1 //===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements loop fusion.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
15 #include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
16 #include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
17 #include "mlir/Dialect/Affine/Analysis/Utils.h"
18 #include "mlir/Dialect/Affine/IR/AffineOps.h"
19 #include "mlir/Dialect/Affine/LoopFusionUtils.h"
20 #include "mlir/Dialect/Affine/LoopUtils.h"
21 #include "mlir/Dialect/Affine/Utils.h"
22 #include "mlir/Dialect/MemRef/IR/MemRef.h"
23 #include "mlir/IR/AffineExpr.h"
24 #include "mlir/IR/AffineMap.h"
25 #include "mlir/IR/Builders.h"
26 #include "mlir/Transforms/Passes.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <iomanip>
35 #include <sstream>
36 #define DEBUG_TYPE "affine-loop-fusion"
37 
38 using namespace mlir;
39 
40 namespace {
41 /// Loop fusion pass. This pass currently supports a greedy fusion policy,
42 /// which fuses loop nests with single-writer/single-reader memref dependences
43 /// with the goal of improving locality.
44 
45 // TODO: Support fusion of source loop nests which write to multiple
46 // memrefs, where each memref can have multiple users (if profitable).
47 // TODO: Extend this pass to check for fusion preventing dependences,
48 // and add support for more general loop fusion algorithms.
49 
50 struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
51   LoopFusion() = default;
LoopFusion__anon8a0d4ac20111::LoopFusion52   LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
53              bool maximalFusion, enum FusionMode affineFusionMode) {
54     this->fastMemorySpace = fastMemorySpace;
55     this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
56     this->maximalFusion = maximalFusion;
57     this->affineFusionMode = affineFusionMode;
58   }
59 
60   void runOnOperation() override;
61 };
62 
63 } // namespace
64 
65 std::unique_ptr<OperationPass<func::FuncOp>>
createLoopFusionPass(unsigned fastMemorySpace,uint64_t localBufSizeThreshold,bool maximalFusion,enum FusionMode affineFusionMode)66 mlir::createLoopFusionPass(unsigned fastMemorySpace,
67                            uint64_t localBufSizeThreshold, bool maximalFusion,
68                            enum FusionMode affineFusionMode) {
69   return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
70                                       maximalFusion, affineFusionMode);
71 }
72 
73 namespace {
74 
75 // LoopNestStateCollector walks loop nests and collects load and store
76 // operations, and whether or not a region holding op other than ForOp and IfOp
77 // was encountered in the loop nest.
78 struct LoopNestStateCollector {
79   SmallVector<AffineForOp, 4> forOps;
80   SmallVector<Operation *, 4> loadOpInsts;
81   SmallVector<Operation *, 4> storeOpInsts;
82   bool hasNonAffineRegionOp = false;
83 
collect__anon8a0d4ac20211::LoopNestStateCollector84   void collect(Operation *opToWalk) {
85     opToWalk->walk([&](Operation *op) {
86       if (isa<AffineForOp>(op))
87         forOps.push_back(cast<AffineForOp>(op));
88       else if (op->getNumRegions() != 0 && !isa<AffineIfOp>(op))
89         hasNonAffineRegionOp = true;
90       else if (isa<AffineReadOpInterface>(op))
91         loadOpInsts.push_back(op);
92       else if (isa<AffineWriteOpInterface>(op))
93         storeOpInsts.push_back(op);
94     });
95   }
96 };
97 
98 // MemRefDependenceGraph is a graph data structure where graph nodes are
99 // top-level operations in a FuncOp which contain load/store ops, and edges
100 // are memref dependences between the nodes.
101 // TODO: Add a more flexible dependence graph representation.
102 // TODO: Add a depth parameter to dependence graph construction.
103 struct MemRefDependenceGraph {
104 public:
105   // Node represents a node in the graph. A Node is either an entire loop nest
106   // rooted at the top level which contains loads/stores, or a top level
107   // load/store.
108   struct Node {
109     // The unique identifier of this node in the graph.
110     unsigned id;
111     // The top-level statement which is (or contains) a load/store.
112     Operation *op;
113     // List of load operations.
114     SmallVector<Operation *, 4> loads;
115     // List of store op insts.
116     SmallVector<Operation *, 4> stores;
Node__anon8a0d4ac20211::MemRefDependenceGraph::Node117     Node(unsigned id, Operation *op) : id(id), op(op) {}
118 
119     // Returns the load op count for 'memref'.
getLoadOpCount__anon8a0d4ac20211::MemRefDependenceGraph::Node120     unsigned getLoadOpCount(Value memref) {
121       unsigned loadOpCount = 0;
122       for (auto *loadOpInst : loads) {
123         if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
124           ++loadOpCount;
125       }
126       return loadOpCount;
127     }
128 
129     // Returns the store op count for 'memref'.
getStoreOpCount__anon8a0d4ac20211::MemRefDependenceGraph::Node130     unsigned getStoreOpCount(Value memref) {
131       unsigned storeOpCount = 0;
132       for (auto *storeOpInst : stores) {
133         if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
134           ++storeOpCount;
135       }
136       return storeOpCount;
137     }
138 
139     // Returns all store ops in 'storeOps' which access 'memref'.
getStoreOpsForMemref__anon8a0d4ac20211::MemRefDependenceGraph::Node140     void getStoreOpsForMemref(Value memref,
141                               SmallVectorImpl<Operation *> *storeOps) {
142       for (auto *storeOpInst : stores) {
143         if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
144           storeOps->push_back(storeOpInst);
145       }
146     }
147 
148     // Returns all load ops in 'loadOps' which access 'memref'.
getLoadOpsForMemref__anon8a0d4ac20211::MemRefDependenceGraph::Node149     void getLoadOpsForMemref(Value memref,
150                              SmallVectorImpl<Operation *> *loadOps) {
151       for (auto *loadOpInst : loads) {
152         if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
153           loadOps->push_back(loadOpInst);
154       }
155     }
156 
157     // Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
158     // has at least one load and store operation.
getLoadAndStoreMemrefSet__anon8a0d4ac20211::MemRefDependenceGraph::Node159     void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
160       llvm::SmallDenseSet<Value, 2> loadMemrefs;
161       for (auto *loadOpInst : loads) {
162         loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
163       }
164       for (auto *storeOpInst : stores) {
165         auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
166         if (loadMemrefs.count(memref) > 0)
167           loadAndStoreMemrefSet->insert(memref);
168       }
169     }
170   };
171 
172   // Edge represents a data dependence between nodes in the graph.
173   struct Edge {
174     // The id of the node at the other end of the edge.
175     // If this edge is stored in Edge = Node.inEdges[i], then
176     // 'Node.inEdges[i].id' is the identifier of the source node of the edge.
177     // If this edge is stored in Edge = Node.outEdges[i], then
178     // 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
179     unsigned id;
180     // The SSA value on which this edge represents a dependence.
181     // If the value is a memref, then the dependence is between graph nodes
182     // which contain accesses to the same memref 'value'. If the value is a
183     // non-memref value, then the dependence is between a graph node which
184     // defines an SSA value and another graph node which uses the SSA value
185     // (e.g. a constant or load operation defining a value which is used inside
186     // a loop nest).
187     Value value;
188   };
189 
190   // Map from node id to Node.
191   DenseMap<unsigned, Node> nodes;
192   // Map from node id to list of input edges.
193   DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
194   // Map from node id to list of output edges.
195   DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
196   // Map from memref to a count on the dependence edges associated with that
197   // memref.
198   DenseMap<Value, unsigned> memrefEdgeCount;
199   // The next unique identifier to use for newly created graph nodes.
200   unsigned nextNodeId = 0;
201 
202   MemRefDependenceGraph() = default;
203 
204   // Initializes the dependence graph based on operations in 'f'.
205   // Returns true on success, false otherwise.
206   bool init(func::FuncOp f);
207 
208   // Returns the graph node for 'id'.
getNode__anon8a0d4ac20211::MemRefDependenceGraph209   Node *getNode(unsigned id) {
210     auto it = nodes.find(id);
211     assert(it != nodes.end());
212     return &it->second;
213   }
214 
215   // Returns the graph node for 'forOp'.
getForOpNode__anon8a0d4ac20211::MemRefDependenceGraph216   Node *getForOpNode(AffineForOp forOp) {
217     for (auto &idAndNode : nodes)
218       if (idAndNode.second.op == forOp.getOperation())
219         return &idAndNode.second;
220     return nullptr;
221   }
222 
223   // Adds a node with 'op' to the graph and returns its unique identifier.
addNode__anon8a0d4ac20211::MemRefDependenceGraph224   unsigned addNode(Operation *op) {
225     Node node(nextNodeId++, op);
226     nodes.insert({node.id, node});
227     return node.id;
228   }
229 
230   // Remove node 'id' (and its associated edges) from graph.
removeNode__anon8a0d4ac20211::MemRefDependenceGraph231   void removeNode(unsigned id) {
232     // Remove each edge in 'inEdges[id]'.
233     if (inEdges.count(id) > 0) {
234       SmallVector<Edge, 2> oldInEdges = inEdges[id];
235       for (auto &inEdge : oldInEdges) {
236         removeEdge(inEdge.id, id, inEdge.value);
237       }
238     }
239     // Remove each edge in 'outEdges[id]'.
240     if (outEdges.count(id) > 0) {
241       SmallVector<Edge, 2> oldOutEdges = outEdges[id];
242       for (auto &outEdge : oldOutEdges) {
243         removeEdge(id, outEdge.id, outEdge.value);
244       }
245     }
246     // Erase remaining node state.
247     inEdges.erase(id);
248     outEdges.erase(id);
249     nodes.erase(id);
250   }
251 
252   // Returns true if node 'id' writes to any memref which escapes (or is an
253   // argument to) the function/block. Returns false otherwise.
writesToLiveInOrEscapingMemrefs__anon8a0d4ac20211::MemRefDependenceGraph254   bool writesToLiveInOrEscapingMemrefs(unsigned id) {
255     Node *node = getNode(id);
256     for (auto *storeOpInst : node->stores) {
257       auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
258       auto *op = memref.getDefiningOp();
259       // Return true if 'memref' is a block argument.
260       if (!op)
261         return true;
262       // Return true if any use of 'memref' escapes the function.
263       for (auto *user : memref.getUsers())
264         if (!isa<AffineMapAccessInterface>(*user))
265           return true;
266     }
267     return false;
268   }
269 
270   // Returns true iff there is an edge from node 'srcId' to node 'dstId' which
271   // is for 'value' if non-null, or for any value otherwise. Returns false
272   // otherwise.
hasEdge__anon8a0d4ac20211::MemRefDependenceGraph273   bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
274     if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
275       return false;
276     }
277     bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
278       return edge.id == dstId && (!value || edge.value == value);
279     });
280     bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
281       return edge.id == srcId && (!value || edge.value == value);
282     });
283     return hasOutEdge && hasInEdge;
284   }
285 
286   // Adds an edge from node 'srcId' to node 'dstId' for 'value'.
addEdge__anon8a0d4ac20211::MemRefDependenceGraph287   void addEdge(unsigned srcId, unsigned dstId, Value value) {
288     if (!hasEdge(srcId, dstId, value)) {
289       outEdges[srcId].push_back({dstId, value});
290       inEdges[dstId].push_back({srcId, value});
291       if (value.getType().isa<MemRefType>())
292         memrefEdgeCount[value]++;
293     }
294   }
295 
296   // Removes an edge from node 'srcId' to node 'dstId' for 'value'.
removeEdge__anon8a0d4ac20211::MemRefDependenceGraph297   void removeEdge(unsigned srcId, unsigned dstId, Value value) {
298     assert(inEdges.count(dstId) > 0);
299     assert(outEdges.count(srcId) > 0);
300     if (value.getType().isa<MemRefType>()) {
301       assert(memrefEdgeCount.count(value) > 0);
302       memrefEdgeCount[value]--;
303     }
304     // Remove 'srcId' from 'inEdges[dstId]'.
305     for (auto *it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
306       if ((*it).id == srcId && (*it).value == value) {
307         inEdges[dstId].erase(it);
308         break;
309       }
310     }
311     // Remove 'dstId' from 'outEdges[srcId]'.
312     for (auto *it = outEdges[srcId].begin(); it != outEdges[srcId].end();
313          ++it) {
314       if ((*it).id == dstId && (*it).value == value) {
315         outEdges[srcId].erase(it);
316         break;
317       }
318     }
319   }
320 
321   // Returns true if there is a path in the dependence graph from node 'srcId'
322   // to node 'dstId'. Returns false otherwise.
hasDependencePath__anon8a0d4ac20211::MemRefDependenceGraph323   bool hasDependencePath(unsigned srcId, unsigned dstId) {
324     // Worklist state is: <node-id, next-output-edge-index-to-visit>
325     SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
326     worklist.push_back({srcId, 0});
327     // Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
328     while (!worklist.empty()) {
329       auto &idAndIndex = worklist.back();
330       // Return true if we have reached 'dstId'.
331       if (idAndIndex.first == dstId)
332         return true;
333       // Pop and continue if node has no out edges, or if all out edges have
334       // already been visited.
335       if (outEdges.count(idAndIndex.first) == 0 ||
336           idAndIndex.second == outEdges[idAndIndex.first].size()) {
337         worklist.pop_back();
338         continue;
339       }
340       // Get graph edge to traverse.
341       Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
342       // Increment next output edge index for 'idAndIndex'.
343       ++idAndIndex.second;
344       // Add node at 'edge.id' to worklist.
345       worklist.push_back({edge.id, 0});
346     }
347     return false;
348   }
349 
350   // Returns the input edge count for node 'id' and 'memref' from src nodes
351   // which access 'memref' with a store operation.
getIncomingMemRefAccesses__anon8a0d4ac20211::MemRefDependenceGraph352   unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
353     unsigned inEdgeCount = 0;
354     if (inEdges.count(id) > 0)
355       for (auto &inEdge : inEdges[id])
356         if (inEdge.value == memref) {
357           Node *srcNode = getNode(inEdge.id);
358           // Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
359           if (srcNode->getStoreOpCount(memref) > 0)
360             ++inEdgeCount;
361         }
362     return inEdgeCount;
363   }
364 
365   // Returns the output edge count for node 'id' and 'memref' (if non-null),
366   // otherwise returns the total output edge count from node 'id'.
getOutEdgeCount__anon8a0d4ac20211::MemRefDependenceGraph367   unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
368     unsigned outEdgeCount = 0;
369     if (outEdges.count(id) > 0)
370       for (auto &outEdge : outEdges[id])
371         if (!memref || outEdge.value == memref)
372           ++outEdgeCount;
373     return outEdgeCount;
374   }
375 
376   /// Return all nodes which define SSA values used in node 'id'.
gatherDefiningNodes__anon8a0d4ac20211::MemRefDependenceGraph377   void gatherDefiningNodes(unsigned id, DenseSet<unsigned> &definingNodes) {
378     for (MemRefDependenceGraph::Edge edge : inEdges[id])
379       // By definition of edge, if the edge value is a non-memref value,
380       // then the dependence is between a graph node which defines an SSA value
381       // and another graph node which uses the SSA value.
382       if (!edge.value.getType().isa<MemRefType>())
383         definingNodes.insert(edge.id);
384   }
385 
386   // Computes and returns an insertion point operation, before which the
387   // the fused <srcId, dstId> loop nest can be inserted while preserving
388   // dependences. Returns nullptr if no such insertion point is found.
getFusedLoopNestInsertionPoint__anon8a0d4ac20211::MemRefDependenceGraph389   Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
390     if (outEdges.count(srcId) == 0)
391       return getNode(dstId)->op;
392 
393     // Skip if there is any defining node of 'dstId' that depends on 'srcId'.
394     DenseSet<unsigned> definingNodes;
395     gatherDefiningNodes(dstId, definingNodes);
396     if (llvm::any_of(definingNodes, [&](unsigned id) {
397           return hasDependencePath(srcId, id);
398         })) {
399       LLVM_DEBUG(llvm::dbgs()
400                  << "Can't fuse: a defining op with a user in the dst "
401                     "loop has dependence from the src loop\n");
402       return nullptr;
403     }
404 
405     // Build set of insts in range (srcId, dstId) which depend on 'srcId'.
406     SmallPtrSet<Operation *, 2> srcDepInsts;
407     for (auto &outEdge : outEdges[srcId])
408       if (outEdge.id != dstId)
409         srcDepInsts.insert(getNode(outEdge.id)->op);
410 
411     // Build set of insts in range (srcId, dstId) on which 'dstId' depends.
412     SmallPtrSet<Operation *, 2> dstDepInsts;
413     for (auto &inEdge : inEdges[dstId])
414       if (inEdge.id != srcId)
415         dstDepInsts.insert(getNode(inEdge.id)->op);
416 
417     Operation *srcNodeInst = getNode(srcId)->op;
418     Operation *dstNodeInst = getNode(dstId)->op;
419 
420     // Computing insertion point:
421     // *) Walk all operation positions in Block operation list in the
422     //    range (src, dst). For each operation 'op' visited in this search:
423     //   *) Store in 'firstSrcDepPos' the first position where 'op' has a
424     //      dependence edge from 'srcNode'.
425     //   *) Store in 'lastDstDepPost' the last position where 'op' has a
426     //      dependence edge to 'dstNode'.
427     // *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
428     //    operation insertion point (or return null pointer if no such
429     //    insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
430     SmallVector<Operation *, 2> depInsts;
431     Optional<unsigned> firstSrcDepPos;
432     Optional<unsigned> lastDstDepPos;
433     unsigned pos = 0;
434     for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
435          it != Block::iterator(dstNodeInst); ++it) {
436       Operation *op = &(*it);
437       if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
438         firstSrcDepPos = pos;
439       if (dstDepInsts.count(op) > 0)
440         lastDstDepPos = pos;
441       depInsts.push_back(op);
442       ++pos;
443     }
444 
445     if (firstSrcDepPos.has_value()) {
446       if (lastDstDepPos.has_value()) {
447         if (firstSrcDepPos.value() <= lastDstDepPos.value()) {
448           // No valid insertion point exists which preserves dependences.
449           return nullptr;
450         }
451       }
452       // Return the insertion point at 'firstSrcDepPos'.
453       return depInsts[firstSrcDepPos.value()];
454     }
455     // No dependence targets in range (or only dst deps in range), return
456     // 'dstNodInst' insertion point.
457     return dstNodeInst;
458   }
459 
460   // Updates edge mappings from node 'srcId' to node 'dstId' after fusing them,
461   // taking into account that:
462   //   *) if 'removeSrcId' is true, 'srcId' will be removed after fusion,
463   //   *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a
464   //      private memref.
updateEdges__anon8a0d4ac20211::MemRefDependenceGraph465   void updateEdges(unsigned srcId, unsigned dstId,
466                    const DenseSet<Value> &privateMemRefs, bool removeSrcId) {
467     // For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
468     if (inEdges.count(srcId) > 0) {
469       SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
470       for (auto &inEdge : oldInEdges) {
471         // Add edge from 'inEdge.id' to 'dstId' if it's not a private memref.
472         if (privateMemRefs.count(inEdge.value) == 0)
473           addEdge(inEdge.id, dstId, inEdge.value);
474       }
475     }
476     // For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
477     // If 'srcId' is going to be removed, remap all the out edges to 'dstId'.
478     if (outEdges.count(srcId) > 0) {
479       SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
480       for (auto &outEdge : oldOutEdges) {
481         // Remove any out edges from 'srcId' to 'dstId' across memrefs.
482         if (outEdge.id == dstId)
483           removeEdge(srcId, outEdge.id, outEdge.value);
484         else if (removeSrcId) {
485           addEdge(dstId, outEdge.id, outEdge.value);
486           removeEdge(srcId, outEdge.id, outEdge.value);
487         }
488       }
489     }
490     // Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
491     // replaced by a private memref). These edges could come from nodes
492     // other than 'srcId' which were removed in the previous step.
493     if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) {
494       SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
495       for (auto &inEdge : oldInEdges)
496         if (privateMemRefs.count(inEdge.value) > 0)
497           removeEdge(inEdge.id, dstId, inEdge.value);
498     }
499   }
500 
501   // Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
502   // of sibling node 'sibId' into node 'dstId'.
updateEdges__anon8a0d4ac20211::MemRefDependenceGraph503   void updateEdges(unsigned sibId, unsigned dstId) {
504     // For each edge in 'inEdges[sibId]':
505     // *) Add new edge from source node 'inEdge.id' to 'dstNode'.
506     // *) Remove edge from source node 'inEdge.id' to 'sibNode'.
507     if (inEdges.count(sibId) > 0) {
508       SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
509       for (auto &inEdge : oldInEdges) {
510         addEdge(inEdge.id, dstId, inEdge.value);
511         removeEdge(inEdge.id, sibId, inEdge.value);
512       }
513     }
514 
515     // For each edge in 'outEdges[sibId]' to node 'id'
516     // *) Add new edge from 'dstId' to 'outEdge.id'.
517     // *) Remove edge from 'sibId' to 'outEdge.id'.
518     if (outEdges.count(sibId) > 0) {
519       SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
520       for (auto &outEdge : oldOutEdges) {
521         addEdge(dstId, outEdge.id, outEdge.value);
522         removeEdge(sibId, outEdge.id, outEdge.value);
523       }
524     }
525   }
526 
527   // Adds ops in 'loads' and 'stores' to node at 'id'.
addToNode__anon8a0d4ac20211::MemRefDependenceGraph528   void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
529                  const SmallVectorImpl<Operation *> &stores) {
530     Node *node = getNode(id);
531     llvm::append_range(node->loads, loads);
532     llvm::append_range(node->stores, stores);
533   }
534 
clearNodeLoadAndStores__anon8a0d4ac20211::MemRefDependenceGraph535   void clearNodeLoadAndStores(unsigned id) {
536     Node *node = getNode(id);
537     node->loads.clear();
538     node->stores.clear();
539   }
540 
541   // Calls 'callback' for each input edge incident to node 'id' which carries a
542   // memref dependence.
forEachMemRefInputEdge__anon8a0d4ac20211::MemRefDependenceGraph543   void forEachMemRefInputEdge(unsigned id,
544                               const std::function<void(Edge)> &callback) {
545     if (inEdges.count(id) > 0)
546       forEachMemRefEdge(inEdges[id], callback);
547   }
548 
549   // Calls 'callback' for each output edge from node 'id' which carries a
550   // memref dependence.
forEachMemRefOutputEdge__anon8a0d4ac20211::MemRefDependenceGraph551   void forEachMemRefOutputEdge(unsigned id,
552                                const std::function<void(Edge)> &callback) {
553     if (outEdges.count(id) > 0)
554       forEachMemRefEdge(outEdges[id], callback);
555   }
556 
557   // Calls 'callback' for each edge in 'edges' which carries a memref
558   // dependence.
forEachMemRefEdge__anon8a0d4ac20211::MemRefDependenceGraph559   void forEachMemRefEdge(ArrayRef<Edge> edges,
560                          const std::function<void(Edge)> &callback) {
561     for (const auto &edge : edges) {
562       // Skip if 'edge' is not a memref dependence edge.
563       if (!edge.value.getType().isa<MemRefType>())
564         continue;
565       assert(nodes.count(edge.id) > 0);
566       // Skip if 'edge.id' is not a loop nest.
567       if (!isa<AffineForOp>(getNode(edge.id)->op))
568         continue;
569       // Visit current input edge 'edge'.
570       callback(edge);
571     }
572   }
573 
print__anon8a0d4ac20211::MemRefDependenceGraph574   void print(raw_ostream &os) const {
575     os << "\nMemRefDependenceGraph\n";
576     os << "\nNodes:\n";
577     for (const auto &idAndNode : nodes) {
578       os << "Node: " << idAndNode.first << "\n";
579       auto it = inEdges.find(idAndNode.first);
580       if (it != inEdges.end()) {
581         for (const auto &e : it->second)
582           os << "  InEdge: " << e.id << " " << e.value << "\n";
583       }
584       it = outEdges.find(idAndNode.first);
585       if (it != outEdges.end()) {
586         for (const auto &e : it->second)
587           os << "  OutEdge: " << e.id << " " << e.value << "\n";
588       }
589     }
590   }
dump__anon8a0d4ac20211::MemRefDependenceGraph591   void dump() const { print(llvm::errs()); }
592 };
593 
594 /// Returns true if node 'srcId' can be removed after fusing it with node
595 /// 'dstId'. The node can be removed if any of the following conditions are met:
596 ///   1. 'srcId' has no output dependences after fusion and no escaping memrefs.
597 ///   2. 'srcId' has no output dependences after fusion, has escaping memrefs
598 ///       and the fusion slice is maximal.
599 ///   3. 'srcId' has output dependences after fusion, the fusion slice is
600 ///      maximal and the fusion insertion point dominates all the dependences.
canRemoveSrcNodeAfterFusion(unsigned srcId,unsigned dstId,const ComputationSliceState & fusionSlice,Operation * fusedLoopInsPoint,const DenseSet<Value> & escapingMemRefs,MemRefDependenceGraph * mdg)601 static bool canRemoveSrcNodeAfterFusion(
602     unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice,
603     Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs,
604     MemRefDependenceGraph *mdg) {
605 
606   Operation *dstNodeOp = mdg->getNode(dstId)->op;
607   bool hasOutDepsAfterFusion = false;
608 
609   for (auto &outEdge : mdg->outEdges[srcId]) {
610     Operation *depNodeOp = mdg->getNode(outEdge.id)->op;
611     // Skip dependence with dstOp since it will be removed after fusion.
612     if (depNodeOp == dstNodeOp)
613       continue;
614 
615     // Only fusion within the same block is supported. Use domination analysis
616     // when needed.
617     if (depNodeOp->getBlock() != dstNodeOp->getBlock())
618       return false;
619 
620     // Check if the insertion point of the fused loop dominates the dependence.
621     // Otherwise, the src loop can't be removed.
622     if (fusedLoopInsPoint != depNodeOp &&
623         !fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) {
624       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't "
625                                  "dominate dependence\n");
626       return false;
627     }
628 
629     hasOutDepsAfterFusion = true;
630   }
631 
632   // If src loop has dependences after fusion or it writes to an live-out or
633   // escaping memref, we can only remove it if the fusion slice is maximal so
634   // that all the dependences are preserved.
635   if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) {
636     Optional<bool> isMaximal = fusionSlice.isMaximal();
637     if (!isMaximal) {
638       LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine "
639                                  "if fusion is maximal\n");
640       return false;
641     }
642 
643     if (!*isMaximal) {
644       LLVM_DEBUG(llvm::dbgs()
645                  << "Src loop can't be removed: fusion is not maximal\n");
646       return false;
647     }
648   }
649 
650   return true;
651 }
652 
653 /// Returns in 'srcIdCandidates' the producer fusion candidates for consumer
654 /// 'dstId'. Candidates are sorted by node id order. This order corresponds to
655 /// the program order when the 'mdg' is created. However, program order is not
656 /// guaranteed and must not be required by the client. Program order won't be
657 /// held if the 'mdg' is reused from a previous fusion step or if the node
658 /// creation order changes in the future to support more advance cases.
659 // TODO: Move this to a loop fusion utility once 'mdg' is also moved.
getProducerCandidates(unsigned dstId,MemRefDependenceGraph * mdg,SmallVectorImpl<unsigned> & srcIdCandidates)660 static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg,
661                                   SmallVectorImpl<unsigned> &srcIdCandidates) {
662   // Skip if no input edges along which to fuse.
663   if (mdg->inEdges.count(dstId) == 0)
664     return;
665 
666   // Gather memrefs from loads in 'dstId'.
667   auto *dstNode = mdg->getNode(dstId);
668   DenseSet<Value> consumedMemrefs;
669   for (Operation *load : dstNode->loads)
670     consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef());
671 
672   // Traverse 'dstId' incoming edges and gather the nodes that contain a store
673   // to one of the consumed memrefs.
674   for (auto &srcEdge : mdg->inEdges[dstId]) {
675     auto *srcNode = mdg->getNode(srcEdge.id);
676     // Skip if 'srcNode' is not a loop nest.
677     if (!isa<AffineForOp>(srcNode->op))
678       continue;
679 
680     if (any_of(srcNode->stores, [&](Operation *op) {
681           auto storeOp = cast<AffineWriteOpInterface>(op);
682           return consumedMemrefs.count(storeOp.getMemRef()) > 0;
683         }))
684       srcIdCandidates.push_back(srcNode->id);
685   }
686 
687   llvm::sort(srcIdCandidates);
688   srcIdCandidates.erase(
689       std::unique(srcIdCandidates.begin(), srcIdCandidates.end()),
690       srcIdCandidates.end());
691 }
692 
693 /// Returns in 'producerConsumerMemrefs' the memrefs involved in a
694 /// producer-consumer dependence between 'srcId' and 'dstId'.
695 static void
gatherProducerConsumerMemrefs(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg,DenseSet<Value> & producerConsumerMemrefs)696 gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId,
697                               MemRefDependenceGraph *mdg,
698                               DenseSet<Value> &producerConsumerMemrefs) {
699   auto *dstNode = mdg->getNode(dstId);
700   auto *srcNode = mdg->getNode(srcId);
701   gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads,
702                                 producerConsumerMemrefs);
703 }
704 
705 /// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id'
706 /// that escape the function. A memref escapes the function if either:
707 ///   1. It's a function argument, or
708 ///   2. It's used by a non-affine op (e.g., std load/store, std call, etc.)
gatherEscapingMemrefs(unsigned id,MemRefDependenceGraph * mdg,DenseSet<Value> & escapingMemRefs)709 void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg,
710                            DenseSet<Value> &escapingMemRefs) {
711   auto *node = mdg->getNode(id);
712   for (auto *storeOpInst : node->stores) {
713     auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
714     if (escapingMemRefs.count(memref))
715       continue;
716     // Check if 'memref' escapes because it's a block argument.
717     if (memref.isa<BlockArgument>()) {
718       escapingMemRefs.insert(memref);
719       continue;
720     }
721     // Check if 'memref' escapes through a non-affine op (e.g., std load/store,
722     // call op, etc.).
723     for (Operation *user : memref.getUsers())
724       if (!isa<AffineMapAccessInterface>(*user))
725         escapingMemRefs.insert(memref);
726   }
727 }
728 
729 } // namespace
730 
731 // Initializes the data dependence graph by walking operations in 'f'.
732 // Assigns each node in the graph a node id based on program order in 'f'.
733 // TODO: Add support for taking a Block arg to construct the
734 // dependence graph at a different depth.
init(func::FuncOp f)735 bool MemRefDependenceGraph::init(func::FuncOp f) {
736   LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n");
737   DenseMap<Value, SetVector<unsigned>> memrefAccesses;
738 
739   // TODO: support multi-block functions.
740   if (!llvm::hasSingleElement(f))
741     return false;
742 
743   DenseMap<Operation *, unsigned> forToNodeMap;
744   for (auto &op : f.front()) {
745     if (auto forOp = dyn_cast<AffineForOp>(op)) {
746       // Create graph node 'id' to represent top-level 'forOp' and record
747       // all loads and store accesses it contains.
748       LoopNestStateCollector collector;
749       collector.collect(&op);
750       // Return false if a region holding op other than 'affine.for' and
751       // 'affine.if' was found (not currently supported).
752       if (collector.hasNonAffineRegionOp)
753         return false;
754       Node node(nextNodeId++, &op);
755       for (auto *opInst : collector.loadOpInsts) {
756         node.loads.push_back(opInst);
757         auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
758         memrefAccesses[memref].insert(node.id);
759       }
760       for (auto *opInst : collector.storeOpInsts) {
761         node.stores.push_back(opInst);
762         auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
763         memrefAccesses[memref].insert(node.id);
764       }
765       forToNodeMap[&op] = node.id;
766       nodes.insert({node.id, node});
767     } else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
768       // Create graph node for top-level load op.
769       Node node(nextNodeId++, &op);
770       node.loads.push_back(&op);
771       auto memref = cast<AffineReadOpInterface>(op).getMemRef();
772       memrefAccesses[memref].insert(node.id);
773       nodes.insert({node.id, node});
774     } else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
775       // Create graph node for top-level store op.
776       Node node(nextNodeId++, &op);
777       node.stores.push_back(&op);
778       auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
779       memrefAccesses[memref].insert(node.id);
780       nodes.insert({node.id, node});
781     } else if (op.getNumRegions() != 0) {
782       // Return false if another region is found (not currently supported).
783       return false;
784     } else if (op.getNumResults() > 0 && !op.use_empty()) {
785       // Create graph node for top-level producer of SSA values, which
786       // could be used by loop nest nodes.
787       Node node(nextNodeId++, &op);
788       nodes.insert({node.id, node});
789     } else if (isa<CallOpInterface>(op)) {
790       // Create graph node for top-level Call Op that takes any argument of
791       // memref type. Call Op that returns one or more memref type results
792       // is already taken care of, by the previous conditions.
793       if (llvm::any_of(op.getOperandTypes(),
794                        [&](Type t) { return t.isa<MemRefType>(); })) {
795         Node node(nextNodeId++, &op);
796         nodes.insert({node.id, node});
797       }
798     } else if (auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op)) {
799       // Create graph node for top-level op, which could have a memory write
800       // side effect.
801       SmallVector<MemoryEffects::EffectInstance, 1> effects;
802       effectInterface.getEffects(effects);
803       if (llvm::any_of(effects, [](const MemoryEffects::EffectInstance &it) {
804             return isa<MemoryEffects::Write, MemoryEffects::Free>(
805                 it.getEffect());
806           })) {
807         Node node(nextNodeId++, &op);
808         nodes.insert({node.id, node});
809       }
810     }
811   }
812 
813   for (auto &idAndNode : nodes) {
814     LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n"
815                             << *(idAndNode.second.op) << "\n");
816     (void)idAndNode;
817   }
818 
819   // Add dependence edges between nodes which produce SSA values and their
820   // users. Load ops can be considered as the ones producing SSA values.
821   for (auto &idAndNode : nodes) {
822     const Node &node = idAndNode.second;
823     // Stores don't define SSA values, skip them.
824     if (!node.stores.empty())
825       continue;
826     auto *opInst = node.op;
827     for (auto value : opInst->getResults()) {
828       for (auto *user : value.getUsers()) {
829         SmallVector<AffineForOp, 4> loops;
830         getLoopIVs(*user, &loops);
831         if (loops.empty())
832           continue;
833         assert(forToNodeMap.count(loops[0].getOperation()) > 0);
834         unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
835         addEdge(node.id, userLoopNestId, value);
836       }
837     }
838   }
839 
840   // Walk memref access lists and add graph edges between dependent nodes.
841   for (auto &memrefAndList : memrefAccesses) {
842     unsigned n = memrefAndList.second.size();
843     for (unsigned i = 0; i < n; ++i) {
844       unsigned srcId = memrefAndList.second[i];
845       bool srcHasStore =
846           getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
847       for (unsigned j = i + 1; j < n; ++j) {
848         unsigned dstId = memrefAndList.second[j];
849         bool dstHasStore =
850             getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
851         if (srcHasStore || dstHasStore)
852           addEdge(srcId, dstId, memrefAndList.first);
853       }
854     }
855   }
856   return true;
857 }
858 
859 // Sinks all sequential loops to the innermost levels (while preserving
860 // relative order among them) and moves all parallel loops to the
861 // outermost (while again preserving relative order among them).
862 // This can increase the loop depth at which we can fuse a slice, since we are
863 // pushing loop carried dependence to a greater depth in the loop nest.
sinkSequentialLoops(MemRefDependenceGraph::Node * node)864 static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
865   assert(isa<AffineForOp>(node->op));
866   AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
867   node->op = newRootForOp.getOperation();
868 }
869 
870 //  TODO: improve/complete this when we have target data.
getMemRefEltSizeInBytes(MemRefType memRefType)871 static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
872   auto elementType = memRefType.getElementType();
873 
874   unsigned sizeInBits;
875   if (elementType.isIntOrFloat()) {
876     sizeInBits = elementType.getIntOrFloatBitWidth();
877   } else {
878     auto vectorType = elementType.cast<VectorType>();
879     sizeInBits =
880         vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
881   }
882   return llvm::divideCeil(sizeInBits, 8);
883 }
884 
885 // Creates and returns a private (single-user) memref for fused loop rooted
886 // at 'forOp', with (potentially reduced) memref size based on the
887 // MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
888 // TODO: consider refactoring the common code from generateDma and
889 // this one.
createPrivateMemRef(AffineForOp forOp,Operation * srcStoreOpInst,unsigned dstLoopDepth,Optional<unsigned> fastMemorySpace,uint64_t localBufSizeThreshold)890 static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
891                                  unsigned dstLoopDepth,
892                                  Optional<unsigned> fastMemorySpace,
893                                  uint64_t localBufSizeThreshold) {
894   auto *forInst = forOp.getOperation();
895 
896   // Create builder to insert alloc op just before 'forOp'.
897   OpBuilder b(forInst);
898   // Builder to create constants at the top level.
899   OpBuilder top(forInst->getParentOfType<func::FuncOp>().getBody());
900   // Create new memref type based on slice bounds.
901   auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
902   auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
903   unsigned rank = oldMemRefType.getRank();
904 
905   // Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
906   MemRefRegion region(srcStoreOpInst->getLoc());
907   bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
908   (void)validRegion;
909   assert(validRegion && "unexpected memref region failure");
910   SmallVector<int64_t, 4> newShape;
911   std::vector<SmallVector<int64_t, 4>> lbs;
912   SmallVector<int64_t, 8> lbDivisors;
913   lbs.reserve(rank);
914   // Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
915   // by 'srcStoreOpInst' at depth 'dstLoopDepth'.
916   Optional<int64_t> numElements =
917       region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
918   assert(numElements && "non-constant number of elts in local buffer");
919 
920   const FlatAffineValueConstraints *cst = region.getConstraints();
921   // 'outerIVs' holds the values that this memory region is symbolic/parametric
922   // on; this would correspond to loop IVs surrounding the level at which the
923   // slice is being materialized.
924   SmallVector<Value, 8> outerIVs;
925   cst->getValues(rank, cst->getNumVars(), &outerIVs);
926 
927   // Build 'rank' AffineExprs from MemRefRegion 'lbs'
928   SmallVector<AffineExpr, 4> offsets;
929   offsets.reserve(rank);
930   for (unsigned d = 0; d < rank; ++d) {
931     assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
932 
933     AffineExpr offset = top.getAffineConstantExpr(0);
934     for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
935       offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
936     }
937     assert(lbDivisors[d] > 0);
938     offset =
939         (offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
940     offsets.push_back(offset);
941   }
942 
943   // Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
944   // by 'srcStoreOpInst'.
945   uint64_t bufSize =
946       getMemRefEltSizeInBytes(oldMemRefType) * numElements.value();
947   unsigned newMemSpace;
948   if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) {
949     newMemSpace = fastMemorySpace.value();
950   } else {
951     newMemSpace = oldMemRefType.getMemorySpaceAsInt();
952   }
953   auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
954                                        {}, newMemSpace);
955 
956   // Create new private memref for fused loop 'forOp'. 'newShape' is always
957   // a constant shape.
958   // TODO: Create/move alloc ops for private memrefs closer to their
959   // consumer loop nests to reduce their live range. Currently they are added
960   // at the beginning of the function, because loop nests can be reordered
961   // during the fusion pass.
962   Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType);
963 
964   // Build an AffineMap to remap access functions based on lower bound offsets.
965   SmallVector<AffineExpr, 4> remapExprs;
966   remapExprs.reserve(rank);
967   for (unsigned i = 0; i < rank; i++) {
968     auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
969 
970     auto remapExpr =
971         simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
972     remapExprs.push_back(remapExpr);
973   }
974 
975   auto indexRemap =
976       AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
977 
978   // Replace all users of 'oldMemRef' with 'newMemRef'.
979   LogicalResult res =
980       replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
981                                /*extraOperands=*/outerIVs,
982                                /*symbolOperands=*/{},
983                                /*domOpFilter=*/&*forOp.getBody()->begin());
984   assert(succeeded(res) &&
985          "replaceAllMemrefUsesWith should always succeed here");
986   (void)res;
987   return newMemRef;
988 }
989 
990 /// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
991 /// 'dstId'), if there is any non-affine operation accessing 'memref', return
992 /// true. Otherwise, return false.
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,Value memref,MemRefDependenceGraph * mdg)993 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
994                                        Value memref,
995                                        MemRefDependenceGraph *mdg) {
996   auto *srcNode = mdg->getNode(srcId);
997   auto *dstNode = mdg->getNode(dstId);
998   Value::user_range users = memref.getUsers();
999   // For each MemRefDependenceGraph's node that is between 'srcNode' and
1000   // 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
1001   // non-affine operation in the node accesses the 'memref'.
1002   for (auto &idAndNode : mdg->nodes) {
1003     Operation *op = idAndNode.second.op;
1004     // Take care of operations between 'srcNode' and 'dstNode'.
1005     if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
1006       // Walk inside the operation to find any use of the memref.
1007       // Interrupt the walk if found.
1008       auto walkResult = op->walk([&](Operation *user) {
1009         // Skip affine ops.
1010         if (isa<AffineMapAccessInterface>(*user))
1011           return WalkResult::advance();
1012         // Find a non-affine op that uses the memref.
1013         if (llvm::is_contained(users, user))
1014           return WalkResult::interrupt();
1015         return WalkResult::advance();
1016       });
1017       if (walkResult.wasInterrupted())
1018         return true;
1019     }
1020   }
1021   return false;
1022 }
1023 
1024 /// Check whether a memref value in node 'srcId' has a non-affine that
1025 /// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
1026 /// 'dstNode').
hasNonAffineUsersOnThePath(unsigned srcId,unsigned dstId,MemRefDependenceGraph * mdg)1027 static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
1028                                        MemRefDependenceGraph *mdg) {
1029   // Collect memref values in node 'srcId'.
1030   auto *srcNode = mdg->getNode(srcId);
1031   llvm::SmallDenseSet<Value, 2> memRefValues;
1032   srcNode->op->walk([&](Operation *op) {
1033     // Skip affine ops.
1034     if (isa<AffineForOp>(op))
1035       return WalkResult::advance();
1036     for (Value v : op->getOperands())
1037       // Collect memref values only.
1038       if (v.getType().isa<MemRefType>())
1039         memRefValues.insert(v);
1040     return WalkResult::advance();
1041   });
1042   // Looking for users between node 'srcId' and node 'dstId'.
1043   for (Value memref : memRefValues)
1044     if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
1045       return true;
1046   return false;
1047 }
1048 
1049 // Checks the profitability of fusing a backwards slice of the loop nest
1050 // surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
1051 // The argument 'srcStoreOpInst' is used to calculate the storage reduction on
1052 // the memref being produced and consumed, which is an input to the cost model.
1053 // For producer-consumer fusion, 'srcStoreOpInst' will be the same as
1054 // 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
1055 // fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
1056 // same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
1057 // unique store op in the src node, which will be used to check that the write
1058 // region is the same after input-reuse fusion. Computation slices are provided
1059 // in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
1060 // fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
1061 // profitable to fuse the candidate loop nests. Returns false otherwise.
1062 // `dstLoopDepth` is set to the most profitable depth at which to materialize
1063 // the source loop nest slice.
1064 // The profitability model executes the following steps:
1065 // *) Computes the backward computation slice at 'srcOpInst'. This
1066 //    computation slice of the loop nest surrounding 'srcOpInst' is
1067 //    represented by modified src loop bounds in 'sliceState', which are
1068 //    functions of loop IVs in the loop nest surrounding 'srcOpInst'.
1069 // *) Computes the cost of unfused src/dst loop nests (currently the cost of a
1070 //    loop nest is the total number of dynamic operation instances in the loop
1071 //    nest).
1072 // *) Computes the cost of fusing a slice of the src loop nest into the dst
1073 //    loop nest at various values of dst loop depth, attempting to fuse
1074 //    the largest computation slice at the maximal dst loop depth (closest to
1075 //    the load) to minimize reuse distance and potentially enable subsequent
1076 //    load/store forwarding.
1077 //    NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
1078 //    nest, at which the src computation slice is inserted/fused.
1079 //    NOTE: We attempt to maximize the dst loop depth, but there are cases
1080 //    where a particular setting for 'dstLoopNest' might fuse an unsliced
1081 //    loop (within the src computation slice) at a depth which results in
1082 //    excessive recomputation (see unit tests for examples).
1083 // *) Compares the total cost of the unfused loop nests to the min cost fused
1084 //    loop nest computed in the previous step, and returns true if the latter
1085 //    is lower.
1086 // TODO: Extend profitability analysis to support scenarios with multiple
1087 // stores.
isFusionProfitable(Operation * srcOpInst,Operation * srcStoreOpInst,AffineForOp dstForOp,ArrayRef<ComputationSliceState> depthSliceUnions,unsigned maxLegalFusionDepth,unsigned * dstLoopDepth,double computeToleranceThreshold)1088 static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
1089                                AffineForOp dstForOp,
1090                                ArrayRef<ComputationSliceState> depthSliceUnions,
1091                                unsigned maxLegalFusionDepth,
1092                                unsigned *dstLoopDepth,
1093                                double computeToleranceThreshold) {
1094   LLVM_DEBUG({
1095     llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
1096     llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n";
1097     llvm::dbgs() << dstForOp << "\n";
1098   });
1099 
1100   if (maxLegalFusionDepth == 0) {
1101     LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth == 0 .\n");
1102     return false;
1103   }
1104 
1105   // Compute cost of sliced and unsliced src loop nest.
1106   SmallVector<AffineForOp, 4> srcLoopIVs;
1107   getLoopIVs(*srcOpInst, &srcLoopIVs);
1108 
1109   // Walk src loop nest and collect stats.
1110   LoopNestStats srcLoopNestStats;
1111   if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
1112     return false;
1113 
1114   // Compute cost of dst loop nest.
1115   LoopNestStats dstLoopNestStats;
1116   if (!getLoopNestStats(dstForOp, &dstLoopNestStats))
1117     return false;
1118 
1119   // Search for min cost value for 'dstLoopDepth'. At each value of
1120   // 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
1121   // bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
1122   // of these bounds). Next the union slice bounds are used to calculate
1123   // the cost of the slice and the cost of the slice inserted into the dst
1124   // loop nest at 'dstLoopDepth'.
1125   uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
1126   double maxStorageReduction = 0.0;
1127   Optional<uint64_t> sliceMemEstimate = None;
1128 
1129   // The best loop depth at which to materialize the slice.
1130   Optional<unsigned> bestDstLoopDepth = None;
1131 
1132   // Compute op instance count for the src loop nest without iteration slicing.
1133   uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
1134 
1135   // Compute src loop nest write region size.
1136   MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
1137   if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
1138     LLVM_DEBUG(llvm::dbgs()
1139                << "Unable to compute MemRefRegion for source operation\n.");
1140     return false;
1141   }
1142 
1143   Optional<int64_t> maybeSrcWriteRegionSizeBytes =
1144       srcWriteRegion.getRegionSize();
1145   if (!maybeSrcWriteRegionSizeBytes.has_value())
1146     return false;
1147   int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.value();
1148 
1149   // Compute op instance count for the src loop nest.
1150   uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats);
1151 
1152   // Evaluate all depth choices for materializing the slice in the destination
1153   // loop nest.
1154   for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
1155     const ComputationSliceState &slice = depthSliceUnions[i - 1];
1156     // Skip slice union if it wasn't computed for this depth.
1157     if (slice.isEmpty())
1158       continue;
1159 
1160     int64_t fusedLoopNestComputeCost;
1161     if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp,
1162                               dstLoopNestStats, slice,
1163                               &fusedLoopNestComputeCost)) {
1164       LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
1165       continue;
1166     }
1167 
1168     double additionalComputeFraction =
1169         fusedLoopNestComputeCost /
1170             (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1171         1;
1172 
1173     // Determine what the slice write MemRefRegion would be, if the src loop
1174     // nest slice 'slice' were to be inserted into the dst loop nest at loop
1175     // depth 'i'.
1176     MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
1177     if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
1178                                         &slice))) {
1179       LLVM_DEBUG(llvm::dbgs()
1180                  << "Failed to compute slice write region at loopDepth: " << i
1181                  << "\n");
1182       continue;
1183     }
1184 
1185     Optional<int64_t> maybeSliceWriteRegionSizeBytes =
1186         sliceWriteRegion.getRegionSize();
1187     if (!maybeSliceWriteRegionSizeBytes.has_value() ||
1188         maybeSliceWriteRegionSizeBytes.value() == 0) {
1189       LLVM_DEBUG(llvm::dbgs()
1190                  << "Failed to get slice write region size at loopDepth: " << i
1191                  << "\n");
1192       continue;
1193     }
1194     int64_t sliceWriteRegionSizeBytes = maybeSliceWriteRegionSizeBytes.value();
1195 
1196     // If we are fusing for reuse, check that write regions remain the same.
1197     // TODO: Write region check should check sizes and offsets in
1198     // each dimension, so that we are sure they are covering the same memref
1199     // region. Also, move this out to a isMemRefRegionSuperSet helper function.
1200     if (srcOpInst != srcStoreOpInst &&
1201         sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
1202       continue;
1203 
1204     double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
1205                               static_cast<double>(sliceWriteRegionSizeBytes);
1206 
1207     LLVM_DEBUG({
1208       std::stringstream msg;
1209       msg << "  evaluating fusion profitability at depth : " << i << "\n"
1210           << std::fixed << std::setprecision(2)
1211           << "   additional compute fraction: "
1212           << 100.0 * additionalComputeFraction << "%\n"
1213           << "   storage reduction factor: " << storageReduction << "x\n"
1214           << "   fused nest cost: " << fusedLoopNestComputeCost << "\n"
1215           << "   src write region size: " << srcWriteRegionSizeBytes << "\n"
1216           << "   slice write region size: " << sliceWriteRegionSizeBytes
1217           << "\n";
1218       llvm::dbgs() << msg.str();
1219     });
1220 
1221     // TODO: This is a placeholder cost model.
1222     // Among all choices that add an acceptable amount of redundant computation
1223     // (as per computeToleranceThreshold), we will simply pick the one that
1224     // reduces the intermediary size the most.
1225     if ((storageReduction > maxStorageReduction) &&
1226         (additionalComputeFraction < computeToleranceThreshold)) {
1227       maxStorageReduction = storageReduction;
1228       bestDstLoopDepth = i;
1229       minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
1230       sliceMemEstimate = sliceWriteRegionSizeBytes;
1231     }
1232   }
1233 
1234   // A simple cost model: fuse if it reduces the memory footprint.
1235 
1236   if (!bestDstLoopDepth) {
1237     LLVM_DEBUG(
1238         llvm::dbgs()
1239         << "All fusion choices involve more than the threshold amount of "
1240            "redundant computation; NOT fusing.\n");
1241     return false;
1242   }
1243 
1244   if (!bestDstLoopDepth) {
1245     LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
1246     return false;
1247   }
1248 
1249   // Set dstLoopDepth based on best values from search.
1250   *dstLoopDepth = *bestDstLoopDepth;
1251 
1252   LLVM_DEBUG(
1253       llvm::dbgs() << " LoopFusion fusion stats:"
1254                    << "\n  best loop depth: " << bestDstLoopDepth
1255                    << "\n  src loop nest compute cost: " << srcLoopNestCost
1256                    << "\n  dst loop nest compute cost: " << dstLoopNestCost
1257                    << "\n  fused loop nest compute cost: "
1258                    << minFusedLoopNestComputeCost << "\n");
1259 
1260   auto dstMemSize = getMemoryFootprintBytes(dstForOp);
1261   auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
1262 
1263   Optional<double> storageReduction = None;
1264 
1265   if (!dstMemSize || !srcMemSize) {
1266     LLVM_DEBUG(llvm::dbgs()
1267                << "  fusion memory benefit cannot be evaluated; NOT fusing.\n");
1268     return false;
1269   }
1270 
1271   auto srcMemSizeVal = srcMemSize.value();
1272   auto dstMemSizeVal = dstMemSize.value();
1273 
1274   assert(sliceMemEstimate && "expected value");
1275   auto fusedMem = dstMemSizeVal + sliceMemEstimate.value();
1276 
1277   LLVM_DEBUG(llvm::dbgs() << "   src mem: " << srcMemSizeVal << "\n"
1278                           << "   dst mem: " << dstMemSizeVal << "\n"
1279                           << "   fused mem: " << fusedMem << "\n"
1280                           << "   slice mem: " << sliceMemEstimate << "\n");
1281 
1282   if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
1283     LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
1284     return false;
1285   }
1286   storageReduction =
1287       100.0 *
1288       (1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
1289 
1290   double additionalComputeFraction =
1291       100.0 * (minFusedLoopNestComputeCost /
1292                    (static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1293                1);
1294   (void)additionalComputeFraction;
1295   LLVM_DEBUG({
1296     std::stringstream msg;
1297     msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
1298         << std::setprecision(2) << additionalComputeFraction
1299         << "% redundant computation and a ";
1300     msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>");
1301     msg << "% storage reduction.\n";
1302     llvm::dbgs() << msg.str();
1303   });
1304 
1305   return true;
1306 }
1307 
1308 namespace {
1309 
1310 // GreedyFusion greedily fuses loop nests which have a producer/consumer or
1311 // input-reuse relationship on a memref, with the goal of improving locality.
1312 //
1313 // The steps of the producer-consumer fusion algorithm are as follows:
1314 //
1315 // *) A worklist is initialized with node ids from the dependence graph.
1316 // *) For each node id in the worklist:
1317 //   *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
1318 //      candidate destination AffineForOp into which fusion will be attempted.
1319 //   *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
1320 //   *) For each LoadOp in 'dstLoadOps' do:
1321 //      *) Look up dependent loop nests which have a single store op to the same
1322 //         memref.
1323 //      *) Check if dependences would be violated by the fusion.
1324 //      *) Get a computation slice of 'srcLoopNest', which adjusts its loop
1325 //         bounds to be functions of 'dstLoopNest' IVs and symbols.
1326 //      *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
1327 //         at a loop depth determined by the cost model in 'isFusionProfitable'.
1328 //      *) Add the newly fused load/store operations to the state,
1329 //         and also add newly fused load ops to 'dstLoopOps' to be considered
1330 //         as fusion dst load ops in another iteration.
1331 //      *) Remove old src loop nest and its associated state.
1332 //
1333 // The steps of the input-reuse fusion algorithm are as follows:
1334 //
1335 // *) Initialize 'worklist' with node ids from the dependence graph.
1336 // *) For each 'dstNode' in the worklist:
1337 //   *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
1338 //      loads from the same memref, but which has no dependence paths to/from.
1339 //   *) Get a computation slice of 'sibLoopNest', which adjusts its loop
1340 //      bounds to be functions of 'dstLoopNest' IVs and symbols.
1341 //   *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
1342 //      at a loop depth determined by the cost model in 'isFusionProfitable'.
1343 //      This function also checks that the memref write region of 'sibLoopNest',
1344 //      is preserved in the fused loop nest.
1345 //   *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
1346 //
1347 // Given a graph where top-level operations are vertices in the set 'V' and
1348 // edges in the set 'E' are dependences between vertices, this algorithm
1349 // takes O(V) time for initialization, and has runtime O(V + E).
1350 //
1351 // This greedy algorithm is not 'maximal' due to the current restriction of
1352 // fusing along single producer consumer edges, but there is a TODO: to fix
1353 // this.
1354 //
1355 // TODO: Experiment with other fusion policies.
1356 struct GreedyFusion {
1357 public:
1358   // The data dependence graph to traverse during fusion.
1359   MemRefDependenceGraph *mdg;
1360   // Worklist of graph nodes visited during the fusion pass.
1361   SmallVector<unsigned, 8> worklist;
1362   // Parameter for local buffer size threshold.
1363   unsigned localBufSizeThreshold;
1364   // Parameter for fast memory space.
1365   Optional<unsigned> fastMemorySpace;
1366   // If true, ignore any additional (redundant) computation tolerance threshold
1367   // that would have prevented fusion.
1368   bool maximalFusion;
1369   // The amount of additional computation that is tolerated while fusing
1370   // pair-wise as a fraction of the total computation.
1371   double computeToleranceThreshold;
1372 
1373   using Node = MemRefDependenceGraph::Node;
1374 
GreedyFusion__anon8a0d4ac20c11::GreedyFusion1375   GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
1376                Optional<unsigned> fastMemorySpace, bool maximalFusion,
1377                double computeToleranceThreshold)
1378       : mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
1379         fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
1380         computeToleranceThreshold(computeToleranceThreshold) {}
1381 
1382   /// Initializes 'worklist' with nodes from 'mdg'.
init__anon8a0d4ac20c11::GreedyFusion1383   void init() {
1384     // TODO: Add a priority queue for prioritizing nodes by different
1385     // metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
1386     worklist.clear();
1387     for (auto &idAndNode : mdg->nodes) {
1388       const Node &node = idAndNode.second;
1389       worklist.push_back(node.id);
1390     }
1391   }
1392   /// Run only sibling fusion on the `mdg`.
runSiblingFusionOnly__anon8a0d4ac20c11::GreedyFusion1393   void runSiblingFusionOnly() {
1394     fuseSiblingNodes();
1395     eraseUnusedMemRefAllocations();
1396   }
1397 
1398   /// Run only producer/consumer fusion on the `mdg`.
runProducerConsumerFusionOnly__anon8a0d4ac20c11::GreedyFusion1399   void runProducerConsumerFusionOnly() {
1400     fuseProducerConsumerNodes(
1401         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1402     eraseUnusedMemRefAllocations();
1403   }
1404 
1405   // Run the GreedyFusion pass.
1406   // *) First pass through the nodes fuses single-use producer nodes into their
1407   //    unique consumer.
1408   // *) Second pass fuses sibling nodes which share no dependence edges.
1409   // *) Third pass fuses any remaining producer nodes into their users.
runGreedyFusion__anon8a0d4ac20c11::GreedyFusion1410   void runGreedyFusion() {
1411     // TODO: Run this repeatedly until a fixed-point is reached.
1412     fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
1413     fuseSiblingNodes();
1414     fuseProducerConsumerNodes(
1415         /*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
1416     eraseUnusedMemRefAllocations();
1417   }
1418 
fuseProducerConsumerNodes__anon8a0d4ac20c11::GreedyFusion1419   void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
1420     LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n");
1421     init();
1422     while (!worklist.empty()) {
1423       unsigned dstId = worklist.back();
1424       worklist.pop_back();
1425 
1426       // Skip if this node was removed (fused into another node).
1427       if (mdg->nodes.count(dstId) == 0)
1428         continue;
1429       // Get 'dstNode' into which to attempt fusion.
1430       auto *dstNode = mdg->getNode(dstId);
1431       // Skip if 'dstNode' is not a loop nest.
1432       if (!isa<AffineForOp>(dstNode->op))
1433         continue;
1434       // Skip if 'dstNode' is a loop nest returning values.
1435       // TODO: support loop nests that return values.
1436       if (dstNode->op->getNumResults() > 0)
1437         continue;
1438 
1439       LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
1440 
1441       // Sink sequential loops in 'dstNode' (and thus raise parallel loops)
1442       // while preserving relative order. This can increase the maximum loop
1443       // depth at which we can fuse a slice of a producer loop nest into a
1444       // consumer loop nest.
1445       sinkSequentialLoops(dstNode);
1446       auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1447 
1448       // Try to fuse 'dstNode' with candidate producer loops until a fixed point
1449       // is reached. Fusing two loops may expose new fusion opportunities.
1450       bool dstNodeChanged;
1451       do {
1452         // Gather src loop candidates for 'dstNode' and visit them in "quasi"
1453         // reverse program order to minimize the number of iterations needed to
1454         // reach the fixed point. Note that this is a best effort approach since
1455         // 'getProducerCandidates' does not always guarantee that program order
1456         // in 'srcIdCandidates'.
1457         dstNodeChanged = false;
1458         SmallVector<unsigned, 16> srcIdCandidates;
1459         getProducerCandidates(dstId, mdg, srcIdCandidates);
1460 
1461         for (unsigned srcId : llvm::reverse(srcIdCandidates)) {
1462           // Get 'srcNode' from which to attempt fusion into 'dstNode'.
1463           auto *srcNode = mdg->getNode(srcId);
1464           auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
1465           LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId
1466                                   << " for dst loop " << dstId << "\n");
1467 
1468           // Skip if 'srcNode' is a loop nest returning values.
1469           // TODO: support loop nests that return values.
1470           if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0)
1471             continue;
1472 
1473           DenseSet<Value> producerConsumerMemrefs;
1474           gatherProducerConsumerMemrefs(srcId, dstId, mdg,
1475                                         producerConsumerMemrefs);
1476 
1477           // Skip if 'srcNode' out edge count on any memref is greater than
1478           // 'maxSrcUserCount'.
1479           if (any_of(producerConsumerMemrefs, [&](Value memref) {
1480                 return mdg->getOutEdgeCount(srcNode->id, memref) >
1481                        maxSrcUserCount;
1482               }))
1483             continue;
1484 
1485           // Gather memrefs in 'srcNode' that are written and escape to the
1486           // function (e.g., memref function arguments, returned memrefs,
1487           // memrefs passed to function calls, etc.).
1488           DenseSet<Value> srcEscapingMemRefs;
1489           gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs);
1490 
1491           // Skip if there are non-affine operations in between the 'srcNode'
1492           // and 'dstNode' using their memrefs. If so, we wouldn't be able to
1493           // compute a legal insertion point for now. 'srcNode' and 'dstNode'
1494           // memrefs with non-affine operation users would be considered
1495           // escaping memrefs so we can limit this check to only scenarios with
1496           // escaping memrefs.
1497           if (!srcEscapingMemRefs.empty() &&
1498               hasNonAffineUsersOnThePath(srcId, dstId, mdg)) {
1499             LLVM_DEBUG(
1500                 llvm::dbgs()
1501                 << "Can't fuse: non-affine users in between the loops\n.");
1502             continue;
1503           }
1504 
1505           // Compute an operation list insertion point for the fused loop
1506           // nest which preserves dependences.
1507           Operation *fusedLoopInsPoint =
1508               mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
1509           if (fusedLoopInsPoint == nullptr)
1510             continue;
1511 
1512           // Compute the innermost common loop depth for dstNode
1513           // producer-consumer loads/stores.
1514           SmallVector<Operation *, 2> dstMemrefOps;
1515           for (Operation *op : dstNode->loads)
1516             if (producerConsumerMemrefs.count(
1517                     cast<AffineReadOpInterface>(op).getMemRef()) > 0)
1518               dstMemrefOps.push_back(op);
1519           for (Operation *op : dstNode->stores)
1520             if (producerConsumerMemrefs.count(
1521                     cast<AffineWriteOpInterface>(op).getMemRef()))
1522               dstMemrefOps.push_back(op);
1523           unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps);
1524 
1525           // Check the feasibility of fusing src loop nest into dst loop nest
1526           // at loop depths in range [1, dstLoopDepthTest].
1527           unsigned maxLegalFusionDepth = 0;
1528           SmallVector<ComputationSliceState, 8> depthSliceUnions;
1529           depthSliceUnions.resize(dstLoopDepthTest);
1530           FusionStrategy strategy(FusionStrategy::ProducerConsumer);
1531           for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1532             FusionResult result = mlir::canFuseLoops(
1533                 srcAffineForOp, dstAffineForOp,
1534                 /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1535 
1536             if (result.value == FusionResult::Success)
1537               maxLegalFusionDepth = i;
1538           }
1539 
1540           if (maxLegalFusionDepth == 0) {
1541             LLVM_DEBUG(llvm::dbgs()
1542                        << "Can't fuse: fusion is not legal at any depth\n");
1543             continue;
1544           }
1545 
1546           // Check if fusion would be profitable. We skip profitability analysis
1547           // for maximal fusion since we already know the maximal legal depth to
1548           // fuse.
1549           unsigned bestDstLoopDepth = maxLegalFusionDepth;
1550           if (!maximalFusion) {
1551             // Retrieve producer stores from the src loop.
1552             SmallVector<Operation *, 2> producerStores;
1553             for (Operation *op : srcNode->stores)
1554               if (producerConsumerMemrefs.count(
1555                       cast<AffineWriteOpInterface>(op).getMemRef()))
1556                 producerStores.push_back(op);
1557 
1558             // TODO: Suppport multiple producer stores in profitability
1559             // analysis. We limit profitability analysis to only scenarios with
1560             // a single producer store for now. Note that some multi-store
1561             // producer scenarios will still go through profitability analysis
1562             // if only one of the stores is involved the producer-consumer
1563             // relationship of the candidate loops.
1564             assert(!producerStores.empty() && "Expected producer store");
1565             if (producerStores.size() > 1)
1566               LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not "
1567                                          "supported for this case\n");
1568             else if (!isFusionProfitable(producerStores[0], producerStores[0],
1569                                          dstAffineForOp, depthSliceUnions,
1570                                          maxLegalFusionDepth, &bestDstLoopDepth,
1571                                          computeToleranceThreshold))
1572               continue;
1573           }
1574 
1575           assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1576           ComputationSliceState &bestSlice =
1577               depthSliceUnions[bestDstLoopDepth - 1];
1578           assert(!bestSlice.isEmpty() && "Missing slice union for depth");
1579 
1580           // Determine if 'srcId' can be removed after fusion, taking into
1581           // account remaining dependences, escaping memrefs and the fusion
1582           // insertion point.
1583           bool removeSrcNode = canRemoveSrcNodeAfterFusion(
1584               srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs,
1585               mdg);
1586 
1587           DenseSet<Value> privateMemrefs;
1588           for (Value memref : producerConsumerMemrefs) {
1589             // If `memref` is an escaping one, do not create a private memref
1590             // for the below scenarios, since doing so will leave the escaping
1591             // memref unmodified as all the writes originally meant for the
1592             // escaping memref would be performed on the private memref:
1593             // 1. The source is to be removed after fusion,
1594             // OR
1595             // 2. The destination writes to `memref`.
1596             if (srcEscapingMemRefs.count(memref) > 0 &&
1597                 (removeSrcNode || dstNode->getStoreOpCount(memref) > 0))
1598               continue;
1599 
1600             // Don't create a private memref if 'srcNode' has in edges on
1601             // 'memref' or 'dstNode' has out edges on 'memref'.
1602             if (mdg->getIncomingMemRefAccesses(srcId, memref) > 0 ||
1603                 mdg->getOutEdgeCount(dstId, memref) > 0)
1604               continue;
1605 
1606             // If 'srcNode' will be removed but it has out edges on 'memref' to
1607             // nodes other than 'dstNode', we have to preserve dependences and
1608             // cannot create a private memref.
1609             if (removeSrcNode &&
1610                 any_of(mdg->outEdges[srcId], [&](const auto &edge) {
1611                   return edge.value == memref && edge.id != dstId;
1612                 }))
1613               continue;
1614 
1615             // Create a private version of this memref.
1616             privateMemrefs.insert(memref);
1617           }
1618 
1619           // Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
1620           fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice);
1621           dstNodeChanged = true;
1622 
1623           LLVM_DEBUG(llvm::dbgs()
1624                      << "Fused src loop " << srcId << " into dst loop " << dstId
1625                      << " at depth " << bestDstLoopDepth << ":\n"
1626                      << dstAffineForOp << "\n");
1627 
1628           // Move 'dstAffineForOp' before 'insertPointInst' if needed.
1629           if (fusedLoopInsPoint != dstAffineForOp.getOperation())
1630             dstAffineForOp.getOperation()->moveBefore(fusedLoopInsPoint);
1631 
1632           // Update edges between 'srcNode' and 'dstNode'.
1633           mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs,
1634                            removeSrcNode);
1635 
1636           // Create private memrefs.
1637           if (!privateMemrefs.empty()) {
1638             // Gather stores for all the private-to-be memrefs.
1639             DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores;
1640             dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) {
1641               Value storeMemRef = storeOp.getMemRef();
1642               if (privateMemrefs.count(storeMemRef) > 0)
1643                 privateMemRefToStores[storeMemRef].push_back(
1644                     storeOp.getOperation());
1645             });
1646 
1647             // Replace original memrefs with private memrefs. Note that all the
1648             // loads and stores on these memrefs will be replaced with a new
1649             // loads and stores. Any reference to the original ones becomes
1650             // invalid after this point.
1651             for (auto &memrefToStoresPair : privateMemRefToStores) {
1652               // TODO: Use union of memref write regions to compute
1653               // private memref footprint.
1654               SmallVector<Operation *, 4> &storesForMemref =
1655                   memrefToStoresPair.second;
1656               Value newMemRef = createPrivateMemRef(
1657                   dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
1658                   fastMemorySpace, localBufSizeThreshold);
1659               // Create new node in dependence graph for 'newMemRef' alloc op.
1660               unsigned newMemRefNodeId =
1661                   mdg->addNode(newMemRef.getDefiningOp());
1662               // Add edge from 'newMemRef' node to dstNode.
1663               mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
1664             }
1665             // One or more entries for 'newMemRef' alloc op are inserted into
1666             // the DenseMap mdg->nodes. Since an insertion may cause DenseMap to
1667             // reallocate, update dstNode.
1668             dstNode = mdg->getNode(dstId);
1669           }
1670 
1671           // Collect dst loop stats after memref privatization transformation.
1672           LoopNestStateCollector dstLoopCollector;
1673           dstLoopCollector.collect(dstAffineForOp.getOperation());
1674 
1675           // Clear and add back loads and stores.
1676           mdg->clearNodeLoadAndStores(dstNode->id);
1677           mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
1678                          dstLoopCollector.storeOpInsts);
1679 
1680           if (removeSrcNode) {
1681             LLVM_DEBUG(llvm::dbgs()
1682                        << "Removing src loop " << srcId << " after fusion\n");
1683             // srcNode is no longer valid after it is removed from mdg.
1684             srcAffineForOp.erase();
1685             mdg->removeNode(srcId);
1686             srcNode = nullptr;
1687           }
1688         }
1689       } while (dstNodeChanged);
1690     }
1691   }
1692 
1693   // Visits each node in the graph, and for each node, attempts to fuse it with
1694   // its sibling nodes (nodes which share a parent, but no dependence edges).
fuseSiblingNodes__anon8a0d4ac20c11::GreedyFusion1695   void fuseSiblingNodes() {
1696     LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n");
1697     init();
1698     while (!worklist.empty()) {
1699       unsigned dstId = worklist.back();
1700       worklist.pop_back();
1701 
1702       // Skip if this node was removed (fused into another node).
1703       if (mdg->nodes.count(dstId) == 0)
1704         continue;
1705       // Get 'dstNode' into which to attempt fusion.
1706       auto *dstNode = mdg->getNode(dstId);
1707       // Skip if 'dstNode' is not a loop nest.
1708       if (!isa<AffineForOp>(dstNode->op))
1709         continue;
1710       // Attempt to fuse 'dstNode' with its sibling nodes in the graph.
1711       fuseWithSiblingNodes(dstNode);
1712     }
1713   }
1714 
1715   // Attempt to fuse 'dstNode' with sibling nodes in the graph.
fuseWithSiblingNodes__anon8a0d4ac20c11::GreedyFusion1716   void fuseWithSiblingNodes(Node *dstNode) {
1717     DenseSet<unsigned> visitedSibNodeIds;
1718     std::pair<unsigned, Value> idAndMemref;
1719     auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
1720 
1721     while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
1722       unsigned sibId = idAndMemref.first;
1723       Value memref = idAndMemref.second;
1724       // TODO: Check that 'sibStoreOpInst' post-dominates all other
1725       // stores to the same memref in 'sibNode' loop nest.
1726       auto *sibNode = mdg->getNode(sibId);
1727       // Compute an operation list insertion point for the fused loop
1728       // nest which preserves dependences.
1729       assert(sibNode->op->getBlock() == dstNode->op->getBlock());
1730       Operation *insertPointInst =
1731           sibNode->op->isBeforeInBlock(dstNode->op)
1732               ? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
1733               : mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
1734       if (insertPointInst == nullptr)
1735         continue;
1736 
1737       // Check if fusion would be profitable and at what depth.
1738 
1739       // Get unique 'sibNode' load op to 'memref'.
1740       SmallVector<Operation *, 2> sibLoadOpInsts;
1741       sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
1742       // Currently findSiblingNodeToFuse searches for siblings with one load.
1743       assert(sibLoadOpInsts.size() == 1);
1744       Operation *sibLoadOpInst = sibLoadOpInsts[0];
1745       assert(!sibNode->stores.empty());
1746       // TODO: Choose the store which postdominates all other stores.
1747       auto *sibStoreOpInst = sibNode->stores.back();
1748 
1749       // Gather 'dstNode' load ops to 'memref'.
1750       SmallVector<Operation *, 2> dstLoadOpInsts;
1751       dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
1752 
1753       SmallVector<AffineForOp, 4> dstLoopIVs;
1754       getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
1755       unsigned dstLoopDepthTest = dstLoopIVs.size();
1756       auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
1757 
1758       // Compute loop depth and slice union for fusion.
1759       SmallVector<ComputationSliceState, 8> depthSliceUnions;
1760       depthSliceUnions.resize(dstLoopDepthTest);
1761       unsigned maxLegalFusionDepth = 0;
1762       FusionStrategy strategy(memref);
1763       for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
1764         FusionResult result = mlir::canFuseLoops(
1765             sibAffineForOp, dstAffineForOp,
1766             /*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
1767 
1768         if (result.value == FusionResult::Success)
1769           maxLegalFusionDepth = i;
1770       }
1771 
1772       // Skip if fusion is not feasible at any loop depths.
1773       if (maxLegalFusionDepth == 0)
1774         continue;
1775 
1776       unsigned bestDstLoopDepth = maxLegalFusionDepth;
1777       if (!maximalFusion) {
1778         // Check if fusion would be profitable.
1779         if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstAffineForOp,
1780                                 depthSliceUnions, maxLegalFusionDepth,
1781                                 &bestDstLoopDepth, computeToleranceThreshold))
1782           continue;
1783       }
1784 
1785       assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
1786       assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
1787              "Fusion depth has no computed slice union");
1788       // Check if source loop is being inserted in the innermost
1789       // destination loop. Based on this, the fused loop may be optimized
1790       // further inside `fuseLoops`.
1791       bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest);
1792       // Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
1793       mlir::fuseLoops(sibAffineForOp, dstAffineForOp,
1794                       depthSliceUnions[bestDstLoopDepth - 1],
1795                       isInnermostInsertion);
1796 
1797       auto dstForInst = cast<AffineForOp>(dstNode->op);
1798       // Update operation position of fused loop nest (if needed).
1799       if (insertPointInst != dstForInst.getOperation()) {
1800         dstForInst->moveBefore(insertPointInst);
1801       }
1802       // Update data dependence graph state post fusion.
1803       updateStateAfterSiblingFusion(sibNode, dstNode);
1804     }
1805   }
1806 
1807   // Searches function argument uses and the graph from 'dstNode' looking for a
1808   // fusion candidate sibling node which shares no dependences with 'dstNode'
1809   // but which loads from the same memref. Returns true and sets
1810   // 'idAndMemrefToFuse' on success. Returns false otherwise.
findSiblingNodeToFuse__anon8a0d4ac20c11::GreedyFusion1811   bool findSiblingNodeToFuse(Node *dstNode,
1812                              DenseSet<unsigned> *visitedSibNodeIds,
1813                              std::pair<unsigned, Value> *idAndMemrefToFuse) {
1814     // Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
1815     // on 'memref'.
1816     auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
1817       // Skip if 'outEdge' is not a read-after-write dependence.
1818       // TODO: Remove restrict to single load op restriction.
1819       if (sibNode->getLoadOpCount(memref) != 1)
1820         return false;
1821       // Skip if there exists a path of dependent edges between
1822       // 'sibNode' and 'dstNode'.
1823       if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
1824           mdg->hasDependencePath(dstNode->id, sibNode->id))
1825         return false;
1826       // Skip sib node if it loads to (and stores from) the same memref on
1827       // which it also has an input dependence edge.
1828       DenseSet<Value> loadAndStoreMemrefSet;
1829       sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
1830       if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
1831             return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
1832           }))
1833         return false;
1834 
1835       // Check that all stores are to the same memref.
1836       DenseSet<Value> storeMemrefs;
1837       for (auto *storeOpInst : sibNode->stores) {
1838         storeMemrefs.insert(
1839             cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
1840       }
1841       if (storeMemrefs.size() != 1)
1842         return false;
1843 
1844       // Skip if a memref value in one node is used by a non-affine memref
1845       // access that lies between 'dstNode' and 'sibNode'.
1846       if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
1847           hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
1848         return false;
1849       return true;
1850     };
1851 
1852     // Search for siblings which load the same memref function argument.
1853     auto fn = dstNode->op->getParentOfType<func::FuncOp>();
1854     for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
1855       for (auto *user : fn.getArgument(i).getUsers()) {
1856         if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
1857           // Gather loops surrounding 'use'.
1858           SmallVector<AffineForOp, 4> loops;
1859           getLoopIVs(*user, &loops);
1860           // Skip 'use' if it is not within a loop nest.
1861           if (loops.empty())
1862             continue;
1863           Node *sibNode = mdg->getForOpNode(loops[0]);
1864           assert(sibNode != nullptr);
1865           // Skip 'use' if it not a sibling to 'dstNode'.
1866           if (sibNode->id == dstNode->id)
1867             continue;
1868           // Skip 'use' if it has been visited.
1869           if (visitedSibNodeIds->count(sibNode->id) > 0)
1870             continue;
1871           // Skip 'use' if it does not load from the same memref as 'dstNode'.
1872           auto memref = loadOp.getMemRef();
1873           if (dstNode->getLoadOpCount(memref) == 0)
1874             continue;
1875           // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1876           if (canFuseWithSibNode(sibNode, memref)) {
1877             visitedSibNodeIds->insert(sibNode->id);
1878             idAndMemrefToFuse->first = sibNode->id;
1879             idAndMemrefToFuse->second = memref;
1880             return true;
1881           }
1882         }
1883       }
1884     }
1885 
1886     // Search for siblings by following edges through an intermediate src node.
1887     // Collect candidate 'dstNode' input edges in 'inEdges'.
1888     SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
1889     mdg->forEachMemRefInputEdge(
1890         dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
1891           // Add 'inEdge' if it is a read-after-write dependence.
1892           if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
1893               mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
1894             inEdges.push_back(inEdge);
1895         });
1896 
1897     // Search for sibling nodes to fuse by visiting output edges from each input
1898     // edge in 'inEdges'.
1899     for (auto &inEdge : inEdges) {
1900       // Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
1901       SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
1902       mdg->forEachMemRefOutputEdge(
1903           inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
1904             unsigned sibNodeId = outEdge.id;
1905             if (visitedSibNodeIds->count(sibNodeId) > 0)
1906               return;
1907             // Skip output edge if not a sibling using the same memref.
1908             if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
1909               return;
1910             auto *sibNode = mdg->getNode(sibNodeId);
1911             if (!isa<AffineForOp>(sibNode->op))
1912               return;
1913             // Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
1914             if (canFuseWithSibNode(sibNode, outEdge.value)) {
1915               // Add candidate 'outEdge' to sibling node.
1916               outEdges.push_back(outEdge);
1917             }
1918           });
1919 
1920       // Add first candidate if any were returned.
1921       if (!outEdges.empty()) {
1922         visitedSibNodeIds->insert(outEdges[0].id);
1923         idAndMemrefToFuse->first = outEdges[0].id;
1924         idAndMemrefToFuse->second = outEdges[0].value;
1925         return true;
1926       }
1927     }
1928     return false;
1929   }
1930 
1931   /// Update data dependence graph state to reflect sibling fusion of 'sibNode'
1932   /// into 'dstNode'.
updateStateAfterSiblingFusion__anon8a0d4ac20c11::GreedyFusion1933   void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
1934     // Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
1935     mdg->updateEdges(sibNode->id, dstNode->id);
1936 
1937     // Collect dst loop stats after memref privatization transformation.
1938     auto dstForInst = cast<AffineForOp>(dstNode->op);
1939     LoopNestStateCollector dstLoopCollector;
1940     dstLoopCollector.collect(dstForInst.getOperation());
1941     // Clear and add back loads and stores
1942     mdg->clearNodeLoadAndStores(dstNode->id);
1943     mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
1944                    dstLoopCollector.storeOpInsts);
1945     // Remove old sibling loop nest if it no longer has outgoing dependence
1946     // edges, and it does not write to a memref which escapes the
1947     // function.
1948     if (mdg->getOutEdgeCount(sibNode->id) == 0) {
1949       Operation *op = sibNode->op;
1950       mdg->removeNode(sibNode->id);
1951       op->erase();
1952     }
1953   }
1954 
1955   // Clean up any allocs with no users.
eraseUnusedMemRefAllocations__anon8a0d4ac20c11::GreedyFusion1956   void eraseUnusedMemRefAllocations() {
1957     for (auto &pair : mdg->memrefEdgeCount) {
1958       if (pair.second > 0)
1959         continue;
1960       auto memref = pair.first;
1961       // Skip if there exist other uses (return operation or function calls).
1962       if (!memref.use_empty())
1963         continue;
1964       // Use list expected to match the dep graph info.
1965       auto *op = memref.getDefiningOp();
1966       if (isa_and_nonnull<memref::AllocOp>(op))
1967         op->erase();
1968     }
1969   }
1970 };
1971 
1972 } // namespace
1973 
runOnOperation()1974 void LoopFusion::runOnOperation() {
1975   MemRefDependenceGraph g;
1976   if (!g.init(getOperation()))
1977     return;
1978 
1979   Optional<unsigned> fastMemorySpaceOpt;
1980   if (fastMemorySpace.hasValue())
1981     fastMemorySpaceOpt = fastMemorySpace;
1982   unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
1983   GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
1984                       maximalFusion, computeToleranceThreshold);
1985 
1986   if (affineFusionMode == FusionMode::ProducerConsumer)
1987     fusion.runProducerConsumerFusionOnly();
1988   else if (affineFusionMode == FusionMode::Sibling)
1989     fusion.runSiblingFusionOnly();
1990   else
1991     fusion.runGreedyFusion();
1992 }
1993