1 //===- RDFGraph.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF).
10 //
11 #include "llvm/CodeGen/RDFGraph.h"
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/CodeGen/MachineBasicBlock.h"
16 #include "llvm/CodeGen/MachineDominanceFrontier.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/RDFRegisters.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <cstring>
36 #include <iterator>
37 #include <set>
38 #include <utility>
39 #include <vector>
40
41 using namespace llvm;
42 using namespace rdf;
43
44 // Printing functions. Have them here first, so that the rest of the code
45 // can use them.
46 namespace llvm {
47 namespace rdf {
48
operator <<(raw_ostream & OS,const PrintLaneMaskOpt & P)49 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
50 if (!P.Mask.all())
51 OS << ':' << PrintLaneMask(P.Mask);
52 return OS;
53 }
54
operator <<(raw_ostream & OS,const Print<RegisterRef> & P)55 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
56 auto &TRI = P.G.getTRI();
57 if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
58 OS << TRI.getName(P.Obj.Reg);
59 else
60 OS << '#' << P.Obj.Reg;
61 OS << PrintLaneMaskOpt(P.Obj.Mask);
62 return OS;
63 }
64
operator <<(raw_ostream & OS,const Print<NodeId> & P)65 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
66 auto NA = P.G.addr<NodeBase*>(P.Obj);
67 uint16_t Attrs = NA.Addr->getAttrs();
68 uint16_t Kind = NodeAttrs::kind(Attrs);
69 uint16_t Flags = NodeAttrs::flags(Attrs);
70 switch (NodeAttrs::type(Attrs)) {
71 case NodeAttrs::Code:
72 switch (Kind) {
73 case NodeAttrs::Func: OS << 'f'; break;
74 case NodeAttrs::Block: OS << 'b'; break;
75 case NodeAttrs::Stmt: OS << 's'; break;
76 case NodeAttrs::Phi: OS << 'p'; break;
77 default: OS << "c?"; break;
78 }
79 break;
80 case NodeAttrs::Ref:
81 if (Flags & NodeAttrs::Undef)
82 OS << '/';
83 if (Flags & NodeAttrs::Dead)
84 OS << '\\';
85 if (Flags & NodeAttrs::Preserving)
86 OS << '+';
87 if (Flags & NodeAttrs::Clobbering)
88 OS << '~';
89 switch (Kind) {
90 case NodeAttrs::Use: OS << 'u'; break;
91 case NodeAttrs::Def: OS << 'd'; break;
92 case NodeAttrs::Block: OS << 'b'; break;
93 default: OS << "r?"; break;
94 }
95 break;
96 default:
97 OS << '?';
98 break;
99 }
100 OS << P.Obj;
101 if (Flags & NodeAttrs::Shadow)
102 OS << '"';
103 return OS;
104 }
105
printRefHeader(raw_ostream & OS,const NodeAddr<RefNode * > RA,const DataFlowGraph & G)106 static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
107 const DataFlowGraph &G) {
108 OS << Print<NodeId>(RA.Id, G) << '<'
109 << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
110 if (RA.Addr->getFlags() & NodeAttrs::Fixed)
111 OS << '!';
112 }
113
operator <<(raw_ostream & OS,const Print<NodeAddr<DefNode * >> & P)114 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
115 printRefHeader(OS, P.Obj, P.G);
116 OS << '(';
117 if (NodeId N = P.Obj.Addr->getReachingDef())
118 OS << Print<NodeId>(N, P.G);
119 OS << ',';
120 if (NodeId N = P.Obj.Addr->getReachedDef())
121 OS << Print<NodeId>(N, P.G);
122 OS << ',';
123 if (NodeId N = P.Obj.Addr->getReachedUse())
124 OS << Print<NodeId>(N, P.G);
125 OS << "):";
126 if (NodeId N = P.Obj.Addr->getSibling())
127 OS << Print<NodeId>(N, P.G);
128 return OS;
129 }
130
operator <<(raw_ostream & OS,const Print<NodeAddr<UseNode * >> & P)131 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
132 printRefHeader(OS, P.Obj, P.G);
133 OS << '(';
134 if (NodeId N = P.Obj.Addr->getReachingDef())
135 OS << Print<NodeId>(N, P.G);
136 OS << "):";
137 if (NodeId N = P.Obj.Addr->getSibling())
138 OS << Print<NodeId>(N, P.G);
139 return OS;
140 }
141
operator <<(raw_ostream & OS,const Print<NodeAddr<PhiUseNode * >> & P)142 raw_ostream &operator<< (raw_ostream &OS,
143 const Print<NodeAddr<PhiUseNode*>> &P) {
144 printRefHeader(OS, P.Obj, P.G);
145 OS << '(';
146 if (NodeId N = P.Obj.Addr->getReachingDef())
147 OS << Print<NodeId>(N, P.G);
148 OS << ',';
149 if (NodeId N = P.Obj.Addr->getPredecessor())
150 OS << Print<NodeId>(N, P.G);
151 OS << "):";
152 if (NodeId N = P.Obj.Addr->getSibling())
153 OS << Print<NodeId>(N, P.G);
154 return OS;
155 }
156
operator <<(raw_ostream & OS,const Print<NodeAddr<RefNode * >> & P)157 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
158 switch (P.Obj.Addr->getKind()) {
159 case NodeAttrs::Def:
160 OS << PrintNode<DefNode*>(P.Obj, P.G);
161 break;
162 case NodeAttrs::Use:
163 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
164 OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
165 else
166 OS << PrintNode<UseNode*>(P.Obj, P.G);
167 break;
168 }
169 return OS;
170 }
171
operator <<(raw_ostream & OS,const Print<NodeList> & P)172 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
173 unsigned N = P.Obj.size();
174 for (auto I : P.Obj) {
175 OS << Print<NodeId>(I.Id, P.G);
176 if (--N)
177 OS << ' ';
178 }
179 return OS;
180 }
181
operator <<(raw_ostream & OS,const Print<NodeSet> & P)182 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
183 unsigned N = P.Obj.size();
184 for (auto I : P.Obj) {
185 OS << Print<NodeId>(I, P.G);
186 if (--N)
187 OS << ' ';
188 }
189 return OS;
190 }
191
192 namespace {
193
194 template <typename T>
195 struct PrintListV {
PrintListVllvm::rdf::__anonf5887b320111::PrintListV196 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
197
198 using Type = T;
199 const NodeList &List;
200 const DataFlowGraph &G;
201 };
202
203 template <typename T>
operator <<(raw_ostream & OS,const PrintListV<T> & P)204 raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
205 unsigned N = P.List.size();
206 for (NodeAddr<T> A : P.List) {
207 OS << PrintNode<T>(A, P.G);
208 if (--N)
209 OS << ", ";
210 }
211 return OS;
212 }
213
214 } // end anonymous namespace
215
operator <<(raw_ostream & OS,const Print<NodeAddr<PhiNode * >> & P)216 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
217 OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
218 << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
219 return OS;
220 }
221
operator <<(raw_ostream & OS,const Print<NodeAddr<StmtNode * >> & P)222 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
223 const MachineInstr &MI = *P.Obj.Addr->getCode();
224 unsigned Opc = MI.getOpcode();
225 OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
226 // Print the target for calls and branches (for readability).
227 if (MI.isCall() || MI.isBranch()) {
228 MachineInstr::const_mop_iterator T =
229 llvm::find_if(MI.operands(),
230 [] (const MachineOperand &Op) -> bool {
231 return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
232 });
233 if (T != MI.operands_end()) {
234 OS << ' ';
235 if (T->isMBB())
236 OS << printMBBReference(*T->getMBB());
237 else if (T->isGlobal())
238 OS << T->getGlobal()->getName();
239 else if (T->isSymbol())
240 OS << T->getSymbolName();
241 }
242 }
243 OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
244 return OS;
245 }
246
operator <<(raw_ostream & OS,const Print<NodeAddr<InstrNode * >> & P)247 raw_ostream &operator<< (raw_ostream &OS,
248 const Print<NodeAddr<InstrNode*>> &P) {
249 switch (P.Obj.Addr->getKind()) {
250 case NodeAttrs::Phi:
251 OS << PrintNode<PhiNode*>(P.Obj, P.G);
252 break;
253 case NodeAttrs::Stmt:
254 OS << PrintNode<StmtNode*>(P.Obj, P.G);
255 break;
256 default:
257 OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
258 break;
259 }
260 return OS;
261 }
262
operator <<(raw_ostream & OS,const Print<NodeAddr<BlockNode * >> & P)263 raw_ostream &operator<< (raw_ostream &OS,
264 const Print<NodeAddr<BlockNode*>> &P) {
265 MachineBasicBlock *BB = P.Obj.Addr->getCode();
266 unsigned NP = BB->pred_size();
267 std::vector<int> Ns;
268 auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
269 unsigned N = Ns.size();
270 for (int I : Ns) {
271 OS << "%bb." << I;
272 if (--N)
273 OS << ", ";
274 }
275 };
276
277 OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
278 << " --- preds(" << NP << "): ";
279 for (MachineBasicBlock *B : BB->predecessors())
280 Ns.push_back(B->getNumber());
281 PrintBBs(Ns);
282
283 unsigned NS = BB->succ_size();
284 OS << " succs(" << NS << "): ";
285 Ns.clear();
286 for (MachineBasicBlock *B : BB->successors())
287 Ns.push_back(B->getNumber());
288 PrintBBs(Ns);
289 OS << '\n';
290
291 for (auto I : P.Obj.Addr->members(P.G))
292 OS << PrintNode<InstrNode*>(I, P.G) << '\n';
293 return OS;
294 }
295
operator <<(raw_ostream & OS,const Print<NodeAddr<FuncNode * >> & P)296 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
297 OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
298 << P.Obj.Addr->getCode()->getName() << '\n';
299 for (auto I : P.Obj.Addr->members(P.G))
300 OS << PrintNode<BlockNode*>(I, P.G) << '\n';
301 OS << "]\n";
302 return OS;
303 }
304
operator <<(raw_ostream & OS,const Print<RegisterSet> & P)305 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
306 OS << '{';
307 for (auto I : P.Obj)
308 OS << ' ' << Print<RegisterRef>(I, P.G);
309 OS << " }";
310 return OS;
311 }
312
operator <<(raw_ostream & OS,const Print<RegisterAggr> & P)313 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
314 P.Obj.print(OS);
315 return OS;
316 }
317
operator <<(raw_ostream & OS,const Print<DataFlowGraph::DefStack> & P)318 raw_ostream &operator<< (raw_ostream &OS,
319 const Print<DataFlowGraph::DefStack> &P) {
320 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
321 OS << Print<NodeId>(I->Id, P.G)
322 << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
323 I.down();
324 if (I != E)
325 OS << ' ';
326 }
327 return OS;
328 }
329
330 } // end namespace rdf
331 } // end namespace llvm
332
333 // Node allocation functions.
334 //
335 // Node allocator is like a slab memory allocator: it allocates blocks of
336 // memory in sizes that are multiples of the size of a node. Each block has
337 // the same size. Nodes are allocated from the currently active block, and
338 // when it becomes full, a new one is created.
339 // There is a mapping scheme between node id and its location in a block,
340 // and within that block is described in the header file.
341 //
startNewBlock()342 void NodeAllocator::startNewBlock() {
343 void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
344 char *P = static_cast<char*>(T);
345 Blocks.push_back(P);
346 // Check if the block index is still within the allowed range, i.e. less
347 // than 2^N, where N is the number of bits in NodeId for the block index.
348 // BitsPerIndex is the number of bits per node index.
349 assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
350 "Out of bits for block index");
351 ActiveEnd = P;
352 }
353
needNewBlock()354 bool NodeAllocator::needNewBlock() {
355 if (Blocks.empty())
356 return true;
357
358 char *ActiveBegin = Blocks.back();
359 uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
360 return Index >= NodesPerBlock;
361 }
362
New()363 NodeAddr<NodeBase*> NodeAllocator::New() {
364 if (needNewBlock())
365 startNewBlock();
366
367 uint32_t ActiveB = Blocks.size()-1;
368 uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
369 NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
370 makeId(ActiveB, Index) };
371 ActiveEnd += NodeMemSize;
372 return NA;
373 }
374
id(const NodeBase * P) const375 NodeId NodeAllocator::id(const NodeBase *P) const {
376 uintptr_t A = reinterpret_cast<uintptr_t>(P);
377 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
378 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
379 if (A < B || A >= B + NodesPerBlock*NodeMemSize)
380 continue;
381 uint32_t Idx = (A-B)/NodeMemSize;
382 return makeId(i, Idx);
383 }
384 llvm_unreachable("Invalid node address");
385 }
386
clear()387 void NodeAllocator::clear() {
388 MemPool.Reset();
389 Blocks.clear();
390 ActiveEnd = nullptr;
391 }
392
393 // Insert node NA after "this" in the circular chain.
append(NodeAddr<NodeBase * > NA)394 void NodeBase::append(NodeAddr<NodeBase*> NA) {
395 NodeId Nx = Next;
396 // If NA is already "next", do nothing.
397 if (Next != NA.Id) {
398 Next = NA.Id;
399 NA.Addr->Next = Nx;
400 }
401 }
402
403 // Fundamental node manipulator functions.
404
405 // Obtain the register reference from a reference node.
getRegRef(const DataFlowGraph & G) const406 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
407 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
408 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
409 return G.unpack(Ref.PR);
410 assert(Ref.Op != nullptr);
411 return G.makeRegRef(*Ref.Op);
412 }
413
414 // Set the register reference in the reference node directly (for references
415 // in phi nodes).
setRegRef(RegisterRef RR,DataFlowGraph & G)416 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
417 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
418 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
419 Ref.PR = G.pack(RR);
420 }
421
422 // Set the register reference in the reference node based on a machine
423 // operand (for references in statement nodes).
setRegRef(MachineOperand * Op,DataFlowGraph & G)424 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
425 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
426 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
427 (void)G;
428 Ref.Op = Op;
429 }
430
431 // Get the owner of a given reference node.
getOwner(const DataFlowGraph & G)432 NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
433 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
434
435 while (NA.Addr != this) {
436 if (NA.Addr->getType() == NodeAttrs::Code)
437 return NA;
438 NA = G.addr<NodeBase*>(NA.Addr->getNext());
439 }
440 llvm_unreachable("No owner in circular list");
441 }
442
443 // Connect the def node to the reaching def node.
linkToDef(NodeId Self,NodeAddr<DefNode * > DA)444 void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
445 Ref.RD = DA.Id;
446 Ref.Sib = DA.Addr->getReachedDef();
447 DA.Addr->setReachedDef(Self);
448 }
449
450 // Connect the use node to the reaching def node.
linkToDef(NodeId Self,NodeAddr<DefNode * > DA)451 void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
452 Ref.RD = DA.Id;
453 Ref.Sib = DA.Addr->getReachedUse();
454 DA.Addr->setReachedUse(Self);
455 }
456
457 // Get the first member of the code node.
getFirstMember(const DataFlowGraph & G) const458 NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
459 if (Code.FirstM == 0)
460 return NodeAddr<NodeBase*>();
461 return G.addr<NodeBase*>(Code.FirstM);
462 }
463
464 // Get the last member of the code node.
getLastMember(const DataFlowGraph & G) const465 NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
466 if (Code.LastM == 0)
467 return NodeAddr<NodeBase*>();
468 return G.addr<NodeBase*>(Code.LastM);
469 }
470
471 // Add node NA at the end of the member list of the given code node.
addMember(NodeAddr<NodeBase * > NA,const DataFlowGraph & G)472 void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
473 NodeAddr<NodeBase*> ML = getLastMember(G);
474 if (ML.Id != 0) {
475 ML.Addr->append(NA);
476 } else {
477 Code.FirstM = NA.Id;
478 NodeId Self = G.id(this);
479 NA.Addr->setNext(Self);
480 }
481 Code.LastM = NA.Id;
482 }
483
484 // Add node NA after member node MA in the given code node.
addMemberAfter(NodeAddr<NodeBase * > MA,NodeAddr<NodeBase * > NA,const DataFlowGraph & G)485 void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
486 const DataFlowGraph &G) {
487 MA.Addr->append(NA);
488 if (Code.LastM == MA.Id)
489 Code.LastM = NA.Id;
490 }
491
492 // Remove member node NA from the given code node.
removeMember(NodeAddr<NodeBase * > NA,const DataFlowGraph & G)493 void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
494 NodeAddr<NodeBase*> MA = getFirstMember(G);
495 assert(MA.Id != 0);
496
497 // Special handling if the member to remove is the first member.
498 if (MA.Id == NA.Id) {
499 if (Code.LastM == MA.Id) {
500 // If it is the only member, set both first and last to 0.
501 Code.FirstM = Code.LastM = 0;
502 } else {
503 // Otherwise, advance the first member.
504 Code.FirstM = MA.Addr->getNext();
505 }
506 return;
507 }
508
509 while (MA.Addr != this) {
510 NodeId MX = MA.Addr->getNext();
511 if (MX == NA.Id) {
512 MA.Addr->setNext(NA.Addr->getNext());
513 // If the member to remove happens to be the last one, update the
514 // LastM indicator.
515 if (Code.LastM == NA.Id)
516 Code.LastM = MA.Id;
517 return;
518 }
519 MA = G.addr<NodeBase*>(MX);
520 }
521 llvm_unreachable("No such member");
522 }
523
524 // Return the list of all members of the code node.
members(const DataFlowGraph & G) const525 NodeList CodeNode::members(const DataFlowGraph &G) const {
526 static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
527 return members_if(True, G);
528 }
529
530 // Return the owner of the given instr node.
getOwner(const DataFlowGraph & G)531 NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
532 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
533
534 while (NA.Addr != this) {
535 assert(NA.Addr->getType() == NodeAttrs::Code);
536 if (NA.Addr->getKind() == NodeAttrs::Block)
537 return NA;
538 NA = G.addr<NodeBase*>(NA.Addr->getNext());
539 }
540 llvm_unreachable("No owner in circular list");
541 }
542
543 // Add the phi node PA to the given block node.
addPhi(NodeAddr<PhiNode * > PA,const DataFlowGraph & G)544 void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
545 NodeAddr<NodeBase*> M = getFirstMember(G);
546 if (M.Id == 0) {
547 addMember(PA, G);
548 return;
549 }
550
551 assert(M.Addr->getType() == NodeAttrs::Code);
552 if (M.Addr->getKind() == NodeAttrs::Stmt) {
553 // If the first member of the block is a statement, insert the phi as
554 // the first member.
555 Code.FirstM = PA.Id;
556 PA.Addr->setNext(M.Id);
557 } else {
558 // If the first member is a phi, find the last phi, and append PA to it.
559 assert(M.Addr->getKind() == NodeAttrs::Phi);
560 NodeAddr<NodeBase*> MN = M;
561 do {
562 M = MN;
563 MN = G.addr<NodeBase*>(M.Addr->getNext());
564 assert(MN.Addr->getType() == NodeAttrs::Code);
565 } while (MN.Addr->getKind() == NodeAttrs::Phi);
566
567 // M is the last phi.
568 addMemberAfter(M, PA, G);
569 }
570 }
571
572 // Find the block node corresponding to the machine basic block BB in the
573 // given func node.
findBlock(const MachineBasicBlock * BB,const DataFlowGraph & G) const574 NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
575 const DataFlowGraph &G) const {
576 auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
577 return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
578 };
579 NodeList Ms = members_if(EqBB, G);
580 if (!Ms.empty())
581 return Ms[0];
582 return NodeAddr<BlockNode*>();
583 }
584
585 // Get the block node for the entry block in the given function.
getEntryBlock(const DataFlowGraph & G)586 NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
587 MachineBasicBlock *EntryB = &getCode()->front();
588 return findBlock(EntryB, G);
589 }
590
591 // Target operand information.
592 //
593
594 // For a given instruction, check if there are any bits of RR that can remain
595 // unchanged across this def.
isPreserving(const MachineInstr & In,unsigned OpNum) const596 bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
597 const {
598 return TII.isPredicated(In);
599 }
600
601 // Check if the definition of RR produces an unspecified value.
isClobbering(const MachineInstr & In,unsigned OpNum) const602 bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
603 const {
604 const MachineOperand &Op = In.getOperand(OpNum);
605 if (Op.isRegMask())
606 return true;
607 assert(Op.isReg());
608 if (In.isCall())
609 if (Op.isDef() && Op.isDead())
610 return true;
611 return false;
612 }
613
614 // Check if the given instruction specifically requires
isFixedReg(const MachineInstr & In,unsigned OpNum) const615 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
616 const {
617 if (In.isCall() || In.isReturn() || In.isInlineAsm())
618 return true;
619 // Check for a tail call.
620 if (In.isBranch())
621 for (const MachineOperand &O : In.operands())
622 if (O.isGlobal() || O.isSymbol())
623 return true;
624
625 const MCInstrDesc &D = In.getDesc();
626 if (!D.getImplicitDefs() && !D.getImplicitUses())
627 return false;
628 const MachineOperand &Op = In.getOperand(OpNum);
629 // If there is a sub-register, treat the operand as non-fixed. Currently,
630 // fixed registers are those that are listed in the descriptor as implicit
631 // uses or defs, and those lists do not allow sub-registers.
632 if (Op.getSubReg() != 0)
633 return false;
634 Register Reg = Op.getReg();
635 const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
636 : D.getImplicitUses();
637 if (!ImpR)
638 return false;
639 while (*ImpR)
640 if (*ImpR++ == Reg)
641 return true;
642 return false;
643 }
644
645 //
646 // The data flow graph construction.
647 //
648
DataFlowGraph(MachineFunction & mf,const TargetInstrInfo & tii,const TargetRegisterInfo & tri,const MachineDominatorTree & mdt,const MachineDominanceFrontier & mdf,const TargetOperandInfo & toi)649 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
650 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
651 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
652 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
653 LiveIns(PRI) {
654 }
655
656 // The implementation of the definition stack.
657 // Each register reference has its own definition stack. In particular,
658 // for a register references "Reg" and "Reg:subreg" will each have their
659 // own definition stacks.
660
661 // Construct a stack iterator.
Iterator(const DataFlowGraph::DefStack & S,bool Top)662 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
663 bool Top) : DS(S) {
664 if (!Top) {
665 // Initialize to bottom.
666 Pos = 0;
667 return;
668 }
669 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
670 Pos = DS.Stack.size();
671 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
672 Pos--;
673 }
674
675 // Return the size of the stack, including block delimiters.
size() const676 unsigned DataFlowGraph::DefStack::size() const {
677 unsigned S = 0;
678 for (auto I = top(), E = bottom(); I != E; I.down())
679 S++;
680 return S;
681 }
682
683 // Remove the top entry from the stack. Remove all intervening delimiters
684 // so that after this, the stack is either empty, or the top of the stack
685 // is a non-delimiter.
pop()686 void DataFlowGraph::DefStack::pop() {
687 assert(!empty());
688 unsigned P = nextDown(Stack.size());
689 Stack.resize(P);
690 }
691
692 // Push a delimiter for block node N on the stack.
start_block(NodeId N)693 void DataFlowGraph::DefStack::start_block(NodeId N) {
694 assert(N != 0);
695 Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
696 }
697
698 // Remove all nodes from the top of the stack, until the delimited for
699 // block node N is encountered. Remove the delimiter as well. In effect,
700 // this will remove from the stack all definitions from block N.
clear_block(NodeId N)701 void DataFlowGraph::DefStack::clear_block(NodeId N) {
702 assert(N != 0);
703 unsigned P = Stack.size();
704 while (P > 0) {
705 bool Found = isDelimiter(Stack[P-1], N);
706 P--;
707 if (Found)
708 break;
709 }
710 // This will also remove the delimiter, if found.
711 Stack.resize(P);
712 }
713
714 // Move the stack iterator up by one.
nextUp(unsigned P) const715 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
716 // Get the next valid position after P (skipping all delimiters).
717 // The input position P does not have to point to a non-delimiter.
718 unsigned SS = Stack.size();
719 bool IsDelim;
720 assert(P < SS);
721 do {
722 P++;
723 IsDelim = isDelimiter(Stack[P-1]);
724 } while (P < SS && IsDelim);
725 assert(!IsDelim);
726 return P;
727 }
728
729 // Move the stack iterator down by one.
nextDown(unsigned P) const730 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
731 // Get the preceding valid position before P (skipping all delimiters).
732 // The input position P does not have to point to a non-delimiter.
733 assert(P > 0 && P <= Stack.size());
734 bool IsDelim = isDelimiter(Stack[P-1]);
735 do {
736 if (--P == 0)
737 break;
738 IsDelim = isDelimiter(Stack[P-1]);
739 } while (P > 0 && IsDelim);
740 assert(!IsDelim);
741 return P;
742 }
743
744 // Register information.
745
getLandingPadLiveIns() const746 RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
747 RegisterSet LR;
748 const Function &F = MF.getFunction();
749 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
750 : nullptr;
751 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
752 if (RegisterId R = TLI.getExceptionPointerRegister(PF))
753 LR.insert(RegisterRef(R));
754 if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
755 if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
756 LR.insert(RegisterRef(R));
757 }
758 return LR;
759 }
760
761 // Node management functions.
762
763 // Get the pointer to the node with the id N.
ptr(NodeId N) const764 NodeBase *DataFlowGraph::ptr(NodeId N) const {
765 if (N == 0)
766 return nullptr;
767 return Memory.ptr(N);
768 }
769
770 // Get the id of the node at the address P.
id(const NodeBase * P) const771 NodeId DataFlowGraph::id(const NodeBase *P) const {
772 if (P == nullptr)
773 return 0;
774 return Memory.id(P);
775 }
776
777 // Allocate a new node and set the attributes to Attrs.
newNode(uint16_t Attrs)778 NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
779 NodeAddr<NodeBase*> P = Memory.New();
780 P.Addr->init();
781 P.Addr->setAttrs(Attrs);
782 return P;
783 }
784
785 // Make a copy of the given node B, except for the data-flow links, which
786 // are set to 0.
cloneNode(const NodeAddr<NodeBase * > B)787 NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
788 NodeAddr<NodeBase*> NA = newNode(0);
789 memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
790 // Ref nodes need to have the data-flow links reset.
791 if (NA.Addr->getType() == NodeAttrs::Ref) {
792 NodeAddr<RefNode*> RA = NA;
793 RA.Addr->setReachingDef(0);
794 RA.Addr->setSibling(0);
795 if (NA.Addr->getKind() == NodeAttrs::Def) {
796 NodeAddr<DefNode*> DA = NA;
797 DA.Addr->setReachedDef(0);
798 DA.Addr->setReachedUse(0);
799 }
800 }
801 return NA;
802 }
803
804 // Allocation routines for specific node types/kinds.
805
newUse(NodeAddr<InstrNode * > Owner,MachineOperand & Op,uint16_t Flags)806 NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
807 MachineOperand &Op, uint16_t Flags) {
808 NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
809 UA.Addr->setRegRef(&Op, *this);
810 return UA;
811 }
812
newPhiUse(NodeAddr<PhiNode * > Owner,RegisterRef RR,NodeAddr<BlockNode * > PredB,uint16_t Flags)813 NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
814 RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
815 NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
816 assert(Flags & NodeAttrs::PhiRef);
817 PUA.Addr->setRegRef(RR, *this);
818 PUA.Addr->setPredecessor(PredB.Id);
819 return PUA;
820 }
821
newDef(NodeAddr<InstrNode * > Owner,MachineOperand & Op,uint16_t Flags)822 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
823 MachineOperand &Op, uint16_t Flags) {
824 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
825 DA.Addr->setRegRef(&Op, *this);
826 return DA;
827 }
828
newDef(NodeAddr<InstrNode * > Owner,RegisterRef RR,uint16_t Flags)829 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
830 RegisterRef RR, uint16_t Flags) {
831 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
832 assert(Flags & NodeAttrs::PhiRef);
833 DA.Addr->setRegRef(RR, *this);
834 return DA;
835 }
836
newPhi(NodeAddr<BlockNode * > Owner)837 NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
838 NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
839 Owner.Addr->addPhi(PA, *this);
840 return PA;
841 }
842
newStmt(NodeAddr<BlockNode * > Owner,MachineInstr * MI)843 NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
844 MachineInstr *MI) {
845 NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
846 SA.Addr->setCode(MI);
847 Owner.Addr->addMember(SA, *this);
848 return SA;
849 }
850
newBlock(NodeAddr<FuncNode * > Owner,MachineBasicBlock * BB)851 NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
852 MachineBasicBlock *BB) {
853 NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
854 BA.Addr->setCode(BB);
855 Owner.Addr->addMember(BA, *this);
856 return BA;
857 }
858
newFunc(MachineFunction * MF)859 NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
860 NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
861 FA.Addr->setCode(MF);
862 return FA;
863 }
864
865 // Build the data flow graph.
build(unsigned Options)866 void DataFlowGraph::build(unsigned Options) {
867 reset();
868 Func = newFunc(&MF);
869
870 if (MF.empty())
871 return;
872
873 for (MachineBasicBlock &B : MF) {
874 NodeAddr<BlockNode*> BA = newBlock(Func, &B);
875 BlockNodes.insert(std::make_pair(&B, BA));
876 for (MachineInstr &I : B) {
877 if (I.isDebugInstr())
878 continue;
879 buildStmt(BA, I);
880 }
881 }
882
883 NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
884 NodeList Blocks = Func.Addr->members(*this);
885
886 // Collect information about block references.
887 RegisterSet AllRefs;
888 for (NodeAddr<BlockNode*> BA : Blocks)
889 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
890 for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
891 AllRefs.insert(RA.Addr->getRegRef(*this));
892
893 // Collect function live-ins and entry block live-ins.
894 MachineRegisterInfo &MRI = MF.getRegInfo();
895 MachineBasicBlock &EntryB = *EA.Addr->getCode();
896 assert(EntryB.pred_empty() && "Function entry block has predecessors");
897 for (std::pair<unsigned,unsigned> P : MRI.liveins())
898 LiveIns.insert(RegisterRef(P.first));
899 if (MRI.tracksLiveness()) {
900 for (auto I : EntryB.liveins())
901 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
902 }
903
904 // Add function-entry phi nodes for the live-in registers.
905 //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
906 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
907 RegisterRef RR = *I;
908 NodeAddr<PhiNode*> PA = newPhi(EA);
909 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
910 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
911 PA.Addr->addMember(DA, *this);
912 }
913
914 // Add phis for landing pads.
915 // Landing pads, unlike usual backs blocks, are not entered through
916 // branches in the program, or fall-throughs from other blocks. They
917 // are entered from the exception handling runtime and target's ABI
918 // may define certain registers as defined on entry to such a block.
919 RegisterSet EHRegs = getLandingPadLiveIns();
920 if (!EHRegs.empty()) {
921 for (NodeAddr<BlockNode*> BA : Blocks) {
922 const MachineBasicBlock &B = *BA.Addr->getCode();
923 if (!B.isEHPad())
924 continue;
925
926 // Prepare a list of NodeIds of the block's predecessors.
927 NodeList Preds;
928 for (MachineBasicBlock *PB : B.predecessors())
929 Preds.push_back(findBlock(PB));
930
931 // Build phi nodes for each live-in.
932 for (RegisterRef RR : EHRegs) {
933 NodeAddr<PhiNode*> PA = newPhi(BA);
934 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
935 // Add def:
936 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
937 PA.Addr->addMember(DA, *this);
938 // Add uses (no reaching defs for phi uses):
939 for (NodeAddr<BlockNode*> PBA : Preds) {
940 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
941 PA.Addr->addMember(PUA, *this);
942 }
943 }
944 }
945 }
946
947 // Build a map "PhiM" which will contain, for each block, the set
948 // of references that will require phi definitions in that block.
949 BlockRefsMap PhiM;
950 for (NodeAddr<BlockNode*> BA : Blocks)
951 recordDefsForDF(PhiM, BA);
952 for (NodeAddr<BlockNode*> BA : Blocks)
953 buildPhis(PhiM, AllRefs, BA);
954
955 // Link all the refs. This will recursively traverse the dominator tree.
956 DefStackMap DM;
957 linkBlockRefs(DM, EA);
958
959 // Finally, remove all unused phi nodes.
960 if (!(Options & BuildOptions::KeepDeadPhis))
961 removeUnusedPhis();
962 }
963
makeRegRef(unsigned Reg,unsigned Sub) const964 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
965 assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
966 Register::isPhysicalRegister(Reg));
967 assert(Reg != 0);
968 if (Sub != 0)
969 Reg = TRI.getSubReg(Reg, Sub);
970 return RegisterRef(Reg);
971 }
972
makeRegRef(const MachineOperand & Op) const973 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
974 assert(Op.isReg() || Op.isRegMask());
975 if (Op.isReg())
976 return makeRegRef(Op.getReg(), Op.getSubReg());
977 return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
978 }
979
980 // For each stack in the map DefM, push the delimiter for block B on it.
markBlock(NodeId B,DefStackMap & DefM)981 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
982 // Push block delimiters.
983 for (auto &P : DefM)
984 P.second.start_block(B);
985 }
986
987 // Remove all definitions coming from block B from each stack in DefM.
releaseBlock(NodeId B,DefStackMap & DefM)988 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
989 // Pop all defs from this block from the definition stack. Defs that were
990 // added to the map during the traversal of instructions will not have a
991 // delimiter, but for those, the whole stack will be emptied.
992 for (auto &P : DefM)
993 P.second.clear_block(B);
994
995 // Finally, remove empty stacks from the map.
996 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
997 NextI = std::next(I);
998 // This preserves the validity of iterators other than I.
999 if (I->second.empty())
1000 DefM.erase(I);
1001 }
1002 }
1003
1004 // Push all definitions from the instruction node IA to an appropriate
1005 // stack in DefM.
pushAllDefs(NodeAddr<InstrNode * > IA,DefStackMap & DefM)1006 void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1007 pushClobbers(IA, DefM);
1008 pushDefs(IA, DefM);
1009 }
1010
1011 // Push all definitions from the instruction node IA to an appropriate
1012 // stack in DefM.
pushClobbers(NodeAddr<InstrNode * > IA,DefStackMap & DefM)1013 void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1014 NodeSet Visited;
1015 std::set<RegisterId> Defined;
1016
1017 // The important objectives of this function are:
1018 // - to be able to handle instructions both while the graph is being
1019 // constructed, and after the graph has been constructed, and
1020 // - maintain proper ordering of definitions on the stack for each
1021 // register reference:
1022 // - if there are two or more related defs in IA (i.e. coming from
1023 // the same machine operand), then only push one def on the stack,
1024 // - if there are multiple unrelated defs of non-overlapping
1025 // subregisters of S, then the stack for S will have both (in an
1026 // unspecified order), but the order does not matter from the data-
1027 // -flow perspective.
1028
1029 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1030 if (Visited.count(DA.Id))
1031 continue;
1032 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1033 continue;
1034
1035 NodeList Rel = getRelatedRefs(IA, DA);
1036 NodeAddr<DefNode*> PDA = Rel.front();
1037 RegisterRef RR = PDA.Addr->getRegRef(*this);
1038
1039 // Push the definition on the stack for the register and all aliases.
1040 // The def stack traversal in linkNodeUp will check the exact aliasing.
1041 DefM[RR.Reg].push(DA);
1042 Defined.insert(RR.Reg);
1043 for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1044 // Check that we don't push the same def twice.
1045 assert(A != RR.Reg);
1046 if (!Defined.count(A))
1047 DefM[A].push(DA);
1048 }
1049 // Mark all the related defs as visited.
1050 for (NodeAddr<NodeBase*> T : Rel)
1051 Visited.insert(T.Id);
1052 }
1053 }
1054
1055 // Push all definitions from the instruction node IA to an appropriate
1056 // stack in DefM.
pushDefs(NodeAddr<InstrNode * > IA,DefStackMap & DefM)1057 void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1058 NodeSet Visited;
1059 #ifndef NDEBUG
1060 std::set<RegisterId> Defined;
1061 #endif
1062
1063 // The important objectives of this function are:
1064 // - to be able to handle instructions both while the graph is being
1065 // constructed, and after the graph has been constructed, and
1066 // - maintain proper ordering of definitions on the stack for each
1067 // register reference:
1068 // - if there are two or more related defs in IA (i.e. coming from
1069 // the same machine operand), then only push one def on the stack,
1070 // - if there are multiple unrelated defs of non-overlapping
1071 // subregisters of S, then the stack for S will have both (in an
1072 // unspecified order), but the order does not matter from the data-
1073 // -flow perspective.
1074
1075 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1076 if (Visited.count(DA.Id))
1077 continue;
1078 if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1079 continue;
1080
1081 NodeList Rel = getRelatedRefs(IA, DA);
1082 NodeAddr<DefNode*> PDA = Rel.front();
1083 RegisterRef RR = PDA.Addr->getRegRef(*this);
1084 #ifndef NDEBUG
1085 // Assert if the register is defined in two or more unrelated defs.
1086 // This could happen if there are two or more def operands defining it.
1087 if (!Defined.insert(RR.Reg).second) {
1088 MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
1089 dbgs() << "Multiple definitions of register: "
1090 << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in "
1091 << printMBBReference(*MI->getParent()) << '\n';
1092 llvm_unreachable(nullptr);
1093 }
1094 #endif
1095 // Push the definition on the stack for the register and all aliases.
1096 // The def stack traversal in linkNodeUp will check the exact aliasing.
1097 DefM[RR.Reg].push(DA);
1098 for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1099 // Check that we don't push the same def twice.
1100 assert(A != RR.Reg);
1101 DefM[A].push(DA);
1102 }
1103 // Mark all the related defs as visited.
1104 for (NodeAddr<NodeBase*> T : Rel)
1105 Visited.insert(T.Id);
1106 }
1107 }
1108
1109 // Return the list of all reference nodes related to RA, including RA itself.
1110 // See "getNextRelated" for the meaning of a "related reference".
getRelatedRefs(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA) const1111 NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1112 NodeAddr<RefNode*> RA) const {
1113 assert(IA.Id != 0 && RA.Id != 0);
1114
1115 NodeList Refs;
1116 NodeId Start = RA.Id;
1117 do {
1118 Refs.push_back(RA);
1119 RA = getNextRelated(IA, RA);
1120 } while (RA.Id != 0 && RA.Id != Start);
1121 return Refs;
1122 }
1123
1124 // Clear all information in the graph.
reset()1125 void DataFlowGraph::reset() {
1126 Memory.clear();
1127 BlockNodes.clear();
1128 Func = NodeAddr<FuncNode*>();
1129 }
1130
1131 // Return the next reference node in the instruction node IA that is related
1132 // to RA. Conceptually, two reference nodes are related if they refer to the
1133 // same instance of a register access, but differ in flags or other minor
1134 // characteristics. Specific examples of related nodes are shadow reference
1135 // nodes.
1136 // Return the equivalent of nullptr if there are no more related references.
getNextRelated(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA) const1137 NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1138 NodeAddr<RefNode*> RA) const {
1139 assert(IA.Id != 0 && RA.Id != 0);
1140
1141 auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
1142 if (TA.Addr->getKind() != RA.Addr->getKind())
1143 return false;
1144 if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
1145 return false;
1146 return true;
1147 };
1148 auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1149 return Related(TA) &&
1150 &RA.Addr->getOp() == &TA.Addr->getOp();
1151 };
1152 auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1153 if (!Related(TA))
1154 return false;
1155 if (TA.Addr->getKind() != NodeAttrs::Use)
1156 return true;
1157 // For phi uses, compare predecessor blocks.
1158 const NodeAddr<const PhiUseNode*> TUA = TA;
1159 const NodeAddr<const PhiUseNode*> RUA = RA;
1160 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1161 };
1162
1163 RegisterRef RR = RA.Addr->getRegRef(*this);
1164 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1165 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1166 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1167 }
1168
1169 // Find the next node related to RA in IA that satisfies condition P.
1170 // If such a node was found, return a pair where the second element is the
1171 // located node. If such a node does not exist, return a pair where the
1172 // first element is the element after which such a node should be inserted,
1173 // and the second element is a null-address.
1174 template <typename Predicate>
1175 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
locateNextRef(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA,Predicate P) const1176 DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1177 Predicate P) const {
1178 assert(IA.Id != 0 && RA.Id != 0);
1179
1180 NodeAddr<RefNode*> NA;
1181 NodeId Start = RA.Id;
1182 while (true) {
1183 NA = getNextRelated(IA, RA);
1184 if (NA.Id == 0 || NA.Id == Start)
1185 break;
1186 if (P(NA))
1187 break;
1188 RA = NA;
1189 }
1190
1191 if (NA.Id != 0 && NA.Id != Start)
1192 return std::make_pair(RA, NA);
1193 return std::make_pair(RA, NodeAddr<RefNode*>());
1194 }
1195
1196 // Get the next shadow node in IA corresponding to RA, and optionally create
1197 // such a node if it does not exist.
getNextShadow(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA,bool Create)1198 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1199 NodeAddr<RefNode*> RA, bool Create) {
1200 assert(IA.Id != 0 && RA.Id != 0);
1201
1202 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1203 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1204 return TA.Addr->getFlags() == Flags;
1205 };
1206 auto Loc = locateNextRef(IA, RA, IsShadow);
1207 if (Loc.second.Id != 0 || !Create)
1208 return Loc.second;
1209
1210 // Create a copy of RA and mark is as shadow.
1211 NodeAddr<RefNode*> NA = cloneNode(RA);
1212 NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1213 IA.Addr->addMemberAfter(Loc.first, NA, *this);
1214 return NA;
1215 }
1216
1217 // Get the next shadow node in IA corresponding to RA. Return null-address
1218 // if such a node does not exist.
getNextShadow(NodeAddr<InstrNode * > IA,NodeAddr<RefNode * > RA) const1219 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1220 NodeAddr<RefNode*> RA) const {
1221 assert(IA.Id != 0 && RA.Id != 0);
1222 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1223 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1224 return TA.Addr->getFlags() == Flags;
1225 };
1226 return locateNextRef(IA, RA, IsShadow).second;
1227 }
1228
1229 // Create a new statement node in the block node BA that corresponds to
1230 // the machine instruction MI.
buildStmt(NodeAddr<BlockNode * > BA,MachineInstr & In)1231 void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
1232 NodeAddr<StmtNode*> SA = newStmt(BA, &In);
1233
1234 auto isCall = [] (const MachineInstr &In) -> bool {
1235 if (In.isCall())
1236 return true;
1237 // Is tail call?
1238 if (In.isBranch()) {
1239 for (const MachineOperand &Op : In.operands())
1240 if (Op.isGlobal() || Op.isSymbol())
1241 return true;
1242 // Assume indirect branches are calls. This is for the purpose of
1243 // keeping implicit operands, and so it won't hurt on intra-function
1244 // indirect branches.
1245 if (In.isIndirectBranch())
1246 return true;
1247 }
1248 return false;
1249 };
1250
1251 auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1252 // This instruction defines DR. Check if there is a use operand that
1253 // would make DR live on entry to the instruction.
1254 for (const MachineOperand &Op : In.operands()) {
1255 if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
1256 continue;
1257 RegisterRef UR = makeRegRef(Op);
1258 if (PRI.alias(DR, UR))
1259 return false;
1260 }
1261 return true;
1262 };
1263
1264 bool IsCall = isCall(In);
1265 unsigned NumOps = In.getNumOperands();
1266
1267 // Avoid duplicate implicit defs. This will not detect cases of implicit
1268 // defs that define registers that overlap, but it is not clear how to
1269 // interpret that in the absence of explicit defs. Overlapping explicit
1270 // defs are likely illegal already.
1271 BitVector DoneDefs(TRI.getNumRegs());
1272 // Process explicit defs first.
1273 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1274 MachineOperand &Op = In.getOperand(OpN);
1275 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1276 continue;
1277 Register R = Op.getReg();
1278 if (!R || !Register::isPhysicalRegister(R))
1279 continue;
1280 uint16_t Flags = NodeAttrs::None;
1281 if (TOI.isPreserving(In, OpN)) {
1282 Flags |= NodeAttrs::Preserving;
1283 // If the def is preserving, check if it is also undefined.
1284 if (isDefUndef(In, makeRegRef(Op)))
1285 Flags |= NodeAttrs::Undef;
1286 }
1287 if (TOI.isClobbering(In, OpN))
1288 Flags |= NodeAttrs::Clobbering;
1289 if (TOI.isFixedReg(In, OpN))
1290 Flags |= NodeAttrs::Fixed;
1291 if (IsCall && Op.isDead())
1292 Flags |= NodeAttrs::Dead;
1293 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1294 SA.Addr->addMember(DA, *this);
1295 assert(!DoneDefs.test(R));
1296 DoneDefs.set(R);
1297 }
1298
1299 // Process reg-masks (as clobbers).
1300 BitVector DoneClobbers(TRI.getNumRegs());
1301 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1302 MachineOperand &Op = In.getOperand(OpN);
1303 if (!Op.isRegMask())
1304 continue;
1305 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
1306 NodeAttrs::Dead;
1307 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1308 SA.Addr->addMember(DA, *this);
1309 // Record all clobbered registers in DoneDefs.
1310 const uint32_t *RM = Op.getRegMask();
1311 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1312 if (!(RM[i/32] & (1u << (i%32))))
1313 DoneClobbers.set(i);
1314 }
1315
1316 // Process implicit defs, skipping those that have already been added
1317 // as explicit.
1318 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1319 MachineOperand &Op = In.getOperand(OpN);
1320 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1321 continue;
1322 Register R = Op.getReg();
1323 if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
1324 continue;
1325 RegisterRef RR = makeRegRef(Op);
1326 uint16_t Flags = NodeAttrs::None;
1327 if (TOI.isPreserving(In, OpN)) {
1328 Flags |= NodeAttrs::Preserving;
1329 // If the def is preserving, check if it is also undefined.
1330 if (isDefUndef(In, RR))
1331 Flags |= NodeAttrs::Undef;
1332 }
1333 if (TOI.isClobbering(In, OpN))
1334 Flags |= NodeAttrs::Clobbering;
1335 if (TOI.isFixedReg(In, OpN))
1336 Flags |= NodeAttrs::Fixed;
1337 if (IsCall && Op.isDead()) {
1338 if (DoneClobbers.test(R))
1339 continue;
1340 Flags |= NodeAttrs::Dead;
1341 }
1342 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1343 SA.Addr->addMember(DA, *this);
1344 DoneDefs.set(R);
1345 }
1346
1347 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1348 MachineOperand &Op = In.getOperand(OpN);
1349 if (!Op.isReg() || !Op.isUse())
1350 continue;
1351 Register R = Op.getReg();
1352 if (!R || !Register::isPhysicalRegister(R))
1353 continue;
1354 uint16_t Flags = NodeAttrs::None;
1355 if (Op.isUndef())
1356 Flags |= NodeAttrs::Undef;
1357 if (TOI.isFixedReg(In, OpN))
1358 Flags |= NodeAttrs::Fixed;
1359 NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1360 SA.Addr->addMember(UA, *this);
1361 }
1362 }
1363
1364 // Scan all defs in the block node BA and record in PhiM the locations of
1365 // phi nodes corresponding to these defs.
recordDefsForDF(BlockRefsMap & PhiM,NodeAddr<BlockNode * > BA)1366 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
1367 NodeAddr<BlockNode*> BA) {
1368 // Check all defs from block BA and record them in each block in BA's
1369 // iterated dominance frontier. This information will later be used to
1370 // create phi nodes.
1371 MachineBasicBlock *BB = BA.Addr->getCode();
1372 assert(BB);
1373 auto DFLoc = MDF.find(BB);
1374 if (DFLoc == MDF.end() || DFLoc->second.empty())
1375 return;
1376
1377 // Traverse all instructions in the block and collect the set of all
1378 // defined references. For each reference there will be a phi created
1379 // in the block's iterated dominance frontier.
1380 // This is done to make sure that each defined reference gets only one
1381 // phi node, even if it is defined multiple times.
1382 RegisterSet Defs;
1383 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1384 for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
1385 Defs.insert(RA.Addr->getRegRef(*this));
1386
1387 // Calculate the iterated dominance frontier of BB.
1388 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1389 SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1390 for (unsigned i = 0; i < IDF.size(); ++i) {
1391 auto F = MDF.find(IDF[i]);
1392 if (F != MDF.end())
1393 IDF.insert(F->second.begin(), F->second.end());
1394 }
1395
1396 // Finally, add the set of defs to each block in the iterated dominance
1397 // frontier.
1398 for (auto *DB : IDF) {
1399 NodeAddr<BlockNode*> DBA = findBlock(DB);
1400 PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1401 }
1402 }
1403
1404 // Given the locations of phi nodes in the map PhiM, create the phi nodes
1405 // that are located in the block node BA.
buildPhis(BlockRefsMap & PhiM,RegisterSet & AllRefs,NodeAddr<BlockNode * > BA)1406 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
1407 NodeAddr<BlockNode*> BA) {
1408 // Check if this blocks has any DF defs, i.e. if there are any defs
1409 // that this block is in the iterated dominance frontier of.
1410 auto HasDF = PhiM.find(BA.Id);
1411 if (HasDF == PhiM.end() || HasDF->second.empty())
1412 return;
1413
1414 // First, remove all R in Refs in such that there exists T in Refs
1415 // such that T covers R. In other words, only leave those refs that
1416 // are not covered by another ref (i.e. maximal with respect to covering).
1417
1418 auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
1419 for (RegisterRef I : RRs)
1420 if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
1421 RR = I;
1422 return RR;
1423 };
1424
1425 RegisterSet MaxDF;
1426 for (RegisterRef I : HasDF->second)
1427 MaxDF.insert(MaxCoverIn(I, HasDF->second));
1428
1429 std::vector<RegisterRef> MaxRefs;
1430 for (RegisterRef I : MaxDF)
1431 MaxRefs.push_back(MaxCoverIn(I, AllRefs));
1432
1433 // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1434 // only has R in it, create a phi a def for R. Otherwise, create a phi,
1435 // and add a def for each S in the closure.
1436
1437 // Sort the refs so that the phis will be created in a deterministic order.
1438 llvm::sort(MaxRefs);
1439 // Remove duplicates.
1440 auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1441 MaxRefs.erase(NewEnd, MaxRefs.end());
1442
1443 auto Aliased = [this,&MaxRefs](RegisterRef RR,
1444 std::vector<unsigned> &Closure) -> bool {
1445 for (unsigned I : Closure)
1446 if (PRI.alias(RR, MaxRefs[I]))
1447 return true;
1448 return false;
1449 };
1450
1451 // Prepare a list of NodeIds of the block's predecessors.
1452 NodeList Preds;
1453 const MachineBasicBlock *MBB = BA.Addr->getCode();
1454 for (MachineBasicBlock *PB : MBB->predecessors())
1455 Preds.push_back(findBlock(PB));
1456
1457 while (!MaxRefs.empty()) {
1458 // Put the first element in the closure, and then add all subsequent
1459 // elements from MaxRefs to it, if they alias at least one element
1460 // already in the closure.
1461 // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1462 std::vector<unsigned> ClosureIdx = { 0 };
1463 for (unsigned i = 1; i != MaxRefs.size(); ++i)
1464 if (Aliased(MaxRefs[i], ClosureIdx))
1465 ClosureIdx.push_back(i);
1466
1467 // Build a phi for the closure.
1468 unsigned CS = ClosureIdx.size();
1469 NodeAddr<PhiNode*> PA = newPhi(BA);
1470
1471 // Add defs.
1472 for (unsigned X = 0; X != CS; ++X) {
1473 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1474 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1475 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1476 PA.Addr->addMember(DA, *this);
1477 }
1478 // Add phi uses.
1479 for (NodeAddr<BlockNode*> PBA : Preds) {
1480 for (unsigned X = 0; X != CS; ++X) {
1481 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1482 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1483 PA.Addr->addMember(PUA, *this);
1484 }
1485 }
1486
1487 // Erase from MaxRefs all elements in the closure.
1488 auto Begin = MaxRefs.begin();
1489 for (unsigned Idx : llvm::reverse(ClosureIdx))
1490 MaxRefs.erase(Begin + Idx);
1491 }
1492 }
1493
1494 // Remove any unneeded phi nodes that were created during the build process.
removeUnusedPhis()1495 void DataFlowGraph::removeUnusedPhis() {
1496 // This will remove unused phis, i.e. phis where each def does not reach
1497 // any uses or other defs. This will not detect or remove circular phi
1498 // chains that are otherwise dead. Unused/dead phis are created during
1499 // the build process and this function is intended to remove these cases
1500 // that are easily determinable to be unnecessary.
1501
1502 SetVector<NodeId> PhiQ;
1503 for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1504 for (auto P : BA.Addr->members_if(IsPhi, *this))
1505 PhiQ.insert(P.Id);
1506 }
1507
1508 static auto HasUsedDef = [](NodeList &Ms) -> bool {
1509 for (NodeAddr<NodeBase*> M : Ms) {
1510 if (M.Addr->getKind() != NodeAttrs::Def)
1511 continue;
1512 NodeAddr<DefNode*> DA = M;
1513 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1514 return true;
1515 }
1516 return false;
1517 };
1518
1519 // Any phi, if it is removed, may affect other phis (make them dead).
1520 // For each removed phi, collect the potentially affected phis and add
1521 // them back to the queue.
1522 while (!PhiQ.empty()) {
1523 auto PA = addr<PhiNode*>(PhiQ[0]);
1524 PhiQ.remove(PA.Id);
1525 NodeList Refs = PA.Addr->members(*this);
1526 if (HasUsedDef(Refs))
1527 continue;
1528 for (NodeAddr<RefNode*> RA : Refs) {
1529 if (NodeId RD = RA.Addr->getReachingDef()) {
1530 auto RDA = addr<DefNode*>(RD);
1531 NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1532 if (IsPhi(OA))
1533 PhiQ.insert(OA.Id);
1534 }
1535 if (RA.Addr->isDef())
1536 unlinkDef(RA, true);
1537 else
1538 unlinkUse(RA, true);
1539 }
1540 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1541 BA.Addr->removeMember(PA, *this);
1542 }
1543 }
1544
1545 // For a given reference node TA in an instruction node IA, connect the
1546 // reaching def of TA to the appropriate def node. Create any shadow nodes
1547 // as appropriate.
1548 template <typename T>
linkRefUp(NodeAddr<InstrNode * > IA,NodeAddr<T> TA,DefStack & DS)1549 void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1550 DefStack &DS) {
1551 if (DS.empty())
1552 return;
1553 RegisterRef RR = TA.Addr->getRegRef(*this);
1554 NodeAddr<T> TAP;
1555
1556 // References from the def stack that have been examined so far.
1557 RegisterAggr Defs(PRI);
1558
1559 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1560 RegisterRef QR = I->Addr->getRegRef(*this);
1561
1562 // Skip all defs that are aliased to any of the defs that we have already
1563 // seen. If this completes a cover of RR, stop the stack traversal.
1564 bool Alias = Defs.hasAliasOf(QR);
1565 bool Cover = Defs.insert(QR).hasCoverOf(RR);
1566 if (Alias) {
1567 if (Cover)
1568 break;
1569 continue;
1570 }
1571
1572 // The reaching def.
1573 NodeAddr<DefNode*> RDA = *I;
1574
1575 // Pick the reached node.
1576 if (TAP.Id == 0) {
1577 TAP = TA;
1578 } else {
1579 // Mark the existing ref as "shadow" and create a new shadow.
1580 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1581 TAP = getNextShadow(IA, TAP, true);
1582 }
1583
1584 // Create the link.
1585 TAP.Addr->linkToDef(TAP.Id, RDA);
1586
1587 if (Cover)
1588 break;
1589 }
1590 }
1591
1592 // Create data-flow links for all reference nodes in the statement node SA.
1593 template <typename Predicate>
linkStmtRefs(DefStackMap & DefM,NodeAddr<StmtNode * > SA,Predicate P)1594 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
1595 Predicate P) {
1596 #ifndef NDEBUG
1597 RegisterSet Defs;
1598 #endif
1599
1600 // Link all nodes (upwards in the data-flow) with their reaching defs.
1601 for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
1602 uint16_t Kind = RA.Addr->getKind();
1603 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1604 RegisterRef RR = RA.Addr->getRegRef(*this);
1605 #ifndef NDEBUG
1606 // Do not expect multiple defs of the same reference.
1607 assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1608 Defs.insert(RR);
1609 #endif
1610
1611 auto F = DefM.find(RR.Reg);
1612 if (F == DefM.end())
1613 continue;
1614 DefStack &DS = F->second;
1615 if (Kind == NodeAttrs::Use)
1616 linkRefUp<UseNode*>(SA, RA, DS);
1617 else if (Kind == NodeAttrs::Def)
1618 linkRefUp<DefNode*>(SA, RA, DS);
1619 else
1620 llvm_unreachable("Unexpected node in instruction");
1621 }
1622 }
1623
1624 // Create data-flow links for all instructions in the block node BA. This
1625 // will include updating any phi nodes in BA.
linkBlockRefs(DefStackMap & DefM,NodeAddr<BlockNode * > BA)1626 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1627 // Push block delimiters.
1628 markBlock(BA.Id, DefM);
1629
1630 auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1631 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1632 };
1633 auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1634 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1635 };
1636
1637 assert(BA.Addr && "block node address is needed to create a data-flow link");
1638 // For each non-phi instruction in the block, link all the defs and uses
1639 // to their reaching defs. For any member of the block (including phis),
1640 // push the defs on the corresponding stacks.
1641 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1642 // Ignore phi nodes here. They will be linked part by part from the
1643 // predecessors.
1644 if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1645 linkStmtRefs(DefM, IA, IsUse);
1646 linkStmtRefs(DefM, IA, IsClobber);
1647 }
1648
1649 // Push the definitions on the stack.
1650 pushClobbers(IA, DefM);
1651
1652 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1653 linkStmtRefs(DefM, IA, IsNoClobber);
1654
1655 pushDefs(IA, DefM);
1656 }
1657
1658 // Recursively process all children in the dominator tree.
1659 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1660 for (auto *I : *N) {
1661 MachineBasicBlock *SB = I->getBlock();
1662 NodeAddr<BlockNode*> SBA = findBlock(SB);
1663 linkBlockRefs(DefM, SBA);
1664 }
1665
1666 // Link the phi uses from the successor blocks.
1667 auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1668 if (NA.Addr->getKind() != NodeAttrs::Use)
1669 return false;
1670 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1671 NodeAddr<PhiUseNode*> PUA = NA;
1672 return PUA.Addr->getPredecessor() == BA.Id;
1673 };
1674
1675 RegisterSet EHLiveIns = getLandingPadLiveIns();
1676 MachineBasicBlock *MBB = BA.Addr->getCode();
1677
1678 for (MachineBasicBlock *SB : MBB->successors()) {
1679 bool IsEHPad = SB->isEHPad();
1680 NodeAddr<BlockNode*> SBA = findBlock(SB);
1681 for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
1682 // Do not link phi uses for landing pad live-ins.
1683 if (IsEHPad) {
1684 // Find what register this phi is for.
1685 NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1686 assert(RA.Id != 0);
1687 if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
1688 continue;
1689 }
1690 // Go over each phi use associated with MBB, and link it.
1691 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1692 NodeAddr<PhiUseNode*> PUA = U;
1693 RegisterRef RR = PUA.Addr->getRegRef(*this);
1694 linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
1695 }
1696 }
1697 }
1698
1699 // Pop all defs from this block from the definition stacks.
1700 releaseBlock(BA.Id, DefM);
1701 }
1702
1703 // Remove the use node UA from any data-flow and structural links.
unlinkUseDF(NodeAddr<UseNode * > UA)1704 void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
1705 NodeId RD = UA.Addr->getReachingDef();
1706 NodeId Sib = UA.Addr->getSibling();
1707
1708 if (RD == 0) {
1709 assert(Sib == 0);
1710 return;
1711 }
1712
1713 auto RDA = addr<DefNode*>(RD);
1714 auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1715 if (TA.Id == UA.Id) {
1716 RDA.Addr->setReachedUse(Sib);
1717 return;
1718 }
1719
1720 while (TA.Id != 0) {
1721 NodeId S = TA.Addr->getSibling();
1722 if (S == UA.Id) {
1723 TA.Addr->setSibling(UA.Addr->getSibling());
1724 return;
1725 }
1726 TA = addr<UseNode*>(S);
1727 }
1728 }
1729
1730 // Remove the def node DA from any data-flow and structural links.
unlinkDefDF(NodeAddr<DefNode * > DA)1731 void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
1732 //
1733 // RD
1734 // | reached
1735 // | def
1736 // :
1737 // .
1738 // +----+
1739 // ... -- | DA | -- ... -- 0 : sibling chain of DA
1740 // +----+
1741 // | | reached
1742 // | : def
1743 // | .
1744 // | ... : Siblings (defs)
1745 // |
1746 // : reached
1747 // . use
1748 // ... : sibling chain of reached uses
1749
1750 NodeId RD = DA.Addr->getReachingDef();
1751
1752 // Visit all siblings of the reached def and reset their reaching defs.
1753 // Also, defs reached by DA are now "promoted" to being reached by RD,
1754 // so all of them will need to be spliced into the sibling chain where
1755 // DA belongs.
1756 auto getAllNodes = [this] (NodeId N) -> NodeList {
1757 NodeList Res;
1758 while (N) {
1759 auto RA = addr<RefNode*>(N);
1760 // Keep the nodes in the exact sibling order.
1761 Res.push_back(RA);
1762 N = RA.Addr->getSibling();
1763 }
1764 return Res;
1765 };
1766 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1767 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1768
1769 if (RD == 0) {
1770 for (NodeAddr<RefNode*> I : ReachedDefs)
1771 I.Addr->setSibling(0);
1772 for (NodeAddr<RefNode*> I : ReachedUses)
1773 I.Addr->setSibling(0);
1774 }
1775 for (NodeAddr<DefNode*> I : ReachedDefs)
1776 I.Addr->setReachingDef(RD);
1777 for (NodeAddr<UseNode*> I : ReachedUses)
1778 I.Addr->setReachingDef(RD);
1779
1780 NodeId Sib = DA.Addr->getSibling();
1781 if (RD == 0) {
1782 assert(Sib == 0);
1783 return;
1784 }
1785
1786 // Update the reaching def node and remove DA from the sibling list.
1787 auto RDA = addr<DefNode*>(RD);
1788 auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1789 if (TA.Id == DA.Id) {
1790 // If DA is the first reached def, just update the RD's reached def
1791 // to the DA's sibling.
1792 RDA.Addr->setReachedDef(Sib);
1793 } else {
1794 // Otherwise, traverse the sibling list of the reached defs and remove
1795 // DA from it.
1796 while (TA.Id != 0) {
1797 NodeId S = TA.Addr->getSibling();
1798 if (S == DA.Id) {
1799 TA.Addr->setSibling(Sib);
1800 break;
1801 }
1802 TA = addr<DefNode*>(S);
1803 }
1804 }
1805
1806 // Splice the DA's reached defs into the RDA's reached def chain.
1807 if (!ReachedDefs.empty()) {
1808 auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1809 Last.Addr->setSibling(RDA.Addr->getReachedDef());
1810 RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1811 }
1812 // Splice the DA's reached uses into the RDA's reached use chain.
1813 if (!ReachedUses.empty()) {
1814 auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1815 Last.Addr->setSibling(RDA.Addr->getReachedUse());
1816 RDA.Addr->setReachedUse(ReachedUses.front().Id);
1817 }
1818 }
1819