1 //===- MachineLoopInfo.cpp - Natural Loop Calculator ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MachineLoopInfo class that is used to identify natural
10 // loops and determine the loop depth of various nodes of the CFG. Note that
11 // the loops identified may actually be several natural loops that share the
12 // same header node... not just a single natural loop.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/MachineLoopInfo.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/TargetInstrInfo.h"
20 #include "llvm/CodeGen/TargetSubtargetInfo.h"
21 #include "llvm/Config/llvm-config.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Pass.h"
24 #include "llvm/PassRegistry.h"
25 #include "llvm/Support/GenericLoopInfoImpl.h"
26
27 using namespace llvm;
28
29 // Explicitly instantiate methods in LoopInfoImpl.h for MI-level Loops.
30 template class llvm::LoopBase<MachineBasicBlock, MachineLoop>;
31 template class llvm::LoopInfoBase<MachineBasicBlock, MachineLoop>;
32
33 char MachineLoopInfo::ID = 0;
MachineLoopInfo()34 MachineLoopInfo::MachineLoopInfo() : MachineFunctionPass(ID) {
35 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
36 }
37 INITIALIZE_PASS_BEGIN(MachineLoopInfo, "machine-loops",
38 "Machine Natural Loop Construction", true, true)
39 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
40 INITIALIZE_PASS_END(MachineLoopInfo, "machine-loops",
41 "Machine Natural Loop Construction", true, true)
42
43 char &llvm::MachineLoopInfoID = MachineLoopInfo::ID;
44
runOnMachineFunction(MachineFunction &)45 bool MachineLoopInfo::runOnMachineFunction(MachineFunction &) {
46 calculate(getAnalysis<MachineDominatorTree>());
47 return false;
48 }
49
calculate(MachineDominatorTree & MDT)50 void MachineLoopInfo::calculate(MachineDominatorTree &MDT) {
51 releaseMemory();
52 LI.analyze(MDT.getBase());
53 }
54
getAnalysisUsage(AnalysisUsage & AU) const55 void MachineLoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
56 AU.setPreservesAll();
57 AU.addRequired<MachineDominatorTree>();
58 MachineFunctionPass::getAnalysisUsage(AU);
59 }
60
getTopBlock()61 MachineBasicBlock *MachineLoop::getTopBlock() {
62 MachineBasicBlock *TopMBB = getHeader();
63 MachineFunction::iterator Begin = TopMBB->getParent()->begin();
64 if (TopMBB->getIterator() != Begin) {
65 MachineBasicBlock *PriorMBB = &*std::prev(TopMBB->getIterator());
66 while (contains(PriorMBB)) {
67 TopMBB = PriorMBB;
68 if (TopMBB->getIterator() == Begin)
69 break;
70 PriorMBB = &*std::prev(TopMBB->getIterator());
71 }
72 }
73 return TopMBB;
74 }
75
getBottomBlock()76 MachineBasicBlock *MachineLoop::getBottomBlock() {
77 MachineBasicBlock *BotMBB = getHeader();
78 MachineFunction::iterator End = BotMBB->getParent()->end();
79 if (BotMBB->getIterator() != std::prev(End)) {
80 MachineBasicBlock *NextMBB = &*std::next(BotMBB->getIterator());
81 while (contains(NextMBB)) {
82 BotMBB = NextMBB;
83 if (BotMBB == &*std::next(BotMBB->getIterator()))
84 break;
85 NextMBB = &*std::next(BotMBB->getIterator());
86 }
87 }
88 return BotMBB;
89 }
90
findLoopControlBlock() const91 MachineBasicBlock *MachineLoop::findLoopControlBlock() const {
92 if (MachineBasicBlock *Latch = getLoopLatch()) {
93 if (isLoopExiting(Latch))
94 return Latch;
95 else
96 return getExitingBlock();
97 }
98 return nullptr;
99 }
100
getStartLoc() const101 DebugLoc MachineLoop::getStartLoc() const {
102 // Try the pre-header first.
103 if (MachineBasicBlock *PHeadMBB = getLoopPreheader())
104 if (const BasicBlock *PHeadBB = PHeadMBB->getBasicBlock())
105 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc())
106 return DL;
107
108 // If we have no pre-header or there are no instructions with debug
109 // info in it, try the header.
110 if (MachineBasicBlock *HeadMBB = getHeader())
111 if (const BasicBlock *HeadBB = HeadMBB->getBasicBlock())
112 return HeadBB->getTerminator()->getDebugLoc();
113
114 return DebugLoc();
115 }
116
117 MachineBasicBlock *
findLoopPreheader(MachineLoop * L,bool SpeculativePreheader,bool FindMultiLoopPreheader) const118 MachineLoopInfo::findLoopPreheader(MachineLoop *L, bool SpeculativePreheader,
119 bool FindMultiLoopPreheader) const {
120 if (MachineBasicBlock *PB = L->getLoopPreheader())
121 return PB;
122
123 if (!SpeculativePreheader)
124 return nullptr;
125
126 MachineBasicBlock *HB = L->getHeader(), *LB = L->getLoopLatch();
127 if (HB->pred_size() != 2 || HB->hasAddressTaken())
128 return nullptr;
129 // Find the predecessor of the header that is not the latch block.
130 MachineBasicBlock *Preheader = nullptr;
131 for (MachineBasicBlock *P : HB->predecessors()) {
132 if (P == LB)
133 continue;
134 // Sanity.
135 if (Preheader)
136 return nullptr;
137 Preheader = P;
138 }
139
140 // Check if the preheader candidate is a successor of any other loop
141 // headers. We want to avoid having two loop setups in the same block.
142 if (!FindMultiLoopPreheader) {
143 for (MachineBasicBlock *S : Preheader->successors()) {
144 if (S == HB)
145 continue;
146 MachineLoop *T = getLoopFor(S);
147 if (T && T->getHeader() == S)
148 return nullptr;
149 }
150 }
151 return Preheader;
152 }
153
getLoopID() const154 MDNode *MachineLoop::getLoopID() const {
155 MDNode *LoopID = nullptr;
156 if (const auto *MBB = findLoopControlBlock()) {
157 // If there is a single latch block, then the metadata
158 // node is attached to its terminating instruction.
159 const auto *BB = MBB->getBasicBlock();
160 if (!BB)
161 return nullptr;
162 if (const auto *TI = BB->getTerminator())
163 LoopID = TI->getMetadata(LLVMContext::MD_loop);
164 } else if (const auto *MBB = getHeader()) {
165 // There seem to be multiple latch blocks, so we have to
166 // visit all predecessors of the loop header and check
167 // their terminating instructions for the metadata.
168 if (const auto *Header = MBB->getBasicBlock()) {
169 // Walk over all blocks in the loop.
170 for (const auto *MBB : this->blocks()) {
171 const auto *BB = MBB->getBasicBlock();
172 if (!BB)
173 return nullptr;
174 const auto *TI = BB->getTerminator();
175 if (!TI)
176 return nullptr;
177 MDNode *MD = nullptr;
178 // Check if this terminating instruction jumps to the loop header.
179 for (const auto *Succ : successors(TI)) {
180 if (Succ == Header) {
181 // This is a jump to the header - gather the metadata from it.
182 MD = TI->getMetadata(LLVMContext::MD_loop);
183 break;
184 }
185 }
186 if (!MD)
187 return nullptr;
188 if (!LoopID)
189 LoopID = MD;
190 else if (MD != LoopID)
191 return nullptr;
192 }
193 }
194 }
195 if (LoopID &&
196 (LoopID->getNumOperands() == 0 || LoopID->getOperand(0) != LoopID))
197 LoopID = nullptr;
198 return LoopID;
199 }
200
isLoopInvariant(MachineInstr & I) const201 bool MachineLoop::isLoopInvariant(MachineInstr &I) const {
202 MachineFunction *MF = I.getParent()->getParent();
203 MachineRegisterInfo *MRI = &MF->getRegInfo();
204 const TargetSubtargetInfo &ST = MF->getSubtarget();
205 const TargetRegisterInfo *TRI = ST.getRegisterInfo();
206 const TargetInstrInfo *TII = ST.getInstrInfo();
207
208 // The instruction is loop invariant if all of its operands are.
209 for (const MachineOperand &MO : I.operands()) {
210 if (!MO.isReg())
211 continue;
212
213 Register Reg = MO.getReg();
214 if (Reg == 0) continue;
215
216 // An instruction that uses or defines a physical register can't e.g. be
217 // hoisted, so mark this as not invariant.
218 if (Reg.isPhysical()) {
219 if (MO.isUse()) {
220 // If the physreg has no defs anywhere, it's just an ambient register
221 // and we can freely move its uses. Alternatively, if it's allocatable,
222 // it could get allocated to something with a def during allocation.
223 // However, if the physreg is known to always be caller saved/restored
224 // then this use is safe to hoist.
225 if (!MRI->isConstantPhysReg(Reg) &&
226 !(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF())) &&
227 !TII->isIgnorableUse(MO))
228 return false;
229 // Otherwise it's safe to move.
230 continue;
231 } else if (!MO.isDead()) {
232 // A def that isn't dead can't be moved.
233 return false;
234 } else if (getHeader()->isLiveIn(Reg)) {
235 // If the reg is live into the loop, we can't hoist an instruction
236 // which would clobber it.
237 return false;
238 }
239 }
240
241 if (!MO.isUse())
242 continue;
243
244 assert(MRI->getVRegDef(Reg) &&
245 "Machine instr not mapped for this vreg?!");
246
247 // If the loop contains the definition of an operand, then the instruction
248 // isn't loop invariant.
249 if (contains(MRI->getVRegDef(Reg)))
250 return false;
251 }
252
253 // If we got this far, the instruction is loop invariant!
254 return true;
255 }
256
257 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const258 LLVM_DUMP_METHOD void MachineLoop::dump() const {
259 print(dbgs());
260 }
261 #endif
262