1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeCalc.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/RegisterBank.h"
52 #include "llvm/CodeGen/RegisterBankInfo.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/InlineAsm.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/LaneBitmask.h"
66 #include "llvm/MC/MCAsmInfo.h"
67 #include "llvm/MC/MCDwarf.h"
68 #include "llvm/MC/MCInstrDesc.h"
69 #include "llvm/MC/MCRegisterInfo.h"
70 #include "llvm/MC/MCTargetOptions.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/LowLevelTypeImpl.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <string>
84 #include <utility>
85
86 using namespace llvm;
87
88 namespace {
89
90 struct MachineVerifier {
MachineVerifier__anon56f5f5350111::MachineVerifier91 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
92
93 unsigned verify(const MachineFunction &MF);
94
95 Pass *const PASS;
96 const char *Banner;
97 const MachineFunction *MF;
98 const TargetMachine *TM;
99 const TargetInstrInfo *TII;
100 const TargetRegisterInfo *TRI;
101 const MachineRegisterInfo *MRI;
102 const RegisterBankInfo *RBI;
103
104 unsigned foundErrors;
105
106 // Avoid querying the MachineFunctionProperties for each operand.
107 bool isFunctionRegBankSelected;
108 bool isFunctionSelected;
109 bool isFunctionTracksDebugUserValues;
110
111 using RegVector = SmallVector<Register, 16>;
112 using RegMaskVector = SmallVector<const uint32_t *, 4>;
113 using RegSet = DenseSet<Register>;
114 using RegMap = DenseMap<Register, const MachineInstr *>;
115 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
116
117 const MachineInstr *FirstNonPHI;
118 const MachineInstr *FirstTerminator;
119 BlockSet FunctionBlocks;
120
121 BitVector regsReserved;
122 RegSet regsLive;
123 RegVector regsDefined, regsDead, regsKilled;
124 RegMaskVector regMasks;
125
126 SlotIndex lastIndex;
127
128 // Add Reg and any sub-registers to RV
addRegWithSubRegs__anon56f5f5350111::MachineVerifier129 void addRegWithSubRegs(RegVector &RV, Register Reg) {
130 RV.push_back(Reg);
131 if (Reg.isPhysical())
132 append_range(RV, TRI->subregs(Reg.asMCReg()));
133 }
134
135 struct BBInfo {
136 // Is this MBB reachable from the MF entry point?
137 bool reachable = false;
138
139 // Vregs that must be live in because they are used without being
140 // defined. Map value is the user. vregsLiveIn doesn't include regs
141 // that only are used by PHI nodes.
142 RegMap vregsLiveIn;
143
144 // Regs killed in MBB. They may be defined again, and will then be in both
145 // regsKilled and regsLiveOut.
146 RegSet regsKilled;
147
148 // Regs defined in MBB and live out. Note that vregs passing through may
149 // be live out without being mentioned here.
150 RegSet regsLiveOut;
151
152 // Vregs that pass through MBB untouched. This set is disjoint from
153 // regsKilled and regsLiveOut.
154 RegSet vregsPassed;
155
156 // Vregs that must pass through MBB because they are needed by a successor
157 // block. This set is disjoint from regsLiveOut.
158 RegSet vregsRequired;
159
160 // Set versions of block's predecessor and successor lists.
161 BlockSet Preds, Succs;
162
163 BBInfo() = default;
164
165 // Add register to vregsRequired if it belongs there. Return true if
166 // anything changed.
addRequired__anon56f5f5350111::MachineVerifier::BBInfo167 bool addRequired(Register Reg) {
168 if (!Reg.isVirtual())
169 return false;
170 if (regsLiveOut.count(Reg))
171 return false;
172 return vregsRequired.insert(Reg).second;
173 }
174
175 // Same for a full set.
addRequired__anon56f5f5350111::MachineVerifier::BBInfo176 bool addRequired(const RegSet &RS) {
177 bool Changed = false;
178 for (Register Reg : RS)
179 Changed |= addRequired(Reg);
180 return Changed;
181 }
182
183 // Same for a full map.
addRequired__anon56f5f5350111::MachineVerifier::BBInfo184 bool addRequired(const RegMap &RM) {
185 bool Changed = false;
186 for (const auto &I : RM)
187 Changed |= addRequired(I.first);
188 return Changed;
189 }
190
191 // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anon56f5f5350111::MachineVerifier::BBInfo192 bool isLiveOut(Register Reg) const {
193 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
194 }
195 };
196
197 // Extra register info per MBB.
198 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
199
isReserved__anon56f5f5350111::MachineVerifier200 bool isReserved(Register Reg) {
201 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
202 }
203
isAllocatable__anon56f5f5350111::MachineVerifier204 bool isAllocatable(Register Reg) const {
205 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
206 !regsReserved.test(Reg.id());
207 }
208
209 // Analysis information if available
210 LiveVariables *LiveVars;
211 LiveIntervals *LiveInts;
212 LiveStacks *LiveStks;
213 SlotIndexes *Indexes;
214
215 void visitMachineFunctionBefore();
216 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
217 void visitMachineBundleBefore(const MachineInstr *MI);
218
219 /// Verify that all of \p MI's virtual register operands are scalars.
220 /// \returns True if all virtual register operands are scalar. False
221 /// otherwise.
222 bool verifyAllRegOpsScalar(const MachineInstr &MI,
223 const MachineRegisterInfo &MRI);
224 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
225 void verifyPreISelGenericInstruction(const MachineInstr *MI);
226 void visitMachineInstrBefore(const MachineInstr *MI);
227 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
228 void visitMachineBundleAfter(const MachineInstr *MI);
229 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
230 void visitMachineFunctionAfter();
231
232 void report(const char *msg, const MachineFunction *MF);
233 void report(const char *msg, const MachineBasicBlock *MBB);
234 void report(const char *msg, const MachineInstr *MI);
235 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
236 LLT MOVRegType = LLT{});
237 void report(const Twine &Msg, const MachineInstr *MI);
238
239 void report_context(const LiveInterval &LI) const;
240 void report_context(const LiveRange &LR, Register VRegUnit,
241 LaneBitmask LaneMask) const;
242 void report_context(const LiveRange::Segment &S) const;
243 void report_context(const VNInfo &VNI) const;
244 void report_context(SlotIndex Pos) const;
245 void report_context(MCPhysReg PhysReg) const;
246 void report_context_liverange(const LiveRange &LR) const;
247 void report_context_lanemask(LaneBitmask LaneMask) const;
248 void report_context_vreg(Register VReg) const;
249 void report_context_vreg_regunit(Register VRegOrUnit) const;
250
251 void verifyInlineAsm(const MachineInstr *MI);
252
253 void checkLiveness(const MachineOperand *MO, unsigned MONum);
254 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
255 SlotIndex UseIdx, const LiveRange &LR,
256 Register VRegOrUnit,
257 LaneBitmask LaneMask = LaneBitmask::getNone());
258 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
259 SlotIndex DefIdx, const LiveRange &LR,
260 Register VRegOrUnit, bool SubRangeCheck = false,
261 LaneBitmask LaneMask = LaneBitmask::getNone());
262
263 void markReachable(const MachineBasicBlock *MBB);
264 void calcRegsPassed();
265 void checkPHIOps(const MachineBasicBlock &MBB);
266
267 void calcRegsRequired();
268 void verifyLiveVariables();
269 void verifyLiveIntervals();
270 void verifyLiveInterval(const LiveInterval&);
271 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
272 LaneBitmask);
273 void verifyLiveRangeSegment(const LiveRange &,
274 const LiveRange::const_iterator I, Register,
275 LaneBitmask);
276 void verifyLiveRange(const LiveRange &, Register,
277 LaneBitmask LaneMask = LaneBitmask::getNone());
278
279 void verifyStackFrame();
280
281 void verifySlotIndexes() const;
282 void verifyProperties(const MachineFunction &MF);
283 };
284
285 struct MachineVerifierPass : public MachineFunctionPass {
286 static char ID; // Pass ID, replacement for typeid
287
288 const std::string Banner;
289
MachineVerifierPass__anon56f5f5350111::MachineVerifierPass290 MachineVerifierPass(std::string banner = std::string())
291 : MachineFunctionPass(ID), Banner(std::move(banner)) {
292 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
293 }
294
getAnalysisUsage__anon56f5f5350111::MachineVerifierPass295 void getAnalysisUsage(AnalysisUsage &AU) const override {
296 AU.addUsedIfAvailable<LiveStacks>();
297 AU.setPreservesAll();
298 MachineFunctionPass::getAnalysisUsage(AU);
299 }
300
runOnMachineFunction__anon56f5f5350111::MachineVerifierPass301 bool runOnMachineFunction(MachineFunction &MF) override {
302 // Skip functions that have known verification problems.
303 // FIXME: Remove this mechanism when all problematic passes have been
304 // fixed.
305 if (MF.getProperties().hasProperty(
306 MachineFunctionProperties::Property::FailsVerification))
307 return false;
308
309 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
310 if (FoundErrors)
311 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
312 return false;
313 }
314 };
315
316 } // end anonymous namespace
317
318 char MachineVerifierPass::ID = 0;
319
320 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
321 "Verify generated machine code", false, false)
322
createMachineVerifierPass(const std::string & Banner)323 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
324 return new MachineVerifierPass(Banner);
325 }
326
verifyMachineFunction(MachineFunctionAnalysisManager *,const std::string & Banner,const MachineFunction & MF)327 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
328 const std::string &Banner,
329 const MachineFunction &MF) {
330 // TODO: Use MFAM after porting below analyses.
331 // LiveVariables *LiveVars;
332 // LiveIntervals *LiveInts;
333 // LiveStacks *LiveStks;
334 // SlotIndexes *Indexes;
335 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
336 if (FoundErrors)
337 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
338 }
339
verify(Pass * p,const char * Banner,bool AbortOnErrors) const340 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
341 const {
342 MachineFunction &MF = const_cast<MachineFunction&>(*this);
343 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
344 if (AbortOnErrors && FoundErrors)
345 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
346 return FoundErrors == 0;
347 }
348
verifySlotIndexes() const349 void MachineVerifier::verifySlotIndexes() const {
350 if (Indexes == nullptr)
351 return;
352
353 // Ensure the IdxMBB list is sorted by slot indexes.
354 SlotIndex Last;
355 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
356 E = Indexes->MBBIndexEnd(); I != E; ++I) {
357 assert(!Last.isValid() || I->first > Last);
358 Last = I->first;
359 }
360 }
361
verifyProperties(const MachineFunction & MF)362 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
363 // If a pass has introduced virtual registers without clearing the
364 // NoVRegs property (or set it without allocating the vregs)
365 // then report an error.
366 if (MF.getProperties().hasProperty(
367 MachineFunctionProperties::Property::NoVRegs) &&
368 MRI->getNumVirtRegs())
369 report("Function has NoVRegs property but there are VReg operands", &MF);
370 }
371
verify(const MachineFunction & MF)372 unsigned MachineVerifier::verify(const MachineFunction &MF) {
373 foundErrors = 0;
374
375 this->MF = &MF;
376 TM = &MF.getTarget();
377 TII = MF.getSubtarget().getInstrInfo();
378 TRI = MF.getSubtarget().getRegisterInfo();
379 RBI = MF.getSubtarget().getRegBankInfo();
380 MRI = &MF.getRegInfo();
381
382 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
383 MachineFunctionProperties::Property::FailedISel);
384
385 // If we're mid-GlobalISel and we already triggered the fallback path then
386 // it's expected that the MIR is somewhat broken but that's ok since we'll
387 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
388 if (isFunctionFailedISel)
389 return foundErrors;
390
391 isFunctionRegBankSelected = MF.getProperties().hasProperty(
392 MachineFunctionProperties::Property::RegBankSelected);
393 isFunctionSelected = MF.getProperties().hasProperty(
394 MachineFunctionProperties::Property::Selected);
395 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
396 MachineFunctionProperties::Property::TracksDebugUserValues);
397
398 LiveVars = nullptr;
399 LiveInts = nullptr;
400 LiveStks = nullptr;
401 Indexes = nullptr;
402 if (PASS) {
403 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
404 // We don't want to verify LiveVariables if LiveIntervals is available.
405 if (!LiveInts)
406 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
407 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
408 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
409 }
410
411 verifySlotIndexes();
412
413 verifyProperties(MF);
414
415 visitMachineFunctionBefore();
416 for (const MachineBasicBlock &MBB : MF) {
417 visitMachineBasicBlockBefore(&MBB);
418 // Keep track of the current bundle header.
419 const MachineInstr *CurBundle = nullptr;
420 // Do we expect the next instruction to be part of the same bundle?
421 bool InBundle = false;
422
423 for (const MachineInstr &MI : MBB.instrs()) {
424 if (MI.getParent() != &MBB) {
425 report("Bad instruction parent pointer", &MBB);
426 errs() << "Instruction: " << MI;
427 continue;
428 }
429
430 // Check for consistent bundle flags.
431 if (InBundle && !MI.isBundledWithPred())
432 report("Missing BundledPred flag, "
433 "BundledSucc was set on predecessor",
434 &MI);
435 if (!InBundle && MI.isBundledWithPred())
436 report("BundledPred flag is set, "
437 "but BundledSucc not set on predecessor",
438 &MI);
439
440 // Is this a bundle header?
441 if (!MI.isInsideBundle()) {
442 if (CurBundle)
443 visitMachineBundleAfter(CurBundle);
444 CurBundle = &MI;
445 visitMachineBundleBefore(CurBundle);
446 } else if (!CurBundle)
447 report("No bundle header", &MI);
448 visitMachineInstrBefore(&MI);
449 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
450 const MachineOperand &Op = MI.getOperand(I);
451 if (Op.getParent() != &MI) {
452 // Make sure to use correct addOperand / removeOperand / ChangeTo
453 // functions when replacing operands of a MachineInstr.
454 report("Instruction has operand with wrong parent set", &MI);
455 }
456
457 visitMachineOperand(&Op, I);
458 }
459
460 // Was this the last bundled instruction?
461 InBundle = MI.isBundledWithSucc();
462 }
463 if (CurBundle)
464 visitMachineBundleAfter(CurBundle);
465 if (InBundle)
466 report("BundledSucc flag set on last instruction in block", &MBB.back());
467 visitMachineBasicBlockAfter(&MBB);
468 }
469 visitMachineFunctionAfter();
470
471 // Clean up.
472 regsLive.clear();
473 regsDefined.clear();
474 regsDead.clear();
475 regsKilled.clear();
476 regMasks.clear();
477 MBBInfoMap.clear();
478
479 return foundErrors;
480 }
481
report(const char * msg,const MachineFunction * MF)482 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
483 assert(MF);
484 errs() << '\n';
485 if (!foundErrors++) {
486 if (Banner)
487 errs() << "# " << Banner << '\n';
488 if (LiveInts != nullptr)
489 LiveInts->print(errs());
490 else
491 MF->print(errs(), Indexes);
492 }
493 errs() << "*** Bad machine code: " << msg << " ***\n"
494 << "- function: " << MF->getName() << "\n";
495 }
496
report(const char * msg,const MachineBasicBlock * MBB)497 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
498 assert(MBB);
499 report(msg, MBB->getParent());
500 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
501 << MBB->getName() << " (" << (const void *)MBB << ')';
502 if (Indexes)
503 errs() << " [" << Indexes->getMBBStartIdx(MBB)
504 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
505 errs() << '\n';
506 }
507
report(const char * msg,const MachineInstr * MI)508 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
509 assert(MI);
510 report(msg, MI->getParent());
511 errs() << "- instruction: ";
512 if (Indexes && Indexes->hasIndex(*MI))
513 errs() << Indexes->getInstructionIndex(*MI) << '\t';
514 MI->print(errs(), /*IsStandalone=*/true);
515 }
516
report(const char * msg,const MachineOperand * MO,unsigned MONum,LLT MOVRegType)517 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
518 unsigned MONum, LLT MOVRegType) {
519 assert(MO);
520 report(msg, MO->getParent());
521 errs() << "- operand " << MONum << ": ";
522 MO->print(errs(), MOVRegType, TRI);
523 errs() << "\n";
524 }
525
report(const Twine & Msg,const MachineInstr * MI)526 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
527 report(Msg.str().c_str(), MI);
528 }
529
report_context(SlotIndex Pos) const530 void MachineVerifier::report_context(SlotIndex Pos) const {
531 errs() << "- at: " << Pos << '\n';
532 }
533
report_context(const LiveInterval & LI) const534 void MachineVerifier::report_context(const LiveInterval &LI) const {
535 errs() << "- interval: " << LI << '\n';
536 }
537
report_context(const LiveRange & LR,Register VRegUnit,LaneBitmask LaneMask) const538 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
539 LaneBitmask LaneMask) const {
540 report_context_liverange(LR);
541 report_context_vreg_regunit(VRegUnit);
542 if (LaneMask.any())
543 report_context_lanemask(LaneMask);
544 }
545
report_context(const LiveRange::Segment & S) const546 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
547 errs() << "- segment: " << S << '\n';
548 }
549
report_context(const VNInfo & VNI) const550 void MachineVerifier::report_context(const VNInfo &VNI) const {
551 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
552 }
553
report_context_liverange(const LiveRange & LR) const554 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
555 errs() << "- liverange: " << LR << '\n';
556 }
557
report_context(MCPhysReg PReg) const558 void MachineVerifier::report_context(MCPhysReg PReg) const {
559 errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
560 }
561
report_context_vreg(Register VReg) const562 void MachineVerifier::report_context_vreg(Register VReg) const {
563 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
564 }
565
report_context_vreg_regunit(Register VRegOrUnit) const566 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
567 if (Register::isVirtualRegister(VRegOrUnit)) {
568 report_context_vreg(VRegOrUnit);
569 } else {
570 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
571 }
572 }
573
report_context_lanemask(LaneBitmask LaneMask) const574 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
575 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
576 }
577
markReachable(const MachineBasicBlock * MBB)578 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
579 BBInfo &MInfo = MBBInfoMap[MBB];
580 if (!MInfo.reachable) {
581 MInfo.reachable = true;
582 for (const MachineBasicBlock *Succ : MBB->successors())
583 markReachable(Succ);
584 }
585 }
586
visitMachineFunctionBefore()587 void MachineVerifier::visitMachineFunctionBefore() {
588 lastIndex = SlotIndex();
589 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
590 : TRI->getReservedRegs(*MF);
591
592 if (!MF->empty())
593 markReachable(&MF->front());
594
595 // Build a set of the basic blocks in the function.
596 FunctionBlocks.clear();
597 for (const auto &MBB : *MF) {
598 FunctionBlocks.insert(&MBB);
599 BBInfo &MInfo = MBBInfoMap[&MBB];
600
601 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
602 if (MInfo.Preds.size() != MBB.pred_size())
603 report("MBB has duplicate entries in its predecessor list.", &MBB);
604
605 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
606 if (MInfo.Succs.size() != MBB.succ_size())
607 report("MBB has duplicate entries in its successor list.", &MBB);
608 }
609
610 // Check that the register use lists are sane.
611 MRI->verifyUseLists();
612
613 if (!MF->empty())
614 verifyStackFrame();
615 }
616
617 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)618 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
619 FirstTerminator = nullptr;
620 FirstNonPHI = nullptr;
621
622 if (!MF->getProperties().hasProperty(
623 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
624 // If this block has allocatable physical registers live-in, check that
625 // it is an entry block or landing pad.
626 for (const auto &LI : MBB->liveins()) {
627 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
628 MBB->getIterator() != MBB->getParent()->begin()) {
629 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
630 report_context(LI.PhysReg);
631 }
632 }
633 }
634
635 // Count the number of landing pad successors.
636 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
637 for (const auto *succ : MBB->successors()) {
638 if (succ->isEHPad())
639 LandingPadSuccs.insert(succ);
640 if (!FunctionBlocks.count(succ))
641 report("MBB has successor that isn't part of the function.", MBB);
642 if (!MBBInfoMap[succ].Preds.count(MBB)) {
643 report("Inconsistent CFG", MBB);
644 errs() << "MBB is not in the predecessor list of the successor "
645 << printMBBReference(*succ) << ".\n";
646 }
647 }
648
649 // Check the predecessor list.
650 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
651 if (!FunctionBlocks.count(Pred))
652 report("MBB has predecessor that isn't part of the function.", MBB);
653 if (!MBBInfoMap[Pred].Succs.count(MBB)) {
654 report("Inconsistent CFG", MBB);
655 errs() << "MBB is not in the successor list of the predecessor "
656 << printMBBReference(*Pred) << ".\n";
657 }
658 }
659
660 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
661 const BasicBlock *BB = MBB->getBasicBlock();
662 const Function &F = MF->getFunction();
663 if (LandingPadSuccs.size() > 1 &&
664 !(AsmInfo &&
665 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
666 BB && isa<SwitchInst>(BB->getTerminator())) &&
667 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
668 report("MBB has more than one landing pad successor", MBB);
669
670 // Call analyzeBranch. If it succeeds, there several more conditions to check.
671 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
672 SmallVector<MachineOperand, 4> Cond;
673 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
674 Cond)) {
675 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
676 // check whether its answers match up with reality.
677 if (!TBB && !FBB) {
678 // Block falls through to its successor.
679 if (!MBB->empty() && MBB->back().isBarrier() &&
680 !TII->isPredicated(MBB->back())) {
681 report("MBB exits via unconditional fall-through but ends with a "
682 "barrier instruction!", MBB);
683 }
684 if (!Cond.empty()) {
685 report("MBB exits via unconditional fall-through but has a condition!",
686 MBB);
687 }
688 } else if (TBB && !FBB && Cond.empty()) {
689 // Block unconditionally branches somewhere.
690 if (MBB->empty()) {
691 report("MBB exits via unconditional branch but doesn't contain "
692 "any instructions!", MBB);
693 } else if (!MBB->back().isBarrier()) {
694 report("MBB exits via unconditional branch but doesn't end with a "
695 "barrier instruction!", MBB);
696 } else if (!MBB->back().isTerminator()) {
697 report("MBB exits via unconditional branch but the branch isn't a "
698 "terminator instruction!", MBB);
699 }
700 } else if (TBB && !FBB && !Cond.empty()) {
701 // Block conditionally branches somewhere, otherwise falls through.
702 if (MBB->empty()) {
703 report("MBB exits via conditional branch/fall-through but doesn't "
704 "contain any instructions!", MBB);
705 } else if (MBB->back().isBarrier()) {
706 report("MBB exits via conditional branch/fall-through but ends with a "
707 "barrier instruction!", MBB);
708 } else if (!MBB->back().isTerminator()) {
709 report("MBB exits via conditional branch/fall-through but the branch "
710 "isn't a terminator instruction!", MBB);
711 }
712 } else if (TBB && FBB) {
713 // Block conditionally branches somewhere, otherwise branches
714 // somewhere else.
715 if (MBB->empty()) {
716 report("MBB exits via conditional branch/branch but doesn't "
717 "contain any instructions!", MBB);
718 } else if (!MBB->back().isBarrier()) {
719 report("MBB exits via conditional branch/branch but doesn't end with a "
720 "barrier instruction!", MBB);
721 } else if (!MBB->back().isTerminator()) {
722 report("MBB exits via conditional branch/branch but the branch "
723 "isn't a terminator instruction!", MBB);
724 }
725 if (Cond.empty()) {
726 report("MBB exits via conditional branch/branch but there's no "
727 "condition!", MBB);
728 }
729 } else {
730 report("analyzeBranch returned invalid data!", MBB);
731 }
732
733 // Now check that the successors match up with the answers reported by
734 // analyzeBranch.
735 if (TBB && !MBB->isSuccessor(TBB))
736 report("MBB exits via jump or conditional branch, but its target isn't a "
737 "CFG successor!",
738 MBB);
739 if (FBB && !MBB->isSuccessor(FBB))
740 report("MBB exits via conditional branch, but its target isn't a CFG "
741 "successor!",
742 MBB);
743
744 // There might be a fallthrough to the next block if there's either no
745 // unconditional true branch, or if there's a condition, and one of the
746 // branches is missing.
747 bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
748
749 // A conditional fallthrough must be an actual CFG successor, not
750 // unreachable. (Conversely, an unconditional fallthrough might not really
751 // be a successor, because the block might end in unreachable.)
752 if (!Cond.empty() && !FBB) {
753 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
754 if (MBBI == MF->end()) {
755 report("MBB conditionally falls through out of function!", MBB);
756 } else if (!MBB->isSuccessor(&*MBBI))
757 report("MBB exits via conditional branch/fall-through but the CFG "
758 "successors don't match the actual successors!",
759 MBB);
760 }
761
762 // Verify that there aren't any extra un-accounted-for successors.
763 for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
764 // If this successor is one of the branch targets, it's okay.
765 if (SuccMBB == TBB || SuccMBB == FBB)
766 continue;
767 // If we might have a fallthrough, and the successor is the fallthrough
768 // block, that's also ok.
769 if (Fallthrough && SuccMBB == MBB->getNextNode())
770 continue;
771 // Also accept successors which are for exception-handling or might be
772 // inlineasm_br targets.
773 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
774 continue;
775 report("MBB has unexpected successors which are not branch targets, "
776 "fallthrough, EHPads, or inlineasm_br targets.",
777 MBB);
778 }
779 }
780
781 regsLive.clear();
782 if (MRI->tracksLiveness()) {
783 for (const auto &LI : MBB->liveins()) {
784 if (!Register::isPhysicalRegister(LI.PhysReg)) {
785 report("MBB live-in list contains non-physical register", MBB);
786 continue;
787 }
788 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
789 regsLive.insert(SubReg);
790 }
791 }
792
793 const MachineFrameInfo &MFI = MF->getFrameInfo();
794 BitVector PR = MFI.getPristineRegs(*MF);
795 for (unsigned I : PR.set_bits()) {
796 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
797 regsLive.insert(SubReg);
798 }
799
800 regsKilled.clear();
801 regsDefined.clear();
802
803 if (Indexes)
804 lastIndex = Indexes->getMBBStartIdx(MBB);
805 }
806
807 // This function gets called for all bundle headers, including normal
808 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)809 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
810 if (Indexes && Indexes->hasIndex(*MI)) {
811 SlotIndex idx = Indexes->getInstructionIndex(*MI);
812 if (!(idx > lastIndex)) {
813 report("Instruction index out of order", MI);
814 errs() << "Last instruction was at " << lastIndex << '\n';
815 }
816 lastIndex = idx;
817 }
818
819 // Ensure non-terminators don't follow terminators.
820 if (MI->isTerminator()) {
821 if (!FirstTerminator)
822 FirstTerminator = MI;
823 } else if (FirstTerminator) {
824 report("Non-terminator instruction after the first terminator", MI);
825 errs() << "First terminator was:\t" << *FirstTerminator;
826 }
827 }
828
829 // The operands on an INLINEASM instruction must follow a template.
830 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)831 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
832 // The first two operands on INLINEASM are the asm string and global flags.
833 if (MI->getNumOperands() < 2) {
834 report("Too few operands on inline asm", MI);
835 return;
836 }
837 if (!MI->getOperand(0).isSymbol())
838 report("Asm string must be an external symbol", MI);
839 if (!MI->getOperand(1).isImm())
840 report("Asm flags must be an immediate", MI);
841 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
842 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
843 // and Extra_IsConvergent = 32.
844 if (!isUInt<6>(MI->getOperand(1).getImm()))
845 report("Unknown asm flags", &MI->getOperand(1), 1);
846
847 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
848
849 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
850 unsigned NumOps;
851 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
852 const MachineOperand &MO = MI->getOperand(OpNo);
853 // There may be implicit ops after the fixed operands.
854 if (!MO.isImm())
855 break;
856 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
857 }
858
859 if (OpNo > MI->getNumOperands())
860 report("Missing operands in last group", MI);
861
862 // An optional MDNode follows the groups.
863 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
864 ++OpNo;
865
866 // All trailing operands must be implicit registers.
867 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
868 const MachineOperand &MO = MI->getOperand(OpNo);
869 if (!MO.isReg() || !MO.isImplicit())
870 report("Expected implicit register after groups", &MO, OpNo);
871 }
872 }
873
verifyAllRegOpsScalar(const MachineInstr & MI,const MachineRegisterInfo & MRI)874 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
875 const MachineRegisterInfo &MRI) {
876 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
877 if (!Op.isReg())
878 return false;
879 const auto Reg = Op.getReg();
880 if (Reg.isPhysical())
881 return false;
882 return !MRI.getType(Reg).isScalar();
883 }))
884 return true;
885 report("All register operands must have scalar types", &MI);
886 return false;
887 }
888
889 /// Check that types are consistent when two operands need to have the same
890 /// number of vector elements.
891 /// \return true if the types are valid.
verifyVectorElementMatch(LLT Ty0,LLT Ty1,const MachineInstr * MI)892 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
893 const MachineInstr *MI) {
894 if (Ty0.isVector() != Ty1.isVector()) {
895 report("operand types must be all-vector or all-scalar", MI);
896 // Generally we try to report as many issues as possible at once, but in
897 // this case it's not clear what should we be comparing the size of the
898 // scalar with: the size of the whole vector or its lane. Instead of
899 // making an arbitrary choice and emitting not so helpful message, let's
900 // avoid the extra noise and stop here.
901 return false;
902 }
903
904 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
905 report("operand types must preserve number of vector elements", MI);
906 return false;
907 }
908
909 return true;
910 }
911
verifyPreISelGenericInstruction(const MachineInstr * MI)912 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
913 if (isFunctionSelected)
914 report("Unexpected generic instruction in a Selected function", MI);
915
916 const MCInstrDesc &MCID = MI->getDesc();
917 unsigned NumOps = MI->getNumOperands();
918
919 // Branches must reference a basic block if they are not indirect
920 if (MI->isBranch() && !MI->isIndirectBranch()) {
921 bool HasMBB = false;
922 for (const MachineOperand &Op : MI->operands()) {
923 if (Op.isMBB()) {
924 HasMBB = true;
925 break;
926 }
927 }
928
929 if (!HasMBB) {
930 report("Branch instruction is missing a basic block operand or "
931 "isIndirectBranch property",
932 MI);
933 }
934 }
935
936 // Check types.
937 SmallVector<LLT, 4> Types;
938 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
939 I != E; ++I) {
940 if (!MCID.OpInfo[I].isGenericType())
941 continue;
942 // Generic instructions specify type equality constraints between some of
943 // their operands. Make sure these are consistent.
944 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
945 Types.resize(std::max(TypeIdx + 1, Types.size()));
946
947 const MachineOperand *MO = &MI->getOperand(I);
948 if (!MO->isReg()) {
949 report("generic instruction must use register operands", MI);
950 continue;
951 }
952
953 LLT OpTy = MRI->getType(MO->getReg());
954 // Don't report a type mismatch if there is no actual mismatch, only a
955 // type missing, to reduce noise:
956 if (OpTy.isValid()) {
957 // Only the first valid type for a type index will be printed: don't
958 // overwrite it later so it's always clear which type was expected:
959 if (!Types[TypeIdx].isValid())
960 Types[TypeIdx] = OpTy;
961 else if (Types[TypeIdx] != OpTy)
962 report("Type mismatch in generic instruction", MO, I, OpTy);
963 } else {
964 // Generic instructions must have types attached to their operands.
965 report("Generic instruction is missing a virtual register type", MO, I);
966 }
967 }
968
969 // Generic opcodes must not have physical register operands.
970 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
971 const MachineOperand *MO = &MI->getOperand(I);
972 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
973 report("Generic instruction cannot have physical register", MO, I);
974 }
975
976 // Avoid out of bounds in checks below. This was already reported earlier.
977 if (MI->getNumOperands() < MCID.getNumOperands())
978 return;
979
980 StringRef ErrorInfo;
981 if (!TII->verifyInstruction(*MI, ErrorInfo))
982 report(ErrorInfo.data(), MI);
983
984 // Verify properties of various specific instruction types
985 unsigned Opc = MI->getOpcode();
986 switch (Opc) {
987 case TargetOpcode::G_ASSERT_SEXT:
988 case TargetOpcode::G_ASSERT_ZEXT: {
989 std::string OpcName =
990 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
991 if (!MI->getOperand(2).isImm()) {
992 report(Twine(OpcName, " expects an immediate operand #2"), MI);
993 break;
994 }
995
996 Register Dst = MI->getOperand(0).getReg();
997 Register Src = MI->getOperand(1).getReg();
998 LLT SrcTy = MRI->getType(Src);
999 int64_t Imm = MI->getOperand(2).getImm();
1000 if (Imm <= 0) {
1001 report(Twine(OpcName, " size must be >= 1"), MI);
1002 break;
1003 }
1004
1005 if (Imm >= SrcTy.getScalarSizeInBits()) {
1006 report(Twine(OpcName, " size must be less than source bit width"), MI);
1007 break;
1008 }
1009
1010 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI);
1011 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI);
1012
1013 // Allow only the source bank to be set.
1014 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) {
1015 report(Twine(OpcName, " cannot change register bank"), MI);
1016 break;
1017 }
1018
1019 // Don't allow a class change. Do allow member class->regbank.
1020 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst);
1021 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) {
1022 report(
1023 Twine(OpcName, " source and destination register classes must match"),
1024 MI);
1025 break;
1026 }
1027
1028 break;
1029 }
1030
1031 case TargetOpcode::G_CONSTANT:
1032 case TargetOpcode::G_FCONSTANT: {
1033 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1034 if (DstTy.isVector())
1035 report("Instruction cannot use a vector result type", MI);
1036
1037 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1038 if (!MI->getOperand(1).isCImm()) {
1039 report("G_CONSTANT operand must be cimm", MI);
1040 break;
1041 }
1042
1043 const ConstantInt *CI = MI->getOperand(1).getCImm();
1044 if (CI->getBitWidth() != DstTy.getSizeInBits())
1045 report("inconsistent constant size", MI);
1046 } else {
1047 if (!MI->getOperand(1).isFPImm()) {
1048 report("G_FCONSTANT operand must be fpimm", MI);
1049 break;
1050 }
1051 const ConstantFP *CF = MI->getOperand(1).getFPImm();
1052
1053 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1054 DstTy.getSizeInBits()) {
1055 report("inconsistent constant size", MI);
1056 }
1057 }
1058
1059 break;
1060 }
1061 case TargetOpcode::G_LOAD:
1062 case TargetOpcode::G_STORE:
1063 case TargetOpcode::G_ZEXTLOAD:
1064 case TargetOpcode::G_SEXTLOAD: {
1065 LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1066 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1067 if (!PtrTy.isPointer())
1068 report("Generic memory instruction must access a pointer", MI);
1069
1070 // Generic loads and stores must have a single MachineMemOperand
1071 // describing that access.
1072 if (!MI->hasOneMemOperand()) {
1073 report("Generic instruction accessing memory must have one mem operand",
1074 MI);
1075 } else {
1076 const MachineMemOperand &MMO = **MI->memoperands_begin();
1077 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1078 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1079 if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1080 report("Generic extload must have a narrower memory type", MI);
1081 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1082 if (MMO.getSize() > ValTy.getSizeInBytes())
1083 report("load memory size cannot exceed result size", MI);
1084 } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1085 if (ValTy.getSizeInBytes() < MMO.getSize())
1086 report("store memory size cannot exceed value size", MI);
1087 }
1088
1089 const AtomicOrdering Order = MMO.getSuccessOrdering();
1090 if (Opc == TargetOpcode::G_STORE) {
1091 if (Order == AtomicOrdering::Acquire ||
1092 Order == AtomicOrdering::AcquireRelease)
1093 report("atomic store cannot use acquire ordering", MI);
1094
1095 } else {
1096 if (Order == AtomicOrdering::Release ||
1097 Order == AtomicOrdering::AcquireRelease)
1098 report("atomic load cannot use release ordering", MI);
1099 }
1100 }
1101
1102 break;
1103 }
1104 case TargetOpcode::G_PHI: {
1105 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1106 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1107 [this, &DstTy](const MachineOperand &MO) {
1108 if (!MO.isReg())
1109 return true;
1110 LLT Ty = MRI->getType(MO.getReg());
1111 if (!Ty.isValid() || (Ty != DstTy))
1112 return false;
1113 return true;
1114 }))
1115 report("Generic Instruction G_PHI has operands with incompatible/missing "
1116 "types",
1117 MI);
1118 break;
1119 }
1120 case TargetOpcode::G_BITCAST: {
1121 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1122 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1123 if (!DstTy.isValid() || !SrcTy.isValid())
1124 break;
1125
1126 if (SrcTy.isPointer() != DstTy.isPointer())
1127 report("bitcast cannot convert between pointers and other types", MI);
1128
1129 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1130 report("bitcast sizes must match", MI);
1131
1132 if (SrcTy == DstTy)
1133 report("bitcast must change the type", MI);
1134
1135 break;
1136 }
1137 case TargetOpcode::G_INTTOPTR:
1138 case TargetOpcode::G_PTRTOINT:
1139 case TargetOpcode::G_ADDRSPACE_CAST: {
1140 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1141 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1142 if (!DstTy.isValid() || !SrcTy.isValid())
1143 break;
1144
1145 verifyVectorElementMatch(DstTy, SrcTy, MI);
1146
1147 DstTy = DstTy.getScalarType();
1148 SrcTy = SrcTy.getScalarType();
1149
1150 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1151 if (!DstTy.isPointer())
1152 report("inttoptr result type must be a pointer", MI);
1153 if (SrcTy.isPointer())
1154 report("inttoptr source type must not be a pointer", MI);
1155 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1156 if (!SrcTy.isPointer())
1157 report("ptrtoint source type must be a pointer", MI);
1158 if (DstTy.isPointer())
1159 report("ptrtoint result type must not be a pointer", MI);
1160 } else {
1161 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1162 if (!SrcTy.isPointer() || !DstTy.isPointer())
1163 report("addrspacecast types must be pointers", MI);
1164 else {
1165 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1166 report("addrspacecast must convert different address spaces", MI);
1167 }
1168 }
1169
1170 break;
1171 }
1172 case TargetOpcode::G_PTR_ADD: {
1173 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1174 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1175 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1176 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1177 break;
1178
1179 if (!PtrTy.getScalarType().isPointer())
1180 report("gep first operand must be a pointer", MI);
1181
1182 if (OffsetTy.getScalarType().isPointer())
1183 report("gep offset operand must not be a pointer", MI);
1184
1185 // TODO: Is the offset allowed to be a scalar with a vector?
1186 break;
1187 }
1188 case TargetOpcode::G_PTRMASK: {
1189 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1190 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1191 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1192 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1193 break;
1194
1195 if (!DstTy.getScalarType().isPointer())
1196 report("ptrmask result type must be a pointer", MI);
1197
1198 if (!MaskTy.getScalarType().isScalar())
1199 report("ptrmask mask type must be an integer", MI);
1200
1201 verifyVectorElementMatch(DstTy, MaskTy, MI);
1202 break;
1203 }
1204 case TargetOpcode::G_SEXT:
1205 case TargetOpcode::G_ZEXT:
1206 case TargetOpcode::G_ANYEXT:
1207 case TargetOpcode::G_TRUNC:
1208 case TargetOpcode::G_FPEXT:
1209 case TargetOpcode::G_FPTRUNC: {
1210 // Number of operands and presense of types is already checked (and
1211 // reported in case of any issues), so no need to report them again. As
1212 // we're trying to report as many issues as possible at once, however, the
1213 // instructions aren't guaranteed to have the right number of operands or
1214 // types attached to them at this point
1215 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1216 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1217 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1218 if (!DstTy.isValid() || !SrcTy.isValid())
1219 break;
1220
1221 LLT DstElTy = DstTy.getScalarType();
1222 LLT SrcElTy = SrcTy.getScalarType();
1223 if (DstElTy.isPointer() || SrcElTy.isPointer())
1224 report("Generic extend/truncate can not operate on pointers", MI);
1225
1226 verifyVectorElementMatch(DstTy, SrcTy, MI);
1227
1228 unsigned DstSize = DstElTy.getSizeInBits();
1229 unsigned SrcSize = SrcElTy.getSizeInBits();
1230 switch (MI->getOpcode()) {
1231 default:
1232 if (DstSize <= SrcSize)
1233 report("Generic extend has destination type no larger than source", MI);
1234 break;
1235 case TargetOpcode::G_TRUNC:
1236 case TargetOpcode::G_FPTRUNC:
1237 if (DstSize >= SrcSize)
1238 report("Generic truncate has destination type no smaller than source",
1239 MI);
1240 break;
1241 }
1242 break;
1243 }
1244 case TargetOpcode::G_SELECT: {
1245 LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1246 LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1247 if (!SelTy.isValid() || !CondTy.isValid())
1248 break;
1249
1250 // Scalar condition select on a vector is valid.
1251 if (CondTy.isVector())
1252 verifyVectorElementMatch(SelTy, CondTy, MI);
1253 break;
1254 }
1255 case TargetOpcode::G_MERGE_VALUES: {
1256 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1257 // e.g. s2N = MERGE sN, sN
1258 // Merging multiple scalars into a vector is not allowed, should use
1259 // G_BUILD_VECTOR for that.
1260 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1261 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1262 if (DstTy.isVector() || SrcTy.isVector())
1263 report("G_MERGE_VALUES cannot operate on vectors", MI);
1264
1265 const unsigned NumOps = MI->getNumOperands();
1266 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1267 report("G_MERGE_VALUES result size is inconsistent", MI);
1268
1269 for (unsigned I = 2; I != NumOps; ++I) {
1270 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1271 report("G_MERGE_VALUES source types do not match", MI);
1272 }
1273
1274 break;
1275 }
1276 case TargetOpcode::G_UNMERGE_VALUES: {
1277 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1278 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1279 // For now G_UNMERGE can split vectors.
1280 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1281 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1282 report("G_UNMERGE_VALUES destination types do not match", MI);
1283 }
1284 if (SrcTy.getSizeInBits() !=
1285 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1286 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1287 MI);
1288 }
1289 break;
1290 }
1291 case TargetOpcode::G_BUILD_VECTOR: {
1292 // Source types must be scalars, dest type a vector. Total size of scalars
1293 // must match the dest vector size.
1294 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1295 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1296 if (!DstTy.isVector() || SrcEltTy.isVector()) {
1297 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1298 break;
1299 }
1300
1301 if (DstTy.getElementType() != SrcEltTy)
1302 report("G_BUILD_VECTOR result element type must match source type", MI);
1303
1304 if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1305 report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1306
1307 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1308 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1309 report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1310
1311 break;
1312 }
1313 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1314 // Source types must be scalars, dest type a vector. Scalar types must be
1315 // larger than the dest vector elt type, as this is a truncating operation.
1316 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1317 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1318 if (!DstTy.isVector() || SrcEltTy.isVector())
1319 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1320 MI);
1321 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1322 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1323 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1324 MI);
1325 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1326 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1327 "dest elt type",
1328 MI);
1329 break;
1330 }
1331 case TargetOpcode::G_CONCAT_VECTORS: {
1332 // Source types should be vectors, and total size should match the dest
1333 // vector size.
1334 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1335 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1336 if (!DstTy.isVector() || !SrcTy.isVector())
1337 report("G_CONCAT_VECTOR requires vector source and destination operands",
1338 MI);
1339
1340 if (MI->getNumOperands() < 3)
1341 report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1342
1343 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1344 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1345 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1346 if (DstTy.getNumElements() !=
1347 SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1348 report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1349 break;
1350 }
1351 case TargetOpcode::G_ICMP:
1352 case TargetOpcode::G_FCMP: {
1353 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1354 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1355
1356 if ((DstTy.isVector() != SrcTy.isVector()) ||
1357 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1358 report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1359
1360 break;
1361 }
1362 case TargetOpcode::G_EXTRACT: {
1363 const MachineOperand &SrcOp = MI->getOperand(1);
1364 if (!SrcOp.isReg()) {
1365 report("extract source must be a register", MI);
1366 break;
1367 }
1368
1369 const MachineOperand &OffsetOp = MI->getOperand(2);
1370 if (!OffsetOp.isImm()) {
1371 report("extract offset must be a constant", MI);
1372 break;
1373 }
1374
1375 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1376 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1377 if (SrcSize == DstSize)
1378 report("extract source must be larger than result", MI);
1379
1380 if (DstSize + OffsetOp.getImm() > SrcSize)
1381 report("extract reads past end of register", MI);
1382 break;
1383 }
1384 case TargetOpcode::G_INSERT: {
1385 const MachineOperand &SrcOp = MI->getOperand(2);
1386 if (!SrcOp.isReg()) {
1387 report("insert source must be a register", MI);
1388 break;
1389 }
1390
1391 const MachineOperand &OffsetOp = MI->getOperand(3);
1392 if (!OffsetOp.isImm()) {
1393 report("insert offset must be a constant", MI);
1394 break;
1395 }
1396
1397 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1398 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1399
1400 if (DstSize <= SrcSize)
1401 report("inserted size must be smaller than total register", MI);
1402
1403 if (SrcSize + OffsetOp.getImm() > DstSize)
1404 report("insert writes past end of register", MI);
1405
1406 break;
1407 }
1408 case TargetOpcode::G_JUMP_TABLE: {
1409 if (!MI->getOperand(1).isJTI())
1410 report("G_JUMP_TABLE source operand must be a jump table index", MI);
1411 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1412 if (!DstTy.isPointer())
1413 report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1414 break;
1415 }
1416 case TargetOpcode::G_BRJT: {
1417 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1418 report("G_BRJT src operand 0 must be a pointer type", MI);
1419
1420 if (!MI->getOperand(1).isJTI())
1421 report("G_BRJT src operand 1 must be a jump table index", MI);
1422
1423 const auto &IdxOp = MI->getOperand(2);
1424 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1425 report("G_BRJT src operand 2 must be a scalar reg type", MI);
1426 break;
1427 }
1428 case TargetOpcode::G_INTRINSIC:
1429 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1430 // TODO: Should verify number of def and use operands, but the current
1431 // interface requires passing in IR types for mangling.
1432 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1433 if (!IntrIDOp.isIntrinsicID()) {
1434 report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1435 break;
1436 }
1437
1438 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1439 unsigned IntrID = IntrIDOp.getIntrinsicID();
1440 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1441 AttributeList Attrs
1442 = Intrinsic::getAttributes(MF->getFunction().getContext(),
1443 static_cast<Intrinsic::ID>(IntrID));
1444 bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
1445 if (NoSideEffects && DeclHasSideEffects) {
1446 report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1447 break;
1448 }
1449 if (!NoSideEffects && !DeclHasSideEffects) {
1450 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1451 break;
1452 }
1453 }
1454
1455 break;
1456 }
1457 case TargetOpcode::G_SEXT_INREG: {
1458 if (!MI->getOperand(2).isImm()) {
1459 report("G_SEXT_INREG expects an immediate operand #2", MI);
1460 break;
1461 }
1462
1463 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1464 int64_t Imm = MI->getOperand(2).getImm();
1465 if (Imm <= 0)
1466 report("G_SEXT_INREG size must be >= 1", MI);
1467 if (Imm >= SrcTy.getScalarSizeInBits())
1468 report("G_SEXT_INREG size must be less than source bit width", MI);
1469 break;
1470 }
1471 case TargetOpcode::G_SHUFFLE_VECTOR: {
1472 const MachineOperand &MaskOp = MI->getOperand(3);
1473 if (!MaskOp.isShuffleMask()) {
1474 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1475 break;
1476 }
1477
1478 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1479 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1480 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1481
1482 if (Src0Ty != Src1Ty)
1483 report("Source operands must be the same type", MI);
1484
1485 if (Src0Ty.getScalarType() != DstTy.getScalarType())
1486 report("G_SHUFFLE_VECTOR cannot change element type", MI);
1487
1488 // Don't check that all operands are vector because scalars are used in
1489 // place of 1 element vectors.
1490 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1491 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1492
1493 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1494
1495 if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1496 report("Wrong result type for shufflemask", MI);
1497
1498 for (int Idx : MaskIdxes) {
1499 if (Idx < 0)
1500 continue;
1501
1502 if (Idx >= 2 * SrcNumElts)
1503 report("Out of bounds shuffle index", MI);
1504 }
1505
1506 break;
1507 }
1508 case TargetOpcode::G_DYN_STACKALLOC: {
1509 const MachineOperand &DstOp = MI->getOperand(0);
1510 const MachineOperand &AllocOp = MI->getOperand(1);
1511 const MachineOperand &AlignOp = MI->getOperand(2);
1512
1513 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1514 report("dst operand 0 must be a pointer type", MI);
1515 break;
1516 }
1517
1518 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1519 report("src operand 1 must be a scalar reg type", MI);
1520 break;
1521 }
1522
1523 if (!AlignOp.isImm()) {
1524 report("src operand 2 must be an immediate type", MI);
1525 break;
1526 }
1527 break;
1528 }
1529 case TargetOpcode::G_MEMCPY_INLINE:
1530 case TargetOpcode::G_MEMCPY:
1531 case TargetOpcode::G_MEMMOVE: {
1532 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1533 if (MMOs.size() != 2) {
1534 report("memcpy/memmove must have 2 memory operands", MI);
1535 break;
1536 }
1537
1538 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1539 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1540 report("wrong memory operand types", MI);
1541 break;
1542 }
1543
1544 if (MMOs[0]->getSize() != MMOs[1]->getSize())
1545 report("inconsistent memory operand sizes", MI);
1546
1547 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1548 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1549
1550 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1551 report("memory instruction operand must be a pointer", MI);
1552 break;
1553 }
1554
1555 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1556 report("inconsistent store address space", MI);
1557 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1558 report("inconsistent load address space", MI);
1559
1560 if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1561 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1562 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1563
1564 break;
1565 }
1566 case TargetOpcode::G_BZERO:
1567 case TargetOpcode::G_MEMSET: {
1568 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1569 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1570 if (MMOs.size() != 1) {
1571 report(Twine(Name, " must have 1 memory operand"), MI);
1572 break;
1573 }
1574
1575 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1576 report(Twine(Name, " memory operand must be a store"), MI);
1577 break;
1578 }
1579
1580 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1581 if (!DstPtrTy.isPointer()) {
1582 report(Twine(Name, " operand must be a pointer"), MI);
1583 break;
1584 }
1585
1586 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1587 report("inconsistent " + Twine(Name, " address space"), MI);
1588
1589 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1590 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1591 report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1592
1593 break;
1594 }
1595 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1596 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1597 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1598 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1599 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1600 if (!DstTy.isScalar())
1601 report("Vector reduction requires a scalar destination type", MI);
1602 if (!Src1Ty.isScalar())
1603 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1604 if (!Src2Ty.isVector())
1605 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1606 break;
1607 }
1608 case TargetOpcode::G_VECREDUCE_FADD:
1609 case TargetOpcode::G_VECREDUCE_FMUL:
1610 case TargetOpcode::G_VECREDUCE_FMAX:
1611 case TargetOpcode::G_VECREDUCE_FMIN:
1612 case TargetOpcode::G_VECREDUCE_ADD:
1613 case TargetOpcode::G_VECREDUCE_MUL:
1614 case TargetOpcode::G_VECREDUCE_AND:
1615 case TargetOpcode::G_VECREDUCE_OR:
1616 case TargetOpcode::G_VECREDUCE_XOR:
1617 case TargetOpcode::G_VECREDUCE_SMAX:
1618 case TargetOpcode::G_VECREDUCE_SMIN:
1619 case TargetOpcode::G_VECREDUCE_UMAX:
1620 case TargetOpcode::G_VECREDUCE_UMIN: {
1621 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1622 if (!DstTy.isScalar())
1623 report("Vector reduction requires a scalar destination type", MI);
1624 break;
1625 }
1626
1627 case TargetOpcode::G_SBFX:
1628 case TargetOpcode::G_UBFX: {
1629 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1630 if (DstTy.isVector()) {
1631 report("Bitfield extraction is not supported on vectors", MI);
1632 break;
1633 }
1634 break;
1635 }
1636 case TargetOpcode::G_SHL:
1637 case TargetOpcode::G_LSHR:
1638 case TargetOpcode::G_ASHR:
1639 case TargetOpcode::G_ROTR:
1640 case TargetOpcode::G_ROTL: {
1641 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1642 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1643 if (Src1Ty.isVector() != Src2Ty.isVector()) {
1644 report("Shifts and rotates require operands to be either all scalars or "
1645 "all vectors",
1646 MI);
1647 break;
1648 }
1649 break;
1650 }
1651 case TargetOpcode::G_LLROUND:
1652 case TargetOpcode::G_LROUND: {
1653 verifyAllRegOpsScalar(*MI, *MRI);
1654 break;
1655 }
1656 case TargetOpcode::G_IS_FPCLASS: {
1657 LLT DestTy = MRI->getType(MI->getOperand(0).getReg());
1658 LLT DestEltTy = DestTy.getScalarType();
1659 if (!DestEltTy.isScalar()) {
1660 report("Destination must be a scalar or vector of scalars", MI);
1661 break;
1662 }
1663 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1664 LLT SrcEltTy = SrcTy.getScalarType();
1665 if (!SrcEltTy.isScalar()) {
1666 report("Source must be a scalar or vector of scalars", MI);
1667 break;
1668 }
1669 if (!verifyVectorElementMatch(DestTy, SrcTy, MI))
1670 break;
1671 const MachineOperand &TestMO = MI->getOperand(2);
1672 if (!TestMO.isImm()) {
1673 report("floating-point class set (operand 2) must be an immediate", MI);
1674 break;
1675 }
1676 int64_t Test = TestMO.getImm();
1677 if (Test < 0 || Test > fcAllFlags) {
1678 report("Incorrect floating-point class set (operand 2)", MI);
1679 break;
1680 }
1681 const MachineOperand &SemanticsMO = MI->getOperand(3);
1682 if (!SemanticsMO.isImm()) {
1683 report("floating-point semantics (operand 3) must be an immediate", MI);
1684 break;
1685 }
1686 int64_t Semantics = SemanticsMO.getImm();
1687 if (Semantics < 0 || Semantics > APFloat::S_MaxSemantics) {
1688 report("Incorrect floating-point semantics (operand 3)", MI);
1689 break;
1690 }
1691 break;
1692 }
1693 default:
1694 break;
1695 }
1696 }
1697
visitMachineInstrBefore(const MachineInstr * MI)1698 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1699 const MCInstrDesc &MCID = MI->getDesc();
1700 if (MI->getNumOperands() < MCID.getNumOperands()) {
1701 report("Too few operands", MI);
1702 errs() << MCID.getNumOperands() << " operands expected, but "
1703 << MI->getNumOperands() << " given.\n";
1704 }
1705
1706 if (MI->isPHI()) {
1707 if (MF->getProperties().hasProperty(
1708 MachineFunctionProperties::Property::NoPHIs))
1709 report("Found PHI instruction with NoPHIs property set", MI);
1710
1711 if (FirstNonPHI)
1712 report("Found PHI instruction after non-PHI", MI);
1713 } else if (FirstNonPHI == nullptr)
1714 FirstNonPHI = MI;
1715
1716 // Check the tied operands.
1717 if (MI->isInlineAsm())
1718 verifyInlineAsm(MI);
1719
1720 // Check that unspillable terminators define a reg and have at most one use.
1721 if (TII->isUnspillableTerminator(MI)) {
1722 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1723 report("Unspillable Terminator does not define a reg", MI);
1724 Register Def = MI->getOperand(0).getReg();
1725 if (Def.isVirtual() &&
1726 !MF->getProperties().hasProperty(
1727 MachineFunctionProperties::Property::NoPHIs) &&
1728 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1729 report("Unspillable Terminator expected to have at most one use!", MI);
1730 }
1731
1732 // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1733 // DBG_VALUEs: these are convenient to use in tests, but should never get
1734 // generated.
1735 if (MI->isDebugValue() && MI->getNumOperands() == 4)
1736 if (!MI->getDebugLoc())
1737 report("Missing DebugLoc for debug instruction", MI);
1738
1739 // Meta instructions should never be the subject of debug value tracking,
1740 // they don't create a value in the output program at all.
1741 if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1742 report("Metadata instruction should not have a value tracking number", MI);
1743
1744 // Check the MachineMemOperands for basic consistency.
1745 for (MachineMemOperand *Op : MI->memoperands()) {
1746 if (Op->isLoad() && !MI->mayLoad())
1747 report("Missing mayLoad flag", MI);
1748 if (Op->isStore() && !MI->mayStore())
1749 report("Missing mayStore flag", MI);
1750 }
1751
1752 // Debug values must not have a slot index.
1753 // Other instructions must have one, unless they are inside a bundle.
1754 if (LiveInts) {
1755 bool mapped = !LiveInts->isNotInMIMap(*MI);
1756 if (MI->isDebugOrPseudoInstr()) {
1757 if (mapped)
1758 report("Debug instruction has a slot index", MI);
1759 } else if (MI->isInsideBundle()) {
1760 if (mapped)
1761 report("Instruction inside bundle has a slot index", MI);
1762 } else {
1763 if (!mapped)
1764 report("Missing slot index", MI);
1765 }
1766 }
1767
1768 unsigned Opc = MCID.getOpcode();
1769 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1770 verifyPreISelGenericInstruction(MI);
1771 return;
1772 }
1773
1774 StringRef ErrorInfo;
1775 if (!TII->verifyInstruction(*MI, ErrorInfo))
1776 report(ErrorInfo.data(), MI);
1777
1778 // Verify properties of various specific instruction types
1779 switch (MI->getOpcode()) {
1780 case TargetOpcode::COPY: {
1781 const MachineOperand &DstOp = MI->getOperand(0);
1782 const MachineOperand &SrcOp = MI->getOperand(1);
1783 const Register SrcReg = SrcOp.getReg();
1784 const Register DstReg = DstOp.getReg();
1785
1786 LLT DstTy = MRI->getType(DstReg);
1787 LLT SrcTy = MRI->getType(SrcReg);
1788 if (SrcTy.isValid() && DstTy.isValid()) {
1789 // If both types are valid, check that the types are the same.
1790 if (SrcTy != DstTy) {
1791 report("Copy Instruction is illegal with mismatching types", MI);
1792 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1793 }
1794
1795 break;
1796 }
1797
1798 if (!SrcTy.isValid() && !DstTy.isValid())
1799 break;
1800
1801 // If we have only one valid type, this is likely a copy between a virtual
1802 // and physical register.
1803 unsigned SrcSize = 0;
1804 unsigned DstSize = 0;
1805 if (SrcReg.isPhysical() && DstTy.isValid()) {
1806 const TargetRegisterClass *SrcRC =
1807 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1808 if (SrcRC)
1809 SrcSize = TRI->getRegSizeInBits(*SrcRC);
1810 }
1811
1812 if (SrcSize == 0)
1813 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1814
1815 if (DstReg.isPhysical() && SrcTy.isValid()) {
1816 const TargetRegisterClass *DstRC =
1817 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1818 if (DstRC)
1819 DstSize = TRI->getRegSizeInBits(*DstRC);
1820 }
1821
1822 if (DstSize == 0)
1823 DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1824
1825 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1826 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1827 report("Copy Instruction is illegal with mismatching sizes", MI);
1828 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1829 << "\n";
1830 }
1831 }
1832 break;
1833 }
1834 case TargetOpcode::STATEPOINT: {
1835 StatepointOpers SO(MI);
1836 if (!MI->getOperand(SO.getIDPos()).isImm() ||
1837 !MI->getOperand(SO.getNBytesPos()).isImm() ||
1838 !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1839 report("meta operands to STATEPOINT not constant!", MI);
1840 break;
1841 }
1842
1843 auto VerifyStackMapConstant = [&](unsigned Offset) {
1844 if (Offset >= MI->getNumOperands()) {
1845 report("stack map constant to STATEPOINT is out of range!", MI);
1846 return;
1847 }
1848 if (!MI->getOperand(Offset - 1).isImm() ||
1849 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1850 !MI->getOperand(Offset).isImm())
1851 report("stack map constant to STATEPOINT not well formed!", MI);
1852 };
1853 VerifyStackMapConstant(SO.getCCIdx());
1854 VerifyStackMapConstant(SO.getFlagsIdx());
1855 VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1856 VerifyStackMapConstant(SO.getNumGCPtrIdx());
1857 VerifyStackMapConstant(SO.getNumAllocaIdx());
1858 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1859
1860 // Verify that all explicit statepoint defs are tied to gc operands as
1861 // they are expected to be a relocation of gc operands.
1862 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1863 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1864 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1865 unsigned UseOpIdx;
1866 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1867 report("STATEPOINT defs expected to be tied", MI);
1868 break;
1869 }
1870 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1871 report("STATEPOINT def tied to non-gc operand", MI);
1872 break;
1873 }
1874 }
1875
1876 // TODO: verify we have properly encoded deopt arguments
1877 } break;
1878 case TargetOpcode::INSERT_SUBREG: {
1879 unsigned InsertedSize;
1880 if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1881 InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1882 else
1883 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1884 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1885 if (SubRegSize < InsertedSize) {
1886 report("INSERT_SUBREG expected inserted value to have equal or lesser "
1887 "size than the subreg it was inserted into", MI);
1888 break;
1889 }
1890 } break;
1891 }
1892 }
1893
1894 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)1895 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1896 const MachineInstr *MI = MO->getParent();
1897 const MCInstrDesc &MCID = MI->getDesc();
1898 unsigned NumDefs = MCID.getNumDefs();
1899 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1900 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1901
1902 // The first MCID.NumDefs operands must be explicit register defines
1903 if (MONum < NumDefs) {
1904 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1905 if (!MO->isReg())
1906 report("Explicit definition must be a register", MO, MONum);
1907 else if (!MO->isDef() && !MCOI.isOptionalDef())
1908 report("Explicit definition marked as use", MO, MONum);
1909 else if (MO->isImplicit())
1910 report("Explicit definition marked as implicit", MO, MONum);
1911 } else if (MONum < MCID.getNumOperands()) {
1912 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1913 // Don't check if it's the last operand in a variadic instruction. See,
1914 // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1915 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1916 if (!IsOptional) {
1917 if (MO->isReg()) {
1918 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1919 report("Explicit operand marked as def", MO, MONum);
1920 if (MO->isImplicit())
1921 report("Explicit operand marked as implicit", MO, MONum);
1922 }
1923
1924 // Check that an instruction has register operands only as expected.
1925 if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1926 !MO->isReg() && !MO->isFI())
1927 report("Expected a register operand.", MO, MONum);
1928 if (MO->isReg()) {
1929 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1930 (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1931 !TII->isPCRelRegisterOperandLegal(*MO)))
1932 report("Expected a non-register operand.", MO, MONum);
1933 }
1934 }
1935
1936 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1937 if (TiedTo != -1) {
1938 if (!MO->isReg())
1939 report("Tied use must be a register", MO, MONum);
1940 else if (!MO->isTied())
1941 report("Operand should be tied", MO, MONum);
1942 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1943 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1944 else if (Register::isPhysicalRegister(MO->getReg())) {
1945 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1946 if (!MOTied.isReg())
1947 report("Tied counterpart must be a register", &MOTied, TiedTo);
1948 else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1949 MO->getReg() != MOTied.getReg())
1950 report("Tied physical registers must match.", &MOTied, TiedTo);
1951 }
1952 } else if (MO->isReg() && MO->isTied())
1953 report("Explicit operand should not be tied", MO, MONum);
1954 } else {
1955 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1956 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1957 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1958 }
1959
1960 switch (MO->getType()) {
1961 case MachineOperand::MO_Register: {
1962 // Verify debug flag on debug instructions. Check this first because reg0
1963 // indicates an undefined debug value.
1964 if (MI->isDebugInstr() && MO->isUse()) {
1965 if (!MO->isDebug())
1966 report("Register operand must be marked debug", MO, MONum);
1967 } else if (MO->isDebug()) {
1968 report("Register operand must not be marked debug", MO, MONum);
1969 }
1970
1971 const Register Reg = MO->getReg();
1972 if (!Reg)
1973 return;
1974 if (MRI->tracksLiveness() && !MI->isDebugInstr())
1975 checkLiveness(MO, MONum);
1976
1977 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
1978 MO->getReg().isVirtual()) // TODO: Apply to physregs too
1979 report("Undef virtual register def operands require a subregister", MO, MONum);
1980
1981 // Verify the consistency of tied operands.
1982 if (MO->isTied()) {
1983 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1984 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1985 if (!OtherMO.isReg())
1986 report("Must be tied to a register", MO, MONum);
1987 if (!OtherMO.isTied())
1988 report("Missing tie flags on tied operand", MO, MONum);
1989 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1990 report("Inconsistent tie links", MO, MONum);
1991 if (MONum < MCID.getNumDefs()) {
1992 if (OtherIdx < MCID.getNumOperands()) {
1993 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1994 report("Explicit def tied to explicit use without tie constraint",
1995 MO, MONum);
1996 } else {
1997 if (!OtherMO.isImplicit())
1998 report("Explicit def should be tied to implicit use", MO, MONum);
1999 }
2000 }
2001 }
2002
2003 // Verify two-address constraints after the twoaddressinstruction pass.
2004 // Both twoaddressinstruction pass and phi-node-elimination pass call
2005 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
2006 // twoaddressinstruction pass not after phi-node-elimination pass. So we
2007 // shouldn't use the NoSSA as the condition, we should based on
2008 // TiedOpsRewritten property to verify two-address constraints, this
2009 // property will be set in twoaddressinstruction pass.
2010 unsigned DefIdx;
2011 if (MF->getProperties().hasProperty(
2012 MachineFunctionProperties::Property::TiedOpsRewritten) &&
2013 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
2014 Reg != MI->getOperand(DefIdx).getReg())
2015 report("Two-address instruction operands must be identical", MO, MONum);
2016
2017 // Check register classes.
2018 unsigned SubIdx = MO->getSubReg();
2019
2020 if (Register::isPhysicalRegister(Reg)) {
2021 if (SubIdx) {
2022 report("Illegal subregister index for physical register", MO, MONum);
2023 return;
2024 }
2025 if (MONum < MCID.getNumOperands()) {
2026 if (const TargetRegisterClass *DRC =
2027 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2028 if (!DRC->contains(Reg)) {
2029 report("Illegal physical register for instruction", MO, MONum);
2030 errs() << printReg(Reg, TRI) << " is not a "
2031 << TRI->getRegClassName(DRC) << " register.\n";
2032 }
2033 }
2034 }
2035 if (MO->isRenamable()) {
2036 if (MRI->isReserved(Reg)) {
2037 report("isRenamable set on reserved register", MO, MONum);
2038 return;
2039 }
2040 }
2041 } else {
2042 // Virtual register.
2043 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
2044 if (!RC) {
2045 // This is a generic virtual register.
2046
2047 // Do not allow undef uses for generic virtual registers. This ensures
2048 // getVRegDef can never fail and return null on a generic register.
2049 //
2050 // FIXME: This restriction should probably be broadened to all SSA
2051 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2052 // run on the SSA function just before phi elimination.
2053 if (MO->isUndef())
2054 report("Generic virtual register use cannot be undef", MO, MONum);
2055
2056 // Debug value instruction is permitted to use undefined vregs.
2057 // This is a performance measure to skip the overhead of immediately
2058 // pruning unused debug operands. The final undef substitution occurs
2059 // when debug values are allocated in LDVImpl::handleDebugValue, so
2060 // these verifications always apply after this pass.
2061 if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2062 !MI->isDebugValue() || !MRI->def_empty(Reg)) {
2063 // If we're post-Select, we can't have gvregs anymore.
2064 if (isFunctionSelected) {
2065 report("Generic virtual register invalid in a Selected function",
2066 MO, MONum);
2067 return;
2068 }
2069
2070 // The gvreg must have a type and it must not have a SubIdx.
2071 LLT Ty = MRI->getType(Reg);
2072 if (!Ty.isValid()) {
2073 report("Generic virtual register must have a valid type", MO,
2074 MONum);
2075 return;
2076 }
2077
2078 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2079
2080 // If we're post-RegBankSelect, the gvreg must have a bank.
2081 if (!RegBank && isFunctionRegBankSelected) {
2082 report("Generic virtual register must have a bank in a "
2083 "RegBankSelected function",
2084 MO, MONum);
2085 return;
2086 }
2087
2088 // Make sure the register fits into its register bank if any.
2089 if (RegBank && Ty.isValid() &&
2090 RegBank->getSize() < Ty.getSizeInBits()) {
2091 report("Register bank is too small for virtual register", MO,
2092 MONum);
2093 errs() << "Register bank " << RegBank->getName() << " too small("
2094 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2095 << "-bits\n";
2096 return;
2097 }
2098 }
2099
2100 if (SubIdx) {
2101 report("Generic virtual register does not allow subregister index", MO,
2102 MONum);
2103 return;
2104 }
2105
2106 // If this is a target specific instruction and this operand
2107 // has register class constraint, the virtual register must
2108 // comply to it.
2109 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2110 MONum < MCID.getNumOperands() &&
2111 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2112 report("Virtual register does not match instruction constraint", MO,
2113 MONum);
2114 errs() << "Expect register class "
2115 << TRI->getRegClassName(
2116 TII->getRegClass(MCID, MONum, TRI, *MF))
2117 << " but got nothing\n";
2118 return;
2119 }
2120
2121 break;
2122 }
2123 if (SubIdx) {
2124 const TargetRegisterClass *SRC =
2125 TRI->getSubClassWithSubReg(RC, SubIdx);
2126 if (!SRC) {
2127 report("Invalid subregister index for virtual register", MO, MONum);
2128 errs() << "Register class " << TRI->getRegClassName(RC)
2129 << " does not support subreg index " << SubIdx << "\n";
2130 return;
2131 }
2132 if (RC != SRC) {
2133 report("Invalid register class for subregister index", MO, MONum);
2134 errs() << "Register class " << TRI->getRegClassName(RC)
2135 << " does not fully support subreg index " << SubIdx << "\n";
2136 return;
2137 }
2138 }
2139 if (MONum < MCID.getNumOperands()) {
2140 if (const TargetRegisterClass *DRC =
2141 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2142 if (SubIdx) {
2143 const TargetRegisterClass *SuperRC =
2144 TRI->getLargestLegalSuperClass(RC, *MF);
2145 if (!SuperRC) {
2146 report("No largest legal super class exists.", MO, MONum);
2147 return;
2148 }
2149 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2150 if (!DRC) {
2151 report("No matching super-reg register class.", MO, MONum);
2152 return;
2153 }
2154 }
2155 if (!RC->hasSuperClassEq(DRC)) {
2156 report("Illegal virtual register for instruction", MO, MONum);
2157 errs() << "Expected a " << TRI->getRegClassName(DRC)
2158 << " register, but got a " << TRI->getRegClassName(RC)
2159 << " register\n";
2160 }
2161 }
2162 }
2163 }
2164 break;
2165 }
2166
2167 case MachineOperand::MO_RegisterMask:
2168 regMasks.push_back(MO->getRegMask());
2169 break;
2170
2171 case MachineOperand::MO_MachineBasicBlock:
2172 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2173 report("PHI operand is not in the CFG", MO, MONum);
2174 break;
2175
2176 case MachineOperand::MO_FrameIndex:
2177 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2178 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2179 int FI = MO->getIndex();
2180 LiveInterval &LI = LiveStks->getInterval(FI);
2181 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2182
2183 bool stores = MI->mayStore();
2184 bool loads = MI->mayLoad();
2185 // For a memory-to-memory move, we need to check if the frame
2186 // index is used for storing or loading, by inspecting the
2187 // memory operands.
2188 if (stores && loads) {
2189 for (auto *MMO : MI->memoperands()) {
2190 const PseudoSourceValue *PSV = MMO->getPseudoValue();
2191 if (PSV == nullptr) continue;
2192 const FixedStackPseudoSourceValue *Value =
2193 dyn_cast<FixedStackPseudoSourceValue>(PSV);
2194 if (Value == nullptr) continue;
2195 if (Value->getFrameIndex() != FI) continue;
2196
2197 if (MMO->isStore())
2198 loads = false;
2199 else
2200 stores = false;
2201 break;
2202 }
2203 if (loads == stores)
2204 report("Missing fixed stack memoperand.", MI);
2205 }
2206 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2207 report("Instruction loads from dead spill slot", MO, MONum);
2208 errs() << "Live stack: " << LI << '\n';
2209 }
2210 if (stores && !LI.liveAt(Idx.getRegSlot())) {
2211 report("Instruction stores to dead spill slot", MO, MONum);
2212 errs() << "Live stack: " << LI << '\n';
2213 }
2214 }
2215 break;
2216
2217 case MachineOperand::MO_CFIIndex:
2218 if (MO->getCFIIndex() >= MF->getFrameInstructions().size())
2219 report("CFI instruction has invalid index", MO, MONum);
2220 break;
2221
2222 default:
2223 break;
2224 }
2225 }
2226
checkLivenessAtUse(const MachineOperand * MO,unsigned MONum,SlotIndex UseIdx,const LiveRange & LR,Register VRegOrUnit,LaneBitmask LaneMask)2227 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2228 unsigned MONum, SlotIndex UseIdx,
2229 const LiveRange &LR,
2230 Register VRegOrUnit,
2231 LaneBitmask LaneMask) {
2232 LiveQueryResult LRQ = LR.Query(UseIdx);
2233 // Check if we have a segment at the use, note however that we only need one
2234 // live subregister range, the others may be dead.
2235 if (!LRQ.valueIn() && LaneMask.none()) {
2236 report("No live segment at use", MO, MONum);
2237 report_context_liverange(LR);
2238 report_context_vreg_regunit(VRegOrUnit);
2239 report_context(UseIdx);
2240 }
2241 if (MO->isKill() && !LRQ.isKill()) {
2242 report("Live range continues after kill flag", MO, MONum);
2243 report_context_liverange(LR);
2244 report_context_vreg_regunit(VRegOrUnit);
2245 if (LaneMask.any())
2246 report_context_lanemask(LaneMask);
2247 report_context(UseIdx);
2248 }
2249 }
2250
checkLivenessAtDef(const MachineOperand * MO,unsigned MONum,SlotIndex DefIdx,const LiveRange & LR,Register VRegOrUnit,bool SubRangeCheck,LaneBitmask LaneMask)2251 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2252 unsigned MONum, SlotIndex DefIdx,
2253 const LiveRange &LR,
2254 Register VRegOrUnit,
2255 bool SubRangeCheck,
2256 LaneBitmask LaneMask) {
2257 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2258 assert(VNI && "NULL valno is not allowed");
2259 if (VNI->def != DefIdx) {
2260 report("Inconsistent valno->def", MO, MONum);
2261 report_context_liverange(LR);
2262 report_context_vreg_regunit(VRegOrUnit);
2263 if (LaneMask.any())
2264 report_context_lanemask(LaneMask);
2265 report_context(*VNI);
2266 report_context(DefIdx);
2267 }
2268 } else {
2269 report("No live segment at def", MO, MONum);
2270 report_context_liverange(LR);
2271 report_context_vreg_regunit(VRegOrUnit);
2272 if (LaneMask.any())
2273 report_context_lanemask(LaneMask);
2274 report_context(DefIdx);
2275 }
2276 // Check that, if the dead def flag is present, LiveInts agree.
2277 if (MO->isDead()) {
2278 LiveQueryResult LRQ = LR.Query(DefIdx);
2279 if (!LRQ.isDeadDef()) {
2280 assert(Register::isVirtualRegister(VRegOrUnit) &&
2281 "Expecting a virtual register.");
2282 // A dead subreg def only tells us that the specific subreg is dead. There
2283 // could be other non-dead defs of other subregs, or we could have other
2284 // parts of the register being live through the instruction. So unless we
2285 // are checking liveness for a subrange it is ok for the live range to
2286 // continue, given that we have a dead def of a subregister.
2287 if (SubRangeCheck || MO->getSubReg() == 0) {
2288 report("Live range continues after dead def flag", MO, MONum);
2289 report_context_liverange(LR);
2290 report_context_vreg_regunit(VRegOrUnit);
2291 if (LaneMask.any())
2292 report_context_lanemask(LaneMask);
2293 }
2294 }
2295 }
2296 }
2297
checkLiveness(const MachineOperand * MO,unsigned MONum)2298 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2299 const MachineInstr *MI = MO->getParent();
2300 const Register Reg = MO->getReg();
2301 const unsigned SubRegIdx = MO->getSubReg();
2302
2303 const LiveInterval *LI = nullptr;
2304 if (LiveInts && Reg.isVirtual()) {
2305 if (LiveInts->hasInterval(Reg)) {
2306 LI = &LiveInts->getInterval(Reg);
2307 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
2308 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
2309 report("Live interval for subreg operand has no subranges", MO, MONum);
2310 } else {
2311 report("Virtual register has no live interval", MO, MONum);
2312 }
2313 }
2314
2315 // Both use and def operands can read a register.
2316 if (MO->readsReg()) {
2317 if (MO->isKill())
2318 addRegWithSubRegs(regsKilled, Reg);
2319
2320 // Check that LiveVars knows this kill (unless we are inside a bundle, in
2321 // which case we have already checked that LiveVars knows any kills on the
2322 // bundle header instead).
2323 if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2324 !MI->isBundledWithPred()) {
2325 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2326 if (!is_contained(VI.Kills, MI))
2327 report("Kill missing from LiveVariables", MO, MONum);
2328 }
2329
2330 // Check LiveInts liveness and kill.
2331 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2332 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2333 // Check the cached regunit intervals.
2334 if (Reg.isPhysical() && !isReserved(Reg)) {
2335 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2336 ++Units) {
2337 if (MRI->isReservedRegUnit(*Units))
2338 continue;
2339 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2340 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2341 }
2342 }
2343
2344 if (Reg.isVirtual()) {
2345 // This is a virtual register interval.
2346 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2347
2348 if (LI->hasSubRanges() && !MO->isDef()) {
2349 LaneBitmask MOMask = SubRegIdx != 0
2350 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2351 : MRI->getMaxLaneMaskForVReg(Reg);
2352 LaneBitmask LiveInMask;
2353 for (const LiveInterval::SubRange &SR : LI->subranges()) {
2354 if ((MOMask & SR.LaneMask).none())
2355 continue;
2356 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2357 LiveQueryResult LRQ = SR.Query(UseIdx);
2358 if (LRQ.valueIn())
2359 LiveInMask |= SR.LaneMask;
2360 }
2361 // At least parts of the register has to be live at the use.
2362 if ((LiveInMask & MOMask).none()) {
2363 report("No live subrange at use", MO, MONum);
2364 report_context(*LI);
2365 report_context(UseIdx);
2366 }
2367 }
2368 }
2369 }
2370
2371 // Use of a dead register.
2372 if (!regsLive.count(Reg)) {
2373 if (Reg.isPhysical()) {
2374 // Reserved registers may be used even when 'dead'.
2375 bool Bad = !isReserved(Reg);
2376 // We are fine if just any subregister has a defined value.
2377 if (Bad) {
2378
2379 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2380 if (regsLive.count(SubReg)) {
2381 Bad = false;
2382 break;
2383 }
2384 }
2385 }
2386 // If there is an additional implicit-use of a super register we stop
2387 // here. By definition we are fine if the super register is not
2388 // (completely) dead, if the complete super register is dead we will
2389 // get a report for its operand.
2390 if (Bad) {
2391 for (const MachineOperand &MOP : MI->uses()) {
2392 if (!MOP.isReg() || !MOP.isImplicit())
2393 continue;
2394
2395 if (!MOP.getReg().isPhysical())
2396 continue;
2397
2398 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2399 Bad = false;
2400 }
2401 }
2402 if (Bad)
2403 report("Using an undefined physical register", MO, MONum);
2404 } else if (MRI->def_empty(Reg)) {
2405 report("Reading virtual register without a def", MO, MONum);
2406 } else {
2407 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2408 // We don't know which virtual registers are live in, so only complain
2409 // if vreg was killed in this MBB. Otherwise keep track of vregs that
2410 // must be live in. PHI instructions are handled separately.
2411 if (MInfo.regsKilled.count(Reg))
2412 report("Using a killed virtual register", MO, MONum);
2413 else if (!MI->isPHI())
2414 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2415 }
2416 }
2417 }
2418
2419 if (MO->isDef()) {
2420 // Register defined.
2421 // TODO: verify that earlyclobber ops are not used.
2422 if (MO->isDead())
2423 addRegWithSubRegs(regsDead, Reg);
2424 else
2425 addRegWithSubRegs(regsDefined, Reg);
2426
2427 // Verify SSA form.
2428 if (MRI->isSSA() && Reg.isVirtual() &&
2429 std::next(MRI->def_begin(Reg)) != MRI->def_end())
2430 report("Multiple virtual register defs in SSA form", MO, MONum);
2431
2432 // Check LiveInts for a live segment, but only for virtual registers.
2433 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2434 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2435 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2436
2437 if (Reg.isVirtual()) {
2438 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
2439
2440 if (LI->hasSubRanges()) {
2441 LaneBitmask MOMask = SubRegIdx != 0
2442 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2443 : MRI->getMaxLaneMaskForVReg(Reg);
2444 for (const LiveInterval::SubRange &SR : LI->subranges()) {
2445 if ((SR.LaneMask & MOMask).none())
2446 continue;
2447 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2448 }
2449 }
2450 }
2451 }
2452 }
2453 }
2454
2455 // This function gets called after visiting all instructions in a bundle. The
2456 // argument points to the bundle header.
2457 // Normal stand-alone instructions are also considered 'bundles', and this
2458 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)2459 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2460 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2461 set_union(MInfo.regsKilled, regsKilled);
2462 set_subtract(regsLive, regsKilled); regsKilled.clear();
2463 // Kill any masked registers.
2464 while (!regMasks.empty()) {
2465 const uint32_t *Mask = regMasks.pop_back_val();
2466 for (Register Reg : regsLive)
2467 if (Reg.isPhysical() &&
2468 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2469 regsDead.push_back(Reg);
2470 }
2471 set_subtract(regsLive, regsDead); regsDead.clear();
2472 set_union(regsLive, regsDefined); regsDefined.clear();
2473 }
2474
2475 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)2476 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2477 MBBInfoMap[MBB].regsLiveOut = regsLive;
2478 regsLive.clear();
2479
2480 if (Indexes) {
2481 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2482 if (!(stop > lastIndex)) {
2483 report("Block ends before last instruction index", MBB);
2484 errs() << "Block ends at " << stop
2485 << " last instruction was at " << lastIndex << '\n';
2486 }
2487 lastIndex = stop;
2488 }
2489 }
2490
2491 namespace {
2492 // This implements a set of registers that serves as a filter: can filter other
2493 // sets by passing through elements not in the filter and blocking those that
2494 // are. Any filter implicitly includes the full set of physical registers upon
2495 // creation, thus filtering them all out. The filter itself as a set only grows,
2496 // and needs to be as efficient as possible.
2497 struct VRegFilter {
2498 // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2499 // no duplicates. Both virtual and physical registers are fine.
add__anon56f5f5350511::VRegFilter2500 template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2501 SmallVector<Register, 0> VRegsBuffer;
2502 filterAndAdd(FromRegSet, VRegsBuffer);
2503 }
2504 // Filter \p FromRegSet through the filter and append passed elements into \p
2505 // ToVRegs. All elements appended are then added to the filter itself.
2506 // \returns true if anything changed.
2507 template <typename RegSetT>
filterAndAdd__anon56f5f5350511::VRegFilter2508 bool filterAndAdd(const RegSetT &FromRegSet,
2509 SmallVectorImpl<Register> &ToVRegs) {
2510 unsigned SparseUniverse = Sparse.size();
2511 unsigned NewSparseUniverse = SparseUniverse;
2512 unsigned NewDenseSize = Dense.size();
2513 size_t Begin = ToVRegs.size();
2514 for (Register Reg : FromRegSet) {
2515 if (!Reg.isVirtual())
2516 continue;
2517 unsigned Index = Register::virtReg2Index(Reg);
2518 if (Index < SparseUniverseMax) {
2519 if (Index < SparseUniverse && Sparse.test(Index))
2520 continue;
2521 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2522 } else {
2523 if (Dense.count(Reg))
2524 continue;
2525 ++NewDenseSize;
2526 }
2527 ToVRegs.push_back(Reg);
2528 }
2529 size_t End = ToVRegs.size();
2530 if (Begin == End)
2531 return false;
2532 // Reserving space in sets once performs better than doing so continuously
2533 // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2534 // tuned all the way down) and double iteration (the second one is over a
2535 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2536 Sparse.resize(NewSparseUniverse);
2537 Dense.reserve(NewDenseSize);
2538 for (unsigned I = Begin; I < End; ++I) {
2539 Register Reg = ToVRegs[I];
2540 unsigned Index = Register::virtReg2Index(Reg);
2541 if (Index < SparseUniverseMax)
2542 Sparse.set(Index);
2543 else
2544 Dense.insert(Reg);
2545 }
2546 return true;
2547 }
2548
2549 private:
2550 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2551 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2552 // are tracked by Dense. The only purpose of the threashold and the Dense set
2553 // is to have a reasonably growing memory usage in pathological cases (large
2554 // number of very sparse VRegFilter instances live at the same time). In
2555 // practice even in the worst-by-execution time cases having all elements
2556 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2557 // space efficient than if tracked by Dense. The threashold is set to keep the
2558 // worst-case memory usage within 2x of figures determined empirically for
2559 // "all Dense" scenario in such worst-by-execution-time cases.
2560 BitVector Sparse;
2561 DenseSet<unsigned> Dense;
2562 };
2563
2564 // Implements both a transfer function and a (binary, in-place) join operator
2565 // for a dataflow over register sets with set union join and filtering transfer
2566 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2567 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2568 // time, where n is the size of the set (as opposed to O(U) where U is the
2569 // universe). filter_b implicitly contains all physical registers at all times.
2570 class FilteringVRegSet {
2571 VRegFilter Filter;
2572 SmallVector<Register, 0> VRegs;
2573
2574 public:
2575 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2576 // Both virtual and physical registers are fine.
addToFilter(const RegSetT & RS)2577 template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2578 Filter.add(RS);
2579 }
2580 // Passes \p RS through the filter_b (transfer function) and adds what's left
2581 // to itself (out_b).
add(const RegSetT & RS)2582 template <typename RegSetT> bool add(const RegSetT &RS) {
2583 // Double-duty the Filter: to maintain VRegs a set (and the join operation
2584 // a set union) just add everything being added here to the Filter as well.
2585 return Filter.filterAndAdd(RS, VRegs);
2586 }
2587 using const_iterator = decltype(VRegs)::const_iterator;
begin() const2588 const_iterator begin() const { return VRegs.begin(); }
end() const2589 const_iterator end() const { return VRegs.end(); }
size() const2590 size_t size() const { return VRegs.size(); }
2591 };
2592 } // namespace
2593
2594 // Calculate the largest possible vregsPassed sets. These are the registers that
2595 // can pass through an MBB live, but may not be live every time. It is assumed
2596 // that all vregsPassed sets are empty before the call.
calcRegsPassed()2597 void MachineVerifier::calcRegsPassed() {
2598 if (MF->empty())
2599 // ReversePostOrderTraversal doesn't handle empty functions.
2600 return;
2601
2602 for (const MachineBasicBlock *MB :
2603 ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2604 FilteringVRegSet VRegs;
2605 BBInfo &Info = MBBInfoMap[MB];
2606 assert(Info.reachable);
2607
2608 VRegs.addToFilter(Info.regsKilled);
2609 VRegs.addToFilter(Info.regsLiveOut);
2610 for (const MachineBasicBlock *Pred : MB->predecessors()) {
2611 const BBInfo &PredInfo = MBBInfoMap[Pred];
2612 if (!PredInfo.reachable)
2613 continue;
2614
2615 VRegs.add(PredInfo.regsLiveOut);
2616 VRegs.add(PredInfo.vregsPassed);
2617 }
2618 Info.vregsPassed.reserve(VRegs.size());
2619 Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2620 }
2621 }
2622
2623 // Calculate the set of virtual registers that must be passed through each basic
2624 // block in order to satisfy the requirements of successor blocks. This is very
2625 // similar to calcRegsPassed, only backwards.
calcRegsRequired()2626 void MachineVerifier::calcRegsRequired() {
2627 // First push live-in regs to predecessors' vregsRequired.
2628 SmallPtrSet<const MachineBasicBlock*, 8> todo;
2629 for (const auto &MBB : *MF) {
2630 BBInfo &MInfo = MBBInfoMap[&MBB];
2631 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2632 BBInfo &PInfo = MBBInfoMap[Pred];
2633 if (PInfo.addRequired(MInfo.vregsLiveIn))
2634 todo.insert(Pred);
2635 }
2636
2637 // Handle the PHI node.
2638 for (const MachineInstr &MI : MBB.phis()) {
2639 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2640 // Skip those Operands which are undef regs or not regs.
2641 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2642 continue;
2643
2644 // Get register and predecessor for one PHI edge.
2645 Register Reg = MI.getOperand(i).getReg();
2646 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2647
2648 BBInfo &PInfo = MBBInfoMap[Pred];
2649 if (PInfo.addRequired(Reg))
2650 todo.insert(Pred);
2651 }
2652 }
2653 }
2654
2655 // Iteratively push vregsRequired to predecessors. This will converge to the
2656 // same final state regardless of DenseSet iteration order.
2657 while (!todo.empty()) {
2658 const MachineBasicBlock *MBB = *todo.begin();
2659 todo.erase(MBB);
2660 BBInfo &MInfo = MBBInfoMap[MBB];
2661 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2662 if (Pred == MBB)
2663 continue;
2664 BBInfo &SInfo = MBBInfoMap[Pred];
2665 if (SInfo.addRequired(MInfo.vregsRequired))
2666 todo.insert(Pred);
2667 }
2668 }
2669 }
2670
2671 // Check PHI instructions at the beginning of MBB. It is assumed that
2672 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock & MBB)2673 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2674 BBInfo &MInfo = MBBInfoMap[&MBB];
2675
2676 SmallPtrSet<const MachineBasicBlock*, 8> seen;
2677 for (const MachineInstr &Phi : MBB) {
2678 if (!Phi.isPHI())
2679 break;
2680 seen.clear();
2681
2682 const MachineOperand &MODef = Phi.getOperand(0);
2683 if (!MODef.isReg() || !MODef.isDef()) {
2684 report("Expected first PHI operand to be a register def", &MODef, 0);
2685 continue;
2686 }
2687 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2688 MODef.isEarlyClobber() || MODef.isDebug())
2689 report("Unexpected flag on PHI operand", &MODef, 0);
2690 Register DefReg = MODef.getReg();
2691 if (!Register::isVirtualRegister(DefReg))
2692 report("Expected first PHI operand to be a virtual register", &MODef, 0);
2693
2694 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2695 const MachineOperand &MO0 = Phi.getOperand(I);
2696 if (!MO0.isReg()) {
2697 report("Expected PHI operand to be a register", &MO0, I);
2698 continue;
2699 }
2700 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2701 MO0.isDebug() || MO0.isTied())
2702 report("Unexpected flag on PHI operand", &MO0, I);
2703
2704 const MachineOperand &MO1 = Phi.getOperand(I + 1);
2705 if (!MO1.isMBB()) {
2706 report("Expected PHI operand to be a basic block", &MO1, I + 1);
2707 continue;
2708 }
2709
2710 const MachineBasicBlock &Pre = *MO1.getMBB();
2711 if (!Pre.isSuccessor(&MBB)) {
2712 report("PHI input is not a predecessor block", &MO1, I + 1);
2713 continue;
2714 }
2715
2716 if (MInfo.reachable) {
2717 seen.insert(&Pre);
2718 BBInfo &PrInfo = MBBInfoMap[&Pre];
2719 if (!MO0.isUndef() && PrInfo.reachable &&
2720 !PrInfo.isLiveOut(MO0.getReg()))
2721 report("PHI operand is not live-out from predecessor", &MO0, I);
2722 }
2723 }
2724
2725 // Did we see all predecessors?
2726 if (MInfo.reachable) {
2727 for (MachineBasicBlock *Pred : MBB.predecessors()) {
2728 if (!seen.count(Pred)) {
2729 report("Missing PHI operand", &Phi);
2730 errs() << printMBBReference(*Pred)
2731 << " is a predecessor according to the CFG.\n";
2732 }
2733 }
2734 }
2735 }
2736 }
2737
visitMachineFunctionAfter()2738 void MachineVerifier::visitMachineFunctionAfter() {
2739 calcRegsPassed();
2740
2741 for (const MachineBasicBlock &MBB : *MF)
2742 checkPHIOps(MBB);
2743
2744 // Now check liveness info if available
2745 calcRegsRequired();
2746
2747 // Check for killed virtual registers that should be live out.
2748 for (const auto &MBB : *MF) {
2749 BBInfo &MInfo = MBBInfoMap[&MBB];
2750 for (Register VReg : MInfo.vregsRequired)
2751 if (MInfo.regsKilled.count(VReg)) {
2752 report("Virtual register killed in block, but needed live out.", &MBB);
2753 errs() << "Virtual register " << printReg(VReg)
2754 << " is used after the block.\n";
2755 }
2756 }
2757
2758 if (!MF->empty()) {
2759 BBInfo &MInfo = MBBInfoMap[&MF->front()];
2760 for (Register VReg : MInfo.vregsRequired) {
2761 report("Virtual register defs don't dominate all uses.", MF);
2762 report_context_vreg(VReg);
2763 }
2764 }
2765
2766 if (LiveVars)
2767 verifyLiveVariables();
2768 if (LiveInts)
2769 verifyLiveIntervals();
2770
2771 // Check live-in list of each MBB. If a register is live into MBB, check
2772 // that the register is in regsLiveOut of each predecessor block. Since
2773 // this must come from a definition in the predecesssor or its live-in
2774 // list, this will catch a live-through case where the predecessor does not
2775 // have the register in its live-in list. This currently only checks
2776 // registers that have no aliases, are not allocatable and are not
2777 // reserved, which could mean a condition code register for instance.
2778 if (MRI->tracksLiveness())
2779 for (const auto &MBB : *MF)
2780 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2781 MCPhysReg LiveInReg = P.PhysReg;
2782 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2783 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2784 continue;
2785 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2786 BBInfo &PInfo = MBBInfoMap[Pred];
2787 if (!PInfo.regsLiveOut.count(LiveInReg)) {
2788 report("Live in register not found to be live out from predecessor.",
2789 &MBB);
2790 errs() << TRI->getName(LiveInReg)
2791 << " not found to be live out from "
2792 << printMBBReference(*Pred) << "\n";
2793 }
2794 }
2795 }
2796
2797 for (auto CSInfo : MF->getCallSitesInfo())
2798 if (!CSInfo.first->isCall())
2799 report("Call site info referencing instruction that is not call", MF);
2800
2801 // If there's debug-info, check that we don't have any duplicate value
2802 // tracking numbers.
2803 if (MF->getFunction().getSubprogram()) {
2804 DenseSet<unsigned> SeenNumbers;
2805 for (const auto &MBB : *MF) {
2806 for (const auto &MI : MBB) {
2807 if (auto Num = MI.peekDebugInstrNum()) {
2808 auto Result = SeenNumbers.insert((unsigned)Num);
2809 if (!Result.second)
2810 report("Instruction has a duplicated value tracking number", &MI);
2811 }
2812 }
2813 }
2814 }
2815 }
2816
verifyLiveVariables()2817 void MachineVerifier::verifyLiveVariables() {
2818 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2819 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2820 Register Reg = Register::index2VirtReg(I);
2821 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2822 for (const auto &MBB : *MF) {
2823 BBInfo &MInfo = MBBInfoMap[&MBB];
2824
2825 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2826 if (MInfo.vregsRequired.count(Reg)) {
2827 if (!VI.AliveBlocks.test(MBB.getNumber())) {
2828 report("LiveVariables: Block missing from AliveBlocks", &MBB);
2829 errs() << "Virtual register " << printReg(Reg)
2830 << " must be live through the block.\n";
2831 }
2832 } else {
2833 if (VI.AliveBlocks.test(MBB.getNumber())) {
2834 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2835 errs() << "Virtual register " << printReg(Reg)
2836 << " is not needed live through the block.\n";
2837 }
2838 }
2839 }
2840 }
2841 }
2842
verifyLiveIntervals()2843 void MachineVerifier::verifyLiveIntervals() {
2844 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2845 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2846 Register Reg = Register::index2VirtReg(I);
2847
2848 // Spilling and splitting may leave unused registers around. Skip them.
2849 if (MRI->reg_nodbg_empty(Reg))
2850 continue;
2851
2852 if (!LiveInts->hasInterval(Reg)) {
2853 report("Missing live interval for virtual register", MF);
2854 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2855 continue;
2856 }
2857
2858 const LiveInterval &LI = LiveInts->getInterval(Reg);
2859 assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2860 verifyLiveInterval(LI);
2861 }
2862
2863 // Verify all the cached regunit intervals.
2864 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2865 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2866 verifyLiveRange(*LR, i);
2867 }
2868
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,Register Reg,LaneBitmask LaneMask)2869 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2870 const VNInfo *VNI, Register Reg,
2871 LaneBitmask LaneMask) {
2872 if (VNI->isUnused())
2873 return;
2874
2875 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2876
2877 if (!DefVNI) {
2878 report("Value not live at VNInfo def and not marked unused", MF);
2879 report_context(LR, Reg, LaneMask);
2880 report_context(*VNI);
2881 return;
2882 }
2883
2884 if (DefVNI != VNI) {
2885 report("Live segment at def has different VNInfo", MF);
2886 report_context(LR, Reg, LaneMask);
2887 report_context(*VNI);
2888 return;
2889 }
2890
2891 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2892 if (!MBB) {
2893 report("Invalid VNInfo definition index", MF);
2894 report_context(LR, Reg, LaneMask);
2895 report_context(*VNI);
2896 return;
2897 }
2898
2899 if (VNI->isPHIDef()) {
2900 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2901 report("PHIDef VNInfo is not defined at MBB start", MBB);
2902 report_context(LR, Reg, LaneMask);
2903 report_context(*VNI);
2904 }
2905 return;
2906 }
2907
2908 // Non-PHI def.
2909 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2910 if (!MI) {
2911 report("No instruction at VNInfo def index", MBB);
2912 report_context(LR, Reg, LaneMask);
2913 report_context(*VNI);
2914 return;
2915 }
2916
2917 if (Reg != 0) {
2918 bool hasDef = false;
2919 bool isEarlyClobber = false;
2920 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2921 if (!MOI->isReg() || !MOI->isDef())
2922 continue;
2923 if (Register::isVirtualRegister(Reg)) {
2924 if (MOI->getReg() != Reg)
2925 continue;
2926 } else {
2927 if (!Register::isPhysicalRegister(MOI->getReg()) ||
2928 !TRI->hasRegUnit(MOI->getReg(), Reg))
2929 continue;
2930 }
2931 if (LaneMask.any() &&
2932 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2933 continue;
2934 hasDef = true;
2935 if (MOI->isEarlyClobber())
2936 isEarlyClobber = true;
2937 }
2938
2939 if (!hasDef) {
2940 report("Defining instruction does not modify register", MI);
2941 report_context(LR, Reg, LaneMask);
2942 report_context(*VNI);
2943 }
2944
2945 // Early clobber defs begin at USE slots, but other defs must begin at
2946 // DEF slots.
2947 if (isEarlyClobber) {
2948 if (!VNI->def.isEarlyClobber()) {
2949 report("Early clobber def must be at an early-clobber slot", MBB);
2950 report_context(LR, Reg, LaneMask);
2951 report_context(*VNI);
2952 }
2953 } else if (!VNI->def.isRegister()) {
2954 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2955 report_context(LR, Reg, LaneMask);
2956 report_context(*VNI);
2957 }
2958 }
2959 }
2960
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,Register Reg,LaneBitmask LaneMask)2961 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2962 const LiveRange::const_iterator I,
2963 Register Reg,
2964 LaneBitmask LaneMask) {
2965 const LiveRange::Segment &S = *I;
2966 const VNInfo *VNI = S.valno;
2967 assert(VNI && "Live segment has no valno");
2968
2969 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2970 report("Foreign valno in live segment", MF);
2971 report_context(LR, Reg, LaneMask);
2972 report_context(S);
2973 report_context(*VNI);
2974 }
2975
2976 if (VNI->isUnused()) {
2977 report("Live segment valno is marked unused", MF);
2978 report_context(LR, Reg, LaneMask);
2979 report_context(S);
2980 }
2981
2982 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2983 if (!MBB) {
2984 report("Bad start of live segment, no basic block", MF);
2985 report_context(LR, Reg, LaneMask);
2986 report_context(S);
2987 return;
2988 }
2989 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2990 if (S.start != MBBStartIdx && S.start != VNI->def) {
2991 report("Live segment must begin at MBB entry or valno def", MBB);
2992 report_context(LR, Reg, LaneMask);
2993 report_context(S);
2994 }
2995
2996 const MachineBasicBlock *EndMBB =
2997 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2998 if (!EndMBB) {
2999 report("Bad end of live segment, no basic block", MF);
3000 report_context(LR, Reg, LaneMask);
3001 report_context(S);
3002 return;
3003 }
3004
3005 // No more checks for live-out segments.
3006 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
3007 return;
3008
3009 // RegUnit intervals are allowed dead phis.
3010 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
3011 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
3012 return;
3013
3014 // The live segment is ending inside EndMBB
3015 const MachineInstr *MI =
3016 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
3017 if (!MI) {
3018 report("Live segment doesn't end at a valid instruction", EndMBB);
3019 report_context(LR, Reg, LaneMask);
3020 report_context(S);
3021 return;
3022 }
3023
3024 // The block slot must refer to a basic block boundary.
3025 if (S.end.isBlock()) {
3026 report("Live segment ends at B slot of an instruction", EndMBB);
3027 report_context(LR, Reg, LaneMask);
3028 report_context(S);
3029 }
3030
3031 if (S.end.isDead()) {
3032 // Segment ends on the dead slot.
3033 // That means there must be a dead def.
3034 if (!SlotIndex::isSameInstr(S.start, S.end)) {
3035 report("Live segment ending at dead slot spans instructions", EndMBB);
3036 report_context(LR, Reg, LaneMask);
3037 report_context(S);
3038 }
3039 }
3040
3041 // After tied operands are rewritten, a live segment can only end at an
3042 // early-clobber slot if it is being redefined by an early-clobber def.
3043 // TODO: Before tied operands are rewritten, a live segment can only end at an
3044 // early-clobber slot if the last use is tied to an early-clobber def.
3045 if (MF->getProperties().hasProperty(
3046 MachineFunctionProperties::Property::TiedOpsRewritten) &&
3047 S.end.isEarlyClobber()) {
3048 if (I+1 == LR.end() || (I+1)->start != S.end) {
3049 report("Live segment ending at early clobber slot must be "
3050 "redefined by an EC def in the same instruction", EndMBB);
3051 report_context(LR, Reg, LaneMask);
3052 report_context(S);
3053 }
3054 }
3055
3056 // The following checks only apply to virtual registers. Physreg liveness
3057 // is too weird to check.
3058 if (Register::isVirtualRegister(Reg)) {
3059 // A live segment can end with either a redefinition, a kill flag on a
3060 // use, or a dead flag on a def.
3061 bool hasRead = false;
3062 bool hasSubRegDef = false;
3063 bool hasDeadDef = false;
3064 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3065 if (!MOI->isReg() || MOI->getReg() != Reg)
3066 continue;
3067 unsigned Sub = MOI->getSubReg();
3068 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
3069 : LaneBitmask::getAll();
3070 if (MOI->isDef()) {
3071 if (Sub != 0) {
3072 hasSubRegDef = true;
3073 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3074 // mask for subregister defs. Read-undef defs will be handled by
3075 // readsReg below.
3076 SLM = ~SLM;
3077 }
3078 if (MOI->isDead())
3079 hasDeadDef = true;
3080 }
3081 if (LaneMask.any() && (LaneMask & SLM).none())
3082 continue;
3083 if (MOI->readsReg())
3084 hasRead = true;
3085 }
3086 if (S.end.isDead()) {
3087 // Make sure that the corresponding machine operand for a "dead" live
3088 // range has the dead flag. We cannot perform this check for subregister
3089 // liveranges as partially dead values are allowed.
3090 if (LaneMask.none() && !hasDeadDef) {
3091 report("Instruction ending live segment on dead slot has no dead flag",
3092 MI);
3093 report_context(LR, Reg, LaneMask);
3094 report_context(S);
3095 }
3096 } else {
3097 if (!hasRead) {
3098 // When tracking subregister liveness, the main range must start new
3099 // values on partial register writes, even if there is no read.
3100 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3101 !hasSubRegDef) {
3102 report("Instruction ending live segment doesn't read the register",
3103 MI);
3104 report_context(LR, Reg, LaneMask);
3105 report_context(S);
3106 }
3107 }
3108 }
3109 }
3110
3111 // Now check all the basic blocks in this live segment.
3112 MachineFunction::const_iterator MFI = MBB->getIterator();
3113 // Is this live segment the beginning of a non-PHIDef VN?
3114 if (S.start == VNI->def && !VNI->isPHIDef()) {
3115 // Not live-in to any blocks.
3116 if (MBB == EndMBB)
3117 return;
3118 // Skip this block.
3119 ++MFI;
3120 }
3121
3122 SmallVector<SlotIndex, 4> Undefs;
3123 if (LaneMask.any()) {
3124 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3125 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3126 }
3127
3128 while (true) {
3129 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3130 // We don't know how to track physregs into a landing pad.
3131 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3132 if (&*MFI == EndMBB)
3133 break;
3134 ++MFI;
3135 continue;
3136 }
3137
3138 // Is VNI a PHI-def in the current block?
3139 bool IsPHI = VNI->isPHIDef() &&
3140 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3141
3142 // Check that VNI is live-out of all predecessors.
3143 for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3144 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3145 // Predecessor of landing pad live-out on last call.
3146 if (MFI->isEHPad()) {
3147 for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3148 if (MI.isCall()) {
3149 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3150 break;
3151 }
3152 }
3153 }
3154 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3155
3156 // All predecessors must have a live-out value. However for a phi
3157 // instruction with subregister intervals
3158 // only one of the subregisters (not necessarily the current one) needs to
3159 // be defined.
3160 if (!PVNI && (LaneMask.none() || !IsPHI)) {
3161 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3162 continue;
3163 report("Register not marked live out of predecessor", Pred);
3164 report_context(LR, Reg, LaneMask);
3165 report_context(*VNI);
3166 errs() << " live into " << printMBBReference(*MFI) << '@'
3167 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3168 << PEnd << '\n';
3169 continue;
3170 }
3171
3172 // Only PHI-defs can take different predecessor values.
3173 if (!IsPHI && PVNI != VNI) {
3174 report("Different value live out of predecessor", Pred);
3175 report_context(LR, Reg, LaneMask);
3176 errs() << "Valno #" << PVNI->id << " live out of "
3177 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3178 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3179 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3180 }
3181 }
3182 if (&*MFI == EndMBB)
3183 break;
3184 ++MFI;
3185 }
3186 }
3187
verifyLiveRange(const LiveRange & LR,Register Reg,LaneBitmask LaneMask)3188 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3189 LaneBitmask LaneMask) {
3190 for (const VNInfo *VNI : LR.valnos)
3191 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3192
3193 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3194 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3195 }
3196
verifyLiveInterval(const LiveInterval & LI)3197 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3198 Register Reg = LI.reg();
3199 assert(Register::isVirtualRegister(Reg));
3200 verifyLiveRange(LI, Reg);
3201
3202 LaneBitmask Mask;
3203 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3204 for (const LiveInterval::SubRange &SR : LI.subranges()) {
3205 if ((Mask & SR.LaneMask).any()) {
3206 report("Lane masks of sub ranges overlap in live interval", MF);
3207 report_context(LI);
3208 }
3209 if ((SR.LaneMask & ~MaxMask).any()) {
3210 report("Subrange lanemask is invalid", MF);
3211 report_context(LI);
3212 }
3213 if (SR.empty()) {
3214 report("Subrange must not be empty", MF);
3215 report_context(SR, LI.reg(), SR.LaneMask);
3216 }
3217 Mask |= SR.LaneMask;
3218 verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3219 if (!LI.covers(SR)) {
3220 report("A Subrange is not covered by the main range", MF);
3221 report_context(LI);
3222 }
3223 }
3224
3225 // Check the LI only has one connected component.
3226 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3227 unsigned NumComp = ConEQ.Classify(LI);
3228 if (NumComp > 1) {
3229 report("Multiple connected components in live interval", MF);
3230 report_context(LI);
3231 for (unsigned comp = 0; comp != NumComp; ++comp) {
3232 errs() << comp << ": valnos";
3233 for (const VNInfo *I : LI.valnos)
3234 if (comp == ConEQ.getEqClass(I))
3235 errs() << ' ' << I->id;
3236 errs() << '\n';
3237 }
3238 }
3239 }
3240
3241 namespace {
3242
3243 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3244 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3245 // value is zero.
3246 // We use a bool plus an integer to capture the stack state.
3247 struct StackStateOfBB {
3248 StackStateOfBB() = default;
StackStateOfBB__anon56f5f5350611::StackStateOfBB3249 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3250 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3251 ExitIsSetup(ExitSetup) {}
3252
3253 // Can be negative, which means we are setting up a frame.
3254 int EntryValue = 0;
3255 int ExitValue = 0;
3256 bool EntryIsSetup = false;
3257 bool ExitIsSetup = false;
3258 };
3259
3260 } // end anonymous namespace
3261
3262 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3263 /// by a FrameDestroy <n>, stack adjustments are identical on all
3264 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()3265 void MachineVerifier::verifyStackFrame() {
3266 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
3267 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3268 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3269 return;
3270
3271 SmallVector<StackStateOfBB, 8> SPState;
3272 SPState.resize(MF->getNumBlockIDs());
3273 df_iterator_default_set<const MachineBasicBlock*> Reachable;
3274
3275 // Visit the MBBs in DFS order.
3276 for (df_ext_iterator<const MachineFunction *,
3277 df_iterator_default_set<const MachineBasicBlock *>>
3278 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3279 DFI != DFE; ++DFI) {
3280 const MachineBasicBlock *MBB = *DFI;
3281
3282 StackStateOfBB BBState;
3283 // Check the exit state of the DFS stack predecessor.
3284 if (DFI.getPathLength() >= 2) {
3285 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3286 assert(Reachable.count(StackPred) &&
3287 "DFS stack predecessor is already visited.\n");
3288 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3289 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3290 BBState.ExitValue = BBState.EntryValue;
3291 BBState.ExitIsSetup = BBState.EntryIsSetup;
3292 }
3293
3294 // Update stack state by checking contents of MBB.
3295 for (const auto &I : *MBB) {
3296 if (I.getOpcode() == FrameSetupOpcode) {
3297 if (BBState.ExitIsSetup)
3298 report("FrameSetup is after another FrameSetup", &I);
3299 BBState.ExitValue -= TII->getFrameTotalSize(I);
3300 BBState.ExitIsSetup = true;
3301 }
3302
3303 if (I.getOpcode() == FrameDestroyOpcode) {
3304 int Size = TII->getFrameTotalSize(I);
3305 if (!BBState.ExitIsSetup)
3306 report("FrameDestroy is not after a FrameSetup", &I);
3307 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3308 BBState.ExitValue;
3309 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3310 report("FrameDestroy <n> is after FrameSetup <m>", &I);
3311 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3312 << AbsSPAdj << ">.\n";
3313 }
3314 BBState.ExitValue += Size;
3315 BBState.ExitIsSetup = false;
3316 }
3317 }
3318 SPState[MBB->getNumber()] = BBState;
3319
3320 // Make sure the exit state of any predecessor is consistent with the entry
3321 // state.
3322 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3323 if (Reachable.count(Pred) &&
3324 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3325 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3326 report("The exit stack state of a predecessor is inconsistent.", MBB);
3327 errs() << "Predecessor " << printMBBReference(*Pred)
3328 << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3329 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3330 << printMBBReference(*MBB) << " has entry state ("
3331 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3332 }
3333 }
3334
3335 // Make sure the entry state of any successor is consistent with the exit
3336 // state.
3337 for (const MachineBasicBlock *Succ : MBB->successors()) {
3338 if (Reachable.count(Succ) &&
3339 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3340 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3341 report("The entry stack state of a successor is inconsistent.", MBB);
3342 errs() << "Successor " << printMBBReference(*Succ)
3343 << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3344 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3345 << printMBBReference(*MBB) << " has exit state ("
3346 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3347 }
3348 }
3349
3350 // Make sure a basic block with return ends with zero stack adjustment.
3351 if (!MBB->empty() && MBB->back().isReturn()) {
3352 if (BBState.ExitIsSetup)
3353 report("A return block ends with a FrameSetup.", MBB);
3354 if (BBState.ExitValue)
3355 report("A return block ends with a nonzero stack adjustment.", MBB);
3356 }
3357 }
3358 }
3359