1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/MemorySSA.h"
25 #include "llvm/Analysis/MemorySSAUpdater.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Transforms/Scalar.h"
32 #include "llvm/Transforms/Scalar/LoopPassManager.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include "llvm/Transforms/Utils/LoopUtils.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "loop-simplifycfg"
38
39 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
40 cl::init(true));
41
42 STATISTIC(NumTerminatorsFolded,
43 "Number of terminators folded to unconditional branches");
44 STATISTIC(NumLoopBlocksDeleted,
45 "Number of loop blocks deleted");
46 STATISTIC(NumLoopExitsDeleted,
47 "Number of loop exiting edges deleted");
48
49 /// If \p BB is a switch or a conditional branch, but only one of its successors
50 /// can be reached from this block in runtime, return this successor. Otherwise,
51 /// return nullptr.
getOnlyLiveSuccessor(BasicBlock * BB)52 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
53 Instruction *TI = BB->getTerminator();
54 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
55 if (BI->isUnconditional())
56 return nullptr;
57 if (BI->getSuccessor(0) == BI->getSuccessor(1))
58 return BI->getSuccessor(0);
59 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
60 if (!Cond)
61 return nullptr;
62 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
63 }
64
65 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
66 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
67 if (!CI)
68 return nullptr;
69 for (auto Case : SI->cases())
70 if (Case.getCaseValue() == CI)
71 return Case.getCaseSuccessor();
72 return SI->getDefaultDest();
73 }
74
75 return nullptr;
76 }
77
78 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
removeBlockFromLoops(BasicBlock * BB,Loop * FirstLoop,Loop * LastLoop=nullptr)79 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
80 Loop *LastLoop = nullptr) {
81 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
82 "First loop is supposed to be inside of last loop!");
83 assert(FirstLoop->contains(BB) && "Must be a loop block!");
84 for (Loop *Current = FirstLoop; Current != LastLoop;
85 Current = Current->getParentLoop())
86 Current->removeBlockFromLoop(BB);
87 }
88
89 /// Find innermost loop that contains at least one block from \p BBs and
90 /// contains the header of loop \p L.
getInnermostLoopFor(SmallPtrSetImpl<BasicBlock * > & BBs,Loop & L,LoopInfo & LI)91 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
92 Loop &L, LoopInfo &LI) {
93 Loop *Innermost = nullptr;
94 for (BasicBlock *BB : BBs) {
95 Loop *BBL = LI.getLoopFor(BB);
96 while (BBL && !BBL->contains(L.getHeader()))
97 BBL = BBL->getParentLoop();
98 if (BBL == &L)
99 BBL = BBL->getParentLoop();
100 if (!BBL)
101 continue;
102 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
103 Innermost = BBL;
104 }
105 return Innermost;
106 }
107
108 namespace {
109 /// Helper class that can turn branches and switches with constant conditions
110 /// into unconditional branches.
111 class ConstantTerminatorFoldingImpl {
112 private:
113 Loop &L;
114 LoopInfo &LI;
115 DominatorTree &DT;
116 ScalarEvolution &SE;
117 MemorySSAUpdater *MSSAU;
118 LoopBlocksDFS DFS;
119 DomTreeUpdater DTU;
120 SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
121
122 // Whether or not the current loop has irreducible CFG.
123 bool HasIrreducibleCFG = false;
124 // Whether or not the current loop will still exist after terminator constant
125 // folding will be done. In theory, there are two ways how it can happen:
126 // 1. Loop's latch(es) become unreachable from loop header;
127 // 2. Loop's header becomes unreachable from method entry.
128 // In practice, the second situation is impossible because we only modify the
129 // current loop and its preheader and do not affect preheader's reachibility
130 // from any other block. So this variable set to true means that loop's latch
131 // has become unreachable from loop header.
132 bool DeleteCurrentLoop = false;
133
134 // The blocks of the original loop that will still be reachable from entry
135 // after the constant folding.
136 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
137 // The blocks of the original loop that will become unreachable from entry
138 // after the constant folding.
139 SmallVector<BasicBlock *, 8> DeadLoopBlocks;
140 // The exits of the original loop that will still be reachable from entry
141 // after the constant folding.
142 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
143 // The exits of the original loop that will become unreachable from entry
144 // after the constant folding.
145 SmallVector<BasicBlock *, 8> DeadExitBlocks;
146 // The blocks that will still be a part of the current loop after folding.
147 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
148 // The blocks that have terminators with constant condition that can be
149 // folded. Note: fold candidates should be in L but not in any of its
150 // subloops to avoid complex LI updates.
151 SmallVector<BasicBlock *, 8> FoldCandidates;
152
dump() const153 void dump() const {
154 dbgs() << "Constant terminator folding for loop " << L << "\n";
155 dbgs() << "After terminator constant-folding, the loop will";
156 if (!DeleteCurrentLoop)
157 dbgs() << " not";
158 dbgs() << " be destroyed\n";
159 auto PrintOutVector = [&](const char *Message,
160 const SmallVectorImpl<BasicBlock *> &S) {
161 dbgs() << Message << "\n";
162 for (const BasicBlock *BB : S)
163 dbgs() << "\t" << BB->getName() << "\n";
164 };
165 auto PrintOutSet = [&](const char *Message,
166 const SmallPtrSetImpl<BasicBlock *> &S) {
167 dbgs() << Message << "\n";
168 for (const BasicBlock *BB : S)
169 dbgs() << "\t" << BB->getName() << "\n";
170 };
171 PrintOutVector("Blocks in which we can constant-fold terminator:",
172 FoldCandidates);
173 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
174 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
175 PrintOutSet("Live exit blocks:", LiveExitBlocks);
176 PrintOutVector("Dead exit blocks:", DeadExitBlocks);
177 if (!DeleteCurrentLoop)
178 PrintOutSet("The following blocks will still be part of the loop:",
179 BlocksInLoopAfterFolding);
180 }
181
182 /// Whether or not the current loop has irreducible CFG.
hasIrreducibleCFG(LoopBlocksDFS & DFS)183 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
184 assert(DFS.isComplete() && "DFS is expected to be finished");
185 // Index of a basic block in RPO traversal.
186 DenseMap<const BasicBlock *, unsigned> RPO;
187 unsigned Current = 0;
188 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
189 RPO[*I] = Current++;
190
191 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
192 BasicBlock *BB = *I;
193 for (auto *Succ : successors(BB))
194 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
195 // If an edge goes from a block with greater order number into a block
196 // with lesses number, and it is not a loop backedge, then it can only
197 // be a part of irreducible non-loop cycle.
198 return true;
199 }
200 return false;
201 }
202
203 /// Fill all information about status of blocks and exits of the current loop
204 /// if constant folding of all branches will be done.
analyze()205 void analyze() {
206 DFS.perform(&LI);
207 assert(DFS.isComplete() && "DFS is expected to be finished");
208
209 // TODO: The algorithm below relies on both RPO and Postorder traversals.
210 // When the loop has only reducible CFG inside, then the invariant "all
211 // predecessors of X are processed before X in RPO" is preserved. However
212 // an irreducible loop can break this invariant (e.g. latch does not have to
213 // be the last block in the traversal in this case, and the algorithm relies
214 // on this). We can later decide to support such cases by altering the
215 // algorithms, but so far we just give up analyzing them.
216 if (hasIrreducibleCFG(DFS)) {
217 HasIrreducibleCFG = true;
218 return;
219 }
220
221 // Collect live and dead loop blocks and exits.
222 LiveLoopBlocks.insert(L.getHeader());
223 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
224 BasicBlock *BB = *I;
225
226 // If a loop block wasn't marked as live so far, then it's dead.
227 if (!LiveLoopBlocks.count(BB)) {
228 DeadLoopBlocks.push_back(BB);
229 continue;
230 }
231
232 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
233
234 // If a block has only one live successor, it's a candidate on constant
235 // folding. Only handle blocks from current loop: branches in child loops
236 // are skipped because if they can be folded, they should be folded during
237 // the processing of child loops.
238 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
239 if (TakeFoldCandidate)
240 FoldCandidates.push_back(BB);
241
242 // Handle successors.
243 for (BasicBlock *Succ : successors(BB))
244 if (!TakeFoldCandidate || TheOnlySucc == Succ) {
245 if (L.contains(Succ))
246 LiveLoopBlocks.insert(Succ);
247 else
248 LiveExitBlocks.insert(Succ);
249 }
250 }
251
252 // Amount of dead and live loop blocks should match the total number of
253 // blocks in loop.
254 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
255 "Malformed block sets?");
256
257 // Now, all exit blocks that are not marked as live are dead, if all their
258 // predecessors are in the loop. This may not be the case, as the input loop
259 // may not by in loop-simplify/canonical form.
260 SmallVector<BasicBlock *, 8> ExitBlocks;
261 L.getExitBlocks(ExitBlocks);
262 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
263 for (auto *ExitBlock : ExitBlocks)
264 if (!LiveExitBlocks.count(ExitBlock) &&
265 UniqueDeadExits.insert(ExitBlock).second &&
266 all_of(predecessors(ExitBlock),
267 [this](BasicBlock *Pred) { return L.contains(Pred); }))
268 DeadExitBlocks.push_back(ExitBlock);
269
270 // Whether or not the edge From->To will still be present in graph after the
271 // folding.
272 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
273 if (!LiveLoopBlocks.count(From))
274 return false;
275 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
276 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
277 };
278
279 // The loop will not be destroyed if its latch is live.
280 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
281
282 // If we are going to delete the current loop completely, no extra analysis
283 // is needed.
284 if (DeleteCurrentLoop)
285 return;
286
287 // Otherwise, we should check which blocks will still be a part of the
288 // current loop after the transform.
289 BlocksInLoopAfterFolding.insert(L.getLoopLatch());
290 // If the loop is live, then we should compute what blocks are still in
291 // loop after all branch folding has been done. A block is in loop if
292 // it has a live edge to another block that is in the loop; by definition,
293 // latch is in the loop.
294 auto BlockIsInLoop = [&](BasicBlock *BB) {
295 return any_of(successors(BB), [&](BasicBlock *Succ) {
296 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
297 });
298 };
299 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
300 BasicBlock *BB = *I;
301 if (BlockIsInLoop(BB))
302 BlocksInLoopAfterFolding.insert(BB);
303 }
304
305 assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
306 "Header not in loop?");
307 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
308 "All blocks that stay in loop should be live!");
309 }
310
311 /// We need to preserve static reachibility of all loop exit blocks (this is)
312 /// required by loop pass manager. In order to do it, we make the following
313 /// trick:
314 ///
315 /// preheader:
316 /// <preheader code>
317 /// br label %loop_header
318 ///
319 /// loop_header:
320 /// ...
321 /// br i1 false, label %dead_exit, label %loop_block
322 /// ...
323 ///
324 /// We cannot simply remove edge from the loop to dead exit because in this
325 /// case dead_exit (and its successors) may become unreachable. To avoid that,
326 /// we insert the following fictive preheader:
327 ///
328 /// preheader:
329 /// <preheader code>
330 /// switch i32 0, label %preheader-split,
331 /// [i32 1, label %dead_exit_1],
332 /// [i32 2, label %dead_exit_2],
333 /// ...
334 /// [i32 N, label %dead_exit_N],
335 ///
336 /// preheader-split:
337 /// br label %loop_header
338 ///
339 /// loop_header:
340 /// ...
341 /// br i1 false, label %dead_exit_N, label %loop_block
342 /// ...
343 ///
344 /// Doing so, we preserve static reachibility of all dead exits and can later
345 /// remove edges from the loop to these blocks.
handleDeadExits()346 void handleDeadExits() {
347 // If no dead exits, nothing to do.
348 if (DeadExitBlocks.empty())
349 return;
350
351 // Construct split preheader and the dummy switch to thread edges from it to
352 // dead exits.
353 BasicBlock *Preheader = L.getLoopPreheader();
354 BasicBlock *NewPreheader = llvm::SplitBlock(
355 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
356
357 IRBuilder<> Builder(Preheader->getTerminator());
358 SwitchInst *DummySwitch =
359 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
360 Preheader->getTerminator()->eraseFromParent();
361
362 unsigned DummyIdx = 1;
363 for (BasicBlock *BB : DeadExitBlocks) {
364 // Eliminate all Phis and LandingPads from dead exits.
365 // TODO: Consider removing all instructions in this dead block.
366 SmallVector<Instruction *, 4> DeadInstructions;
367 for (auto &PN : BB->phis())
368 DeadInstructions.push_back(&PN);
369
370 if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
371 DeadInstructions.emplace_back(LandingPad);
372
373 for (Instruction *I : DeadInstructions) {
374 I->replaceAllUsesWith(PoisonValue::get(I->getType()));
375 I->eraseFromParent();
376 }
377
378 assert(DummyIdx != 0 && "Too many dead exits!");
379 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
380 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
381 ++NumLoopExitsDeleted;
382 }
383
384 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
385 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
386 // When we break dead edges, the outer loop may become unreachable from
387 // the current loop. We need to fix loop info accordingly. For this, we
388 // find the most nested loop that still contains L and remove L from all
389 // loops that are inside of it.
390 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
391
392 // Okay, our loop is no longer in the outer loop (and maybe not in some of
393 // its parents as well). Make the fixup.
394 if (StillReachable != OuterLoop) {
395 LI.changeLoopFor(NewPreheader, StillReachable);
396 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
397 for (auto *BB : L.blocks())
398 removeBlockFromLoops(BB, OuterLoop, StillReachable);
399 OuterLoop->removeChildLoop(&L);
400 if (StillReachable)
401 StillReachable->addChildLoop(&L);
402 else
403 LI.addTopLevelLoop(&L);
404
405 // Some values from loops in [OuterLoop, StillReachable) could be used
406 // in the current loop. Now it is not their child anymore, so such uses
407 // require LCSSA Phis.
408 Loop *FixLCSSALoop = OuterLoop;
409 while (FixLCSSALoop->getParentLoop() != StillReachable)
410 FixLCSSALoop = FixLCSSALoop->getParentLoop();
411 assert(FixLCSSALoop && "Should be a loop!");
412 // We need all DT updates to be done before forming LCSSA.
413 if (MSSAU)
414 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
415 else
416 DTU.applyUpdates(DTUpdates);
417 DTUpdates.clear();
418 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
419 }
420 }
421
422 if (MSSAU) {
423 // Clear all updates now. Facilitates deletes that follow.
424 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
425 DTUpdates.clear();
426 if (VerifyMemorySSA)
427 MSSAU->getMemorySSA()->verifyMemorySSA();
428 }
429 }
430
431 /// Delete loop blocks that have become unreachable after folding. Make all
432 /// relevant updates to DT and LI.
deleteDeadLoopBlocks()433 void deleteDeadLoopBlocks() {
434 if (MSSAU) {
435 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
436 DeadLoopBlocks.end());
437 MSSAU->removeBlocks(DeadLoopBlocksSet);
438 }
439
440 // The function LI.erase has some invariants that need to be preserved when
441 // it tries to remove a loop which is not the top-level loop. In particular,
442 // it requires loop's preheader to be strictly in loop's parent. We cannot
443 // just remove blocks one by one, because after removal of preheader we may
444 // break this invariant for the dead loop. So we detatch and erase all dead
445 // loops beforehand.
446 for (auto *BB : DeadLoopBlocks)
447 if (LI.isLoopHeader(BB)) {
448 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
449 Loop *DL = LI.getLoopFor(BB);
450 if (!DL->isOutermost()) {
451 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
452 for (auto *BB : DL->getBlocks())
453 PL->removeBlockFromLoop(BB);
454 DL->getParentLoop()->removeChildLoop(DL);
455 LI.addTopLevelLoop(DL);
456 }
457 LI.erase(DL);
458 }
459
460 for (auto *BB : DeadLoopBlocks) {
461 assert(BB != L.getHeader() &&
462 "Header of the current loop cannot be dead!");
463 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
464 << "\n");
465 LI.removeBlock(BB);
466 }
467
468 detachDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
469 DTU.applyUpdates(DTUpdates);
470 DTUpdates.clear();
471 for (auto *BB : DeadLoopBlocks)
472 DTU.deleteBB(BB);
473
474 NumLoopBlocksDeleted += DeadLoopBlocks.size();
475 }
476
477 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
478 /// unconditional branches.
foldTerminators()479 void foldTerminators() {
480 for (BasicBlock *BB : FoldCandidates) {
481 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
482 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
483 assert(TheOnlySucc && "Should have one live successor!");
484
485 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
486 << " with an unconditional branch to the block "
487 << TheOnlySucc->getName() << "\n");
488
489 SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
490 // Remove all BB's successors except for the live one.
491 unsigned TheOnlySuccDuplicates = 0;
492 for (auto *Succ : successors(BB))
493 if (Succ != TheOnlySucc) {
494 DeadSuccessors.insert(Succ);
495 // If our successor lies in a different loop, we don't want to remove
496 // the one-input Phi because it is a LCSSA Phi.
497 bool PreserveLCSSAPhi = !L.contains(Succ);
498 Succ->removePredecessor(BB, PreserveLCSSAPhi);
499 if (MSSAU)
500 MSSAU->removeEdge(BB, Succ);
501 } else
502 ++TheOnlySuccDuplicates;
503
504 assert(TheOnlySuccDuplicates > 0 && "Should be!");
505 // If TheOnlySucc was BB's successor more than once, after transform it
506 // will be its successor only once. Remove redundant inputs from
507 // TheOnlySucc's Phis.
508 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
509 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
510 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
511 if (MSSAU && TheOnlySuccDuplicates > 1)
512 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
513
514 IRBuilder<> Builder(BB->getContext());
515 Instruction *Term = BB->getTerminator();
516 Builder.SetInsertPoint(Term);
517 Builder.CreateBr(TheOnlySucc);
518 Term->eraseFromParent();
519
520 for (auto *DeadSucc : DeadSuccessors)
521 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
522
523 ++NumTerminatorsFolded;
524 }
525 }
526
527 public:
ConstantTerminatorFoldingImpl(Loop & L,LoopInfo & LI,DominatorTree & DT,ScalarEvolution & SE,MemorySSAUpdater * MSSAU)528 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
529 ScalarEvolution &SE,
530 MemorySSAUpdater *MSSAU)
531 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
532 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
run()533 bool run() {
534 assert(L.getLoopLatch() && "Should be single latch!");
535
536 // Collect all available information about status of blocks after constant
537 // folding.
538 analyze();
539 BasicBlock *Header = L.getHeader();
540 (void)Header;
541
542 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
543 << ": ");
544
545 if (HasIrreducibleCFG) {
546 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
547 return false;
548 }
549
550 // Nothing to constant-fold.
551 if (FoldCandidates.empty()) {
552 LLVM_DEBUG(
553 dbgs() << "No constant terminator folding candidates found in loop "
554 << Header->getName() << "\n");
555 return false;
556 }
557
558 // TODO: Support deletion of the current loop.
559 if (DeleteCurrentLoop) {
560 LLVM_DEBUG(
561 dbgs()
562 << "Give up constant terminator folding in loop " << Header->getName()
563 << ": we don't currently support deletion of the current loop.\n");
564 return false;
565 }
566
567 // TODO: Support blocks that are not dead, but also not in loop after the
568 // folding.
569 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
570 L.getNumBlocks()) {
571 LLVM_DEBUG(
572 dbgs() << "Give up constant terminator folding in loop "
573 << Header->getName() << ": we don't currently"
574 " support blocks that are not dead, but will stop "
575 "being a part of the loop after constant-folding.\n");
576 return false;
577 }
578
579 // TODO: Tokens may breach LCSSA form by default. However, the transform for
580 // dead exit blocks requires LCSSA form to be maintained for all values,
581 // tokens included, otherwise it may break use-def dominance (see PR56243).
582 if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) {
583 assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) &&
584 "LCSSA broken not by tokens?");
585 LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop "
586 << Header->getName()
587 << ": tokens uses potentially break LCSSA form.\n");
588 return false;
589 }
590
591 SE.forgetTopmostLoop(&L);
592 // Dump analysis results.
593 LLVM_DEBUG(dump());
594
595 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
596 << " terminators in loop " << Header->getName() << "\n");
597
598 // Make the actual transforms.
599 handleDeadExits();
600 foldTerminators();
601
602 if (!DeadLoopBlocks.empty()) {
603 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
604 << " dead blocks in loop " << Header->getName() << "\n");
605 deleteDeadLoopBlocks();
606 } else {
607 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
608 DTU.applyUpdates(DTUpdates);
609 DTUpdates.clear();
610 }
611
612 if (MSSAU && VerifyMemorySSA)
613 MSSAU->getMemorySSA()->verifyMemorySSA();
614
615 #ifndef NDEBUG
616 // Make sure that we have preserved all data structures after the transform.
617 #if defined(EXPENSIVE_CHECKS)
618 assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
619 "DT broken after transform!");
620 #else
621 assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
622 "DT broken after transform!");
623 #endif
624 assert(DT.isReachableFromEntry(Header));
625 LI.verify(DT);
626 #endif
627
628 return true;
629 }
630
foldingBreaksCurrentLoop() const631 bool foldingBreaksCurrentLoop() const {
632 return DeleteCurrentLoop;
633 }
634 };
635 } // namespace
636
637 /// Turn branches and switches with known constant conditions into unconditional
638 /// branches.
constantFoldTerminators(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution & SE,MemorySSAUpdater * MSSAU,bool & IsLoopDeleted)639 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
640 ScalarEvolution &SE,
641 MemorySSAUpdater *MSSAU,
642 bool &IsLoopDeleted) {
643 if (!EnableTermFolding)
644 return false;
645
646 // To keep things simple, only process loops with single latch. We
647 // canonicalize most loops to this form. We can support multi-latch if needed.
648 if (!L.getLoopLatch())
649 return false;
650
651 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
652 bool Changed = BranchFolder.run();
653 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
654 return Changed;
655 }
656
mergeBlocksIntoPredecessors(Loop & L,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)657 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
658 LoopInfo &LI, MemorySSAUpdater *MSSAU) {
659 bool Changed = false;
660 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
661 // Copy blocks into a temporary array to avoid iterator invalidation issues
662 // as we remove them.
663 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
664
665 for (auto &Block : Blocks) {
666 // Attempt to merge blocks in the trivial case. Don't modify blocks which
667 // belong to other loops.
668 BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
669 if (!Succ)
670 continue;
671
672 BasicBlock *Pred = Succ->getSinglePredecessor();
673 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
674 continue;
675
676 // Merge Succ into Pred and delete it.
677 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
678
679 if (MSSAU && VerifyMemorySSA)
680 MSSAU->getMemorySSA()->verifyMemorySSA();
681
682 Changed = true;
683 }
684
685 return Changed;
686 }
687
simplifyLoopCFG(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution & SE,MemorySSAUpdater * MSSAU,bool & IsLoopDeleted)688 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
689 ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
690 bool &IsLoopDeleted) {
691 bool Changed = false;
692
693 // Constant-fold terminators with known constant conditions.
694 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
695
696 if (IsLoopDeleted)
697 return true;
698
699 // Eliminate unconditional branches by merging blocks into their predecessors.
700 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
701
702 if (Changed)
703 SE.forgetTopmostLoop(&L);
704
705 return Changed;
706 }
707
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & LPMU)708 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
709 LoopStandardAnalysisResults &AR,
710 LPMUpdater &LPMU) {
711 Optional<MemorySSAUpdater> MSSAU;
712 if (AR.MSSA)
713 MSSAU = MemorySSAUpdater(AR.MSSA);
714 bool DeleteCurrentLoop = false;
715 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
716 MSSAU ? MSSAU.getPointer() : nullptr, DeleteCurrentLoop))
717 return PreservedAnalyses::all();
718
719 if (DeleteCurrentLoop)
720 LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
721
722 auto PA = getLoopPassPreservedAnalyses();
723 if (AR.MSSA)
724 PA.preserve<MemorySSAAnalysis>();
725 return PA;
726 }
727
728 namespace {
729 class LoopSimplifyCFGLegacyPass : public LoopPass {
730 public:
731 static char ID; // Pass ID, replacement for typeid
LoopSimplifyCFGLegacyPass()732 LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
733 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
734 }
735
runOnLoop(Loop * L,LPPassManager & LPM)736 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
737 if (skipLoop(L))
738 return false;
739
740 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
741 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
742 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
743 auto *MSSAA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
744 Optional<MemorySSAUpdater> MSSAU;
745 if (MSSAA)
746 MSSAU = MemorySSAUpdater(&MSSAA->getMSSA());
747 if (MSSAA && VerifyMemorySSA)
748 MSSAU->getMemorySSA()->verifyMemorySSA();
749 bool DeleteCurrentLoop = false;
750 bool Changed =
751 simplifyLoopCFG(*L, DT, LI, SE, MSSAU ? MSSAU.getPointer() : nullptr,
752 DeleteCurrentLoop);
753 if (DeleteCurrentLoop)
754 LPM.markLoopAsDeleted(*L);
755 return Changed;
756 }
757
getAnalysisUsage(AnalysisUsage & AU) const758 void getAnalysisUsage(AnalysisUsage &AU) const override {
759 AU.addPreserved<MemorySSAWrapperPass>();
760 AU.addPreserved<DependenceAnalysisWrapperPass>();
761 getLoopAnalysisUsage(AU);
762 }
763 };
764 } // end namespace
765
766 char LoopSimplifyCFGLegacyPass::ID = 0;
767 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
768 "Simplify loop CFG", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)769 INITIALIZE_PASS_DEPENDENCY(LoopPass)
770 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
771 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
772 "Simplify loop CFG", false, false)
773
774 Pass *llvm::createLoopSimplifyCFGPass() {
775 return new LoopSimplifyCFGLegacyPass();
776 }
777