))
6102 return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), MVT::i64,
6103 N->getOperand(0).getOperand(0));
6104 return SDValue();
6105 case RISCVISD::SELECT_CC: {
6106 // Transform
6107 SDValue LHS = N->getOperand(0);
6108 SDValue RHS = N->getOperand(1);
6109 auto CCVal = static_cast<ISD::CondCode>(N->getConstantOperandVal(2));
6110 if (!ISD::isIntEqualitySetCC(CCVal))
6111 break;
6112
6113 // Fold (select_cc (setlt X, Y), 0, ne, trueV, falseV) ->
6114 // (select_cc X, Y, lt, trueV, falseV)
6115 // Sometimes the setcc is introduced after select_cc has been formed.
6116 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6117 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6118 // If we're looking for eq 0 instead of ne 0, we need to invert the
6119 // condition.
6120 bool Invert = CCVal == ISD::SETEQ;
6121 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6122 if (Invert)
6123 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6124
6125 SDLoc DL(N);
6126 RHS = LHS.getOperand(1);
6127 LHS = LHS.getOperand(0);
6128 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6129
6130 SDValue TargetCC =
6131 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
6132 return DAG.getNode(
6133 RISCVISD::SELECT_CC, DL, N->getValueType(0),
6134 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
6135 }
6136
6137 // Fold (select_cc (xor X, Y), 0, eq/ne, trueV, falseV) ->
6138 // (select_cc X, Y, eq/ne, trueV, falseV)
6139 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6140 return DAG.getNode(RISCVISD::SELECT_CC, SDLoc(N), N->getValueType(0),
6141 {LHS.getOperand(0), LHS.getOperand(1),
6142 N->getOperand(2), N->getOperand(3),
6143 N->getOperand(4)});
6144 // (select_cc X, 1, setne, trueV, falseV) ->
6145 // (select_cc X, 0, seteq, trueV, falseV) if we can prove X is 0/1.
6146 // This can occur when legalizing some floating point comparisons.
6147 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6148 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6149 SDLoc DL(N);
6150 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6151 SDValue TargetCC =
6152 DAG.getTargetConstant(CCVal, DL, Subtarget.getXLenVT());
6153 RHS = DAG.getConstant(0, DL, LHS.getValueType());
6154 return DAG.getNode(
6155 RISCVISD::SELECT_CC, DL, N->getValueType(0),
6156 {LHS, RHS, TargetCC, N->getOperand(3), N->getOperand(4)});
6157 }
6158
6159 break;
6160 }
6161 case RISCVISD::BR_CC: {
6162 SDValue LHS = N->getOperand(1);
6163 SDValue RHS = N->getOperand(2);
6164 ISD::CondCode CCVal = cast<CondCodeSDNode>(N->getOperand(3))->get();
6165 if (!ISD::isIntEqualitySetCC(CCVal))
6166 break;
6167
6168 // Fold (br_cc (setlt X, Y), 0, ne, dest) ->
6169 // (br_cc X, Y, lt, dest)
6170 // Sometimes the setcc is introduced after br_cc has been formed.
6171 if (LHS.getOpcode() == ISD::SETCC && isNullConstant(RHS) &&
6172 LHS.getOperand(0).getValueType() == Subtarget.getXLenVT()) {
6173 // If we're looking for eq 0 instead of ne 0, we need to invert the
6174 // condition.
6175 bool Invert = CCVal == ISD::SETEQ;
6176 CCVal = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6177 if (Invert)
6178 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6179
6180 SDLoc DL(N);
6181 RHS = LHS.getOperand(1);
6182 LHS = LHS.getOperand(0);
6183 translateSetCCForBranch(DL, LHS, RHS, CCVal, DAG);
6184
6185 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6186 N->getOperand(0), LHS, RHS, DAG.getCondCode(CCVal),
6187 N->getOperand(4));
6188 }
6189
6190 // Fold (br_cc (xor X, Y), 0, eq/ne, dest) ->
6191 // (br_cc X, Y, eq/ne, trueV, falseV)
6192 if (LHS.getOpcode() == ISD::XOR && isNullConstant(RHS))
6193 return DAG.getNode(RISCVISD::BR_CC, SDLoc(N), N->getValueType(0),
6194 N->getOperand(0), LHS.getOperand(0), LHS.getOperand(1),
6195 N->getOperand(3), N->getOperand(4));
6196
6197 // (br_cc X, 1, setne, br_cc) ->
6198 // (br_cc X, 0, seteq, br_cc) if we can prove X is 0/1.
6199 // This can occur when legalizing some floating point comparisons.
6200 APInt Mask = APInt::getBitsSetFrom(LHS.getValueSizeInBits(), 1);
6201 if (isOneConstant(RHS) && DAG.MaskedValueIsZero(LHS, Mask)) {
6202 SDLoc DL(N);
6203 CCVal = ISD::getSetCCInverse(CCVal, LHS.getValueType());
6204 SDValue TargetCC = DAG.getCondCode(CCVal);
6205 RHS = DAG.getConstant(0, DL, LHS.getValueType());
6206 return DAG.getNode(RISCVISD::BR_CC, DL, N->getValueType(0),
6207 N->getOperand(0), LHS, RHS, TargetCC,
6208 N->getOperand(4));
6209 }
6210 break;
6211 }
6212 case ISD::FCOPYSIGN: {
6213 EVT VT = N->getValueType(0);
6214 if (!VT.isVector())
6215 break;
6216 // There is a form of VFSGNJ which injects the negated sign of its second
6217 // operand. Try and bubble any FNEG up after the extend/round to produce
6218 // this optimized pattern. Avoid modifying cases where FP_ROUND and
6219 // TRUNC=1.
6220 SDValue In2 = N->getOperand(1);
6221 // Avoid cases where the extend/round has multiple uses, as duplicating
6222 // those is typically more expensive than removing a fneg.
6223 if (!In2.hasOneUse())
6224 break;
6225 if (In2.getOpcode() != ISD::FP_EXTEND &&
6226 (In2.getOpcode() != ISD::FP_ROUND || In2.getConstantOperandVal(1) != 0))
6227 break;
6228 In2 = In2.getOperand(0);
6229 if (In2.getOpcode() != ISD::FNEG)
6230 break;
6231 SDLoc DL(N);
6232 SDValue NewFPExtRound = DAG.getFPExtendOrRound(In2.getOperand(0), DL, VT);
6233 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N->getOperand(0),
6234 DAG.getNode(ISD::FNEG, DL, VT, NewFPExtRound));
6235 }
6236 case ISD::MGATHER:
6237 case ISD::MSCATTER: {
6238 if (!DCI.isBeforeLegalize())
6239 break;
6240 MaskedGatherScatterSDNode *MGSN = cast<MaskedGatherScatterSDNode>(N);
6241 SDValue Index = MGSN->getIndex();
6242 EVT IndexVT = Index.getValueType();
6243 MVT XLenVT = Subtarget.getXLenVT();
6244 // RISCV indexed loads only support the "unsigned unscaled" addressing
6245 // mode, so anything else must be manually legalized.
6246 bool NeedsIdxLegalization = MGSN->isIndexScaled() ||
6247 (MGSN->isIndexSigned() &&
6248 IndexVT.getVectorElementType().bitsLT(XLenVT));
6249 if (!NeedsIdxLegalization)
6250 break;
6251
6252 SDLoc DL(N);
6253
6254 // Any index legalization should first promote to XLenVT, so we don't lose
6255 // bits when scaling. This may create an illegal index type so we let
6256 // LLVM's legalization take care of the splitting.
6257 if (IndexVT.getVectorElementType().bitsLT(XLenVT)) {
6258 IndexVT = IndexVT.changeVectorElementType(XLenVT);
6259 Index = DAG.getNode(MGSN->isIndexSigned() ? ISD::SIGN_EXTEND
6260 : ISD::ZERO_EXTEND,
6261 DL, IndexVT, Index);
6262 }
6263
6264 unsigned Scale = N->getConstantOperandVal(5);
6265 if (MGSN->isIndexScaled() && Scale != 1) {
6266 // Manually scale the indices by the element size.
6267 // TODO: Sanitize the scale operand here?
6268 assert(isPowerOf2_32(Scale) && "Expecting power-of-two types");
6269 SDValue SplatScale = DAG.getConstant(Log2_32(Scale), DL, IndexVT);
6270 Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, SplatScale);
6271 }
6272
6273 ISD::MemIndexType NewIndexTy = ISD::UNSIGNED_UNSCALED;
6274 if (const auto *MGN = dyn_cast<MaskedGatherSDNode>(N)) {
6275 return DAG.getMaskedGather(
6276 N->getVTList(), MGSN->getMemoryVT(), DL,
6277 {MGSN->getChain(), MGN->getPassThru(), MGSN->getMask(),
6278 MGSN->getBasePtr(), Index, MGN->getScale()},
6279 MGN->getMemOperand(), NewIndexTy, MGN->getExtensionType());
6280 }
6281 const auto *MSN = cast<MaskedScatterSDNode>(N);
6282 return DAG.getMaskedScatter(
6283 N->getVTList(), MGSN->getMemoryVT(), DL,
6284 {MGSN->getChain(), MSN->getValue(), MGSN->getMask(), MGSN->getBasePtr(),
6285 Index, MGSN->getScale()},
6286 MGSN->getMemOperand(), NewIndexTy, MSN->isTruncatingStore());
6287 }
6288 case RISCVISD::SRA_VL:
6289 case RISCVISD::SRL_VL:
6290 case RISCVISD::SHL_VL: {
6291 SDValue ShAmt = N->getOperand(1);
6292 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
6293 // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6294 SDLoc DL(N);
6295 SDValue VL = N->getOperand(3);
6296 EVT VT = N->getValueType(0);
6297 ShAmt =
6298 DAG.getNode(RISCVISD::VMV_V_X_VL, DL, VT, ShAmt.getOperand(0), VL);
6299 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt,
6300 N->getOperand(2), N->getOperand(3));
6301 }
6302 break;
6303 }
6304 case ISD::SRA:
6305 case ISD::SRL:
6306 case ISD::SHL: {
6307 SDValue ShAmt = N->getOperand(1);
6308 if (ShAmt.getOpcode() == RISCVISD::SPLAT_VECTOR_SPLIT_I64_VL) {
6309 // We don't need the upper 32 bits of a 64-bit element for a shift amount.
6310 SDLoc DL(N);
6311 EVT VT = N->getValueType(0);
6312 ShAmt =
6313 DAG.getNode(RISCVISD::SPLAT_VECTOR_I64, DL, VT, ShAmt.getOperand(0));
6314 return DAG.getNode(N->getOpcode(), DL, VT, N->getOperand(0), ShAmt);
6315 }
6316 break;
6317 }
6318 case RISCVISD::MUL_VL: {
6319 // Try to form VWMUL or VWMULU.
6320 // FIXME: Look for splat of extended scalar as well.
6321 // FIXME: Support VWMULSU.
6322 SDValue Op0 = N->getOperand(0);
6323 SDValue Op1 = N->getOperand(1);
6324 bool IsSignExt = Op0.getOpcode() == RISCVISD::VSEXT_VL;
6325 bool IsZeroExt = Op0.getOpcode() == RISCVISD::VZEXT_VL;
6326 if ((!IsSignExt && !IsZeroExt) || Op0.getOpcode() != Op1.getOpcode())
6327 return SDValue();
6328
6329 // Make sure the extends have a single use.
6330 if (!Op0.hasOneUse() || !Op1.hasOneUse())
6331 return SDValue();
6332
6333 SDValue Mask = N->getOperand(2);
6334 SDValue VL = N->getOperand(3);
6335 if (Op0.getOperand(1) != Mask || Op1.getOperand(1) != Mask ||
6336 Op0.getOperand(2) != VL || Op1.getOperand(2) != VL)
6337 return SDValue();
6338
6339 Op0 = Op0.getOperand(0);
6340 Op1 = Op1.getOperand(0);
6341
6342 MVT VT = N->getSimpleValueType(0);
6343 MVT NarrowVT =
6344 MVT::getVectorVT(MVT::getIntegerVT(VT.getScalarSizeInBits() / 2),
6345 VT.getVectorElementCount());
6346
6347 SDLoc DL(N);
6348
6349 // Re-introduce narrower extends if needed.
6350 unsigned ExtOpc = IsSignExt ? RISCVISD::VSEXT_VL : RISCVISD::VZEXT_VL;
6351 if (Op0.getValueType() != NarrowVT)
6352 Op0 = DAG.getNode(ExtOpc, DL, NarrowVT, Op0, Mask, VL);
6353 if (Op1.getValueType() != NarrowVT)
6354 Op1 = DAG.getNode(ExtOpc, DL, NarrowVT, Op1, Mask, VL);
6355
6356 unsigned WMulOpc = IsSignExt ? RISCVISD::VWMUL_VL : RISCVISD::VWMULU_VL;
6357 return DAG.getNode(WMulOpc, DL, VT, Op0, Op1, Mask, VL);
6358 }
6359 }
6360
6361 return SDValue();
6362 }
6363
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const6364 bool RISCVTargetLowering::isDesirableToCommuteWithShift(
6365 const SDNode *N, CombineLevel Level) const {
6366 // The following folds are only desirable if `(OP _, c1 << c2)` can be
6367 // materialised in fewer instructions than `(OP _, c1)`:
6368 //
6369 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
6370 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
6371 SDValue N0 = N->getOperand(0);
6372 EVT Ty = N0.getValueType();
6373 if (Ty.isScalarInteger() &&
6374 (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR)) {
6375 auto *C1 = dyn_cast<ConstantSDNode>(N0->getOperand(1));
6376 auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
6377 if (C1 && C2) {
6378 const APInt &C1Int = C1->getAPIntValue();
6379 APInt ShiftedC1Int = C1Int << C2->getAPIntValue();
6380
6381 // We can materialise `c1 << c2` into an add immediate, so it's "free",
6382 // and the combine should happen, to potentially allow further combines
6383 // later.
6384 if (ShiftedC1Int.getMinSignedBits() <= 64 &&
6385 isLegalAddImmediate(ShiftedC1Int.getSExtValue()))
6386 return true;
6387
6388 // We can materialise `c1` in an add immediate, so it's "free", and the
6389 // combine should be prevented.
6390 if (C1Int.getMinSignedBits() <= 64 &&
6391 isLegalAddImmediate(C1Int.getSExtValue()))
6392 return false;
6393
6394 // Neither constant will fit into an immediate, so find materialisation
6395 // costs.
6396 int C1Cost = RISCVMatInt::getIntMatCost(C1Int, Ty.getSizeInBits(),
6397 Subtarget.getFeatureBits(),
6398 /*CompressionCost*/true);
6399 int ShiftedC1Cost = RISCVMatInt::getIntMatCost(
6400 ShiftedC1Int, Ty.getSizeInBits(), Subtarget.getFeatureBits(),
6401 /*CompressionCost*/true);
6402
6403 // Materialising `c1` is cheaper than materialising `c1 << c2`, so the
6404 // combine should be prevented.
6405 if (C1Cost < ShiftedC1Cost)
6406 return false;
6407 }
6408 }
6409 return true;
6410 }
6411
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedBits,const APInt & DemandedElts,TargetLoweringOpt & TLO) const6412 bool RISCVTargetLowering::targetShrinkDemandedConstant(
6413 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
6414 TargetLoweringOpt &TLO) const {
6415 // Delay this optimization as late as possible.
6416 if (!TLO.LegalOps)
6417 return false;
6418
6419 EVT VT = Op.getValueType();
6420 if (VT.isVector())
6421 return false;
6422
6423 // Only handle AND for now.
6424 if (Op.getOpcode() != ISD::AND)
6425 return false;
6426
6427 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6428 if (!C)
6429 return false;
6430
6431 const APInt &Mask = C->getAPIntValue();
6432
6433 // Clear all non-demanded bits initially.
6434 APInt ShrunkMask = Mask & DemandedBits;
6435
6436 // Try to make a smaller immediate by setting undemanded bits.
6437
6438 APInt ExpandedMask = Mask | ~DemandedBits;
6439
6440 auto IsLegalMask = [ShrunkMask, ExpandedMask](const APInt &Mask) -> bool {
6441 return ShrunkMask.isSubsetOf(Mask) && Mask.isSubsetOf(ExpandedMask);
6442 };
6443 auto UseMask = [Mask, Op, VT, &TLO](const APInt &NewMask) -> bool {
6444 if (NewMask == Mask)
6445 return true;
6446 SDLoc DL(Op);
6447 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
6448 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
6449 return TLO.CombineTo(Op, NewOp);
6450 };
6451
6452 // If the shrunk mask fits in sign extended 12 bits, let the target
6453 // independent code apply it.
6454 if (ShrunkMask.isSignedIntN(12))
6455 return false;
6456
6457 // Preserve (and X, 0xffff) when zext.h is supported.
6458 if (Subtarget.hasStdExtZbb() || Subtarget.hasStdExtZbp()) {
6459 APInt NewMask = APInt(Mask.getBitWidth(), 0xffff);
6460 if (IsLegalMask(NewMask))
6461 return UseMask(NewMask);
6462 }
6463
6464 // Try to preserve (and X, 0xffffffff), the (zext_inreg X, i32) pattern.
6465 if (VT == MVT::i64) {
6466 APInt NewMask = APInt(64, 0xffffffff);
6467 if (IsLegalMask(NewMask))
6468 return UseMask(NewMask);
6469 }
6470
6471 // For the remaining optimizations, we need to be able to make a negative
6472 // number through a combination of mask and undemanded bits.
6473 if (!ExpandedMask.isNegative())
6474 return false;
6475
6476 // What is the fewest number of bits we need to represent the negative number.
6477 unsigned MinSignedBits = ExpandedMask.getMinSignedBits();
6478
6479 // Try to make a 12 bit negative immediate. If that fails try to make a 32
6480 // bit negative immediate unless the shrunk immediate already fits in 32 bits.
6481 APInt NewMask = ShrunkMask;
6482 if (MinSignedBits <= 12)
6483 NewMask.setBitsFrom(11);
6484 else if (MinSignedBits <= 32 && !ShrunkMask.isSignedIntN(32))
6485 NewMask.setBitsFrom(31);
6486 else
6487 return false;
6488
6489 // Sanity check that our new mask is a subset of the demanded mask.
6490 assert(IsLegalMask(NewMask));
6491 return UseMask(NewMask);
6492 }
6493
computeGREV(APInt & Src,unsigned ShAmt)6494 static void computeGREV(APInt &Src, unsigned ShAmt) {
6495 ShAmt &= Src.getBitWidth() - 1;
6496 uint64_t x = Src.getZExtValue();
6497 if (ShAmt & 1)
6498 x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1);
6499 if (ShAmt & 2)
6500 x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
6501 if (ShAmt & 4)
6502 x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4);
6503 if (ShAmt & 8)
6504 x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8);
6505 if (ShAmt & 16)
6506 x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16);
6507 if (ShAmt & 32)
6508 x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32);
6509 Src = x;
6510 }
6511
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6512 void RISCVTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6513 KnownBits &Known,
6514 const APInt &DemandedElts,
6515 const SelectionDAG &DAG,
6516 unsigned Depth) const {
6517 unsigned BitWidth = Known.getBitWidth();
6518 unsigned Opc = Op.getOpcode();
6519 assert((Opc >= ISD::BUILTIN_OP_END ||
6520 Opc == ISD::INTRINSIC_WO_CHAIN ||
6521 Opc == ISD::INTRINSIC_W_CHAIN ||
6522 Opc == ISD::INTRINSIC_VOID) &&
6523 "Should use MaskedValueIsZero if you don't know whether Op"
6524 " is a target node!");
6525
6526 Known.resetAll();
6527 switch (Opc) {
6528 default: break;
6529 case RISCVISD::SELECT_CC: {
6530 Known = DAG.computeKnownBits(Op.getOperand(4), Depth + 1);
6531 // If we don't know any bits, early out.
6532 if (Known.isUnknown())
6533 break;
6534 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(3), Depth + 1);
6535
6536 // Only known if known in both the LHS and RHS.
6537 Known = KnownBits::commonBits(Known, Known2);
6538 break;
6539 }
6540 case RISCVISD::REMUW: {
6541 KnownBits Known2;
6542 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6543 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6544 // We only care about the lower 32 bits.
6545 Known = KnownBits::urem(Known.trunc(32), Known2.trunc(32));
6546 // Restore the original width by sign extending.
6547 Known = Known.sext(BitWidth);
6548 break;
6549 }
6550 case RISCVISD::DIVUW: {
6551 KnownBits Known2;
6552 Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
6553 Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
6554 // We only care about the lower 32 bits.
6555 Known = KnownBits::udiv(Known.trunc(32), Known2.trunc(32));
6556 // Restore the original width by sign extending.
6557 Known = Known.sext(BitWidth);
6558 break;
6559 }
6560 case RISCVISD::CTZW: {
6561 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6562 unsigned PossibleTZ = Known2.trunc(32).countMaxTrailingZeros();
6563 unsigned LowBits = Log2_32(PossibleTZ) + 1;
6564 Known.Zero.setBitsFrom(LowBits);
6565 break;
6566 }
6567 case RISCVISD::CLZW: {
6568 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6569 unsigned PossibleLZ = Known2.trunc(32).countMaxLeadingZeros();
6570 unsigned LowBits = Log2_32(PossibleLZ) + 1;
6571 Known.Zero.setBitsFrom(LowBits);
6572 break;
6573 }
6574 case RISCVISD::GREV:
6575 case RISCVISD::GREVW: {
6576 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6577 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
6578 if (Opc == RISCVISD::GREVW)
6579 Known = Known.trunc(32);
6580 unsigned ShAmt = C->getZExtValue();
6581 computeGREV(Known.Zero, ShAmt);
6582 computeGREV(Known.One, ShAmt);
6583 if (Opc == RISCVISD::GREVW)
6584 Known = Known.sext(BitWidth);
6585 }
6586 break;
6587 }
6588 case RISCVISD::READ_VLENB:
6589 // We assume VLENB is at least 16 bytes.
6590 Known.Zero.setLowBits(4);
6591 // We assume VLENB is no more than 65536 / 8 bytes.
6592 Known.Zero.setBitsFrom(14);
6593 break;
6594 case ISD::INTRINSIC_W_CHAIN: {
6595 unsigned IntNo = Op.getConstantOperandVal(1);
6596 switch (IntNo) {
6597 default:
6598 // We can't do anything for most intrinsics.
6599 break;
6600 case Intrinsic::riscv_vsetvli:
6601 case Intrinsic::riscv_vsetvlimax:
6602 // Assume that VL output is positive and would fit in an int32_t.
6603 // TODO: VLEN might be capped at 16 bits in a future V spec update.
6604 if (BitWidth >= 32)
6605 Known.Zero.setBitsFrom(31);
6606 break;
6607 }
6608 break;
6609 }
6610 }
6611 }
6612
ComputeNumSignBitsForTargetNode(SDValue Op,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const6613 unsigned RISCVTargetLowering::ComputeNumSignBitsForTargetNode(
6614 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6615 unsigned Depth) const {
6616 switch (Op.getOpcode()) {
6617 default:
6618 break;
6619 case RISCVISD::SLLW:
6620 case RISCVISD::SRAW:
6621 case RISCVISD::SRLW:
6622 case RISCVISD::DIVW:
6623 case RISCVISD::DIVUW:
6624 case RISCVISD::REMUW:
6625 case RISCVISD::ROLW:
6626 case RISCVISD::RORW:
6627 case RISCVISD::GREVW:
6628 case RISCVISD::GORCW:
6629 case RISCVISD::FSLW:
6630 case RISCVISD::FSRW:
6631 case RISCVISD::SHFLW:
6632 case RISCVISD::UNSHFLW:
6633 case RISCVISD::BCOMPRESSW:
6634 case RISCVISD::BDECOMPRESSW:
6635 case RISCVISD::FCVT_W_RV64:
6636 case RISCVISD::FCVT_WU_RV64:
6637 // TODO: As the result is sign-extended, this is conservatively correct. A
6638 // more precise answer could be calculated for SRAW depending on known
6639 // bits in the shift amount.
6640 return 33;
6641 case RISCVISD::SHFL:
6642 case RISCVISD::UNSHFL: {
6643 // There is no SHFLIW, but a i64 SHFLI with bit 4 of the control word
6644 // cleared doesn't affect bit 31. The upper 32 bits will be shuffled, but
6645 // will stay within the upper 32 bits. If there were more than 32 sign bits
6646 // before there will be at least 33 sign bits after.
6647 if (Op.getValueType() == MVT::i64 &&
6648 isa<ConstantSDNode>(Op.getOperand(1)) &&
6649 (Op.getConstantOperandVal(1) & 0x10) == 0) {
6650 unsigned Tmp = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
6651 if (Tmp > 32)
6652 return 33;
6653 }
6654 break;
6655 }
6656 case RISCVISD::VMV_X_S:
6657 // The number of sign bits of the scalar result is computed by obtaining the
6658 // element type of the input vector operand, subtracting its width from the
6659 // XLEN, and then adding one (sign bit within the element type). If the
6660 // element type is wider than XLen, the least-significant XLEN bits are
6661 // taken.
6662 if (Op.getOperand(0).getScalarValueSizeInBits() > Subtarget.getXLen())
6663 return 1;
6664 return Subtarget.getXLen() - Op.getOperand(0).getScalarValueSizeInBits() + 1;
6665 }
6666
6667 return 1;
6668 }
6669
emitReadCycleWidePseudo(MachineInstr & MI,MachineBasicBlock * BB)6670 static MachineBasicBlock *emitReadCycleWidePseudo(MachineInstr &MI,
6671 MachineBasicBlock *BB) {
6672 assert(MI.getOpcode() == RISCV::ReadCycleWide && "Unexpected instruction");
6673
6674 // To read the 64-bit cycle CSR on a 32-bit target, we read the two halves.
6675 // Should the count have wrapped while it was being read, we need to try
6676 // again.
6677 // ...
6678 // read:
6679 // rdcycleh x3 # load high word of cycle
6680 // rdcycle x2 # load low word of cycle
6681 // rdcycleh x4 # load high word of cycle
6682 // bne x3, x4, read # check if high word reads match, otherwise try again
6683 // ...
6684
6685 MachineFunction &MF = *BB->getParent();
6686 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6687 MachineFunction::iterator It = ++BB->getIterator();
6688
6689 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6690 MF.insert(It, LoopMBB);
6691
6692 MachineBasicBlock *DoneMBB = MF.CreateMachineBasicBlock(LLVM_BB);
6693 MF.insert(It, DoneMBB);
6694
6695 // Transfer the remainder of BB and its successor edges to DoneMBB.
6696 DoneMBB->splice(DoneMBB->begin(), BB,
6697 std::next(MachineBasicBlock::iterator(MI)), BB->end());
6698 DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
6699
6700 BB->addSuccessor(LoopMBB);
6701
6702 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6703 Register ReadAgainReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
6704 Register LoReg = MI.getOperand(0).getReg();
6705 Register HiReg = MI.getOperand(1).getReg();
6706 DebugLoc DL = MI.getDebugLoc();
6707
6708 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
6709 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), HiReg)
6710 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6711 .addReg(RISCV::X0);
6712 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), LoReg)
6713 .addImm(RISCVSysReg::lookupSysRegByName("CYCLE")->Encoding)
6714 .addReg(RISCV::X0);
6715 BuildMI(LoopMBB, DL, TII->get(RISCV::CSRRS), ReadAgainReg)
6716 .addImm(RISCVSysReg::lookupSysRegByName("CYCLEH")->Encoding)
6717 .addReg(RISCV::X0);
6718
6719 BuildMI(LoopMBB, DL, TII->get(RISCV::BNE))
6720 .addReg(HiReg)
6721 .addReg(ReadAgainReg)
6722 .addMBB(LoopMBB);
6723
6724 LoopMBB->addSuccessor(LoopMBB);
6725 LoopMBB->addSuccessor(DoneMBB);
6726
6727 MI.eraseFromParent();
6728
6729 return DoneMBB;
6730 }
6731
emitSplitF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)6732 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
6733 MachineBasicBlock *BB) {
6734 assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
6735
6736 MachineFunction &MF = *BB->getParent();
6737 DebugLoc DL = MI.getDebugLoc();
6738 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6739 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6740 Register LoReg = MI.getOperand(0).getReg();
6741 Register HiReg = MI.getOperand(1).getReg();
6742 Register SrcReg = MI.getOperand(2).getReg();
6743 const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
6744 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6745
6746 TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
6747 RI);
6748 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6749 MachineMemOperand *MMOLo =
6750 MF.getMachineMemOperand(MPI, MachineMemOperand::MOLoad, 4, Align(8));
6751 MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6752 MPI.getWithOffset(4), MachineMemOperand::MOLoad, 4, Align(8));
6753 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
6754 .addFrameIndex(FI)
6755 .addImm(0)
6756 .addMemOperand(MMOLo);
6757 BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
6758 .addFrameIndex(FI)
6759 .addImm(4)
6760 .addMemOperand(MMOHi);
6761 MI.eraseFromParent(); // The pseudo instruction is gone now.
6762 return BB;
6763 }
6764
emitBuildPairF64Pseudo(MachineInstr & MI,MachineBasicBlock * BB)6765 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
6766 MachineBasicBlock *BB) {
6767 assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
6768 "Unexpected instruction");
6769
6770 MachineFunction &MF = *BB->getParent();
6771 DebugLoc DL = MI.getDebugLoc();
6772 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
6773 const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
6774 Register DstReg = MI.getOperand(0).getReg();
6775 Register LoReg = MI.getOperand(1).getReg();
6776 Register HiReg = MI.getOperand(2).getReg();
6777 const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
6778 int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex(MF);
6779
6780 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI);
6781 MachineMemOperand *MMOLo =
6782 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Align(8));
6783 MachineMemOperand *MMOHi = MF.getMachineMemOperand(
6784 MPI.getWithOffset(4), MachineMemOperand::MOStore, 4, Align(8));
6785 BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6786 .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
6787 .addFrameIndex(FI)
6788 .addImm(0)
6789 .addMemOperand(MMOLo);
6790 BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
6791 .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
6792 .addFrameIndex(FI)
6793 .addImm(4)
6794 .addMemOperand(MMOHi);
6795 TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
6796 MI.eraseFromParent(); // The pseudo instruction is gone now.
6797 return BB;
6798 }
6799
isSelectPseudo(MachineInstr & MI)6800 static bool isSelectPseudo(MachineInstr &MI) {
6801 switch (MI.getOpcode()) {
6802 default:
6803 return false;
6804 case RISCV::Select_GPR_Using_CC_GPR:
6805 case RISCV::Select_FPR16_Using_CC_GPR:
6806 case RISCV::Select_FPR32_Using_CC_GPR:
6807 case RISCV::Select_FPR64_Using_CC_GPR:
6808 return true;
6809 }
6810 }
6811
emitSelectPseudo(MachineInstr & MI,MachineBasicBlock * BB)6812 static MachineBasicBlock *emitSelectPseudo(MachineInstr &MI,
6813 MachineBasicBlock *BB) {
6814 // To "insert" Select_* instructions, we actually have to insert the triangle
6815 // control-flow pattern. The incoming instructions know the destination vreg
6816 // to set, the condition code register to branch on, the true/false values to
6817 // select between, and the condcode to use to select the appropriate branch.
6818 //
6819 // We produce the following control flow:
6820 // HeadMBB
6821 // | \
6822 // | IfFalseMBB
6823 // | /
6824 // TailMBB
6825 //
6826 // When we find a sequence of selects we attempt to optimize their emission
6827 // by sharing the control flow. Currently we only handle cases where we have
6828 // multiple selects with the exact same condition (same LHS, RHS and CC).
6829 // The selects may be interleaved with other instructions if the other
6830 // instructions meet some requirements we deem safe:
6831 // - They are debug instructions. Otherwise,
6832 // - They do not have side-effects, do not access memory and their inputs do
6833 // not depend on the results of the select pseudo-instructions.
6834 // The TrueV/FalseV operands of the selects cannot depend on the result of
6835 // previous selects in the sequence.
6836 // These conditions could be further relaxed. See the X86 target for a
6837 // related approach and more information.
6838 Register LHS = MI.getOperand(1).getReg();
6839 Register RHS = MI.getOperand(2).getReg();
6840 auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
6841
6842 SmallVector<MachineInstr *, 4> SelectDebugValues;
6843 SmallSet<Register, 4> SelectDests;
6844 SelectDests.insert(MI.getOperand(0).getReg());
6845
6846 MachineInstr *LastSelectPseudo = &MI;
6847
6848 for (auto E = BB->end(), SequenceMBBI = MachineBasicBlock::iterator(MI);
6849 SequenceMBBI != E; ++SequenceMBBI) {
6850 if (SequenceMBBI->isDebugInstr())
6851 continue;
6852 else if (isSelectPseudo(*SequenceMBBI)) {
6853 if (SequenceMBBI->getOperand(1).getReg() != LHS ||
6854 SequenceMBBI->getOperand(2).getReg() != RHS ||
6855 SequenceMBBI->getOperand(3).getImm() != CC ||
6856 SelectDests.count(SequenceMBBI->getOperand(4).getReg()) ||
6857 SelectDests.count(SequenceMBBI->getOperand(5).getReg()))
6858 break;
6859 LastSelectPseudo = &*SequenceMBBI;
6860 SequenceMBBI->collectDebugValues(SelectDebugValues);
6861 SelectDests.insert(SequenceMBBI->getOperand(0).getReg());
6862 } else {
6863 if (SequenceMBBI->hasUnmodeledSideEffects() ||
6864 SequenceMBBI->mayLoadOrStore())
6865 break;
6866 if (llvm::any_of(SequenceMBBI->operands(), [&](MachineOperand &MO) {
6867 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6868 }))
6869 break;
6870 }
6871 }
6872
6873 const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
6874 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6875 DebugLoc DL = MI.getDebugLoc();
6876 MachineFunction::iterator I = ++BB->getIterator();
6877
6878 MachineBasicBlock *HeadMBB = BB;
6879 MachineFunction *F = BB->getParent();
6880 MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
6881 MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
6882
6883 F->insert(I, IfFalseMBB);
6884 F->insert(I, TailMBB);
6885
6886 // Transfer debug instructions associated with the selects to TailMBB.
6887 for (MachineInstr *DebugInstr : SelectDebugValues) {
6888 TailMBB->push_back(DebugInstr->removeFromParent());
6889 }
6890
6891 // Move all instructions after the sequence to TailMBB.
6892 TailMBB->splice(TailMBB->end(), HeadMBB,
6893 std::next(LastSelectPseudo->getIterator()), HeadMBB->end());
6894 // Update machine-CFG edges by transferring all successors of the current
6895 // block to the new block which will contain the Phi nodes for the selects.
6896 TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
6897 // Set the successors for HeadMBB.
6898 HeadMBB->addSuccessor(IfFalseMBB);
6899 HeadMBB->addSuccessor(TailMBB);
6900
6901 // Insert appropriate branch.
6902 unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
6903
6904 BuildMI(HeadMBB, DL, TII.get(Opcode))
6905 .addReg(LHS)
6906 .addReg(RHS)
6907 .addMBB(TailMBB);
6908
6909 // IfFalseMBB just falls through to TailMBB.
6910 IfFalseMBB->addSuccessor(TailMBB);
6911
6912 // Create PHIs for all of the select pseudo-instructions.
6913 auto SelectMBBI = MI.getIterator();
6914 auto SelectEnd = std::next(LastSelectPseudo->getIterator());
6915 auto InsertionPoint = TailMBB->begin();
6916 while (SelectMBBI != SelectEnd) {
6917 auto Next = std::next(SelectMBBI);
6918 if (isSelectPseudo(*SelectMBBI)) {
6919 // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
6920 BuildMI(*TailMBB, InsertionPoint, SelectMBBI->getDebugLoc(),
6921 TII.get(RISCV::PHI), SelectMBBI->getOperand(0).getReg())
6922 .addReg(SelectMBBI->getOperand(4).getReg())
6923 .addMBB(HeadMBB)
6924 .addReg(SelectMBBI->getOperand(5).getReg())
6925 .addMBB(IfFalseMBB);
6926 SelectMBBI->eraseFromParent();
6927 }
6928 SelectMBBI = Next;
6929 }
6930
6931 F->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6932 return TailMBB;
6933 }
6934
6935 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const6936 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
6937 MachineBasicBlock *BB) const {
6938 switch (MI.getOpcode()) {
6939 default:
6940 llvm_unreachable("Unexpected instr type to insert");
6941 case RISCV::ReadCycleWide:
6942 assert(!Subtarget.is64Bit() &&
6943 "ReadCycleWrite is only to be used on riscv32");
6944 return emitReadCycleWidePseudo(MI, BB);
6945 case RISCV::Select_GPR_Using_CC_GPR:
6946 case RISCV::Select_FPR16_Using_CC_GPR:
6947 case RISCV::Select_FPR32_Using_CC_GPR:
6948 case RISCV::Select_FPR64_Using_CC_GPR:
6949 return emitSelectPseudo(MI, BB);
6950 case RISCV::BuildPairF64Pseudo:
6951 return emitBuildPairF64Pseudo(MI, BB);
6952 case RISCV::SplitF64Pseudo:
6953 return emitSplitF64Pseudo(MI, BB);
6954 }
6955 }
6956
6957 // Calling Convention Implementation.
6958 // The expectations for frontend ABI lowering vary from target to target.
6959 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
6960 // details, but this is a longer term goal. For now, we simply try to keep the
6961 // role of the frontend as simple and well-defined as possible. The rules can
6962 // be summarised as:
6963 // * Never split up large scalar arguments. We handle them here.
6964 // * If a hardfloat calling convention is being used, and the struct may be
6965 // passed in a pair of registers (fp+fp, int+fp), and both registers are
6966 // available, then pass as two separate arguments. If either the GPRs or FPRs
6967 // are exhausted, then pass according to the rule below.
6968 // * If a struct could never be passed in registers or directly in a stack
6969 // slot (as it is larger than 2*XLEN and the floating point rules don't
6970 // apply), then pass it using a pointer with the byval attribute.
6971 // * If a struct is less than 2*XLEN, then coerce to either a two-element
6972 // word-sized array or a 2*XLEN scalar (depending on alignment).
6973 // * The frontend can determine whether a struct is returned by reference or
6974 // not based on its size and fields. If it will be returned by reference, the
6975 // frontend must modify the prototype so a pointer with the sret annotation is
6976 // passed as the first argument. This is not necessary for large scalar
6977 // returns.
6978 // * Struct return values and varargs should be coerced to structs containing
6979 // register-size fields in the same situations they would be for fixed
6980 // arguments.
6981
6982 static const MCPhysReg ArgGPRs[] = {
6983 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
6984 RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
6985 };
6986 static const MCPhysReg ArgFPR16s[] = {
6987 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H,
6988 RISCV::F14_H, RISCV::F15_H, RISCV::F16_H, RISCV::F17_H
6989 };
6990 static const MCPhysReg ArgFPR32s[] = {
6991 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F,
6992 RISCV::F14_F, RISCV::F15_F, RISCV::F16_F, RISCV::F17_F
6993 };
6994 static const MCPhysReg ArgFPR64s[] = {
6995 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D,
6996 RISCV::F14_D, RISCV::F15_D, RISCV::F16_D, RISCV::F17_D
6997 };
6998 // This is an interim calling convention and it may be changed in the future.
6999 static const MCPhysReg ArgVRs[] = {
7000 RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
7001 RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
7002 RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
7003 static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2,
7004 RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
7005 RISCV::V20M2, RISCV::V22M2};
7006 static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
7007 RISCV::V20M4};
7008 static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
7009
7010 // Pass a 2*XLEN argument that has been split into two XLEN values through
7011 // registers or the stack as necessary.
CC_RISCVAssign2XLen(unsigned XLen,CCState & State,CCValAssign VA1,ISD::ArgFlagsTy ArgFlags1,unsigned ValNo2,MVT ValVT2,MVT LocVT2,ISD::ArgFlagsTy ArgFlags2)7012 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
7013 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
7014 MVT ValVT2, MVT LocVT2,
7015 ISD::ArgFlagsTy ArgFlags2) {
7016 unsigned XLenInBytes = XLen / 8;
7017 if (Register Reg = State.AllocateReg(ArgGPRs)) {
7018 // At least one half can be passed via register.
7019 State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
7020 VA1.getLocVT(), CCValAssign::Full));
7021 } else {
7022 // Both halves must be passed on the stack, with proper alignment.
7023 Align StackAlign =
7024 std::max(Align(XLenInBytes), ArgFlags1.getNonZeroOrigAlign());
7025 State.addLoc(
7026 CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
7027 State.AllocateStack(XLenInBytes, StackAlign),
7028 VA1.getLocVT(), CCValAssign::Full));
7029 State.addLoc(CCValAssign::getMem(
7030 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7031 LocVT2, CCValAssign::Full));
7032 return false;
7033 }
7034
7035 if (Register Reg = State.AllocateReg(ArgGPRs)) {
7036 // The second half can also be passed via register.
7037 State.addLoc(
7038 CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
7039 } else {
7040 // The second half is passed via the stack, without additional alignment.
7041 State.addLoc(CCValAssign::getMem(
7042 ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
7043 LocVT2, CCValAssign::Full));
7044 }
7045
7046 return false;
7047 }
7048
allocateRVVReg(MVT ValVT,unsigned ValNo,Optional<unsigned> FirstMaskArgument,CCState & State,const RISCVTargetLowering & TLI)7049 static unsigned allocateRVVReg(MVT ValVT, unsigned ValNo,
7050 Optional<unsigned> FirstMaskArgument,
7051 CCState &State, const RISCVTargetLowering &TLI) {
7052 const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
7053 if (RC == &RISCV::VRRegClass) {
7054 // Assign the first mask argument to V0.
7055 // This is an interim calling convention and it may be changed in the
7056 // future.
7057 if (FirstMaskArgument.hasValue() && ValNo == FirstMaskArgument.getValue())
7058 return State.AllocateReg(RISCV::V0);
7059 return State.AllocateReg(ArgVRs);
7060 }
7061 if (RC == &RISCV::VRM2RegClass)
7062 return State.AllocateReg(ArgVRM2s);
7063 if (RC == &RISCV::VRM4RegClass)
7064 return State.AllocateReg(ArgVRM4s);
7065 if (RC == &RISCV::VRM8RegClass)
7066 return State.AllocateReg(ArgVRM8s);
7067 llvm_unreachable("Unhandled register class for ValueType");
7068 }
7069
7070 // Implements the RISC-V calling convention. Returns true upon failure.
CC_RISCV(const DataLayout & DL,RISCVABI::ABI ABI,unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,bool IsFixed,bool IsRet,Type * OrigTy,const RISCVTargetLowering & TLI,Optional<unsigned> FirstMaskArgument)7071 static bool CC_RISCV(const DataLayout &DL, RISCVABI::ABI ABI, unsigned ValNo,
7072 MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo,
7073 ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsFixed,
7074 bool IsRet, Type *OrigTy, const RISCVTargetLowering &TLI,
7075 Optional<unsigned> FirstMaskArgument) {
7076 unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
7077 assert(XLen == 32 || XLen == 64);
7078 MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
7079
7080 // Any return value split in to more than two values can't be returned
7081 // directly. Vectors are returned via the available vector registers.
7082 if (!LocVT.isVector() && IsRet && ValNo > 1)
7083 return true;
7084
7085 // UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
7086 // variadic argument, or if no F16/F32 argument registers are available.
7087 bool UseGPRForF16_F32 = true;
7088 // UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
7089 // variadic argument, or if no F64 argument registers are available.
7090 bool UseGPRForF64 = true;
7091
7092 switch (ABI) {
7093 default:
7094 llvm_unreachable("Unexpected ABI");
7095 case RISCVABI::ABI_ILP32:
7096 case RISCVABI::ABI_LP64:
7097 break;
7098 case RISCVABI::ABI_ILP32F:
7099 case RISCVABI::ABI_LP64F:
7100 UseGPRForF16_F32 = !IsFixed;
7101 break;
7102 case RISCVABI::ABI_ILP32D:
7103 case RISCVABI::ABI_LP64D:
7104 UseGPRForF16_F32 = !IsFixed;
7105 UseGPRForF64 = !IsFixed;
7106 break;
7107 }
7108
7109 // FPR16, FPR32, and FPR64 alias each other.
7110 if (State.getFirstUnallocated(ArgFPR32s) == array_lengthof(ArgFPR32s)) {
7111 UseGPRForF16_F32 = true;
7112 UseGPRForF64 = true;
7113 }
7114
7115 // From this point on, rely on UseGPRForF16_F32, UseGPRForF64 and
7116 // similar local variables rather than directly checking against the target
7117 // ABI.
7118
7119 if (UseGPRForF16_F32 && (ValVT == MVT::f16 || ValVT == MVT::f32)) {
7120 LocVT = XLenVT;
7121 LocInfo = CCValAssign::BCvt;
7122 } else if (UseGPRForF64 && XLen == 64 && ValVT == MVT::f64) {
7123 LocVT = MVT::i64;
7124 LocInfo = CCValAssign::BCvt;
7125 }
7126
7127 // If this is a variadic argument, the RISC-V calling convention requires
7128 // that it is assigned an 'even' or 'aligned' register if it has 8-byte
7129 // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
7130 // be used regardless of whether the original argument was split during
7131 // legalisation or not. The argument will not be passed by registers if the
7132 // original type is larger than 2*XLEN, so the register alignment rule does
7133 // not apply.
7134 unsigned TwoXLenInBytes = (2 * XLen) / 8;
7135 if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
7136 DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
7137 unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
7138 // Skip 'odd' register if necessary.
7139 if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
7140 State.AllocateReg(ArgGPRs);
7141 }
7142
7143 SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
7144 SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
7145 State.getPendingArgFlags();
7146
7147 assert(PendingLocs.size() == PendingArgFlags.size() &&
7148 "PendingLocs and PendingArgFlags out of sync");
7149
7150 // Handle passing f64 on RV32D with a soft float ABI or when floating point
7151 // registers are exhausted.
7152 if (UseGPRForF64 && XLen == 32 && ValVT == MVT::f64) {
7153 assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
7154 "Can't lower f64 if it is split");
7155 // Depending on available argument GPRS, f64 may be passed in a pair of
7156 // GPRs, split between a GPR and the stack, or passed completely on the
7157 // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
7158 // cases.
7159 Register Reg = State.AllocateReg(ArgGPRs);
7160 LocVT = MVT::i32;
7161 if (!Reg) {
7162 unsigned StackOffset = State.AllocateStack(8, Align(8));
7163 State.addLoc(
7164 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7165 return false;
7166 }
7167 if (!State.AllocateReg(ArgGPRs))
7168 State.AllocateStack(4, Align(4));
7169 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7170 return false;
7171 }
7172
7173 // Fixed-length vectors are located in the corresponding scalable-vector
7174 // container types.
7175 if (ValVT.isFixedLengthVector())
7176 LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7177
7178 // Split arguments might be passed indirectly, so keep track of the pending
7179 // values. Split vectors are passed via a mix of registers and indirectly, so
7180 // treat them as we would any other argument.
7181 if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
7182 LocVT = XLenVT;
7183 LocInfo = CCValAssign::Indirect;
7184 PendingLocs.push_back(
7185 CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
7186 PendingArgFlags.push_back(ArgFlags);
7187 if (!ArgFlags.isSplitEnd()) {
7188 return false;
7189 }
7190 }
7191
7192 // If the split argument only had two elements, it should be passed directly
7193 // in registers or on the stack.
7194 if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
7195 PendingLocs.size() <= 2) {
7196 assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
7197 // Apply the normal calling convention rules to the first half of the
7198 // split argument.
7199 CCValAssign VA = PendingLocs[0];
7200 ISD::ArgFlagsTy AF = PendingArgFlags[0];
7201 PendingLocs.clear();
7202 PendingArgFlags.clear();
7203 return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
7204 ArgFlags);
7205 }
7206
7207 // Allocate to a register if possible, or else a stack slot.
7208 Register Reg;
7209 unsigned StoreSizeBytes = XLen / 8;
7210 Align StackAlign = Align(XLen / 8);
7211
7212 if (ValVT == MVT::f16 && !UseGPRForF16_F32)
7213 Reg = State.AllocateReg(ArgFPR16s);
7214 else if (ValVT == MVT::f32 && !UseGPRForF16_F32)
7215 Reg = State.AllocateReg(ArgFPR32s);
7216 else if (ValVT == MVT::f64 && !UseGPRForF64)
7217 Reg = State.AllocateReg(ArgFPR64s);
7218 else if (ValVT.isVector()) {
7219 Reg = allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI);
7220 if (!Reg) {
7221 // For return values, the vector must be passed fully via registers or
7222 // via the stack.
7223 // FIXME: The proposed vector ABI only mandates v8-v15 for return values,
7224 // but we're using all of them.
7225 if (IsRet)
7226 return true;
7227 // Try using a GPR to pass the address
7228 if ((Reg = State.AllocateReg(ArgGPRs))) {
7229 LocVT = XLenVT;
7230 LocInfo = CCValAssign::Indirect;
7231 } else if (ValVT.isScalableVector()) {
7232 report_fatal_error("Unable to pass scalable vector types on the stack");
7233 } else {
7234 // Pass fixed-length vectors on the stack.
7235 LocVT = ValVT;
7236 StoreSizeBytes = ValVT.getStoreSize();
7237 // Align vectors to their element sizes, being careful for vXi1
7238 // vectors.
7239 StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7240 }
7241 }
7242 } else {
7243 Reg = State.AllocateReg(ArgGPRs);
7244 }
7245
7246 unsigned StackOffset =
7247 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7248
7249 // If we reach this point and PendingLocs is non-empty, we must be at the
7250 // end of a split argument that must be passed indirectly.
7251 if (!PendingLocs.empty()) {
7252 assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
7253 assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
7254
7255 for (auto &It : PendingLocs) {
7256 if (Reg)
7257 It.convertToReg(Reg);
7258 else
7259 It.convertToMem(StackOffset);
7260 State.addLoc(It);
7261 }
7262 PendingLocs.clear();
7263 PendingArgFlags.clear();
7264 return false;
7265 }
7266
7267 assert((!UseGPRForF16_F32 || !UseGPRForF64 || LocVT == XLenVT ||
7268 (TLI.getSubtarget().hasStdExtV() && ValVT.isVector())) &&
7269 "Expected an XLenVT or vector types at this stage");
7270
7271 if (Reg) {
7272 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7273 return false;
7274 }
7275
7276 // When a floating-point value is passed on the stack, no bit-conversion is
7277 // needed.
7278 if (ValVT.isFloatingPoint()) {
7279 LocVT = ValVT;
7280 LocInfo = CCValAssign::Full;
7281 }
7282 State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7283 return false;
7284 }
7285
7286 template <typename ArgTy>
preAssignMask(const ArgTy & Args)7287 static Optional<unsigned> preAssignMask(const ArgTy &Args) {
7288 for (const auto &ArgIdx : enumerate(Args)) {
7289 MVT ArgVT = ArgIdx.value().VT;
7290 if (ArgVT.isVector() && ArgVT.getVectorElementType() == MVT::i1)
7291 return ArgIdx.index();
7292 }
7293 return None;
7294 }
7295
analyzeInputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::InputArg> & Ins,bool IsRet,RISCVCCAssignFn Fn) const7296 void RISCVTargetLowering::analyzeInputArgs(
7297 MachineFunction &MF, CCState &CCInfo,
7298 const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet,
7299 RISCVCCAssignFn Fn) const {
7300 unsigned NumArgs = Ins.size();
7301 FunctionType *FType = MF.getFunction().getFunctionType();
7302
7303 Optional<unsigned> FirstMaskArgument;
7304 if (Subtarget.hasStdExtV())
7305 FirstMaskArgument = preAssignMask(Ins);
7306
7307 for (unsigned i = 0; i != NumArgs; ++i) {
7308 MVT ArgVT = Ins[i].VT;
7309 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
7310
7311 Type *ArgTy = nullptr;
7312 if (IsRet)
7313 ArgTy = FType->getReturnType();
7314 else if (Ins[i].isOrigArg())
7315 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
7316
7317 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7318 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
7319 ArgFlags, CCInfo, /*IsFixed=*/true, IsRet, ArgTy, *this,
7320 FirstMaskArgument)) {
7321 LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
7322 << EVT(ArgVT).getEVTString() << '\n');
7323 llvm_unreachable(nullptr);
7324 }
7325 }
7326 }
7327
analyzeOutputArgs(MachineFunction & MF,CCState & CCInfo,const SmallVectorImpl<ISD::OutputArg> & Outs,bool IsRet,CallLoweringInfo * CLI,RISCVCCAssignFn Fn) const7328 void RISCVTargetLowering::analyzeOutputArgs(
7329 MachineFunction &MF, CCState &CCInfo,
7330 const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
7331 CallLoweringInfo *CLI, RISCVCCAssignFn Fn) const {
7332 unsigned NumArgs = Outs.size();
7333
7334 Optional<unsigned> FirstMaskArgument;
7335 if (Subtarget.hasStdExtV())
7336 FirstMaskArgument = preAssignMask(Outs);
7337
7338 for (unsigned i = 0; i != NumArgs; i++) {
7339 MVT ArgVT = Outs[i].VT;
7340 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
7341 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
7342
7343 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
7344 if (Fn(MF.getDataLayout(), ABI, i, ArgVT, ArgVT, CCValAssign::Full,
7345 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy, *this,
7346 FirstMaskArgument)) {
7347 LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
7348 << EVT(ArgVT).getEVTString() << "\n");
7349 llvm_unreachable(nullptr);
7350 }
7351 }
7352 }
7353
7354 // Convert Val to a ValVT. Should not be called for CCValAssign::Indirect
7355 // values.
convertLocVTToValVT(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL,const RISCVSubtarget & Subtarget)7356 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val,
7357 const CCValAssign &VA, const SDLoc &DL,
7358 const RISCVSubtarget &Subtarget) {
7359 switch (VA.getLocInfo()) {
7360 default:
7361 llvm_unreachable("Unexpected CCValAssign::LocInfo");
7362 case CCValAssign::Full:
7363 if (VA.getValVT().isFixedLengthVector() && VA.getLocVT().isScalableVector())
7364 Val = convertFromScalableVector(VA.getValVT(), Val, DAG, Subtarget);
7365 break;
7366 case CCValAssign::BCvt:
7367 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7368 Val = DAG.getNode(RISCVISD::FMV_H_X, DL, MVT::f16, Val);
7369 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7370 Val = DAG.getNode(RISCVISD::FMV_W_X_RV64, DL, MVT::f32, Val);
7371 else
7372 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
7373 break;
7374 }
7375 return Val;
7376 }
7377
7378 // The caller is responsible for loading the full value if the argument is
7379 // passed with CCValAssign::Indirect.
unpackFromRegLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL,const RISCVTargetLowering & TLI)7380 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
7381 const CCValAssign &VA, const SDLoc &DL,
7382 const RISCVTargetLowering &TLI) {
7383 MachineFunction &MF = DAG.getMachineFunction();
7384 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7385 EVT LocVT = VA.getLocVT();
7386 SDValue Val;
7387 const TargetRegisterClass *RC = TLI.getRegClassFor(LocVT.getSimpleVT());
7388 Register VReg = RegInfo.createVirtualRegister(RC);
7389 RegInfo.addLiveIn(VA.getLocReg(), VReg);
7390 Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
7391
7392 if (VA.getLocInfo() == CCValAssign::Indirect)
7393 return Val;
7394
7395 return convertLocVTToValVT(DAG, Val, VA, DL, TLI.getSubtarget());
7396 }
7397
convertValVTToLocVT(SelectionDAG & DAG,SDValue Val,const CCValAssign & VA,const SDLoc & DL,const RISCVSubtarget & Subtarget)7398 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val,
7399 const CCValAssign &VA, const SDLoc &DL,
7400 const RISCVSubtarget &Subtarget) {
7401 EVT LocVT = VA.getLocVT();
7402
7403 switch (VA.getLocInfo()) {
7404 default:
7405 llvm_unreachable("Unexpected CCValAssign::LocInfo");
7406 case CCValAssign::Full:
7407 if (VA.getValVT().isFixedLengthVector() && LocVT.isScalableVector())
7408 Val = convertToScalableVector(LocVT, Val, DAG, Subtarget);
7409 break;
7410 case CCValAssign::BCvt:
7411 if (VA.getLocVT().isInteger() && VA.getValVT() == MVT::f16)
7412 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTH, DL, VA.getLocVT(), Val);
7413 else if (VA.getLocVT() == MVT::i64 && VA.getValVT() == MVT::f32)
7414 Val = DAG.getNode(RISCVISD::FMV_X_ANYEXTW_RV64, DL, MVT::i64, Val);
7415 else
7416 Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
7417 break;
7418 }
7419 return Val;
7420 }
7421
7422 // The caller is responsible for loading the full value if the argument is
7423 // passed with CCValAssign::Indirect.
unpackFromMemLoc(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)7424 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
7425 const CCValAssign &VA, const SDLoc &DL) {
7426 MachineFunction &MF = DAG.getMachineFunction();
7427 MachineFrameInfo &MFI = MF.getFrameInfo();
7428 EVT LocVT = VA.getLocVT();
7429 EVT ValVT = VA.getValVT();
7430 EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
7431 int FI = MFI.CreateFixedObject(ValVT.getStoreSize(), VA.getLocMemOffset(),
7432 /*Immutable=*/true);
7433 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7434 SDValue Val;
7435
7436 ISD::LoadExtType ExtType;
7437 switch (VA.getLocInfo()) {
7438 default:
7439 llvm_unreachable("Unexpected CCValAssign::LocInfo");
7440 case CCValAssign::Full:
7441 case CCValAssign::Indirect:
7442 case CCValAssign::BCvt:
7443 ExtType = ISD::NON_EXTLOAD;
7444 break;
7445 }
7446 Val = DAG.getExtLoad(
7447 ExtType, DL, LocVT, Chain, FIN,
7448 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
7449 return Val;
7450 }
7451
unpackF64OnRV32DSoftABI(SelectionDAG & DAG,SDValue Chain,const CCValAssign & VA,const SDLoc & DL)7452 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
7453 const CCValAssign &VA, const SDLoc &DL) {
7454 assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
7455 "Unexpected VA");
7456 MachineFunction &MF = DAG.getMachineFunction();
7457 MachineFrameInfo &MFI = MF.getFrameInfo();
7458 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7459
7460 if (VA.isMemLoc()) {
7461 // f64 is passed on the stack.
7462 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
7463 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7464 return DAG.getLoad(MVT::f64, DL, Chain, FIN,
7465 MachinePointerInfo::getFixedStack(MF, FI));
7466 }
7467
7468 assert(VA.isRegLoc() && "Expected register VA assignment");
7469
7470 Register LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7471 RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
7472 SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
7473 SDValue Hi;
7474 if (VA.getLocReg() == RISCV::X17) {
7475 // Second half of f64 is passed on the stack.
7476 int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
7477 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
7478 Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
7479 MachinePointerInfo::getFixedStack(MF, FI));
7480 } else {
7481 // Second half of f64 is passed in another GPR.
7482 Register HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
7483 RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
7484 Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
7485 }
7486 return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
7487 }
7488
7489 // FastCC has less than 1% performance improvement for some particular
7490 // benchmark. But theoretically, it may has benenfit for some cases.
CC_RISCV_FastCC(const DataLayout & DL,RISCVABI::ABI ABI,unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State,bool IsFixed,bool IsRet,Type * OrigTy,const RISCVTargetLowering & TLI,Optional<unsigned> FirstMaskArgument)7491 static bool CC_RISCV_FastCC(const DataLayout &DL, RISCVABI::ABI ABI,
7492 unsigned ValNo, MVT ValVT, MVT LocVT,
7493 CCValAssign::LocInfo LocInfo,
7494 ISD::ArgFlagsTy ArgFlags, CCState &State,
7495 bool IsFixed, bool IsRet, Type *OrigTy,
7496 const RISCVTargetLowering &TLI,
7497 Optional<unsigned> FirstMaskArgument) {
7498
7499 // X5 and X6 might be used for save-restore libcall.
7500 static const MCPhysReg GPRList[] = {
7501 RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14,
7502 RISCV::X15, RISCV::X16, RISCV::X17, RISCV::X7, RISCV::X28,
7503 RISCV::X29, RISCV::X30, RISCV::X31};
7504
7505 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7506 if (unsigned Reg = State.AllocateReg(GPRList)) {
7507 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7508 return false;
7509 }
7510 }
7511
7512 if (LocVT == MVT::f16) {
7513 static const MCPhysReg FPR16List[] = {
7514 RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
7515 RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H,
7516 RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H,
7517 RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
7518 if (unsigned Reg = State.AllocateReg(FPR16List)) {
7519 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7520 return false;
7521 }
7522 }
7523
7524 if (LocVT == MVT::f32) {
7525 static const MCPhysReg FPR32List[] = {
7526 RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
7527 RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
7528 RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
7529 RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
7530 if (unsigned Reg = State.AllocateReg(FPR32List)) {
7531 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7532 return false;
7533 }
7534 }
7535
7536 if (LocVT == MVT::f64) {
7537 static const MCPhysReg FPR64List[] = {
7538 RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
7539 RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
7540 RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
7541 RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
7542 if (unsigned Reg = State.AllocateReg(FPR64List)) {
7543 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7544 return false;
7545 }
7546 }
7547
7548 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
7549 unsigned Offset4 = State.AllocateStack(4, Align(4));
7550 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset4, LocVT, LocInfo));
7551 return false;
7552 }
7553
7554 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
7555 unsigned Offset5 = State.AllocateStack(8, Align(8));
7556 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset5, LocVT, LocInfo));
7557 return false;
7558 }
7559
7560 if (LocVT.isVector()) {
7561 if (unsigned Reg =
7562 allocateRVVReg(ValVT, ValNo, FirstMaskArgument, State, TLI)) {
7563 // Fixed-length vectors are located in the corresponding scalable-vector
7564 // container types.
7565 if (ValVT.isFixedLengthVector())
7566 LocVT = TLI.getContainerForFixedLengthVector(LocVT);
7567 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7568 } else {
7569 // Try and pass the address via a "fast" GPR.
7570 if (unsigned GPRReg = State.AllocateReg(GPRList)) {
7571 LocInfo = CCValAssign::Indirect;
7572 LocVT = TLI.getSubtarget().getXLenVT();
7573 State.addLoc(CCValAssign::getReg(ValNo, ValVT, GPRReg, LocVT, LocInfo));
7574 } else if (ValVT.isFixedLengthVector()) {
7575 auto StackAlign =
7576 MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
7577 unsigned StackOffset =
7578 State.AllocateStack(ValVT.getStoreSize(), StackAlign);
7579 State.addLoc(
7580 CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
7581 } else {
7582 // Can't pass scalable vectors on the stack.
7583 return true;
7584 }
7585 }
7586
7587 return false;
7588 }
7589
7590 return true; // CC didn't match.
7591 }
7592
CC_RISCV_GHC(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)7593 static bool CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
7594 CCValAssign::LocInfo LocInfo,
7595 ISD::ArgFlagsTy ArgFlags, CCState &State) {
7596
7597 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7598 // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
7599 // s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
7600 static const MCPhysReg GPRList[] = {
7601 RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
7602 RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
7603 if (unsigned Reg = State.AllocateReg(GPRList)) {
7604 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7605 return false;
7606 }
7607 }
7608
7609 if (LocVT == MVT::f32) {
7610 // Pass in STG registers: F1, ..., F6
7611 // fs0 ... fs5
7612 static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
7613 RISCV::F18_F, RISCV::F19_F,
7614 RISCV::F20_F, RISCV::F21_F};
7615 if (unsigned Reg = State.AllocateReg(FPR32List)) {
7616 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7617 return false;
7618 }
7619 }
7620
7621 if (LocVT == MVT::f64) {
7622 // Pass in STG registers: D1, ..., D6
7623 // fs6 ... fs11
7624 static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
7625 RISCV::F24_D, RISCV::F25_D,
7626 RISCV::F26_D, RISCV::F27_D};
7627 if (unsigned Reg = State.AllocateReg(FPR64List)) {
7628 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
7629 return false;
7630 }
7631 }
7632
7633 report_fatal_error("No registers left in GHC calling convention");
7634 return true;
7635 }
7636
7637 // Transform physical registers into virtual registers.
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const7638 SDValue RISCVTargetLowering::LowerFormalArguments(
7639 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
7640 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
7641 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7642
7643 MachineFunction &MF = DAG.getMachineFunction();
7644
7645 switch (CallConv) {
7646 default:
7647 report_fatal_error("Unsupported calling convention");
7648 case CallingConv::C:
7649 case CallingConv::Fast:
7650 break;
7651 case CallingConv::GHC:
7652 if (!MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtF] ||
7653 !MF.getSubtarget().getFeatureBits()[RISCV::FeatureStdExtD])
7654 report_fatal_error(
7655 "GHC calling convention requires the F and D instruction set extensions");
7656 }
7657
7658 const Function &Func = MF.getFunction();
7659 if (Func.hasFnAttribute("interrupt")) {
7660 if (!Func.arg_empty())
7661 report_fatal_error(
7662 "Functions with the interrupt attribute cannot have arguments!");
7663
7664 StringRef Kind =
7665 MF.getFunction().getFnAttribute("interrupt").getValueAsString();
7666
7667 if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
7668 report_fatal_error(
7669 "Function interrupt attribute argument not supported!");
7670 }
7671
7672 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7673 MVT XLenVT = Subtarget.getXLenVT();
7674 unsigned XLenInBytes = Subtarget.getXLen() / 8;
7675 // Used with vargs to acumulate store chains.
7676 std::vector<SDValue> OutChains;
7677
7678 // Assign locations to all of the incoming arguments.
7679 SmallVector<CCValAssign, 16> ArgLocs;
7680 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7681
7682 if (CallConv == CallingConv::GHC)
7683 CCInfo.AnalyzeFormalArguments(Ins, CC_RISCV_GHC);
7684 else
7685 analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false,
7686 CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7687 : CC_RISCV);
7688
7689 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7690 CCValAssign &VA = ArgLocs[i];
7691 SDValue ArgValue;
7692 // Passing f64 on RV32D with a soft float ABI must be handled as a special
7693 // case.
7694 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
7695 ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
7696 else if (VA.isRegLoc())
7697 ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL, *this);
7698 else
7699 ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
7700
7701 if (VA.getLocInfo() == CCValAssign::Indirect) {
7702 // If the original argument was split and passed by reference (e.g. i128
7703 // on RV32), we need to load all parts of it here (using the same
7704 // address). Vectors may be partly split to registers and partly to the
7705 // stack, in which case the base address is partly offset and subsequent
7706 // stores are relative to that.
7707 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
7708 MachinePointerInfo()));
7709 unsigned ArgIndex = Ins[i].OrigArgIndex;
7710 unsigned ArgPartOffset = Ins[i].PartOffset;
7711 assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7712 while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
7713 CCValAssign &PartVA = ArgLocs[i + 1];
7714 unsigned PartOffset = Ins[i + 1].PartOffset - ArgPartOffset;
7715 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
7716 if (PartVA.getValVT().isScalableVector())
7717 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
7718 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, Offset);
7719 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
7720 MachinePointerInfo()));
7721 ++i;
7722 }
7723 continue;
7724 }
7725 InVals.push_back(ArgValue);
7726 }
7727
7728 if (IsVarArg) {
7729 ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
7730 unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
7731 const TargetRegisterClass *RC = &RISCV::GPRRegClass;
7732 MachineFrameInfo &MFI = MF.getFrameInfo();
7733 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7734 RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
7735
7736 // Offset of the first variable argument from stack pointer, and size of
7737 // the vararg save area. For now, the varargs save area is either zero or
7738 // large enough to hold a0-a7.
7739 int VaArgOffset, VarArgsSaveSize;
7740
7741 // If all registers are allocated, then all varargs must be passed on the
7742 // stack and we don't need to save any argregs.
7743 if (ArgRegs.size() == Idx) {
7744 VaArgOffset = CCInfo.getNextStackOffset();
7745 VarArgsSaveSize = 0;
7746 } else {
7747 VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
7748 VaArgOffset = -VarArgsSaveSize;
7749 }
7750
7751 // Record the frame index of the first variable argument
7752 // which is a value necessary to VASTART.
7753 int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7754 RVFI->setVarArgsFrameIndex(FI);
7755
7756 // If saving an odd number of registers then create an extra stack slot to
7757 // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
7758 // offsets to even-numbered registered remain 2*XLEN-aligned.
7759 if (Idx % 2) {
7760 MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes, true);
7761 VarArgsSaveSize += XLenInBytes;
7762 }
7763
7764 // Copy the integer registers that may have been used for passing varargs
7765 // to the vararg save area.
7766 for (unsigned I = Idx; I < ArgRegs.size();
7767 ++I, VaArgOffset += XLenInBytes) {
7768 const Register Reg = RegInfo.createVirtualRegister(RC);
7769 RegInfo.addLiveIn(ArgRegs[I], Reg);
7770 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
7771 FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
7772 SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7773 SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
7774 MachinePointerInfo::getFixedStack(MF, FI));
7775 cast<StoreSDNode>(Store.getNode())
7776 ->getMemOperand()
7777 ->setValue((Value *)nullptr);
7778 OutChains.push_back(Store);
7779 }
7780 RVFI->setVarArgsSaveSize(VarArgsSaveSize);
7781 }
7782
7783 // All stores are grouped in one node to allow the matching between
7784 // the size of Ins and InVals. This only happens for vararg functions.
7785 if (!OutChains.empty()) {
7786 OutChains.push_back(Chain);
7787 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
7788 }
7789
7790 return Chain;
7791 }
7792
7793 /// isEligibleForTailCallOptimization - Check whether the call is eligible
7794 /// for tail call optimization.
7795 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
isEligibleForTailCallOptimization(CCState & CCInfo,CallLoweringInfo & CLI,MachineFunction & MF,const SmallVector<CCValAssign,16> & ArgLocs) const7796 bool RISCVTargetLowering::isEligibleForTailCallOptimization(
7797 CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
7798 const SmallVector<CCValAssign, 16> &ArgLocs) const {
7799
7800 auto &Callee = CLI.Callee;
7801 auto CalleeCC = CLI.CallConv;
7802 auto &Outs = CLI.Outs;
7803 auto &Caller = MF.getFunction();
7804 auto CallerCC = Caller.getCallingConv();
7805
7806 // Exception-handling functions need a special set of instructions to
7807 // indicate a return to the hardware. Tail-calling another function would
7808 // probably break this.
7809 // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
7810 // should be expanded as new function attributes are introduced.
7811 if (Caller.hasFnAttribute("interrupt"))
7812 return false;
7813
7814 // Do not tail call opt if the stack is used to pass parameters.
7815 if (CCInfo.getNextStackOffset() != 0)
7816 return false;
7817
7818 // Do not tail call opt if any parameters need to be passed indirectly.
7819 // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
7820 // passed indirectly. So the address of the value will be passed in a
7821 // register, or if not available, then the address is put on the stack. In
7822 // order to pass indirectly, space on the stack often needs to be allocated
7823 // in order to store the value. In this case the CCInfo.getNextStackOffset()
7824 // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
7825 // are passed CCValAssign::Indirect.
7826 for (auto &VA : ArgLocs)
7827 if (VA.getLocInfo() == CCValAssign::Indirect)
7828 return false;
7829
7830 // Do not tail call opt if either caller or callee uses struct return
7831 // semantics.
7832 auto IsCallerStructRet = Caller.hasStructRetAttr();
7833 auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
7834 if (IsCallerStructRet || IsCalleeStructRet)
7835 return false;
7836
7837 // Externally-defined functions with weak linkage should not be
7838 // tail-called. The behaviour of branch instructions in this situation (as
7839 // used for tail calls) is implementation-defined, so we cannot rely on the
7840 // linker replacing the tail call with a return.
7841 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
7842 const GlobalValue *GV = G->getGlobal();
7843 if (GV->hasExternalWeakLinkage())
7844 return false;
7845 }
7846
7847 // The callee has to preserve all registers the caller needs to preserve.
7848 const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
7849 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
7850 if (CalleeCC != CallerCC) {
7851 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
7852 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7853 return false;
7854 }
7855
7856 // Byval parameters hand the function a pointer directly into the stack area
7857 // we want to reuse during a tail call. Working around this *is* possible
7858 // but less efficient and uglier in LowerCall.
7859 for (auto &Arg : Outs)
7860 if (Arg.Flags.isByVal())
7861 return false;
7862
7863 return true;
7864 }
7865
getPrefTypeAlign(EVT VT,SelectionDAG & DAG)7866 static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG) {
7867 return DAG.getDataLayout().getPrefTypeAlign(
7868 VT.getTypeForEVT(*DAG.getContext()));
7869 }
7870
7871 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
7872 // and output parameter nodes.
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const7873 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
7874 SmallVectorImpl<SDValue> &InVals) const {
7875 SelectionDAG &DAG = CLI.DAG;
7876 SDLoc &DL = CLI.DL;
7877 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
7878 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
7879 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
7880 SDValue Chain = CLI.Chain;
7881 SDValue Callee = CLI.Callee;
7882 bool &IsTailCall = CLI.IsTailCall;
7883 CallingConv::ID CallConv = CLI.CallConv;
7884 bool IsVarArg = CLI.IsVarArg;
7885 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7886 MVT XLenVT = Subtarget.getXLenVT();
7887
7888 MachineFunction &MF = DAG.getMachineFunction();
7889
7890 // Analyze the operands of the call, assigning locations to each operand.
7891 SmallVector<CCValAssign, 16> ArgLocs;
7892 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
7893
7894 if (CallConv == CallingConv::GHC)
7895 ArgCCInfo.AnalyzeCallOperands(Outs, CC_RISCV_GHC);
7896 else
7897 analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI,
7898 CallConv == CallingConv::Fast ? CC_RISCV_FastCC
7899 : CC_RISCV);
7900
7901 // Check if it's really possible to do a tail call.
7902 if (IsTailCall)
7903 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7904
7905 if (IsTailCall)
7906 ++NumTailCalls;
7907 else if (CLI.CB && CLI.CB->isMustTailCall())
7908 report_fatal_error("failed to perform tail call elimination on a call "
7909 "site marked musttail");
7910
7911 // Get a count of how many bytes are to be pushed on the stack.
7912 unsigned NumBytes = ArgCCInfo.getNextStackOffset();
7913
7914 // Create local copies for byval args
7915 SmallVector<SDValue, 8> ByValArgs;
7916 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
7917 ISD::ArgFlagsTy Flags = Outs[i].Flags;
7918 if (!Flags.isByVal())
7919 continue;
7920
7921 SDValue Arg = OutVals[i];
7922 unsigned Size = Flags.getByValSize();
7923 Align Alignment = Flags.getNonZeroByValAlign();
7924
7925 int FI =
7926 MF.getFrameInfo().CreateStackObject(Size, Alignment, /*isSS=*/false);
7927 SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
7928 SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
7929
7930 Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Alignment,
7931 /*IsVolatile=*/false,
7932 /*AlwaysInline=*/false, IsTailCall,
7933 MachinePointerInfo(), MachinePointerInfo());
7934 ByValArgs.push_back(FIPtr);
7935 }
7936
7937 if (!IsTailCall)
7938 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
7939
7940 // Copy argument values to their designated locations.
7941 SmallVector<std::pair<Register, SDValue>, 8> RegsToPass;
7942 SmallVector<SDValue, 8> MemOpChains;
7943 SDValue StackPtr;
7944 for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
7945 CCValAssign &VA = ArgLocs[i];
7946 SDValue ArgValue = OutVals[i];
7947 ISD::ArgFlagsTy Flags = Outs[i].Flags;
7948
7949 // Handle passing f64 on RV32D with a soft float ABI as a special case.
7950 bool IsF64OnRV32DSoftABI =
7951 VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
7952 if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
7953 SDValue SplitF64 = DAG.getNode(
7954 RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
7955 SDValue Lo = SplitF64.getValue(0);
7956 SDValue Hi = SplitF64.getValue(1);
7957
7958 Register RegLo = VA.getLocReg();
7959 RegsToPass.push_back(std::make_pair(RegLo, Lo));
7960
7961 if (RegLo == RISCV::X17) {
7962 // Second half of f64 is passed on the stack.
7963 // Work out the address of the stack slot.
7964 if (!StackPtr.getNode())
7965 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
7966 // Emit the store.
7967 MemOpChains.push_back(
7968 DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
7969 } else {
7970 // Second half of f64 is passed in another GPR.
7971 assert(RegLo < RISCV::X31 && "Invalid register pair");
7972 Register RegHigh = RegLo + 1;
7973 RegsToPass.push_back(std::make_pair(RegHigh, Hi));
7974 }
7975 continue;
7976 }
7977
7978 // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
7979 // as any other MemLoc.
7980
7981 // Promote the value if needed.
7982 // For now, only handle fully promoted and indirect arguments.
7983 if (VA.getLocInfo() == CCValAssign::Indirect) {
7984 // Store the argument in a stack slot and pass its address.
7985 Align StackAlign =
7986 std::max(getPrefTypeAlign(Outs[i].ArgVT, DAG),
7987 getPrefTypeAlign(ArgValue.getValueType(), DAG));
7988 TypeSize StoredSize = ArgValue.getValueType().getStoreSize();
7989 // If the original argument was split (e.g. i128), we need
7990 // to store the required parts of it here (and pass just one address).
7991 // Vectors may be partly split to registers and partly to the stack, in
7992 // which case the base address is partly offset and subsequent stores are
7993 // relative to that.
7994 unsigned ArgIndex = Outs[i].OrigArgIndex;
7995 unsigned ArgPartOffset = Outs[i].PartOffset;
7996 assert(VA.getValVT().isVector() || ArgPartOffset == 0);
7997 // Calculate the total size to store. We don't have access to what we're
7998 // actually storing other than performing the loop and collecting the
7999 // info.
8000 SmallVector<std::pair<SDValue, SDValue>> Parts;
8001 while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
8002 SDValue PartValue = OutVals[i + 1];
8003 unsigned PartOffset = Outs[i + 1].PartOffset - ArgPartOffset;
8004 SDValue Offset = DAG.getIntPtrConstant(PartOffset, DL);
8005 EVT PartVT = PartValue.getValueType();
8006 if (PartVT.isScalableVector())
8007 Offset = DAG.getNode(ISD::VSCALE, DL, XLenVT, Offset);
8008 StoredSize += PartVT.getStoreSize();
8009 StackAlign = std::max(StackAlign, getPrefTypeAlign(PartVT, DAG));
8010 Parts.push_back(std::make_pair(PartValue, Offset));
8011 ++i;
8012 }
8013 SDValue SpillSlot = DAG.CreateStackTemporary(StoredSize, StackAlign);
8014 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
8015 MemOpChains.push_back(
8016 DAG.getStore(Chain, DL, ArgValue, SpillSlot,
8017 MachinePointerInfo::getFixedStack(MF, FI)));
8018 for (const auto &Part : Parts) {
8019 SDValue PartValue = Part.first;
8020 SDValue PartOffset = Part.second;
8021 SDValue Address =
8022 DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, PartOffset);
8023 MemOpChains.push_back(
8024 DAG.getStore(Chain, DL, PartValue, Address,
8025 MachinePointerInfo::getFixedStack(MF, FI)));
8026 }
8027 ArgValue = SpillSlot;
8028 } else {
8029 ArgValue = convertValVTToLocVT(DAG, ArgValue, VA, DL, Subtarget);
8030 }
8031
8032 // Use local copy if it is a byval arg.
8033 if (Flags.isByVal())
8034 ArgValue = ByValArgs[j++];
8035
8036 if (VA.isRegLoc()) {
8037 // Queue up the argument copies and emit them at the end.
8038 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
8039 } else {
8040 assert(VA.isMemLoc() && "Argument not register or memory");
8041 assert(!IsTailCall && "Tail call not allowed if stack is used "
8042 "for passing parameters");
8043
8044 // Work out the address of the stack slot.
8045 if (!StackPtr.getNode())
8046 StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
8047 SDValue Address =
8048 DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
8049 DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
8050
8051 // Emit the store.
8052 MemOpChains.push_back(
8053 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
8054 }
8055 }
8056
8057 // Join the stores, which are independent of one another.
8058 if (!MemOpChains.empty())
8059 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
8060
8061 SDValue Glue;
8062
8063 // Build a sequence of copy-to-reg nodes, chained and glued together.
8064 for (auto &Reg : RegsToPass) {
8065 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
8066 Glue = Chain.getValue(1);
8067 }
8068
8069 // Validate that none of the argument registers have been marked as
8070 // reserved, if so report an error. Do the same for the return address if this
8071 // is not a tailcall.
8072 validateCCReservedRegs(RegsToPass, MF);
8073 if (!IsTailCall &&
8074 MF.getSubtarget<RISCVSubtarget>().isRegisterReservedByUser(RISCV::X1))
8075 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8076 MF.getFunction(),
8077 "Return address register required, but has been reserved."});
8078
8079 // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
8080 // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
8081 // split it and then direct call can be matched by PseudoCALL.
8082 if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
8083 const GlobalValue *GV = S->getGlobal();
8084
8085 unsigned OpFlags = RISCVII::MO_CALL;
8086 if (!getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))
8087 OpFlags = RISCVII::MO_PLT;
8088
8089 Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags);
8090 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
8091 unsigned OpFlags = RISCVII::MO_CALL;
8092
8093 if (!getTargetMachine().shouldAssumeDSOLocal(*MF.getFunction().getParent(),
8094 nullptr))
8095 OpFlags = RISCVII::MO_PLT;
8096
8097 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, OpFlags);
8098 }
8099
8100 // The first call operand is the chain and the second is the target address.
8101 SmallVector<SDValue, 8> Ops;
8102 Ops.push_back(Chain);
8103 Ops.push_back(Callee);
8104
8105 // Add argument registers to the end of the list so that they are
8106 // known live into the call.
8107 for (auto &Reg : RegsToPass)
8108 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
8109
8110 if (!IsTailCall) {
8111 // Add a register mask operand representing the call-preserved registers.
8112 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
8113 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
8114 assert(Mask && "Missing call preserved mask for calling convention");
8115 Ops.push_back(DAG.getRegisterMask(Mask));
8116 }
8117
8118 // Glue the call to the argument copies, if any.
8119 if (Glue.getNode())
8120 Ops.push_back(Glue);
8121
8122 // Emit the call.
8123 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8124
8125 if (IsTailCall) {
8126 MF.getFrameInfo().setHasTailCall();
8127 return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
8128 }
8129
8130 Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
8131 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
8132 Glue = Chain.getValue(1);
8133
8134 // Mark the end of the call, which is glued to the call itself.
8135 Chain = DAG.getCALLSEQ_END(Chain,
8136 DAG.getConstant(NumBytes, DL, PtrVT, true),
8137 DAG.getConstant(0, DL, PtrVT, true),
8138 Glue, DL);
8139 Glue = Chain.getValue(1);
8140
8141 // Assign locations to each value returned by this call.
8142 SmallVector<CCValAssign, 16> RVLocs;
8143 CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
8144 analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true, CC_RISCV);
8145
8146 // Copy all of the result registers out of their specified physreg.
8147 for (auto &VA : RVLocs) {
8148 // Copy the value out
8149 SDValue RetValue =
8150 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
8151 // Glue the RetValue to the end of the call sequence
8152 Chain = RetValue.getValue(1);
8153 Glue = RetValue.getValue(2);
8154
8155 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8156 assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
8157 SDValue RetValue2 =
8158 DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
8159 Chain = RetValue2.getValue(1);
8160 Glue = RetValue2.getValue(2);
8161 RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
8162 RetValue2);
8163 }
8164
8165 RetValue = convertLocVTToValVT(DAG, RetValue, VA, DL, Subtarget);
8166
8167 InVals.push_back(RetValue);
8168 }
8169
8170 return Chain;
8171 }
8172
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const8173 bool RISCVTargetLowering::CanLowerReturn(
8174 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
8175 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
8176 SmallVector<CCValAssign, 16> RVLocs;
8177 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8178
8179 Optional<unsigned> FirstMaskArgument;
8180 if (Subtarget.hasStdExtV())
8181 FirstMaskArgument = preAssignMask(Outs);
8182
8183 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
8184 MVT VT = Outs[i].VT;
8185 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
8186 RISCVABI::ABI ABI = MF.getSubtarget<RISCVSubtarget>().getTargetABI();
8187 if (CC_RISCV(MF.getDataLayout(), ABI, i, VT, VT, CCValAssign::Full,
8188 ArgFlags, CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr,
8189 *this, FirstMaskArgument))
8190 return false;
8191 }
8192 return true;
8193 }
8194
8195 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const8196 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
8197 bool IsVarArg,
8198 const SmallVectorImpl<ISD::OutputArg> &Outs,
8199 const SmallVectorImpl<SDValue> &OutVals,
8200 const SDLoc &DL, SelectionDAG &DAG) const {
8201 const MachineFunction &MF = DAG.getMachineFunction();
8202 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8203
8204 // Stores the assignment of the return value to a location.
8205 SmallVector<CCValAssign, 16> RVLocs;
8206
8207 // Info about the registers and stack slot.
8208 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
8209 *DAG.getContext());
8210
8211 analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
8212 nullptr, CC_RISCV);
8213
8214 if (CallConv == CallingConv::GHC && !RVLocs.empty())
8215 report_fatal_error("GHC functions return void only");
8216
8217 SDValue Glue;
8218 SmallVector<SDValue, 4> RetOps(1, Chain);
8219
8220 // Copy the result values into the output registers.
8221 for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
8222 SDValue Val = OutVals[i];
8223 CCValAssign &VA = RVLocs[i];
8224 assert(VA.isRegLoc() && "Can only return in registers!");
8225
8226 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8227 // Handle returning f64 on RV32D with a soft float ABI.
8228 assert(VA.isRegLoc() && "Expected return via registers");
8229 SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
8230 DAG.getVTList(MVT::i32, MVT::i32), Val);
8231 SDValue Lo = SplitF64.getValue(0);
8232 SDValue Hi = SplitF64.getValue(1);
8233 Register RegLo = VA.getLocReg();
8234 assert(RegLo < RISCV::X31 && "Invalid register pair");
8235 Register RegHi = RegLo + 1;
8236
8237 if (STI.isRegisterReservedByUser(RegLo) ||
8238 STI.isRegisterReservedByUser(RegHi))
8239 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8240 MF.getFunction(),
8241 "Return value register required, but has been reserved."});
8242
8243 Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
8244 Glue = Chain.getValue(1);
8245 RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
8246 Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
8247 Glue = Chain.getValue(1);
8248 RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
8249 } else {
8250 // Handle a 'normal' return.
8251 Val = convertValVTToLocVT(DAG, Val, VA, DL, Subtarget);
8252 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
8253
8254 if (STI.isRegisterReservedByUser(VA.getLocReg()))
8255 MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
8256 MF.getFunction(),
8257 "Return value register required, but has been reserved."});
8258
8259 // Guarantee that all emitted copies are stuck together.
8260 Glue = Chain.getValue(1);
8261 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
8262 }
8263 }
8264
8265 RetOps[0] = Chain; // Update chain.
8266
8267 // Add the glue node if we have it.
8268 if (Glue.getNode()) {
8269 RetOps.push_back(Glue);
8270 }
8271
8272 unsigned RetOpc = RISCVISD::RET_FLAG;
8273 // Interrupt service routines use different return instructions.
8274 const Function &Func = DAG.getMachineFunction().getFunction();
8275 if (Func.hasFnAttribute("interrupt")) {
8276 if (!Func.getReturnType()->isVoidTy())
8277 report_fatal_error(
8278 "Functions with the interrupt attribute must have void return type!");
8279
8280 MachineFunction &MF = DAG.getMachineFunction();
8281 StringRef Kind =
8282 MF.getFunction().getFnAttribute("interrupt").getValueAsString();
8283
8284 if (Kind == "user")
8285 RetOpc = RISCVISD::URET_FLAG;
8286 else if (Kind == "supervisor")
8287 RetOpc = RISCVISD::SRET_FLAG;
8288 else
8289 RetOpc = RISCVISD::MRET_FLAG;
8290 }
8291
8292 return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
8293 }
8294
validateCCReservedRegs(const SmallVectorImpl<std::pair<llvm::Register,llvm::SDValue>> & Regs,MachineFunction & MF) const8295 void RISCVTargetLowering::validateCCReservedRegs(
8296 const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
8297 MachineFunction &MF) const {
8298 const Function &F = MF.getFunction();
8299 const RISCVSubtarget &STI = MF.getSubtarget<RISCVSubtarget>();
8300
8301 if (llvm::any_of(Regs, [&STI](auto Reg) {
8302 return STI.isRegisterReservedByUser(Reg.first);
8303 }))
8304 F.getContext().diagnose(DiagnosticInfoUnsupported{
8305 F, "Argument register required, but has been reserved."});
8306 }
8307
mayBeEmittedAsTailCall(const CallInst * CI) const8308 bool RISCVTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
8309 return CI->isTailCall();
8310 }
8311
getTargetNodeName(unsigned Opcode) const8312 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
8313 #define NODE_NAME_CASE(NODE) \
8314 case RISCVISD::NODE: \
8315 return "RISCVISD::" #NODE;
8316 // clang-format off
8317 switch ((RISCVISD::NodeType)Opcode) {
8318 case RISCVISD::FIRST_NUMBER:
8319 break;
8320 NODE_NAME_CASE(RET_FLAG)
8321 NODE_NAME_CASE(URET_FLAG)
8322 NODE_NAME_CASE(SRET_FLAG)
8323 NODE_NAME_CASE(MRET_FLAG)
8324 NODE_NAME_CASE(CALL)
8325 NODE_NAME_CASE(SELECT_CC)
8326 NODE_NAME_CASE(BR_CC)
8327 NODE_NAME_CASE(BuildPairF64)
8328 NODE_NAME_CASE(SplitF64)
8329 NODE_NAME_CASE(TAIL)
8330 NODE_NAME_CASE(MULHSU)
8331 NODE_NAME_CASE(SLLW)
8332 NODE_NAME_CASE(SRAW)
8333 NODE_NAME_CASE(SRLW)
8334 NODE_NAME_CASE(DIVW)
8335 NODE_NAME_CASE(DIVUW)
8336 NODE_NAME_CASE(REMUW)
8337 NODE_NAME_CASE(ROLW)
8338 NODE_NAME_CASE(RORW)
8339 NODE_NAME_CASE(CLZW)
8340 NODE_NAME_CASE(CTZW)
8341 NODE_NAME_CASE(FSLW)
8342 NODE_NAME_CASE(FSRW)
8343 NODE_NAME_CASE(FSL)
8344 NODE_NAME_CASE(FSR)
8345 NODE_NAME_CASE(FMV_H_X)
8346 NODE_NAME_CASE(FMV_X_ANYEXTH)
8347 NODE_NAME_CASE(FMV_W_X_RV64)
8348 NODE_NAME_CASE(FMV_X_ANYEXTW_RV64)
8349 NODE_NAME_CASE(FCVT_W_RV64)
8350 NODE_NAME_CASE(FCVT_WU_RV64)
8351 NODE_NAME_CASE(READ_CYCLE_WIDE)
8352 NODE_NAME_CASE(GREV)
8353 NODE_NAME_CASE(GREVW)
8354 NODE_NAME_CASE(GORC)
8355 NODE_NAME_CASE(GORCW)
8356 NODE_NAME_CASE(SHFL)
8357 NODE_NAME_CASE(SHFLW)
8358 NODE_NAME_CASE(UNSHFL)
8359 NODE_NAME_CASE(UNSHFLW)
8360 NODE_NAME_CASE(BCOMPRESS)
8361 NODE_NAME_CASE(BCOMPRESSW)
8362 NODE_NAME_CASE(BDECOMPRESS)
8363 NODE_NAME_CASE(BDECOMPRESSW)
8364 NODE_NAME_CASE(VMV_V_X_VL)
8365 NODE_NAME_CASE(VFMV_V_F_VL)
8366 NODE_NAME_CASE(VMV_X_S)
8367 NODE_NAME_CASE(VMV_S_X_VL)
8368 NODE_NAME_CASE(VFMV_S_F_VL)
8369 NODE_NAME_CASE(SPLAT_VECTOR_I64)
8370 NODE_NAME_CASE(SPLAT_VECTOR_SPLIT_I64_VL)
8371 NODE_NAME_CASE(READ_VLENB)
8372 NODE_NAME_CASE(TRUNCATE_VECTOR_VL)
8373 NODE_NAME_CASE(VSLIDEUP_VL)
8374 NODE_NAME_CASE(VSLIDE1UP_VL)
8375 NODE_NAME_CASE(VSLIDEDOWN_VL)
8376 NODE_NAME_CASE(VSLIDE1DOWN_VL)
8377 NODE_NAME_CASE(VID_VL)
8378 NODE_NAME_CASE(VFNCVT_ROD_VL)
8379 NODE_NAME_CASE(VECREDUCE_ADD_VL)
8380 NODE_NAME_CASE(VECREDUCE_UMAX_VL)
8381 NODE_NAME_CASE(VECREDUCE_SMAX_VL)
8382 NODE_NAME_CASE(VECREDUCE_UMIN_VL)
8383 NODE_NAME_CASE(VECREDUCE_SMIN_VL)
8384 NODE_NAME_CASE(VECREDUCE_AND_VL)
8385 NODE_NAME_CASE(VECREDUCE_OR_VL)
8386 NODE_NAME_CASE(VECREDUCE_XOR_VL)
8387 NODE_NAME_CASE(VECREDUCE_FADD_VL)
8388 NODE_NAME_CASE(VECREDUCE_SEQ_FADD_VL)
8389 NODE_NAME_CASE(VECREDUCE_FMIN_VL)
8390 NODE_NAME_CASE(VECREDUCE_FMAX_VL)
8391 NODE_NAME_CASE(ADD_VL)
8392 NODE_NAME_CASE(AND_VL)
8393 NODE_NAME_CASE(MUL_VL)
8394 NODE_NAME_CASE(OR_VL)
8395 NODE_NAME_CASE(SDIV_VL)
8396 NODE_NAME_CASE(SHL_VL)
8397 NODE_NAME_CASE(SREM_VL)
8398 NODE_NAME_CASE(SRA_VL)
8399 NODE_NAME_CASE(SRL_VL)
8400 NODE_NAME_CASE(SUB_VL)
8401 NODE_NAME_CASE(UDIV_VL)
8402 NODE_NAME_CASE(UREM_VL)
8403 NODE_NAME_CASE(XOR_VL)
8404 NODE_NAME_CASE(SADDSAT_VL)
8405 NODE_NAME_CASE(UADDSAT_VL)
8406 NODE_NAME_CASE(SSUBSAT_VL)
8407 NODE_NAME_CASE(USUBSAT_VL)
8408 NODE_NAME_CASE(FADD_VL)
8409 NODE_NAME_CASE(FSUB_VL)
8410 NODE_NAME_CASE(FMUL_VL)
8411 NODE_NAME_CASE(FDIV_VL)
8412 NODE_NAME_CASE(FNEG_VL)
8413 NODE_NAME_CASE(FABS_VL)
8414 NODE_NAME_CASE(FSQRT_VL)
8415 NODE_NAME_CASE(FMA_VL)
8416 NODE_NAME_CASE(FCOPYSIGN_VL)
8417 NODE_NAME_CASE(SMIN_VL)
8418 NODE_NAME_CASE(SMAX_VL)
8419 NODE_NAME_CASE(UMIN_VL)
8420 NODE_NAME_CASE(UMAX_VL)
8421 NODE_NAME_CASE(FMINNUM_VL)
8422 NODE_NAME_CASE(FMAXNUM_VL)
8423 NODE_NAME_CASE(MULHS_VL)
8424 NODE_NAME_CASE(MULHU_VL)
8425 NODE_NAME_CASE(FP_TO_SINT_VL)
8426 NODE_NAME_CASE(FP_TO_UINT_VL)
8427 NODE_NAME_CASE(SINT_TO_FP_VL)
8428 NODE_NAME_CASE(UINT_TO_FP_VL)
8429 NODE_NAME_CASE(FP_EXTEND_VL)
8430 NODE_NAME_CASE(FP_ROUND_VL)
8431 NODE_NAME_CASE(VWMUL_VL)
8432 NODE_NAME_CASE(VWMULU_VL)
8433 NODE_NAME_CASE(SETCC_VL)
8434 NODE_NAME_CASE(VSELECT_VL)
8435 NODE_NAME_CASE(VMAND_VL)
8436 NODE_NAME_CASE(VMOR_VL)
8437 NODE_NAME_CASE(VMXOR_VL)
8438 NODE_NAME_CASE(VMCLR_VL)
8439 NODE_NAME_CASE(VMSET_VL)
8440 NODE_NAME_CASE(VRGATHER_VX_VL)
8441 NODE_NAME_CASE(VRGATHER_VV_VL)
8442 NODE_NAME_CASE(VRGATHEREI16_VV_VL)
8443 NODE_NAME_CASE(VSEXT_VL)
8444 NODE_NAME_CASE(VZEXT_VL)
8445 NODE_NAME_CASE(VPOPC_VL)
8446 NODE_NAME_CASE(VLE_VL)
8447 NODE_NAME_CASE(VSE_VL)
8448 NODE_NAME_CASE(READ_CSR)
8449 NODE_NAME_CASE(WRITE_CSR)
8450 NODE_NAME_CASE(SWAP_CSR)
8451 }
8452 // clang-format on
8453 return nullptr;
8454 #undef NODE_NAME_CASE
8455 }
8456
8457 /// getConstraintType - Given a constraint letter, return the type of
8458 /// constraint it is for this target.
8459 RISCVTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const8460 RISCVTargetLowering::getConstraintType(StringRef Constraint) const {
8461 if (Constraint.size() == 1) {
8462 switch (Constraint[0]) {
8463 default:
8464 break;
8465 case 'f':
8466 case 'v':
8467 return C_RegisterClass;
8468 case 'I':
8469 case 'J':
8470 case 'K':
8471 return C_Immediate;
8472 case 'A':
8473 return C_Memory;
8474 case 'S': // A symbolic address
8475 return C_Other;
8476 }
8477 }
8478 return TargetLowering::getConstraintType(Constraint);
8479 }
8480
8481 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const8482 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
8483 StringRef Constraint,
8484 MVT VT) const {
8485 // First, see if this is a constraint that directly corresponds to a
8486 // RISCV register class.
8487 if (Constraint.size() == 1) {
8488 switch (Constraint[0]) {
8489 case 'r':
8490 return std::make_pair(0U, &RISCV::GPRRegClass);
8491 case 'f':
8492 if (Subtarget.hasStdExtZfh() && VT == MVT::f16)
8493 return std::make_pair(0U, &RISCV::FPR16RegClass);
8494 if (Subtarget.hasStdExtF() && VT == MVT::f32)
8495 return std::make_pair(0U, &RISCV::FPR32RegClass);
8496 if (Subtarget.hasStdExtD() && VT == MVT::f64)
8497 return std::make_pair(0U, &RISCV::FPR64RegClass);
8498 break;
8499 case 'v':
8500 for (const auto *RC :
8501 {&RISCV::VMRegClass, &RISCV::VRRegClass, &RISCV::VRM2RegClass,
8502 &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8503 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy))
8504 return std::make_pair(0U, RC);
8505 }
8506 break;
8507 default:
8508 break;
8509 }
8510 }
8511
8512 // Clang will correctly decode the usage of register name aliases into their
8513 // official names. However, other frontends like `rustc` do not. This allows
8514 // users of these frontends to use the ABI names for registers in LLVM-style
8515 // register constraints.
8516 unsigned XRegFromAlias = StringSwitch<unsigned>(Constraint.lower())
8517 .Case("{zero}", RISCV::X0)
8518 .Case("{ra}", RISCV::X1)
8519 .Case("{sp}", RISCV::X2)
8520 .Case("{gp}", RISCV::X3)
8521 .Case("{tp}", RISCV::X4)
8522 .Case("{t0}", RISCV::X5)
8523 .Case("{t1}", RISCV::X6)
8524 .Case("{t2}", RISCV::X7)
8525 .Cases("{s0}", "{fp}", RISCV::X8)
8526 .Case("{s1}", RISCV::X9)
8527 .Case("{a0}", RISCV::X10)
8528 .Case("{a1}", RISCV::X11)
8529 .Case("{a2}", RISCV::X12)
8530 .Case("{a3}", RISCV::X13)
8531 .Case("{a4}", RISCV::X14)
8532 .Case("{a5}", RISCV::X15)
8533 .Case("{a6}", RISCV::X16)
8534 .Case("{a7}", RISCV::X17)
8535 .Case("{s2}", RISCV::X18)
8536 .Case("{s3}", RISCV::X19)
8537 .Case("{s4}", RISCV::X20)
8538 .Case("{s5}", RISCV::X21)
8539 .Case("{s6}", RISCV::X22)
8540 .Case("{s7}", RISCV::X23)
8541 .Case("{s8}", RISCV::X24)
8542 .Case("{s9}", RISCV::X25)
8543 .Case("{s10}", RISCV::X26)
8544 .Case("{s11}", RISCV::X27)
8545 .Case("{t3}", RISCV::X28)
8546 .Case("{t4}", RISCV::X29)
8547 .Case("{t5}", RISCV::X30)
8548 .Case("{t6}", RISCV::X31)
8549 .Default(RISCV::NoRegister);
8550 if (XRegFromAlias != RISCV::NoRegister)
8551 return std::make_pair(XRegFromAlias, &RISCV::GPRRegClass);
8552
8553 // Since TargetLowering::getRegForInlineAsmConstraint uses the name of the
8554 // TableGen record rather than the AsmName to choose registers for InlineAsm
8555 // constraints, plus we want to match those names to the widest floating point
8556 // register type available, manually select floating point registers here.
8557 //
8558 // The second case is the ABI name of the register, so that frontends can also
8559 // use the ABI names in register constraint lists.
8560 if (Subtarget.hasStdExtF()) {
8561 unsigned FReg = StringSwitch<unsigned>(Constraint.lower())
8562 .Cases("{f0}", "{ft0}", RISCV::F0_F)
8563 .Cases("{f1}", "{ft1}", RISCV::F1_F)
8564 .Cases("{f2}", "{ft2}", RISCV::F2_F)
8565 .Cases("{f3}", "{ft3}", RISCV::F3_F)
8566 .Cases("{f4}", "{ft4}", RISCV::F4_F)
8567 .Cases("{f5}", "{ft5}", RISCV::F5_F)
8568 .Cases("{f6}", "{ft6}", RISCV::F6_F)
8569 .Cases("{f7}", "{ft7}", RISCV::F7_F)
8570 .Cases("{f8}", "{fs0}", RISCV::F8_F)
8571 .Cases("{f9}", "{fs1}", RISCV::F9_F)
8572 .Cases("{f10}", "{fa0}", RISCV::F10_F)
8573 .Cases("{f11}", "{fa1}", RISCV::F11_F)
8574 .Cases("{f12}", "{fa2}", RISCV::F12_F)
8575 .Cases("{f13}", "{fa3}", RISCV::F13_F)
8576 .Cases("{f14}", "{fa4}", RISCV::F14_F)
8577 .Cases("{f15}", "{fa5}", RISCV::F15_F)
8578 .Cases("{f16}", "{fa6}", RISCV::F16_F)
8579 .Cases("{f17}", "{fa7}", RISCV::F17_F)
8580 .Cases("{f18}", "{fs2}", RISCV::F18_F)
8581 .Cases("{f19}", "{fs3}", RISCV::F19_F)
8582 .Cases("{f20}", "{fs4}", RISCV::F20_F)
8583 .Cases("{f21}", "{fs5}", RISCV::F21_F)
8584 .Cases("{f22}", "{fs6}", RISCV::F22_F)
8585 .Cases("{f23}", "{fs7}", RISCV::F23_F)
8586 .Cases("{f24}", "{fs8}", RISCV::F24_F)
8587 .Cases("{f25}", "{fs9}", RISCV::F25_F)
8588 .Cases("{f26}", "{fs10}", RISCV::F26_F)
8589 .Cases("{f27}", "{fs11}", RISCV::F27_F)
8590 .Cases("{f28}", "{ft8}", RISCV::F28_F)
8591 .Cases("{f29}", "{ft9}", RISCV::F29_F)
8592 .Cases("{f30}", "{ft10}", RISCV::F30_F)
8593 .Cases("{f31}", "{ft11}", RISCV::F31_F)
8594 .Default(RISCV::NoRegister);
8595 if (FReg != RISCV::NoRegister) {
8596 assert(RISCV::F0_F <= FReg && FReg <= RISCV::F31_F && "Unknown fp-reg");
8597 if (Subtarget.hasStdExtD()) {
8598 unsigned RegNo = FReg - RISCV::F0_F;
8599 unsigned DReg = RISCV::F0_D + RegNo;
8600 return std::make_pair(DReg, &RISCV::FPR64RegClass);
8601 }
8602 return std::make_pair(FReg, &RISCV::FPR32RegClass);
8603 }
8604 }
8605
8606 if (Subtarget.hasStdExtV()) {
8607 Register VReg = StringSwitch<Register>(Constraint.lower())
8608 .Case("{v0}", RISCV::V0)
8609 .Case("{v1}", RISCV::V1)
8610 .Case("{v2}", RISCV::V2)
8611 .Case("{v3}", RISCV::V3)
8612 .Case("{v4}", RISCV::V4)
8613 .Case("{v5}", RISCV::V5)
8614 .Case("{v6}", RISCV::V6)
8615 .Case("{v7}", RISCV::V7)
8616 .Case("{v8}", RISCV::V8)
8617 .Case("{v9}", RISCV::V9)
8618 .Case("{v10}", RISCV::V10)
8619 .Case("{v11}", RISCV::V11)
8620 .Case("{v12}", RISCV::V12)
8621 .Case("{v13}", RISCV::V13)
8622 .Case("{v14}", RISCV::V14)
8623 .Case("{v15}", RISCV::V15)
8624 .Case("{v16}", RISCV::V16)
8625 .Case("{v17}", RISCV::V17)
8626 .Case("{v18}", RISCV::V18)
8627 .Case("{v19}", RISCV::V19)
8628 .Case("{v20}", RISCV::V20)
8629 .Case("{v21}", RISCV::V21)
8630 .Case("{v22}", RISCV::V22)
8631 .Case("{v23}", RISCV::V23)
8632 .Case("{v24}", RISCV::V24)
8633 .Case("{v25}", RISCV::V25)
8634 .Case("{v26}", RISCV::V26)
8635 .Case("{v27}", RISCV::V27)
8636 .Case("{v28}", RISCV::V28)
8637 .Case("{v29}", RISCV::V29)
8638 .Case("{v30}", RISCV::V30)
8639 .Case("{v31}", RISCV::V31)
8640 .Default(RISCV::NoRegister);
8641 if (VReg != RISCV::NoRegister) {
8642 if (TRI->isTypeLegalForClass(RISCV::VMRegClass, VT.SimpleTy))
8643 return std::make_pair(VReg, &RISCV::VMRegClass);
8644 if (TRI->isTypeLegalForClass(RISCV::VRRegClass, VT.SimpleTy))
8645 return std::make_pair(VReg, &RISCV::VRRegClass);
8646 for (const auto *RC :
8647 {&RISCV::VRM2RegClass, &RISCV::VRM4RegClass, &RISCV::VRM8RegClass}) {
8648 if (TRI->isTypeLegalForClass(*RC, VT.SimpleTy)) {
8649 VReg = TRI->getMatchingSuperReg(VReg, RISCV::sub_vrm1_0, RC);
8650 return std::make_pair(VReg, RC);
8651 }
8652 }
8653 }
8654 }
8655
8656 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
8657 }
8658
8659 unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode) const8660 RISCVTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
8661 // Currently only support length 1 constraints.
8662 if (ConstraintCode.size() == 1) {
8663 switch (ConstraintCode[0]) {
8664 case 'A':
8665 return InlineAsm::Constraint_A;
8666 default:
8667 break;
8668 }
8669 }
8670
8671 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
8672 }
8673
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const8674 void RISCVTargetLowering::LowerAsmOperandForConstraint(
8675 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
8676 SelectionDAG &DAG) const {
8677 // Currently only support length 1 constraints.
8678 if (Constraint.length() == 1) {
8679 switch (Constraint[0]) {
8680 case 'I':
8681 // Validate & create a 12-bit signed immediate operand.
8682 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8683 uint64_t CVal = C->getSExtValue();
8684 if (isInt<12>(CVal))
8685 Ops.push_back(
8686 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8687 }
8688 return;
8689 case 'J':
8690 // Validate & create an integer zero operand.
8691 if (auto *C = dyn_cast<ConstantSDNode>(Op))
8692 if (C->getZExtValue() == 0)
8693 Ops.push_back(
8694 DAG.getTargetConstant(0, SDLoc(Op), Subtarget.getXLenVT()));
8695 return;
8696 case 'K':
8697 // Validate & create a 5-bit unsigned immediate operand.
8698 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
8699 uint64_t CVal = C->getZExtValue();
8700 if (isUInt<5>(CVal))
8701 Ops.push_back(
8702 DAG.getTargetConstant(CVal, SDLoc(Op), Subtarget.getXLenVT()));
8703 }
8704 return;
8705 case 'S':
8706 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8707 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
8708 GA->getValueType(0)));
8709 } else if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
8710 Ops.push_back(DAG.getTargetBlockAddress(BA->getBlockAddress(),
8711 BA->getValueType(0)));
8712 }
8713 return;
8714 default:
8715 break;
8716 }
8717 }
8718 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8719 }
8720
emitLeadingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const8721 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
8722 Instruction *Inst,
8723 AtomicOrdering Ord) const {
8724 if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
8725 return Builder.CreateFence(Ord);
8726 if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
8727 return Builder.CreateFence(AtomicOrdering::Release);
8728 return nullptr;
8729 }
8730
emitTrailingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const8731 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
8732 Instruction *Inst,
8733 AtomicOrdering Ord) const {
8734 if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
8735 return Builder.CreateFence(AtomicOrdering::Acquire);
8736 return nullptr;
8737 }
8738
8739 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const8740 RISCVTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
8741 // atomicrmw {fadd,fsub} must be expanded to use compare-exchange, as floating
8742 // point operations can't be used in an lr/sc sequence without breaking the
8743 // forward-progress guarantee.
8744 if (AI->isFloatingPointOperation())
8745 return AtomicExpansionKind::CmpXChg;
8746
8747 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
8748 if (Size == 8 || Size == 16)
8749 return AtomicExpansionKind::MaskedIntrinsic;
8750 return AtomicExpansionKind::None;
8751 }
8752
8753 static Intrinsic::ID
getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen,AtomicRMWInst::BinOp BinOp)8754 getIntrinsicForMaskedAtomicRMWBinOp(unsigned XLen, AtomicRMWInst::BinOp BinOp) {
8755 if (XLen == 32) {
8756 switch (BinOp) {
8757 default:
8758 llvm_unreachable("Unexpected AtomicRMW BinOp");
8759 case AtomicRMWInst::Xchg:
8760 return Intrinsic::riscv_masked_atomicrmw_xchg_i32;
8761 case AtomicRMWInst::Add:
8762 return Intrinsic::riscv_masked_atomicrmw_add_i32;
8763 case AtomicRMWInst::Sub:
8764 return Intrinsic::riscv_masked_atomicrmw_sub_i32;
8765 case AtomicRMWInst::Nand:
8766 return Intrinsic::riscv_masked_atomicrmw_nand_i32;
8767 case AtomicRMWInst::Max:
8768 return Intrinsic::riscv_masked_atomicrmw_max_i32;
8769 case AtomicRMWInst::Min:
8770 return Intrinsic::riscv_masked_atomicrmw_min_i32;
8771 case AtomicRMWInst::UMax:
8772 return Intrinsic::riscv_masked_atomicrmw_umax_i32;
8773 case AtomicRMWInst::UMin:
8774 return Intrinsic::riscv_masked_atomicrmw_umin_i32;
8775 }
8776 }
8777
8778 if (XLen == 64) {
8779 switch (BinOp) {
8780 default:
8781 llvm_unreachable("Unexpected AtomicRMW BinOp");
8782 case AtomicRMWInst::Xchg:
8783 return Intrinsic::riscv_masked_atomicrmw_xchg_i64;
8784 case AtomicRMWInst::Add:
8785 return Intrinsic::riscv_masked_atomicrmw_add_i64;
8786 case AtomicRMWInst::Sub:
8787 return Intrinsic::riscv_masked_atomicrmw_sub_i64;
8788 case AtomicRMWInst::Nand:
8789 return Intrinsic::riscv_masked_atomicrmw_nand_i64;
8790 case AtomicRMWInst::Max:
8791 return Intrinsic::riscv_masked_atomicrmw_max_i64;
8792 case AtomicRMWInst::Min:
8793 return Intrinsic::riscv_masked_atomicrmw_min_i64;
8794 case AtomicRMWInst::UMax:
8795 return Intrinsic::riscv_masked_atomicrmw_umax_i64;
8796 case AtomicRMWInst::UMin:
8797 return Intrinsic::riscv_masked_atomicrmw_umin_i64;
8798 }
8799 }
8800
8801 llvm_unreachable("Unexpected XLen\n");
8802 }
8803
emitMaskedAtomicRMWIntrinsic(IRBuilderBase & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord) const8804 Value *RISCVTargetLowering::emitMaskedAtomicRMWIntrinsic(
8805 IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
8806 Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
8807 unsigned XLen = Subtarget.getXLen();
8808 Value *Ordering =
8809 Builder.getIntN(XLen, static_cast<uint64_t>(AI->getOrdering()));
8810 Type *Tys[] = {AlignedAddr->getType()};
8811 Function *LrwOpScwLoop = Intrinsic::getDeclaration(
8812 AI->getModule(),
8813 getIntrinsicForMaskedAtomicRMWBinOp(XLen, AI->getOperation()), Tys);
8814
8815 if (XLen == 64) {
8816 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8817 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8818 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8819 }
8820
8821 Value *Result;
8822
8823 // Must pass the shift amount needed to sign extend the loaded value prior
8824 // to performing a signed comparison for min/max. ShiftAmt is the number of
8825 // bits to shift the value into position. Pass XLen-ShiftAmt-ValWidth, which
8826 // is the number of bits to left+right shift the value in order to
8827 // sign-extend.
8828 if (AI->getOperation() == AtomicRMWInst::Min ||
8829 AI->getOperation() == AtomicRMWInst::Max) {
8830 const DataLayout &DL = AI->getModule()->getDataLayout();
8831 unsigned ValWidth =
8832 DL.getTypeStoreSizeInBits(AI->getValOperand()->getType());
8833 Value *SextShamt =
8834 Builder.CreateSub(Builder.getIntN(XLen, XLen - ValWidth), ShiftAmt);
8835 Result = Builder.CreateCall(LrwOpScwLoop,
8836 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8837 } else {
8838 Result =
8839 Builder.CreateCall(LrwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8840 }
8841
8842 if (XLen == 64)
8843 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8844 return Result;
8845 }
8846
8847 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * CI) const8848 RISCVTargetLowering::shouldExpandAtomicCmpXchgInIR(
8849 AtomicCmpXchgInst *CI) const {
8850 unsigned Size = CI->getCompareOperand()->getType()->getPrimitiveSizeInBits();
8851 if (Size == 8 || Size == 16)
8852 return AtomicExpansionKind::MaskedIntrinsic;
8853 return AtomicExpansionKind::None;
8854 }
8855
emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord) const8856 Value *RISCVTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
8857 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
8858 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
8859 unsigned XLen = Subtarget.getXLen();
8860 Value *Ordering = Builder.getIntN(XLen, static_cast<uint64_t>(Ord));
8861 Intrinsic::ID CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i32;
8862 if (XLen == 64) {
8863 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8864 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8865 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8866 CmpXchgIntrID = Intrinsic::riscv_masked_cmpxchg_i64;
8867 }
8868 Type *Tys[] = {AlignedAddr->getType()};
8869 Function *MaskedCmpXchg =
8870 Intrinsic::getDeclaration(CI->getModule(), CmpXchgIntrID, Tys);
8871 Value *Result = Builder.CreateCall(
8872 MaskedCmpXchg, {AlignedAddr, CmpVal, NewVal, Mask, Ordering});
8873 if (XLen == 64)
8874 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8875 return Result;
8876 }
8877
shouldRemoveExtendFromGSIndex(EVT VT) const8878 bool RISCVTargetLowering::shouldRemoveExtendFromGSIndex(EVT VT) const {
8879 return false;
8880 }
8881
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const8882 bool RISCVTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
8883 EVT VT) const {
8884 VT = VT.getScalarType();
8885
8886 if (!VT.isSimple())
8887 return false;
8888
8889 switch (VT.getSimpleVT().SimpleTy) {
8890 case MVT::f16:
8891 return Subtarget.hasStdExtZfh();
8892 case MVT::f32:
8893 return Subtarget.hasStdExtF();
8894 case MVT::f64:
8895 return Subtarget.hasStdExtD();
8896 default:
8897 break;
8898 }
8899
8900 return false;
8901 }
8902
getExceptionPointerRegister(const Constant * PersonalityFn) const8903 Register RISCVTargetLowering::getExceptionPointerRegister(
8904 const Constant *PersonalityFn) const {
8905 return RISCV::X10;
8906 }
8907
getExceptionSelectorRegister(const Constant * PersonalityFn) const8908 Register RISCVTargetLowering::getExceptionSelectorRegister(
8909 const Constant *PersonalityFn) const {
8910 return RISCV::X11;
8911 }
8912
shouldExtendTypeInLibCall(EVT Type) const8913 bool RISCVTargetLowering::shouldExtendTypeInLibCall(EVT Type) const {
8914 // Return false to suppress the unnecessary extensions if the LibCall
8915 // arguments or return value is f32 type for LP64 ABI.
8916 RISCVABI::ABI ABI = Subtarget.getTargetABI();
8917 if (ABI == RISCVABI::ABI_LP64 && (Type == MVT::f32))
8918 return false;
8919
8920 return true;
8921 }
8922
shouldSignExtendTypeInLibCall(EVT Type,bool IsSigned) const8923 bool RISCVTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
8924 if (Subtarget.is64Bit() && Type == MVT::i32)
8925 return true;
8926
8927 return IsSigned;
8928 }
8929
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C) const8930 bool RISCVTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
8931 SDValue C) const {
8932 // Check integral scalar types.
8933 if (VT.isScalarInteger()) {
8934 // Omit the optimization if the sub target has the M extension and the data
8935 // size exceeds XLen.
8936 if (Subtarget.hasStdExtM() && VT.getSizeInBits() > Subtarget.getXLen())
8937 return false;
8938 if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
8939 // Break the MUL to a SLLI and an ADD/SUB.
8940 const APInt &Imm = ConstNode->getAPIntValue();
8941 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
8942 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
8943 return true;
8944 // Omit the following optimization if the sub target has the M extension
8945 // and the data size >= XLen.
8946 if (Subtarget.hasStdExtM() && VT.getSizeInBits() >= Subtarget.getXLen())
8947 return false;
8948 // Break the MUL to two SLLI instructions and an ADD/SUB, if Imm needs
8949 // a pair of LUI/ADDI.
8950 if (!Imm.isSignedIntN(12) && Imm.countTrailingZeros() < 12) {
8951 APInt ImmS = Imm.ashr(Imm.countTrailingZeros());
8952 if ((ImmS + 1).isPowerOf2() || (ImmS - 1).isPowerOf2() ||
8953 (1 - ImmS).isPowerOf2())
8954 return true;
8955 }
8956 }
8957 }
8958
8959 return false;
8960 }
8961
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,Align Alignment,MachineMemOperand::Flags Flags,bool * Fast) const8962 bool RISCVTargetLowering::allowsMisalignedMemoryAccesses(
8963 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
8964 bool *Fast) const {
8965 if (!VT.isVector())
8966 return false;
8967
8968 EVT ElemVT = VT.getVectorElementType();
8969 if (Alignment >= ElemVT.getStoreSize()) {
8970 if (Fast)
8971 *Fast = true;
8972 return true;
8973 }
8974
8975 return false;
8976 }
8977
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,Optional<CallingConv::ID> CC) const8978 bool RISCVTargetLowering::splitValueIntoRegisterParts(
8979 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
8980 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
8981 bool IsABIRegCopy = CC.hasValue();
8982 EVT ValueVT = Val.getValueType();
8983 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
8984 // Cast the f16 to i16, extend to i32, pad with ones to make a float nan,
8985 // and cast to f32.
8986 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Val);
8987 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Val);
8988 Val = DAG.getNode(ISD::OR, DL, MVT::i32, Val,
8989 DAG.getConstant(0xFFFF0000, DL, MVT::i32));
8990 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val);
8991 Parts[0] = Val;
8992 return true;
8993 }
8994
8995 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
8996 LLVMContext &Context = *DAG.getContext();
8997 EVT ValueEltVT = ValueVT.getVectorElementType();
8998 EVT PartEltVT = PartVT.getVectorElementType();
8999 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9000 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9001 if (PartVTBitSize % ValueVTBitSize == 0) {
9002 // If the element types are different, bitcast to the same element type of
9003 // PartVT first.
9004 if (ValueEltVT != PartEltVT) {
9005 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9006 assert(Count != 0 && "The number of element should not be zero.");
9007 EVT SameEltTypeVT =
9008 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9009 Val = DAG.getNode(ISD::BITCAST, DL, SameEltTypeVT, Val);
9010 }
9011 Val = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
9012 Val, DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9013 Parts[0] = Val;
9014 return true;
9015 }
9016 }
9017 return false;
9018 }
9019
joinRegisterPartsIntoValue(SelectionDAG & DAG,const SDLoc & DL,const SDValue * Parts,unsigned NumParts,MVT PartVT,EVT ValueVT,Optional<CallingConv::ID> CC) const9020 SDValue RISCVTargetLowering::joinRegisterPartsIntoValue(
9021 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
9022 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
9023 bool IsABIRegCopy = CC.hasValue();
9024 if (IsABIRegCopy && ValueVT == MVT::f16 && PartVT == MVT::f32) {
9025 SDValue Val = Parts[0];
9026
9027 // Cast the f32 to i32, truncate to i16, and cast back to f16.
9028 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Val);
9029 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Val);
9030 Val = DAG.getNode(ISD::BITCAST, DL, MVT::f16, Val);
9031 return Val;
9032 }
9033
9034 if (ValueVT.isScalableVector() && PartVT.isScalableVector()) {
9035 LLVMContext &Context = *DAG.getContext();
9036 SDValue Val = Parts[0];
9037 EVT ValueEltVT = ValueVT.getVectorElementType();
9038 EVT PartEltVT = PartVT.getVectorElementType();
9039 unsigned ValueVTBitSize = ValueVT.getSizeInBits().getKnownMinSize();
9040 unsigned PartVTBitSize = PartVT.getSizeInBits().getKnownMinSize();
9041 if (PartVTBitSize % ValueVTBitSize == 0) {
9042 EVT SameEltTypeVT = ValueVT;
9043 // If the element types are different, convert it to the same element type
9044 // of PartVT.
9045 if (ValueEltVT != PartEltVT) {
9046 unsigned Count = ValueVTBitSize / PartEltVT.getSizeInBits();
9047 assert(Count != 0 && "The number of element should not be zero.");
9048 SameEltTypeVT =
9049 EVT::getVectorVT(Context, PartEltVT, Count, /*IsScalable=*/true);
9050 }
9051 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SameEltTypeVT, Val,
9052 DAG.getConstant(0, DL, Subtarget.getXLenVT()));
9053 if (ValueEltVT != PartEltVT)
9054 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
9055 return Val;
9056 }
9057 }
9058 return SDValue();
9059 }
9060
9061 #define GET_REGISTER_MATCHER
9062 #include "RISCVGenAsmMatcher.inc"
9063
9064 Register
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const9065 RISCVTargetLowering::getRegisterByName(const char *RegName, LLT VT,
9066 const MachineFunction &MF) const {
9067 Register Reg = MatchRegisterAltName(RegName);
9068 if (Reg == RISCV::NoRegister)
9069 Reg = MatchRegisterName(RegName);
9070 if (Reg == RISCV::NoRegister)
9071 report_fatal_error(
9072 Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
9073 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9074 if (!ReservedRegs.test(Reg) && !Subtarget.isRegisterReservedByUser(Reg))
9075 report_fatal_error(Twine("Trying to obtain non-reserved register \"" +
9076 StringRef(RegName) + "\"."));
9077 return Reg;
9078 }
9079
9080 namespace llvm {
9081 namespace RISCVVIntrinsicsTable {
9082
9083 #define GET_RISCVVIntrinsicsTable_IMPL
9084 #include "RISCVGenSearchableTables.inc"
9085
9086 } // namespace RISCVVIntrinsicsTable
9087
9088 } // namespace llvm
9089