1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "NativeProcessLinux.h"
10
11 #include <cerrno>
12 #include <cstdint>
13 #include <cstring>
14 #include <unistd.h>
15
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/ModuleSpec.h"
27 #include "lldb/Host/Host.h"
28 #include "lldb/Host/HostProcess.h"
29 #include "lldb/Host/ProcessLaunchInfo.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeRegisterContext.h"
33 #include "lldb/Host/linux/Host.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/LLDBLog.h"
42 #include "lldb/Utility/State.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StringExtractor.h"
45 #include "llvm/ADT/ScopeExit.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56
57 #ifdef __aarch64__
58 #include <asm/hwcap.h>
59 #include <sys/auxv.h>
60 #endif
61
62 // Support hardware breakpoints in case it has not been defined
63 #ifndef TRAP_HWBKPT
64 #define TRAP_HWBKPT 4
65 #endif
66
67 #ifndef HWCAP2_MTE
68 #define HWCAP2_MTE (1 << 18)
69 #endif
70
71 using namespace lldb;
72 using namespace lldb_private;
73 using namespace lldb_private::process_linux;
74 using namespace llvm;
75
76 // Private bits we only need internally.
77
ProcessVmReadvSupported()78 static bool ProcessVmReadvSupported() {
79 static bool is_supported;
80 static llvm::once_flag flag;
81
82 llvm::call_once(flag, [] {
83 Log *log = GetLog(POSIXLog::Process);
84
85 uint32_t source = 0x47424742;
86 uint32_t dest = 0;
87
88 struct iovec local, remote;
89 remote.iov_base = &source;
90 local.iov_base = &dest;
91 remote.iov_len = local.iov_len = sizeof source;
92
93 // We shall try if cross-process-memory reads work by attempting to read a
94 // value from our own process.
95 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
96 is_supported = (res == sizeof(source) && source == dest);
97 if (is_supported)
98 LLDB_LOG(log,
99 "Detected kernel support for process_vm_readv syscall. "
100 "Fast memory reads enabled.");
101 else
102 LLDB_LOG(log,
103 "syscall process_vm_readv failed (error: {0}). Fast memory "
104 "reads disabled.",
105 llvm::sys::StrError());
106 });
107
108 return is_supported;
109 }
110
MaybeLogLaunchInfo(const ProcessLaunchInfo & info)111 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
112 Log *log = GetLog(POSIXLog::Process);
113 if (!log)
114 return;
115
116 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
117 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
118 else
119 LLDB_LOG(log, "leaving STDIN as is");
120
121 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
122 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
123 else
124 LLDB_LOG(log, "leaving STDOUT as is");
125
126 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
127 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
128 else
129 LLDB_LOG(log, "leaving STDERR as is");
130
131 int i = 0;
132 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
133 ++args, ++i)
134 LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
135 }
136
DisplayBytes(StreamString & s,void * bytes,uint32_t count)137 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
138 uint8_t *ptr = (uint8_t *)bytes;
139 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
140 for (uint32_t i = 0; i < loop_count; i++) {
141 s.Printf("[%x]", *ptr);
142 ptr++;
143 }
144 }
145
PtraceDisplayBytes(int & req,void * data,size_t data_size)146 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
147 Log *log = GetLog(POSIXLog::Ptrace);
148 if (!log)
149 return;
150 StreamString buf;
151
152 switch (req) {
153 case PTRACE_POKETEXT: {
154 DisplayBytes(buf, &data, 8);
155 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
156 break;
157 }
158 case PTRACE_POKEDATA: {
159 DisplayBytes(buf, &data, 8);
160 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
161 break;
162 }
163 case PTRACE_POKEUSER: {
164 DisplayBytes(buf, &data, 8);
165 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
166 break;
167 }
168 case PTRACE_SETREGS: {
169 DisplayBytes(buf, data, data_size);
170 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
171 break;
172 }
173 case PTRACE_SETFPREGS: {
174 DisplayBytes(buf, data, data_size);
175 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
176 break;
177 }
178 case PTRACE_SETSIGINFO: {
179 DisplayBytes(buf, data, sizeof(siginfo_t));
180 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
181 break;
182 }
183 case PTRACE_SETREGSET: {
184 // Extract iov_base from data, which is a pointer to the struct iovec
185 DisplayBytes(buf, *(void **)data, data_size);
186 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
187 break;
188 }
189 default: {}
190 }
191 }
192
193 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
194 static_assert(sizeof(long) >= k_ptrace_word_size,
195 "Size of long must be larger than ptrace word size");
196
197 // Simple helper function to ensure flags are enabled on the given file
198 // descriptor.
EnsureFDFlags(int fd,int flags)199 static Status EnsureFDFlags(int fd, int flags) {
200 Status error;
201
202 int status = fcntl(fd, F_GETFL);
203 if (status == -1) {
204 error.SetErrorToErrno();
205 return error;
206 }
207
208 if (fcntl(fd, F_SETFL, status | flags) == -1) {
209 error.SetErrorToErrno();
210 return error;
211 }
212
213 return error;
214 }
215
216 // Public Static Methods
217
218 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
Launch(ProcessLaunchInfo & launch_info,NativeDelegate & native_delegate,MainLoop & mainloop) const219 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
220 NativeDelegate &native_delegate,
221 MainLoop &mainloop) const {
222 Log *log = GetLog(POSIXLog::Process);
223
224 MaybeLogLaunchInfo(launch_info);
225
226 Status status;
227 ::pid_t pid = ProcessLauncherPosixFork()
228 .LaunchProcess(launch_info, status)
229 .GetProcessId();
230 LLDB_LOG(log, "pid = {0:x}", pid);
231 if (status.Fail()) {
232 LLDB_LOG(log, "failed to launch process: {0}", status);
233 return status.ToError();
234 }
235
236 // Wait for the child process to trap on its call to execve.
237 int wstatus = 0;
238 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
239 assert(wpid == pid);
240 (void)wpid;
241 if (!WIFSTOPPED(wstatus)) {
242 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
243 WaitStatus::Decode(wstatus));
244 return llvm::make_error<StringError>("Could not sync with inferior process",
245 llvm::inconvertibleErrorCode());
246 }
247 LLDB_LOG(log, "inferior started, now in stopped state");
248
249 ProcessInstanceInfo Info;
250 if (!Host::GetProcessInfo(pid, Info)) {
251 return llvm::make_error<StringError>("Cannot get process architecture",
252 llvm::inconvertibleErrorCode());
253 }
254
255 // Set the architecture to the exe architecture.
256 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid,
257 Info.GetArchitecture().GetArchitectureName());
258
259 status = SetDefaultPtraceOpts(pid);
260 if (status.Fail()) {
261 LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
262 return status.ToError();
263 }
264
265 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
266 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
267 Info.GetArchitecture(), mainloop, {pid}));
268 }
269
270 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
Attach(lldb::pid_t pid,NativeProcessProtocol::NativeDelegate & native_delegate,MainLoop & mainloop) const271 NativeProcessLinux::Factory::Attach(
272 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
273 MainLoop &mainloop) const {
274 Log *log = GetLog(POSIXLog::Process);
275 LLDB_LOG(log, "pid = {0:x}", pid);
276
277 // Retrieve the architecture for the running process.
278 ProcessInstanceInfo Info;
279 if (!Host::GetProcessInfo(pid, Info)) {
280 return llvm::make_error<StringError>("Cannot get process architecture",
281 llvm::inconvertibleErrorCode());
282 }
283
284 auto tids_or = NativeProcessLinux::Attach(pid);
285 if (!tids_or)
286 return tids_or.takeError();
287
288 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
289 pid, -1, native_delegate, Info.GetArchitecture(), mainloop, *tids_or));
290 }
291
292 NativeProcessLinux::Extension
GetSupportedExtensions() const293 NativeProcessLinux::Factory::GetSupportedExtensions() const {
294 NativeProcessLinux::Extension supported =
295 Extension::multiprocess | Extension::fork | Extension::vfork |
296 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 |
297 Extension::siginfo_read;
298
299 #ifdef __aarch64__
300 // At this point we do not have a process so read auxv directly.
301 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE))
302 supported |= Extension::memory_tagging;
303 #endif
304
305 return supported;
306 }
307
308 // Public Instance Methods
309
NativeProcessLinux(::pid_t pid,int terminal_fd,NativeDelegate & delegate,const ArchSpec & arch,MainLoop & mainloop,llvm::ArrayRef<::pid_t> tids)310 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
311 NativeDelegate &delegate,
312 const ArchSpec &arch, MainLoop &mainloop,
313 llvm::ArrayRef<::pid_t> tids)
314 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
315 m_main_loop(mainloop), m_intel_pt_collector(*this) {
316 if (m_terminal_fd != -1) {
317 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
318 assert(status.Success());
319 }
320
321 Status status;
322 m_sigchld_handle = mainloop.RegisterSignal(
323 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
324 assert(m_sigchld_handle && status.Success());
325
326 for (const auto &tid : tids) {
327 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
328 ThreadWasCreated(thread);
329 }
330
331 // Let our process instance know the thread has stopped.
332 SetCurrentThreadID(tids[0]);
333 SetState(StateType::eStateStopped, false);
334
335 // Proccess any signals we received before installing our handler
336 SigchldHandler();
337 }
338
Attach(::pid_t pid)339 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
340 Log *log = GetLog(POSIXLog::Process);
341
342 Status status;
343 // Use a map to keep track of the threads which we have attached/need to
344 // attach.
345 Host::TidMap tids_to_attach;
346 while (Host::FindProcessThreads(pid, tids_to_attach)) {
347 for (Host::TidMap::iterator it = tids_to_attach.begin();
348 it != tids_to_attach.end();) {
349 if (it->second == false) {
350 lldb::tid_t tid = it->first;
351
352 // Attach to the requested process.
353 // An attach will cause the thread to stop with a SIGSTOP.
354 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
355 // No such thread. The thread may have exited. More error handling
356 // may be needed.
357 if (status.GetError() == ESRCH) {
358 it = tids_to_attach.erase(it);
359 continue;
360 }
361 return status.ToError();
362 }
363
364 int wpid =
365 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
366 // Need to use __WALL otherwise we receive an error with errno=ECHLD At
367 // this point we should have a thread stopped if waitpid succeeds.
368 if (wpid < 0) {
369 // No such thread. The thread may have exited. More error handling
370 // may be needed.
371 if (errno == ESRCH) {
372 it = tids_to_attach.erase(it);
373 continue;
374 }
375 return llvm::errorCodeToError(
376 std::error_code(errno, std::generic_category()));
377 }
378
379 if ((status = SetDefaultPtraceOpts(tid)).Fail())
380 return status.ToError();
381
382 LLDB_LOG(log, "adding tid = {0}", tid);
383 it->second = true;
384 }
385
386 // move the loop forward
387 ++it;
388 }
389 }
390
391 size_t tid_count = tids_to_attach.size();
392 if (tid_count == 0)
393 return llvm::make_error<StringError>("No such process",
394 llvm::inconvertibleErrorCode());
395
396 std::vector<::pid_t> tids;
397 tids.reserve(tid_count);
398 for (const auto &p : tids_to_attach)
399 tids.push_back(p.first);
400 return std::move(tids);
401 }
402
SetDefaultPtraceOpts(lldb::pid_t pid)403 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
404 long ptrace_opts = 0;
405
406 // Have the child raise an event on exit. This is used to keep the child in
407 // limbo until it is destroyed.
408 ptrace_opts |= PTRACE_O_TRACEEXIT;
409
410 // Have the tracer trace threads which spawn in the inferior process.
411 ptrace_opts |= PTRACE_O_TRACECLONE;
412
413 // Have the tracer notify us before execve returns (needed to disable legacy
414 // SIGTRAP generation)
415 ptrace_opts |= PTRACE_O_TRACEEXEC;
416
417 // Have the tracer trace forked children.
418 ptrace_opts |= PTRACE_O_TRACEFORK;
419
420 // Have the tracer trace vforks.
421 ptrace_opts |= PTRACE_O_TRACEVFORK;
422
423 // Have the tracer trace vfork-done in order to restore breakpoints after
424 // the child finishes sharing memory.
425 ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
426
427 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
428 }
429
430 // Handles all waitpid events from the inferior process.
MonitorCallback(NativeThreadLinux & thread,WaitStatus status)431 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread,
432 WaitStatus status) {
433 Log *log = GetLog(LLDBLog::Process);
434
435 // Certain activities differ based on whether the pid is the tid of the main
436 // thread.
437 const bool is_main_thread = (thread.GetID() == GetID());
438
439 // Handle when the thread exits.
440 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) {
441 LLDB_LOG(log,
442 "got exit status({0}) , tid = {1} ({2} main thread), process "
443 "state = {3}",
444 status, thread.GetID(), is_main_thread ? "is" : "is not",
445 GetState());
446
447 // This is a thread that exited. Ensure we're not tracking it anymore.
448 StopTrackingThread(thread);
449
450 assert(!is_main_thread && "Main thread exits handled elsewhere");
451 return;
452 }
453
454 siginfo_t info;
455 const auto info_err = GetSignalInfo(thread.GetID(), &info);
456
457 // Get details on the signal raised.
458 if (info_err.Success()) {
459 // We have retrieved the signal info. Dispatch appropriately.
460 if (info.si_signo == SIGTRAP)
461 MonitorSIGTRAP(info, thread);
462 else
463 MonitorSignal(info, thread);
464 } else {
465 if (info_err.GetError() == EINVAL) {
466 // This is a group stop reception for this tid. We can reach here if we
467 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
468 // triggering the group-stop mechanism. Normally receiving these would
469 // stop the process, pending a SIGCONT. Simulating this state in a
470 // debugger is hard and is generally not needed (one use case is
471 // debugging background task being managed by a shell). For general use,
472 // it is sufficient to stop the process in a signal-delivery stop which
473 // happens before the group stop. This done by MonitorSignal and works
474 // correctly for all signals.
475 LLDB_LOG(log,
476 "received a group stop for pid {0} tid {1}. Transparent "
477 "handling of group stops not supported, resuming the "
478 "thread.",
479 GetID(), thread.GetID());
480 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
481 } else {
482 // ptrace(GETSIGINFO) failed (but not due to group-stop).
483
484 // A return value of ESRCH means the thread/process has died in the mean
485 // time. This can (e.g.) happen when another thread does an exit_group(2)
486 // or the entire process get SIGKILLed.
487 // We can't do anything with this thread anymore, but we keep it around
488 // until we get the WIFEXITED event.
489
490 LLDB_LOG(log,
491 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = "
492 "{3}. Expecting WIFEXITED soon.",
493 thread.GetID(), info_err, status, is_main_thread);
494 }
495 }
496 }
497
WaitForCloneNotification(::pid_t pid)498 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
499 Log *log = GetLog(POSIXLog::Process);
500
501 // The PID is not tracked yet, let's wait for it to appear.
502 int status = -1;
503 LLDB_LOG(log,
504 "received clone event for pid {0}. pid not tracked yet, "
505 "waiting for it to appear...",
506 pid);
507 ::pid_t wait_pid =
508 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
509
510 // It's theoretically possible to get other events if the entire process was
511 // SIGKILLed before we got a chance to check this. In that case, we'll just
512 // clean everything up when we get the process exit event.
513
514 LLDB_LOG(log,
515 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})",
516 pid, wait_pid, errno, WaitStatus::Decode(status));
517 }
518
MonitorSIGTRAP(const siginfo_t & info,NativeThreadLinux & thread)519 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
520 NativeThreadLinux &thread) {
521 Log *log = GetLog(POSIXLog::Process);
522 const bool is_main_thread = (thread.GetID() == GetID());
523
524 assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
525
526 switch (info.si_code) {
527 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
528 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
529 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
530 // This can either mean a new thread or a new process spawned via
531 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2)
532 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
533 // of these flags are passed.
534
535 unsigned long event_message = 0;
536 if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
537 LLDB_LOG(log,
538 "pid {0} received clone() event but GetEventMessage failed "
539 "so we don't know the new pid/tid",
540 thread.GetID());
541 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
542 } else {
543 MonitorClone(thread, event_message, info.si_code >> 8);
544 }
545
546 break;
547 }
548
549 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
550 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
551
552 // Exec clears any pending notifications.
553 m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
554
555 // Remove all but the main thread here. Linux fork creates a new process
556 // which only copies the main thread.
557 LLDB_LOG(log, "exec received, stop tracking all but main thread");
558
559 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
560 return t->GetID() != GetID();
561 });
562 assert(m_threads.size() == 1);
563 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
564
565 SetCurrentThreadID(main_thread->GetID());
566 main_thread->SetStoppedByExec();
567
568 // Tell coordinator about about the "new" (since exec) stopped main thread.
569 ThreadWasCreated(*main_thread);
570
571 // Let our delegate know we have just exec'd.
572 NotifyDidExec();
573
574 // Let the process know we're stopped.
575 StopRunningThreads(main_thread->GetID());
576
577 break;
578 }
579
580 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
581 // The inferior process or one of its threads is about to exit. We don't
582 // want to do anything with the thread so we just resume it. In case we
583 // want to implement "break on thread exit" functionality, we would need to
584 // stop here.
585
586 unsigned long data = 0;
587 if (GetEventMessage(thread.GetID(), &data).Fail())
588 data = -1;
589
590 LLDB_LOG(log,
591 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
592 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
593 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
594 is_main_thread);
595
596
597 StateType state = thread.GetState();
598 if (!StateIsRunningState(state)) {
599 // Due to a kernel bug, we may sometimes get this stop after the inferior
600 // gets a SIGKILL. This confuses our state tracking logic in
601 // ResumeThread(), since normally, we should not be receiving any ptrace
602 // events while the inferior is stopped. This makes sure that the
603 // inferior is resumed and exits normally.
604 state = eStateRunning;
605 }
606 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
607
608 if (is_main_thread) {
609 // Main thread report the read (WIFEXITED) event only after all threads in
610 // the process exit, so we need to stop tracking it here instead of in
611 // MonitorCallback
612 StopTrackingThread(thread);
613 }
614
615 break;
616 }
617
618 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
619 if (bool(m_enabled_extensions & Extension::vfork)) {
620 thread.SetStoppedByVForkDone();
621 StopRunningThreads(thread.GetID());
622 }
623 else
624 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
625 break;
626 }
627
628 case 0:
629 case TRAP_TRACE: // We receive this on single stepping.
630 case TRAP_HWBKPT: // We receive this on watchpoint hit
631 {
632 // If a watchpoint was hit, report it
633 uint32_t wp_index;
634 Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
635 wp_index, (uintptr_t)info.si_addr);
636 if (error.Fail())
637 LLDB_LOG(log,
638 "received error while checking for watchpoint hits, pid = "
639 "{0}, error = {1}",
640 thread.GetID(), error);
641 if (wp_index != LLDB_INVALID_INDEX32) {
642 MonitorWatchpoint(thread, wp_index);
643 break;
644 }
645
646 // If a breakpoint was hit, report it
647 uint32_t bp_index;
648 error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
649 bp_index, (uintptr_t)info.si_addr);
650 if (error.Fail())
651 LLDB_LOG(log, "received error while checking for hardware "
652 "breakpoint hits, pid = {0}, error = {1}",
653 thread.GetID(), error);
654 if (bp_index != LLDB_INVALID_INDEX32) {
655 MonitorBreakpoint(thread);
656 break;
657 }
658
659 // Otherwise, report step over
660 MonitorTrace(thread);
661 break;
662 }
663
664 case SI_KERNEL:
665 #if defined __mips__
666 // For mips there is no special signal for watchpoint So we check for
667 // watchpoint in kernel trap
668 {
669 // If a watchpoint was hit, report it
670 uint32_t wp_index;
671 Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
672 wp_index, LLDB_INVALID_ADDRESS);
673 if (error.Fail())
674 LLDB_LOG(log,
675 "received error while checking for watchpoint hits, pid = "
676 "{0}, error = {1}",
677 thread.GetID(), error);
678 if (wp_index != LLDB_INVALID_INDEX32) {
679 MonitorWatchpoint(thread, wp_index);
680 break;
681 }
682 }
683 // NO BREAK
684 #endif
685 case TRAP_BRKPT:
686 MonitorBreakpoint(thread);
687 break;
688
689 case SIGTRAP:
690 case (SIGTRAP | 0x80):
691 LLDB_LOG(
692 log,
693 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
694 info.si_code, GetID(), thread.GetID());
695
696 // Ignore these signals until we know more about them.
697 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
698 break;
699
700 default:
701 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
702 info.si_code, GetID(), thread.GetID());
703 MonitorSignal(info, thread);
704 break;
705 }
706 }
707
MonitorTrace(NativeThreadLinux & thread)708 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
709 Log *log = GetLog(POSIXLog::Process);
710 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
711
712 // This thread is currently stopped.
713 thread.SetStoppedByTrace();
714
715 StopRunningThreads(thread.GetID());
716 }
717
MonitorBreakpoint(NativeThreadLinux & thread)718 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
719 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
720 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
721
722 // Mark the thread as stopped at breakpoint.
723 thread.SetStoppedByBreakpoint();
724 FixupBreakpointPCAsNeeded(thread);
725
726 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
727 m_threads_stepping_with_breakpoint.end())
728 thread.SetStoppedByTrace();
729
730 StopRunningThreads(thread.GetID());
731 }
732
MonitorWatchpoint(NativeThreadLinux & thread,uint32_t wp_index)733 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
734 uint32_t wp_index) {
735 Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints);
736 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
737 thread.GetID(), wp_index);
738
739 // Mark the thread as stopped at watchpoint. The address is at
740 // (lldb::addr_t)info->si_addr if we need it.
741 thread.SetStoppedByWatchpoint(wp_index);
742
743 // We need to tell all other running threads before we notify the delegate
744 // about this stop.
745 StopRunningThreads(thread.GetID());
746 }
747
MonitorSignal(const siginfo_t & info,NativeThreadLinux & thread)748 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
749 NativeThreadLinux &thread) {
750 const int signo = info.si_signo;
751 const bool is_from_llgs = info.si_pid == getpid();
752
753 Log *log = GetLog(POSIXLog::Process);
754
755 // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
756 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
757 // or raise(3). Similarly for tgkill(2) on Linux.
758 //
759 // IOW, user generated signals never generate what we consider to be a
760 // "crash".
761 //
762 // Similarly, ACK signals generated by this monitor.
763
764 // Handle the signal.
765 LLDB_LOG(log,
766 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
767 "waitpid pid = {4})",
768 Host::GetSignalAsCString(signo), signo, info.si_code,
769 thread.GetID());
770
771 // Check for thread stop notification.
772 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
773 // This is a tgkill()-based stop.
774 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
775
776 // Check that we're not already marked with a stop reason. Note this thread
777 // really shouldn't already be marked as stopped - if we were, that would
778 // imply that the kernel signaled us with the thread stopping which we
779 // handled and marked as stopped, and that, without an intervening resume,
780 // we received another stop. It is more likely that we are missing the
781 // marking of a run state somewhere if we find that the thread was marked
782 // as stopped.
783 const StateType thread_state = thread.GetState();
784 if (!StateIsStoppedState(thread_state, false)) {
785 // An inferior thread has stopped because of a SIGSTOP we have sent it.
786 // Generally, these are not important stops and we don't want to report
787 // them as they are just used to stop other threads when one thread (the
788 // one with the *real* stop reason) hits a breakpoint (watchpoint,
789 // etc...). However, in the case of an asynchronous Interrupt(), this
790 // *is* the real stop reason, so we leave the signal intact if this is
791 // the thread that was chosen as the triggering thread.
792 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
793 if (m_pending_notification_tid == thread.GetID())
794 thread.SetStoppedBySignal(SIGSTOP, &info);
795 else
796 thread.SetStoppedWithNoReason();
797
798 SetCurrentThreadID(thread.GetID());
799 SignalIfAllThreadsStopped();
800 } else {
801 // We can end up here if stop was initiated by LLGS but by this time a
802 // thread stop has occurred - maybe initiated by another event.
803 Status error = ResumeThread(thread, thread.GetState(), 0);
804 if (error.Fail())
805 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
806 error);
807 }
808 } else {
809 LLDB_LOG(log,
810 "pid {0} tid {1}, thread was already marked as a stopped "
811 "state (state={2}), leaving stop signal as is",
812 GetID(), thread.GetID(), thread_state);
813 SignalIfAllThreadsStopped();
814 }
815
816 // Done handling.
817 return;
818 }
819
820 // Check if debugger should stop at this signal or just ignore it and resume
821 // the inferior.
822 if (m_signals_to_ignore.contains(signo)) {
823 ResumeThread(thread, thread.GetState(), signo);
824 return;
825 }
826
827 // This thread is stopped.
828 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
829 thread.SetStoppedBySignal(signo, &info);
830
831 // Send a stop to the debugger after we get all other threads to stop.
832 StopRunningThreads(thread.GetID());
833 }
834
MonitorClone(NativeThreadLinux & parent,lldb::pid_t child_pid,int event)835 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent,
836 lldb::pid_t child_pid, int event) {
837 Log *log = GetLog(POSIXLog::Process);
838 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(),
839 child_pid, event);
840
841 WaitForCloneNotification(child_pid);
842
843 switch (event) {
844 case PTRACE_EVENT_CLONE: {
845 // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
846 // Try to grab the new process' PGID to figure out which one it is.
847 // If PGID is the same as the PID, then it's a new process. Otherwise,
848 // it's a thread.
849 auto tgid_ret = getPIDForTID(child_pid);
850 if (tgid_ret != child_pid) {
851 // A new thread should have PGID matching our process' PID.
852 assert(!tgid_ret || *tgid_ret == GetID());
853
854 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
855 ThreadWasCreated(child_thread);
856
857 // Resume the parent.
858 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
859 break;
860 }
861 }
862 LLVM_FALLTHROUGH;
863 case PTRACE_EVENT_FORK:
864 case PTRACE_EVENT_VFORK: {
865 bool is_vfork = event == PTRACE_EVENT_VFORK;
866 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
867 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
868 m_main_loop, {static_cast<::pid_t>(child_pid)})};
869 if (!is_vfork)
870 child_process->m_software_breakpoints = m_software_breakpoints;
871
872 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
873 if (bool(m_enabled_extensions & expected_ext)) {
874 m_delegate.NewSubprocess(this, std::move(child_process));
875 // NB: non-vfork clone() is reported as fork
876 parent.SetStoppedByFork(is_vfork, child_pid);
877 StopRunningThreads(parent.GetID());
878 } else {
879 child_process->Detach();
880 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
881 }
882 break;
883 }
884 default:
885 llvm_unreachable("unknown clone_info.event");
886 }
887
888 return true;
889 }
890
SupportHardwareSingleStepping() const891 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
892 if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
893 return false;
894 return true;
895 }
896
Resume(const ResumeActionList & resume_actions)897 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
898 Log *log = GetLog(POSIXLog::Process);
899 LLDB_LOG(log, "pid {0}", GetID());
900
901 NotifyTracersProcessWillResume();
902
903 bool software_single_step = !SupportHardwareSingleStepping();
904
905 if (software_single_step) {
906 for (const auto &thread : m_threads) {
907 assert(thread && "thread list should not contain NULL threads");
908
909 const ResumeAction *const action =
910 resume_actions.GetActionForThread(thread->GetID(), true);
911 if (action == nullptr)
912 continue;
913
914 if (action->state == eStateStepping) {
915 Status error = SetupSoftwareSingleStepping(
916 static_cast<NativeThreadLinux &>(*thread));
917 if (error.Fail())
918 return error;
919 }
920 }
921 }
922
923 for (const auto &thread : m_threads) {
924 assert(thread && "thread list should not contain NULL threads");
925
926 const ResumeAction *const action =
927 resume_actions.GetActionForThread(thread->GetID(), true);
928
929 if (action == nullptr) {
930 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
931 thread->GetID());
932 continue;
933 }
934
935 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
936 action->state, GetID(), thread->GetID());
937
938 switch (action->state) {
939 case eStateRunning:
940 case eStateStepping: {
941 // Run the thread, possibly feeding it the signal.
942 const int signo = action->signal;
943 ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
944 signo);
945 break;
946 }
947
948 case eStateSuspended:
949 case eStateStopped:
950 break;
951
952 default:
953 return Status("NativeProcessLinux::%s (): unexpected state %s specified "
954 "for pid %" PRIu64 ", tid %" PRIu64,
955 __FUNCTION__, StateAsCString(action->state), GetID(),
956 thread->GetID());
957 }
958 }
959
960 return Status();
961 }
962
Halt()963 Status NativeProcessLinux::Halt() {
964 Status error;
965
966 if (kill(GetID(), SIGSTOP) != 0)
967 error.SetErrorToErrno();
968
969 return error;
970 }
971
Detach()972 Status NativeProcessLinux::Detach() {
973 Status error;
974
975 // Stop monitoring the inferior.
976 m_sigchld_handle.reset();
977
978 // Tell ptrace to detach from the process.
979 if (GetID() == LLDB_INVALID_PROCESS_ID)
980 return error;
981
982 for (const auto &thread : m_threads) {
983 Status e = Detach(thread->GetID());
984 if (e.Fail())
985 error =
986 e; // Save the error, but still attempt to detach from other threads.
987 }
988
989 m_intel_pt_collector.Clear();
990
991 return error;
992 }
993
Signal(int signo)994 Status NativeProcessLinux::Signal(int signo) {
995 Status error;
996
997 Log *log = GetLog(POSIXLog::Process);
998 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
999 Host::GetSignalAsCString(signo), GetID());
1000
1001 if (kill(GetID(), signo))
1002 error.SetErrorToErrno();
1003
1004 return error;
1005 }
1006
Interrupt()1007 Status NativeProcessLinux::Interrupt() {
1008 // Pick a running thread (or if none, a not-dead stopped thread) as the
1009 // chosen thread that will be the stop-reason thread.
1010 Log *log = GetLog(POSIXLog::Process);
1011
1012 NativeThreadProtocol *running_thread = nullptr;
1013 NativeThreadProtocol *stopped_thread = nullptr;
1014
1015 LLDB_LOG(log, "selecting running thread for interrupt target");
1016 for (const auto &thread : m_threads) {
1017 // If we have a running or stepping thread, we'll call that the target of
1018 // the interrupt.
1019 const auto thread_state = thread->GetState();
1020 if (thread_state == eStateRunning || thread_state == eStateStepping) {
1021 running_thread = thread.get();
1022 break;
1023 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1024 // Remember the first non-dead stopped thread. We'll use that as a
1025 // backup if there are no running threads.
1026 stopped_thread = thread.get();
1027 }
1028 }
1029
1030 if (!running_thread && !stopped_thread) {
1031 Status error("found no running/stepping or live stopped threads as target "
1032 "for interrupt");
1033 LLDB_LOG(log, "skipping due to error: {0}", error);
1034
1035 return error;
1036 }
1037
1038 NativeThreadProtocol *deferred_signal_thread =
1039 running_thread ? running_thread : stopped_thread;
1040
1041 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1042 running_thread ? "running" : "stopped",
1043 deferred_signal_thread->GetID());
1044
1045 StopRunningThreads(deferred_signal_thread->GetID());
1046
1047 return Status();
1048 }
1049
Kill()1050 Status NativeProcessLinux::Kill() {
1051 Log *log = GetLog(POSIXLog::Process);
1052 LLDB_LOG(log, "pid {0}", GetID());
1053
1054 Status error;
1055
1056 switch (m_state) {
1057 case StateType::eStateInvalid:
1058 case StateType::eStateExited:
1059 case StateType::eStateCrashed:
1060 case StateType::eStateDetached:
1061 case StateType::eStateUnloaded:
1062 // Nothing to do - the process is already dead.
1063 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1064 m_state);
1065 return error;
1066
1067 case StateType::eStateConnected:
1068 case StateType::eStateAttaching:
1069 case StateType::eStateLaunching:
1070 case StateType::eStateStopped:
1071 case StateType::eStateRunning:
1072 case StateType::eStateStepping:
1073 case StateType::eStateSuspended:
1074 // We can try to kill a process in these states.
1075 break;
1076 }
1077
1078 if (kill(GetID(), SIGKILL) != 0) {
1079 error.SetErrorToErrno();
1080 return error;
1081 }
1082
1083 return error;
1084 }
1085
GetMemoryRegionInfo(lldb::addr_t load_addr,MemoryRegionInfo & range_info)1086 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1087 MemoryRegionInfo &range_info) {
1088 // FIXME review that the final memory region returned extends to the end of
1089 // the virtual address space,
1090 // with no perms if it is not mapped.
1091
1092 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1093 // proc maps entries are in ascending order.
1094 // FIXME assert if we find differently.
1095
1096 if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1097 // We're done.
1098 return Status("unsupported");
1099 }
1100
1101 Status error = PopulateMemoryRegionCache();
1102 if (error.Fail()) {
1103 return error;
1104 }
1105
1106 lldb::addr_t prev_base_address = 0;
1107
1108 // FIXME start by finding the last region that is <= target address using
1109 // binary search. Data is sorted.
1110 // There can be a ton of regions on pthreads apps with lots of threads.
1111 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1112 ++it) {
1113 MemoryRegionInfo &proc_entry_info = it->first;
1114
1115 // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1116 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1117 "descending /proc/pid/maps entries detected, unexpected");
1118 prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1119 UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1120
1121 // If the target address comes before this entry, indicate distance to next
1122 // region.
1123 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1124 range_info.GetRange().SetRangeBase(load_addr);
1125 range_info.GetRange().SetByteSize(
1126 proc_entry_info.GetRange().GetRangeBase() - load_addr);
1127 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1128 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1129 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1130 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1131
1132 return error;
1133 } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1134 // The target address is within the memory region we're processing here.
1135 range_info = proc_entry_info;
1136 return error;
1137 }
1138
1139 // The target memory address comes somewhere after the region we just
1140 // parsed.
1141 }
1142
1143 // If we made it here, we didn't find an entry that contained the given
1144 // address. Return the load_addr as start and the amount of bytes betwwen
1145 // load address and the end of the memory as size.
1146 range_info.GetRange().SetRangeBase(load_addr);
1147 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1148 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1149 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1150 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1151 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1152 return error;
1153 }
1154
PopulateMemoryRegionCache()1155 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1156 Log *log = GetLog(POSIXLog::Process);
1157
1158 // If our cache is empty, pull the latest. There should always be at least
1159 // one memory region if memory region handling is supported.
1160 if (!m_mem_region_cache.empty()) {
1161 LLDB_LOG(log, "reusing {0} cached memory region entries",
1162 m_mem_region_cache.size());
1163 return Status();
1164 }
1165
1166 Status Result;
1167 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1168 if (Info) {
1169 FileSpec file_spec(Info->GetName().GetCString());
1170 FileSystem::Instance().Resolve(file_spec);
1171 m_mem_region_cache.emplace_back(*Info, file_spec);
1172 return true;
1173 }
1174
1175 Result = Info.takeError();
1176 m_supports_mem_region = LazyBool::eLazyBoolNo;
1177 LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1178 return false;
1179 };
1180
1181 // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1182 // if CONFIG_PROC_PAGE_MONITOR is enabled
1183 auto BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "smaps");
1184 if (BufferOrError)
1185 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1186 else {
1187 BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "maps");
1188 if (!BufferOrError) {
1189 m_supports_mem_region = LazyBool::eLazyBoolNo;
1190 return BufferOrError.getError();
1191 }
1192
1193 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1194 }
1195
1196 if (Result.Fail())
1197 return Result;
1198
1199 if (m_mem_region_cache.empty()) {
1200 // No entries after attempting to read them. This shouldn't happen if
1201 // /proc/{pid}/maps is supported. Assume we don't support map entries via
1202 // procfs.
1203 m_supports_mem_region = LazyBool::eLazyBoolNo;
1204 LLDB_LOG(log,
1205 "failed to find any procfs maps entries, assuming no support "
1206 "for memory region metadata retrieval");
1207 return Status("not supported");
1208 }
1209
1210 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1211 m_mem_region_cache.size(), GetID());
1212
1213 // We support memory retrieval, remember that.
1214 m_supports_mem_region = LazyBool::eLazyBoolYes;
1215 return Status();
1216 }
1217
DoStopIDBumped(uint32_t newBumpId)1218 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1219 Log *log = GetLog(POSIXLog::Process);
1220 LLDB_LOG(log, "newBumpId={0}", newBumpId);
1221 LLDB_LOG(log, "clearing {0} entries from memory region cache",
1222 m_mem_region_cache.size());
1223 m_mem_region_cache.clear();
1224 }
1225
1226 llvm::Expected<uint64_t>
Syscall(llvm::ArrayRef<uint64_t> args)1227 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1228 PopulateMemoryRegionCache();
1229 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1230 return pair.first.GetExecutable() == MemoryRegionInfo::eYes &&
1231 pair.first.GetShared() != MemoryRegionInfo::eYes;
1232 });
1233 if (region_it == m_mem_region_cache.end())
1234 return llvm::createStringError(llvm::inconvertibleErrorCode(),
1235 "No executable memory region found!");
1236
1237 addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1238
1239 NativeThreadLinux &thread = *GetCurrentThread();
1240 assert(thread.GetState() == eStateStopped);
1241 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext();
1242
1243 NativeRegisterContextLinux::SyscallData syscall_data =
1244 *reg_ctx.GetSyscallData();
1245
1246 WritableDataBufferSP registers_sp;
1247 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1248 return std::move(Err);
1249 auto restore_regs = llvm::make_scope_exit(
1250 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1251
1252 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1253 size_t bytes_read;
1254 if (llvm::Error Err =
1255 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1256 .ToError()) {
1257 return std::move(Err);
1258 }
1259
1260 auto restore_mem = llvm::make_scope_exit(
1261 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1262
1263 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1264 return std::move(Err);
1265
1266 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1267 if (llvm::Error Err =
1268 reg_ctx
1269 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1270 .ToError()) {
1271 return std::move(Err);
1272 }
1273 }
1274 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1275 syscall_data.Insn.size(), bytes_read)
1276 .ToError())
1277 return std::move(Err);
1278
1279 m_mem_region_cache.clear();
1280
1281 // With software single stepping the syscall insn buffer must also include a
1282 // trap instruction to stop the process.
1283 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1284 if (llvm::Error Err =
1285 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1286 return std::move(Err);
1287
1288 int status;
1289 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1290 &status, __WALL);
1291 if (wait_pid == -1) {
1292 return llvm::errorCodeToError(
1293 std::error_code(errno, std::generic_category()));
1294 }
1295 assert((unsigned)wait_pid == thread.GetID());
1296
1297 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1298
1299 // Values larger than this are actually negative errno numbers.
1300 uint64_t errno_threshold =
1301 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1302 if (result > errno_threshold) {
1303 return llvm::errorCodeToError(
1304 std::error_code(-result & 0xfff, std::generic_category()));
1305 }
1306
1307 return result;
1308 }
1309
1310 llvm::Expected<addr_t>
AllocateMemory(size_t size,uint32_t permissions)1311 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1312
1313 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1314 GetCurrentThread()->GetRegisterContext().GetMmapData();
1315 if (!mmap_data)
1316 return llvm::make_error<UnimplementedError>();
1317
1318 unsigned prot = PROT_NONE;
1319 assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1320 ePermissionsExecutable)) == permissions &&
1321 "Unknown permission!");
1322 if (permissions & ePermissionsReadable)
1323 prot |= PROT_READ;
1324 if (permissions & ePermissionsWritable)
1325 prot |= PROT_WRITE;
1326 if (permissions & ePermissionsExecutable)
1327 prot |= PROT_EXEC;
1328
1329 llvm::Expected<uint64_t> Result =
1330 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1331 uint64_t(-1), 0});
1332 if (Result)
1333 m_allocated_memory.try_emplace(*Result, size);
1334 return Result;
1335 }
1336
DeallocateMemory(lldb::addr_t addr)1337 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1338 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1339 GetCurrentThread()->GetRegisterContext().GetMmapData();
1340 if (!mmap_data)
1341 return llvm::make_error<UnimplementedError>();
1342
1343 auto it = m_allocated_memory.find(addr);
1344 if (it == m_allocated_memory.end())
1345 return llvm::createStringError(llvm::errc::invalid_argument,
1346 "Memory not allocated by the debugger.");
1347
1348 llvm::Expected<uint64_t> Result =
1349 Syscall({mmap_data->SysMunmap, addr, it->second});
1350 if (!Result)
1351 return Result.takeError();
1352
1353 m_allocated_memory.erase(it);
1354 return llvm::Error::success();
1355 }
1356
ReadMemoryTags(int32_t type,lldb::addr_t addr,size_t len,std::vector<uint8_t> & tags)1357 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr,
1358 size_t len,
1359 std::vector<uint8_t> &tags) {
1360 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1361 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1362 if (!details)
1363 return Status(details.takeError());
1364
1365 // Ignore 0 length read
1366 if (!len)
1367 return Status();
1368
1369 // lldb will align the range it requests but it is not required to by
1370 // the protocol so we'll do it again just in case.
1371 // Remove tag bits too. Ptrace calls may work regardless but that
1372 // is not a guarantee.
1373 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1374 range = details->manager->ExpandToGranule(range);
1375
1376 // Allocate enough space for all tags to be read
1377 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize();
1378 tags.resize(num_tags * details->manager->GetTagSizeInBytes());
1379
1380 struct iovec tags_iovec;
1381 uint8_t *dest = tags.data();
1382 lldb::addr_t read_addr = range.GetRangeBase();
1383
1384 // This call can return partial data so loop until we error or
1385 // get all tags back.
1386 while (num_tags) {
1387 tags_iovec.iov_base = dest;
1388 tags_iovec.iov_len = num_tags;
1389
1390 Status error = NativeProcessLinux::PtraceWrapper(
1391 details->ptrace_read_req, GetCurrentThreadID(),
1392 reinterpret_cast<void *>(read_addr), static_cast<void *>(&tags_iovec),
1393 0, nullptr);
1394
1395 if (error.Fail()) {
1396 // Discard partial reads
1397 tags.resize(0);
1398 return error;
1399 }
1400
1401 size_t tags_read = tags_iovec.iov_len;
1402 assert(tags_read && (tags_read <= num_tags));
1403
1404 dest += tags_read * details->manager->GetTagSizeInBytes();
1405 read_addr += details->manager->GetGranuleSize() * tags_read;
1406 num_tags -= tags_read;
1407 }
1408
1409 return Status();
1410 }
1411
WriteMemoryTags(int32_t type,lldb::addr_t addr,size_t len,const std::vector<uint8_t> & tags)1412 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr,
1413 size_t len,
1414 const std::vector<uint8_t> &tags) {
1415 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1416 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1417 if (!details)
1418 return Status(details.takeError());
1419
1420 // Ignore 0 length write
1421 if (!len)
1422 return Status();
1423
1424 // lldb will align the range it requests but it is not required to by
1425 // the protocol so we'll do it again just in case.
1426 // Remove tag bits too. Ptrace calls may work regardless but that
1427 // is not a guarantee.
1428 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1429 range = details->manager->ExpandToGranule(range);
1430
1431 // Not checking number of tags here, we may repeat them below
1432 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err =
1433 details->manager->UnpackTagsData(tags);
1434 if (!unpacked_tags_or_err)
1435 return Status(unpacked_tags_or_err.takeError());
1436
1437 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err =
1438 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range);
1439 if (!repeated_tags_or_err)
1440 return Status(repeated_tags_or_err.takeError());
1441
1442 // Repack them for ptrace to use
1443 llvm::Expected<std::vector<uint8_t>> final_tag_data =
1444 details->manager->PackTags(*repeated_tags_or_err);
1445 if (!final_tag_data)
1446 return Status(final_tag_data.takeError());
1447
1448 struct iovec tags_vec;
1449 uint8_t *src = final_tag_data->data();
1450 lldb::addr_t write_addr = range.GetRangeBase();
1451 // unpacked tags size because the number of bytes per tag might not be 1
1452 size_t num_tags = repeated_tags_or_err->size();
1453
1454 // This call can partially write tags, so we loop until we
1455 // error or all tags have been written.
1456 while (num_tags > 0) {
1457 tags_vec.iov_base = src;
1458 tags_vec.iov_len = num_tags;
1459
1460 Status error = NativeProcessLinux::PtraceWrapper(
1461 details->ptrace_write_req, GetCurrentThreadID(),
1462 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0,
1463 nullptr);
1464
1465 if (error.Fail()) {
1466 // Don't attempt to restore the original values in the case of a partial
1467 // write
1468 return error;
1469 }
1470
1471 size_t tags_written = tags_vec.iov_len;
1472 assert(tags_written && (tags_written <= num_tags));
1473
1474 src += tags_written * details->manager->GetTagSizeInBytes();
1475 write_addr += details->manager->GetGranuleSize() * tags_written;
1476 num_tags -= tags_written;
1477 }
1478
1479 return Status();
1480 }
1481
UpdateThreads()1482 size_t NativeProcessLinux::UpdateThreads() {
1483 // The NativeProcessLinux monitoring threads are always up to date with
1484 // respect to thread state and they keep the thread list populated properly.
1485 // All this method needs to do is return the thread count.
1486 return m_threads.size();
1487 }
1488
SetBreakpoint(lldb::addr_t addr,uint32_t size,bool hardware)1489 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1490 bool hardware) {
1491 if (hardware)
1492 return SetHardwareBreakpoint(addr, size);
1493 else
1494 return SetSoftwareBreakpoint(addr, size);
1495 }
1496
RemoveBreakpoint(lldb::addr_t addr,bool hardware)1497 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1498 if (hardware)
1499 return RemoveHardwareBreakpoint(addr);
1500 else
1501 return NativeProcessProtocol::RemoveBreakpoint(addr);
1502 }
1503
1504 llvm::Expected<llvm::ArrayRef<uint8_t>>
GetSoftwareBreakpointTrapOpcode(size_t size_hint)1505 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1506 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1507 // linux kernel does otherwise.
1508 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1509 static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1510
1511 switch (GetArchitecture().GetMachine()) {
1512 case llvm::Triple::arm:
1513 switch (size_hint) {
1514 case 2:
1515 return llvm::makeArrayRef(g_thumb_opcode);
1516 case 4:
1517 return llvm::makeArrayRef(g_arm_opcode);
1518 default:
1519 return llvm::createStringError(llvm::inconvertibleErrorCode(),
1520 "Unrecognised trap opcode size hint!");
1521 }
1522 default:
1523 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1524 }
1525 }
1526
ReadMemory(lldb::addr_t addr,void * buf,size_t size,size_t & bytes_read)1527 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1528 size_t &bytes_read) {
1529 if (ProcessVmReadvSupported()) {
1530 // The process_vm_readv path is about 50 times faster than ptrace api. We
1531 // want to use this syscall if it is supported.
1532
1533 struct iovec local_iov, remote_iov;
1534 local_iov.iov_base = buf;
1535 local_iov.iov_len = size;
1536 remote_iov.iov_base = reinterpret_cast<void *>(addr);
1537 remote_iov.iov_len = size;
1538
1539 bytes_read = process_vm_readv(GetCurrentThreadID(), &local_iov, 1,
1540 &remote_iov, 1, 0);
1541 const bool success = bytes_read == size;
1542
1543 Log *log = GetLog(POSIXLog::Process);
1544 LLDB_LOG(log,
1545 "using process_vm_readv to read {0} bytes from inferior "
1546 "address {1:x}: {2}",
1547 size, addr, success ? "Success" : llvm::sys::StrError(errno));
1548
1549 if (success)
1550 return Status();
1551 // else the call failed for some reason, let's retry the read using ptrace
1552 // api.
1553 }
1554
1555 unsigned char *dst = static_cast<unsigned char *>(buf);
1556 size_t remainder;
1557 long data;
1558
1559 Log *log = GetLog(POSIXLog::Memory);
1560 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1561
1562 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1563 Status error = NativeProcessLinux::PtraceWrapper(
1564 PTRACE_PEEKDATA, GetCurrentThreadID(), (void *)addr, nullptr, 0, &data);
1565 if (error.Fail())
1566 return error;
1567
1568 remainder = size - bytes_read;
1569 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1570
1571 // Copy the data into our buffer
1572 memcpy(dst, &data, remainder);
1573
1574 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1575 addr += k_ptrace_word_size;
1576 dst += k_ptrace_word_size;
1577 }
1578 return Status();
1579 }
1580
WriteMemory(lldb::addr_t addr,const void * buf,size_t size,size_t & bytes_written)1581 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1582 size_t size, size_t &bytes_written) {
1583 const unsigned char *src = static_cast<const unsigned char *>(buf);
1584 size_t remainder;
1585 Status error;
1586
1587 Log *log = GetLog(POSIXLog::Memory);
1588 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1589
1590 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1591 remainder = size - bytes_written;
1592 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1593
1594 if (remainder == k_ptrace_word_size) {
1595 unsigned long data = 0;
1596 memcpy(&data, src, k_ptrace_word_size);
1597
1598 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1599 error = NativeProcessLinux::PtraceWrapper(
1600 PTRACE_POKEDATA, GetCurrentThreadID(), (void *)addr, (void *)data);
1601 if (error.Fail())
1602 return error;
1603 } else {
1604 unsigned char buff[8];
1605 size_t bytes_read;
1606 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1607 if (error.Fail())
1608 return error;
1609
1610 memcpy(buff, src, remainder);
1611
1612 size_t bytes_written_rec;
1613 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1614 if (error.Fail())
1615 return error;
1616
1617 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1618 *(unsigned long *)buff);
1619 }
1620
1621 addr += k_ptrace_word_size;
1622 src += k_ptrace_word_size;
1623 }
1624 return error;
1625 }
1626
GetSignalInfo(lldb::tid_t tid,void * siginfo) const1627 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const {
1628 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1629 }
1630
GetEventMessage(lldb::tid_t tid,unsigned long * message)1631 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1632 unsigned long *message) {
1633 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1634 }
1635
Detach(lldb::tid_t tid)1636 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1637 if (tid == LLDB_INVALID_THREAD_ID)
1638 return Status();
1639
1640 return PtraceWrapper(PTRACE_DETACH, tid);
1641 }
1642
HasThreadNoLock(lldb::tid_t thread_id)1643 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1644 for (const auto &thread : m_threads) {
1645 assert(thread && "thread list should not contain NULL threads");
1646 if (thread->GetID() == thread_id) {
1647 // We have this thread.
1648 return true;
1649 }
1650 }
1651
1652 // We don't have this thread.
1653 return false;
1654 }
1655
StopTrackingThread(NativeThreadLinux & thread)1656 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) {
1657 Log *const log = GetLog(POSIXLog::Thread);
1658 lldb::tid_t thread_id = thread.GetID();
1659 LLDB_LOG(log, "tid: {0}", thread_id);
1660
1661 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) {
1662 return thread_up.get() == &thread;
1663 });
1664 assert(it != m_threads.end());
1665 m_threads.erase(it);
1666
1667 NotifyTracersOfThreadDestroyed(thread_id);
1668 SignalIfAllThreadsStopped();
1669 }
1670
NotifyTracersProcessDidStop()1671 void NativeProcessLinux::NotifyTracersProcessDidStop() {
1672 m_intel_pt_collector.ProcessDidStop();
1673 }
1674
NotifyTracersProcessWillResume()1675 void NativeProcessLinux::NotifyTracersProcessWillResume() {
1676 m_intel_pt_collector.ProcessWillResume();
1677 }
1678
NotifyTracersOfNewThread(lldb::tid_t tid)1679 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1680 Log *log = GetLog(POSIXLog::Thread);
1681 Status error(m_intel_pt_collector.OnThreadCreated(tid));
1682 if (error.Fail())
1683 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1684 tid, error.AsCString());
1685 return error;
1686 }
1687
NotifyTracersOfThreadDestroyed(lldb::tid_t tid)1688 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1689 Log *log = GetLog(POSIXLog::Thread);
1690 Status error(m_intel_pt_collector.OnThreadDestroyed(tid));
1691 if (error.Fail())
1692 LLDB_LOG(log,
1693 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1694 tid, error.AsCString());
1695 return error;
1696 }
1697
AddThread(lldb::tid_t thread_id,bool resume)1698 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1699 bool resume) {
1700 Log *log = GetLog(POSIXLog::Thread);
1701 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1702
1703 assert(!HasThreadNoLock(thread_id) &&
1704 "attempted to add a thread by id that already exists");
1705
1706 // If this is the first thread, save it as the current thread
1707 if (m_threads.empty())
1708 SetCurrentThreadID(thread_id);
1709
1710 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1711 NativeThreadLinux &thread =
1712 static_cast<NativeThreadLinux &>(*m_threads.back());
1713
1714 Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1715 if (tracing_error.Fail()) {
1716 thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1717 StopRunningThreads(thread.GetID());
1718 } else if (resume)
1719 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1720 else
1721 thread.SetStoppedBySignal(SIGSTOP);
1722
1723 return thread;
1724 }
1725
GetLoadedModuleFileSpec(const char * module_path,FileSpec & file_spec)1726 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1727 FileSpec &file_spec) {
1728 Status error = PopulateMemoryRegionCache();
1729 if (error.Fail())
1730 return error;
1731
1732 FileSpec module_file_spec(module_path);
1733 FileSystem::Instance().Resolve(module_file_spec);
1734
1735 file_spec.Clear();
1736 for (const auto &it : m_mem_region_cache) {
1737 if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1738 file_spec = it.second;
1739 return Status();
1740 }
1741 }
1742 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1743 module_file_spec.GetFilename().AsCString(), GetID());
1744 }
1745
GetFileLoadAddress(const llvm::StringRef & file_name,lldb::addr_t & load_addr)1746 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1747 lldb::addr_t &load_addr) {
1748 load_addr = LLDB_INVALID_ADDRESS;
1749 Status error = PopulateMemoryRegionCache();
1750 if (error.Fail())
1751 return error;
1752
1753 FileSpec file(file_name);
1754 for (const auto &it : m_mem_region_cache) {
1755 if (it.second == file) {
1756 load_addr = it.first.GetRange().GetRangeBase();
1757 return Status();
1758 }
1759 }
1760 return Status("No load address found for specified file.");
1761 }
1762
GetThreadByID(lldb::tid_t tid)1763 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1764 return static_cast<NativeThreadLinux *>(
1765 NativeProcessProtocol::GetThreadByID(tid));
1766 }
1767
GetCurrentThread()1768 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1769 return static_cast<NativeThreadLinux *>(
1770 NativeProcessProtocol::GetCurrentThread());
1771 }
1772
ResumeThread(NativeThreadLinux & thread,lldb::StateType state,int signo)1773 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1774 lldb::StateType state, int signo) {
1775 Log *const log = GetLog(POSIXLog::Thread);
1776 LLDB_LOG(log, "tid: {0}", thread.GetID());
1777
1778 // Before we do the resume below, first check if we have a pending stop
1779 // notification that is currently waiting for all threads to stop. This is
1780 // potentially a buggy situation since we're ostensibly waiting for threads
1781 // to stop before we send out the pending notification, and here we are
1782 // resuming one before we send out the pending stop notification.
1783 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1784 LLDB_LOG(log,
1785 "about to resume tid {0} per explicit request but we have a "
1786 "pending stop notification (tid {1}) that is actively "
1787 "waiting for this thread to stop. Valid sequence of events?",
1788 thread.GetID(), m_pending_notification_tid);
1789 }
1790
1791 // Request a resume. We expect this to be synchronous and the system to
1792 // reflect it is running after this completes.
1793 switch (state) {
1794 case eStateRunning: {
1795 const auto resume_result = thread.Resume(signo);
1796 if (resume_result.Success())
1797 SetState(eStateRunning, true);
1798 return resume_result;
1799 }
1800 case eStateStepping: {
1801 const auto step_result = thread.SingleStep(signo);
1802 if (step_result.Success())
1803 SetState(eStateRunning, true);
1804 return step_result;
1805 }
1806 default:
1807 LLDB_LOG(log, "Unhandled state {0}.", state);
1808 llvm_unreachable("Unhandled state for resume");
1809 }
1810 }
1811
1812 //===----------------------------------------------------------------------===//
1813
StopRunningThreads(const lldb::tid_t triggering_tid)1814 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1815 Log *const log = GetLog(POSIXLog::Thread);
1816 LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1817 triggering_tid);
1818
1819 m_pending_notification_tid = triggering_tid;
1820
1821 // Request a stop for all the thread stops that need to be stopped and are
1822 // not already known to be stopped.
1823 for (const auto &thread : m_threads) {
1824 if (StateIsRunningState(thread->GetState()))
1825 static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1826 }
1827
1828 SignalIfAllThreadsStopped();
1829 LLDB_LOG(log, "event processing done");
1830 }
1831
SignalIfAllThreadsStopped()1832 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1833 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1834 return; // No pending notification. Nothing to do.
1835
1836 for (const auto &thread_sp : m_threads) {
1837 if (StateIsRunningState(thread_sp->GetState()))
1838 return; // Some threads are still running. Don't signal yet.
1839 }
1840
1841 // We have a pending notification and all threads have stopped.
1842 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
1843
1844 // Clear any temporary breakpoints we used to implement software single
1845 // stepping.
1846 for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1847 Status error = RemoveBreakpoint(thread_info.second);
1848 if (error.Fail())
1849 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1850 thread_info.first, error);
1851 }
1852 m_threads_stepping_with_breakpoint.clear();
1853
1854 // Notify the delegate about the stop
1855 SetCurrentThreadID(m_pending_notification_tid);
1856 SetState(StateType::eStateStopped, true);
1857 m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1858 }
1859
ThreadWasCreated(NativeThreadLinux & thread)1860 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1861 Log *const log = GetLog(POSIXLog::Thread);
1862 LLDB_LOG(log, "tid: {0}", thread.GetID());
1863
1864 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1865 StateIsRunningState(thread.GetState())) {
1866 // We will need to wait for this new thread to stop as well before firing
1867 // the notification.
1868 thread.RequestStop();
1869 }
1870 }
1871
HandlePid(::pid_t pid)1872 static llvm::Optional<WaitStatus> HandlePid(::pid_t pid) {
1873 Log *log = GetLog(POSIXLog::Process);
1874
1875 int status;
1876 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(
1877 -1, ::waitpid, pid, &status, __WALL | __WNOTHREAD | WNOHANG);
1878
1879 if (wait_pid == 0)
1880 return llvm::None;
1881
1882 if (wait_pid == -1) {
1883 Status error(errno, eErrorTypePOSIX);
1884 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", pid,
1885 error);
1886 return llvm::None;
1887 }
1888
1889 assert(wait_pid == pid);
1890
1891 WaitStatus wait_status = WaitStatus::Decode(status);
1892
1893 LLDB_LOG(log, "waitpid({0}) got status = {1}", pid, wait_status);
1894 return wait_status;
1895 }
1896
SigchldHandler()1897 void NativeProcessLinux::SigchldHandler() {
1898 Log *log = GetLog(POSIXLog::Process);
1899
1900 // Threads can appear or disappear as a result of event processing, so gather
1901 // the events upfront.
1902 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events;
1903 bool checked_main_thread = false;
1904 for (const auto &thread_up : m_threads) {
1905 if (thread_up->GetID() == GetID())
1906 checked_main_thread = true;
1907
1908 if (llvm::Optional<WaitStatus> status = HandlePid(thread_up->GetID()))
1909 tid_events.try_emplace(thread_up->GetID(), *status);
1910 }
1911 // Check the main thread even when we're not tracking it as process exit
1912 // events are reported that way.
1913 if (!checked_main_thread) {
1914 if (llvm::Optional<WaitStatus> status = HandlePid(GetID()))
1915 tid_events.try_emplace(GetID(), *status);
1916 }
1917
1918 for (auto &KV : tid_events) {
1919 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second);
1920 if (KV.first == GetID() && (KV.second.type == WaitStatus::Exit ||
1921 KV.second.type == WaitStatus::Signal)) {
1922
1923 // The process exited. We're done monitoring. Report to delegate.
1924 SetExitStatus(KV.second, true);
1925 return;
1926 }
1927 NativeThreadLinux *thread = GetThreadByID(KV.first);
1928 assert(thread && "Why did this thread disappear?");
1929 MonitorCallback(*thread, KV.second);
1930 }
1931 }
1932
1933 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1934 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
PtraceWrapper(int req,lldb::pid_t pid,void * addr,void * data,size_t data_size,long * result)1935 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1936 void *data, size_t data_size,
1937 long *result) {
1938 Status error;
1939 long int ret;
1940
1941 Log *log = GetLog(POSIXLog::Ptrace);
1942
1943 PtraceDisplayBytes(req, data, data_size);
1944
1945 errno = 0;
1946 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1947 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1948 *(unsigned int *)addr, data);
1949 else
1950 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1951 addr, data);
1952
1953 if (ret == -1)
1954 error.SetErrorToErrno();
1955
1956 if (result)
1957 *result = ret;
1958
1959 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1960 data_size, ret);
1961
1962 PtraceDisplayBytes(req, data, data_size);
1963
1964 if (error.Fail())
1965 LLDB_LOG(log, "ptrace() failed: {0}", error);
1966
1967 return error;
1968 }
1969
TraceSupported()1970 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
1971 if (IntelPTCollector::IsSupported())
1972 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
1973 return NativeProcessProtocol::TraceSupported();
1974 }
1975
TraceStart(StringRef json_request,StringRef type)1976 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
1977 if (type == "intel-pt") {
1978 if (Expected<TraceIntelPTStartRequest> request =
1979 json::parse<TraceIntelPTStartRequest>(json_request,
1980 "TraceIntelPTStartRequest")) {
1981 return m_intel_pt_collector.TraceStart(*request);
1982 } else
1983 return request.takeError();
1984 }
1985
1986 return NativeProcessProtocol::TraceStart(json_request, type);
1987 }
1988
TraceStop(const TraceStopRequest & request)1989 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
1990 if (request.type == "intel-pt")
1991 return m_intel_pt_collector.TraceStop(request);
1992 return NativeProcessProtocol::TraceStop(request);
1993 }
1994
TraceGetState(StringRef type)1995 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
1996 if (type == "intel-pt")
1997 return m_intel_pt_collector.GetState();
1998 return NativeProcessProtocol::TraceGetState(type);
1999 }
2000
TraceGetBinaryData(const TraceGetBinaryDataRequest & request)2001 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
2002 const TraceGetBinaryDataRequest &request) {
2003 if (request.type == "intel-pt")
2004 return m_intel_pt_collector.GetBinaryData(request);
2005 return NativeProcessProtocol::TraceGetBinaryData(request);
2006 }
2007