1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides utilities to convert a loop into a loop with bottom test.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/BasicAliasAnalysis.h"
19 #include "llvm/Analysis/CodeMetrics.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/DomTreeUpdater.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 #include "llvm/Transforms/Utils/SSAUpdater.h"
43 #include "llvm/Transforms/Utils/ValueMapper.h"
44 using namespace llvm;
45
46 #define DEBUG_TYPE "loop-rotate"
47
48 STATISTIC(NumRotated, "Number of loops rotated");
49
50 namespace {
51 /// A simple loop rotation transformation.
52 class LoopRotate {
53 const unsigned MaxHeaderSize;
54 LoopInfo *LI;
55 const TargetTransformInfo *TTI;
56 AssumptionCache *AC;
57 DominatorTree *DT;
58 ScalarEvolution *SE;
59 MemorySSAUpdater *MSSAU;
60 const SimplifyQuery &SQ;
61 bool RotationOnly;
62 bool IsUtilMode;
63
64 public:
LoopRotate(unsigned MaxHeaderSize,LoopInfo * LI,const TargetTransformInfo * TTI,AssumptionCache * AC,DominatorTree * DT,ScalarEvolution * SE,MemorySSAUpdater * MSSAU,const SimplifyQuery & SQ,bool RotationOnly,bool IsUtilMode)65 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
66 const TargetTransformInfo *TTI, AssumptionCache *AC,
67 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
68 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
69 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
70 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
71 IsUtilMode(IsUtilMode) {}
72 bool processLoop(Loop *L);
73
74 private:
75 bool rotateLoop(Loop *L, bool SimplifiedLatch);
76 bool simplifyLoopLatch(Loop *L);
77 };
78 } // end anonymous namespace
79
80 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
81 /// old header into the preheader. If there were uses of the values produced by
82 /// these instruction that were outside of the loop, we have to insert PHI nodes
83 /// to merge the two values. Do this now.
RewriteUsesOfClonedInstructions(BasicBlock * OrigHeader,BasicBlock * OrigPreheader,ValueToValueMapTy & ValueMap,SmallVectorImpl<PHINode * > * InsertedPHIs)84 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
85 BasicBlock *OrigPreheader,
86 ValueToValueMapTy &ValueMap,
87 SmallVectorImpl<PHINode*> *InsertedPHIs) {
88 // Remove PHI node entries that are no longer live.
89 BasicBlock::iterator I, E = OrigHeader->end();
90 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
91 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
92
93 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
94 // as necessary.
95 SSAUpdater SSA(InsertedPHIs);
96 for (I = OrigHeader->begin(); I != E; ++I) {
97 Value *OrigHeaderVal = &*I;
98
99 // If there are no uses of the value (e.g. because it returns void), there
100 // is nothing to rewrite.
101 if (OrigHeaderVal->use_empty())
102 continue;
103
104 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
105
106 // The value now exits in two versions: the initial value in the preheader
107 // and the loop "next" value in the original header.
108 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
109 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
110 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
111
112 // Visit each use of the OrigHeader instruction.
113 for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
114 UE = OrigHeaderVal->use_end();
115 UI != UE;) {
116 // Grab the use before incrementing the iterator.
117 Use &U = *UI;
118
119 // Increment the iterator before removing the use from the list.
120 ++UI;
121
122 // SSAUpdater can't handle a non-PHI use in the same block as an
123 // earlier def. We can easily handle those cases manually.
124 Instruction *UserInst = cast<Instruction>(U.getUser());
125 if (!isa<PHINode>(UserInst)) {
126 BasicBlock *UserBB = UserInst->getParent();
127
128 // The original users in the OrigHeader are already using the
129 // original definitions.
130 if (UserBB == OrigHeader)
131 continue;
132
133 // Users in the OrigPreHeader need to use the value to which the
134 // original definitions are mapped.
135 if (UserBB == OrigPreheader) {
136 U = OrigPreHeaderVal;
137 continue;
138 }
139 }
140
141 // Anything else can be handled by SSAUpdater.
142 SSA.RewriteUse(U);
143 }
144
145 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
146 // intrinsics.
147 SmallVector<DbgValueInst *, 1> DbgValues;
148 llvm::findDbgValues(DbgValues, OrigHeaderVal);
149 for (auto &DbgValue : DbgValues) {
150 // The original users in the OrigHeader are already using the original
151 // definitions.
152 BasicBlock *UserBB = DbgValue->getParent();
153 if (UserBB == OrigHeader)
154 continue;
155
156 // Users in the OrigPreHeader need to use the value to which the
157 // original definitions are mapped and anything else can be handled by
158 // the SSAUpdater. To avoid adding PHINodes, check if the value is
159 // available in UserBB, if not substitute undef.
160 Value *NewVal;
161 if (UserBB == OrigPreheader)
162 NewVal = OrigPreHeaderVal;
163 else if (SSA.HasValueForBlock(UserBB))
164 NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
165 else
166 NewVal = UndefValue::get(OrigHeaderVal->getType());
167 DbgValue->setOperand(0,
168 MetadataAsValue::get(OrigHeaderVal->getContext(),
169 ValueAsMetadata::get(NewVal)));
170 }
171 }
172 }
173
174 // Look for a phi which is only used outside the loop (via a LCSSA phi)
175 // in the exit from the header. This means that rotating the loop can
176 // remove the phi.
shouldRotateLoopExitingLatch(Loop * L)177 static bool shouldRotateLoopExitingLatch(Loop *L) {
178 BasicBlock *Header = L->getHeader();
179 BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
180 if (L->contains(HeaderExit))
181 HeaderExit = Header->getTerminator()->getSuccessor(1);
182
183 for (auto &Phi : Header->phis()) {
184 // Look for uses of this phi in the loop/via exits other than the header.
185 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
186 return cast<Instruction>(U)->getParent() != HeaderExit;
187 }))
188 continue;
189 return true;
190 }
191
192 return false;
193 }
194
195 /// Rotate loop LP. Return true if the loop is rotated.
196 ///
197 /// \param SimplifiedLatch is true if the latch was just folded into the final
198 /// loop exit. In this case we may want to rotate even though the new latch is
199 /// now an exiting branch. This rotation would have happened had the latch not
200 /// been simplified. However, if SimplifiedLatch is false, then we avoid
201 /// rotating loops in which the latch exits to avoid excessive or endless
202 /// rotation. LoopRotate should be repeatable and converge to a canonical
203 /// form. This property is satisfied because simplifying the loop latch can only
204 /// happen once across multiple invocations of the LoopRotate pass.
rotateLoop(Loop * L,bool SimplifiedLatch)205 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
206 // If the loop has only one block then there is not much to rotate.
207 if (L->getBlocks().size() == 1)
208 return false;
209
210 BasicBlock *OrigHeader = L->getHeader();
211 BasicBlock *OrigLatch = L->getLoopLatch();
212
213 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
214 if (!BI || BI->isUnconditional())
215 return false;
216
217 // If the loop header is not one of the loop exiting blocks then
218 // either this loop is already rotated or it is not
219 // suitable for loop rotation transformations.
220 if (!L->isLoopExiting(OrigHeader))
221 return false;
222
223 // If the loop latch already contains a branch that leaves the loop then the
224 // loop is already rotated.
225 if (!OrigLatch)
226 return false;
227
228 // Rotate if either the loop latch does *not* exit the loop, or if the loop
229 // latch was just simplified. Or if we think it will be profitable.
230 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
231 !shouldRotateLoopExitingLatch(L))
232 return false;
233
234 // Check size of original header and reject loop if it is very big or we can't
235 // duplicate blocks inside it.
236 {
237 SmallPtrSet<const Value *, 32> EphValues;
238 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
239
240 CodeMetrics Metrics;
241 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
242 if (Metrics.notDuplicatable) {
243 LLVM_DEBUG(
244 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
245 << " instructions: ";
246 L->dump());
247 return false;
248 }
249 if (Metrics.convergent) {
250 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
251 "instructions: ";
252 L->dump());
253 return false;
254 }
255 if (Metrics.NumInsts > MaxHeaderSize)
256 return false;
257 }
258
259 // Now, this loop is suitable for rotation.
260 BasicBlock *OrigPreheader = L->getLoopPreheader();
261
262 // If the loop could not be converted to canonical form, it must have an
263 // indirectbr in it, just give up.
264 if (!OrigPreheader || !L->hasDedicatedExits())
265 return false;
266
267 // Anything ScalarEvolution may know about this loop or the PHI nodes
268 // in its header will soon be invalidated. We should also invalidate
269 // all outer loops because insertion and deletion of blocks that happens
270 // during the rotation may violate invariants related to backedge taken
271 // infos in them.
272 if (SE)
273 SE->forgetTopmostLoop(L);
274
275 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
276 if (MSSAU && VerifyMemorySSA)
277 MSSAU->getMemorySSA()->verifyMemorySSA();
278
279 // Find new Loop header. NewHeader is a Header's one and only successor
280 // that is inside loop. Header's other successor is outside the
281 // loop. Otherwise loop is not suitable for rotation.
282 BasicBlock *Exit = BI->getSuccessor(0);
283 BasicBlock *NewHeader = BI->getSuccessor(1);
284 if (L->contains(Exit))
285 std::swap(Exit, NewHeader);
286 assert(NewHeader && "Unable to determine new loop header");
287 assert(L->contains(NewHeader) && !L->contains(Exit) &&
288 "Unable to determine loop header and exit blocks");
289
290 // This code assumes that the new header has exactly one predecessor.
291 // Remove any single-entry PHI nodes in it.
292 assert(NewHeader->getSinglePredecessor() &&
293 "New header doesn't have one pred!");
294 FoldSingleEntryPHINodes(NewHeader);
295
296 // Begin by walking OrigHeader and populating ValueMap with an entry for
297 // each Instruction.
298 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
299 ValueToValueMapTy ValueMap;
300
301 // For PHI nodes, the value available in OldPreHeader is just the
302 // incoming value from OldPreHeader.
303 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
304 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
305
306 // For the rest of the instructions, either hoist to the OrigPreheader if
307 // possible or create a clone in the OldPreHeader if not.
308 Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
309
310 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
311 using DbgIntrinsicHash =
312 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
313 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
314 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
315 };
316 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
317 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
318 I != E; ++I) {
319 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
320 DbgIntrinsics.insert(makeHash(DII));
321 else
322 break;
323 }
324
325 while (I != E) {
326 Instruction *Inst = &*I++;
327
328 // If the instruction's operands are invariant and it doesn't read or write
329 // memory, then it is safe to hoist. Doing this doesn't change the order of
330 // execution in the preheader, but does prevent the instruction from
331 // executing in each iteration of the loop. This means it is safe to hoist
332 // something that might trap, but isn't safe to hoist something that reads
333 // memory (without proving that the loop doesn't write).
334 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
335 !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
336 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
337 Inst->moveBefore(LoopEntryBranch);
338 continue;
339 }
340
341 // Otherwise, create a duplicate of the instruction.
342 Instruction *C = Inst->clone();
343
344 // Eagerly remap the operands of the instruction.
345 RemapInstruction(C, ValueMap,
346 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
347
348 // Avoid inserting the same intrinsic twice.
349 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
350 if (DbgIntrinsics.count(makeHash(DII))) {
351 C->deleteValue();
352 continue;
353 }
354
355 // With the operands remapped, see if the instruction constant folds or is
356 // otherwise simplifyable. This commonly occurs because the entry from PHI
357 // nodes allows icmps and other instructions to fold.
358 Value *V = SimplifyInstruction(C, SQ);
359 if (V && LI->replacementPreservesLCSSAForm(C, V)) {
360 // If so, then delete the temporary instruction and stick the folded value
361 // in the map.
362 ValueMap[Inst] = V;
363 if (!C->mayHaveSideEffects()) {
364 C->deleteValue();
365 C = nullptr;
366 }
367 } else {
368 ValueMap[Inst] = C;
369 }
370 if (C) {
371 // Otherwise, stick the new instruction into the new block!
372 C->setName(Inst->getName());
373 C->insertBefore(LoopEntryBranch);
374
375 if (auto *II = dyn_cast<IntrinsicInst>(C))
376 if (II->getIntrinsicID() == Intrinsic::assume)
377 AC->registerAssumption(II);
378 }
379 }
380
381 // Along with all the other instructions, we just cloned OrigHeader's
382 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
383 // successors by duplicating their incoming values for OrigHeader.
384 for (BasicBlock *SuccBB : successors(OrigHeader))
385 for (BasicBlock::iterator BI = SuccBB->begin();
386 PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
387 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
388
389 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
390 // OrigPreHeader's old terminator (the original branch into the loop), and
391 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
392 LoopEntryBranch->eraseFromParent();
393
394 // Update MemorySSA before the rewrite call below changes the 1:1
395 // instruction:cloned_instruction_or_value mapping in ValueMap.
396 if (MSSAU) {
397 ValueMap[OrigHeader] = OrigPreheader;
398 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader, ValueMap);
399 }
400
401 SmallVector<PHINode*, 2> InsertedPHIs;
402 // If there were any uses of instructions in the duplicated block outside the
403 // loop, update them, inserting PHI nodes as required
404 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
405 &InsertedPHIs);
406
407 // Attach dbg.value intrinsics to the new phis if that phi uses a value that
408 // previously had debug metadata attached. This keeps the debug info
409 // up-to-date in the loop body.
410 if (!InsertedPHIs.empty())
411 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
412
413 // NewHeader is now the header of the loop.
414 L->moveToHeader(NewHeader);
415 assert(L->getHeader() == NewHeader && "Latch block is our new header");
416
417 // Inform DT about changes to the CFG.
418 if (DT) {
419 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
420 // the DT about the removed edge to the OrigHeader (that got removed).
421 SmallVector<DominatorTree::UpdateType, 3> Updates;
422 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
423 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
424 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
425 DT->applyUpdates(Updates);
426
427 if (MSSAU) {
428 MSSAU->applyUpdates(Updates, *DT);
429 if (VerifyMemorySSA)
430 MSSAU->getMemorySSA()->verifyMemorySSA();
431 }
432 }
433
434 // At this point, we've finished our major CFG changes. As part of cloning
435 // the loop into the preheader we've simplified instructions and the
436 // duplicated conditional branch may now be branching on a constant. If it is
437 // branching on a constant and if that constant means that we enter the loop,
438 // then we fold away the cond branch to an uncond branch. This simplifies the
439 // loop in cases important for nested loops, and it also means we don't have
440 // to split as many edges.
441 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
442 assert(PHBI->isConditional() && "Should be clone of BI condbr!");
443 if (!isa<ConstantInt>(PHBI->getCondition()) ||
444 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
445 NewHeader) {
446 // The conditional branch can't be folded, handle the general case.
447 // Split edges as necessary to preserve LoopSimplify form.
448
449 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
450 // thus is not a preheader anymore.
451 // Split the edge to form a real preheader.
452 BasicBlock *NewPH = SplitCriticalEdge(
453 OrigPreheader, NewHeader,
454 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
455 NewPH->setName(NewHeader->getName() + ".lr.ph");
456
457 // Preserve canonical loop form, which means that 'Exit' should have only
458 // one predecessor. Note that Exit could be an exit block for multiple
459 // nested loops, causing both of the edges to now be critical and need to
460 // be split.
461 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
462 bool SplitLatchEdge = false;
463 for (BasicBlock *ExitPred : ExitPreds) {
464 // We only need to split loop exit edges.
465 Loop *PredLoop = LI->getLoopFor(ExitPred);
466 if (!PredLoop || PredLoop->contains(Exit))
467 continue;
468 if (isa<IndirectBrInst>(ExitPred->getTerminator()))
469 continue;
470 SplitLatchEdge |= L->getLoopLatch() == ExitPred;
471 BasicBlock *ExitSplit = SplitCriticalEdge(
472 ExitPred, Exit,
473 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
474 ExitSplit->moveBefore(Exit);
475 }
476 assert(SplitLatchEdge &&
477 "Despite splitting all preds, failed to split latch exit?");
478 } else {
479 // We can fold the conditional branch in the preheader, this makes things
480 // simpler. The first step is to remove the extra edge to the Exit block.
481 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
482 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
483 NewBI->setDebugLoc(PHBI->getDebugLoc());
484 PHBI->eraseFromParent();
485
486 // With our CFG finalized, update DomTree if it is available.
487 if (DT) DT->deleteEdge(OrigPreheader, Exit);
488
489 // Update MSSA too, if available.
490 if (MSSAU)
491 MSSAU->removeEdge(OrigPreheader, Exit);
492 }
493
494 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
495 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
496
497 if (MSSAU && VerifyMemorySSA)
498 MSSAU->getMemorySSA()->verifyMemorySSA();
499
500 // Now that the CFG and DomTree are in a consistent state again, try to merge
501 // the OrigHeader block into OrigLatch. This will succeed if they are
502 // connected by an unconditional branch. This is just a cleanup so the
503 // emitted code isn't too gross in this common case.
504 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
505 MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
506
507 if (MSSAU && VerifyMemorySSA)
508 MSSAU->getMemorySSA()->verifyMemorySSA();
509
510 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
511
512 ++NumRotated;
513 return true;
514 }
515
516 /// Determine whether the instructions in this range may be safely and cheaply
517 /// speculated. This is not an important enough situation to develop complex
518 /// heuristics. We handle a single arithmetic instruction along with any type
519 /// conversions.
shouldSpeculateInstrs(BasicBlock::iterator Begin,BasicBlock::iterator End,Loop * L)520 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
521 BasicBlock::iterator End, Loop *L) {
522 bool seenIncrement = false;
523 bool MultiExitLoop = false;
524
525 if (!L->getExitingBlock())
526 MultiExitLoop = true;
527
528 for (BasicBlock::iterator I = Begin; I != End; ++I) {
529
530 if (!isSafeToSpeculativelyExecute(&*I))
531 return false;
532
533 if (isa<DbgInfoIntrinsic>(I))
534 continue;
535
536 switch (I->getOpcode()) {
537 default:
538 return false;
539 case Instruction::GetElementPtr:
540 // GEPs are cheap if all indices are constant.
541 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
542 return false;
543 // fall-thru to increment case
544 LLVM_FALLTHROUGH;
545 case Instruction::Add:
546 case Instruction::Sub:
547 case Instruction::And:
548 case Instruction::Or:
549 case Instruction::Xor:
550 case Instruction::Shl:
551 case Instruction::LShr:
552 case Instruction::AShr: {
553 Value *IVOpnd =
554 !isa<Constant>(I->getOperand(0))
555 ? I->getOperand(0)
556 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
557 if (!IVOpnd)
558 return false;
559
560 // If increment operand is used outside of the loop, this speculation
561 // could cause extra live range interference.
562 if (MultiExitLoop) {
563 for (User *UseI : IVOpnd->users()) {
564 auto *UserInst = cast<Instruction>(UseI);
565 if (!L->contains(UserInst))
566 return false;
567 }
568 }
569
570 if (seenIncrement)
571 return false;
572 seenIncrement = true;
573 break;
574 }
575 case Instruction::Trunc:
576 case Instruction::ZExt:
577 case Instruction::SExt:
578 // ignore type conversions
579 break;
580 }
581 }
582 return true;
583 }
584
585 /// Fold the loop tail into the loop exit by speculating the loop tail
586 /// instructions. Typically, this is a single post-increment. In the case of a
587 /// simple 2-block loop, hoisting the increment can be much better than
588 /// duplicating the entire loop header. In the case of loops with early exits,
589 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
590 /// canonical form so downstream passes can handle it.
591 ///
592 /// I don't believe this invalidates SCEV.
simplifyLoopLatch(Loop * L)593 bool LoopRotate::simplifyLoopLatch(Loop *L) {
594 BasicBlock *Latch = L->getLoopLatch();
595 if (!Latch || Latch->hasAddressTaken())
596 return false;
597
598 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
599 if (!Jmp || !Jmp->isUnconditional())
600 return false;
601
602 BasicBlock *LastExit = Latch->getSinglePredecessor();
603 if (!LastExit || !L->isLoopExiting(LastExit))
604 return false;
605
606 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
607 if (!BI)
608 return false;
609
610 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
611 return false;
612
613 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
614 << LastExit->getName() << "\n");
615
616 // Hoist the instructions from Latch into LastExit.
617 Instruction *FirstLatchInst = &*(Latch->begin());
618 LastExit->getInstList().splice(BI->getIterator(), Latch->getInstList(),
619 Latch->begin(), Jmp->getIterator());
620
621 // Update MemorySSA
622 if (MSSAU)
623 MSSAU->moveAllAfterMergeBlocks(Latch, LastExit, FirstLatchInst);
624
625 unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
626 BasicBlock *Header = Jmp->getSuccessor(0);
627 assert(Header == L->getHeader() && "expected a backward branch");
628
629 // Remove Latch from the CFG so that LastExit becomes the new Latch.
630 BI->setSuccessor(FallThruPath, Header);
631 Latch->replaceSuccessorsPhiUsesWith(LastExit);
632 Jmp->eraseFromParent();
633
634 // Nuke the Latch block.
635 assert(Latch->empty() && "unable to evacuate Latch");
636 LI->removeBlock(Latch);
637 if (DT)
638 DT->eraseNode(Latch);
639 Latch->eraseFromParent();
640
641 if (MSSAU && VerifyMemorySSA)
642 MSSAU->getMemorySSA()->verifyMemorySSA();
643
644 return true;
645 }
646
647 /// Rotate \c L, and return true if any modification was made.
processLoop(Loop * L)648 bool LoopRotate::processLoop(Loop *L) {
649 // Save the loop metadata.
650 MDNode *LoopMD = L->getLoopID();
651
652 bool SimplifiedLatch = false;
653
654 // Simplify the loop latch before attempting to rotate the header
655 // upward. Rotation may not be needed if the loop tail can be folded into the
656 // loop exit.
657 if (!RotationOnly)
658 SimplifiedLatch = simplifyLoopLatch(L);
659
660 bool MadeChange = rotateLoop(L, SimplifiedLatch);
661 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
662 "Loop latch should be exiting after loop-rotate.");
663
664 // Restore the loop metadata.
665 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
666 if ((MadeChange || SimplifiedLatch) && LoopMD)
667 L->setLoopID(LoopMD);
668
669 return MadeChange || SimplifiedLatch;
670 }
671
672
673 /// The utility to convert a loop into a loop with bottom test.
LoopRotation(Loop * L,LoopInfo * LI,const TargetTransformInfo * TTI,AssumptionCache * AC,DominatorTree * DT,ScalarEvolution * SE,MemorySSAUpdater * MSSAU,const SimplifyQuery & SQ,bool RotationOnly=true,unsigned Threshold=unsigned (-1),bool IsUtilMode=true)674 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
675 AssumptionCache *AC, DominatorTree *DT,
676 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
677 const SimplifyQuery &SQ, bool RotationOnly = true,
678 unsigned Threshold = unsigned(-1),
679 bool IsUtilMode = true) {
680 if (MSSAU && VerifyMemorySSA)
681 MSSAU->getMemorySSA()->verifyMemorySSA();
682 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
683 IsUtilMode);
684 if (MSSAU && VerifyMemorySSA)
685 MSSAU->getMemorySSA()->verifyMemorySSA();
686
687 return LR.processLoop(L);
688 }
689