1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 // ...
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 // of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
51 // use kind.
52 //
53 //===----------------------------------------------------------------------===//
54
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/BinaryFormat/Dwarf.h"
82 #include "llvm/Config/llvm-config.h"
83 #include "llvm/IR/BasicBlock.h"
84 #include "llvm/IR/Constant.h"
85 #include "llvm/IR/Constants.h"
86 #include "llvm/IR/DebugInfoMetadata.h"
87 #include "llvm/IR/DerivedTypes.h"
88 #include "llvm/IR/Dominators.h"
89 #include "llvm/IR/GlobalValue.h"
90 #include "llvm/IR/IRBuilder.h"
91 #include "llvm/IR/InstrTypes.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/Operator.h"
97 #include "llvm/IR/PassManager.h"
98 #include "llvm/IR/Type.h"
99 #include "llvm/IR/Use.h"
100 #include "llvm/IR/User.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Transforms/Scalar.h"
113 #include "llvm/Transforms/Utils.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include "llvm/Transforms/Utils/LoopUtils.h"
117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstddef>
121 #include <cstdint>
122 #include <iterator>
123 #include <limits>
124 #include <map>
125 #include <numeric>
126 #include <utility>
127
128 using namespace llvm;
129
130 #define DEBUG_TYPE "loop-reduce"
131
132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
133 /// bail out. This threshold is far beyond the number of users that LSR can
134 /// conceivably solve, so it should not affect generated code, but catches the
135 /// worst cases before LSR burns too much compile time and stack space.
136 static const unsigned MaxIVUsers = 200;
137
138 /// Limit the size of expression that SCEV-based salvaging will attempt to
139 /// translate into a DIExpression.
140 /// Choose a maximum size such that debuginfo is not excessively increased and
141 /// the salvaging is not too expensive for the compiler.
142 static const unsigned MaxSCEVSalvageExpressionSize = 64;
143
144 // Cleanup congruent phis after LSR phi expansion.
145 static cl::opt<bool> EnablePhiElim(
146 "enable-lsr-phielim", cl::Hidden, cl::init(true),
147 cl::desc("Enable LSR phi elimination"));
148
149 // The flag adds instruction count to solutions cost comparision.
150 static cl::opt<bool> InsnsCost(
151 "lsr-insns-cost", cl::Hidden, cl::init(true),
152 cl::desc("Add instruction count to a LSR cost model"));
153
154 // Flag to choose how to narrow complex lsr solution
155 static cl::opt<bool> LSRExpNarrow(
156 "lsr-exp-narrow", cl::Hidden, cl::init(false),
157 cl::desc("Narrow LSR complex solution using"
158 " expectation of registers number"));
159
160 // Flag to narrow search space by filtering non-optimal formulae with
161 // the same ScaledReg and Scale.
162 static cl::opt<bool> FilterSameScaledReg(
163 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
164 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
165 " with the same ScaledReg and Scale"));
166
167 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
168 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
169 cl::desc("A flag that overrides the target's preferred addressing mode."),
170 cl::values(clEnumValN(TTI::AMK_None,
171 "none",
172 "Don't prefer any addressing mode"),
173 clEnumValN(TTI::AMK_PreIndexed,
174 "preindexed",
175 "Prefer pre-indexed addressing mode"),
176 clEnumValN(TTI::AMK_PostIndexed,
177 "postindexed",
178 "Prefer post-indexed addressing mode")));
179
180 static cl::opt<unsigned> ComplexityLimit(
181 "lsr-complexity-limit", cl::Hidden,
182 cl::init(std::numeric_limits<uint16_t>::max()),
183 cl::desc("LSR search space complexity limit"));
184
185 static cl::opt<unsigned> SetupCostDepthLimit(
186 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
187 cl::desc("The limit on recursion depth for LSRs setup cost"));
188
189 #ifndef NDEBUG
190 // Stress test IV chain generation.
191 static cl::opt<bool> StressIVChain(
192 "stress-ivchain", cl::Hidden, cl::init(false),
193 cl::desc("Stress test LSR IV chains"));
194 #else
195 static bool StressIVChain = false;
196 #endif
197
198 namespace {
199
200 struct MemAccessTy {
201 /// Used in situations where the accessed memory type is unknown.
202 static const unsigned UnknownAddressSpace =
203 std::numeric_limits<unsigned>::max();
204
205 Type *MemTy = nullptr;
206 unsigned AddrSpace = UnknownAddressSpace;
207
208 MemAccessTy() = default;
MemAccessTy__anon3f0d62640111::MemAccessTy209 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
210
operator ==__anon3f0d62640111::MemAccessTy211 bool operator==(MemAccessTy Other) const {
212 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
213 }
214
operator !=__anon3f0d62640111::MemAccessTy215 bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
216
getUnknown__anon3f0d62640111::MemAccessTy217 static MemAccessTy getUnknown(LLVMContext &Ctx,
218 unsigned AS = UnknownAddressSpace) {
219 return MemAccessTy(Type::getVoidTy(Ctx), AS);
220 }
221
getType__anon3f0d62640111::MemAccessTy222 Type *getType() { return MemTy; }
223 };
224
225 /// This class holds data which is used to order reuse candidates.
226 class RegSortData {
227 public:
228 /// This represents the set of LSRUse indices which reference
229 /// a particular register.
230 SmallBitVector UsedByIndices;
231
232 void print(raw_ostream &OS) const;
233 void dump() const;
234 };
235
236 } // end anonymous namespace
237
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const239 void RegSortData::print(raw_ostream &OS) const {
240 OS << "[NumUses=" << UsedByIndices.count() << ']';
241 }
242
dump() const243 LLVM_DUMP_METHOD void RegSortData::dump() const {
244 print(errs()); errs() << '\n';
245 }
246 #endif
247
248 namespace {
249
250 /// Map register candidates to information about how they are used.
251 class RegUseTracker {
252 using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
253
254 RegUsesTy RegUsesMap;
255 SmallVector<const SCEV *, 16> RegSequence;
256
257 public:
258 void countRegister(const SCEV *Reg, size_t LUIdx);
259 void dropRegister(const SCEV *Reg, size_t LUIdx);
260 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
261
262 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
263
264 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
265
266 void clear();
267
268 using iterator = SmallVectorImpl<const SCEV *>::iterator;
269 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
270
begin()271 iterator begin() { return RegSequence.begin(); }
end()272 iterator end() { return RegSequence.end(); }
begin() const273 const_iterator begin() const { return RegSequence.begin(); }
end() const274 const_iterator end() const { return RegSequence.end(); }
275 };
276
277 } // end anonymous namespace
278
279 void
countRegister(const SCEV * Reg,size_t LUIdx)280 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
281 std::pair<RegUsesTy::iterator, bool> Pair =
282 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
283 RegSortData &RSD = Pair.first->second;
284 if (Pair.second)
285 RegSequence.push_back(Reg);
286 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
287 RSD.UsedByIndices.set(LUIdx);
288 }
289
290 void
dropRegister(const SCEV * Reg,size_t LUIdx)291 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
292 RegUsesTy::iterator It = RegUsesMap.find(Reg);
293 assert(It != RegUsesMap.end());
294 RegSortData &RSD = It->second;
295 assert(RSD.UsedByIndices.size() > LUIdx);
296 RSD.UsedByIndices.reset(LUIdx);
297 }
298
299 void
swapAndDropUse(size_t LUIdx,size_t LastLUIdx)300 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
301 assert(LUIdx <= LastLUIdx);
302
303 // Update RegUses. The data structure is not optimized for this purpose;
304 // we must iterate through it and update each of the bit vectors.
305 for (auto &Pair : RegUsesMap) {
306 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
307 if (LUIdx < UsedByIndices.size())
308 UsedByIndices[LUIdx] =
309 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
310 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
311 }
312 }
313
314 bool
isRegUsedByUsesOtherThan(const SCEV * Reg,size_t LUIdx) const315 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
316 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
317 if (I == RegUsesMap.end())
318 return false;
319 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
320 int i = UsedByIndices.find_first();
321 if (i == -1) return false;
322 if ((size_t)i != LUIdx) return true;
323 return UsedByIndices.find_next(i) != -1;
324 }
325
getUsedByIndices(const SCEV * Reg) const326 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
327 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
328 assert(I != RegUsesMap.end() && "Unknown register!");
329 return I->second.UsedByIndices;
330 }
331
clear()332 void RegUseTracker::clear() {
333 RegUsesMap.clear();
334 RegSequence.clear();
335 }
336
337 namespace {
338
339 /// This class holds information that describes a formula for computing
340 /// satisfying a use. It may include broken-out immediates and scaled registers.
341 struct Formula {
342 /// Global base address used for complex addressing.
343 GlobalValue *BaseGV = nullptr;
344
345 /// Base offset for complex addressing.
346 int64_t BaseOffset = 0;
347
348 /// Whether any complex addressing has a base register.
349 bool HasBaseReg = false;
350
351 /// The scale of any complex addressing.
352 int64_t Scale = 0;
353
354 /// The list of "base" registers for this use. When this is non-empty. The
355 /// canonical representation of a formula is
356 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
357 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
358 /// 3. The reg containing recurrent expr related with currect loop in the
359 /// formula should be put in the ScaledReg.
360 /// #1 enforces that the scaled register is always used when at least two
361 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
362 /// #2 enforces that 1 * reg is reg.
363 /// #3 ensures invariant regs with respect to current loop can be combined
364 /// together in LSR codegen.
365 /// This invariant can be temporarily broken while building a formula.
366 /// However, every formula inserted into the LSRInstance must be in canonical
367 /// form.
368 SmallVector<const SCEV *, 4> BaseRegs;
369
370 /// The 'scaled' register for this use. This should be non-null when Scale is
371 /// not zero.
372 const SCEV *ScaledReg = nullptr;
373
374 /// An additional constant offset which added near the use. This requires a
375 /// temporary register, but the offset itself can live in an add immediate
376 /// field rather than a register.
377 int64_t UnfoldedOffset = 0;
378
379 Formula() = default;
380
381 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
382
383 bool isCanonical(const Loop &L) const;
384
385 void canonicalize(const Loop &L);
386
387 bool unscale();
388
389 bool hasZeroEnd() const;
390
391 size_t getNumRegs() const;
392 Type *getType() const;
393
394 void deleteBaseReg(const SCEV *&S);
395
396 bool referencesReg(const SCEV *S) const;
397 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
398 const RegUseTracker &RegUses) const;
399
400 void print(raw_ostream &OS) const;
401 void dump() const;
402 };
403
404 } // end anonymous namespace
405
406 /// Recursion helper for initialMatch.
DoInitialMatch(const SCEV * S,Loop * L,SmallVectorImpl<const SCEV * > & Good,SmallVectorImpl<const SCEV * > & Bad,ScalarEvolution & SE)407 static void DoInitialMatch(const SCEV *S, Loop *L,
408 SmallVectorImpl<const SCEV *> &Good,
409 SmallVectorImpl<const SCEV *> &Bad,
410 ScalarEvolution &SE) {
411 // Collect expressions which properly dominate the loop header.
412 if (SE.properlyDominates(S, L->getHeader())) {
413 Good.push_back(S);
414 return;
415 }
416
417 // Look at add operands.
418 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
419 for (const SCEV *S : Add->operands())
420 DoInitialMatch(S, L, Good, Bad, SE);
421 return;
422 }
423
424 // Look at addrec operands.
425 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
426 if (!AR->getStart()->isZero() && AR->isAffine()) {
427 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
428 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
429 AR->getStepRecurrence(SE),
430 // FIXME: AR->getNoWrapFlags()
431 AR->getLoop(), SCEV::FlagAnyWrap),
432 L, Good, Bad, SE);
433 return;
434 }
435
436 // Handle a multiplication by -1 (negation) if it didn't fold.
437 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
438 if (Mul->getOperand(0)->isAllOnesValue()) {
439 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
440 const SCEV *NewMul = SE.getMulExpr(Ops);
441
442 SmallVector<const SCEV *, 4> MyGood;
443 SmallVector<const SCEV *, 4> MyBad;
444 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
445 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
446 SE.getEffectiveSCEVType(NewMul->getType())));
447 for (const SCEV *S : MyGood)
448 Good.push_back(SE.getMulExpr(NegOne, S));
449 for (const SCEV *S : MyBad)
450 Bad.push_back(SE.getMulExpr(NegOne, S));
451 return;
452 }
453
454 // Ok, we can't do anything interesting. Just stuff the whole thing into a
455 // register and hope for the best.
456 Bad.push_back(S);
457 }
458
459 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
460 /// all loop-invariant and loop-computable values in a single base register.
initialMatch(const SCEV * S,Loop * L,ScalarEvolution & SE)461 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
462 SmallVector<const SCEV *, 4> Good;
463 SmallVector<const SCEV *, 4> Bad;
464 DoInitialMatch(S, L, Good, Bad, SE);
465 if (!Good.empty()) {
466 const SCEV *Sum = SE.getAddExpr(Good);
467 if (!Sum->isZero())
468 BaseRegs.push_back(Sum);
469 HasBaseReg = true;
470 }
471 if (!Bad.empty()) {
472 const SCEV *Sum = SE.getAddExpr(Bad);
473 if (!Sum->isZero())
474 BaseRegs.push_back(Sum);
475 HasBaseReg = true;
476 }
477 canonicalize(*L);
478 }
479
containsAddRecDependentOnLoop(const SCEV * S,const Loop & L)480 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
481 return SCEVExprContains(S, [&L](const SCEV *S) {
482 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
483 });
484 }
485
486 /// Check whether or not this formula satisfies the canonical
487 /// representation.
488 /// \see Formula::BaseRegs.
isCanonical(const Loop & L) const489 bool Formula::isCanonical(const Loop &L) const {
490 if (!ScaledReg)
491 return BaseRegs.size() <= 1;
492
493 if (Scale != 1)
494 return true;
495
496 if (Scale == 1 && BaseRegs.empty())
497 return false;
498
499 if (containsAddRecDependentOnLoop(ScaledReg, L))
500 return true;
501
502 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
503 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
504 // loop, we want to swap the reg in BaseRegs with ScaledReg.
505 return none_of(BaseRegs, [&L](const SCEV *S) {
506 return containsAddRecDependentOnLoop(S, L);
507 });
508 }
509
510 /// Helper method to morph a formula into its canonical representation.
511 /// \see Formula::BaseRegs.
512 /// Every formula having more than one base register, must use the ScaledReg
513 /// field. Otherwise, we would have to do special cases everywhere in LSR
514 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
515 /// On the other hand, 1*reg should be canonicalized into reg.
canonicalize(const Loop & L)516 void Formula::canonicalize(const Loop &L) {
517 if (isCanonical(L))
518 return;
519
520 if (BaseRegs.empty()) {
521 // No base reg? Use scale reg with scale = 1 as such.
522 assert(ScaledReg && "Expected 1*reg => reg");
523 assert(Scale == 1 && "Expected 1*reg => reg");
524 BaseRegs.push_back(ScaledReg);
525 Scale = 0;
526 ScaledReg = nullptr;
527 return;
528 }
529
530 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
531 if (!ScaledReg) {
532 ScaledReg = BaseRegs.pop_back_val();
533 Scale = 1;
534 }
535
536 // If ScaledReg is an invariant with respect to L, find the reg from
537 // BaseRegs containing the recurrent expr related with Loop L. Swap the
538 // reg with ScaledReg.
539 if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
540 auto I = find_if(BaseRegs, [&L](const SCEV *S) {
541 return containsAddRecDependentOnLoop(S, L);
542 });
543 if (I != BaseRegs.end())
544 std::swap(ScaledReg, *I);
545 }
546 assert(isCanonical(L) && "Failed to canonicalize?");
547 }
548
549 /// Get rid of the scale in the formula.
550 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
551 /// \return true if it was possible to get rid of the scale, false otherwise.
552 /// \note After this operation the formula may not be in the canonical form.
unscale()553 bool Formula::unscale() {
554 if (Scale != 1)
555 return false;
556 Scale = 0;
557 BaseRegs.push_back(ScaledReg);
558 ScaledReg = nullptr;
559 return true;
560 }
561
hasZeroEnd() const562 bool Formula::hasZeroEnd() const {
563 if (UnfoldedOffset || BaseOffset)
564 return false;
565 if (BaseRegs.size() != 1 || ScaledReg)
566 return false;
567 return true;
568 }
569
570 /// Return the total number of register operands used by this formula. This does
571 /// not include register uses implied by non-constant addrec strides.
getNumRegs() const572 size_t Formula::getNumRegs() const {
573 return !!ScaledReg + BaseRegs.size();
574 }
575
576 /// Return the type of this formula, if it has one, or null otherwise. This type
577 /// is meaningless except for the bit size.
getType() const578 Type *Formula::getType() const {
579 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
580 ScaledReg ? ScaledReg->getType() :
581 BaseGV ? BaseGV->getType() :
582 nullptr;
583 }
584
585 /// Delete the given base reg from the BaseRegs list.
deleteBaseReg(const SCEV * & S)586 void Formula::deleteBaseReg(const SCEV *&S) {
587 if (&S != &BaseRegs.back())
588 std::swap(S, BaseRegs.back());
589 BaseRegs.pop_back();
590 }
591
592 /// Test if this formula references the given register.
referencesReg(const SCEV * S) const593 bool Formula::referencesReg(const SCEV *S) const {
594 return S == ScaledReg || is_contained(BaseRegs, S);
595 }
596
597 /// Test whether this formula uses registers which are used by uses other than
598 /// the use with the given index.
hasRegsUsedByUsesOtherThan(size_t LUIdx,const RegUseTracker & RegUses) const599 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
600 const RegUseTracker &RegUses) const {
601 if (ScaledReg)
602 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
603 return true;
604 for (const SCEV *BaseReg : BaseRegs)
605 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
606 return true;
607 return false;
608 }
609
610 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const611 void Formula::print(raw_ostream &OS) const {
612 bool First = true;
613 if (BaseGV) {
614 if (!First) OS << " + "; else First = false;
615 BaseGV->printAsOperand(OS, /*PrintType=*/false);
616 }
617 if (BaseOffset != 0) {
618 if (!First) OS << " + "; else First = false;
619 OS << BaseOffset;
620 }
621 for (const SCEV *BaseReg : BaseRegs) {
622 if (!First) OS << " + "; else First = false;
623 OS << "reg(" << *BaseReg << ')';
624 }
625 if (HasBaseReg && BaseRegs.empty()) {
626 if (!First) OS << " + "; else First = false;
627 OS << "**error: HasBaseReg**";
628 } else if (!HasBaseReg && !BaseRegs.empty()) {
629 if (!First) OS << " + "; else First = false;
630 OS << "**error: !HasBaseReg**";
631 }
632 if (Scale != 0) {
633 if (!First) OS << " + "; else First = false;
634 OS << Scale << "*reg(";
635 if (ScaledReg)
636 OS << *ScaledReg;
637 else
638 OS << "<unknown>";
639 OS << ')';
640 }
641 if (UnfoldedOffset != 0) {
642 if (!First) OS << " + ";
643 OS << "imm(" << UnfoldedOffset << ')';
644 }
645 }
646
dump() const647 LLVM_DUMP_METHOD void Formula::dump() const {
648 print(errs()); errs() << '\n';
649 }
650 #endif
651
652 /// Return true if the given addrec can be sign-extended without changing its
653 /// value.
isAddRecSExtable(const SCEVAddRecExpr * AR,ScalarEvolution & SE)654 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
655 Type *WideTy =
656 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
657 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
658 }
659
660 /// Return true if the given add can be sign-extended without changing its
661 /// value.
isAddSExtable(const SCEVAddExpr * A,ScalarEvolution & SE)662 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
663 Type *WideTy =
664 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
665 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
666 }
667
668 /// Return true if the given mul can be sign-extended without changing its
669 /// value.
isMulSExtable(const SCEVMulExpr * M,ScalarEvolution & SE)670 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
671 Type *WideTy =
672 IntegerType::get(SE.getContext(),
673 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
674 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
675 }
676
677 /// Return an expression for LHS /s RHS, if it can be determined and if the
678 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
679 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
680 /// the multiplication may overflow, which is useful when the result will be
681 /// used in a context where the most significant bits are ignored.
getExactSDiv(const SCEV * LHS,const SCEV * RHS,ScalarEvolution & SE,bool IgnoreSignificantBits=false)682 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
683 ScalarEvolution &SE,
684 bool IgnoreSignificantBits = false) {
685 // Handle the trivial case, which works for any SCEV type.
686 if (LHS == RHS)
687 return SE.getConstant(LHS->getType(), 1);
688
689 // Handle a few RHS special cases.
690 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
691 if (RC) {
692 const APInt &RA = RC->getAPInt();
693 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
694 // some folding.
695 if (RA.isAllOnes()) {
696 if (LHS->getType()->isPointerTy())
697 return nullptr;
698 return SE.getMulExpr(LHS, RC);
699 }
700 // Handle x /s 1 as x.
701 if (RA == 1)
702 return LHS;
703 }
704
705 // Check for a division of a constant by a constant.
706 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
707 if (!RC)
708 return nullptr;
709 const APInt &LA = C->getAPInt();
710 const APInt &RA = RC->getAPInt();
711 if (LA.srem(RA) != 0)
712 return nullptr;
713 return SE.getConstant(LA.sdiv(RA));
714 }
715
716 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
717 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
718 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
719 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
720 IgnoreSignificantBits);
721 if (!Step) return nullptr;
722 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
723 IgnoreSignificantBits);
724 if (!Start) return nullptr;
725 // FlagNW is independent of the start value, step direction, and is
726 // preserved with smaller magnitude steps.
727 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
728 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
729 }
730 return nullptr;
731 }
732
733 // Distribute the sdiv over add operands, if the add doesn't overflow.
734 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
735 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
736 SmallVector<const SCEV *, 8> Ops;
737 for (const SCEV *S : Add->operands()) {
738 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
739 if (!Op) return nullptr;
740 Ops.push_back(Op);
741 }
742 return SE.getAddExpr(Ops);
743 }
744 return nullptr;
745 }
746
747 // Check for a multiply operand that we can pull RHS out of.
748 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
749 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
750 // Handle special case C1*X*Y /s C2*X*Y.
751 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
752 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
753 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
754 const SCEVConstant *RC =
755 dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
756 if (LC && RC) {
757 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
758 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
759 if (LOps == ROps)
760 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
761 }
762 }
763 }
764
765 SmallVector<const SCEV *, 4> Ops;
766 bool Found = false;
767 for (const SCEV *S : Mul->operands()) {
768 if (!Found)
769 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
770 IgnoreSignificantBits)) {
771 S = Q;
772 Found = true;
773 }
774 Ops.push_back(S);
775 }
776 return Found ? SE.getMulExpr(Ops) : nullptr;
777 }
778 return nullptr;
779 }
780
781 // Otherwise we don't know.
782 return nullptr;
783 }
784
785 /// If S involves the addition of a constant integer value, return that integer
786 /// value, and mutate S to point to a new SCEV with that value excluded.
ExtractImmediate(const SCEV * & S,ScalarEvolution & SE)787 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
788 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
789 if (C->getAPInt().getMinSignedBits() <= 64) {
790 S = SE.getConstant(C->getType(), 0);
791 return C->getValue()->getSExtValue();
792 }
793 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
794 SmallVector<const SCEV *, 8> NewOps(Add->operands());
795 int64_t Result = ExtractImmediate(NewOps.front(), SE);
796 if (Result != 0)
797 S = SE.getAddExpr(NewOps);
798 return Result;
799 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
800 SmallVector<const SCEV *, 8> NewOps(AR->operands());
801 int64_t Result = ExtractImmediate(NewOps.front(), SE);
802 if (Result != 0)
803 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
804 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
805 SCEV::FlagAnyWrap);
806 return Result;
807 }
808 return 0;
809 }
810
811 /// If S involves the addition of a GlobalValue address, return that symbol, and
812 /// mutate S to point to a new SCEV with that value excluded.
ExtractSymbol(const SCEV * & S,ScalarEvolution & SE)813 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
814 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
815 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
816 S = SE.getConstant(GV->getType(), 0);
817 return GV;
818 }
819 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
820 SmallVector<const SCEV *, 8> NewOps(Add->operands());
821 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
822 if (Result)
823 S = SE.getAddExpr(NewOps);
824 return Result;
825 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
826 SmallVector<const SCEV *, 8> NewOps(AR->operands());
827 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
828 if (Result)
829 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
830 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
831 SCEV::FlagAnyWrap);
832 return Result;
833 }
834 return nullptr;
835 }
836
837 /// Returns true if the specified instruction is using the specified value as an
838 /// address.
isAddressUse(const TargetTransformInfo & TTI,Instruction * Inst,Value * OperandVal)839 static bool isAddressUse(const TargetTransformInfo &TTI,
840 Instruction *Inst, Value *OperandVal) {
841 bool isAddress = isa<LoadInst>(Inst);
842 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
843 if (SI->getPointerOperand() == OperandVal)
844 isAddress = true;
845 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
846 // Addressing modes can also be folded into prefetches and a variety
847 // of intrinsics.
848 switch (II->getIntrinsicID()) {
849 case Intrinsic::memset:
850 case Intrinsic::prefetch:
851 case Intrinsic::masked_load:
852 if (II->getArgOperand(0) == OperandVal)
853 isAddress = true;
854 break;
855 case Intrinsic::masked_store:
856 if (II->getArgOperand(1) == OperandVal)
857 isAddress = true;
858 break;
859 case Intrinsic::memmove:
860 case Intrinsic::memcpy:
861 if (II->getArgOperand(0) == OperandVal ||
862 II->getArgOperand(1) == OperandVal)
863 isAddress = true;
864 break;
865 default: {
866 MemIntrinsicInfo IntrInfo;
867 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
868 if (IntrInfo.PtrVal == OperandVal)
869 isAddress = true;
870 }
871 }
872 }
873 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
874 if (RMW->getPointerOperand() == OperandVal)
875 isAddress = true;
876 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
877 if (CmpX->getPointerOperand() == OperandVal)
878 isAddress = true;
879 }
880 return isAddress;
881 }
882
883 /// Return the type of the memory being accessed.
getAccessType(const TargetTransformInfo & TTI,Instruction * Inst,Value * OperandVal)884 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
885 Instruction *Inst, Value *OperandVal) {
886 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
887 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
888 AccessTy.MemTy = SI->getOperand(0)->getType();
889 AccessTy.AddrSpace = SI->getPointerAddressSpace();
890 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
891 AccessTy.AddrSpace = LI->getPointerAddressSpace();
892 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
893 AccessTy.AddrSpace = RMW->getPointerAddressSpace();
894 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
895 AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
896 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
897 switch (II->getIntrinsicID()) {
898 case Intrinsic::prefetch:
899 case Intrinsic::memset:
900 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
901 AccessTy.MemTy = OperandVal->getType();
902 break;
903 case Intrinsic::memmove:
904 case Intrinsic::memcpy:
905 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
906 AccessTy.MemTy = OperandVal->getType();
907 break;
908 case Intrinsic::masked_load:
909 AccessTy.AddrSpace =
910 II->getArgOperand(0)->getType()->getPointerAddressSpace();
911 break;
912 case Intrinsic::masked_store:
913 AccessTy.MemTy = II->getOperand(0)->getType();
914 AccessTy.AddrSpace =
915 II->getArgOperand(1)->getType()->getPointerAddressSpace();
916 break;
917 default: {
918 MemIntrinsicInfo IntrInfo;
919 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
920 AccessTy.AddrSpace
921 = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
922 }
923
924 break;
925 }
926 }
927 }
928
929 // All pointers have the same requirements, so canonicalize them to an
930 // arbitrary pointer type to minimize variation.
931 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
932 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
933 PTy->getAddressSpace());
934
935 return AccessTy;
936 }
937
938 /// Return true if this AddRec is already a phi in its loop.
isExistingPhi(const SCEVAddRecExpr * AR,ScalarEvolution & SE)939 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
940 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
941 if (SE.isSCEVable(PN.getType()) &&
942 (SE.getEffectiveSCEVType(PN.getType()) ==
943 SE.getEffectiveSCEVType(AR->getType())) &&
944 SE.getSCEV(&PN) == AR)
945 return true;
946 }
947 return false;
948 }
949
950 /// Check if expanding this expression is likely to incur significant cost. This
951 /// is tricky because SCEV doesn't track which expressions are actually computed
952 /// by the current IR.
953 ///
954 /// We currently allow expansion of IV increments that involve adds,
955 /// multiplication by constants, and AddRecs from existing phis.
956 ///
957 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
958 /// obvious multiple of the UDivExpr.
isHighCostExpansion(const SCEV * S,SmallPtrSetImpl<const SCEV * > & Processed,ScalarEvolution & SE)959 static bool isHighCostExpansion(const SCEV *S,
960 SmallPtrSetImpl<const SCEV*> &Processed,
961 ScalarEvolution &SE) {
962 // Zero/One operand expressions
963 switch (S->getSCEVType()) {
964 case scUnknown:
965 case scConstant:
966 return false;
967 case scTruncate:
968 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
969 Processed, SE);
970 case scZeroExtend:
971 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
972 Processed, SE);
973 case scSignExtend:
974 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
975 Processed, SE);
976 default:
977 break;
978 }
979
980 if (!Processed.insert(S).second)
981 return false;
982
983 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
984 for (const SCEV *S : Add->operands()) {
985 if (isHighCostExpansion(S, Processed, SE))
986 return true;
987 }
988 return false;
989 }
990
991 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
992 if (Mul->getNumOperands() == 2) {
993 // Multiplication by a constant is ok
994 if (isa<SCEVConstant>(Mul->getOperand(0)))
995 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
996
997 // If we have the value of one operand, check if an existing
998 // multiplication already generates this expression.
999 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1000 Value *UVal = U->getValue();
1001 for (User *UR : UVal->users()) {
1002 // If U is a constant, it may be used by a ConstantExpr.
1003 Instruction *UI = dyn_cast<Instruction>(UR);
1004 if (UI && UI->getOpcode() == Instruction::Mul &&
1005 SE.isSCEVable(UI->getType())) {
1006 return SE.getSCEV(UI) == Mul;
1007 }
1008 }
1009 }
1010 }
1011 }
1012
1013 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1014 if (isExistingPhi(AR, SE))
1015 return false;
1016 }
1017
1018 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1019 return true;
1020 }
1021
1022 namespace {
1023
1024 class LSRUse;
1025
1026 } // end anonymous namespace
1027
1028 /// Check if the addressing mode defined by \p F is completely
1029 /// folded in \p LU at isel time.
1030 /// This includes address-mode folding and special icmp tricks.
1031 /// This function returns true if \p LU can accommodate what \p F
1032 /// defines and up to 1 base + 1 scaled + offset.
1033 /// In other words, if \p F has several base registers, this function may
1034 /// still return true. Therefore, users still need to account for
1035 /// additional base registers and/or unfolded offsets to derive an
1036 /// accurate cost model.
1037 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1038 const LSRUse &LU, const Formula &F);
1039
1040 // Get the cost of the scaling factor used in F for LU.
1041 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1042 const LSRUse &LU, const Formula &F,
1043 const Loop &L);
1044
1045 namespace {
1046
1047 /// This class is used to measure and compare candidate formulae.
1048 class Cost {
1049 const Loop *L = nullptr;
1050 ScalarEvolution *SE = nullptr;
1051 const TargetTransformInfo *TTI = nullptr;
1052 TargetTransformInfo::LSRCost C;
1053 TTI::AddressingModeKind AMK = TTI::AMK_None;
1054
1055 public:
1056 Cost() = delete;
Cost(const Loop * L,ScalarEvolution & SE,const TargetTransformInfo & TTI,TTI::AddressingModeKind AMK)1057 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1058 TTI::AddressingModeKind AMK) :
1059 L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1060 C.Insns = 0;
1061 C.NumRegs = 0;
1062 C.AddRecCost = 0;
1063 C.NumIVMuls = 0;
1064 C.NumBaseAdds = 0;
1065 C.ImmCost = 0;
1066 C.SetupCost = 0;
1067 C.ScaleCost = 0;
1068 }
1069
1070 bool isLess(const Cost &Other);
1071
1072 void Lose();
1073
1074 #ifndef NDEBUG
1075 // Once any of the metrics loses, they must all remain losers.
isValid()1076 bool isValid() {
1077 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1078 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1079 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1080 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1081 }
1082 #endif
1083
isLoser()1084 bool isLoser() {
1085 assert(isValid() && "invalid cost");
1086 return C.NumRegs == ~0u;
1087 }
1088
1089 void RateFormula(const Formula &F,
1090 SmallPtrSetImpl<const SCEV *> &Regs,
1091 const DenseSet<const SCEV *> &VisitedRegs,
1092 const LSRUse &LU,
1093 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1094
1095 void print(raw_ostream &OS) const;
1096 void dump() const;
1097
1098 private:
1099 void RateRegister(const Formula &F, const SCEV *Reg,
1100 SmallPtrSetImpl<const SCEV *> &Regs);
1101 void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1102 SmallPtrSetImpl<const SCEV *> &Regs,
1103 SmallPtrSetImpl<const SCEV *> *LoserRegs);
1104 };
1105
1106 /// An operand value in an instruction which is to be replaced with some
1107 /// equivalent, possibly strength-reduced, replacement.
1108 struct LSRFixup {
1109 /// The instruction which will be updated.
1110 Instruction *UserInst = nullptr;
1111
1112 /// The operand of the instruction which will be replaced. The operand may be
1113 /// used more than once; every instance will be replaced.
1114 Value *OperandValToReplace = nullptr;
1115
1116 /// If this user is to use the post-incremented value of an induction
1117 /// variable, this set is non-empty and holds the loops associated with the
1118 /// induction variable.
1119 PostIncLoopSet PostIncLoops;
1120
1121 /// A constant offset to be added to the LSRUse expression. This allows
1122 /// multiple fixups to share the same LSRUse with different offsets, for
1123 /// example in an unrolled loop.
1124 int64_t Offset = 0;
1125
1126 LSRFixup() = default;
1127
1128 bool isUseFullyOutsideLoop(const Loop *L) const;
1129
1130 void print(raw_ostream &OS) const;
1131 void dump() const;
1132 };
1133
1134 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1135 /// SmallVectors of const SCEV*.
1136 struct UniquifierDenseMapInfo {
getEmptyKey__anon3f0d62640811::UniquifierDenseMapInfo1137 static SmallVector<const SCEV *, 4> getEmptyKey() {
1138 SmallVector<const SCEV *, 4> V;
1139 V.push_back(reinterpret_cast<const SCEV *>(-1));
1140 return V;
1141 }
1142
getTombstoneKey__anon3f0d62640811::UniquifierDenseMapInfo1143 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1144 SmallVector<const SCEV *, 4> V;
1145 V.push_back(reinterpret_cast<const SCEV *>(-2));
1146 return V;
1147 }
1148
getHashValue__anon3f0d62640811::UniquifierDenseMapInfo1149 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1150 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1151 }
1152
isEqual__anon3f0d62640811::UniquifierDenseMapInfo1153 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1154 const SmallVector<const SCEV *, 4> &RHS) {
1155 return LHS == RHS;
1156 }
1157 };
1158
1159 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1160 /// as uses invented by LSR itself. It includes information about what kinds of
1161 /// things can be folded into the user, information about the user itself, and
1162 /// information about how the use may be satisfied. TODO: Represent multiple
1163 /// users of the same expression in common?
1164 class LSRUse {
1165 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1166
1167 public:
1168 /// An enum for a kind of use, indicating what types of scaled and immediate
1169 /// operands it might support.
1170 enum KindType {
1171 Basic, ///< A normal use, with no folding.
1172 Special, ///< A special case of basic, allowing -1 scales.
1173 Address, ///< An address use; folding according to TargetLowering
1174 ICmpZero ///< An equality icmp with both operands folded into one.
1175 // TODO: Add a generic icmp too?
1176 };
1177
1178 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1179
1180 KindType Kind;
1181 MemAccessTy AccessTy;
1182
1183 /// The list of operands which are to be replaced.
1184 SmallVector<LSRFixup, 8> Fixups;
1185
1186 /// Keep track of the min and max offsets of the fixups.
1187 int64_t MinOffset = std::numeric_limits<int64_t>::max();
1188 int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1189
1190 /// This records whether all of the fixups using this LSRUse are outside of
1191 /// the loop, in which case some special-case heuristics may be used.
1192 bool AllFixupsOutsideLoop = true;
1193
1194 /// RigidFormula is set to true to guarantee that this use will be associated
1195 /// with a single formula--the one that initially matched. Some SCEV
1196 /// expressions cannot be expanded. This allows LSR to consider the registers
1197 /// used by those expressions without the need to expand them later after
1198 /// changing the formula.
1199 bool RigidFormula = false;
1200
1201 /// This records the widest use type for any fixup using this
1202 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1203 /// fixup widths to be equivalent, because the narrower one may be relying on
1204 /// the implicit truncation to truncate away bogus bits.
1205 Type *WidestFixupType = nullptr;
1206
1207 /// A list of ways to build a value that can satisfy this user. After the
1208 /// list is populated, one of these is selected heuristically and used to
1209 /// formulate a replacement for OperandValToReplace in UserInst.
1210 SmallVector<Formula, 12> Formulae;
1211
1212 /// The set of register candidates used by all formulae in this LSRUse.
1213 SmallPtrSet<const SCEV *, 4> Regs;
1214
LSRUse(KindType K,MemAccessTy AT)1215 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1216
getNewFixup()1217 LSRFixup &getNewFixup() {
1218 Fixups.push_back(LSRFixup());
1219 return Fixups.back();
1220 }
1221
pushFixup(LSRFixup & f)1222 void pushFixup(LSRFixup &f) {
1223 Fixups.push_back(f);
1224 if (f.Offset > MaxOffset)
1225 MaxOffset = f.Offset;
1226 if (f.Offset < MinOffset)
1227 MinOffset = f.Offset;
1228 }
1229
1230 bool HasFormulaWithSameRegs(const Formula &F) const;
1231 float getNotSelectedProbability(const SCEV *Reg) const;
1232 bool InsertFormula(const Formula &F, const Loop &L);
1233 void DeleteFormula(Formula &F);
1234 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1235
1236 void print(raw_ostream &OS) const;
1237 void dump() const;
1238 };
1239
1240 } // end anonymous namespace
1241
1242 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1243 LSRUse::KindType Kind, MemAccessTy AccessTy,
1244 GlobalValue *BaseGV, int64_t BaseOffset,
1245 bool HasBaseReg, int64_t Scale,
1246 Instruction *Fixup = nullptr);
1247
getSetupCost(const SCEV * Reg,unsigned Depth)1248 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1249 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1250 return 1;
1251 if (Depth == 0)
1252 return 0;
1253 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1254 return getSetupCost(S->getStart(), Depth - 1);
1255 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1256 return getSetupCost(S->getOperand(), Depth - 1);
1257 if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1258 return std::accumulate(S->op_begin(), S->op_end(), 0,
1259 [&](unsigned i, const SCEV *Reg) {
1260 return i + getSetupCost(Reg, Depth - 1);
1261 });
1262 if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1263 return getSetupCost(S->getLHS(), Depth - 1) +
1264 getSetupCost(S->getRHS(), Depth - 1);
1265 return 0;
1266 }
1267
1268 /// Tally up interesting quantities from the given register.
RateRegister(const Formula & F,const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs)1269 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1270 SmallPtrSetImpl<const SCEV *> &Regs) {
1271 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1272 // If this is an addrec for another loop, it should be an invariant
1273 // with respect to L since L is the innermost loop (at least
1274 // for now LSR only handles innermost loops).
1275 if (AR->getLoop() != L) {
1276 // If the AddRec exists, consider it's register free and leave it alone.
1277 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1278 return;
1279
1280 // It is bad to allow LSR for current loop to add induction variables
1281 // for its sibling loops.
1282 if (!AR->getLoop()->contains(L)) {
1283 Lose();
1284 return;
1285 }
1286
1287 // Otherwise, it will be an invariant with respect to Loop L.
1288 ++C.NumRegs;
1289 return;
1290 }
1291
1292 unsigned LoopCost = 1;
1293 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1294 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1295
1296 // If the step size matches the base offset, we could use pre-indexed
1297 // addressing.
1298 if (AMK == TTI::AMK_PreIndexed) {
1299 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1300 if (Step->getAPInt() == F.BaseOffset)
1301 LoopCost = 0;
1302 } else if (AMK == TTI::AMK_PostIndexed) {
1303 const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1304 if (isa<SCEVConstant>(LoopStep)) {
1305 const SCEV *LoopStart = AR->getStart();
1306 if (!isa<SCEVConstant>(LoopStart) &&
1307 SE->isLoopInvariant(LoopStart, L))
1308 LoopCost = 0;
1309 }
1310 }
1311 }
1312 C.AddRecCost += LoopCost;
1313
1314 // Add the step value register, if it needs one.
1315 // TODO: The non-affine case isn't precisely modeled here.
1316 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1317 if (!Regs.count(AR->getOperand(1))) {
1318 RateRegister(F, AR->getOperand(1), Regs);
1319 if (isLoser())
1320 return;
1321 }
1322 }
1323 }
1324 ++C.NumRegs;
1325
1326 // Rough heuristic; favor registers which don't require extra setup
1327 // instructions in the preheader.
1328 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1329 // Ensure we don't, even with the recusion limit, produce invalid costs.
1330 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1331
1332 C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1333 SE->hasComputableLoopEvolution(Reg, L);
1334 }
1335
1336 /// Record this register in the set. If we haven't seen it before, rate
1337 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1338 /// one of those regs an instant loser.
RatePrimaryRegister(const Formula & F,const SCEV * Reg,SmallPtrSetImpl<const SCEV * > & Regs,SmallPtrSetImpl<const SCEV * > * LoserRegs)1339 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1340 SmallPtrSetImpl<const SCEV *> &Regs,
1341 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1342 if (LoserRegs && LoserRegs->count(Reg)) {
1343 Lose();
1344 return;
1345 }
1346 if (Regs.insert(Reg).second) {
1347 RateRegister(F, Reg, Regs);
1348 if (LoserRegs && isLoser())
1349 LoserRegs->insert(Reg);
1350 }
1351 }
1352
RateFormula(const Formula & F,SmallPtrSetImpl<const SCEV * > & Regs,const DenseSet<const SCEV * > & VisitedRegs,const LSRUse & LU,SmallPtrSetImpl<const SCEV * > * LoserRegs)1353 void Cost::RateFormula(const Formula &F,
1354 SmallPtrSetImpl<const SCEV *> &Regs,
1355 const DenseSet<const SCEV *> &VisitedRegs,
1356 const LSRUse &LU,
1357 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1358 if (isLoser())
1359 return;
1360 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1361 // Tally up the registers.
1362 unsigned PrevAddRecCost = C.AddRecCost;
1363 unsigned PrevNumRegs = C.NumRegs;
1364 unsigned PrevNumBaseAdds = C.NumBaseAdds;
1365 if (const SCEV *ScaledReg = F.ScaledReg) {
1366 if (VisitedRegs.count(ScaledReg)) {
1367 Lose();
1368 return;
1369 }
1370 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1371 if (isLoser())
1372 return;
1373 }
1374 for (const SCEV *BaseReg : F.BaseRegs) {
1375 if (VisitedRegs.count(BaseReg)) {
1376 Lose();
1377 return;
1378 }
1379 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1380 if (isLoser())
1381 return;
1382 }
1383
1384 // Determine how many (unfolded) adds we'll need inside the loop.
1385 size_t NumBaseParts = F.getNumRegs();
1386 if (NumBaseParts > 1)
1387 // Do not count the base and a possible second register if the target
1388 // allows to fold 2 registers.
1389 C.NumBaseAdds +=
1390 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1391 C.NumBaseAdds += (F.UnfoldedOffset != 0);
1392
1393 // Accumulate non-free scaling amounts.
1394 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1395
1396 // Tally up the non-zero immediates.
1397 for (const LSRFixup &Fixup : LU.Fixups) {
1398 int64_t O = Fixup.Offset;
1399 int64_t Offset = (uint64_t)O + F.BaseOffset;
1400 if (F.BaseGV)
1401 C.ImmCost += 64; // Handle symbolic values conservatively.
1402 // TODO: This should probably be the pointer size.
1403 else if (Offset != 0)
1404 C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1405
1406 // Check with target if this offset with this instruction is
1407 // specifically not supported.
1408 if (LU.Kind == LSRUse::Address && Offset != 0 &&
1409 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1410 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1411 C.NumBaseAdds++;
1412 }
1413
1414 // If we don't count instruction cost exit here.
1415 if (!InsnsCost) {
1416 assert(isValid() && "invalid cost");
1417 return;
1418 }
1419
1420 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1421 // additional instruction (at least fill).
1422 // TODO: Need distinguish register class?
1423 unsigned TTIRegNum = TTI->getNumberOfRegisters(
1424 TTI->getRegisterClassForType(false, F.getType())) - 1;
1425 if (C.NumRegs > TTIRegNum) {
1426 // Cost already exceeded TTIRegNum, then only newly added register can add
1427 // new instructions.
1428 if (PrevNumRegs > TTIRegNum)
1429 C.Insns += (C.NumRegs - PrevNumRegs);
1430 else
1431 C.Insns += (C.NumRegs - TTIRegNum);
1432 }
1433
1434 // If ICmpZero formula ends with not 0, it could not be replaced by
1435 // just add or sub. We'll need to compare final result of AddRec.
1436 // That means we'll need an additional instruction. But if the target can
1437 // macro-fuse a compare with a branch, don't count this extra instruction.
1438 // For -10 + {0, +, 1}:
1439 // i = i + 1;
1440 // cmp i, 10
1441 //
1442 // For {-10, +, 1}:
1443 // i = i + 1;
1444 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1445 !TTI->canMacroFuseCmp())
1446 C.Insns++;
1447 // Each new AddRec adds 1 instruction to calculation.
1448 C.Insns += (C.AddRecCost - PrevAddRecCost);
1449
1450 // BaseAdds adds instructions for unfolded registers.
1451 if (LU.Kind != LSRUse::ICmpZero)
1452 C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1453 assert(isValid() && "invalid cost");
1454 }
1455
1456 /// Set this cost to a losing value.
Lose()1457 void Cost::Lose() {
1458 C.Insns = std::numeric_limits<unsigned>::max();
1459 C.NumRegs = std::numeric_limits<unsigned>::max();
1460 C.AddRecCost = std::numeric_limits<unsigned>::max();
1461 C.NumIVMuls = std::numeric_limits<unsigned>::max();
1462 C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1463 C.ImmCost = std::numeric_limits<unsigned>::max();
1464 C.SetupCost = std::numeric_limits<unsigned>::max();
1465 C.ScaleCost = std::numeric_limits<unsigned>::max();
1466 }
1467
1468 /// Choose the lower cost.
isLess(const Cost & Other)1469 bool Cost::isLess(const Cost &Other) {
1470 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1471 C.Insns != Other.C.Insns)
1472 return C.Insns < Other.C.Insns;
1473 return TTI->isLSRCostLess(C, Other.C);
1474 }
1475
1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1477 void Cost::print(raw_ostream &OS) const {
1478 if (InsnsCost)
1479 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1480 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1481 if (C.AddRecCost != 0)
1482 OS << ", with addrec cost " << C.AddRecCost;
1483 if (C.NumIVMuls != 0)
1484 OS << ", plus " << C.NumIVMuls << " IV mul"
1485 << (C.NumIVMuls == 1 ? "" : "s");
1486 if (C.NumBaseAdds != 0)
1487 OS << ", plus " << C.NumBaseAdds << " base add"
1488 << (C.NumBaseAdds == 1 ? "" : "s");
1489 if (C.ScaleCost != 0)
1490 OS << ", plus " << C.ScaleCost << " scale cost";
1491 if (C.ImmCost != 0)
1492 OS << ", plus " << C.ImmCost << " imm cost";
1493 if (C.SetupCost != 0)
1494 OS << ", plus " << C.SetupCost << " setup cost";
1495 }
1496
dump() const1497 LLVM_DUMP_METHOD void Cost::dump() const {
1498 print(errs()); errs() << '\n';
1499 }
1500 #endif
1501
1502 /// Test whether this fixup always uses its value outside of the given loop.
isUseFullyOutsideLoop(const Loop * L) const1503 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1504 // PHI nodes use their value in their incoming blocks.
1505 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1506 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1507 if (PN->getIncomingValue(i) == OperandValToReplace &&
1508 L->contains(PN->getIncomingBlock(i)))
1509 return false;
1510 return true;
1511 }
1512
1513 return !L->contains(UserInst);
1514 }
1515
1516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1517 void LSRFixup::print(raw_ostream &OS) const {
1518 OS << "UserInst=";
1519 // Store is common and interesting enough to be worth special-casing.
1520 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1521 OS << "store ";
1522 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1523 } else if (UserInst->getType()->isVoidTy())
1524 OS << UserInst->getOpcodeName();
1525 else
1526 UserInst->printAsOperand(OS, /*PrintType=*/false);
1527
1528 OS << ", OperandValToReplace=";
1529 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1530
1531 for (const Loop *PIL : PostIncLoops) {
1532 OS << ", PostIncLoop=";
1533 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1534 }
1535
1536 if (Offset != 0)
1537 OS << ", Offset=" << Offset;
1538 }
1539
dump() const1540 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1541 print(errs()); errs() << '\n';
1542 }
1543 #endif
1544
1545 /// Test whether this use as a formula which has the same registers as the given
1546 /// formula.
HasFormulaWithSameRegs(const Formula & F) const1547 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1548 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1549 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1550 // Unstable sort by host order ok, because this is only used for uniquifying.
1551 llvm::sort(Key);
1552 return Uniquifier.count(Key);
1553 }
1554
1555 /// The function returns a probability of selecting formula without Reg.
getNotSelectedProbability(const SCEV * Reg) const1556 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1557 unsigned FNum = 0;
1558 for (const Formula &F : Formulae)
1559 if (F.referencesReg(Reg))
1560 FNum++;
1561 return ((float)(Formulae.size() - FNum)) / Formulae.size();
1562 }
1563
1564 /// If the given formula has not yet been inserted, add it to the list, and
1565 /// return true. Return false otherwise. The formula must be in canonical form.
InsertFormula(const Formula & F,const Loop & L)1566 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1567 assert(F.isCanonical(L) && "Invalid canonical representation");
1568
1569 if (!Formulae.empty() && RigidFormula)
1570 return false;
1571
1572 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1573 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1574 // Unstable sort by host order ok, because this is only used for uniquifying.
1575 llvm::sort(Key);
1576
1577 if (!Uniquifier.insert(Key).second)
1578 return false;
1579
1580 // Using a register to hold the value of 0 is not profitable.
1581 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1582 "Zero allocated in a scaled register!");
1583 #ifndef NDEBUG
1584 for (const SCEV *BaseReg : F.BaseRegs)
1585 assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1586 #endif
1587
1588 // Add the formula to the list.
1589 Formulae.push_back(F);
1590
1591 // Record registers now being used by this use.
1592 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1593 if (F.ScaledReg)
1594 Regs.insert(F.ScaledReg);
1595
1596 return true;
1597 }
1598
1599 /// Remove the given formula from this use's list.
DeleteFormula(Formula & F)1600 void LSRUse::DeleteFormula(Formula &F) {
1601 if (&F != &Formulae.back())
1602 std::swap(F, Formulae.back());
1603 Formulae.pop_back();
1604 }
1605
1606 /// Recompute the Regs field, and update RegUses.
RecomputeRegs(size_t LUIdx,RegUseTracker & RegUses)1607 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1608 // Now that we've filtered out some formulae, recompute the Regs set.
1609 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1610 Regs.clear();
1611 for (const Formula &F : Formulae) {
1612 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1613 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1614 }
1615
1616 // Update the RegTracker.
1617 for (const SCEV *S : OldRegs)
1618 if (!Regs.count(S))
1619 RegUses.dropRegister(S, LUIdx);
1620 }
1621
1622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const1623 void LSRUse::print(raw_ostream &OS) const {
1624 OS << "LSR Use: Kind=";
1625 switch (Kind) {
1626 case Basic: OS << "Basic"; break;
1627 case Special: OS << "Special"; break;
1628 case ICmpZero: OS << "ICmpZero"; break;
1629 case Address:
1630 OS << "Address of ";
1631 if (AccessTy.MemTy->isPointerTy())
1632 OS << "pointer"; // the full pointer type could be really verbose
1633 else {
1634 OS << *AccessTy.MemTy;
1635 }
1636
1637 OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1638 }
1639
1640 OS << ", Offsets={";
1641 bool NeedComma = false;
1642 for (const LSRFixup &Fixup : Fixups) {
1643 if (NeedComma) OS << ',';
1644 OS << Fixup.Offset;
1645 NeedComma = true;
1646 }
1647 OS << '}';
1648
1649 if (AllFixupsOutsideLoop)
1650 OS << ", all-fixups-outside-loop";
1651
1652 if (WidestFixupType)
1653 OS << ", widest fixup type: " << *WidestFixupType;
1654 }
1655
dump() const1656 LLVM_DUMP_METHOD void LSRUse::dump() const {
1657 print(errs()); errs() << '\n';
1658 }
1659 #endif
1660
isAMCompletelyFolded(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,Instruction * Fixup)1661 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1662 LSRUse::KindType Kind, MemAccessTy AccessTy,
1663 GlobalValue *BaseGV, int64_t BaseOffset,
1664 bool HasBaseReg, int64_t Scale,
1665 Instruction *Fixup/*= nullptr*/) {
1666 switch (Kind) {
1667 case LSRUse::Address:
1668 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1669 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1670
1671 case LSRUse::ICmpZero:
1672 // There's not even a target hook for querying whether it would be legal to
1673 // fold a GV into an ICmp.
1674 if (BaseGV)
1675 return false;
1676
1677 // ICmp only has two operands; don't allow more than two non-trivial parts.
1678 if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1679 return false;
1680
1681 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1682 // putting the scaled register in the other operand of the icmp.
1683 if (Scale != 0 && Scale != -1)
1684 return false;
1685
1686 // If we have low-level target information, ask the target if it can fold an
1687 // integer immediate on an icmp.
1688 if (BaseOffset != 0) {
1689 // We have one of:
1690 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1691 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1692 // Offs is the ICmp immediate.
1693 if (Scale == 0)
1694 // The cast does the right thing with
1695 // std::numeric_limits<int64_t>::min().
1696 BaseOffset = -(uint64_t)BaseOffset;
1697 return TTI.isLegalICmpImmediate(BaseOffset);
1698 }
1699
1700 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1701 return true;
1702
1703 case LSRUse::Basic:
1704 // Only handle single-register values.
1705 return !BaseGV && Scale == 0 && BaseOffset == 0;
1706
1707 case LSRUse::Special:
1708 // Special case Basic to handle -1 scales.
1709 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1710 }
1711
1712 llvm_unreachable("Invalid LSRUse Kind!");
1713 }
1714
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1715 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1716 int64_t MinOffset, int64_t MaxOffset,
1717 LSRUse::KindType Kind, MemAccessTy AccessTy,
1718 GlobalValue *BaseGV, int64_t BaseOffset,
1719 bool HasBaseReg, int64_t Scale) {
1720 // Check for overflow.
1721 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1722 (MinOffset > 0))
1723 return false;
1724 MinOffset = (uint64_t)BaseOffset + MinOffset;
1725 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1726 (MaxOffset > 0))
1727 return false;
1728 MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1729
1730 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1731 HasBaseReg, Scale) &&
1732 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1733 HasBaseReg, Scale);
1734 }
1735
isAMCompletelyFolded(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F,const Loop & L)1736 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1737 int64_t MinOffset, int64_t MaxOffset,
1738 LSRUse::KindType Kind, MemAccessTy AccessTy,
1739 const Formula &F, const Loop &L) {
1740 // For the purpose of isAMCompletelyFolded either having a canonical formula
1741 // or a scale not equal to zero is correct.
1742 // Problems may arise from non canonical formulae having a scale == 0.
1743 // Strictly speaking it would best to just rely on canonical formulae.
1744 // However, when we generate the scaled formulae, we first check that the
1745 // scaling factor is profitable before computing the actual ScaledReg for
1746 // compile time sake.
1747 assert((F.isCanonical(L) || F.Scale != 0));
1748 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1749 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1750 }
1751
1752 /// Test whether we know how to expand the current formula.
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale)1753 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1754 int64_t MaxOffset, LSRUse::KindType Kind,
1755 MemAccessTy AccessTy, GlobalValue *BaseGV,
1756 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1757 // We know how to expand completely foldable formulae.
1758 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1759 BaseOffset, HasBaseReg, Scale) ||
1760 // Or formulae that use a base register produced by a sum of base
1761 // registers.
1762 (Scale == 1 &&
1763 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1764 BaseGV, BaseOffset, true, 0));
1765 }
1766
isLegalUse(const TargetTransformInfo & TTI,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const Formula & F)1767 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1768 int64_t MaxOffset, LSRUse::KindType Kind,
1769 MemAccessTy AccessTy, const Formula &F) {
1770 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1771 F.BaseOffset, F.HasBaseReg, F.Scale);
1772 }
1773
isAMCompletelyFolded(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F)1774 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1775 const LSRUse &LU, const Formula &F) {
1776 // Target may want to look at the user instructions.
1777 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1778 for (const LSRFixup &Fixup : LU.Fixups)
1779 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1780 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1781 F.Scale, Fixup.UserInst))
1782 return false;
1783 return true;
1784 }
1785
1786 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1787 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1788 F.Scale);
1789 }
1790
getScalingFactorCost(const TargetTransformInfo & TTI,const LSRUse & LU,const Formula & F,const Loop & L)1791 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1792 const LSRUse &LU, const Formula &F,
1793 const Loop &L) {
1794 if (!F.Scale)
1795 return 0;
1796
1797 // If the use is not completely folded in that instruction, we will have to
1798 // pay an extra cost only for scale != 1.
1799 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1800 LU.AccessTy, F, L))
1801 return F.Scale != 1;
1802
1803 switch (LU.Kind) {
1804 case LSRUse::Address: {
1805 // Check the scaling factor cost with both the min and max offsets.
1806 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1807 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1808 F.Scale, LU.AccessTy.AddrSpace);
1809 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1810 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1811 F.Scale, LU.AccessTy.AddrSpace);
1812
1813 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1814 "Legal addressing mode has an illegal cost!");
1815 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1816 }
1817 case LSRUse::ICmpZero:
1818 case LSRUse::Basic:
1819 case LSRUse::Special:
1820 // The use is completely folded, i.e., everything is folded into the
1821 // instruction.
1822 return 0;
1823 }
1824
1825 llvm_unreachable("Invalid LSRUse Kind!");
1826 }
1827
isAlwaysFoldable(const TargetTransformInfo & TTI,LSRUse::KindType Kind,MemAccessTy AccessTy,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg)1828 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1829 LSRUse::KindType Kind, MemAccessTy AccessTy,
1830 GlobalValue *BaseGV, int64_t BaseOffset,
1831 bool HasBaseReg) {
1832 // Fast-path: zero is always foldable.
1833 if (BaseOffset == 0 && !BaseGV) return true;
1834
1835 // Conservatively, create an address with an immediate and a
1836 // base and a scale.
1837 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1838
1839 // Canonicalize a scale of 1 to a base register if the formula doesn't
1840 // already have a base register.
1841 if (!HasBaseReg && Scale == 1) {
1842 Scale = 0;
1843 HasBaseReg = true;
1844 }
1845
1846 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1847 HasBaseReg, Scale);
1848 }
1849
isAlwaysFoldable(const TargetTransformInfo & TTI,ScalarEvolution & SE,int64_t MinOffset,int64_t MaxOffset,LSRUse::KindType Kind,MemAccessTy AccessTy,const SCEV * S,bool HasBaseReg)1850 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1851 ScalarEvolution &SE, int64_t MinOffset,
1852 int64_t MaxOffset, LSRUse::KindType Kind,
1853 MemAccessTy AccessTy, const SCEV *S,
1854 bool HasBaseReg) {
1855 // Fast-path: zero is always foldable.
1856 if (S->isZero()) return true;
1857
1858 // Conservatively, create an address with an immediate and a
1859 // base and a scale.
1860 int64_t BaseOffset = ExtractImmediate(S, SE);
1861 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1862
1863 // If there's anything else involved, it's not foldable.
1864 if (!S->isZero()) return false;
1865
1866 // Fast-path: zero is always foldable.
1867 if (BaseOffset == 0 && !BaseGV) return true;
1868
1869 // Conservatively, create an address with an immediate and a
1870 // base and a scale.
1871 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1872
1873 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1874 BaseOffset, HasBaseReg, Scale);
1875 }
1876
1877 namespace {
1878
1879 /// An individual increment in a Chain of IV increments. Relate an IV user to
1880 /// an expression that computes the IV it uses from the IV used by the previous
1881 /// link in the Chain.
1882 ///
1883 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1884 /// original IVOperand. The head of the chain's IVOperand is only valid during
1885 /// chain collection, before LSR replaces IV users. During chain generation,
1886 /// IncExpr can be used to find the new IVOperand that computes the same
1887 /// expression.
1888 struct IVInc {
1889 Instruction *UserInst;
1890 Value* IVOperand;
1891 const SCEV *IncExpr;
1892
IVInc__anon3f0d62640a11::IVInc1893 IVInc(Instruction *U, Value *O, const SCEV *E)
1894 : UserInst(U), IVOperand(O), IncExpr(E) {}
1895 };
1896
1897 // The list of IV increments in program order. We typically add the head of a
1898 // chain without finding subsequent links.
1899 struct IVChain {
1900 SmallVector<IVInc, 1> Incs;
1901 const SCEV *ExprBase = nullptr;
1902
1903 IVChain() = default;
IVChain__anon3f0d62640a11::IVChain1904 IVChain(const IVInc &Head, const SCEV *Base)
1905 : Incs(1, Head), ExprBase(Base) {}
1906
1907 using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1908
1909 // Return the first increment in the chain.
begin__anon3f0d62640a11::IVChain1910 const_iterator begin() const {
1911 assert(!Incs.empty());
1912 return std::next(Incs.begin());
1913 }
end__anon3f0d62640a11::IVChain1914 const_iterator end() const {
1915 return Incs.end();
1916 }
1917
1918 // Returns true if this chain contains any increments.
hasIncs__anon3f0d62640a11::IVChain1919 bool hasIncs() const { return Incs.size() >= 2; }
1920
1921 // Add an IVInc to the end of this chain.
add__anon3f0d62640a11::IVChain1922 void add(const IVInc &X) { Incs.push_back(X); }
1923
1924 // Returns the last UserInst in the chain.
tailUserInst__anon3f0d62640a11::IVChain1925 Instruction *tailUserInst() const { return Incs.back().UserInst; }
1926
1927 // Returns true if IncExpr can be profitably added to this chain.
1928 bool isProfitableIncrement(const SCEV *OperExpr,
1929 const SCEV *IncExpr,
1930 ScalarEvolution&);
1931 };
1932
1933 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
1934 /// between FarUsers that definitely cross IV increments and NearUsers that may
1935 /// be used between IV increments.
1936 struct ChainUsers {
1937 SmallPtrSet<Instruction*, 4> FarUsers;
1938 SmallPtrSet<Instruction*, 4> NearUsers;
1939 };
1940
1941 /// This class holds state for the main loop strength reduction logic.
1942 class LSRInstance {
1943 IVUsers &IU;
1944 ScalarEvolution &SE;
1945 DominatorTree &DT;
1946 LoopInfo &LI;
1947 AssumptionCache &AC;
1948 TargetLibraryInfo &TLI;
1949 const TargetTransformInfo &TTI;
1950 Loop *const L;
1951 MemorySSAUpdater *MSSAU;
1952 TTI::AddressingModeKind AMK;
1953 mutable SCEVExpander Rewriter;
1954 bool Changed = false;
1955
1956 /// This is the insert position that the current loop's induction variable
1957 /// increment should be placed. In simple loops, this is the latch block's
1958 /// terminator. But in more complicated cases, this is a position which will
1959 /// dominate all the in-loop post-increment users.
1960 Instruction *IVIncInsertPos = nullptr;
1961
1962 /// Interesting factors between use strides.
1963 ///
1964 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1965 /// default, a SmallDenseSet, because we need to use the full range of
1966 /// int64_ts, and there's currently no good way of doing that with
1967 /// SmallDenseSet.
1968 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1969
1970 /// Interesting use types, to facilitate truncation reuse.
1971 SmallSetVector<Type *, 4> Types;
1972
1973 /// The list of interesting uses.
1974 mutable SmallVector<LSRUse, 16> Uses;
1975
1976 /// Track which uses use which register candidates.
1977 RegUseTracker RegUses;
1978
1979 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1980 // have more than a few IV increment chains in a loop. Missing a Chain falls
1981 // back to normal LSR behavior for those uses.
1982 static const unsigned MaxChains = 8;
1983
1984 /// IV users can form a chain of IV increments.
1985 SmallVector<IVChain, MaxChains> IVChainVec;
1986
1987 /// IV users that belong to profitable IVChains.
1988 SmallPtrSet<Use*, MaxChains> IVIncSet;
1989
1990 /// Induction variables that were generated and inserted by the SCEV Expander.
1991 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
1992
1993 void OptimizeShadowIV();
1994 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1995 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1996 void OptimizeLoopTermCond();
1997
1998 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1999 SmallVectorImpl<ChainUsers> &ChainUsersVec);
2000 void FinalizeChain(IVChain &Chain);
2001 void CollectChains();
2002 void GenerateIVChain(const IVChain &Chain,
2003 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2004
2005 void CollectInterestingTypesAndFactors();
2006 void CollectFixupsAndInitialFormulae();
2007
2008 // Support for sharing of LSRUses between LSRFixups.
2009 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2010 UseMapTy UseMap;
2011
2012 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2013 LSRUse::KindType Kind, MemAccessTy AccessTy);
2014
2015 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2016 MemAccessTy AccessTy);
2017
2018 void DeleteUse(LSRUse &LU, size_t LUIdx);
2019
2020 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2021
2022 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2023 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2024 void CountRegisters(const Formula &F, size_t LUIdx);
2025 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2026
2027 void CollectLoopInvariantFixupsAndFormulae();
2028
2029 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2030 unsigned Depth = 0);
2031
2032 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2033 const Formula &Base, unsigned Depth,
2034 size_t Idx, bool IsScaledReg = false);
2035 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2036 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2037 const Formula &Base, size_t Idx,
2038 bool IsScaledReg = false);
2039 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2040 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2041 const Formula &Base,
2042 const SmallVectorImpl<int64_t> &Worklist,
2043 size_t Idx, bool IsScaledReg = false);
2044 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2045 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2046 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2047 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2048 void GenerateCrossUseConstantOffsets();
2049 void GenerateAllReuseFormulae();
2050
2051 void FilterOutUndesirableDedicatedRegisters();
2052
2053 size_t EstimateSearchSpaceComplexity() const;
2054 void NarrowSearchSpaceByDetectingSupersets();
2055 void NarrowSearchSpaceByCollapsingUnrolledCode();
2056 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2057 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2058 void NarrowSearchSpaceByFilterPostInc();
2059 void NarrowSearchSpaceByDeletingCostlyFormulas();
2060 void NarrowSearchSpaceByPickingWinnerRegs();
2061 void NarrowSearchSpaceUsingHeuristics();
2062
2063 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2064 Cost &SolutionCost,
2065 SmallVectorImpl<const Formula *> &Workspace,
2066 const Cost &CurCost,
2067 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2068 DenseSet<const SCEV *> &VisitedRegs) const;
2069 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2070
2071 BasicBlock::iterator
2072 HoistInsertPosition(BasicBlock::iterator IP,
2073 const SmallVectorImpl<Instruction *> &Inputs) const;
2074 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2075 const LSRFixup &LF,
2076 const LSRUse &LU) const;
2077
2078 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2079 BasicBlock::iterator IP,
2080 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2081 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2082 const Formula &F,
2083 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2084 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2085 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2086 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2087
2088 public:
2089 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2090 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2091 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2092
getChanged() const2093 bool getChanged() const { return Changed; }
getScalarEvolutionIVs() const2094 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2095 return ScalarEvolutionIVs;
2096 }
2097
2098 void print_factors_and_types(raw_ostream &OS) const;
2099 void print_fixups(raw_ostream &OS) const;
2100 void print_uses(raw_ostream &OS) const;
2101 void print(raw_ostream &OS) const;
2102 void dump() const;
2103 };
2104
2105 } // end anonymous namespace
2106
2107 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2108 /// the cast operation.
OptimizeShadowIV()2109 void LSRInstance::OptimizeShadowIV() {
2110 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2111 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2112 return;
2113
2114 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2115 UI != E; /* empty */) {
2116 IVUsers::const_iterator CandidateUI = UI;
2117 ++UI;
2118 Instruction *ShadowUse = CandidateUI->getUser();
2119 Type *DestTy = nullptr;
2120 bool IsSigned = false;
2121
2122 /* If shadow use is a int->float cast then insert a second IV
2123 to eliminate this cast.
2124
2125 for (unsigned i = 0; i < n; ++i)
2126 foo((double)i);
2127
2128 is transformed into
2129
2130 double d = 0.0;
2131 for (unsigned i = 0; i < n; ++i, ++d)
2132 foo(d);
2133 */
2134 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2135 IsSigned = false;
2136 DestTy = UCast->getDestTy();
2137 }
2138 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2139 IsSigned = true;
2140 DestTy = SCast->getDestTy();
2141 }
2142 if (!DestTy) continue;
2143
2144 // If target does not support DestTy natively then do not apply
2145 // this transformation.
2146 if (!TTI.isTypeLegal(DestTy)) continue;
2147
2148 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2149 if (!PH) continue;
2150 if (PH->getNumIncomingValues() != 2) continue;
2151
2152 // If the calculation in integers overflows, the result in FP type will
2153 // differ. So we only can do this transformation if we are guaranteed to not
2154 // deal with overflowing values
2155 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2156 if (!AR) continue;
2157 if (IsSigned && !AR->hasNoSignedWrap()) continue;
2158 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2159
2160 Type *SrcTy = PH->getType();
2161 int Mantissa = DestTy->getFPMantissaWidth();
2162 if (Mantissa == -1) continue;
2163 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2164 continue;
2165
2166 unsigned Entry, Latch;
2167 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2168 Entry = 0;
2169 Latch = 1;
2170 } else {
2171 Entry = 1;
2172 Latch = 0;
2173 }
2174
2175 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2176 if (!Init) continue;
2177 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2178 (double)Init->getSExtValue() :
2179 (double)Init->getZExtValue());
2180
2181 BinaryOperator *Incr =
2182 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2183 if (!Incr) continue;
2184 if (Incr->getOpcode() != Instruction::Add
2185 && Incr->getOpcode() != Instruction::Sub)
2186 continue;
2187
2188 /* Initialize new IV, double d = 0.0 in above example. */
2189 ConstantInt *C = nullptr;
2190 if (Incr->getOperand(0) == PH)
2191 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2192 else if (Incr->getOperand(1) == PH)
2193 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2194 else
2195 continue;
2196
2197 if (!C) continue;
2198
2199 // Ignore negative constants, as the code below doesn't handle them
2200 // correctly. TODO: Remove this restriction.
2201 if (!C->getValue().isStrictlyPositive()) continue;
2202
2203 /* Add new PHINode. */
2204 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2205
2206 /* create new increment. '++d' in above example. */
2207 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2208 BinaryOperator *NewIncr =
2209 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2210 Instruction::FAdd : Instruction::FSub,
2211 NewPH, CFP, "IV.S.next.", Incr);
2212
2213 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2214 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2215
2216 /* Remove cast operation */
2217 ShadowUse->replaceAllUsesWith(NewPH);
2218 ShadowUse->eraseFromParent();
2219 Changed = true;
2220 break;
2221 }
2222 }
2223
2224 /// If Cond has an operand that is an expression of an IV, set the IV user and
2225 /// stride information and return true, otherwise return false.
FindIVUserForCond(ICmpInst * Cond,IVStrideUse * & CondUse)2226 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2227 for (IVStrideUse &U : IU)
2228 if (U.getUser() == Cond) {
2229 // NOTE: we could handle setcc instructions with multiple uses here, but
2230 // InstCombine does it as well for simple uses, it's not clear that it
2231 // occurs enough in real life to handle.
2232 CondUse = &U;
2233 return true;
2234 }
2235 return false;
2236 }
2237
2238 /// Rewrite the loop's terminating condition if it uses a max computation.
2239 ///
2240 /// This is a narrow solution to a specific, but acute, problem. For loops
2241 /// like this:
2242 ///
2243 /// i = 0;
2244 /// do {
2245 /// p[i] = 0.0;
2246 /// } while (++i < n);
2247 ///
2248 /// the trip count isn't just 'n', because 'n' might not be positive. And
2249 /// unfortunately this can come up even for loops where the user didn't use
2250 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2251 /// will commonly be lowered like this:
2252 ///
2253 /// if (n > 0) {
2254 /// i = 0;
2255 /// do {
2256 /// p[i] = 0.0;
2257 /// } while (++i < n);
2258 /// }
2259 ///
2260 /// and then it's possible for subsequent optimization to obscure the if
2261 /// test in such a way that indvars can't find it.
2262 ///
2263 /// When indvars can't find the if test in loops like this, it creates a
2264 /// max expression, which allows it to give the loop a canonical
2265 /// induction variable:
2266 ///
2267 /// i = 0;
2268 /// max = n < 1 ? 1 : n;
2269 /// do {
2270 /// p[i] = 0.0;
2271 /// } while (++i != max);
2272 ///
2273 /// Canonical induction variables are necessary because the loop passes
2274 /// are designed around them. The most obvious example of this is the
2275 /// LoopInfo analysis, which doesn't remember trip count values. It
2276 /// expects to be able to rediscover the trip count each time it is
2277 /// needed, and it does this using a simple analysis that only succeeds if
2278 /// the loop has a canonical induction variable.
2279 ///
2280 /// However, when it comes time to generate code, the maximum operation
2281 /// can be quite costly, especially if it's inside of an outer loop.
2282 ///
2283 /// This function solves this problem by detecting this type of loop and
2284 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2285 /// the instructions for the maximum computation.
OptimizeMax(ICmpInst * Cond,IVStrideUse * & CondUse)2286 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2287 // Check that the loop matches the pattern we're looking for.
2288 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2289 Cond->getPredicate() != CmpInst::ICMP_NE)
2290 return Cond;
2291
2292 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2293 if (!Sel || !Sel->hasOneUse()) return Cond;
2294
2295 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2296 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2297 return Cond;
2298 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2299
2300 // Add one to the backedge-taken count to get the trip count.
2301 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2302 if (IterationCount != SE.getSCEV(Sel)) return Cond;
2303
2304 // Check for a max calculation that matches the pattern. There's no check
2305 // for ICMP_ULE here because the comparison would be with zero, which
2306 // isn't interesting.
2307 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2308 const SCEVNAryExpr *Max = nullptr;
2309 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2310 Pred = ICmpInst::ICMP_SLE;
2311 Max = S;
2312 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2313 Pred = ICmpInst::ICMP_SLT;
2314 Max = S;
2315 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2316 Pred = ICmpInst::ICMP_ULT;
2317 Max = U;
2318 } else {
2319 // No match; bail.
2320 return Cond;
2321 }
2322
2323 // To handle a max with more than two operands, this optimization would
2324 // require additional checking and setup.
2325 if (Max->getNumOperands() != 2)
2326 return Cond;
2327
2328 const SCEV *MaxLHS = Max->getOperand(0);
2329 const SCEV *MaxRHS = Max->getOperand(1);
2330
2331 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2332 // for a comparison with 1. For <= and >=, a comparison with zero.
2333 if (!MaxLHS ||
2334 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2335 return Cond;
2336
2337 // Check the relevant induction variable for conformance to
2338 // the pattern.
2339 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2340 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2341 if (!AR || !AR->isAffine() ||
2342 AR->getStart() != One ||
2343 AR->getStepRecurrence(SE) != One)
2344 return Cond;
2345
2346 assert(AR->getLoop() == L &&
2347 "Loop condition operand is an addrec in a different loop!");
2348
2349 // Check the right operand of the select, and remember it, as it will
2350 // be used in the new comparison instruction.
2351 Value *NewRHS = nullptr;
2352 if (ICmpInst::isTrueWhenEqual(Pred)) {
2353 // Look for n+1, and grab n.
2354 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2355 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2356 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2357 NewRHS = BO->getOperand(0);
2358 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2359 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2360 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2361 NewRHS = BO->getOperand(0);
2362 if (!NewRHS)
2363 return Cond;
2364 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2365 NewRHS = Sel->getOperand(1);
2366 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2367 NewRHS = Sel->getOperand(2);
2368 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2369 NewRHS = SU->getValue();
2370 else
2371 // Max doesn't match expected pattern.
2372 return Cond;
2373
2374 // Determine the new comparison opcode. It may be signed or unsigned,
2375 // and the original comparison may be either equality or inequality.
2376 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2377 Pred = CmpInst::getInversePredicate(Pred);
2378
2379 // Ok, everything looks ok to change the condition into an SLT or SGE and
2380 // delete the max calculation.
2381 ICmpInst *NewCond =
2382 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2383
2384 // Delete the max calculation instructions.
2385 NewCond->setDebugLoc(Cond->getDebugLoc());
2386 Cond->replaceAllUsesWith(NewCond);
2387 CondUse->setUser(NewCond);
2388 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2389 Cond->eraseFromParent();
2390 Sel->eraseFromParent();
2391 if (Cmp->use_empty())
2392 Cmp->eraseFromParent();
2393 return NewCond;
2394 }
2395
2396 /// Change loop terminating condition to use the postinc iv when possible.
2397 void
OptimizeLoopTermCond()2398 LSRInstance::OptimizeLoopTermCond() {
2399 SmallPtrSet<Instruction *, 4> PostIncs;
2400
2401 // We need a different set of heuristics for rotated and non-rotated loops.
2402 // If a loop is rotated then the latch is also the backedge, so inserting
2403 // post-inc expressions just before the latch is ideal. To reduce live ranges
2404 // it also makes sense to rewrite terminating conditions to use post-inc
2405 // expressions.
2406 //
2407 // If the loop is not rotated then the latch is not a backedge; the latch
2408 // check is done in the loop head. Adding post-inc expressions before the
2409 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2410 // in the loop body. In this case we do *not* want to use post-inc expressions
2411 // in the latch check, and we want to insert post-inc expressions before
2412 // the backedge.
2413 BasicBlock *LatchBlock = L->getLoopLatch();
2414 SmallVector<BasicBlock*, 8> ExitingBlocks;
2415 L->getExitingBlocks(ExitingBlocks);
2416 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2417 return LatchBlock != BB;
2418 })) {
2419 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2420 IVIncInsertPos = LatchBlock->getTerminator();
2421 return;
2422 }
2423
2424 // Otherwise treat this as a rotated loop.
2425 for (BasicBlock *ExitingBlock : ExitingBlocks) {
2426 // Get the terminating condition for the loop if possible. If we
2427 // can, we want to change it to use a post-incremented version of its
2428 // induction variable, to allow coalescing the live ranges for the IV into
2429 // one register value.
2430
2431 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2432 if (!TermBr)
2433 continue;
2434 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2435 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2436 continue;
2437
2438 // Search IVUsesByStride to find Cond's IVUse if there is one.
2439 IVStrideUse *CondUse = nullptr;
2440 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2441 if (!FindIVUserForCond(Cond, CondUse))
2442 continue;
2443
2444 // If the trip count is computed in terms of a max (due to ScalarEvolution
2445 // being unable to find a sufficient guard, for example), change the loop
2446 // comparison to use SLT or ULT instead of NE.
2447 // One consequence of doing this now is that it disrupts the count-down
2448 // optimization. That's not always a bad thing though, because in such
2449 // cases it may still be worthwhile to avoid a max.
2450 Cond = OptimizeMax(Cond, CondUse);
2451
2452 // If this exiting block dominates the latch block, it may also use
2453 // the post-inc value if it won't be shared with other uses.
2454 // Check for dominance.
2455 if (!DT.dominates(ExitingBlock, LatchBlock))
2456 continue;
2457
2458 // Conservatively avoid trying to use the post-inc value in non-latch
2459 // exits if there may be pre-inc users in intervening blocks.
2460 if (LatchBlock != ExitingBlock)
2461 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2462 // Test if the use is reachable from the exiting block. This dominator
2463 // query is a conservative approximation of reachability.
2464 if (&*UI != CondUse &&
2465 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2466 // Conservatively assume there may be reuse if the quotient of their
2467 // strides could be a legal scale.
2468 const SCEV *A = IU.getStride(*CondUse, L);
2469 const SCEV *B = IU.getStride(*UI, L);
2470 if (!A || !B) continue;
2471 if (SE.getTypeSizeInBits(A->getType()) !=
2472 SE.getTypeSizeInBits(B->getType())) {
2473 if (SE.getTypeSizeInBits(A->getType()) >
2474 SE.getTypeSizeInBits(B->getType()))
2475 B = SE.getSignExtendExpr(B, A->getType());
2476 else
2477 A = SE.getSignExtendExpr(A, B->getType());
2478 }
2479 if (const SCEVConstant *D =
2480 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2481 const ConstantInt *C = D->getValue();
2482 // Stride of one or negative one can have reuse with non-addresses.
2483 if (C->isOne() || C->isMinusOne())
2484 goto decline_post_inc;
2485 // Avoid weird situations.
2486 if (C->getValue().getMinSignedBits() >= 64 ||
2487 C->getValue().isMinSignedValue())
2488 goto decline_post_inc;
2489 // Check for possible scaled-address reuse.
2490 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2491 MemAccessTy AccessTy = getAccessType(
2492 TTI, UI->getUser(), UI->getOperandValToReplace());
2493 int64_t Scale = C->getSExtValue();
2494 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2495 /*BaseOffset=*/0,
2496 /*HasBaseReg=*/false, Scale,
2497 AccessTy.AddrSpace))
2498 goto decline_post_inc;
2499 Scale = -Scale;
2500 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2501 /*BaseOffset=*/0,
2502 /*HasBaseReg=*/false, Scale,
2503 AccessTy.AddrSpace))
2504 goto decline_post_inc;
2505 }
2506 }
2507 }
2508
2509 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2510 << *Cond << '\n');
2511
2512 // It's possible for the setcc instruction to be anywhere in the loop, and
2513 // possible for it to have multiple users. If it is not immediately before
2514 // the exiting block branch, move it.
2515 if (Cond->getNextNonDebugInstruction() != TermBr) {
2516 if (Cond->hasOneUse()) {
2517 Cond->moveBefore(TermBr);
2518 } else {
2519 // Clone the terminating condition and insert into the loopend.
2520 ICmpInst *OldCond = Cond;
2521 Cond = cast<ICmpInst>(Cond->clone());
2522 Cond->setName(L->getHeader()->getName() + ".termcond");
2523 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2524
2525 // Clone the IVUse, as the old use still exists!
2526 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2527 TermBr->replaceUsesOfWith(OldCond, Cond);
2528 }
2529 }
2530
2531 // If we get to here, we know that we can transform the setcc instruction to
2532 // use the post-incremented version of the IV, allowing us to coalesce the
2533 // live ranges for the IV correctly.
2534 CondUse->transformToPostInc(L);
2535 Changed = true;
2536
2537 PostIncs.insert(Cond);
2538 decline_post_inc:;
2539 }
2540
2541 // Determine an insertion point for the loop induction variable increment. It
2542 // must dominate all the post-inc comparisons we just set up, and it must
2543 // dominate the loop latch edge.
2544 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2545 for (Instruction *Inst : PostIncs) {
2546 BasicBlock *BB =
2547 DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2548 Inst->getParent());
2549 if (BB == Inst->getParent())
2550 IVIncInsertPos = Inst;
2551 else if (BB != IVIncInsertPos->getParent())
2552 IVIncInsertPos = BB->getTerminator();
2553 }
2554 }
2555
2556 /// Determine if the given use can accommodate a fixup at the given offset and
2557 /// other details. If so, update the use and return true.
reconcileNewOffset(LSRUse & LU,int64_t NewOffset,bool HasBaseReg,LSRUse::KindType Kind,MemAccessTy AccessTy)2558 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2559 bool HasBaseReg, LSRUse::KindType Kind,
2560 MemAccessTy AccessTy) {
2561 int64_t NewMinOffset = LU.MinOffset;
2562 int64_t NewMaxOffset = LU.MaxOffset;
2563 MemAccessTy NewAccessTy = AccessTy;
2564
2565 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2566 // something conservative, however this can pessimize in the case that one of
2567 // the uses will have all its uses outside the loop, for example.
2568 if (LU.Kind != Kind)
2569 return false;
2570
2571 // Check for a mismatched access type, and fall back conservatively as needed.
2572 // TODO: Be less conservative when the type is similar and can use the same
2573 // addressing modes.
2574 if (Kind == LSRUse::Address) {
2575 if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2576 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2577 AccessTy.AddrSpace);
2578 }
2579 }
2580
2581 // Conservatively assume HasBaseReg is true for now.
2582 if (NewOffset < LU.MinOffset) {
2583 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2584 LU.MaxOffset - NewOffset, HasBaseReg))
2585 return false;
2586 NewMinOffset = NewOffset;
2587 } else if (NewOffset > LU.MaxOffset) {
2588 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2589 NewOffset - LU.MinOffset, HasBaseReg))
2590 return false;
2591 NewMaxOffset = NewOffset;
2592 }
2593
2594 // Update the use.
2595 LU.MinOffset = NewMinOffset;
2596 LU.MaxOffset = NewMaxOffset;
2597 LU.AccessTy = NewAccessTy;
2598 return true;
2599 }
2600
2601 /// Return an LSRUse index and an offset value for a fixup which needs the given
2602 /// expression, with the given kind and optional access type. Either reuse an
2603 /// existing use or create a new one, as needed.
getUse(const SCEV * & Expr,LSRUse::KindType Kind,MemAccessTy AccessTy)2604 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2605 LSRUse::KindType Kind,
2606 MemAccessTy AccessTy) {
2607 const SCEV *Copy = Expr;
2608 int64_t Offset = ExtractImmediate(Expr, SE);
2609
2610 // Basic uses can't accept any offset, for example.
2611 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2612 Offset, /*HasBaseReg=*/ true)) {
2613 Expr = Copy;
2614 Offset = 0;
2615 }
2616
2617 std::pair<UseMapTy::iterator, bool> P =
2618 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2619 if (!P.second) {
2620 // A use already existed with this base.
2621 size_t LUIdx = P.first->second;
2622 LSRUse &LU = Uses[LUIdx];
2623 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2624 // Reuse this use.
2625 return std::make_pair(LUIdx, Offset);
2626 }
2627
2628 // Create a new use.
2629 size_t LUIdx = Uses.size();
2630 P.first->second = LUIdx;
2631 Uses.push_back(LSRUse(Kind, AccessTy));
2632 LSRUse &LU = Uses[LUIdx];
2633
2634 LU.MinOffset = Offset;
2635 LU.MaxOffset = Offset;
2636 return std::make_pair(LUIdx, Offset);
2637 }
2638
2639 /// Delete the given use from the Uses list.
DeleteUse(LSRUse & LU,size_t LUIdx)2640 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2641 if (&LU != &Uses.back())
2642 std::swap(LU, Uses.back());
2643 Uses.pop_back();
2644
2645 // Update RegUses.
2646 RegUses.swapAndDropUse(LUIdx, Uses.size());
2647 }
2648
2649 /// Look for a use distinct from OrigLU which is has a formula that has the same
2650 /// registers as the given formula.
2651 LSRUse *
FindUseWithSimilarFormula(const Formula & OrigF,const LSRUse & OrigLU)2652 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2653 const LSRUse &OrigLU) {
2654 // Search all uses for the formula. This could be more clever.
2655 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2656 LSRUse &LU = Uses[LUIdx];
2657 // Check whether this use is close enough to OrigLU, to see whether it's
2658 // worthwhile looking through its formulae.
2659 // Ignore ICmpZero uses because they may contain formulae generated by
2660 // GenerateICmpZeroScales, in which case adding fixup offsets may
2661 // be invalid.
2662 if (&LU != &OrigLU &&
2663 LU.Kind != LSRUse::ICmpZero &&
2664 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2665 LU.WidestFixupType == OrigLU.WidestFixupType &&
2666 LU.HasFormulaWithSameRegs(OrigF)) {
2667 // Scan through this use's formulae.
2668 for (const Formula &F : LU.Formulae) {
2669 // Check to see if this formula has the same registers and symbols
2670 // as OrigF.
2671 if (F.BaseRegs == OrigF.BaseRegs &&
2672 F.ScaledReg == OrigF.ScaledReg &&
2673 F.BaseGV == OrigF.BaseGV &&
2674 F.Scale == OrigF.Scale &&
2675 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2676 if (F.BaseOffset == 0)
2677 return &LU;
2678 // This is the formula where all the registers and symbols matched;
2679 // there aren't going to be any others. Since we declined it, we
2680 // can skip the rest of the formulae and proceed to the next LSRUse.
2681 break;
2682 }
2683 }
2684 }
2685 }
2686
2687 // Nothing looked good.
2688 return nullptr;
2689 }
2690
CollectInterestingTypesAndFactors()2691 void LSRInstance::CollectInterestingTypesAndFactors() {
2692 SmallSetVector<const SCEV *, 4> Strides;
2693
2694 // Collect interesting types and strides.
2695 SmallVector<const SCEV *, 4> Worklist;
2696 for (const IVStrideUse &U : IU) {
2697 const SCEV *Expr = IU.getExpr(U);
2698
2699 // Collect interesting types.
2700 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2701
2702 // Add strides for mentioned loops.
2703 Worklist.push_back(Expr);
2704 do {
2705 const SCEV *S = Worklist.pop_back_val();
2706 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2707 if (AR->getLoop() == L)
2708 Strides.insert(AR->getStepRecurrence(SE));
2709 Worklist.push_back(AR->getStart());
2710 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2711 Worklist.append(Add->op_begin(), Add->op_end());
2712 }
2713 } while (!Worklist.empty());
2714 }
2715
2716 // Compute interesting factors from the set of interesting strides.
2717 for (SmallSetVector<const SCEV *, 4>::const_iterator
2718 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2719 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2720 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2721 const SCEV *OldStride = *I;
2722 const SCEV *NewStride = *NewStrideIter;
2723
2724 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2725 SE.getTypeSizeInBits(NewStride->getType())) {
2726 if (SE.getTypeSizeInBits(OldStride->getType()) >
2727 SE.getTypeSizeInBits(NewStride->getType()))
2728 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2729 else
2730 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2731 }
2732 if (const SCEVConstant *Factor =
2733 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2734 SE, true))) {
2735 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2736 Factors.insert(Factor->getAPInt().getSExtValue());
2737 } else if (const SCEVConstant *Factor =
2738 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2739 NewStride,
2740 SE, true))) {
2741 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2742 Factors.insert(Factor->getAPInt().getSExtValue());
2743 }
2744 }
2745
2746 // If all uses use the same type, don't bother looking for truncation-based
2747 // reuse.
2748 if (Types.size() == 1)
2749 Types.clear();
2750
2751 LLVM_DEBUG(print_factors_and_types(dbgs()));
2752 }
2753
2754 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2755 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2756 /// IVStrideUses, we could partially skip this.
2757 static User::op_iterator
findIVOperand(User::op_iterator OI,User::op_iterator OE,Loop * L,ScalarEvolution & SE)2758 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2759 Loop *L, ScalarEvolution &SE) {
2760 for(; OI != OE; ++OI) {
2761 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2762 if (!SE.isSCEVable(Oper->getType()))
2763 continue;
2764
2765 if (const SCEVAddRecExpr *AR =
2766 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2767 if (AR->getLoop() == L)
2768 break;
2769 }
2770 }
2771 }
2772 return OI;
2773 }
2774
2775 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2776 /// a convenient helper.
getWideOperand(Value * Oper)2777 static Value *getWideOperand(Value *Oper) {
2778 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2779 return Trunc->getOperand(0);
2780 return Oper;
2781 }
2782
2783 /// Return true if we allow an IV chain to include both types.
isCompatibleIVType(Value * LVal,Value * RVal)2784 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2785 Type *LType = LVal->getType();
2786 Type *RType = RVal->getType();
2787 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2788 // Different address spaces means (possibly)
2789 // different types of the pointer implementation,
2790 // e.g. i16 vs i32 so disallow that.
2791 (LType->getPointerAddressSpace() ==
2792 RType->getPointerAddressSpace()));
2793 }
2794
2795 /// Return an approximation of this SCEV expression's "base", or NULL for any
2796 /// constant. Returning the expression itself is conservative. Returning a
2797 /// deeper subexpression is more precise and valid as long as it isn't less
2798 /// complex than another subexpression. For expressions involving multiple
2799 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2800 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2801 /// IVInc==b-a.
2802 ///
2803 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2804 /// SCEVUnknown, we simply return the rightmost SCEV operand.
getExprBase(const SCEV * S)2805 static const SCEV *getExprBase(const SCEV *S) {
2806 switch (S->getSCEVType()) {
2807 default: // uncluding scUnknown.
2808 return S;
2809 case scConstant:
2810 return nullptr;
2811 case scTruncate:
2812 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2813 case scZeroExtend:
2814 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2815 case scSignExtend:
2816 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2817 case scAddExpr: {
2818 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2819 // there's nothing more complex.
2820 // FIXME: not sure if we want to recognize negation.
2821 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2822 for (const SCEV *SubExpr : reverse(Add->operands())) {
2823 if (SubExpr->getSCEVType() == scAddExpr)
2824 return getExprBase(SubExpr);
2825
2826 if (SubExpr->getSCEVType() != scMulExpr)
2827 return SubExpr;
2828 }
2829 return S; // all operands are scaled, be conservative.
2830 }
2831 case scAddRecExpr:
2832 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2833 }
2834 llvm_unreachable("Unknown SCEV kind!");
2835 }
2836
2837 /// Return true if the chain increment is profitable to expand into a loop
2838 /// invariant value, which may require its own register. A profitable chain
2839 /// increment will be an offset relative to the same base. We allow such offsets
2840 /// to potentially be used as chain increment as long as it's not obviously
2841 /// expensive to expand using real instructions.
isProfitableIncrement(const SCEV * OperExpr,const SCEV * IncExpr,ScalarEvolution & SE)2842 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2843 const SCEV *IncExpr,
2844 ScalarEvolution &SE) {
2845 // Aggressively form chains when -stress-ivchain.
2846 if (StressIVChain)
2847 return true;
2848
2849 // Do not replace a constant offset from IV head with a nonconstant IV
2850 // increment.
2851 if (!isa<SCEVConstant>(IncExpr)) {
2852 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2853 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2854 return false;
2855 }
2856
2857 SmallPtrSet<const SCEV*, 8> Processed;
2858 return !isHighCostExpansion(IncExpr, Processed, SE);
2859 }
2860
2861 /// Return true if the number of registers needed for the chain is estimated to
2862 /// be less than the number required for the individual IV users. First prohibit
2863 /// any IV users that keep the IV live across increments (the Users set should
2864 /// be empty). Next count the number and type of increments in the chain.
2865 ///
2866 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2867 /// effectively use postinc addressing modes. Only consider it profitable it the
2868 /// increments can be computed in fewer registers when chained.
2869 ///
2870 /// TODO: Consider IVInc free if it's already used in another chains.
isProfitableChain(IVChain & Chain,SmallPtrSetImpl<Instruction * > & Users,ScalarEvolution & SE,const TargetTransformInfo & TTI)2871 static bool isProfitableChain(IVChain &Chain,
2872 SmallPtrSetImpl<Instruction *> &Users,
2873 ScalarEvolution &SE,
2874 const TargetTransformInfo &TTI) {
2875 if (StressIVChain)
2876 return true;
2877
2878 if (!Chain.hasIncs())
2879 return false;
2880
2881 if (!Users.empty()) {
2882 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2883 for (Instruction *Inst
2884 : Users) { dbgs() << " " << *Inst << "\n"; });
2885 return false;
2886 }
2887 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2888
2889 // The chain itself may require a register, so intialize cost to 1.
2890 int cost = 1;
2891
2892 // A complete chain likely eliminates the need for keeping the original IV in
2893 // a register. LSR does not currently know how to form a complete chain unless
2894 // the header phi already exists.
2895 if (isa<PHINode>(Chain.tailUserInst())
2896 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2897 --cost;
2898 }
2899 const SCEV *LastIncExpr = nullptr;
2900 unsigned NumConstIncrements = 0;
2901 unsigned NumVarIncrements = 0;
2902 unsigned NumReusedIncrements = 0;
2903
2904 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2905 return true;
2906
2907 for (const IVInc &Inc : Chain) {
2908 if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2909 return true;
2910 if (Inc.IncExpr->isZero())
2911 continue;
2912
2913 // Incrementing by zero or some constant is neutral. We assume constants can
2914 // be folded into an addressing mode or an add's immediate operand.
2915 if (isa<SCEVConstant>(Inc.IncExpr)) {
2916 ++NumConstIncrements;
2917 continue;
2918 }
2919
2920 if (Inc.IncExpr == LastIncExpr)
2921 ++NumReusedIncrements;
2922 else
2923 ++NumVarIncrements;
2924
2925 LastIncExpr = Inc.IncExpr;
2926 }
2927 // An IV chain with a single increment is handled by LSR's postinc
2928 // uses. However, a chain with multiple increments requires keeping the IV's
2929 // value live longer than it needs to be if chained.
2930 if (NumConstIncrements > 1)
2931 --cost;
2932
2933 // Materializing increment expressions in the preheader that didn't exist in
2934 // the original code may cost a register. For example, sign-extended array
2935 // indices can produce ridiculous increments like this:
2936 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2937 cost += NumVarIncrements;
2938
2939 // Reusing variable increments likely saves a register to hold the multiple of
2940 // the stride.
2941 cost -= NumReusedIncrements;
2942
2943 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2944 << "\n");
2945
2946 return cost < 0;
2947 }
2948
2949 /// Add this IV user to an existing chain or make it the head of a new chain.
ChainInstruction(Instruction * UserInst,Instruction * IVOper,SmallVectorImpl<ChainUsers> & ChainUsersVec)2950 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2951 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2952 // When IVs are used as types of varying widths, they are generally converted
2953 // to a wider type with some uses remaining narrow under a (free) trunc.
2954 Value *const NextIV = getWideOperand(IVOper);
2955 const SCEV *const OperExpr = SE.getSCEV(NextIV);
2956 const SCEV *const OperExprBase = getExprBase(OperExpr);
2957
2958 // Visit all existing chains. Check if its IVOper can be computed as a
2959 // profitable loop invariant increment from the last link in the Chain.
2960 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2961 const SCEV *LastIncExpr = nullptr;
2962 for (; ChainIdx < NChains; ++ChainIdx) {
2963 IVChain &Chain = IVChainVec[ChainIdx];
2964
2965 // Prune the solution space aggressively by checking that both IV operands
2966 // are expressions that operate on the same unscaled SCEVUnknown. This
2967 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2968 // first avoids creating extra SCEV expressions.
2969 if (!StressIVChain && Chain.ExprBase != OperExprBase)
2970 continue;
2971
2972 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2973 if (!isCompatibleIVType(PrevIV, NextIV))
2974 continue;
2975
2976 // A phi node terminates a chain.
2977 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2978 continue;
2979
2980 // The increment must be loop-invariant so it can be kept in a register.
2981 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2982 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2983 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2984 continue;
2985
2986 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2987 LastIncExpr = IncExpr;
2988 break;
2989 }
2990 }
2991 // If we haven't found a chain, create a new one, unless we hit the max. Don't
2992 // bother for phi nodes, because they must be last in the chain.
2993 if (ChainIdx == NChains) {
2994 if (isa<PHINode>(UserInst))
2995 return;
2996 if (NChains >= MaxChains && !StressIVChain) {
2997 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2998 return;
2999 }
3000 LastIncExpr = OperExpr;
3001 // IVUsers may have skipped over sign/zero extensions. We don't currently
3002 // attempt to form chains involving extensions unless they can be hoisted
3003 // into this loop's AddRec.
3004 if (!isa<SCEVAddRecExpr>(LastIncExpr))
3005 return;
3006 ++NChains;
3007 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3008 OperExprBase));
3009 ChainUsersVec.resize(NChains);
3010 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3011 << ") IV=" << *LastIncExpr << "\n");
3012 } else {
3013 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
3014 << ") IV+" << *LastIncExpr << "\n");
3015 // Add this IV user to the end of the chain.
3016 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3017 }
3018 IVChain &Chain = IVChainVec[ChainIdx];
3019
3020 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3021 // This chain's NearUsers become FarUsers.
3022 if (!LastIncExpr->isZero()) {
3023 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3024 NearUsers.end());
3025 NearUsers.clear();
3026 }
3027
3028 // All other uses of IVOperand become near uses of the chain.
3029 // We currently ignore intermediate values within SCEV expressions, assuming
3030 // they will eventually be used be the current chain, or can be computed
3031 // from one of the chain increments. To be more precise we could
3032 // transitively follow its user and only add leaf IV users to the set.
3033 for (User *U : IVOper->users()) {
3034 Instruction *OtherUse = dyn_cast<Instruction>(U);
3035 if (!OtherUse)
3036 continue;
3037 // Uses in the chain will no longer be uses if the chain is formed.
3038 // Include the head of the chain in this iteration (not Chain.begin()).
3039 IVChain::const_iterator IncIter = Chain.Incs.begin();
3040 IVChain::const_iterator IncEnd = Chain.Incs.end();
3041 for( ; IncIter != IncEnd; ++IncIter) {
3042 if (IncIter->UserInst == OtherUse)
3043 break;
3044 }
3045 if (IncIter != IncEnd)
3046 continue;
3047
3048 if (SE.isSCEVable(OtherUse->getType())
3049 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3050 && IU.isIVUserOrOperand(OtherUse)) {
3051 continue;
3052 }
3053 NearUsers.insert(OtherUse);
3054 }
3055
3056 // Since this user is part of the chain, it's no longer considered a use
3057 // of the chain.
3058 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3059 }
3060
3061 /// Populate the vector of Chains.
3062 ///
3063 /// This decreases ILP at the architecture level. Targets with ample registers,
3064 /// multiple memory ports, and no register renaming probably don't want
3065 /// this. However, such targets should probably disable LSR altogether.
3066 ///
3067 /// The job of LSR is to make a reasonable choice of induction variables across
3068 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3069 /// ILP *within the loop* if the target wants it.
3070 ///
3071 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3072 /// will not reorder memory operations, it will recognize this as a chain, but
3073 /// will generate redundant IV increments. Ideally this would be corrected later
3074 /// by a smart scheduler:
3075 /// = A[i]
3076 /// = A[i+x]
3077 /// A[i] =
3078 /// A[i+x] =
3079 ///
3080 /// TODO: Walk the entire domtree within this loop, not just the path to the
3081 /// loop latch. This will discover chains on side paths, but requires
3082 /// maintaining multiple copies of the Chains state.
CollectChains()3083 void LSRInstance::CollectChains() {
3084 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3085 SmallVector<ChainUsers, 8> ChainUsersVec;
3086
3087 SmallVector<BasicBlock *,8> LatchPath;
3088 BasicBlock *LoopHeader = L->getHeader();
3089 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3090 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3091 LatchPath.push_back(Rung->getBlock());
3092 }
3093 LatchPath.push_back(LoopHeader);
3094
3095 // Walk the instruction stream from the loop header to the loop latch.
3096 for (BasicBlock *BB : reverse(LatchPath)) {
3097 for (Instruction &I : *BB) {
3098 // Skip instructions that weren't seen by IVUsers analysis.
3099 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3100 continue;
3101
3102 // Ignore users that are part of a SCEV expression. This way we only
3103 // consider leaf IV Users. This effectively rediscovers a portion of
3104 // IVUsers analysis but in program order this time.
3105 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3106 continue;
3107
3108 // Remove this instruction from any NearUsers set it may be in.
3109 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3110 ChainIdx < NChains; ++ChainIdx) {
3111 ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3112 }
3113 // Search for operands that can be chained.
3114 SmallPtrSet<Instruction*, 4> UniqueOperands;
3115 User::op_iterator IVOpEnd = I.op_end();
3116 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3117 while (IVOpIter != IVOpEnd) {
3118 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3119 if (UniqueOperands.insert(IVOpInst).second)
3120 ChainInstruction(&I, IVOpInst, ChainUsersVec);
3121 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3122 }
3123 } // Continue walking down the instructions.
3124 } // Continue walking down the domtree.
3125 // Visit phi backedges to determine if the chain can generate the IV postinc.
3126 for (PHINode &PN : L->getHeader()->phis()) {
3127 if (!SE.isSCEVable(PN.getType()))
3128 continue;
3129
3130 Instruction *IncV =
3131 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3132 if (IncV)
3133 ChainInstruction(&PN, IncV, ChainUsersVec);
3134 }
3135 // Remove any unprofitable chains.
3136 unsigned ChainIdx = 0;
3137 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3138 UsersIdx < NChains; ++UsersIdx) {
3139 if (!isProfitableChain(IVChainVec[UsersIdx],
3140 ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3141 continue;
3142 // Preserve the chain at UsesIdx.
3143 if (ChainIdx != UsersIdx)
3144 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3145 FinalizeChain(IVChainVec[ChainIdx]);
3146 ++ChainIdx;
3147 }
3148 IVChainVec.resize(ChainIdx);
3149 }
3150
FinalizeChain(IVChain & Chain)3151 void LSRInstance::FinalizeChain(IVChain &Chain) {
3152 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3153 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3154
3155 for (const IVInc &Inc : Chain) {
3156 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n");
3157 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3158 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3159 IVIncSet.insert(UseI);
3160 }
3161 }
3162
3163 /// Return true if the IVInc can be folded into an addressing mode.
canFoldIVIncExpr(const SCEV * IncExpr,Instruction * UserInst,Value * Operand,const TargetTransformInfo & TTI)3164 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3165 Value *Operand, const TargetTransformInfo &TTI) {
3166 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3167 if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3168 return false;
3169
3170 if (IncConst->getAPInt().getMinSignedBits() > 64)
3171 return false;
3172
3173 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3174 int64_t IncOffset = IncConst->getValue()->getSExtValue();
3175 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3176 IncOffset, /*HasBaseReg=*/false))
3177 return false;
3178
3179 return true;
3180 }
3181
3182 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3183 /// user's operand from the previous IV user's operand.
GenerateIVChain(const IVChain & Chain,SmallVectorImpl<WeakTrackingVH> & DeadInsts)3184 void LSRInstance::GenerateIVChain(const IVChain &Chain,
3185 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3186 // Find the new IVOperand for the head of the chain. It may have been replaced
3187 // by LSR.
3188 const IVInc &Head = Chain.Incs[0];
3189 User::op_iterator IVOpEnd = Head.UserInst->op_end();
3190 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3191 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3192 IVOpEnd, L, SE);
3193 Value *IVSrc = nullptr;
3194 while (IVOpIter != IVOpEnd) {
3195 IVSrc = getWideOperand(*IVOpIter);
3196
3197 // If this operand computes the expression that the chain needs, we may use
3198 // it. (Check this after setting IVSrc which is used below.)
3199 //
3200 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3201 // narrow for the chain, so we can no longer use it. We do allow using a
3202 // wider phi, assuming the LSR checked for free truncation. In that case we
3203 // should already have a truncate on this operand such that
3204 // getSCEV(IVSrc) == IncExpr.
3205 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3206 || SE.getSCEV(IVSrc) == Head.IncExpr) {
3207 break;
3208 }
3209 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3210 }
3211 if (IVOpIter == IVOpEnd) {
3212 // Gracefully give up on this chain.
3213 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3214 return;
3215 }
3216 assert(IVSrc && "Failed to find IV chain source");
3217
3218 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3219 Type *IVTy = IVSrc->getType();
3220 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3221 const SCEV *LeftOverExpr = nullptr;
3222 for (const IVInc &Inc : Chain) {
3223 Instruction *InsertPt = Inc.UserInst;
3224 if (isa<PHINode>(InsertPt))
3225 InsertPt = L->getLoopLatch()->getTerminator();
3226
3227 // IVOper will replace the current IV User's operand. IVSrc is the IV
3228 // value currently held in a register.
3229 Value *IVOper = IVSrc;
3230 if (!Inc.IncExpr->isZero()) {
3231 // IncExpr was the result of subtraction of two narrow values, so must
3232 // be signed.
3233 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3234 LeftOverExpr = LeftOverExpr ?
3235 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3236 }
3237 if (LeftOverExpr && !LeftOverExpr->isZero()) {
3238 // Expand the IV increment.
3239 Rewriter.clearPostInc();
3240 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3241 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3242 SE.getUnknown(IncV));
3243 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3244
3245 // If an IV increment can't be folded, use it as the next IV value.
3246 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3247 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3248 IVSrc = IVOper;
3249 LeftOverExpr = nullptr;
3250 }
3251 }
3252 Type *OperTy = Inc.IVOperand->getType();
3253 if (IVTy != OperTy) {
3254 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3255 "cannot extend a chained IV");
3256 IRBuilder<> Builder(InsertPt);
3257 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3258 }
3259 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3260 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3261 DeadInsts.emplace_back(OperandIsInstr);
3262 }
3263 // If LSR created a new, wider phi, we may also replace its postinc. We only
3264 // do this if we also found a wide value for the head of the chain.
3265 if (isa<PHINode>(Chain.tailUserInst())) {
3266 for (PHINode &Phi : L->getHeader()->phis()) {
3267 if (!isCompatibleIVType(&Phi, IVSrc))
3268 continue;
3269 Instruction *PostIncV = dyn_cast<Instruction>(
3270 Phi.getIncomingValueForBlock(L->getLoopLatch()));
3271 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3272 continue;
3273 Value *IVOper = IVSrc;
3274 Type *PostIncTy = PostIncV->getType();
3275 if (IVTy != PostIncTy) {
3276 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3277 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3278 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3279 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3280 }
3281 Phi.replaceUsesOfWith(PostIncV, IVOper);
3282 DeadInsts.emplace_back(PostIncV);
3283 }
3284 }
3285 }
3286
CollectFixupsAndInitialFormulae()3287 void LSRInstance::CollectFixupsAndInitialFormulae() {
3288 BranchInst *ExitBranch = nullptr;
3289 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3290
3291 for (const IVStrideUse &U : IU) {
3292 Instruction *UserInst = U.getUser();
3293 // Skip IV users that are part of profitable IV Chains.
3294 User::op_iterator UseI =
3295 find(UserInst->operands(), U.getOperandValToReplace());
3296 assert(UseI != UserInst->op_end() && "cannot find IV operand");
3297 if (IVIncSet.count(UseI)) {
3298 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3299 continue;
3300 }
3301
3302 LSRUse::KindType Kind = LSRUse::Basic;
3303 MemAccessTy AccessTy;
3304 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3305 Kind = LSRUse::Address;
3306 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3307 }
3308
3309 const SCEV *S = IU.getExpr(U);
3310 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3311
3312 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3313 // (N - i == 0), and this allows (N - i) to be the expression that we work
3314 // with rather than just N or i, so we can consider the register
3315 // requirements for both N and i at the same time. Limiting this code to
3316 // equality icmps is not a problem because all interesting loops use
3317 // equality icmps, thanks to IndVarSimplify.
3318 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3319 // If CI can be saved in some target, like replaced inside hardware loop
3320 // in PowerPC, no need to generate initial formulae for it.
3321 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3322 continue;
3323 if (CI->isEquality()) {
3324 // Swap the operands if needed to put the OperandValToReplace on the
3325 // left, for consistency.
3326 Value *NV = CI->getOperand(1);
3327 if (NV == U.getOperandValToReplace()) {
3328 CI->setOperand(1, CI->getOperand(0));
3329 CI->setOperand(0, NV);
3330 NV = CI->getOperand(1);
3331 Changed = true;
3332 }
3333
3334 // x == y --> x - y == 0
3335 const SCEV *N = SE.getSCEV(NV);
3336 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3337 (!NV->getType()->isPointerTy() ||
3338 SE.getPointerBase(N) == SE.getPointerBase(S))) {
3339 // S is normalized, so normalize N before folding it into S
3340 // to keep the result normalized.
3341 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3342 Kind = LSRUse::ICmpZero;
3343 S = SE.getMinusSCEV(N, S);
3344 } else if (L->isLoopInvariant(NV) &&
3345 (!isa<Instruction>(NV) ||
3346 DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3347 !NV->getType()->isPointerTy()) {
3348 // If we can't generally expand the expression (e.g. it contains
3349 // a divide), but it is already at a loop invariant point before the
3350 // loop, wrap it in an unknown (to prevent the expander from trying
3351 // to re-expand in a potentially unsafe way.) The restriction to
3352 // integer types is required because the unknown hides the base, and
3353 // SCEV can't compute the difference of two unknown pointers.
3354 N = SE.getUnknown(NV);
3355 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3356 Kind = LSRUse::ICmpZero;
3357 S = SE.getMinusSCEV(N, S);
3358 assert(!isa<SCEVCouldNotCompute>(S));
3359 }
3360
3361 // -1 and the negations of all interesting strides (except the negation
3362 // of -1) are now also interesting.
3363 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3364 if (Factors[i] != -1)
3365 Factors.insert(-(uint64_t)Factors[i]);
3366 Factors.insert(-1);
3367 }
3368 }
3369
3370 // Get or create an LSRUse.
3371 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3372 size_t LUIdx = P.first;
3373 int64_t Offset = P.second;
3374 LSRUse &LU = Uses[LUIdx];
3375
3376 // Record the fixup.
3377 LSRFixup &LF = LU.getNewFixup();
3378 LF.UserInst = UserInst;
3379 LF.OperandValToReplace = U.getOperandValToReplace();
3380 LF.PostIncLoops = TmpPostIncLoops;
3381 LF.Offset = Offset;
3382 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3383
3384 if (!LU.WidestFixupType ||
3385 SE.getTypeSizeInBits(LU.WidestFixupType) <
3386 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3387 LU.WidestFixupType = LF.OperandValToReplace->getType();
3388
3389 // If this is the first use of this LSRUse, give it a formula.
3390 if (LU.Formulae.empty()) {
3391 InsertInitialFormula(S, LU, LUIdx);
3392 CountRegisters(LU.Formulae.back(), LUIdx);
3393 }
3394 }
3395
3396 LLVM_DEBUG(print_fixups(dbgs()));
3397 }
3398
3399 /// Insert a formula for the given expression into the given use, separating out
3400 /// loop-variant portions from loop-invariant and loop-computable portions.
InsertInitialFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3401 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3402 size_t LUIdx) {
3403 // Mark uses whose expressions cannot be expanded.
3404 if (!Rewriter.isSafeToExpand(S))
3405 LU.RigidFormula = true;
3406
3407 Formula F;
3408 F.initialMatch(S, L, SE);
3409 bool Inserted = InsertFormula(LU, LUIdx, F);
3410 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3411 }
3412
3413 /// Insert a simple single-register formula for the given expression into the
3414 /// given use.
3415 void
InsertSupplementalFormula(const SCEV * S,LSRUse & LU,size_t LUIdx)3416 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3417 LSRUse &LU, size_t LUIdx) {
3418 Formula F;
3419 F.BaseRegs.push_back(S);
3420 F.HasBaseReg = true;
3421 bool Inserted = InsertFormula(LU, LUIdx, F);
3422 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3423 }
3424
3425 /// Note which registers are used by the given formula, updating RegUses.
CountRegisters(const Formula & F,size_t LUIdx)3426 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3427 if (F.ScaledReg)
3428 RegUses.countRegister(F.ScaledReg, LUIdx);
3429 for (const SCEV *BaseReg : F.BaseRegs)
3430 RegUses.countRegister(BaseReg, LUIdx);
3431 }
3432
3433 /// If the given formula has not yet been inserted, add it to the list, and
3434 /// return true. Return false otherwise.
InsertFormula(LSRUse & LU,unsigned LUIdx,const Formula & F)3435 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3436 // Do not insert formula that we will not be able to expand.
3437 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3438 "Formula is illegal");
3439
3440 if (!LU.InsertFormula(F, *L))
3441 return false;
3442
3443 CountRegisters(F, LUIdx);
3444 return true;
3445 }
3446
3447 /// Check for other uses of loop-invariant values which we're tracking. These
3448 /// other uses will pin these values in registers, making them less profitable
3449 /// for elimination.
3450 /// TODO: This currently misses non-constant addrec step registers.
3451 /// TODO: Should this give more weight to users inside the loop?
3452 void
CollectLoopInvariantFixupsAndFormulae()3453 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3454 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3455 SmallPtrSet<const SCEV *, 32> Visited;
3456
3457 while (!Worklist.empty()) {
3458 const SCEV *S = Worklist.pop_back_val();
3459
3460 // Don't process the same SCEV twice
3461 if (!Visited.insert(S).second)
3462 continue;
3463
3464 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3465 Worklist.append(N->op_begin(), N->op_end());
3466 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3467 Worklist.push_back(C->getOperand());
3468 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3469 Worklist.push_back(D->getLHS());
3470 Worklist.push_back(D->getRHS());
3471 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3472 const Value *V = US->getValue();
3473 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3474 // Look for instructions defined outside the loop.
3475 if (L->contains(Inst)) continue;
3476 } else if (isa<UndefValue>(V))
3477 // Undef doesn't have a live range, so it doesn't matter.
3478 continue;
3479 for (const Use &U : V->uses()) {
3480 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3481 // Ignore non-instructions.
3482 if (!UserInst)
3483 continue;
3484 // Don't bother if the instruction is an EHPad.
3485 if (UserInst->isEHPad())
3486 continue;
3487 // Ignore instructions in other functions (as can happen with
3488 // Constants).
3489 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3490 continue;
3491 // Ignore instructions not dominated by the loop.
3492 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3493 UserInst->getParent() :
3494 cast<PHINode>(UserInst)->getIncomingBlock(
3495 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3496 if (!DT.dominates(L->getHeader(), UseBB))
3497 continue;
3498 // Don't bother if the instruction is in a BB which ends in an EHPad.
3499 if (UseBB->getTerminator()->isEHPad())
3500 continue;
3501
3502 // Ignore cases in which the currently-examined value could come from
3503 // a basic block terminated with an EHPad. This checks all incoming
3504 // blocks of the phi node since it is possible that the same incoming
3505 // value comes from multiple basic blocks, only some of which may end
3506 // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3507 // pass would try to insert instructions into an EHPad, hitting an
3508 // assertion.
3509 if (isa<PHINode>(UserInst)) {
3510 const auto *PhiNode = cast<PHINode>(UserInst);
3511 bool HasIncompatibleEHPTerminatedBlock = false;
3512 llvm::Value *ExpectedValue = U;
3513 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3514 if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3515 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3516 HasIncompatibleEHPTerminatedBlock = true;
3517 break;
3518 }
3519 }
3520 }
3521 if (HasIncompatibleEHPTerminatedBlock) {
3522 continue;
3523 }
3524 }
3525
3526 // Don't bother rewriting PHIs in catchswitch blocks.
3527 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3528 continue;
3529 // Ignore uses which are part of other SCEV expressions, to avoid
3530 // analyzing them multiple times.
3531 if (SE.isSCEVable(UserInst->getType())) {
3532 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3533 // If the user is a no-op, look through to its uses.
3534 if (!isa<SCEVUnknown>(UserS))
3535 continue;
3536 if (UserS == US) {
3537 Worklist.push_back(
3538 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3539 continue;
3540 }
3541 }
3542 // Ignore icmp instructions which are already being analyzed.
3543 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3544 unsigned OtherIdx = !U.getOperandNo();
3545 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3546 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3547 continue;
3548 }
3549
3550 std::pair<size_t, int64_t> P = getUse(
3551 S, LSRUse::Basic, MemAccessTy());
3552 size_t LUIdx = P.first;
3553 int64_t Offset = P.second;
3554 LSRUse &LU = Uses[LUIdx];
3555 LSRFixup &LF = LU.getNewFixup();
3556 LF.UserInst = const_cast<Instruction *>(UserInst);
3557 LF.OperandValToReplace = U;
3558 LF.Offset = Offset;
3559 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3560 if (!LU.WidestFixupType ||
3561 SE.getTypeSizeInBits(LU.WidestFixupType) <
3562 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3563 LU.WidestFixupType = LF.OperandValToReplace->getType();
3564 InsertSupplementalFormula(US, LU, LUIdx);
3565 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3566 break;
3567 }
3568 }
3569 }
3570 }
3571
3572 /// Split S into subexpressions which can be pulled out into separate
3573 /// registers. If C is non-null, multiply each subexpression by C.
3574 ///
3575 /// Return remainder expression after factoring the subexpressions captured by
3576 /// Ops. If Ops is complete, return NULL.
CollectSubexprs(const SCEV * S,const SCEVConstant * C,SmallVectorImpl<const SCEV * > & Ops,const Loop * L,ScalarEvolution & SE,unsigned Depth=0)3577 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3578 SmallVectorImpl<const SCEV *> &Ops,
3579 const Loop *L,
3580 ScalarEvolution &SE,
3581 unsigned Depth = 0) {
3582 // Arbitrarily cap recursion to protect compile time.
3583 if (Depth >= 3)
3584 return S;
3585
3586 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3587 // Break out add operands.
3588 for (const SCEV *S : Add->operands()) {
3589 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3590 if (Remainder)
3591 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3592 }
3593 return nullptr;
3594 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3595 // Split a non-zero base out of an addrec.
3596 if (AR->getStart()->isZero() || !AR->isAffine())
3597 return S;
3598
3599 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3600 C, Ops, L, SE, Depth+1);
3601 // Split the non-zero AddRec unless it is part of a nested recurrence that
3602 // does not pertain to this loop.
3603 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3604 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3605 Remainder = nullptr;
3606 }
3607 if (Remainder != AR->getStart()) {
3608 if (!Remainder)
3609 Remainder = SE.getConstant(AR->getType(), 0);
3610 return SE.getAddRecExpr(Remainder,
3611 AR->getStepRecurrence(SE),
3612 AR->getLoop(),
3613 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3614 SCEV::FlagAnyWrap);
3615 }
3616 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3617 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3618 if (Mul->getNumOperands() != 2)
3619 return S;
3620 if (const SCEVConstant *Op0 =
3621 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3622 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3623 const SCEV *Remainder =
3624 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3625 if (Remainder)
3626 Ops.push_back(SE.getMulExpr(C, Remainder));
3627 return nullptr;
3628 }
3629 }
3630 return S;
3631 }
3632
3633 /// Return true if the SCEV represents a value that may end up as a
3634 /// post-increment operation.
mayUsePostIncMode(const TargetTransformInfo & TTI,LSRUse & LU,const SCEV * S,const Loop * L,ScalarEvolution & SE)3635 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3636 LSRUse &LU, const SCEV *S, const Loop *L,
3637 ScalarEvolution &SE) {
3638 if (LU.Kind != LSRUse::Address ||
3639 !LU.AccessTy.getType()->isIntOrIntVectorTy())
3640 return false;
3641 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3642 if (!AR)
3643 return false;
3644 const SCEV *LoopStep = AR->getStepRecurrence(SE);
3645 if (!isa<SCEVConstant>(LoopStep))
3646 return false;
3647 // Check if a post-indexed load/store can be used.
3648 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3649 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3650 const SCEV *LoopStart = AR->getStart();
3651 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3652 return true;
3653 }
3654 return false;
3655 }
3656
3657 /// Helper function for LSRInstance::GenerateReassociations.
GenerateReassociationsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,unsigned Depth,size_t Idx,bool IsScaledReg)3658 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3659 const Formula &Base,
3660 unsigned Depth, size_t Idx,
3661 bool IsScaledReg) {
3662 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3663 // Don't generate reassociations for the base register of a value that
3664 // may generate a post-increment operator. The reason is that the
3665 // reassociations cause extra base+register formula to be created,
3666 // and possibly chosen, but the post-increment is more efficient.
3667 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3668 return;
3669 SmallVector<const SCEV *, 8> AddOps;
3670 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3671 if (Remainder)
3672 AddOps.push_back(Remainder);
3673
3674 if (AddOps.size() == 1)
3675 return;
3676
3677 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3678 JE = AddOps.end();
3679 J != JE; ++J) {
3680 // Loop-variant "unknown" values are uninteresting; we won't be able to
3681 // do anything meaningful with them.
3682 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3683 continue;
3684
3685 // Don't pull a constant into a register if the constant could be folded
3686 // into an immediate field.
3687 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3688 LU.AccessTy, *J, Base.getNumRegs() > 1))
3689 continue;
3690
3691 // Collect all operands except *J.
3692 SmallVector<const SCEV *, 8> InnerAddOps(
3693 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3694 InnerAddOps.append(std::next(J),
3695 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3696
3697 // Don't leave just a constant behind in a register if the constant could
3698 // be folded into an immediate field.
3699 if (InnerAddOps.size() == 1 &&
3700 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3701 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3702 continue;
3703
3704 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3705 if (InnerSum->isZero())
3706 continue;
3707 Formula F = Base;
3708
3709 // Add the remaining pieces of the add back into the new formula.
3710 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3711 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3712 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3713 InnerSumSC->getValue()->getZExtValue())) {
3714 F.UnfoldedOffset =
3715 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3716 if (IsScaledReg)
3717 F.ScaledReg = nullptr;
3718 else
3719 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3720 } else if (IsScaledReg)
3721 F.ScaledReg = InnerSum;
3722 else
3723 F.BaseRegs[Idx] = InnerSum;
3724
3725 // Add J as its own register, or an unfolded immediate.
3726 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3727 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3728 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3729 SC->getValue()->getZExtValue()))
3730 F.UnfoldedOffset =
3731 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3732 else
3733 F.BaseRegs.push_back(*J);
3734 // We may have changed the number of register in base regs, adjust the
3735 // formula accordingly.
3736 F.canonicalize(*L);
3737
3738 if (InsertFormula(LU, LUIdx, F))
3739 // If that formula hadn't been seen before, recurse to find more like
3740 // it.
3741 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3742 // Because just Depth is not enough to bound compile time.
3743 // This means that every time AddOps.size() is greater 16^x we will add
3744 // x to Depth.
3745 GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3746 Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3747 }
3748 }
3749
3750 /// Split out subexpressions from adds and the bases of addrecs.
GenerateReassociations(LSRUse & LU,unsigned LUIdx,Formula Base,unsigned Depth)3751 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3752 Formula Base, unsigned Depth) {
3753 assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3754 // Arbitrarily cap recursion to protect compile time.
3755 if (Depth >= 3)
3756 return;
3757
3758 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3759 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3760
3761 if (Base.Scale == 1)
3762 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3763 /* Idx */ -1, /* IsScaledReg */ true);
3764 }
3765
3766 /// Generate a formula consisting of all of the loop-dominating registers added
3767 /// into a single register.
GenerateCombinations(LSRUse & LU,unsigned LUIdx,Formula Base)3768 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3769 Formula Base) {
3770 // This method is only interesting on a plurality of registers.
3771 if (Base.BaseRegs.size() + (Base.Scale == 1) +
3772 (Base.UnfoldedOffset != 0) <= 1)
3773 return;
3774
3775 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3776 // processing the formula.
3777 Base.unscale();
3778 SmallVector<const SCEV *, 4> Ops;
3779 Formula NewBase = Base;
3780 NewBase.BaseRegs.clear();
3781 Type *CombinedIntegerType = nullptr;
3782 for (const SCEV *BaseReg : Base.BaseRegs) {
3783 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3784 !SE.hasComputableLoopEvolution(BaseReg, L)) {
3785 if (!CombinedIntegerType)
3786 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3787 Ops.push_back(BaseReg);
3788 }
3789 else
3790 NewBase.BaseRegs.push_back(BaseReg);
3791 }
3792
3793 // If no register is relevant, we're done.
3794 if (Ops.size() == 0)
3795 return;
3796
3797 // Utility function for generating the required variants of the combined
3798 // registers.
3799 auto GenerateFormula = [&](const SCEV *Sum) {
3800 Formula F = NewBase;
3801
3802 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3803 // opportunity to fold something. For now, just ignore such cases
3804 // rather than proceed with zero in a register.
3805 if (Sum->isZero())
3806 return;
3807
3808 F.BaseRegs.push_back(Sum);
3809 F.canonicalize(*L);
3810 (void)InsertFormula(LU, LUIdx, F);
3811 };
3812
3813 // If we collected at least two registers, generate a formula combining them.
3814 if (Ops.size() > 1) {
3815 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3816 GenerateFormula(SE.getAddExpr(OpsCopy));
3817 }
3818
3819 // If we have an unfolded offset, generate a formula combining it with the
3820 // registers collected.
3821 if (NewBase.UnfoldedOffset) {
3822 assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3823 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3824 true));
3825 NewBase.UnfoldedOffset = 0;
3826 GenerateFormula(SE.getAddExpr(Ops));
3827 }
3828 }
3829
3830 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
GenerateSymbolicOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,size_t Idx,bool IsScaledReg)3831 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3832 const Formula &Base, size_t Idx,
3833 bool IsScaledReg) {
3834 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3835 GlobalValue *GV = ExtractSymbol(G, SE);
3836 if (G->isZero() || !GV)
3837 return;
3838 Formula F = Base;
3839 F.BaseGV = GV;
3840 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3841 return;
3842 if (IsScaledReg)
3843 F.ScaledReg = G;
3844 else
3845 F.BaseRegs[Idx] = G;
3846 (void)InsertFormula(LU, LUIdx, F);
3847 }
3848
3849 /// Generate reuse formulae using symbolic offsets.
GenerateSymbolicOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3850 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3851 Formula Base) {
3852 // We can't add a symbolic offset if the address already contains one.
3853 if (Base.BaseGV) return;
3854
3855 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3856 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3857 if (Base.Scale == 1)
3858 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3859 /* IsScaledReg */ true);
3860 }
3861
3862 /// Helper function for LSRInstance::GenerateConstantOffsets.
GenerateConstantOffsetsImpl(LSRUse & LU,unsigned LUIdx,const Formula & Base,const SmallVectorImpl<int64_t> & Worklist,size_t Idx,bool IsScaledReg)3863 void LSRInstance::GenerateConstantOffsetsImpl(
3864 LSRUse &LU, unsigned LUIdx, const Formula &Base,
3865 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3866
3867 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3868 Formula F = Base;
3869 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3870
3871 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3872 // Add the offset to the base register.
3873 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3874 // If it cancelled out, drop the base register, otherwise update it.
3875 if (NewG->isZero()) {
3876 if (IsScaledReg) {
3877 F.Scale = 0;
3878 F.ScaledReg = nullptr;
3879 } else
3880 F.deleteBaseReg(F.BaseRegs[Idx]);
3881 F.canonicalize(*L);
3882 } else if (IsScaledReg)
3883 F.ScaledReg = NewG;
3884 else
3885 F.BaseRegs[Idx] = NewG;
3886
3887 (void)InsertFormula(LU, LUIdx, F);
3888 }
3889 };
3890
3891 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3892
3893 // With constant offsets and constant steps, we can generate pre-inc
3894 // accesses by having the offset equal the step. So, for access #0 with a
3895 // step of 8, we generate a G - 8 base which would require the first access
3896 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3897 // for itself and hopefully becomes the base for other accesses. This means
3898 // means that a single pre-indexed access can be generated to become the new
3899 // base pointer for each iteration of the loop, resulting in no extra add/sub
3900 // instructions for pointer updating.
3901 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3902 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3903 if (auto *StepRec =
3904 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3905 const APInt &StepInt = StepRec->getAPInt();
3906 int64_t Step = StepInt.isNegative() ?
3907 StepInt.getSExtValue() : StepInt.getZExtValue();
3908
3909 for (int64_t Offset : Worklist) {
3910 Offset -= Step;
3911 GenerateOffset(G, Offset);
3912 }
3913 }
3914 }
3915 }
3916 for (int64_t Offset : Worklist)
3917 GenerateOffset(G, Offset);
3918
3919 int64_t Imm = ExtractImmediate(G, SE);
3920 if (G->isZero() || Imm == 0)
3921 return;
3922 Formula F = Base;
3923 F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3924 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3925 return;
3926 if (IsScaledReg) {
3927 F.ScaledReg = G;
3928 } else {
3929 F.BaseRegs[Idx] = G;
3930 // We may generate non canonical Formula if G is a recurrent expr reg
3931 // related with current loop while F.ScaledReg is not.
3932 F.canonicalize(*L);
3933 }
3934 (void)InsertFormula(LU, LUIdx, F);
3935 }
3936
3937 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
GenerateConstantOffsets(LSRUse & LU,unsigned LUIdx,Formula Base)3938 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3939 Formula Base) {
3940 // TODO: For now, just add the min and max offset, because it usually isn't
3941 // worthwhile looking at everything inbetween.
3942 SmallVector<int64_t, 2> Worklist;
3943 Worklist.push_back(LU.MinOffset);
3944 if (LU.MaxOffset != LU.MinOffset)
3945 Worklist.push_back(LU.MaxOffset);
3946
3947 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3948 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3949 if (Base.Scale == 1)
3950 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3951 /* IsScaledReg */ true);
3952 }
3953
3954 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3955 /// == y -> x*c == y*c.
GenerateICmpZeroScales(LSRUse & LU,unsigned LUIdx,Formula Base)3956 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3957 Formula Base) {
3958 if (LU.Kind != LSRUse::ICmpZero) return;
3959
3960 // Determine the integer type for the base formula.
3961 Type *IntTy = Base.getType();
3962 if (!IntTy) return;
3963 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3964
3965 // Don't do this if there is more than one offset.
3966 if (LU.MinOffset != LU.MaxOffset) return;
3967
3968 // Check if transformation is valid. It is illegal to multiply pointer.
3969 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3970 return;
3971 for (const SCEV *BaseReg : Base.BaseRegs)
3972 if (BaseReg->getType()->isPointerTy())
3973 return;
3974 assert(!Base.BaseGV && "ICmpZero use is not legal!");
3975
3976 // Check each interesting stride.
3977 for (int64_t Factor : Factors) {
3978 // Check that Factor can be represented by IntTy
3979 if (!ConstantInt::isValueValidForType(IntTy, Factor))
3980 continue;
3981 // Check that the multiplication doesn't overflow.
3982 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3983 continue;
3984 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3985 assert(Factor != 0 && "Zero factor not expected!");
3986 if (NewBaseOffset / Factor != Base.BaseOffset)
3987 continue;
3988 // If the offset will be truncated at this use, check that it is in bounds.
3989 if (!IntTy->isPointerTy() &&
3990 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3991 continue;
3992
3993 // Check that multiplying with the use offset doesn't overflow.
3994 int64_t Offset = LU.MinOffset;
3995 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3996 continue;
3997 Offset = (uint64_t)Offset * Factor;
3998 if (Offset / Factor != LU.MinOffset)
3999 continue;
4000 // If the offset will be truncated at this use, check that it is in bounds.
4001 if (!IntTy->isPointerTy() &&
4002 !ConstantInt::isValueValidForType(IntTy, Offset))
4003 continue;
4004
4005 Formula F = Base;
4006 F.BaseOffset = NewBaseOffset;
4007
4008 // Check that this scale is legal.
4009 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4010 continue;
4011
4012 // Compensate for the use having MinOffset built into it.
4013 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4014
4015 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4016
4017 // Check that multiplying with each base register doesn't overflow.
4018 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4019 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4020 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4021 goto next;
4022 }
4023
4024 // Check that multiplying with the scaled register doesn't overflow.
4025 if (F.ScaledReg) {
4026 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4027 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4028 continue;
4029 }
4030
4031 // Check that multiplying with the unfolded offset doesn't overflow.
4032 if (F.UnfoldedOffset != 0) {
4033 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4034 Factor == -1)
4035 continue;
4036 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4037 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4038 continue;
4039 // If the offset will be truncated, check that it is in bounds.
4040 if (!IntTy->isPointerTy() &&
4041 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4042 continue;
4043 }
4044
4045 // If we make it here and it's legal, add it.
4046 (void)InsertFormula(LU, LUIdx, F);
4047 next:;
4048 }
4049 }
4050
4051 /// Generate stride factor reuse formulae by making use of scaled-offset address
4052 /// modes, for example.
GenerateScales(LSRUse & LU,unsigned LUIdx,Formula Base)4053 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4054 // Determine the integer type for the base formula.
4055 Type *IntTy = Base.getType();
4056 if (!IntTy) return;
4057
4058 // If this Formula already has a scaled register, we can't add another one.
4059 // Try to unscale the formula to generate a better scale.
4060 if (Base.Scale != 0 && !Base.unscale())
4061 return;
4062
4063 assert(Base.Scale == 0 && "unscale did not did its job!");
4064
4065 // Check each interesting stride.
4066 for (int64_t Factor : Factors) {
4067 Base.Scale = Factor;
4068 Base.HasBaseReg = Base.BaseRegs.size() > 1;
4069 // Check whether this scale is going to be legal.
4070 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4071 Base)) {
4072 // As a special-case, handle special out-of-loop Basic users specially.
4073 // TODO: Reconsider this special case.
4074 if (LU.Kind == LSRUse::Basic &&
4075 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4076 LU.AccessTy, Base) &&
4077 LU.AllFixupsOutsideLoop)
4078 LU.Kind = LSRUse::Special;
4079 else
4080 continue;
4081 }
4082 // For an ICmpZero, negating a solitary base register won't lead to
4083 // new solutions.
4084 if (LU.Kind == LSRUse::ICmpZero &&
4085 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4086 continue;
4087 // For each addrec base reg, if its loop is current loop, apply the scale.
4088 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4089 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4090 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4091 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4092 if (FactorS->isZero())
4093 continue;
4094 // Divide out the factor, ignoring high bits, since we'll be
4095 // scaling the value back up in the end.
4096 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4097 if (!Quotient->isZero()) {
4098 // TODO: This could be optimized to avoid all the copying.
4099 Formula F = Base;
4100 F.ScaledReg = Quotient;
4101 F.deleteBaseReg(F.BaseRegs[i]);
4102 // The canonical representation of 1*reg is reg, which is already in
4103 // Base. In that case, do not try to insert the formula, it will be
4104 // rejected anyway.
4105 if (F.Scale == 1 && (F.BaseRegs.empty() ||
4106 (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4107 continue;
4108 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4109 // non canonical Formula with ScaledReg's loop not being L.
4110 if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4111 F.canonicalize(*L);
4112 (void)InsertFormula(LU, LUIdx, F);
4113 }
4114 }
4115 }
4116 }
4117 }
4118
4119 /// Generate reuse formulae from different IV types.
GenerateTruncates(LSRUse & LU,unsigned LUIdx,Formula Base)4120 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4121 // Don't bother truncating symbolic values.
4122 if (Base.BaseGV) return;
4123
4124 // Determine the integer type for the base formula.
4125 Type *DstTy = Base.getType();
4126 if (!DstTy) return;
4127 if (DstTy->isPointerTy())
4128 return;
4129
4130 // It is invalid to extend a pointer type so exit early if ScaledReg or
4131 // any of the BaseRegs are pointers.
4132 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4133 return;
4134 if (any_of(Base.BaseRegs,
4135 [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4136 return;
4137
4138 for (Type *SrcTy : Types) {
4139 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4140 Formula F = Base;
4141
4142 // Sometimes SCEV is able to prove zero during ext transform. It may
4143 // happen if SCEV did not do all possible transforms while creating the
4144 // initial node (maybe due to depth limitations), but it can do them while
4145 // taking ext.
4146 if (F.ScaledReg) {
4147 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4148 if (NewScaledReg->isZero())
4149 continue;
4150 F.ScaledReg = NewScaledReg;
4151 }
4152 bool HasZeroBaseReg = false;
4153 for (const SCEV *&BaseReg : F.BaseRegs) {
4154 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4155 if (NewBaseReg->isZero()) {
4156 HasZeroBaseReg = true;
4157 break;
4158 }
4159 BaseReg = NewBaseReg;
4160 }
4161 if (HasZeroBaseReg)
4162 continue;
4163
4164 // TODO: This assumes we've done basic processing on all uses and
4165 // have an idea what the register usage is.
4166 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4167 continue;
4168
4169 F.canonicalize(*L);
4170 (void)InsertFormula(LU, LUIdx, F);
4171 }
4172 }
4173 }
4174
4175 namespace {
4176
4177 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4178 /// modifications so that the search phase doesn't have to worry about the data
4179 /// structures moving underneath it.
4180 struct WorkItem {
4181 size_t LUIdx;
4182 int64_t Imm;
4183 const SCEV *OrigReg;
4184
WorkItem__anon3f0d62640f11::WorkItem4185 WorkItem(size_t LI, int64_t I, const SCEV *R)
4186 : LUIdx(LI), Imm(I), OrigReg(R) {}
4187
4188 void print(raw_ostream &OS) const;
4189 void dump() const;
4190 };
4191
4192 } // end anonymous namespace
4193
4194 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const4195 void WorkItem::print(raw_ostream &OS) const {
4196 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4197 << " , add offset " << Imm;
4198 }
4199
dump() const4200 LLVM_DUMP_METHOD void WorkItem::dump() const {
4201 print(errs()); errs() << '\n';
4202 }
4203 #endif
4204
4205 /// Look for registers which are a constant distance apart and try to form reuse
4206 /// opportunities between them.
GenerateCrossUseConstantOffsets()4207 void LSRInstance::GenerateCrossUseConstantOffsets() {
4208 // Group the registers by their value without any added constant offset.
4209 using ImmMapTy = std::map<int64_t, const SCEV *>;
4210
4211 DenseMap<const SCEV *, ImmMapTy> Map;
4212 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4213 SmallVector<const SCEV *, 8> Sequence;
4214 for (const SCEV *Use : RegUses) {
4215 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4216 int64_t Imm = ExtractImmediate(Reg, SE);
4217 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4218 if (Pair.second)
4219 Sequence.push_back(Reg);
4220 Pair.first->second.insert(std::make_pair(Imm, Use));
4221 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4222 }
4223
4224 // Now examine each set of registers with the same base value. Build up
4225 // a list of work to do and do the work in a separate step so that we're
4226 // not adding formulae and register counts while we're searching.
4227 SmallVector<WorkItem, 32> WorkItems;
4228 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4229 for (const SCEV *Reg : Sequence) {
4230 const ImmMapTy &Imms = Map.find(Reg)->second;
4231
4232 // It's not worthwhile looking for reuse if there's only one offset.
4233 if (Imms.size() == 1)
4234 continue;
4235
4236 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4237 for (const auto &Entry
4238 : Imms) dbgs()
4239 << ' ' << Entry.first;
4240 dbgs() << '\n');
4241
4242 // Examine each offset.
4243 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4244 J != JE; ++J) {
4245 const SCEV *OrigReg = J->second;
4246
4247 int64_t JImm = J->first;
4248 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4249
4250 if (!isa<SCEVConstant>(OrigReg) &&
4251 UsedByIndicesMap[Reg].count() == 1) {
4252 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4253 << '\n');
4254 continue;
4255 }
4256
4257 // Conservatively examine offsets between this orig reg a few selected
4258 // other orig regs.
4259 int64_t First = Imms.begin()->first;
4260 int64_t Last = std::prev(Imms.end())->first;
4261 // Compute (First + Last) / 2 without overflow using the fact that
4262 // First + Last = 2 * (First + Last) + (First ^ Last).
4263 int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4264 // If the result is negative and First is odd and Last even (or vice versa),
4265 // we rounded towards -inf. Add 1 in that case, to round towards 0.
4266 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4267 ImmMapTy::const_iterator OtherImms[] = {
4268 Imms.begin(), std::prev(Imms.end()),
4269 Imms.lower_bound(Avg)};
4270 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4271 ImmMapTy::const_iterator M = OtherImms[i];
4272 if (M == J || M == JE) continue;
4273
4274 // Compute the difference between the two.
4275 int64_t Imm = (uint64_t)JImm - M->first;
4276 for (unsigned LUIdx : UsedByIndices.set_bits())
4277 // Make a memo of this use, offset, and register tuple.
4278 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4279 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4280 }
4281 }
4282 }
4283
4284 Map.clear();
4285 Sequence.clear();
4286 UsedByIndicesMap.clear();
4287 UniqueItems.clear();
4288
4289 // Now iterate through the worklist and add new formulae.
4290 for (const WorkItem &WI : WorkItems) {
4291 size_t LUIdx = WI.LUIdx;
4292 LSRUse &LU = Uses[LUIdx];
4293 int64_t Imm = WI.Imm;
4294 const SCEV *OrigReg = WI.OrigReg;
4295
4296 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4297 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4298 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4299
4300 // TODO: Use a more targeted data structure.
4301 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4302 Formula F = LU.Formulae[L];
4303 // FIXME: The code for the scaled and unscaled registers looks
4304 // very similar but slightly different. Investigate if they
4305 // could be merged. That way, we would not have to unscale the
4306 // Formula.
4307 F.unscale();
4308 // Use the immediate in the scaled register.
4309 if (F.ScaledReg == OrigReg) {
4310 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4311 // Don't create 50 + reg(-50).
4312 if (F.referencesReg(SE.getSCEV(
4313 ConstantInt::get(IntTy, -(uint64_t)Offset))))
4314 continue;
4315 Formula NewF = F;
4316 NewF.BaseOffset = Offset;
4317 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4318 NewF))
4319 continue;
4320 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4321
4322 // If the new scale is a constant in a register, and adding the constant
4323 // value to the immediate would produce a value closer to zero than the
4324 // immediate itself, then the formula isn't worthwhile.
4325 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4326 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4327 (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4328 .ule(std::abs(NewF.BaseOffset)))
4329 continue;
4330
4331 // OK, looks good.
4332 NewF.canonicalize(*this->L);
4333 (void)InsertFormula(LU, LUIdx, NewF);
4334 } else {
4335 // Use the immediate in a base register.
4336 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4337 const SCEV *BaseReg = F.BaseRegs[N];
4338 if (BaseReg != OrigReg)
4339 continue;
4340 Formula NewF = F;
4341 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4342 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4343 LU.Kind, LU.AccessTy, NewF)) {
4344 if (AMK == TTI::AMK_PostIndexed &&
4345 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4346 continue;
4347 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4348 continue;
4349 NewF = F;
4350 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4351 }
4352 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4353
4354 // If the new formula has a constant in a register, and adding the
4355 // constant value to the immediate would produce a value closer to
4356 // zero than the immediate itself, then the formula isn't worthwhile.
4357 for (const SCEV *NewReg : NewF.BaseRegs)
4358 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4359 if ((C->getAPInt() + NewF.BaseOffset)
4360 .abs()
4361 .slt(std::abs(NewF.BaseOffset)) &&
4362 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4363 countTrailingZeros<uint64_t>(NewF.BaseOffset))
4364 goto skip_formula;
4365
4366 // Ok, looks good.
4367 NewF.canonicalize(*this->L);
4368 (void)InsertFormula(LU, LUIdx, NewF);
4369 break;
4370 skip_formula:;
4371 }
4372 }
4373 }
4374 }
4375 }
4376
4377 /// Generate formulae for each use.
4378 void
GenerateAllReuseFormulae()4379 LSRInstance::GenerateAllReuseFormulae() {
4380 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4381 // queries are more precise.
4382 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4383 LSRUse &LU = Uses[LUIdx];
4384 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4385 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4386 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4387 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4388 }
4389 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4390 LSRUse &LU = Uses[LUIdx];
4391 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4392 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4393 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4394 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4395 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4396 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4397 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4398 GenerateScales(LU, LUIdx, LU.Formulae[i]);
4399 }
4400 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4401 LSRUse &LU = Uses[LUIdx];
4402 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4403 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4404 }
4405
4406 GenerateCrossUseConstantOffsets();
4407
4408 LLVM_DEBUG(dbgs() << "\n"
4409 "After generating reuse formulae:\n";
4410 print_uses(dbgs()));
4411 }
4412
4413 /// If there are multiple formulae with the same set of registers used
4414 /// by other uses, pick the best one and delete the others.
FilterOutUndesirableDedicatedRegisters()4415 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4416 DenseSet<const SCEV *> VisitedRegs;
4417 SmallPtrSet<const SCEV *, 16> Regs;
4418 SmallPtrSet<const SCEV *, 16> LoserRegs;
4419 #ifndef NDEBUG
4420 bool ChangedFormulae = false;
4421 #endif
4422
4423 // Collect the best formula for each unique set of shared registers. This
4424 // is reset for each use.
4425 using BestFormulaeTy =
4426 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4427
4428 BestFormulaeTy BestFormulae;
4429
4430 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4431 LSRUse &LU = Uses[LUIdx];
4432 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4433 dbgs() << '\n');
4434
4435 bool Any = false;
4436 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4437 FIdx != NumForms; ++FIdx) {
4438 Formula &F = LU.Formulae[FIdx];
4439
4440 // Some formulas are instant losers. For example, they may depend on
4441 // nonexistent AddRecs from other loops. These need to be filtered
4442 // immediately, otherwise heuristics could choose them over others leading
4443 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4444 // avoids the need to recompute this information across formulae using the
4445 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4446 // the corresponding bad register from the Regs set.
4447 Cost CostF(L, SE, TTI, AMK);
4448 Regs.clear();
4449 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4450 if (CostF.isLoser()) {
4451 // During initial formula generation, undesirable formulae are generated
4452 // by uses within other loops that have some non-trivial address mode or
4453 // use the postinc form of the IV. LSR needs to provide these formulae
4454 // as the basis of rediscovering the desired formula that uses an AddRec
4455 // corresponding to the existing phi. Once all formulae have been
4456 // generated, these initial losers may be pruned.
4457 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
4458 dbgs() << "\n");
4459 }
4460 else {
4461 SmallVector<const SCEV *, 4> Key;
4462 for (const SCEV *Reg : F.BaseRegs) {
4463 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4464 Key.push_back(Reg);
4465 }
4466 if (F.ScaledReg &&
4467 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4468 Key.push_back(F.ScaledReg);
4469 // Unstable sort by host order ok, because this is only used for
4470 // uniquifying.
4471 llvm::sort(Key);
4472
4473 std::pair<BestFormulaeTy::const_iterator, bool> P =
4474 BestFormulae.insert(std::make_pair(Key, FIdx));
4475 if (P.second)
4476 continue;
4477
4478 Formula &Best = LU.Formulae[P.first->second];
4479
4480 Cost CostBest(L, SE, TTI, AMK);
4481 Regs.clear();
4482 CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4483 if (CostF.isLess(CostBest))
4484 std::swap(F, Best);
4485 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4486 dbgs() << "\n"
4487 " in favor of formula ";
4488 Best.print(dbgs()); dbgs() << '\n');
4489 }
4490 #ifndef NDEBUG
4491 ChangedFormulae = true;
4492 #endif
4493 LU.DeleteFormula(F);
4494 --FIdx;
4495 --NumForms;
4496 Any = true;
4497 }
4498
4499 // Now that we've filtered out some formulae, recompute the Regs set.
4500 if (Any)
4501 LU.RecomputeRegs(LUIdx, RegUses);
4502
4503 // Reset this to prepare for the next use.
4504 BestFormulae.clear();
4505 }
4506
4507 LLVM_DEBUG(if (ChangedFormulae) {
4508 dbgs() << "\n"
4509 "After filtering out undesirable candidates:\n";
4510 print_uses(dbgs());
4511 });
4512 }
4513
4514 /// Estimate the worst-case number of solutions the solver might have to
4515 /// consider. It almost never considers this many solutions because it prune the
4516 /// search space, but the pruning isn't always sufficient.
EstimateSearchSpaceComplexity() const4517 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4518 size_t Power = 1;
4519 for (const LSRUse &LU : Uses) {
4520 size_t FSize = LU.Formulae.size();
4521 if (FSize >= ComplexityLimit) {
4522 Power = ComplexityLimit;
4523 break;
4524 }
4525 Power *= FSize;
4526 if (Power >= ComplexityLimit)
4527 break;
4528 }
4529 return Power;
4530 }
4531
4532 /// When one formula uses a superset of the registers of another formula, it
4533 /// won't help reduce register pressure (though it may not necessarily hurt
4534 /// register pressure); remove it to simplify the system.
NarrowSearchSpaceByDetectingSupersets()4535 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4536 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4537 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4538
4539 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4540 "which use a superset of registers used by other "
4541 "formulae.\n");
4542
4543 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4544 LSRUse &LU = Uses[LUIdx];
4545 bool Any = false;
4546 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4547 Formula &F = LU.Formulae[i];
4548 // Look for a formula with a constant or GV in a register. If the use
4549 // also has a formula with that same value in an immediate field,
4550 // delete the one that uses a register.
4551 for (SmallVectorImpl<const SCEV *>::const_iterator
4552 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4553 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4554 Formula NewF = F;
4555 //FIXME: Formulas should store bitwidth to do wrapping properly.
4556 // See PR41034.
4557 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4558 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4559 (I - F.BaseRegs.begin()));
4560 if (LU.HasFormulaWithSameRegs(NewF)) {
4561 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4562 dbgs() << '\n');
4563 LU.DeleteFormula(F);
4564 --i;
4565 --e;
4566 Any = true;
4567 break;
4568 }
4569 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4570 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4571 if (!F.BaseGV) {
4572 Formula NewF = F;
4573 NewF.BaseGV = GV;
4574 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4575 (I - F.BaseRegs.begin()));
4576 if (LU.HasFormulaWithSameRegs(NewF)) {
4577 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4578 dbgs() << '\n');
4579 LU.DeleteFormula(F);
4580 --i;
4581 --e;
4582 Any = true;
4583 break;
4584 }
4585 }
4586 }
4587 }
4588 }
4589 if (Any)
4590 LU.RecomputeRegs(LUIdx, RegUses);
4591 }
4592
4593 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4594 }
4595 }
4596
4597 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4598 /// allocate a single register for them.
NarrowSearchSpaceByCollapsingUnrolledCode()4599 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4600 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4601 return;
4602
4603 LLVM_DEBUG(
4604 dbgs() << "The search space is too complex.\n"
4605 "Narrowing the search space by assuming that uses separated "
4606 "by a constant offset will use the same registers.\n");
4607
4608 // This is especially useful for unrolled loops.
4609
4610 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4611 LSRUse &LU = Uses[LUIdx];
4612 for (const Formula &F : LU.Formulae) {
4613 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4614 continue;
4615
4616 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4617 if (!LUThatHas)
4618 continue;
4619
4620 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4621 LU.Kind, LU.AccessTy))
4622 continue;
4623
4624 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4625
4626 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4627
4628 // Transfer the fixups of LU to LUThatHas.
4629 for (LSRFixup &Fixup : LU.Fixups) {
4630 Fixup.Offset += F.BaseOffset;
4631 LUThatHas->pushFixup(Fixup);
4632 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4633 }
4634
4635 // Delete formulae from the new use which are no longer legal.
4636 bool Any = false;
4637 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4638 Formula &F = LUThatHas->Formulae[i];
4639 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4640 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4641 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4642 LUThatHas->DeleteFormula(F);
4643 --i;
4644 --e;
4645 Any = true;
4646 }
4647 }
4648
4649 if (Any)
4650 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4651
4652 // Delete the old use.
4653 DeleteUse(LU, LUIdx);
4654 --LUIdx;
4655 --NumUses;
4656 break;
4657 }
4658 }
4659
4660 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4661 }
4662
4663 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4664 /// we've done more filtering, as it may be able to find more formulae to
4665 /// eliminate.
NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters()4666 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4667 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4668 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4669
4670 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4671 "undesirable dedicated registers.\n");
4672
4673 FilterOutUndesirableDedicatedRegisters();
4674
4675 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4676 }
4677 }
4678
4679 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4680 /// Pick the best one and delete the others.
4681 /// This narrowing heuristic is to keep as many formulae with different
4682 /// Scale and ScaledReg pair as possible while narrowing the search space.
4683 /// The benefit is that it is more likely to find out a better solution
4684 /// from a formulae set with more Scale and ScaledReg variations than
4685 /// a formulae set with the same Scale and ScaledReg. The picking winner
4686 /// reg heuristic will often keep the formulae with the same Scale and
4687 /// ScaledReg and filter others, and we want to avoid that if possible.
NarrowSearchSpaceByFilterFormulaWithSameScaledReg()4688 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4689 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4690 return;
4691
4692 LLVM_DEBUG(
4693 dbgs() << "The search space is too complex.\n"
4694 "Narrowing the search space by choosing the best Formula "
4695 "from the Formulae with the same Scale and ScaledReg.\n");
4696
4697 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4698 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4699
4700 BestFormulaeTy BestFormulae;
4701 #ifndef NDEBUG
4702 bool ChangedFormulae = false;
4703 #endif
4704 DenseSet<const SCEV *> VisitedRegs;
4705 SmallPtrSet<const SCEV *, 16> Regs;
4706
4707 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4708 LSRUse &LU = Uses[LUIdx];
4709 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4710 dbgs() << '\n');
4711
4712 // Return true if Formula FA is better than Formula FB.
4713 auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4714 // First we will try to choose the Formula with fewer new registers.
4715 // For a register used by current Formula, the more the register is
4716 // shared among LSRUses, the less we increase the register number
4717 // counter of the formula.
4718 size_t FARegNum = 0;
4719 for (const SCEV *Reg : FA.BaseRegs) {
4720 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4721 FARegNum += (NumUses - UsedByIndices.count() + 1);
4722 }
4723 size_t FBRegNum = 0;
4724 for (const SCEV *Reg : FB.BaseRegs) {
4725 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4726 FBRegNum += (NumUses - UsedByIndices.count() + 1);
4727 }
4728 if (FARegNum != FBRegNum)
4729 return FARegNum < FBRegNum;
4730
4731 // If the new register numbers are the same, choose the Formula with
4732 // less Cost.
4733 Cost CostFA(L, SE, TTI, AMK);
4734 Cost CostFB(L, SE, TTI, AMK);
4735 Regs.clear();
4736 CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4737 Regs.clear();
4738 CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4739 return CostFA.isLess(CostFB);
4740 };
4741
4742 bool Any = false;
4743 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4744 ++FIdx) {
4745 Formula &F = LU.Formulae[FIdx];
4746 if (!F.ScaledReg)
4747 continue;
4748 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4749 if (P.second)
4750 continue;
4751
4752 Formula &Best = LU.Formulae[P.first->second];
4753 if (IsBetterThan(F, Best))
4754 std::swap(F, Best);
4755 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4756 dbgs() << "\n"
4757 " in favor of formula ";
4758 Best.print(dbgs()); dbgs() << '\n');
4759 #ifndef NDEBUG
4760 ChangedFormulae = true;
4761 #endif
4762 LU.DeleteFormula(F);
4763 --FIdx;
4764 --NumForms;
4765 Any = true;
4766 }
4767 if (Any)
4768 LU.RecomputeRegs(LUIdx, RegUses);
4769
4770 // Reset this to prepare for the next use.
4771 BestFormulae.clear();
4772 }
4773
4774 LLVM_DEBUG(if (ChangedFormulae) {
4775 dbgs() << "\n"
4776 "After filtering out undesirable candidates:\n";
4777 print_uses(dbgs());
4778 });
4779 }
4780
4781 /// If we are over the complexity limit, filter out any post-inc prefering
4782 /// variables to only post-inc values.
NarrowSearchSpaceByFilterPostInc()4783 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4784 if (AMK != TTI::AMK_PostIndexed)
4785 return;
4786 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4787 return;
4788
4789 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4790 "Narrowing the search space by choosing the lowest "
4791 "register Formula for PostInc Uses.\n");
4792
4793 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4794 LSRUse &LU = Uses[LUIdx];
4795
4796 if (LU.Kind != LSRUse::Address)
4797 continue;
4798 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4799 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4800 continue;
4801
4802 size_t MinRegs = std::numeric_limits<size_t>::max();
4803 for (const Formula &F : LU.Formulae)
4804 MinRegs = std::min(F.getNumRegs(), MinRegs);
4805
4806 bool Any = false;
4807 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4808 ++FIdx) {
4809 Formula &F = LU.Formulae[FIdx];
4810 if (F.getNumRegs() > MinRegs) {
4811 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4812 dbgs() << "\n");
4813 LU.DeleteFormula(F);
4814 --FIdx;
4815 --NumForms;
4816 Any = true;
4817 }
4818 }
4819 if (Any)
4820 LU.RecomputeRegs(LUIdx, RegUses);
4821
4822 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4823 break;
4824 }
4825
4826 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4827 }
4828
4829 /// The function delete formulas with high registers number expectation.
4830 /// Assuming we don't know the value of each formula (already delete
4831 /// all inefficient), generate probability of not selecting for each
4832 /// register.
4833 /// For example,
4834 /// Use1:
4835 /// reg(a) + reg({0,+,1})
4836 /// reg(a) + reg({-1,+,1}) + 1
4837 /// reg({a,+,1})
4838 /// Use2:
4839 /// reg(b) + reg({0,+,1})
4840 /// reg(b) + reg({-1,+,1}) + 1
4841 /// reg({b,+,1})
4842 /// Use3:
4843 /// reg(c) + reg(b) + reg({0,+,1})
4844 /// reg(c) + reg({b,+,1})
4845 ///
4846 /// Probability of not selecting
4847 /// Use1 Use2 Use3
4848 /// reg(a) (1/3) * 1 * 1
4849 /// reg(b) 1 * (1/3) * (1/2)
4850 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4851 /// reg({-1,+,1}) (2/3) * (2/3) * 1
4852 /// reg({a,+,1}) (2/3) * 1 * 1
4853 /// reg({b,+,1}) 1 * (2/3) * (2/3)
4854 /// reg(c) 1 * 1 * 0
4855 ///
4856 /// Now count registers number mathematical expectation for each formula:
4857 /// Note that for each use we exclude probability if not selecting for the use.
4858 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4859 /// probabilty 1/3 of not selecting for Use1).
4860 /// Use1:
4861 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4862 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4863 /// reg({a,+,1}) 1
4864 /// Use2:
4865 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4866 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4867 /// reg({b,+,1}) 2/3
4868 /// Use3:
4869 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4870 /// reg(c) + reg({b,+,1}) 1 + 2/3
NarrowSearchSpaceByDeletingCostlyFormulas()4871 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4872 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4873 return;
4874 // Ok, we have too many of formulae on our hands to conveniently handle.
4875 // Use a rough heuristic to thin out the list.
4876
4877 // Set of Regs wich will be 100% used in final solution.
4878 // Used in each formula of a solution (in example above this is reg(c)).
4879 // We can skip them in calculations.
4880 SmallPtrSet<const SCEV *, 4> UniqRegs;
4881 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4882
4883 // Map each register to probability of not selecting
4884 DenseMap <const SCEV *, float> RegNumMap;
4885 for (const SCEV *Reg : RegUses) {
4886 if (UniqRegs.count(Reg))
4887 continue;
4888 float PNotSel = 1;
4889 for (const LSRUse &LU : Uses) {
4890 if (!LU.Regs.count(Reg))
4891 continue;
4892 float P = LU.getNotSelectedProbability(Reg);
4893 if (P != 0.0)
4894 PNotSel *= P;
4895 else
4896 UniqRegs.insert(Reg);
4897 }
4898 RegNumMap.insert(std::make_pair(Reg, PNotSel));
4899 }
4900
4901 LLVM_DEBUG(
4902 dbgs() << "Narrowing the search space by deleting costly formulas\n");
4903
4904 // Delete formulas where registers number expectation is high.
4905 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4906 LSRUse &LU = Uses[LUIdx];
4907 // If nothing to delete - continue.
4908 if (LU.Formulae.size() < 2)
4909 continue;
4910 // This is temporary solution to test performance. Float should be
4911 // replaced with round independent type (based on integers) to avoid
4912 // different results for different target builds.
4913 float FMinRegNum = LU.Formulae[0].getNumRegs();
4914 float FMinARegNum = LU.Formulae[0].getNumRegs();
4915 size_t MinIdx = 0;
4916 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4917 Formula &F = LU.Formulae[i];
4918 float FRegNum = 0;
4919 float FARegNum = 0;
4920 for (const SCEV *BaseReg : F.BaseRegs) {
4921 if (UniqRegs.count(BaseReg))
4922 continue;
4923 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4924 if (isa<SCEVAddRecExpr>(BaseReg))
4925 FARegNum +=
4926 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4927 }
4928 if (const SCEV *ScaledReg = F.ScaledReg) {
4929 if (!UniqRegs.count(ScaledReg)) {
4930 FRegNum +=
4931 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4932 if (isa<SCEVAddRecExpr>(ScaledReg))
4933 FARegNum +=
4934 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4935 }
4936 }
4937 if (FMinRegNum > FRegNum ||
4938 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4939 FMinRegNum = FRegNum;
4940 FMinARegNum = FARegNum;
4941 MinIdx = i;
4942 }
4943 }
4944 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());
4945 dbgs() << " with min reg num " << FMinRegNum << '\n');
4946 if (MinIdx != 0)
4947 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4948 while (LU.Formulae.size() != 1) {
4949 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());
4950 dbgs() << '\n');
4951 LU.Formulae.pop_back();
4952 }
4953 LU.RecomputeRegs(LUIdx, RegUses);
4954 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4955 Formula &F = LU.Formulae[0];
4956 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n');
4957 // When we choose the formula, the regs become unique.
4958 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4959 if (F.ScaledReg)
4960 UniqRegs.insert(F.ScaledReg);
4961 }
4962 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4963 }
4964
4965 /// Pick a register which seems likely to be profitable, and then in any use
4966 /// which has any reference to that register, delete all formulae which do not
4967 /// reference that register.
NarrowSearchSpaceByPickingWinnerRegs()4968 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4969 // With all other options exhausted, loop until the system is simple
4970 // enough to handle.
4971 SmallPtrSet<const SCEV *, 4> Taken;
4972 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4973 // Ok, we have too many of formulae on our hands to conveniently handle.
4974 // Use a rough heuristic to thin out the list.
4975 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4976
4977 // Pick the register which is used by the most LSRUses, which is likely
4978 // to be a good reuse register candidate.
4979 const SCEV *Best = nullptr;
4980 unsigned BestNum = 0;
4981 for (const SCEV *Reg : RegUses) {
4982 if (Taken.count(Reg))
4983 continue;
4984 if (!Best) {
4985 Best = Reg;
4986 BestNum = RegUses.getUsedByIndices(Reg).count();
4987 } else {
4988 unsigned Count = RegUses.getUsedByIndices(Reg).count();
4989 if (Count > BestNum) {
4990 Best = Reg;
4991 BestNum = Count;
4992 }
4993 }
4994 }
4995 assert(Best && "Failed to find best LSRUse candidate");
4996
4997 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4998 << " will yield profitable reuse.\n");
4999 Taken.insert(Best);
5000
5001 // In any use with formulae which references this register, delete formulae
5002 // which don't reference it.
5003 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5004 LSRUse &LU = Uses[LUIdx];
5005 if (!LU.Regs.count(Best)) continue;
5006
5007 bool Any = false;
5008 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5009 Formula &F = LU.Formulae[i];
5010 if (!F.referencesReg(Best)) {
5011 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
5012 LU.DeleteFormula(F);
5013 --e;
5014 --i;
5015 Any = true;
5016 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5017 continue;
5018 }
5019 }
5020
5021 if (Any)
5022 LU.RecomputeRegs(LUIdx, RegUses);
5023 }
5024
5025 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5026 }
5027 }
5028
5029 /// If there are an extraordinary number of formulae to choose from, use some
5030 /// rough heuristics to prune down the number of formulae. This keeps the main
5031 /// solver from taking an extraordinary amount of time in some worst-case
5032 /// scenarios.
NarrowSearchSpaceUsingHeuristics()5033 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5034 NarrowSearchSpaceByDetectingSupersets();
5035 NarrowSearchSpaceByCollapsingUnrolledCode();
5036 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5037 if (FilterSameScaledReg)
5038 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5039 NarrowSearchSpaceByFilterPostInc();
5040 if (LSRExpNarrow)
5041 NarrowSearchSpaceByDeletingCostlyFormulas();
5042 else
5043 NarrowSearchSpaceByPickingWinnerRegs();
5044 }
5045
5046 /// This is the recursive solver.
SolveRecurse(SmallVectorImpl<const Formula * > & Solution,Cost & SolutionCost,SmallVectorImpl<const Formula * > & Workspace,const Cost & CurCost,const SmallPtrSet<const SCEV *,16> & CurRegs,DenseSet<const SCEV * > & VisitedRegs) const5047 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5048 Cost &SolutionCost,
5049 SmallVectorImpl<const Formula *> &Workspace,
5050 const Cost &CurCost,
5051 const SmallPtrSet<const SCEV *, 16> &CurRegs,
5052 DenseSet<const SCEV *> &VisitedRegs) const {
5053 // Some ideas:
5054 // - prune more:
5055 // - use more aggressive filtering
5056 // - sort the formula so that the most profitable solutions are found first
5057 // - sort the uses too
5058 // - search faster:
5059 // - don't compute a cost, and then compare. compare while computing a cost
5060 // and bail early.
5061 // - track register sets with SmallBitVector
5062
5063 const LSRUse &LU = Uses[Workspace.size()];
5064
5065 // If this use references any register that's already a part of the
5066 // in-progress solution, consider it a requirement that a formula must
5067 // reference that register in order to be considered. This prunes out
5068 // unprofitable searching.
5069 SmallSetVector<const SCEV *, 4> ReqRegs;
5070 for (const SCEV *S : CurRegs)
5071 if (LU.Regs.count(S))
5072 ReqRegs.insert(S);
5073
5074 SmallPtrSet<const SCEV *, 16> NewRegs;
5075 Cost NewCost(L, SE, TTI, AMK);
5076 for (const Formula &F : LU.Formulae) {
5077 // Ignore formulae which may not be ideal in terms of register reuse of
5078 // ReqRegs. The formula should use all required registers before
5079 // introducing new ones.
5080 // This can sometimes (notably when trying to favour postinc) lead to
5081 // sub-optimial decisions. There it is best left to the cost modelling to
5082 // get correct.
5083 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5084 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5085 for (const SCEV *Reg : ReqRegs) {
5086 if ((F.ScaledReg && F.ScaledReg == Reg) ||
5087 is_contained(F.BaseRegs, Reg)) {
5088 --NumReqRegsToFind;
5089 if (NumReqRegsToFind == 0)
5090 break;
5091 }
5092 }
5093 if (NumReqRegsToFind != 0) {
5094 // If none of the formulae satisfied the required registers, then we could
5095 // clear ReqRegs and try again. Currently, we simply give up in this case.
5096 continue;
5097 }
5098 }
5099
5100 // Evaluate the cost of the current formula. If it's already worse than
5101 // the current best, prune the search at that point.
5102 NewCost = CurCost;
5103 NewRegs = CurRegs;
5104 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5105 if (NewCost.isLess(SolutionCost)) {
5106 Workspace.push_back(&F);
5107 if (Workspace.size() != Uses.size()) {
5108 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5109 NewRegs, VisitedRegs);
5110 if (F.getNumRegs() == 1 && Workspace.size() == 1)
5111 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5112 } else {
5113 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5114 dbgs() << ".\nRegs:\n";
5115 for (const SCEV *S : NewRegs) dbgs()
5116 << "- " << *S << "\n";
5117 dbgs() << '\n');
5118
5119 SolutionCost = NewCost;
5120 Solution = Workspace;
5121 }
5122 Workspace.pop_back();
5123 }
5124 }
5125 }
5126
5127 /// Choose one formula from each use. Return the results in the given Solution
5128 /// vector.
Solve(SmallVectorImpl<const Formula * > & Solution) const5129 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5130 SmallVector<const Formula *, 8> Workspace;
5131 Cost SolutionCost(L, SE, TTI, AMK);
5132 SolutionCost.Lose();
5133 Cost CurCost(L, SE, TTI, AMK);
5134 SmallPtrSet<const SCEV *, 16> CurRegs;
5135 DenseSet<const SCEV *> VisitedRegs;
5136 Workspace.reserve(Uses.size());
5137
5138 // SolveRecurse does all the work.
5139 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5140 CurRegs, VisitedRegs);
5141 if (Solution.empty()) {
5142 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5143 return;
5144 }
5145
5146 // Ok, we've now made all our decisions.
5147 LLVM_DEBUG(dbgs() << "\n"
5148 "The chosen solution requires ";
5149 SolutionCost.print(dbgs()); dbgs() << ":\n";
5150 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5151 dbgs() << " ";
5152 Uses[i].print(dbgs());
5153 dbgs() << "\n"
5154 " ";
5155 Solution[i]->print(dbgs());
5156 dbgs() << '\n';
5157 });
5158
5159 assert(Solution.size() == Uses.size() && "Malformed solution!");
5160 }
5161
5162 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5163 /// we can go while still being dominated by the input positions. This helps
5164 /// canonicalize the insert position, which encourages sharing.
5165 BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,const SmallVectorImpl<Instruction * > & Inputs) const5166 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5167 const SmallVectorImpl<Instruction *> &Inputs)
5168 const {
5169 Instruction *Tentative = &*IP;
5170 while (true) {
5171 bool AllDominate = true;
5172 Instruction *BetterPos = nullptr;
5173 // Don't bother attempting to insert before a catchswitch, their basic block
5174 // cannot have other non-PHI instructions.
5175 if (isa<CatchSwitchInst>(Tentative))
5176 return IP;
5177
5178 for (Instruction *Inst : Inputs) {
5179 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5180 AllDominate = false;
5181 break;
5182 }
5183 // Attempt to find an insert position in the middle of the block,
5184 // instead of at the end, so that it can be used for other expansions.
5185 if (Tentative->getParent() == Inst->getParent() &&
5186 (!BetterPos || !DT.dominates(Inst, BetterPos)))
5187 BetterPos = &*std::next(BasicBlock::iterator(Inst));
5188 }
5189 if (!AllDominate)
5190 break;
5191 if (BetterPos)
5192 IP = BetterPos->getIterator();
5193 else
5194 IP = Tentative->getIterator();
5195
5196 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5197 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5198
5199 BasicBlock *IDom;
5200 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5201 if (!Rung) return IP;
5202 Rung = Rung->getIDom();
5203 if (!Rung) return IP;
5204 IDom = Rung->getBlock();
5205
5206 // Don't climb into a loop though.
5207 const Loop *IDomLoop = LI.getLoopFor(IDom);
5208 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5209 if (IDomDepth <= IPLoopDepth &&
5210 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5211 break;
5212 }
5213
5214 Tentative = IDom->getTerminator();
5215 }
5216
5217 return IP;
5218 }
5219
5220 /// Determine an input position which will be dominated by the operands and
5221 /// which will dominate the result.
AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,const LSRFixup & LF,const LSRUse & LU) const5222 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5223 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5224 // Collect some instructions which must be dominated by the
5225 // expanding replacement. These must be dominated by any operands that
5226 // will be required in the expansion.
5227 SmallVector<Instruction *, 4> Inputs;
5228 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5229 Inputs.push_back(I);
5230 if (LU.Kind == LSRUse::ICmpZero)
5231 if (Instruction *I =
5232 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5233 Inputs.push_back(I);
5234 if (LF.PostIncLoops.count(L)) {
5235 if (LF.isUseFullyOutsideLoop(L))
5236 Inputs.push_back(L->getLoopLatch()->getTerminator());
5237 else
5238 Inputs.push_back(IVIncInsertPos);
5239 }
5240 // The expansion must also be dominated by the increment positions of any
5241 // loops it for which it is using post-inc mode.
5242 for (const Loop *PIL : LF.PostIncLoops) {
5243 if (PIL == L) continue;
5244
5245 // Be dominated by the loop exit.
5246 SmallVector<BasicBlock *, 4> ExitingBlocks;
5247 PIL->getExitingBlocks(ExitingBlocks);
5248 if (!ExitingBlocks.empty()) {
5249 BasicBlock *BB = ExitingBlocks[0];
5250 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5251 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5252 Inputs.push_back(BB->getTerminator());
5253 }
5254 }
5255
5256 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5257 && !isa<DbgInfoIntrinsic>(LowestIP) &&
5258 "Insertion point must be a normal instruction");
5259
5260 // Then, climb up the immediate dominator tree as far as we can go while
5261 // still being dominated by the input positions.
5262 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5263
5264 // Don't insert instructions before PHI nodes.
5265 while (isa<PHINode>(IP)) ++IP;
5266
5267 // Ignore landingpad instructions.
5268 while (IP->isEHPad()) ++IP;
5269
5270 // Ignore debug intrinsics.
5271 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5272
5273 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5274 // IP consistent across expansions and allows the previously inserted
5275 // instructions to be reused by subsequent expansion.
5276 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5277 ++IP;
5278
5279 return IP;
5280 }
5281
5282 /// Emit instructions for the leading candidate expression for this LSRUse (this
5283 /// is called "expanding").
Expand(const LSRUse & LU,const LSRFixup & LF,const Formula & F,BasicBlock::iterator IP,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5284 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5285 const Formula &F, BasicBlock::iterator IP,
5286 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5287 if (LU.RigidFormula)
5288 return LF.OperandValToReplace;
5289
5290 // Determine an input position which will be dominated by the operands and
5291 // which will dominate the result.
5292 IP = AdjustInsertPositionForExpand(IP, LF, LU);
5293 Rewriter.setInsertPoint(&*IP);
5294
5295 // Inform the Rewriter if we have a post-increment use, so that it can
5296 // perform an advantageous expansion.
5297 Rewriter.setPostInc(LF.PostIncLoops);
5298
5299 // This is the type that the user actually needs.
5300 Type *OpTy = LF.OperandValToReplace->getType();
5301 // This will be the type that we'll initially expand to.
5302 Type *Ty = F.getType();
5303 if (!Ty)
5304 // No type known; just expand directly to the ultimate type.
5305 Ty = OpTy;
5306 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5307 // Expand directly to the ultimate type if it's the right size.
5308 Ty = OpTy;
5309 // This is the type to do integer arithmetic in.
5310 Type *IntTy = SE.getEffectiveSCEVType(Ty);
5311
5312 // Build up a list of operands to add together to form the full base.
5313 SmallVector<const SCEV *, 8> Ops;
5314
5315 // Expand the BaseRegs portion.
5316 for (const SCEV *Reg : F.BaseRegs) {
5317 assert(!Reg->isZero() && "Zero allocated in a base register!");
5318
5319 // If we're expanding for a post-inc user, make the post-inc adjustment.
5320 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5321 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5322 }
5323
5324 // Expand the ScaledReg portion.
5325 Value *ICmpScaledV = nullptr;
5326 if (F.Scale != 0) {
5327 const SCEV *ScaledS = F.ScaledReg;
5328
5329 // If we're expanding for a post-inc user, make the post-inc adjustment.
5330 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5331 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5332
5333 if (LU.Kind == LSRUse::ICmpZero) {
5334 // Expand ScaleReg as if it was part of the base regs.
5335 if (F.Scale == 1)
5336 Ops.push_back(
5337 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5338 else {
5339 // An interesting way of "folding" with an icmp is to use a negated
5340 // scale, which we'll implement by inserting it into the other operand
5341 // of the icmp.
5342 assert(F.Scale == -1 &&
5343 "The only scale supported by ICmpZero uses is -1!");
5344 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5345 }
5346 } else {
5347 // Otherwise just expand the scaled register and an explicit scale,
5348 // which is expected to be matched as part of the address.
5349
5350 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5351 // Unless the addressing mode will not be folded.
5352 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5353 isAMCompletelyFolded(TTI, LU, F)) {
5354 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5355 Ops.clear();
5356 Ops.push_back(SE.getUnknown(FullV));
5357 }
5358 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5359 if (F.Scale != 1)
5360 ScaledS =
5361 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5362 Ops.push_back(ScaledS);
5363 }
5364 }
5365
5366 // Expand the GV portion.
5367 if (F.BaseGV) {
5368 // Flush the operand list to suppress SCEVExpander hoisting.
5369 if (!Ops.empty()) {
5370 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5371 Ops.clear();
5372 Ops.push_back(SE.getUnknown(FullV));
5373 }
5374 Ops.push_back(SE.getUnknown(F.BaseGV));
5375 }
5376
5377 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5378 // unfolded offsets. LSR assumes they both live next to their uses.
5379 if (!Ops.empty()) {
5380 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5381 Ops.clear();
5382 Ops.push_back(SE.getUnknown(FullV));
5383 }
5384
5385 // Expand the immediate portion.
5386 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5387 if (Offset != 0) {
5388 if (LU.Kind == LSRUse::ICmpZero) {
5389 // The other interesting way of "folding" with an ICmpZero is to use a
5390 // negated immediate.
5391 if (!ICmpScaledV)
5392 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5393 else {
5394 Ops.push_back(SE.getUnknown(ICmpScaledV));
5395 ICmpScaledV = ConstantInt::get(IntTy, Offset);
5396 }
5397 } else {
5398 // Just add the immediate values. These again are expected to be matched
5399 // as part of the address.
5400 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5401 }
5402 }
5403
5404 // Expand the unfolded offset portion.
5405 int64_t UnfoldedOffset = F.UnfoldedOffset;
5406 if (UnfoldedOffset != 0) {
5407 // Just add the immediate values.
5408 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5409 UnfoldedOffset)));
5410 }
5411
5412 // Emit instructions summing all the operands.
5413 const SCEV *FullS = Ops.empty() ?
5414 SE.getConstant(IntTy, 0) :
5415 SE.getAddExpr(Ops);
5416 Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5417
5418 // We're done expanding now, so reset the rewriter.
5419 Rewriter.clearPostInc();
5420
5421 // An ICmpZero Formula represents an ICmp which we're handling as a
5422 // comparison against zero. Now that we've expanded an expression for that
5423 // form, update the ICmp's other operand.
5424 if (LU.Kind == LSRUse::ICmpZero) {
5425 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5426 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5427 DeadInsts.emplace_back(OperandIsInstr);
5428 assert(!F.BaseGV && "ICmp does not support folding a global value and "
5429 "a scale at the same time!");
5430 if (F.Scale == -1) {
5431 if (ICmpScaledV->getType() != OpTy) {
5432 Instruction *Cast =
5433 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5434 OpTy, false),
5435 ICmpScaledV, OpTy, "tmp", CI);
5436 ICmpScaledV = Cast;
5437 }
5438 CI->setOperand(1, ICmpScaledV);
5439 } else {
5440 // A scale of 1 means that the scale has been expanded as part of the
5441 // base regs.
5442 assert((F.Scale == 0 || F.Scale == 1) &&
5443 "ICmp does not support folding a global value and "
5444 "a scale at the same time!");
5445 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5446 -(uint64_t)Offset);
5447 if (C->getType() != OpTy)
5448 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5449 OpTy, false),
5450 C, OpTy);
5451
5452 CI->setOperand(1, C);
5453 }
5454 }
5455
5456 return FullV;
5457 }
5458
5459 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5460 /// effectively happens in their predecessor blocks, so the expression may need
5461 /// to be expanded in multiple places.
RewriteForPHI(PHINode * PN,const LSRUse & LU,const LSRFixup & LF,const Formula & F,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5462 void LSRInstance::RewriteForPHI(
5463 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5464 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5465 DenseMap<BasicBlock *, Value *> Inserted;
5466 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5467 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5468 bool needUpdateFixups = false;
5469 BasicBlock *BB = PN->getIncomingBlock(i);
5470
5471 // If this is a critical edge, split the edge so that we do not insert
5472 // the code on all predecessor/successor paths. We do this unless this
5473 // is the canonical backedge for this loop, which complicates post-inc
5474 // users.
5475 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5476 !isa<IndirectBrInst>(BB->getTerminator()) &&
5477 !isa<CatchSwitchInst>(BB->getTerminator())) {
5478 BasicBlock *Parent = PN->getParent();
5479 Loop *PNLoop = LI.getLoopFor(Parent);
5480 if (!PNLoop || Parent != PNLoop->getHeader()) {
5481 // Split the critical edge.
5482 BasicBlock *NewBB = nullptr;
5483 if (!Parent->isLandingPad()) {
5484 NewBB =
5485 SplitCriticalEdge(BB, Parent,
5486 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5487 .setMergeIdenticalEdges()
5488 .setKeepOneInputPHIs());
5489 } else {
5490 SmallVector<BasicBlock*, 2> NewBBs;
5491 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5492 NewBB = NewBBs[0];
5493 }
5494 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5495 // phi predecessors are identical. The simple thing to do is skip
5496 // splitting in this case rather than complicate the API.
5497 if (NewBB) {
5498 // If PN is outside of the loop and BB is in the loop, we want to
5499 // move the block to be immediately before the PHI block, not
5500 // immediately after BB.
5501 if (L->contains(BB) && !L->contains(PN))
5502 NewBB->moveBefore(PN->getParent());
5503
5504 // Splitting the edge can reduce the number of PHI entries we have.
5505 e = PN->getNumIncomingValues();
5506 BB = NewBB;
5507 i = PN->getBasicBlockIndex(BB);
5508
5509 needUpdateFixups = true;
5510 }
5511 }
5512 }
5513
5514 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5515 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5516 if (!Pair.second)
5517 PN->setIncomingValue(i, Pair.first->second);
5518 else {
5519 Value *FullV =
5520 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5521
5522 // If this is reuse-by-noop-cast, insert the noop cast.
5523 Type *OpTy = LF.OperandValToReplace->getType();
5524 if (FullV->getType() != OpTy)
5525 FullV =
5526 CastInst::Create(CastInst::getCastOpcode(FullV, false,
5527 OpTy, false),
5528 FullV, LF.OperandValToReplace->getType(),
5529 "tmp", BB->getTerminator());
5530
5531 PN->setIncomingValue(i, FullV);
5532 Pair.first->second = FullV;
5533 }
5534
5535 // If LSR splits critical edge and phi node has other pending
5536 // fixup operands, we need to update those pending fixups. Otherwise
5537 // formulae will not be implemented completely and some instructions
5538 // will not be eliminated.
5539 if (needUpdateFixups) {
5540 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5541 for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5542 // If fixup is supposed to rewrite some operand in the phi
5543 // that was just updated, it may be already moved to
5544 // another phi node. Such fixup requires update.
5545 if (Fixup.UserInst == PN) {
5546 // Check if the operand we try to replace still exists in the
5547 // original phi.
5548 bool foundInOriginalPHI = false;
5549 for (const auto &val : PN->incoming_values())
5550 if (val == Fixup.OperandValToReplace) {
5551 foundInOriginalPHI = true;
5552 break;
5553 }
5554
5555 // If fixup operand found in original PHI - nothing to do.
5556 if (foundInOriginalPHI)
5557 continue;
5558
5559 // Otherwise it might be moved to another PHI and requires update.
5560 // If fixup operand not found in any of the incoming blocks that
5561 // means we have already rewritten it - nothing to do.
5562 for (const auto &Block : PN->blocks())
5563 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5564 ++I) {
5565 PHINode *NewPN = cast<PHINode>(I);
5566 for (const auto &val : NewPN->incoming_values())
5567 if (val == Fixup.OperandValToReplace)
5568 Fixup.UserInst = NewPN;
5569 }
5570 }
5571 }
5572 }
5573 }
5574
5575 /// Emit instructions for the leading candidate expression for this LSRUse (this
5576 /// is called "expanding"), and update the UserInst to reference the newly
5577 /// expanded value.
Rewrite(const LSRUse & LU,const LSRFixup & LF,const Formula & F,SmallVectorImpl<WeakTrackingVH> & DeadInsts) const5578 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5579 const Formula &F,
5580 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5581 // First, find an insertion point that dominates UserInst. For PHI nodes,
5582 // find the nearest block which dominates all the relevant uses.
5583 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5584 RewriteForPHI(PN, LU, LF, F, DeadInsts);
5585 } else {
5586 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
5587
5588 // If this is reuse-by-noop-cast, insert the noop cast.
5589 Type *OpTy = LF.OperandValToReplace->getType();
5590 if (FullV->getType() != OpTy) {
5591 Instruction *Cast =
5592 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5593 FullV, OpTy, "tmp", LF.UserInst);
5594 FullV = Cast;
5595 }
5596
5597 // Update the user. ICmpZero is handled specially here (for now) because
5598 // Expand may have updated one of the operands of the icmp already, and
5599 // its new value may happen to be equal to LF.OperandValToReplace, in
5600 // which case doing replaceUsesOfWith leads to replacing both operands
5601 // with the same value. TODO: Reorganize this.
5602 if (LU.Kind == LSRUse::ICmpZero)
5603 LF.UserInst->setOperand(0, FullV);
5604 else
5605 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5606 }
5607
5608 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5609 DeadInsts.emplace_back(OperandIsInstr);
5610 }
5611
5612 /// Rewrite all the fixup locations with new values, following the chosen
5613 /// solution.
ImplementSolution(const SmallVectorImpl<const Formula * > & Solution)5614 void LSRInstance::ImplementSolution(
5615 const SmallVectorImpl<const Formula *> &Solution) {
5616 // Keep track of instructions we may have made dead, so that
5617 // we can remove them after we are done working.
5618 SmallVector<WeakTrackingVH, 16> DeadInsts;
5619
5620 Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5621
5622 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5623 for (const IVChain &Chain : IVChainVec) {
5624 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5625 Rewriter.setChainedPhi(PN);
5626 }
5627
5628 // Expand the new value definitions and update the users.
5629 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5630 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5631 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
5632 Changed = true;
5633 }
5634
5635 for (const IVChain &Chain : IVChainVec) {
5636 GenerateIVChain(Chain, DeadInsts);
5637 Changed = true;
5638 }
5639
5640 for (const WeakVH &IV : Rewriter.getInsertedIVs())
5641 if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5642 ScalarEvolutionIVs.push_back(IV);
5643
5644 // Clean up after ourselves. This must be done before deleting any
5645 // instructions.
5646 Rewriter.clear();
5647
5648 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5649 &TLI, MSSAU);
5650
5651 // In our cost analysis above, we assume that each addrec consumes exactly
5652 // one register, and arrange to have increments inserted just before the
5653 // latch to maximimize the chance this is true. However, if we reused
5654 // existing IVs, we now need to move the increments to match our
5655 // expectations. Otherwise, our cost modeling results in us having a
5656 // chosen a non-optimal result for the actual schedule. (And yes, this
5657 // scheduling decision does impact later codegen.)
5658 for (PHINode &PN : L->getHeader()->phis()) {
5659 BinaryOperator *BO = nullptr;
5660 Value *Start = nullptr, *Step = nullptr;
5661 if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5662 continue;
5663
5664 switch (BO->getOpcode()) {
5665 case Instruction::Sub:
5666 if (BO->getOperand(0) != &PN)
5667 // sub is non-commutative - match handling elsewhere in LSR
5668 continue;
5669 break;
5670 case Instruction::Add:
5671 break;
5672 default:
5673 continue;
5674 };
5675
5676 if (!isa<Constant>(Step))
5677 // If not a constant step, might increase register pressure
5678 // (We assume constants have been canonicalized to RHS)
5679 continue;
5680
5681 if (BO->getParent() == IVIncInsertPos->getParent())
5682 // Only bother moving across blocks. Isel can handle block local case.
5683 continue;
5684
5685 // Can we legally schedule inc at the desired point?
5686 if (!llvm::all_of(BO->uses(),
5687 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5688 continue;
5689 BO->moveBefore(IVIncInsertPos);
5690 Changed = true;
5691 }
5692
5693
5694 }
5695
LSRInstance(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI,AssumptionCache & AC,TargetLibraryInfo & TLI,MemorySSAUpdater * MSSAU)5696 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5697 DominatorTree &DT, LoopInfo &LI,
5698 const TargetTransformInfo &TTI, AssumptionCache &AC,
5699 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5700 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5701 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
5702 ? PreferredAddresingMode
5703 : TTI.getPreferredAddressingMode(L, &SE)),
5704 Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false) {
5705 // If LoopSimplify form is not available, stay out of trouble.
5706 if (!L->isLoopSimplifyForm())
5707 return;
5708
5709 // If there's no interesting work to be done, bail early.
5710 if (IU.empty()) return;
5711
5712 // If there's too much analysis to be done, bail early. We won't be able to
5713 // model the problem anyway.
5714 unsigned NumUsers = 0;
5715 for (const IVStrideUse &U : IU) {
5716 if (++NumUsers > MaxIVUsers) {
5717 (void)U;
5718 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5719 << "\n");
5720 return;
5721 }
5722 // Bail out if we have a PHI on an EHPad that gets a value from a
5723 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5724 // no good place to stick any instructions.
5725 if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5726 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5727 if (isa<FuncletPadInst>(FirstNonPHI) ||
5728 isa<CatchSwitchInst>(FirstNonPHI))
5729 for (BasicBlock *PredBB : PN->blocks())
5730 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5731 return;
5732 }
5733 }
5734
5735 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5736 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5737 dbgs() << ":\n");
5738
5739 // Configure SCEVExpander already now, so the correct mode is used for
5740 // isSafeToExpand() checks.
5741 #ifndef NDEBUG
5742 Rewriter.setDebugType(DEBUG_TYPE);
5743 #endif
5744 Rewriter.disableCanonicalMode();
5745 Rewriter.enableLSRMode();
5746
5747 // First, perform some low-level loop optimizations.
5748 OptimizeShadowIV();
5749 OptimizeLoopTermCond();
5750
5751 // If loop preparation eliminates all interesting IV users, bail.
5752 if (IU.empty()) return;
5753
5754 // Skip nested loops until we can model them better with formulae.
5755 if (!L->isInnermost()) {
5756 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5757 return;
5758 }
5759
5760 // Start collecting data and preparing for the solver.
5761 // If number of registers is not the major cost, we cannot benefit from the
5762 // current profitable chain optimization which is based on number of
5763 // registers.
5764 // FIXME: add profitable chain optimization for other kinds major cost, for
5765 // example number of instructions.
5766 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5767 CollectChains();
5768 CollectInterestingTypesAndFactors();
5769 CollectFixupsAndInitialFormulae();
5770 CollectLoopInvariantFixupsAndFormulae();
5771
5772 if (Uses.empty())
5773 return;
5774
5775 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5776 print_uses(dbgs()));
5777
5778 // Now use the reuse data to generate a bunch of interesting ways
5779 // to formulate the values needed for the uses.
5780 GenerateAllReuseFormulae();
5781
5782 FilterOutUndesirableDedicatedRegisters();
5783 NarrowSearchSpaceUsingHeuristics();
5784
5785 SmallVector<const Formula *, 8> Solution;
5786 Solve(Solution);
5787
5788 // Release memory that is no longer needed.
5789 Factors.clear();
5790 Types.clear();
5791 RegUses.clear();
5792
5793 if (Solution.empty())
5794 return;
5795
5796 #ifndef NDEBUG
5797 // Formulae should be legal.
5798 for (const LSRUse &LU : Uses) {
5799 for (const Formula &F : LU.Formulae)
5800 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5801 F) && "Illegal formula generated!");
5802 };
5803 #endif
5804
5805 // Now that we've decided what we want, make it so.
5806 ImplementSolution(Solution);
5807 }
5808
5809 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print_factors_and_types(raw_ostream & OS) const5810 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5811 if (Factors.empty() && Types.empty()) return;
5812
5813 OS << "LSR has identified the following interesting factors and types: ";
5814 bool First = true;
5815
5816 for (int64_t Factor : Factors) {
5817 if (!First) OS << ", ";
5818 First = false;
5819 OS << '*' << Factor;
5820 }
5821
5822 for (Type *Ty : Types) {
5823 if (!First) OS << ", ";
5824 First = false;
5825 OS << '(' << *Ty << ')';
5826 }
5827 OS << '\n';
5828 }
5829
print_fixups(raw_ostream & OS) const5830 void LSRInstance::print_fixups(raw_ostream &OS) const {
5831 OS << "LSR is examining the following fixup sites:\n";
5832 for (const LSRUse &LU : Uses)
5833 for (const LSRFixup &LF : LU.Fixups) {
5834 dbgs() << " ";
5835 LF.print(OS);
5836 OS << '\n';
5837 }
5838 }
5839
print_uses(raw_ostream & OS) const5840 void LSRInstance::print_uses(raw_ostream &OS) const {
5841 OS << "LSR is examining the following uses:\n";
5842 for (const LSRUse &LU : Uses) {
5843 dbgs() << " ";
5844 LU.print(OS);
5845 OS << '\n';
5846 for (const Formula &F : LU.Formulae) {
5847 OS << " ";
5848 F.print(OS);
5849 OS << '\n';
5850 }
5851 }
5852 }
5853
print(raw_ostream & OS) const5854 void LSRInstance::print(raw_ostream &OS) const {
5855 print_factors_and_types(OS);
5856 print_fixups(OS);
5857 print_uses(OS);
5858 }
5859
dump() const5860 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5861 print(errs()); errs() << '\n';
5862 }
5863 #endif
5864
5865 namespace {
5866
5867 class LoopStrengthReduce : public LoopPass {
5868 public:
5869 static char ID; // Pass ID, replacement for typeid
5870
5871 LoopStrengthReduce();
5872
5873 private:
5874 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5875 void getAnalysisUsage(AnalysisUsage &AU) const override;
5876 };
5877
5878 } // end anonymous namespace
5879
LoopStrengthReduce()5880 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5881 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5882 }
5883
getAnalysisUsage(AnalysisUsage & AU) const5884 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5885 // We split critical edges, so we change the CFG. However, we do update
5886 // many analyses if they are around.
5887 AU.addPreservedID(LoopSimplifyID);
5888
5889 AU.addRequired<LoopInfoWrapperPass>();
5890 AU.addPreserved<LoopInfoWrapperPass>();
5891 AU.addRequiredID(LoopSimplifyID);
5892 AU.addRequired<DominatorTreeWrapperPass>();
5893 AU.addPreserved<DominatorTreeWrapperPass>();
5894 AU.addRequired<ScalarEvolutionWrapperPass>();
5895 AU.addPreserved<ScalarEvolutionWrapperPass>();
5896 AU.addRequired<AssumptionCacheTracker>();
5897 AU.addRequired<TargetLibraryInfoWrapperPass>();
5898 // Requiring LoopSimplify a second time here prevents IVUsers from running
5899 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5900 AU.addRequiredID(LoopSimplifyID);
5901 AU.addRequired<IVUsersWrapperPass>();
5902 AU.addPreserved<IVUsersWrapperPass>();
5903 AU.addRequired<TargetTransformInfoWrapperPass>();
5904 AU.addPreserved<MemorySSAWrapperPass>();
5905 }
5906
5907 namespace {
5908
5909 /// Enables more convenient iteration over a DWARF expression vector.
5910 static iterator_range<llvm::DIExpression::expr_op_iterator>
ToDwarfOpIter(SmallVectorImpl<uint64_t> & Expr)5911 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
5912 llvm::DIExpression::expr_op_iterator Begin =
5913 llvm::DIExpression::expr_op_iterator(Expr.begin());
5914 llvm::DIExpression::expr_op_iterator End =
5915 llvm::DIExpression::expr_op_iterator(Expr.end());
5916 return {Begin, End};
5917 }
5918
5919 struct SCEVDbgValueBuilder {
5920 SCEVDbgValueBuilder() = default;
SCEVDbgValueBuilder__anon3f0d62641311::SCEVDbgValueBuilder5921 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
5922
clone__anon3f0d62641311::SCEVDbgValueBuilder5923 void clone(const SCEVDbgValueBuilder &Base) {
5924 LocationOps = Base.LocationOps;
5925 Expr = Base.Expr;
5926 }
5927
clear__anon3f0d62641311::SCEVDbgValueBuilder5928 void clear() {
5929 LocationOps.clear();
5930 Expr.clear();
5931 }
5932
5933 /// The DIExpression as we translate the SCEV.
5934 SmallVector<uint64_t, 6> Expr;
5935 /// The location ops of the DIExpression.
5936 SmallVector<Value *, 2> LocationOps;
5937
pushOperator__anon3f0d62641311::SCEVDbgValueBuilder5938 void pushOperator(uint64_t Op) { Expr.push_back(Op); }
pushUInt__anon3f0d62641311::SCEVDbgValueBuilder5939 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
5940
5941 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
5942 /// in the set of values referenced by the expression.
pushLocation__anon3f0d62641311::SCEVDbgValueBuilder5943 void pushLocation(llvm::Value *V) {
5944 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
5945 auto *It = std::find(LocationOps.begin(), LocationOps.end(), V);
5946 unsigned ArgIndex = 0;
5947 if (It != LocationOps.end()) {
5948 ArgIndex = std::distance(LocationOps.begin(), It);
5949 } else {
5950 ArgIndex = LocationOps.size();
5951 LocationOps.push_back(V);
5952 }
5953 Expr.push_back(ArgIndex);
5954 }
5955
pushValue__anon3f0d62641311::SCEVDbgValueBuilder5956 void pushValue(const SCEVUnknown *U) {
5957 llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
5958 pushLocation(V);
5959 }
5960
pushConst__anon3f0d62641311::SCEVDbgValueBuilder5961 bool pushConst(const SCEVConstant *C) {
5962 if (C->getAPInt().getMinSignedBits() > 64)
5963 return false;
5964 Expr.push_back(llvm::dwarf::DW_OP_consts);
5965 Expr.push_back(C->getAPInt().getSExtValue());
5966 return true;
5967 }
5968
5969 // Iterating the expression as DWARF ops is convenient when updating
5970 // DWARF_OP_LLVM_args.
expr_ops__anon3f0d62641311::SCEVDbgValueBuilder5971 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
5972 return ToDwarfOpIter(Expr);
5973 }
5974
5975 /// Several SCEV types are sequences of the same arithmetic operator applied
5976 /// to constants and values that may be extended or truncated.
pushArithmeticExpr__anon3f0d62641311::SCEVDbgValueBuilder5977 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
5978 uint64_t DwarfOp) {
5979 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
5980 "Expected arithmetic SCEV type");
5981 bool Success = true;
5982 unsigned EmitOperator = 0;
5983 for (auto &Op : CommExpr->operands()) {
5984 Success &= pushSCEV(Op);
5985
5986 if (EmitOperator >= 1)
5987 pushOperator(DwarfOp);
5988 ++EmitOperator;
5989 }
5990 return Success;
5991 }
5992
5993 // TODO: Identify and omit noop casts.
pushCast__anon3f0d62641311::SCEVDbgValueBuilder5994 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
5995 const llvm::SCEV *Inner = C->getOperand(0);
5996 const llvm::Type *Type = C->getType();
5997 uint64_t ToWidth = Type->getIntegerBitWidth();
5998 bool Success = pushSCEV(Inner);
5999 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6000 IsSigned ? llvm::dwarf::DW_ATE_signed
6001 : llvm::dwarf::DW_ATE_unsigned};
6002 for (const auto &Op : CastOps)
6003 pushOperator(Op);
6004 return Success;
6005 }
6006
6007 // TODO: MinMax - although these haven't been encountered in the test suite.
pushSCEV__anon3f0d62641311::SCEVDbgValueBuilder6008 bool pushSCEV(const llvm::SCEV *S) {
6009 bool Success = true;
6010 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6011 Success &= pushConst(StartInt);
6012
6013 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6014 if (!U->getValue())
6015 return false;
6016 pushLocation(U->getValue());
6017
6018 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6019 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6020
6021 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6022 Success &= pushSCEV(UDiv->getLHS());
6023 Success &= pushSCEV(UDiv->getRHS());
6024 pushOperator(llvm::dwarf::DW_OP_div);
6025
6026 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6027 // Assert if a new and unknown SCEVCastEXpr type is encountered.
6028 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6029 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6030 "Unexpected cast type in SCEV.");
6031 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6032
6033 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6034 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6035
6036 } else if (isa<SCEVAddRecExpr>(S)) {
6037 // Nested SCEVAddRecExpr are generated by nested loops and are currently
6038 // unsupported.
6039 return false;
6040
6041 } else {
6042 return false;
6043 }
6044 return Success;
6045 }
6046
6047 /// Return true if the combination of arithmetic operator and underlying
6048 /// SCEV constant value is an identity function.
isIdentityFunction__anon3f0d62641311::SCEVDbgValueBuilder6049 bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6050 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6051 if (C->getAPInt().getMinSignedBits() > 64)
6052 return false;
6053 int64_t I = C->getAPInt().getSExtValue();
6054 switch (Op) {
6055 case llvm::dwarf::DW_OP_plus:
6056 case llvm::dwarf::DW_OP_minus:
6057 return I == 0;
6058 case llvm::dwarf::DW_OP_mul:
6059 case llvm::dwarf::DW_OP_div:
6060 return I == 1;
6061 }
6062 }
6063 return false;
6064 }
6065
6066 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6067 /// builder's expression stack. The stack should already contain an
6068 /// expression for the iteration count, so that it can be multiplied by
6069 /// the stride and added to the start.
6070 /// Components of the expression are omitted if they are an identity function.
6071 /// Chain (non-affine) SCEVs are not supported.
SCEVToValueExpr__anon3f0d62641311::SCEVDbgValueBuilder6072 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6073 assert(SAR.isAffine() && "Expected affine SCEV");
6074 // TODO: Is this check needed?
6075 if (isa<SCEVAddRecExpr>(SAR.getStart()))
6076 return false;
6077
6078 const SCEV *Start = SAR.getStart();
6079 const SCEV *Stride = SAR.getStepRecurrence(SE);
6080
6081 // Skip pushing arithmetic noops.
6082 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6083 if (!pushSCEV(Stride))
6084 return false;
6085 pushOperator(llvm::dwarf::DW_OP_mul);
6086 }
6087 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6088 if (!pushSCEV(Start))
6089 return false;
6090 pushOperator(llvm::dwarf::DW_OP_plus);
6091 }
6092 return true;
6093 }
6094
6095 /// Create an expression that is an offset from a value (usually the IV).
createOffsetExpr__anon3f0d62641311::SCEVDbgValueBuilder6096 void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6097 pushLocation(OffsetValue);
6098 DIExpression::appendOffset(Expr, Offset);
6099 LLVM_DEBUG(
6100 dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6101 << std::to_string(Offset) << "\n");
6102 }
6103
6104 /// Combine a translation of the SCEV and the IV to create an expression that
6105 /// recovers a location's value.
6106 /// returns true if an expression was created.
createIterCountExpr__anon3f0d62641311::SCEVDbgValueBuilder6107 bool createIterCountExpr(const SCEV *S,
6108 const SCEVDbgValueBuilder &IterationCount,
6109 ScalarEvolution &SE) {
6110 // SCEVs for SSA values are most frquently of the form
6111 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6112 // This is because %a is a PHI node that is not the IV. However, these
6113 // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6114 // so its not expected this point will be reached.
6115 if (!isa<SCEVAddRecExpr>(S))
6116 return false;
6117
6118 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6119 << '\n');
6120
6121 const auto *Rec = cast<SCEVAddRecExpr>(S);
6122 if (!Rec->isAffine())
6123 return false;
6124
6125 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6126 return false;
6127
6128 // Initialise a new builder with the iteration count expression. In
6129 // combination with the value's SCEV this enables recovery.
6130 clone(IterationCount);
6131 if (!SCEVToValueExpr(*Rec, SE))
6132 return false;
6133
6134 return true;
6135 }
6136
6137 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6138 /// builder's expression stack. The stack should already contain an
6139 /// expression for the iteration count, so that it can be multiplied by
6140 /// the stride and added to the start.
6141 /// Components of the expression are omitted if they are an identity function.
SCEVToIterCountExpr__anon3f0d62641311::SCEVDbgValueBuilder6142 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6143 ScalarEvolution &SE) {
6144 assert(SAR.isAffine() && "Expected affine SCEV");
6145 if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6146 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6147 << SAR << '\n');
6148 return false;
6149 }
6150 const SCEV *Start = SAR.getStart();
6151 const SCEV *Stride = SAR.getStepRecurrence(SE);
6152
6153 // Skip pushing arithmetic noops.
6154 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6155 if (!pushSCEV(Start))
6156 return false;
6157 pushOperator(llvm::dwarf::DW_OP_minus);
6158 }
6159 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6160 if (!pushSCEV(Stride))
6161 return false;
6162 pushOperator(llvm::dwarf::DW_OP_div);
6163 }
6164 return true;
6165 }
6166
6167 // Append the current expression and locations to a location list and an
6168 // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6169 // the locations already present in the destination list.
appendToVectors__anon3f0d62641311::SCEVDbgValueBuilder6170 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6171 SmallVectorImpl<Value *> &DestLocations) {
6172 assert(!DestLocations.empty() &&
6173 "Expected the locations vector to contain the IV");
6174 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6175 // modified to account for the locations already in the destination vector.
6176 // All builders contain the IV as the first location op.
6177 assert(!LocationOps.empty() &&
6178 "Expected the location ops to contain the IV.");
6179 // DestIndexMap[n] contains the index in DestLocations for the nth
6180 // location in this SCEVDbgValueBuilder.
6181 SmallVector<uint64_t, 2> DestIndexMap;
6182 for (const auto &Op : LocationOps) {
6183 auto It = find(DestLocations, Op);
6184 if (It != DestLocations.end()) {
6185 // Location already exists in DestLocations, reuse existing ArgIndex.
6186 DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6187 continue;
6188 }
6189 // Location is not in DestLocations, add it.
6190 DestIndexMap.push_back(DestLocations.size());
6191 DestLocations.push_back(Op);
6192 }
6193
6194 for (const auto &Op : expr_ops()) {
6195 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6196 Op.appendToVector(DestExpr);
6197 continue;
6198 }
6199
6200 DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6201 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6202 // DestIndexMap[n] contains its new index in DestLocations.
6203 uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6204 DestExpr.push_back(NewIndex);
6205 }
6206 }
6207 };
6208
6209 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6210 /// and DIExpression.
6211 struct DVIRecoveryRec {
DVIRecoveryRec__anon3f0d62641311::DVIRecoveryRec6212 DVIRecoveryRec(DbgValueInst *DbgValue)
6213 : DVI(DbgValue), Expr(DbgValue->getExpression()),
6214 HadLocationArgList(false) {}
6215
6216 DbgValueInst *DVI;
6217 DIExpression *Expr;
6218 bool HadLocationArgList;
6219 SmallVector<WeakVH, 2> LocationOps;
6220 SmallVector<const llvm::SCEV *, 2> SCEVs;
6221 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6222
clear__anon3f0d62641311::DVIRecoveryRec6223 void clear() {
6224 for (auto &RE : RecoveryExprs)
6225 RE.reset();
6226 RecoveryExprs.clear();
6227 }
6228
~DVIRecoveryRec__anon3f0d62641311::DVIRecoveryRec6229 ~DVIRecoveryRec() { clear(); }
6230 };
6231 } // namespace
6232
6233 /// Returns the total number of DW_OP_llvm_arg operands in the expression.
6234 /// This helps in determining if a DIArglist is necessary or can be omitted from
6235 /// the dbg.value.
numLLVMArgOps(SmallVectorImpl<uint64_t> & Expr)6236 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6237 auto expr_ops = ToDwarfOpIter(Expr);
6238 unsigned Count = 0;
6239 for (auto Op : expr_ops)
6240 if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6241 Count++;
6242 return Count;
6243 }
6244
6245 /// Overwrites DVI with the location and Ops as the DIExpression. This will
6246 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6247 /// because a DIArglist is not created for the first argument of the dbg.value.
updateDVIWithLocation(DbgValueInst & DVI,Value * Location,SmallVectorImpl<uint64_t> & Ops)6248 static void updateDVIWithLocation(DbgValueInst &DVI, Value *Location,
6249 SmallVectorImpl<uint64_t> &Ops) {
6250 assert(
6251 numLLVMArgOps(Ops) == 0 &&
6252 "Expected expression that does not contain any DW_OP_llvm_arg operands.");
6253 DVI.setRawLocation(ValueAsMetadata::get(Location));
6254 DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6255 }
6256
6257 /// Overwrite DVI with locations placed into a DIArglist.
updateDVIWithLocations(DbgValueInst & DVI,SmallVectorImpl<Value * > & Locations,SmallVectorImpl<uint64_t> & Ops)6258 static void updateDVIWithLocations(DbgValueInst &DVI,
6259 SmallVectorImpl<Value *> &Locations,
6260 SmallVectorImpl<uint64_t> &Ops) {
6261 assert(numLLVMArgOps(Ops) != 0 &&
6262 "Expected expression that references DIArglist locations using "
6263 "DW_OP_llvm_arg operands.");
6264 SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6265 for (Value *V : Locations)
6266 MetadataLocs.push_back(ValueAsMetadata::get(V));
6267 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6268 DVI.setRawLocation(llvm::DIArgList::get(DVI.getContext(), ValArrayRef));
6269 DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6270 }
6271
6272 /// Write the new expression and new location ops for the dbg.value. If possible
6273 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6274 /// can be omitted if:
6275 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6276 /// 2. The DW_OP_LLVM_arg is the first operand in the expression.
UpdateDbgValueInst(DVIRecoveryRec & DVIRec,SmallVectorImpl<Value * > & NewLocationOps,SmallVectorImpl<uint64_t> & NewExpr)6277 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6278 SmallVectorImpl<Value *> &NewLocationOps,
6279 SmallVectorImpl<uint64_t> &NewExpr) {
6280 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6281 if (NumLLVMArgs == 0) {
6282 // Location assumed to be on the stack.
6283 updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], NewExpr);
6284 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6285 // There is only a single DW_OP_llvm_arg at the start of the expression,
6286 // so it can be omitted along with DIArglist.
6287 assert(NewExpr[1] == 0 &&
6288 "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6289 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6290 updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], ShortenedOps);
6291 } else {
6292 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6293 updateDVIWithLocations(*DVIRec.DVI, NewLocationOps, NewExpr);
6294 }
6295
6296 // If the DIExpression was previously empty then add the stack terminator.
6297 // Non-empty expressions have only had elements inserted into them and so the
6298 // terminator should already be present e.g. stack_value or fragment.
6299 DIExpression *SalvageExpr = DVIRec.DVI->getExpression();
6300 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6301 SalvageExpr = DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6302 DVIRec.DVI->setExpression(SalvageExpr);
6303 }
6304 }
6305
6306 /// Cached location ops may be erased during LSR, in which case an undef is
6307 /// required when restoring from the cache. The type of that location is no
6308 /// longer available, so just use int8. The undef will be replaced by one or
6309 /// more locations later when a SCEVDbgValueBuilder selects alternative
6310 /// locations to use for the salvage.
getValueOrUndef(WeakVH & VH,LLVMContext & C)6311 static Value *getValueOrUndef(WeakVH &VH, LLVMContext &C) {
6312 return (VH) ? VH : UndefValue::get(llvm::Type::getInt8Ty(C));
6313 }
6314
6315 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
restorePreTransformState(DVIRecoveryRec & DVIRec)6316 static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6317 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6318 << "scev-salvage: post-LSR: " << *DVIRec.DVI << '\n');
6319 assert(DVIRec.Expr && "Expected an expression");
6320 DVIRec.DVI->setExpression(DVIRec.Expr);
6321
6322 // Even a single location-op may be inside a DIArgList and referenced with
6323 // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6324 if (!DVIRec.HadLocationArgList) {
6325 assert(DVIRec.LocationOps.size() == 1 &&
6326 "Unexpected number of location ops.");
6327 // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6328 // this case was not present before, so force the location back to a single
6329 // uncontained Value.
6330 Value *CachedValue =
6331 getValueOrUndef(DVIRec.LocationOps[0], DVIRec.DVI->getContext());
6332 DVIRec.DVI->setRawLocation(ValueAsMetadata::get(CachedValue));
6333 } else {
6334 SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6335 for (WeakVH VH : DVIRec.LocationOps) {
6336 Value *CachedValue = getValueOrUndef(VH, DVIRec.DVI->getContext());
6337 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6338 }
6339 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6340 DVIRec.DVI->setRawLocation(
6341 llvm::DIArgList::get(DVIRec.DVI->getContext(), ValArrayRef));
6342 }
6343 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DVIRec.DVI << '\n');
6344 }
6345
SalvageDVI(llvm::Loop * L,ScalarEvolution & SE,llvm::PHINode * LSRInductionVar,DVIRecoveryRec & DVIRec,const SCEV * SCEVInductionVar,SCEVDbgValueBuilder IterCountExpr)6346 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6347 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6348 const SCEV *SCEVInductionVar,
6349 SCEVDbgValueBuilder IterCountExpr) {
6350 if (!DVIRec.DVI->isUndef())
6351 return false;
6352
6353 // LSR may have caused several changes to the dbg.value in the failed salvage
6354 // attempt. So restore the DIExpression, the location ops and also the
6355 // location ops format, which is always DIArglist for multiple ops, but only
6356 // sometimes for a single op.
6357 restorePreTransformState(DVIRec);
6358
6359 // LocationOpIndexMap[i] will store the post-LSR location index of
6360 // the non-optimised out location at pre-LSR index i.
6361 SmallVector<int64_t, 2> LocationOpIndexMap;
6362 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6363 SmallVector<Value *, 2> NewLocationOps;
6364 NewLocationOps.push_back(LSRInductionVar);
6365
6366 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6367 WeakVH VH = DVIRec.LocationOps[i];
6368 // Place the locations not optimised out in the list first, avoiding
6369 // inserts later. The map is used to update the DIExpression's
6370 // DW_OP_LLVM_arg arguments as the expression is updated.
6371 if (VH && !isa<UndefValue>(VH)) {
6372 NewLocationOps.push_back(VH);
6373 LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6374 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6375 << " now at index " << LocationOpIndexMap[i] << "\n");
6376 continue;
6377 }
6378
6379 // It's possible that a value referred to in the SCEV may have been
6380 // optimised out by LSR.
6381 if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6382 SE.containsUndefs(DVIRec.SCEVs[i])) {
6383 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6384 << " refers to a location that is now undef or erased. "
6385 "Salvage abandoned.\n");
6386 return false;
6387 }
6388
6389 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6390 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6391
6392 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6393 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6394
6395 // Create an offset-based salvage expression if possible, as it requires
6396 // less DWARF ops than an iteration count-based expression.
6397 if (Optional<APInt> Offset =
6398 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6399 if (Offset.value().getMinSignedBits() <= 64)
6400 SalvageExpr->createOffsetExpr(Offset.value().getSExtValue(),
6401 LSRInductionVar);
6402 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6403 SE))
6404 return false;
6405 }
6406
6407 // Merge the DbgValueBuilder generated expressions and the original
6408 // DIExpression, place the result into an new vector.
6409 SmallVector<uint64_t, 3> NewExpr;
6410 if (DVIRec.Expr->getNumElements() == 0) {
6411 assert(DVIRec.RecoveryExprs.size() == 1 &&
6412 "Expected only a single recovery expression for an empty "
6413 "DIExpression.");
6414 assert(DVIRec.RecoveryExprs[0] &&
6415 "Expected a SCEVDbgSalvageBuilder for location 0");
6416 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6417 B->appendToVectors(NewExpr, NewLocationOps);
6418 }
6419 for (const auto &Op : DVIRec.Expr->expr_ops()) {
6420 // Most Ops needn't be updated.
6421 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6422 Op.appendToVector(NewExpr);
6423 continue;
6424 }
6425
6426 uint64_t LocationArgIndex = Op.getArg(0);
6427 SCEVDbgValueBuilder *DbgBuilder =
6428 DVIRec.RecoveryExprs[LocationArgIndex].get();
6429 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6430 // optimise it away. So just translate the argument to the updated
6431 // location index.
6432 if (!DbgBuilder) {
6433 NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6434 assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6435 "Expected a positive index for the location-op position.");
6436 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6437 continue;
6438 }
6439 // The location has a recovery expression.
6440 DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6441 }
6442
6443 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6444 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " << *DVIRec.DVI << "\n");
6445 return true;
6446 }
6447
6448 /// Obtain an expression for the iteration count, then attempt to salvage the
6449 /// dbg.value intrinsics.
6450 static void
DbgRewriteSalvageableDVIs(llvm::Loop * L,ScalarEvolution & SE,llvm::PHINode * LSRInductionVar,SmallVector<std::unique_ptr<DVIRecoveryRec>,2> & DVIToUpdate)6451 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE,
6452 llvm::PHINode *LSRInductionVar,
6453 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6454 if (DVIToUpdate.empty())
6455 return;
6456
6457 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6458 assert(SCEVInductionVar &&
6459 "Anticipated a SCEV for the post-LSR induction variable");
6460
6461 if (const SCEVAddRecExpr *IVAddRec =
6462 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6463 if (!IVAddRec->isAffine())
6464 return;
6465
6466 // Prevent translation using excessive resources.
6467 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6468 return;
6469
6470 // The iteration count is required to recover location values.
6471 SCEVDbgValueBuilder IterCountExpr;
6472 IterCountExpr.pushLocation(LSRInductionVar);
6473 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6474 return;
6475
6476 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6477 << '\n');
6478
6479 for (auto &DVIRec : DVIToUpdate) {
6480 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6481 IterCountExpr);
6482 }
6483 }
6484 }
6485
6486 /// Identify and cache salvageable DVI locations and expressions along with the
6487 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6488 /// cacheing and salvaging.
DbgGatherSalvagableDVI(Loop * L,ScalarEvolution & SE,SmallVector<std::unique_ptr<DVIRecoveryRec>,2> & SalvageableDVISCEVs,SmallSet<AssertingVH<DbgValueInst>,2> & DVIHandles)6489 static void DbgGatherSalvagableDVI(
6490 Loop *L, ScalarEvolution &SE,
6491 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6492 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6493 for (auto &B : L->getBlocks()) {
6494 for (auto &I : *B) {
6495 auto DVI = dyn_cast<DbgValueInst>(&I);
6496 if (!DVI)
6497 continue;
6498 // Ensure that if any location op is undef that the dbg.vlue is not
6499 // cached.
6500 if (DVI->isUndef())
6501 continue;
6502
6503 // Check that the location op SCEVs are suitable for translation to
6504 // DIExpression.
6505 const auto &HasTranslatableLocationOps =
6506 [&](const DbgValueInst *DVI) -> bool {
6507 for (const auto LocOp : DVI->location_ops()) {
6508 if (!LocOp)
6509 return false;
6510
6511 if (!SE.isSCEVable(LocOp->getType()))
6512 return false;
6513
6514 const SCEV *S = SE.getSCEV(LocOp);
6515 if (SE.containsUndefs(S))
6516 return false;
6517 }
6518 return true;
6519 };
6520
6521 if (!HasTranslatableLocationOps(DVI))
6522 continue;
6523
6524 std::unique_ptr<DVIRecoveryRec> NewRec =
6525 std::make_unique<DVIRecoveryRec>(DVI);
6526 // Each location Op may need a SCEVDbgValueBuilder in order to recover it.
6527 // Pre-allocating a vector will enable quick lookups of the builder later
6528 // during the salvage.
6529 NewRec->RecoveryExprs.resize(DVI->getNumVariableLocationOps());
6530 for (const auto LocOp : DVI->location_ops()) {
6531 NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6532 NewRec->LocationOps.push_back(LocOp);
6533 NewRec->HadLocationArgList = DVI->hasArgList();
6534 }
6535 SalvageableDVISCEVs.push_back(std::move(NewRec));
6536 DVIHandles.insert(DVI);
6537 }
6538 }
6539 }
6540
6541 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6542 /// any PHi from the loop header is usable, but may have less chance of
6543 /// surviving subsequent transforms.
GetInductionVariable(const Loop & L,ScalarEvolution & SE,const LSRInstance & LSR)6544 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6545 const LSRInstance &LSR) {
6546
6547 auto IsSuitableIV = [&](PHINode *P) {
6548 if (!SE.isSCEVable(P->getType()))
6549 return false;
6550 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6551 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6552 return false;
6553 };
6554
6555 // For now, just pick the first IV that was generated and inserted by
6556 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6557 // by subsequent transforms.
6558 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6559 if (!IV)
6560 continue;
6561
6562 // There should only be PHI node IVs.
6563 PHINode *P = cast<PHINode>(&*IV);
6564
6565 if (IsSuitableIV(P))
6566 return P;
6567 }
6568
6569 for (PHINode &P : L.getHeader()->phis()) {
6570 if (IsSuitableIV(&P))
6571 return &P;
6572 }
6573 return nullptr;
6574 }
6575
ReduceLoopStrength(Loop * L,IVUsers & IU,ScalarEvolution & SE,DominatorTree & DT,LoopInfo & LI,const TargetTransformInfo & TTI,AssumptionCache & AC,TargetLibraryInfo & TLI,MemorySSA * MSSA)6576 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6577 DominatorTree &DT, LoopInfo &LI,
6578 const TargetTransformInfo &TTI,
6579 AssumptionCache &AC, TargetLibraryInfo &TLI,
6580 MemorySSA *MSSA) {
6581
6582 // Debug preservation - before we start removing anything identify which DVI
6583 // meet the salvageable criteria and store their DIExpression and SCEVs.
6584 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6585 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6586 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6587
6588 bool Changed = false;
6589 std::unique_ptr<MemorySSAUpdater> MSSAU;
6590 if (MSSA)
6591 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6592
6593 // Run the main LSR transformation.
6594 const LSRInstance &Reducer =
6595 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6596 Changed |= Reducer.getChanged();
6597
6598 // Remove any extra phis created by processing inner loops.
6599 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6600 if (EnablePhiElim && L->isLoopSimplifyForm()) {
6601 SmallVector<WeakTrackingVH, 16> DeadInsts;
6602 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6603 SCEVExpander Rewriter(SE, DL, "lsr", false);
6604 #ifndef NDEBUG
6605 Rewriter.setDebugType(DEBUG_TYPE);
6606 #endif
6607 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6608 if (numFolded) {
6609 Changed = true;
6610 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6611 MSSAU.get());
6612 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6613 }
6614 }
6615 // LSR may at times remove all uses of an induction variable from a loop.
6616 // The only remaining use is the PHI in the exit block.
6617 // When this is the case, if the exit value of the IV can be calculated using
6618 // SCEV, we can replace the exit block PHI with the final value of the IV and
6619 // skip the updates in each loop iteration.
6620 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
6621 SmallVector<WeakTrackingVH, 16> DeadInsts;
6622 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6623 SCEVExpander Rewriter(SE, DL, "lsr", false);
6624 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6625 UnusedIndVarInLoop, DeadInsts);
6626 if (Rewrites) {
6627 Changed = true;
6628 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6629 MSSAU.get());
6630 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6631 }
6632 }
6633
6634 if (SalvageableDVIRecords.empty())
6635 return Changed;
6636
6637 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
6638 // expressions composed using the derived iteration count.
6639 // TODO: Allow for multiple IV references for nested AddRecSCEVs
6640 for (auto &L : LI) {
6641 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
6642 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
6643 else {
6644 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
6645 "could not be identified.\n");
6646 }
6647 }
6648
6649 for (auto &Rec : SalvageableDVIRecords)
6650 Rec->clear();
6651 SalvageableDVIRecords.clear();
6652 DVIHandles.clear();
6653 return Changed;
6654 }
6655
runOnLoop(Loop * L,LPPassManager &)6656 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
6657 if (skipLoop(L))
6658 return false;
6659
6660 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
6661 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6662 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6663 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6664 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
6665 *L->getHeader()->getParent());
6666 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
6667 *L->getHeader()->getParent());
6668 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
6669 *L->getHeader()->getParent());
6670 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
6671 MemorySSA *MSSA = nullptr;
6672 if (MSSAAnalysis)
6673 MSSA = &MSSAAnalysis->getMSSA();
6674 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
6675 }
6676
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)6677 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
6678 LoopStandardAnalysisResults &AR,
6679 LPMUpdater &) {
6680 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
6681 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
6682 return PreservedAnalyses::all();
6683
6684 auto PA = getLoopPassPreservedAnalyses();
6685 if (AR.MSSA)
6686 PA.preserve<MemorySSAAnalysis>();
6687 return PA;
6688 }
6689
6690 char LoopStrengthReduce::ID = 0;
6691
6692 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
6693 "Loop Strength Reduction", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)6694 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6695 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6696 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6697 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
6698 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6699 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6700 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
6701 "Loop Strength Reduction", false, false)
6702
6703 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
6704