1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "memcpyopt"
67 
68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
69 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
70 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
71 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
72 
GetOffsetFromIndex(const GEPOperator * GEP,unsigned Idx,bool & VariableIdxFound,const DataLayout & DL)73 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
74                                   bool &VariableIdxFound,
75                                   const DataLayout &DL) {
76   // Skip over the first indices.
77   gep_type_iterator GTI = gep_type_begin(GEP);
78   for (unsigned i = 1; i != Idx; ++i, ++GTI)
79     /*skip along*/;
80 
81   // Compute the offset implied by the rest of the indices.
82   int64_t Offset = 0;
83   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
84     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
85     if (!OpC)
86       return VariableIdxFound = true;
87     if (OpC->isZero()) continue;  // No offset.
88 
89     // Handle struct indices, which add their field offset to the pointer.
90     if (StructType *STy = GTI.getStructTypeOrNull()) {
91       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
92       continue;
93     }
94 
95     // Otherwise, we have a sequential type like an array or vector.  Multiply
96     // the index by the ElementSize.
97     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
98     Offset += Size*OpC->getSExtValue();
99   }
100 
101   return Offset;
102 }
103 
104 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
105 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
106 /// might be &A[40]. In this case offset would be -8.
IsPointerOffset(Value * Ptr1,Value * Ptr2,int64_t & Offset,const DataLayout & DL)107 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
108                             const DataLayout &DL) {
109   Ptr1 = Ptr1->stripPointerCasts();
110   Ptr2 = Ptr2->stripPointerCasts();
111 
112   // Handle the trivial case first.
113   if (Ptr1 == Ptr2) {
114     Offset = 0;
115     return true;
116   }
117 
118   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
119   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
120 
121   bool VariableIdxFound = false;
122 
123   // If one pointer is a GEP and the other isn't, then see if the GEP is a
124   // constant offset from the base, as in "P" and "gep P, 1".
125   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
126     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
127     return !VariableIdxFound;
128   }
129 
130   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
131     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
132     return !VariableIdxFound;
133   }
134 
135   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
136   // base.  After that base, they may have some number of common (and
137   // potentially variable) indices.  After that they handle some constant
138   // offset, which determines their offset from each other.  At this point, we
139   // handle no other case.
140   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
141     return false;
142 
143   // Skip any common indices and track the GEP types.
144   unsigned Idx = 1;
145   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
146     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
147       break;
148 
149   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
150   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
151   if (VariableIdxFound) return false;
152 
153   Offset = Offset2-Offset1;
154   return true;
155 }
156 
157 namespace {
158 
159 /// Represents a range of memset'd bytes with the ByteVal value.
160 /// This allows us to analyze stores like:
161 ///   store 0 -> P+1
162 ///   store 0 -> P+0
163 ///   store 0 -> P+3
164 ///   store 0 -> P+2
165 /// which sometimes happens with stores to arrays of structs etc.  When we see
166 /// the first store, we make a range [1, 2).  The second store extends the range
167 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
168 /// two ranges into [0, 3) which is memset'able.
169 struct MemsetRange {
170   // Start/End - A semi range that describes the span that this range covers.
171   // The range is closed at the start and open at the end: [Start, End).
172   int64_t Start, End;
173 
174   /// StartPtr - The getelementptr instruction that points to the start of the
175   /// range.
176   Value *StartPtr;
177 
178   /// Alignment - The known alignment of the first store.
179   unsigned Alignment;
180 
181   /// TheStores - The actual stores that make up this range.
182   SmallVector<Instruction*, 16> TheStores;
183 
184   bool isProfitableToUseMemset(const DataLayout &DL) const;
185 };
186 
187 } // end anonymous namespace
188 
isProfitableToUseMemset(const DataLayout & DL) const189 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
190   // If we found more than 4 stores to merge or 16 bytes, use memset.
191   if (TheStores.size() >= 4 || End-Start >= 16) return true;
192 
193   // If there is nothing to merge, don't do anything.
194   if (TheStores.size() < 2) return false;
195 
196   // If any of the stores are a memset, then it is always good to extend the
197   // memset.
198   for (Instruction *SI : TheStores)
199     if (!isa<StoreInst>(SI))
200       return true;
201 
202   // Assume that the code generator is capable of merging pairs of stores
203   // together if it wants to.
204   if (TheStores.size() == 2) return false;
205 
206   // If we have fewer than 8 stores, it can still be worthwhile to do this.
207   // For example, merging 4 i8 stores into an i32 store is useful almost always.
208   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
209   // memset will be split into 2 32-bit stores anyway) and doing so can
210   // pessimize the llvm optimizer.
211   //
212   // Since we don't have perfect knowledge here, make some assumptions: assume
213   // the maximum GPR width is the same size as the largest legal integer
214   // size. If so, check to see whether we will end up actually reducing the
215   // number of stores used.
216   unsigned Bytes = unsigned(End-Start);
217   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
218   if (MaxIntSize == 0)
219     MaxIntSize = 1;
220   unsigned NumPointerStores = Bytes / MaxIntSize;
221 
222   // Assume the remaining bytes if any are done a byte at a time.
223   unsigned NumByteStores = Bytes % MaxIntSize;
224 
225   // If we will reduce the # stores (according to this heuristic), do the
226   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
227   // etc.
228   return TheStores.size() > NumPointerStores+NumByteStores;
229 }
230 
231 namespace {
232 
233 class MemsetRanges {
234   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
235 
236   /// A sorted list of the memset ranges.
237   SmallVector<MemsetRange, 8> Ranges;
238 
239   const DataLayout &DL;
240 
241 public:
MemsetRanges(const DataLayout & DL)242   MemsetRanges(const DataLayout &DL) : DL(DL) {}
243 
244   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
245 
begin() const246   const_iterator begin() const { return Ranges.begin(); }
end() const247   const_iterator end() const { return Ranges.end(); }
empty() const248   bool empty() const { return Ranges.empty(); }
249 
addInst(int64_t OffsetFromFirst,Instruction * Inst)250   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
251     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
252       addStore(OffsetFromFirst, SI);
253     else
254       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
255   }
256 
addStore(int64_t OffsetFromFirst,StoreInst * SI)257   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
258     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
259 
260     addRange(OffsetFromFirst, StoreSize,
261              SI->getPointerOperand(), SI->getAlignment(), SI);
262   }
263 
addMemSet(int64_t OffsetFromFirst,MemSetInst * MSI)264   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
265     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
266     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
267   }
268 
269   void addRange(int64_t Start, int64_t Size, Value *Ptr,
270                 unsigned Alignment, Instruction *Inst);
271 };
272 
273 } // end anonymous namespace
274 
275 /// Add a new store to the MemsetRanges data structure.  This adds a
276 /// new range for the specified store at the specified offset, merging into
277 /// existing ranges as appropriate.
addRange(int64_t Start,int64_t Size,Value * Ptr,unsigned Alignment,Instruction * Inst)278 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
279                             unsigned Alignment, Instruction *Inst) {
280   int64_t End = Start+Size;
281 
282   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
283     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
284 
285   // We now know that I == E, in which case we didn't find anything to merge
286   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
287   // to insert a new range.  Handle this now.
288   if (I == Ranges.end() || End < I->Start) {
289     MemsetRange &R = *Ranges.insert(I, MemsetRange());
290     R.Start        = Start;
291     R.End          = End;
292     R.StartPtr     = Ptr;
293     R.Alignment    = Alignment;
294     R.TheStores.push_back(Inst);
295     return;
296   }
297 
298   // This store overlaps with I, add it.
299   I->TheStores.push_back(Inst);
300 
301   // At this point, we may have an interval that completely contains our store.
302   // If so, just add it to the interval and return.
303   if (I->Start <= Start && I->End >= End)
304     return;
305 
306   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
307   // but is not entirely contained within the range.
308 
309   // See if the range extends the start of the range.  In this case, it couldn't
310   // possibly cause it to join the prior range, because otherwise we would have
311   // stopped on *it*.
312   if (Start < I->Start) {
313     I->Start = Start;
314     I->StartPtr = Ptr;
315     I->Alignment = Alignment;
316   }
317 
318   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
319   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
320   // End.
321   if (End > I->End) {
322     I->End = End;
323     range_iterator NextI = I;
324     while (++NextI != Ranges.end() && End >= NextI->Start) {
325       // Merge the range in.
326       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
327       if (NextI->End > I->End)
328         I->End = NextI->End;
329       Ranges.erase(NextI);
330       NextI = I;
331     }
332   }
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                         MemCpyOptLegacyPass Pass
337 //===----------------------------------------------------------------------===//
338 
339 namespace {
340 
341 class MemCpyOptLegacyPass : public FunctionPass {
342   MemCpyOptPass Impl;
343 
344 public:
345   static char ID; // Pass identification, replacement for typeid
346 
MemCpyOptLegacyPass()347   MemCpyOptLegacyPass() : FunctionPass(ID) {
348     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
349   }
350 
351   bool runOnFunction(Function &F) override;
352 
353 private:
354   // This transformation requires dominator postdominator info
getAnalysisUsage(AnalysisUsage & AU) const355   void getAnalysisUsage(AnalysisUsage &AU) const override {
356     AU.setPreservesCFG();
357     AU.addRequired<AssumptionCacheTracker>();
358     AU.addRequired<DominatorTreeWrapperPass>();
359     AU.addRequired<MemoryDependenceWrapperPass>();
360     AU.addRequired<AAResultsWrapperPass>();
361     AU.addRequired<TargetLibraryInfoWrapperPass>();
362     AU.addPreserved<GlobalsAAWrapperPass>();
363     AU.addPreserved<MemoryDependenceWrapperPass>();
364   }
365 };
366 
367 } // end anonymous namespace
368 
369 char MemCpyOptLegacyPass::ID = 0;
370 
371 /// The public interface to this file...
createMemCpyOptPass()372 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
373 
374 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
375                       false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)376 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
377 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
378 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
379 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
380 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
381 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
382 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
383                     false, false)
384 
385 /// When scanning forward over instructions, we look for some other patterns to
386 /// fold away. In particular, this looks for stores to neighboring locations of
387 /// memory. If it sees enough consecutive ones, it attempts to merge them
388 /// together into a memcpy/memset.
389 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
390                                                  Value *StartPtr,
391                                                  Value *ByteVal) {
392   const DataLayout &DL = StartInst->getModule()->getDataLayout();
393 
394   // Okay, so we now have a single store that can be splatable.  Scan to find
395   // all subsequent stores of the same value to offset from the same pointer.
396   // Join these together into ranges, so we can decide whether contiguous blocks
397   // are stored.
398   MemsetRanges Ranges(DL);
399 
400   BasicBlock::iterator BI(StartInst);
401   for (++BI; !BI->isTerminator(); ++BI) {
402     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
403       // If the instruction is readnone, ignore it, otherwise bail out.  We
404       // don't even allow readonly here because we don't want something like:
405       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
406       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
407         break;
408       continue;
409     }
410 
411     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
412       // If this is a store, see if we can merge it in.
413       if (!NextStore->isSimple()) break;
414 
415       // Check to see if this stored value is of the same byte-splattable value.
416       Value *StoredByte = isBytewiseValue(NextStore->getOperand(0));
417       if (isa<UndefValue>(ByteVal) && StoredByte)
418         ByteVal = StoredByte;
419       if (ByteVal != StoredByte)
420         break;
421 
422       // Check to see if this store is to a constant offset from the start ptr.
423       int64_t Offset;
424       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
425                            DL))
426         break;
427 
428       Ranges.addStore(Offset, NextStore);
429     } else {
430       MemSetInst *MSI = cast<MemSetInst>(BI);
431 
432       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
433           !isa<ConstantInt>(MSI->getLength()))
434         break;
435 
436       // Check to see if this store is to a constant offset from the start ptr.
437       int64_t Offset;
438       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
439         break;
440 
441       Ranges.addMemSet(Offset, MSI);
442     }
443   }
444 
445   // If we have no ranges, then we just had a single store with nothing that
446   // could be merged in.  This is a very common case of course.
447   if (Ranges.empty())
448     return nullptr;
449 
450   // If we had at least one store that could be merged in, add the starting
451   // store as well.  We try to avoid this unless there is at least something
452   // interesting as a small compile-time optimization.
453   Ranges.addInst(0, StartInst);
454 
455   // If we create any memsets, we put it right before the first instruction that
456   // isn't part of the memset block.  This ensure that the memset is dominated
457   // by any addressing instruction needed by the start of the block.
458   IRBuilder<> Builder(&*BI);
459 
460   // Now that we have full information about ranges, loop over the ranges and
461   // emit memset's for anything big enough to be worthwhile.
462   Instruction *AMemSet = nullptr;
463   for (const MemsetRange &Range : Ranges) {
464     if (Range.TheStores.size() == 1) continue;
465 
466     // If it is profitable to lower this range to memset, do so now.
467     if (!Range.isProfitableToUseMemset(DL))
468       continue;
469 
470     // Otherwise, we do want to transform this!  Create a new memset.
471     // Get the starting pointer of the block.
472     StartPtr = Range.StartPtr;
473 
474     // Determine alignment
475     unsigned Alignment = Range.Alignment;
476     if (Alignment == 0) {
477       Type *EltType =
478         cast<PointerType>(StartPtr->getType())->getElementType();
479       Alignment = DL.getABITypeAlignment(EltType);
480     }
481 
482     AMemSet =
483       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
484 
485     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
486                                                    : Range.TheStores) dbgs()
487                                               << *SI << '\n';
488                dbgs() << "With: " << *AMemSet << '\n');
489 
490     if (!Range.TheStores.empty())
491       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
492 
493     // Zap all the stores.
494     for (Instruction *SI : Range.TheStores) {
495       MD->removeInstruction(SI);
496       SI->eraseFromParent();
497     }
498     ++NumMemSetInfer;
499   }
500 
501   return AMemSet;
502 }
503 
findStoreAlignment(const DataLayout & DL,const StoreInst * SI)504 static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
505   unsigned StoreAlign = SI->getAlignment();
506   if (!StoreAlign)
507     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
508   return StoreAlign;
509 }
510 
findLoadAlignment(const DataLayout & DL,const LoadInst * LI)511 static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
512   unsigned LoadAlign = LI->getAlignment();
513   if (!LoadAlign)
514     LoadAlign = DL.getABITypeAlignment(LI->getType());
515   return LoadAlign;
516 }
517 
findCommonAlignment(const DataLayout & DL,const StoreInst * SI,const LoadInst * LI)518 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
519                                      const LoadInst *LI) {
520   unsigned StoreAlign = findStoreAlignment(DL, SI);
521   unsigned LoadAlign = findLoadAlignment(DL, LI);
522   return MinAlign(StoreAlign, LoadAlign);
523 }
524 
525 // This method try to lift a store instruction before position P.
526 // It will lift the store and its argument + that anything that
527 // may alias with these.
528 // The method returns true if it was successful.
moveUp(AliasAnalysis & AA,StoreInst * SI,Instruction * P,const LoadInst * LI)529 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
530                    const LoadInst *LI) {
531   // If the store alias this position, early bail out.
532   MemoryLocation StoreLoc = MemoryLocation::get(SI);
533   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
534     return false;
535 
536   // Keep track of the arguments of all instruction we plan to lift
537   // so we can make sure to lift them as well if appropriate.
538   DenseSet<Instruction*> Args;
539   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
540     if (Ptr->getParent() == SI->getParent())
541       Args.insert(Ptr);
542 
543   // Instruction to lift before P.
544   SmallVector<Instruction*, 8> ToLift;
545 
546   // Memory locations of lifted instructions.
547   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
548 
549   // Lifted calls.
550   SmallVector<const CallBase *, 8> Calls;
551 
552   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
553 
554   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
555     auto *C = &*I;
556 
557     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
558 
559     bool NeedLift = false;
560     if (Args.erase(C))
561       NeedLift = true;
562     else if (MayAlias) {
563       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
564         return isModOrRefSet(AA.getModRefInfo(C, ML));
565       });
566 
567       if (!NeedLift)
568         NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
569           return isModOrRefSet(AA.getModRefInfo(C, Call));
570         });
571     }
572 
573     if (!NeedLift)
574       continue;
575 
576     if (MayAlias) {
577       // Since LI is implicitly moved downwards past the lifted instructions,
578       // none of them may modify its source.
579       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
580         return false;
581       else if (const auto *Call = dyn_cast<CallBase>(C)) {
582         // If we can't lift this before P, it's game over.
583         if (isModOrRefSet(AA.getModRefInfo(P, Call)))
584           return false;
585 
586         Calls.push_back(Call);
587       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
588         // If we can't lift this before P, it's game over.
589         auto ML = MemoryLocation::get(C);
590         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
591           return false;
592 
593         MemLocs.push_back(ML);
594       } else
595         // We don't know how to lift this instruction.
596         return false;
597     }
598 
599     ToLift.push_back(C);
600     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
601       if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
602         if (A->getParent() == SI->getParent())
603           Args.insert(A);
604   }
605 
606   // We made it, we need to lift
607   for (auto *I : llvm::reverse(ToLift)) {
608     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
609     I->moveBefore(P);
610   }
611 
612   return true;
613 }
614 
processStore(StoreInst * SI,BasicBlock::iterator & BBI)615 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
616   if (!SI->isSimple()) return false;
617 
618   // Avoid merging nontemporal stores since the resulting
619   // memcpy/memset would not be able to preserve the nontemporal hint.
620   // In theory we could teach how to propagate the !nontemporal metadata to
621   // memset calls. However, that change would force the backend to
622   // conservatively expand !nontemporal memset calls back to sequences of
623   // store instructions (effectively undoing the merging).
624   if (SI->getMetadata(LLVMContext::MD_nontemporal))
625     return false;
626 
627   const DataLayout &DL = SI->getModule()->getDataLayout();
628 
629   // Load to store forwarding can be interpreted as memcpy.
630   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
631     if (LI->isSimple() && LI->hasOneUse() &&
632         LI->getParent() == SI->getParent()) {
633 
634       auto *T = LI->getType();
635       if (T->isAggregateType()) {
636         AliasAnalysis &AA = LookupAliasAnalysis();
637         MemoryLocation LoadLoc = MemoryLocation::get(LI);
638 
639         // We use alias analysis to check if an instruction may store to
640         // the memory we load from in between the load and the store. If
641         // such an instruction is found, we try to promote there instead
642         // of at the store position.
643         Instruction *P = SI;
644         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
645           if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
646             P = &I;
647             break;
648           }
649         }
650 
651         // We found an instruction that may write to the loaded memory.
652         // We can try to promote at this position instead of the store
653         // position if nothing alias the store memory after this and the store
654         // destination is not in the range.
655         if (P && P != SI) {
656           if (!moveUp(AA, SI, P, LI))
657             P = nullptr;
658         }
659 
660         // If a valid insertion position is found, then we can promote
661         // the load/store pair to a memcpy.
662         if (P) {
663           // If we load from memory that may alias the memory we store to,
664           // memmove must be used to preserve semantic. If not, memcpy can
665           // be used.
666           bool UseMemMove = false;
667           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
668             UseMemMove = true;
669 
670           uint64_t Size = DL.getTypeStoreSize(T);
671 
672           IRBuilder<> Builder(P);
673           Instruction *M;
674           if (UseMemMove)
675             M = Builder.CreateMemMove(
676                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
677                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
678           else
679             M = Builder.CreateMemCpy(
680                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
681                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
682 
683           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
684                             << *M << "\n");
685 
686           MD->removeInstruction(SI);
687           SI->eraseFromParent();
688           MD->removeInstruction(LI);
689           LI->eraseFromParent();
690           ++NumMemCpyInstr;
691 
692           // Make sure we do not invalidate the iterator.
693           BBI = M->getIterator();
694           return true;
695         }
696       }
697 
698       // Detect cases where we're performing call slot forwarding, but
699       // happen to be using a load-store pair to implement it, rather than
700       // a memcpy.
701       MemDepResult ldep = MD->getDependency(LI);
702       CallInst *C = nullptr;
703       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
704         C = dyn_cast<CallInst>(ldep.getInst());
705 
706       if (C) {
707         // Check that nothing touches the dest of the "copy" between
708         // the call and the store.
709         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
710         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
711         AliasAnalysis &AA = LookupAliasAnalysis();
712         MemoryLocation StoreLoc = MemoryLocation::get(SI);
713         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
714              I != E; --I) {
715           if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
716             C = nullptr;
717             break;
718           }
719           // The store to dest may never happen if an exception can be thrown
720           // between the load and the store.
721           if (I->mayThrow() && !CpyDestIsLocal) {
722             C = nullptr;
723             break;
724           }
725         }
726       }
727 
728       if (C) {
729         bool changed = performCallSlotOptzn(
730             LI, SI->getPointerOperand()->stripPointerCasts(),
731             LI->getPointerOperand()->stripPointerCasts(),
732             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
733             findCommonAlignment(DL, SI, LI), C);
734         if (changed) {
735           MD->removeInstruction(SI);
736           SI->eraseFromParent();
737           MD->removeInstruction(LI);
738           LI->eraseFromParent();
739           ++NumMemCpyInstr;
740           return true;
741         }
742       }
743     }
744   }
745 
746   // There are two cases that are interesting for this code to handle: memcpy
747   // and memset.  Right now we only handle memset.
748 
749   // Ensure that the value being stored is something that can be memset'able a
750   // byte at a time like "0" or "-1" or any width, as well as things like
751   // 0xA0A0A0A0 and 0.0.
752   auto *V = SI->getOperand(0);
753   if (Value *ByteVal = isBytewiseValue(V)) {
754     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
755                                               ByteVal)) {
756       BBI = I->getIterator(); // Don't invalidate iterator.
757       return true;
758     }
759 
760     // If we have an aggregate, we try to promote it to memset regardless
761     // of opportunity for merging as it can expose optimization opportunities
762     // in subsequent passes.
763     auto *T = V->getType();
764     if (T->isAggregateType()) {
765       uint64_t Size = DL.getTypeStoreSize(T);
766       unsigned Align = SI->getAlignment();
767       if (!Align)
768         Align = DL.getABITypeAlignment(T);
769       IRBuilder<> Builder(SI);
770       auto *M =
771           Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, Align);
772 
773       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
774 
775       MD->removeInstruction(SI);
776       SI->eraseFromParent();
777       NumMemSetInfer++;
778 
779       // Make sure we do not invalidate the iterator.
780       BBI = M->getIterator();
781       return true;
782     }
783   }
784 
785   return false;
786 }
787 
processMemSet(MemSetInst * MSI,BasicBlock::iterator & BBI)788 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
789   // See if there is another memset or store neighboring this memset which
790   // allows us to widen out the memset to do a single larger store.
791   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
792     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
793                                               MSI->getValue())) {
794       BBI = I->getIterator(); // Don't invalidate iterator.
795       return true;
796     }
797   return false;
798 }
799 
800 /// Takes a memcpy and a call that it depends on,
801 /// and checks for the possibility of a call slot optimization by having
802 /// the call write its result directly into the destination of the memcpy.
performCallSlotOptzn(Instruction * cpy,Value * cpyDest,Value * cpySrc,uint64_t cpyLen,unsigned cpyAlign,CallInst * C)803 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
804                                          Value *cpySrc, uint64_t cpyLen,
805                                          unsigned cpyAlign, CallInst *C) {
806   // The general transformation to keep in mind is
807   //
808   //   call @func(..., src, ...)
809   //   memcpy(dest, src, ...)
810   //
811   // ->
812   //
813   //   memcpy(dest, src, ...)
814   //   call @func(..., dest, ...)
815   //
816   // Since moving the memcpy is technically awkward, we additionally check that
817   // src only holds uninitialized values at the moment of the call, meaning that
818   // the memcpy can be discarded rather than moved.
819 
820   // Lifetime marks shouldn't be operated on.
821   if (Function *F = C->getCalledFunction())
822     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
823       return false;
824 
825   // Deliberately get the source and destination with bitcasts stripped away,
826   // because we'll need to do type comparisons based on the underlying type.
827   CallSite CS(C);
828 
829   // Require that src be an alloca.  This simplifies the reasoning considerably.
830   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
831   if (!srcAlloca)
832     return false;
833 
834   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
835   if (!srcArraySize)
836     return false;
837 
838   const DataLayout &DL = cpy->getModule()->getDataLayout();
839   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
840                      srcArraySize->getZExtValue();
841 
842   if (cpyLen < srcSize)
843     return false;
844 
845   // Check that accessing the first srcSize bytes of dest will not cause a
846   // trap.  Otherwise the transform is invalid since it might cause a trap
847   // to occur earlier than it otherwise would.
848   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
849     // The destination is an alloca.  Check it is larger than srcSize.
850     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
851     if (!destArraySize)
852       return false;
853 
854     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
855                         destArraySize->getZExtValue();
856 
857     if (destSize < srcSize)
858       return false;
859   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
860     // The store to dest may never happen if the call can throw.
861     if (C->mayThrow())
862       return false;
863 
864     if (A->getDereferenceableBytes() < srcSize) {
865       // If the destination is an sret parameter then only accesses that are
866       // outside of the returned struct type can trap.
867       if (!A->hasStructRetAttr())
868         return false;
869 
870       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
871       if (!StructTy->isSized()) {
872         // The call may never return and hence the copy-instruction may never
873         // be executed, and therefore it's not safe to say "the destination
874         // has at least <cpyLen> bytes, as implied by the copy-instruction",
875         return false;
876       }
877 
878       uint64_t destSize = DL.getTypeAllocSize(StructTy);
879       if (destSize < srcSize)
880         return false;
881     }
882   } else {
883     return false;
884   }
885 
886   // Check that dest points to memory that is at least as aligned as src.
887   unsigned srcAlign = srcAlloca->getAlignment();
888   if (!srcAlign)
889     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
890   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
891   // If dest is not aligned enough and we can't increase its alignment then
892   // bail out.
893   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
894     return false;
895 
896   // Check that src is not accessed except via the call and the memcpy.  This
897   // guarantees that it holds only undefined values when passed in (so the final
898   // memcpy can be dropped), that it is not read or written between the call and
899   // the memcpy, and that writing beyond the end of it is undefined.
900   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
901                                    srcAlloca->user_end());
902   while (!srcUseList.empty()) {
903     User *U = srcUseList.pop_back_val();
904 
905     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
906       for (User *UU : U->users())
907         srcUseList.push_back(UU);
908       continue;
909     }
910     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
911       if (!G->hasAllZeroIndices())
912         return false;
913 
914       for (User *UU : U->users())
915         srcUseList.push_back(UU);
916       continue;
917     }
918     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
919       if (IT->isLifetimeStartOrEnd())
920         continue;
921 
922     if (U != C && U != cpy)
923       return false;
924   }
925 
926   // Check that src isn't captured by the called function since the
927   // transformation can cause aliasing issues in that case.
928   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
929     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
930       return false;
931 
932   // Since we're changing the parameter to the callsite, we need to make sure
933   // that what would be the new parameter dominates the callsite.
934   DominatorTree &DT = LookupDomTree();
935   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
936     if (!DT.dominates(cpyDestInst, C))
937       return false;
938 
939   // In addition to knowing that the call does not access src in some
940   // unexpected manner, for example via a global, which we deduce from
941   // the use analysis, we also need to know that it does not sneakily
942   // access dest.  We rely on AA to figure this out for us.
943   AliasAnalysis &AA = LookupAliasAnalysis();
944   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
945   // If necessary, perform additional analysis.
946   if (isModOrRefSet(MR))
947     MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT);
948   if (isModOrRefSet(MR))
949     return false;
950 
951   // We can't create address space casts here because we don't know if they're
952   // safe for the target.
953   if (cpySrc->getType()->getPointerAddressSpace() !=
954       cpyDest->getType()->getPointerAddressSpace())
955     return false;
956   for (unsigned i = 0; i < CS.arg_size(); ++i)
957     if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
958         cpySrc->getType()->getPointerAddressSpace() !=
959         CS.getArgument(i)->getType()->getPointerAddressSpace())
960       return false;
961 
962   // All the checks have passed, so do the transformation.
963   bool changedArgument = false;
964   for (unsigned i = 0; i < CS.arg_size(); ++i)
965     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
966       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
967         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
968                                       cpyDest->getName(), C);
969       changedArgument = true;
970       if (CS.getArgument(i)->getType() == Dest->getType())
971         CS.setArgument(i, Dest);
972       else
973         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
974                           CS.getArgument(i)->getType(), Dest->getName(), C));
975     }
976 
977   if (!changedArgument)
978     return false;
979 
980   // If the destination wasn't sufficiently aligned then increase its alignment.
981   if (!isDestSufficientlyAligned) {
982     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
983     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
984   }
985 
986   // Drop any cached information about the call, because we may have changed
987   // its dependence information by changing its parameter.
988   MD->removeInstruction(C);
989 
990   // Update AA metadata
991   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
992   // handled here, but combineMetadata doesn't support them yet
993   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
994                          LLVMContext::MD_noalias,
995                          LLVMContext::MD_invariant_group,
996                          LLVMContext::MD_access_group};
997   combineMetadata(C, cpy, KnownIDs, true);
998 
999   // Remove the memcpy.
1000   MD->removeInstruction(cpy);
1001   ++NumMemCpyInstr;
1002 
1003   return true;
1004 }
1005 
1006 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1007 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
processMemCpyMemCpyDependence(MemCpyInst * M,MemCpyInst * MDep)1008 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1009                                                   MemCpyInst *MDep) {
1010   // We can only transforms memcpy's where the dest of one is the source of the
1011   // other.
1012   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1013     return false;
1014 
1015   // If dep instruction is reading from our current input, then it is a noop
1016   // transfer and substituting the input won't change this instruction.  Just
1017   // ignore the input and let someone else zap MDep.  This handles cases like:
1018   //    memcpy(a <- a)
1019   //    memcpy(b <- a)
1020   if (M->getSource() == MDep->getSource())
1021     return false;
1022 
1023   // Second, the length of the memcpy's must be the same, or the preceding one
1024   // must be larger than the following one.
1025   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1026   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1027   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1028     return false;
1029 
1030   AliasAnalysis &AA = LookupAliasAnalysis();
1031 
1032   // Verify that the copied-from memory doesn't change in between the two
1033   // transfers.  For example, in:
1034   //    memcpy(a <- b)
1035   //    *b = 42;
1036   //    memcpy(c <- a)
1037   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1038   //
1039   // TODO: If the code between M and MDep is transparent to the destination "c",
1040   // then we could still perform the xform by moving M up to the first memcpy.
1041   //
1042   // NOTE: This is conservative, it will stop on any read from the source loc,
1043   // not just the defining memcpy.
1044   MemDepResult SourceDep =
1045       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1046                                    M->getIterator(), M->getParent());
1047   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1048     return false;
1049 
1050   // If the dest of the second might alias the source of the first, then the
1051   // source and dest might overlap.  We still want to eliminate the intermediate
1052   // value, but we have to generate a memmove instead of memcpy.
1053   bool UseMemMove = false;
1054   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1055                     MemoryLocation::getForSource(MDep)))
1056     UseMemMove = true;
1057 
1058   // If all checks passed, then we can transform M.
1059   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1060                     << *MDep << '\n' << *M << '\n');
1061 
1062   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1063   // example we could be moving from movaps -> movq on x86.
1064   IRBuilder<> Builder(M);
1065   if (UseMemMove)
1066     Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(),
1067                           MDep->getRawSource(), MDep->getSourceAlignment(),
1068                           M->getLength(), M->isVolatile());
1069   else
1070     Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(),
1071                          MDep->getRawSource(), MDep->getSourceAlignment(),
1072                          M->getLength(), M->isVolatile());
1073 
1074   // Remove the instruction we're replacing.
1075   MD->removeInstruction(M);
1076   M->eraseFromParent();
1077   ++NumMemCpyInstr;
1078   return true;
1079 }
1080 
1081 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1082 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1083 /// weren't copied over by \p MemCpy.
1084 ///
1085 /// In other words, transform:
1086 /// \code
1087 ///   memset(dst, c, dst_size);
1088 ///   memcpy(dst, src, src_size);
1089 /// \endcode
1090 /// into:
1091 /// \code
1092 ///   memcpy(dst, src, src_size);
1093 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1094 /// \endcode
processMemSetMemCpyDependence(MemCpyInst * MemCpy,MemSetInst * MemSet)1095 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1096                                                   MemSetInst *MemSet) {
1097   // We can only transform memset/memcpy with the same destination.
1098   if (MemSet->getDest() != MemCpy->getDest())
1099     return false;
1100 
1101   // Check that there are no other dependencies on the memset destination.
1102   MemDepResult DstDepInfo =
1103       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1104                                    MemCpy->getIterator(), MemCpy->getParent());
1105   if (DstDepInfo.getInst() != MemSet)
1106     return false;
1107 
1108   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1109   Value *Dest = MemCpy->getRawDest();
1110   Value *DestSize = MemSet->getLength();
1111   Value *SrcSize = MemCpy->getLength();
1112 
1113   // By default, create an unaligned memset.
1114   unsigned Align = 1;
1115   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1116   // of the sum.
1117   const unsigned DestAlign =
1118       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1119   if (DestAlign > 1)
1120     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1121       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1122 
1123   IRBuilder<> Builder(MemCpy);
1124 
1125   // If the sizes have different types, zext the smaller one.
1126   if (DestSize->getType() != SrcSize->getType()) {
1127     if (DestSize->getType()->getIntegerBitWidth() >
1128         SrcSize->getType()->getIntegerBitWidth())
1129       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1130     else
1131       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1132   }
1133 
1134   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1135   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1136   Value *MemsetLen = Builder.CreateSelect(
1137       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1138   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
1139                        MemsetLen, Align);
1140 
1141   MD->removeInstruction(MemSet);
1142   MemSet->eraseFromParent();
1143   return true;
1144 }
1145 
1146 /// Determine whether the instruction has undefined content for the given Size,
1147 /// either because it was freshly alloca'd or started its lifetime.
hasUndefContents(Instruction * I,ConstantInt * Size)1148 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1149   if (isa<AllocaInst>(I))
1150     return true;
1151 
1152   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1153     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1154       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1155         if (LTSize->getZExtValue() >= Size->getZExtValue())
1156           return true;
1157 
1158   return false;
1159 }
1160 
1161 /// Transform memcpy to memset when its source was just memset.
1162 /// In other words, turn:
1163 /// \code
1164 ///   memset(dst1, c, dst1_size);
1165 ///   memcpy(dst2, dst1, dst2_size);
1166 /// \endcode
1167 /// into:
1168 /// \code
1169 ///   memset(dst1, c, dst1_size);
1170 ///   memset(dst2, c, dst2_size);
1171 /// \endcode
1172 /// When dst2_size <= dst1_size.
1173 ///
1174 /// The \p MemCpy must have a Constant length.
performMemCpyToMemSetOptzn(MemCpyInst * MemCpy,MemSetInst * MemSet)1175 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1176                                                MemSetInst *MemSet) {
1177   AliasAnalysis &AA = LookupAliasAnalysis();
1178 
1179   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1180   // memcpying from the same address. Otherwise it is hard to reason about.
1181   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1182     return false;
1183 
1184   // A known memset size is required.
1185   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1186   if (!MemSetSize)
1187     return false;
1188 
1189   // Make sure the memcpy doesn't read any more than what the memset wrote.
1190   // Don't worry about sizes larger than i64.
1191   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1192   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1193     // If the memcpy is larger than the memset, but the memory was undef prior
1194     // to the memset, we can just ignore the tail. Technically we're only
1195     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1196     // easily represent this location, we use the full 0..CopySize range.
1197     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1198     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1199         MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1200     if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1201       CopySize = MemSetSize;
1202     else
1203       return false;
1204   }
1205 
1206   IRBuilder<> Builder(MemCpy);
1207   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1208                        CopySize, MemCpy->getDestAlignment());
1209   return true;
1210 }
1211 
1212 /// Perform simplification of memcpy's.  If we have memcpy A
1213 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1214 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1215 /// circumstances). This allows later passes to remove the first memcpy
1216 /// altogether.
processMemCpy(MemCpyInst * M)1217 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1218   // We can only optimize non-volatile memcpy's.
1219   if (M->isVolatile()) return false;
1220 
1221   // If the source and destination of the memcpy are the same, then zap it.
1222   if (M->getSource() == M->getDest()) {
1223     MD->removeInstruction(M);
1224     M->eraseFromParent();
1225     return false;
1226   }
1227 
1228   // If copying from a constant, try to turn the memcpy into a memset.
1229   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1230     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1231       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
1232         IRBuilder<> Builder(M);
1233         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1234                              M->getDestAlignment(), false);
1235         MD->removeInstruction(M);
1236         M->eraseFromParent();
1237         ++NumCpyToSet;
1238         return true;
1239       }
1240 
1241   MemDepResult DepInfo = MD->getDependency(M);
1242 
1243   // Try to turn a partially redundant memset + memcpy into
1244   // memcpy + smaller memset.  We don't need the memcpy size for this.
1245   if (DepInfo.isClobber())
1246     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1247       if (processMemSetMemCpyDependence(M, MDep))
1248         return true;
1249 
1250   // The optimizations after this point require the memcpy size.
1251   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1252   if (!CopySize) return false;
1253 
1254   // There are four possible optimizations we can do for memcpy:
1255   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1256   //   b) call-memcpy xform for return slot optimization.
1257   //   c) memcpy from freshly alloca'd space or space that has just started its
1258   //      lifetime copies undefined data, and we can therefore eliminate the
1259   //      memcpy in favor of the data that was already at the destination.
1260   //   d) memcpy from a just-memset'd source can be turned into memset.
1261   if (DepInfo.isClobber()) {
1262     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1263       // FIXME: Can we pass in either of dest/src alignment here instead
1264       // of conservatively taking the minimum?
1265       unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
1266       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1267                                CopySize->getZExtValue(), Align,
1268                                C)) {
1269         MD->removeInstruction(M);
1270         M->eraseFromParent();
1271         return true;
1272       }
1273     }
1274   }
1275 
1276   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1277   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1278       SrcLoc, true, M->getIterator(), M->getParent());
1279 
1280   if (SrcDepInfo.isClobber()) {
1281     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1282       return processMemCpyMemCpyDependence(M, MDep);
1283   } else if (SrcDepInfo.isDef()) {
1284     if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1285       MD->removeInstruction(M);
1286       M->eraseFromParent();
1287       ++NumMemCpyInstr;
1288       return true;
1289     }
1290   }
1291 
1292   if (SrcDepInfo.isClobber())
1293     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1294       if (performMemCpyToMemSetOptzn(M, MDep)) {
1295         MD->removeInstruction(M);
1296         M->eraseFromParent();
1297         ++NumCpyToSet;
1298         return true;
1299       }
1300 
1301   return false;
1302 }
1303 
1304 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1305 /// not to alias.
processMemMove(MemMoveInst * M)1306 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1307   AliasAnalysis &AA = LookupAliasAnalysis();
1308 
1309   if (!TLI->has(LibFunc_memmove))
1310     return false;
1311 
1312   // See if the pointers alias.
1313   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1314                     MemoryLocation::getForSource(M)))
1315     return false;
1316 
1317   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1318                     << "\n");
1319 
1320   // If not, then we know we can transform this.
1321   Type *ArgTys[3] = { M->getRawDest()->getType(),
1322                       M->getRawSource()->getType(),
1323                       M->getLength()->getType() };
1324   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1325                                                  Intrinsic::memcpy, ArgTys));
1326 
1327   // MemDep may have over conservative information about this instruction, just
1328   // conservatively flush it from the cache.
1329   MD->removeInstruction(M);
1330 
1331   ++NumMoveToCpy;
1332   return true;
1333 }
1334 
1335 /// This is called on every byval argument in call sites.
processByValArgument(CallSite CS,unsigned ArgNo)1336 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1337   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1338   // Find out what feeds this byval argument.
1339   Value *ByValArg = CS.getArgument(ArgNo);
1340   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1341   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1342   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1343       MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1344       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1345   if (!DepInfo.isClobber())
1346     return false;
1347 
1348   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1349   // a memcpy, see if we can byval from the source of the memcpy instead of the
1350   // result.
1351   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1352   if (!MDep || MDep->isVolatile() ||
1353       ByValArg->stripPointerCasts() != MDep->getDest())
1354     return false;
1355 
1356   // The length of the memcpy must be larger or equal to the size of the byval.
1357   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1358   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1359     return false;
1360 
1361   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1362   // then it is some target specific value that we can't know.
1363   unsigned ByValAlign = CS.getParamAlignment(ArgNo);
1364   if (ByValAlign == 0) return false;
1365 
1366   // If it is greater than the memcpy, then we check to see if we can force the
1367   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1368   AssumptionCache &AC = LookupAssumptionCache();
1369   DominatorTree &DT = LookupDomTree();
1370   if (MDep->getSourceAlignment() < ByValAlign &&
1371       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1372                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
1373     return false;
1374 
1375   // The address space of the memcpy source must match the byval argument
1376   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1377       ByValArg->getType()->getPointerAddressSpace())
1378     return false;
1379 
1380   // Verify that the copied-from memory doesn't change in between the memcpy and
1381   // the byval call.
1382   //    memcpy(a <- b)
1383   //    *b = 42;
1384   //    foo(*a)
1385   // It would be invalid to transform the second memcpy into foo(*b).
1386   //
1387   // NOTE: This is conservative, it will stop on any read from the source loc,
1388   // not just the defining memcpy.
1389   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1390       MemoryLocation::getForSource(MDep), false,
1391       CS.getInstruction()->getIterator(), MDep->getParent());
1392   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1393     return false;
1394 
1395   Value *TmpCast = MDep->getSource();
1396   if (MDep->getSource()->getType() != ByValArg->getType())
1397     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1398                               "tmpcast", CS.getInstruction());
1399 
1400   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1401                     << "  " << *MDep << "\n"
1402                     << "  " << *CS.getInstruction() << "\n");
1403 
1404   // Otherwise we're good!  Update the byval argument.
1405   CS.setArgument(ArgNo, TmpCast);
1406   ++NumMemCpyInstr;
1407   return true;
1408 }
1409 
1410 /// Executes one iteration of MemCpyOptPass.
iterateOnFunction(Function & F)1411 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1412   bool MadeChange = false;
1413 
1414   DominatorTree &DT = LookupDomTree();
1415 
1416   // Walk all instruction in the function.
1417   for (BasicBlock &BB : F) {
1418     // Skip unreachable blocks. For example processStore assumes that an
1419     // instruction in a BB can't be dominated by a later instruction in the
1420     // same BB (which is a scenario that can happen for an unreachable BB that
1421     // has itself as a predecessor).
1422     if (!DT.isReachableFromEntry(&BB))
1423       continue;
1424 
1425     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1426         // Avoid invalidating the iterator.
1427       Instruction *I = &*BI++;
1428 
1429       bool RepeatInstruction = false;
1430 
1431       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1432         MadeChange |= processStore(SI, BI);
1433       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1434         RepeatInstruction = processMemSet(M, BI);
1435       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1436         RepeatInstruction = processMemCpy(M);
1437       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1438         RepeatInstruction = processMemMove(M);
1439       else if (auto CS = CallSite(I)) {
1440         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1441           if (CS.isByValArgument(i))
1442             MadeChange |= processByValArgument(CS, i);
1443       }
1444 
1445       // Reprocess the instruction if desired.
1446       if (RepeatInstruction) {
1447         if (BI != BB.begin())
1448           --BI;
1449         MadeChange = true;
1450       }
1451     }
1452   }
1453 
1454   return MadeChange;
1455 }
1456 
run(Function & F,FunctionAnalysisManager & AM)1457 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1458   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1459   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1460 
1461   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1462     return AM.getResult<AAManager>(F);
1463   };
1464   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1465     return AM.getResult<AssumptionAnalysis>(F);
1466   };
1467   auto LookupDomTree = [&]() -> DominatorTree & {
1468     return AM.getResult<DominatorTreeAnalysis>(F);
1469   };
1470 
1471   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1472                             LookupAssumptionCache, LookupDomTree);
1473   if (!MadeChange)
1474     return PreservedAnalyses::all();
1475 
1476   PreservedAnalyses PA;
1477   PA.preserveSet<CFGAnalyses>();
1478   PA.preserve<GlobalsAA>();
1479   PA.preserve<MemoryDependenceAnalysis>();
1480   return PA;
1481 }
1482 
runImpl(Function & F,MemoryDependenceResults * MD_,TargetLibraryInfo * TLI_,std::function<AliasAnalysis & ()> LookupAliasAnalysis_,std::function<AssumptionCache & ()> LookupAssumptionCache_,std::function<DominatorTree & ()> LookupDomTree_)1483 bool MemCpyOptPass::runImpl(
1484     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
1485     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1486     std::function<AssumptionCache &()> LookupAssumptionCache_,
1487     std::function<DominatorTree &()> LookupDomTree_) {
1488   bool MadeChange = false;
1489   MD = MD_;
1490   TLI = TLI_;
1491   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1492   LookupAssumptionCache = std::move(LookupAssumptionCache_);
1493   LookupDomTree = std::move(LookupDomTree_);
1494 
1495   // If we don't have at least memset and memcpy, there is little point of doing
1496   // anything here.  These are required by a freestanding implementation, so if
1497   // even they are disabled, there is no point in trying hard.
1498   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1499     return false;
1500 
1501   while (true) {
1502     if (!iterateOnFunction(F))
1503       break;
1504     MadeChange = true;
1505   }
1506 
1507   MD = nullptr;
1508   return MadeChange;
1509 }
1510 
1511 /// This is the main transformation entry point for a function.
runOnFunction(Function & F)1512 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1513   if (skipFunction(F))
1514     return false;
1515 
1516   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1517   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1518 
1519   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1520     return getAnalysis<AAResultsWrapperPass>().getAAResults();
1521   };
1522   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1523     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1524   };
1525   auto LookupDomTree = [this]() -> DominatorTree & {
1526     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1527   };
1528 
1529   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1530                       LookupDomTree);
1531 }
1532