1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ProfileSummaryInfo.h"
28 #include "llvm/Analysis/StackSafetyAnalysis.h"
29 #include "llvm/Analysis/TypeMetadataUtils.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalValue.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ModuleSummaryIndex.h"
44 #include "llvm/IR/Use.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Object/ModuleSymbolTable.h"
48 #include "llvm/Object/SymbolicFile.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/FileSystem.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdint>
56 #include <vector>
57
58 using namespace llvm;
59
60 #define DEBUG_TYPE "module-summary-analysis"
61
62 // Option to force edges cold which will block importing when the
63 // -import-cold-multiplier is set to 0. Useful for debugging.
64 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
65 FunctionSummary::FSHT_None;
66 cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
67 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
68 cl::desc("Force all edges in the function summary to cold"),
69 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
70 clEnumValN(FunctionSummary::FSHT_AllNonCritical,
71 "all-non-critical", "All non-critical edges."),
72 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
73
74 cl::opt<std::string> ModuleSummaryDotFile(
75 "module-summary-dot-file", cl::init(""), cl::Hidden,
76 cl::value_desc("filename"),
77 cl::desc("File to emit dot graph of new summary into."));
78
79 // Walk through the operands of a given User via worklist iteration and populate
80 // the set of GlobalValue references encountered. Invoked either on an
81 // Instruction or a GlobalVariable (which walks its initializer).
82 // Return true if any of the operands contains blockaddress. This is important
83 // to know when computing summary for global var, because if global variable
84 // references basic block address we can't import it separately from function
85 // containing that basic block. For simplicity we currently don't import such
86 // global vars at all. When importing function we aren't interested if any
87 // instruction in it takes an address of any basic block, because instruction
88 // can only take an address of basic block located in the same function.
findRefEdges(ModuleSummaryIndex & Index,const User * CurUser,SetVector<ValueInfo> & RefEdges,SmallPtrSet<const User *,8> & Visited)89 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
90 SetVector<ValueInfo> &RefEdges,
91 SmallPtrSet<const User *, 8> &Visited) {
92 bool HasBlockAddress = false;
93 SmallVector<const User *, 32> Worklist;
94 if (Visited.insert(CurUser).second)
95 Worklist.push_back(CurUser);
96
97 while (!Worklist.empty()) {
98 const User *U = Worklist.pop_back_val();
99 const auto *CB = dyn_cast<CallBase>(U);
100
101 for (const auto &OI : U->operands()) {
102 const User *Operand = dyn_cast<User>(OI);
103 if (!Operand)
104 continue;
105 if (isa<BlockAddress>(Operand)) {
106 HasBlockAddress = true;
107 continue;
108 }
109 if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
110 // We have a reference to a global value. This should be added to
111 // the reference set unless it is a callee. Callees are handled
112 // specially by WriteFunction and are added to a separate list.
113 if (!(CB && CB->isCallee(&OI)))
114 RefEdges.insert(Index.getOrInsertValueInfo(GV));
115 continue;
116 }
117 if (Visited.insert(Operand).second)
118 Worklist.push_back(Operand);
119 }
120 }
121 return HasBlockAddress;
122 }
123
getHotness(uint64_t ProfileCount,ProfileSummaryInfo * PSI)124 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
125 ProfileSummaryInfo *PSI) {
126 if (!PSI)
127 return CalleeInfo::HotnessType::Unknown;
128 if (PSI->isHotCount(ProfileCount))
129 return CalleeInfo::HotnessType::Hot;
130 if (PSI->isColdCount(ProfileCount))
131 return CalleeInfo::HotnessType::Cold;
132 return CalleeInfo::HotnessType::None;
133 }
134
isNonRenamableLocal(const GlobalValue & GV)135 static bool isNonRenamableLocal(const GlobalValue &GV) {
136 return GV.hasSection() && GV.hasLocalLinkage();
137 }
138
139 /// Determine whether this call has all constant integer arguments (excluding
140 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
addVCallToSet(DevirtCallSite Call,GlobalValue::GUID Guid,SetVector<FunctionSummary::VFuncId> & VCalls,SetVector<FunctionSummary::ConstVCall> & ConstVCalls)141 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
142 SetVector<FunctionSummary::VFuncId> &VCalls,
143 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
144 std::vector<uint64_t> Args;
145 // Start from the second argument to skip the "this" pointer.
146 for (auto &Arg : drop_begin(Call.CB.args())) {
147 auto *CI = dyn_cast<ConstantInt>(Arg);
148 if (!CI || CI->getBitWidth() > 64) {
149 VCalls.insert({Guid, Call.Offset});
150 return;
151 }
152 Args.push_back(CI->getZExtValue());
153 }
154 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
155 }
156
157 /// If this intrinsic call requires that we add information to the function
158 /// summary, do so via the non-constant reference arguments.
addIntrinsicToSummary(const CallInst * CI,SetVector<GlobalValue::GUID> & TypeTests,SetVector<FunctionSummary::VFuncId> & TypeTestAssumeVCalls,SetVector<FunctionSummary::VFuncId> & TypeCheckedLoadVCalls,SetVector<FunctionSummary::ConstVCall> & TypeTestAssumeConstVCalls,SetVector<FunctionSummary::ConstVCall> & TypeCheckedLoadConstVCalls,DominatorTree & DT)159 static void addIntrinsicToSummary(
160 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
161 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
162 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
163 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
164 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
165 DominatorTree &DT) {
166 switch (CI->getCalledFunction()->getIntrinsicID()) {
167 case Intrinsic::type_test:
168 case Intrinsic::public_type_test: {
169 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
170 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
171 if (!TypeId)
172 break;
173 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
174
175 // Produce a summary from type.test intrinsics. We only summarize type.test
176 // intrinsics that are used other than by an llvm.assume intrinsic.
177 // Intrinsics that are assumed are relevant only to the devirtualization
178 // pass, not the type test lowering pass.
179 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
180 return !isa<AssumeInst>(CIU.getUser());
181 });
182 if (HasNonAssumeUses)
183 TypeTests.insert(Guid);
184
185 SmallVector<DevirtCallSite, 4> DevirtCalls;
186 SmallVector<CallInst *, 4> Assumes;
187 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
188 for (auto &Call : DevirtCalls)
189 addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
190 TypeTestAssumeConstVCalls);
191
192 break;
193 }
194
195 case Intrinsic::type_checked_load: {
196 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
197 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
198 if (!TypeId)
199 break;
200 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
201
202 SmallVector<DevirtCallSite, 4> DevirtCalls;
203 SmallVector<Instruction *, 4> LoadedPtrs;
204 SmallVector<Instruction *, 4> Preds;
205 bool HasNonCallUses = false;
206 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
207 HasNonCallUses, CI, DT);
208 // Any non-call uses of the result of llvm.type.checked.load will
209 // prevent us from optimizing away the llvm.type.test.
210 if (HasNonCallUses)
211 TypeTests.insert(Guid);
212 for (auto &Call : DevirtCalls)
213 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
214 TypeCheckedLoadConstVCalls);
215
216 break;
217 }
218 default:
219 break;
220 }
221 }
222
isNonVolatileLoad(const Instruction * I)223 static bool isNonVolatileLoad(const Instruction *I) {
224 if (const auto *LI = dyn_cast<LoadInst>(I))
225 return !LI->isVolatile();
226
227 return false;
228 }
229
isNonVolatileStore(const Instruction * I)230 static bool isNonVolatileStore(const Instruction *I) {
231 if (const auto *SI = dyn_cast<StoreInst>(I))
232 return !SI->isVolatile();
233
234 return false;
235 }
236
237 // Returns true if the function definition must be unreachable.
238 //
239 // Note if this helper function returns true, `F` is guaranteed
240 // to be unreachable; if it returns false, `F` might still
241 // be unreachable but not covered by this helper function.
mustBeUnreachableFunction(const Function & F)242 static bool mustBeUnreachableFunction(const Function &F) {
243 // A function must be unreachable if its entry block ends with an
244 // 'unreachable'.
245 assert(!F.isDeclaration());
246 return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
247 }
248
computeFunctionSummary(ModuleSummaryIndex & Index,const Module & M,const Function & F,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,DominatorTree & DT,bool HasLocalsInUsedOrAsm,DenseSet<GlobalValue::GUID> & CantBePromoted,bool IsThinLTO,std::function<const StackSafetyInfo * (const Function & F)> GetSSICallback)249 static void computeFunctionSummary(
250 ModuleSummaryIndex &Index, const Module &M, const Function &F,
251 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
252 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
253 bool IsThinLTO,
254 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
255 // Summary not currently supported for anonymous functions, they should
256 // have been named.
257 assert(F.hasName());
258
259 unsigned NumInsts = 0;
260 // Map from callee ValueId to profile count. Used to accumulate profile
261 // counts for all static calls to a given callee.
262 MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
263 SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
264 SetVector<GlobalValue::GUID> TypeTests;
265 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
266 TypeCheckedLoadVCalls;
267 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
268 TypeCheckedLoadConstVCalls;
269 ICallPromotionAnalysis ICallAnalysis;
270 SmallPtrSet<const User *, 8> Visited;
271
272 // Add personality function, prefix data and prologue data to function's ref
273 // list.
274 findRefEdges(Index, &F, RefEdges, Visited);
275 std::vector<const Instruction *> NonVolatileLoads;
276 std::vector<const Instruction *> NonVolatileStores;
277
278 bool HasInlineAsmMaybeReferencingInternal = false;
279 bool HasIndirBranchToBlockAddress = false;
280 bool HasUnknownCall = false;
281 bool MayThrow = false;
282 for (const BasicBlock &BB : F) {
283 // We don't allow inlining of function with indirect branch to blockaddress.
284 // If the blockaddress escapes the function, e.g., via a global variable,
285 // inlining may lead to an invalid cross-function reference. So we shouldn't
286 // import such function either.
287 if (BB.hasAddressTaken()) {
288 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
289 if (!isa<CallBrInst>(*U)) {
290 HasIndirBranchToBlockAddress = true;
291 break;
292 }
293 }
294
295 for (const Instruction &I : BB) {
296 if (I.isDebugOrPseudoInst())
297 continue;
298 ++NumInsts;
299
300 // Regular LTO module doesn't participate in ThinLTO import,
301 // so no reference from it can be read/writeonly, since this
302 // would require importing variable as local copy
303 if (IsThinLTO) {
304 if (isNonVolatileLoad(&I)) {
305 // Postpone processing of non-volatile load instructions
306 // See comments below
307 Visited.insert(&I);
308 NonVolatileLoads.push_back(&I);
309 continue;
310 } else if (isNonVolatileStore(&I)) {
311 Visited.insert(&I);
312 NonVolatileStores.push_back(&I);
313 // All references from second operand of store (destination address)
314 // can be considered write-only if they're not referenced by any
315 // non-store instruction. References from first operand of store
316 // (stored value) can't be treated either as read- or as write-only
317 // so we add them to RefEdges as we do with all other instructions
318 // except non-volatile load.
319 Value *Stored = I.getOperand(0);
320 if (auto *GV = dyn_cast<GlobalValue>(Stored))
321 // findRefEdges will try to examine GV operands, so instead
322 // of calling it we should add GV to RefEdges directly.
323 RefEdges.insert(Index.getOrInsertValueInfo(GV));
324 else if (auto *U = dyn_cast<User>(Stored))
325 findRefEdges(Index, U, RefEdges, Visited);
326 continue;
327 }
328 }
329 findRefEdges(Index, &I, RefEdges, Visited);
330 const auto *CB = dyn_cast<CallBase>(&I);
331 if (!CB) {
332 if (I.mayThrow())
333 MayThrow = true;
334 continue;
335 }
336
337 const auto *CI = dyn_cast<CallInst>(&I);
338 // Since we don't know exactly which local values are referenced in inline
339 // assembly, conservatively mark the function as possibly referencing
340 // a local value from inline assembly to ensure we don't export a
341 // reference (which would require renaming and promotion of the
342 // referenced value).
343 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
344 HasInlineAsmMaybeReferencingInternal = true;
345
346 auto *CalledValue = CB->getCalledOperand();
347 auto *CalledFunction = CB->getCalledFunction();
348 if (CalledValue && !CalledFunction) {
349 CalledValue = CalledValue->stripPointerCasts();
350 // Stripping pointer casts can reveal a called function.
351 CalledFunction = dyn_cast<Function>(CalledValue);
352 }
353 // Check if this is an alias to a function. If so, get the
354 // called aliasee for the checks below.
355 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
356 assert(!CalledFunction && "Expected null called function in callsite for alias");
357 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
358 }
359 // Check if this is a direct call to a known function or a known
360 // intrinsic, or an indirect call with profile data.
361 if (CalledFunction) {
362 if (CI && CalledFunction->isIntrinsic()) {
363 addIntrinsicToSummary(
364 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
365 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
366 continue;
367 }
368 // We should have named any anonymous globals
369 assert(CalledFunction->hasName());
370 auto ScaledCount = PSI->getProfileCount(*CB, BFI);
371 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
372 : CalleeInfo::HotnessType::Unknown;
373 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
374 Hotness = CalleeInfo::HotnessType::Cold;
375
376 // Use the original CalledValue, in case it was an alias. We want
377 // to record the call edge to the alias in that case. Eventually
378 // an alias summary will be created to associate the alias and
379 // aliasee.
380 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
381 cast<GlobalValue>(CalledValue))];
382 ValueInfo.updateHotness(Hotness);
383 // Add the relative block frequency to CalleeInfo if there is no profile
384 // information.
385 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
386 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
387 uint64_t EntryFreq = BFI->getEntryFreq();
388 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
389 }
390 } else {
391 HasUnknownCall = true;
392 // Skip inline assembly calls.
393 if (CI && CI->isInlineAsm())
394 continue;
395 // Skip direct calls.
396 if (!CalledValue || isa<Constant>(CalledValue))
397 continue;
398
399 // Check if the instruction has a callees metadata. If so, add callees
400 // to CallGraphEdges to reflect the references from the metadata, and
401 // to enable importing for subsequent indirect call promotion and
402 // inlining.
403 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
404 for (const auto &Op : MD->operands()) {
405 Function *Callee = mdconst::extract_or_null<Function>(Op);
406 if (Callee)
407 CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
408 }
409 }
410
411 uint32_t NumVals, NumCandidates;
412 uint64_t TotalCount;
413 auto CandidateProfileData =
414 ICallAnalysis.getPromotionCandidatesForInstruction(
415 &I, NumVals, TotalCount, NumCandidates);
416 for (const auto &Candidate : CandidateProfileData)
417 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
418 .updateHotness(getHotness(Candidate.Count, PSI));
419 }
420 }
421 }
422 Index.addBlockCount(F.size());
423
424 std::vector<ValueInfo> Refs;
425 if (IsThinLTO) {
426 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
427 SetVector<ValueInfo> &Edges,
428 SmallPtrSet<const User *, 8> &Cache) {
429 for (const auto *I : Instrs) {
430 Cache.erase(I);
431 findRefEdges(Index, I, Edges, Cache);
432 }
433 };
434
435 // By now we processed all instructions in a function, except
436 // non-volatile loads and non-volatile value stores. Let's find
437 // ref edges for both of instruction sets
438 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
439 // We can add some values to the Visited set when processing load
440 // instructions which are also used by stores in NonVolatileStores.
441 // For example this can happen if we have following code:
442 //
443 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
444 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
445 //
446 // After processing loads we'll add bitcast to the Visited set, and if
447 // we use the same set while processing stores, we'll never see store
448 // to @bar and @bar will be mistakenly treated as readonly.
449 SmallPtrSet<const llvm::User *, 8> StoreCache;
450 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
451
452 // If both load and store instruction reference the same variable
453 // we won't be able to optimize it. Add all such reference edges
454 // to RefEdges set.
455 for (const auto &VI : StoreRefEdges)
456 if (LoadRefEdges.remove(VI))
457 RefEdges.insert(VI);
458
459 unsigned RefCnt = RefEdges.size();
460 // All new reference edges inserted in two loops below are either
461 // read or write only. They will be grouped in the end of RefEdges
462 // vector, so we can use a single integer value to identify them.
463 for (const auto &VI : LoadRefEdges)
464 RefEdges.insert(VI);
465
466 unsigned FirstWORef = RefEdges.size();
467 for (const auto &VI : StoreRefEdges)
468 RefEdges.insert(VI);
469
470 Refs = RefEdges.takeVector();
471 for (; RefCnt < FirstWORef; ++RefCnt)
472 Refs[RefCnt].setReadOnly();
473
474 for (; RefCnt < Refs.size(); ++RefCnt)
475 Refs[RefCnt].setWriteOnly();
476 } else {
477 Refs = RefEdges.takeVector();
478 }
479 // Explicit add hot edges to enforce importing for designated GUIDs for
480 // sample PGO, to enable the same inlines as the profiled optimized binary.
481 for (auto &I : F.getImportGUIDs())
482 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
483 ForceSummaryEdgesCold == FunctionSummary::FSHT_All
484 ? CalleeInfo::HotnessType::Cold
485 : CalleeInfo::HotnessType::Critical);
486
487 bool NonRenamableLocal = isNonRenamableLocal(F);
488 bool NotEligibleForImport = NonRenamableLocal ||
489 HasInlineAsmMaybeReferencingInternal ||
490 HasIndirBranchToBlockAddress;
491 GlobalValueSummary::GVFlags Flags(
492 F.getLinkage(), F.getVisibility(), NotEligibleForImport,
493 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable());
494 FunctionSummary::FFlags FunFlags{
495 F.hasFnAttribute(Attribute::ReadNone),
496 F.hasFnAttribute(Attribute::ReadOnly),
497 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
498 // FIXME: refactor this to use the same code that inliner is using.
499 // Don't try to import functions with noinline attribute.
500 F.getAttributes().hasFnAttr(Attribute::NoInline),
501 F.hasFnAttribute(Attribute::AlwaysInline),
502 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
503 mustBeUnreachableFunction(F)};
504 std::vector<FunctionSummary::ParamAccess> ParamAccesses;
505 if (auto *SSI = GetSSICallback(F))
506 ParamAccesses = SSI->getParamAccesses(Index);
507 auto FuncSummary = std::make_unique<FunctionSummary>(
508 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
509 CallGraphEdges.takeVector(), TypeTests.takeVector(),
510 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
511 TypeTestAssumeConstVCalls.takeVector(),
512 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses));
513 if (NonRenamableLocal)
514 CantBePromoted.insert(F.getGUID());
515 Index.addGlobalValueSummary(F, std::move(FuncSummary));
516 }
517
518 /// Find function pointers referenced within the given vtable initializer
519 /// (or subset of an initializer) \p I. The starting offset of \p I within
520 /// the vtable initializer is \p StartingOffset. Any discovered function
521 /// pointers are added to \p VTableFuncs along with their cumulative offset
522 /// within the initializer.
findFuncPointers(const Constant * I,uint64_t StartingOffset,const Module & M,ModuleSummaryIndex & Index,VTableFuncList & VTableFuncs)523 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
524 const Module &M, ModuleSummaryIndex &Index,
525 VTableFuncList &VTableFuncs) {
526 // First check if this is a function pointer.
527 if (I->getType()->isPointerTy()) {
528 auto Fn = dyn_cast<Function>(I->stripPointerCasts());
529 // We can disregard __cxa_pure_virtual as a possible call target, as
530 // calls to pure virtuals are UB.
531 if (Fn && Fn->getName() != "__cxa_pure_virtual")
532 VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset});
533 return;
534 }
535
536 // Walk through the elements in the constant struct or array and recursively
537 // look for virtual function pointers.
538 const DataLayout &DL = M.getDataLayout();
539 if (auto *C = dyn_cast<ConstantStruct>(I)) {
540 StructType *STy = dyn_cast<StructType>(C->getType());
541 assert(STy);
542 const StructLayout *SL = DL.getStructLayout(C->getType());
543
544 for (auto EI : llvm::enumerate(STy->elements())) {
545 auto Offset = SL->getElementOffset(EI.index());
546 unsigned Op = SL->getElementContainingOffset(Offset);
547 findFuncPointers(cast<Constant>(I->getOperand(Op)),
548 StartingOffset + Offset, M, Index, VTableFuncs);
549 }
550 } else if (auto *C = dyn_cast<ConstantArray>(I)) {
551 ArrayType *ATy = C->getType();
552 Type *EltTy = ATy->getElementType();
553 uint64_t EltSize = DL.getTypeAllocSize(EltTy);
554 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
555 findFuncPointers(cast<Constant>(I->getOperand(i)),
556 StartingOffset + i * EltSize, M, Index, VTableFuncs);
557 }
558 }
559 }
560
561 // Identify the function pointers referenced by vtable definition \p V.
computeVTableFuncs(ModuleSummaryIndex & Index,const GlobalVariable & V,const Module & M,VTableFuncList & VTableFuncs)562 static void computeVTableFuncs(ModuleSummaryIndex &Index,
563 const GlobalVariable &V, const Module &M,
564 VTableFuncList &VTableFuncs) {
565 if (!V.isConstant())
566 return;
567
568 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
569 VTableFuncs);
570
571 #ifndef NDEBUG
572 // Validate that the VTableFuncs list is ordered by offset.
573 uint64_t PrevOffset = 0;
574 for (auto &P : VTableFuncs) {
575 // The findVFuncPointers traversal should have encountered the
576 // functions in offset order. We need to use ">=" since PrevOffset
577 // starts at 0.
578 assert(P.VTableOffset >= PrevOffset);
579 PrevOffset = P.VTableOffset;
580 }
581 #endif
582 }
583
584 /// Record vtable definition \p V for each type metadata it references.
585 static void
recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex & Index,const GlobalVariable & V,SmallVectorImpl<MDNode * > & Types)586 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
587 const GlobalVariable &V,
588 SmallVectorImpl<MDNode *> &Types) {
589 for (MDNode *Type : Types) {
590 auto TypeID = Type->getOperand(1).get();
591
592 uint64_t Offset =
593 cast<ConstantInt>(
594 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
595 ->getZExtValue();
596
597 if (auto *TypeId = dyn_cast<MDString>(TypeID))
598 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
599 .push_back({Offset, Index.getOrInsertValueInfo(&V)});
600 }
601 }
602
computeVariableSummary(ModuleSummaryIndex & Index,const GlobalVariable & V,DenseSet<GlobalValue::GUID> & CantBePromoted,const Module & M,SmallVectorImpl<MDNode * > & Types)603 static void computeVariableSummary(ModuleSummaryIndex &Index,
604 const GlobalVariable &V,
605 DenseSet<GlobalValue::GUID> &CantBePromoted,
606 const Module &M,
607 SmallVectorImpl<MDNode *> &Types) {
608 SetVector<ValueInfo> RefEdges;
609 SmallPtrSet<const User *, 8> Visited;
610 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
611 bool NonRenamableLocal = isNonRenamableLocal(V);
612 GlobalValueSummary::GVFlags Flags(
613 V.getLinkage(), V.getVisibility(), NonRenamableLocal,
614 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable());
615
616 VTableFuncList VTableFuncs;
617 // If splitting is not enabled, then we compute the summary information
618 // necessary for index-based whole program devirtualization.
619 if (!Index.enableSplitLTOUnit()) {
620 Types.clear();
621 V.getMetadata(LLVMContext::MD_type, Types);
622 if (!Types.empty()) {
623 // Identify the function pointers referenced by this vtable definition.
624 computeVTableFuncs(Index, V, M, VTableFuncs);
625
626 // Record this vtable definition for each type metadata it references.
627 recordTypeIdCompatibleVtableReferences(Index, V, Types);
628 }
629 }
630
631 // Don't mark variables we won't be able to internalize as read/write-only.
632 bool CanBeInternalized =
633 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
634 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
635 bool Constant = V.isConstant();
636 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
637 Constant ? false : CanBeInternalized,
638 Constant, V.getVCallVisibility());
639 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
640 RefEdges.takeVector());
641 if (NonRenamableLocal)
642 CantBePromoted.insert(V.getGUID());
643 if (HasBlockAddress)
644 GVarSummary->setNotEligibleToImport();
645 if (!VTableFuncs.empty())
646 GVarSummary->setVTableFuncs(VTableFuncs);
647 Index.addGlobalValueSummary(V, std::move(GVarSummary));
648 }
649
computeAliasSummary(ModuleSummaryIndex & Index,const GlobalAlias & A,DenseSet<GlobalValue::GUID> & CantBePromoted)650 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
651 DenseSet<GlobalValue::GUID> &CantBePromoted) {
652 // Skip summary for indirect function aliases as summary for aliasee will not
653 // be emitted.
654 const GlobalObject *Aliasee = A.getAliaseeObject();
655 if (isa<GlobalIFunc>(Aliasee))
656 return;
657 bool NonRenamableLocal = isNonRenamableLocal(A);
658 GlobalValueSummary::GVFlags Flags(
659 A.getLinkage(), A.getVisibility(), NonRenamableLocal,
660 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable());
661 auto AS = std::make_unique<AliasSummary>(Flags);
662 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
663 assert(AliaseeVI && "Alias expects aliasee summary to be available");
664 assert(AliaseeVI.getSummaryList().size() == 1 &&
665 "Expected a single entry per aliasee in per-module index");
666 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
667 if (NonRenamableLocal)
668 CantBePromoted.insert(A.getGUID());
669 Index.addGlobalValueSummary(A, std::move(AS));
670 }
671
672 // Set LiveRoot flag on entries matching the given value name.
setLiveRoot(ModuleSummaryIndex & Index,StringRef Name)673 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
674 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
675 for (const auto &Summary : VI.getSummaryList())
676 Summary->setLive(true);
677 }
678
buildModuleSummaryIndex(const Module & M,std::function<BlockFrequencyInfo * (const Function & F)> GetBFICallback,ProfileSummaryInfo * PSI,std::function<const StackSafetyInfo * (const Function & F)> GetSSICallback)679 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
680 const Module &M,
681 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
682 ProfileSummaryInfo *PSI,
683 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
684 assert(PSI);
685 bool EnableSplitLTOUnit = false;
686 if (auto *MD = mdconst::extract_or_null<ConstantInt>(
687 M.getModuleFlag("EnableSplitLTOUnit")))
688 EnableSplitLTOUnit = MD->getZExtValue();
689 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
690
691 // Identify the local values in the llvm.used and llvm.compiler.used sets,
692 // which should not be exported as they would then require renaming and
693 // promotion, but we may have opaque uses e.g. in inline asm. We collect them
694 // here because we use this information to mark functions containing inline
695 // assembly calls as not importable.
696 SmallPtrSet<GlobalValue *, 4> LocalsUsed;
697 SmallVector<GlobalValue *, 4> Used;
698 // First collect those in the llvm.used set.
699 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
700 // Next collect those in the llvm.compiler.used set.
701 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
702 DenseSet<GlobalValue::GUID> CantBePromoted;
703 for (auto *V : Used) {
704 if (V->hasLocalLinkage()) {
705 LocalsUsed.insert(V);
706 CantBePromoted.insert(V->getGUID());
707 }
708 }
709
710 bool HasLocalInlineAsmSymbol = false;
711 if (!M.getModuleInlineAsm().empty()) {
712 // Collect the local values defined by module level asm, and set up
713 // summaries for these symbols so that they can be marked as NoRename,
714 // to prevent export of any use of them in regular IR that would require
715 // renaming within the module level asm. Note we don't need to create a
716 // summary for weak or global defs, as they don't need to be flagged as
717 // NoRename, and defs in module level asm can't be imported anyway.
718 // Also, any values used but not defined within module level asm should
719 // be listed on the llvm.used or llvm.compiler.used global and marked as
720 // referenced from there.
721 ModuleSymbolTable::CollectAsmSymbols(
722 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
723 // Symbols not marked as Weak or Global are local definitions.
724 if (Flags & (object::BasicSymbolRef::SF_Weak |
725 object::BasicSymbolRef::SF_Global))
726 return;
727 HasLocalInlineAsmSymbol = true;
728 GlobalValue *GV = M.getNamedValue(Name);
729 if (!GV)
730 return;
731 assert(GV->isDeclaration() && "Def in module asm already has definition");
732 GlobalValueSummary::GVFlags GVFlags(
733 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
734 /* NotEligibleToImport = */ true,
735 /* Live = */ true,
736 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable());
737 CantBePromoted.insert(GV->getGUID());
738 // Create the appropriate summary type.
739 if (Function *F = dyn_cast<Function>(GV)) {
740 std::unique_ptr<FunctionSummary> Summary =
741 std::make_unique<FunctionSummary>(
742 GVFlags, /*InstCount=*/0,
743 FunctionSummary::FFlags{
744 F->hasFnAttribute(Attribute::ReadNone),
745 F->hasFnAttribute(Attribute::ReadOnly),
746 F->hasFnAttribute(Attribute::NoRecurse),
747 F->returnDoesNotAlias(),
748 /* NoInline = */ false,
749 F->hasFnAttribute(Attribute::AlwaysInline),
750 F->hasFnAttribute(Attribute::NoUnwind),
751 /* MayThrow */ true,
752 /* HasUnknownCall */ true,
753 /* MustBeUnreachable */ false},
754 /*EntryCount=*/0, ArrayRef<ValueInfo>{},
755 ArrayRef<FunctionSummary::EdgeTy>{},
756 ArrayRef<GlobalValue::GUID>{},
757 ArrayRef<FunctionSummary::VFuncId>{},
758 ArrayRef<FunctionSummary::VFuncId>{},
759 ArrayRef<FunctionSummary::ConstVCall>{},
760 ArrayRef<FunctionSummary::ConstVCall>{},
761 ArrayRef<FunctionSummary::ParamAccess>{});
762 Index.addGlobalValueSummary(*GV, std::move(Summary));
763 } else {
764 std::unique_ptr<GlobalVarSummary> Summary =
765 std::make_unique<GlobalVarSummary>(
766 GVFlags,
767 GlobalVarSummary::GVarFlags(
768 false, false, cast<GlobalVariable>(GV)->isConstant(),
769 GlobalObject::VCallVisibilityPublic),
770 ArrayRef<ValueInfo>{});
771 Index.addGlobalValueSummary(*GV, std::move(Summary));
772 }
773 });
774 }
775
776 bool IsThinLTO = true;
777 if (auto *MD =
778 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
779 IsThinLTO = MD->getZExtValue();
780
781 // Compute summaries for all functions defined in module, and save in the
782 // index.
783 for (const auto &F : M) {
784 if (F.isDeclaration())
785 continue;
786
787 DominatorTree DT(const_cast<Function &>(F));
788 BlockFrequencyInfo *BFI = nullptr;
789 std::unique_ptr<BlockFrequencyInfo> BFIPtr;
790 if (GetBFICallback)
791 BFI = GetBFICallback(F);
792 else if (F.hasProfileData()) {
793 LoopInfo LI{DT};
794 BranchProbabilityInfo BPI{F, LI};
795 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
796 BFI = BFIPtr.get();
797 }
798
799 computeFunctionSummary(Index, M, F, BFI, PSI, DT,
800 !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
801 CantBePromoted, IsThinLTO, GetSSICallback);
802 }
803
804 // Compute summaries for all variables defined in module, and save in the
805 // index.
806 SmallVector<MDNode *, 2> Types;
807 for (const GlobalVariable &G : M.globals()) {
808 if (G.isDeclaration())
809 continue;
810 computeVariableSummary(Index, G, CantBePromoted, M, Types);
811 }
812
813 // Compute summaries for all aliases defined in module, and save in the
814 // index.
815 for (const GlobalAlias &A : M.aliases())
816 computeAliasSummary(Index, A, CantBePromoted);
817
818 // Iterate through ifuncs, set their resolvers all alive.
819 for (const GlobalIFunc &I : M.ifuncs()) {
820 I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
821 Index.getGlobalValueSummary(GV)->setLive(true);
822 });
823 }
824
825 for (auto *V : LocalsUsed) {
826 auto *Summary = Index.getGlobalValueSummary(*V);
827 assert(Summary && "Missing summary for global value");
828 Summary->setNotEligibleToImport();
829 }
830
831 // The linker doesn't know about these LLVM produced values, so we need
832 // to flag them as live in the index to ensure index-based dead value
833 // analysis treats them as live roots of the analysis.
834 setLiveRoot(Index, "llvm.used");
835 setLiveRoot(Index, "llvm.compiler.used");
836 setLiveRoot(Index, "llvm.global_ctors");
837 setLiveRoot(Index, "llvm.global_dtors");
838 setLiveRoot(Index, "llvm.global.annotations");
839
840 for (auto &GlobalList : Index) {
841 // Ignore entries for references that are undefined in the current module.
842 if (GlobalList.second.SummaryList.empty())
843 continue;
844
845 assert(GlobalList.second.SummaryList.size() == 1 &&
846 "Expected module's index to have one summary per GUID");
847 auto &Summary = GlobalList.second.SummaryList[0];
848 if (!IsThinLTO) {
849 Summary->setNotEligibleToImport();
850 continue;
851 }
852
853 bool AllRefsCanBeExternallyReferenced =
854 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
855 return !CantBePromoted.count(VI.getGUID());
856 });
857 if (!AllRefsCanBeExternallyReferenced) {
858 Summary->setNotEligibleToImport();
859 continue;
860 }
861
862 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
863 bool AllCallsCanBeExternallyReferenced = llvm::all_of(
864 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
865 return !CantBePromoted.count(Edge.first.getGUID());
866 });
867 if (!AllCallsCanBeExternallyReferenced)
868 Summary->setNotEligibleToImport();
869 }
870 }
871
872 if (!ModuleSummaryDotFile.empty()) {
873 std::error_code EC;
874 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
875 if (EC)
876 report_fatal_error(Twine("Failed to open dot file ") +
877 ModuleSummaryDotFile + ": " + EC.message() + "\n");
878 Index.exportToDot(OSDot, {});
879 }
880
881 return Index;
882 }
883
884 AnalysisKey ModuleSummaryIndexAnalysis::Key;
885
886 ModuleSummaryIndex
run(Module & M,ModuleAnalysisManager & AM)887 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
888 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
889 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
890 bool NeedSSI = needsParamAccessSummary(M);
891 return buildModuleSummaryIndex(
892 M,
893 [&FAM](const Function &F) {
894 return &FAM.getResult<BlockFrequencyAnalysis>(
895 *const_cast<Function *>(&F));
896 },
897 &PSI,
898 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
899 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
900 const_cast<Function &>(F))
901 : nullptr;
902 });
903 }
904
905 char ModuleSummaryIndexWrapperPass::ID = 0;
906
907 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
908 "Module Summary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)909 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
910 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
911 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
912 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
913 "Module Summary Analysis", false, true)
914
915 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
916 return new ModuleSummaryIndexWrapperPass();
917 }
918
ModuleSummaryIndexWrapperPass()919 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
920 : ModulePass(ID) {
921 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
922 }
923
runOnModule(Module & M)924 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
925 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
926 bool NeedSSI = needsParamAccessSummary(M);
927 Index.emplace(buildModuleSummaryIndex(
928 M,
929 [this](const Function &F) {
930 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
931 *const_cast<Function *>(&F))
932 .getBFI());
933 },
934 PSI,
935 [&](const Function &F) -> const StackSafetyInfo * {
936 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
937 const_cast<Function &>(F))
938 .getResult()
939 : nullptr;
940 }));
941 return false;
942 }
943
doFinalization(Module & M)944 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
945 Index.reset();
946 return false;
947 }
948
getAnalysisUsage(AnalysisUsage & AU) const949 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
950 AU.setPreservesAll();
951 AU.addRequired<BlockFrequencyInfoWrapperPass>();
952 AU.addRequired<ProfileSummaryInfoWrapperPass>();
953 AU.addRequired<StackSafetyInfoWrapperPass>();
954 }
955
956 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
957
ImmutableModuleSummaryIndexWrapperPass(const ModuleSummaryIndex * Index)958 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
959 const ModuleSummaryIndex *Index)
960 : ImmutablePass(ID), Index(Index) {
961 initializeImmutableModuleSummaryIndexWrapperPassPass(
962 *PassRegistry::getPassRegistry());
963 }
964
getAnalysisUsage(AnalysisUsage & AU) const965 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
966 AnalysisUsage &AU) const {
967 AU.setPreservesAll();
968 }
969
createImmutableModuleSummaryIndexWrapperPass(const ModuleSummaryIndex * Index)970 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
971 const ModuleSummaryIndex *Index) {
972 return new ImmutableModuleSummaryIndexWrapperPass(Index);
973 }
974
975 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
976 "Module summary info", false, true)
977