1 //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
6 // See https://llvm.org/LICENSE.txt for license information.
7 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //
9 //===----------------------------------------------------------------------===//
10 ///
11 /// \file
12 /// This file defines the implementation for the loop cache analysis.
13 /// The implementation is largely based on the following paper:
14 ///
15 /// Compiler Optimizations for Improving Data Locality
16 /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
17 /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
18 ///
19 /// The general approach taken to estimate the number of cache lines used by the
20 /// memory references in an inner loop is:
21 /// 1. Partition memory references that exhibit temporal or spacial reuse
22 /// into reference groups.
23 /// 2. For each loop L in the a loop nest LN:
24 /// a. Compute the cost of the reference group
25 /// b. Compute the loop cost by summing up the reference groups costs
26 //===----------------------------------------------------------------------===//
27
28 #include "llvm/Analysis/LoopCacheAnalysis.h"
29 #include "llvm/ADT/BreadthFirstIterator.h"
30 #include "llvm/ADT/Sequence.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/Delinearization.h"
34 #include "llvm/Analysis/DependenceAnalysis.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "loop-cache-cost"
44
45 static cl::opt<unsigned> DefaultTripCount(
46 "default-trip-count", cl::init(100), cl::Hidden,
47 cl::desc("Use this to specify the default trip count of a loop"));
48
49 // In this analysis two array references are considered to exhibit temporal
50 // reuse if they access either the same memory location, or a memory location
51 // with distance smaller than a configurable threshold.
52 static cl::opt<unsigned> TemporalReuseThreshold(
53 "temporal-reuse-threshold", cl::init(2), cl::Hidden,
54 cl::desc("Use this to specify the max. distance between array elements "
55 "accessed in a loop so that the elements are classified to have "
56 "temporal reuse"));
57
58 /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
59 /// nullptr if any loops in the loop vector supplied has more than one sibling.
60 /// The loop vector is expected to contain loops collected in breadth-first
61 /// order.
getInnerMostLoop(const LoopVectorTy & Loops)62 static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
63 assert(!Loops.empty() && "Expecting a non-empy loop vector");
64
65 Loop *LastLoop = Loops.back();
66 Loop *ParentLoop = LastLoop->getParentLoop();
67
68 if (ParentLoop == nullptr) {
69 assert(Loops.size() == 1 && "Expecting a single loop");
70 return LastLoop;
71 }
72
73 return (llvm::is_sorted(Loops,
74 [](const Loop *L1, const Loop *L2) {
75 return L1->getLoopDepth() < L2->getLoopDepth();
76 }))
77 ? LastLoop
78 : nullptr;
79 }
80
isOneDimensionalArray(const SCEV & AccessFn,const SCEV & ElemSize,const Loop & L,ScalarEvolution & SE)81 static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
82 const Loop &L, ScalarEvolution &SE) {
83 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
84 if (!AR || !AR->isAffine())
85 return false;
86
87 assert(AR->getLoop() && "AR should have a loop");
88
89 // Check that start and increment are not add recurrences.
90 const SCEV *Start = AR->getStart();
91 const SCEV *Step = AR->getStepRecurrence(SE);
92 if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
93 return false;
94
95 // Check that start and increment are both invariant in the loop.
96 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
97 return false;
98
99 const SCEV *StepRec = AR->getStepRecurrence(SE);
100 if (StepRec && SE.isKnownNegative(StepRec))
101 StepRec = SE.getNegativeSCEV(StepRec);
102
103 return StepRec == &ElemSize;
104 }
105
106 /// Compute the trip count for the given loop \p L or assume a default value if
107 /// it is not a compile time constant. Return the SCEV expression for the trip
108 /// count.
computeTripCount(const Loop & L,const SCEV & ElemSize,ScalarEvolution & SE)109 static const SCEV *computeTripCount(const Loop &L, const SCEV &ElemSize,
110 ScalarEvolution &SE) {
111 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
112 const SCEV *TripCount = (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
113 isa<SCEVConstant>(BackedgeTakenCount))
114 ? SE.getTripCountFromExitCount(BackedgeTakenCount)
115 : nullptr;
116
117 if (!TripCount) {
118 LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
119 << " could not be computed, using DefaultTripCount\n");
120 TripCount = SE.getConstant(ElemSize.getType(), DefaultTripCount);
121 }
122
123 return TripCount;
124 }
125
126 //===----------------------------------------------------------------------===//
127 // IndexedReference implementation
128 //
operator <<(raw_ostream & OS,const IndexedReference & R)129 raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
130 if (!R.IsValid) {
131 OS << R.StoreOrLoadInst;
132 OS << ", IsValid=false.";
133 return OS;
134 }
135
136 OS << *R.BasePointer;
137 for (const SCEV *Subscript : R.Subscripts)
138 OS << "[" << *Subscript << "]";
139
140 OS << ", Sizes: ";
141 for (const SCEV *Size : R.Sizes)
142 OS << "[" << *Size << "]";
143
144 return OS;
145 }
146
IndexedReference(Instruction & StoreOrLoadInst,const LoopInfo & LI,ScalarEvolution & SE)147 IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
148 const LoopInfo &LI, ScalarEvolution &SE)
149 : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
150 assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
151 "Expecting a load or store instruction");
152
153 IsValid = delinearize(LI);
154 if (IsValid)
155 LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
156 << "\n");
157 }
158
hasSpacialReuse(const IndexedReference & Other,unsigned CLS,AAResults & AA) const159 Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
160 unsigned CLS,
161 AAResults &AA) const {
162 assert(IsValid && "Expecting a valid reference");
163
164 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
165 LLVM_DEBUG(dbgs().indent(2)
166 << "No spacial reuse: different base pointers\n");
167 return false;
168 }
169
170 unsigned NumSubscripts = getNumSubscripts();
171 if (NumSubscripts != Other.getNumSubscripts()) {
172 LLVM_DEBUG(dbgs().indent(2)
173 << "No spacial reuse: different number of subscripts\n");
174 return false;
175 }
176
177 // all subscripts must be equal, except the leftmost one (the last one).
178 for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
179 if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
180 LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
181 << "\n\t" << *getSubscript(SubNum) << "\n\t"
182 << *Other.getSubscript(SubNum) << "\n");
183 return false;
184 }
185 }
186
187 // the difference between the last subscripts must be less than the cache line
188 // size.
189 const SCEV *LastSubscript = getLastSubscript();
190 const SCEV *OtherLastSubscript = Other.getLastSubscript();
191 const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
192 SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
193
194 if (Diff == nullptr) {
195 LLVM_DEBUG(dbgs().indent(2)
196 << "No spacial reuse, difference between subscript:\n\t"
197 << *LastSubscript << "\n\t" << OtherLastSubscript
198 << "\nis not constant.\n");
199 return None;
200 }
201
202 bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
203
204 LLVM_DEBUG({
205 if (InSameCacheLine)
206 dbgs().indent(2) << "Found spacial reuse.\n";
207 else
208 dbgs().indent(2) << "No spacial reuse.\n";
209 });
210
211 return InSameCacheLine;
212 }
213
hasTemporalReuse(const IndexedReference & Other,unsigned MaxDistance,const Loop & L,DependenceInfo & DI,AAResults & AA) const214 Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
215 unsigned MaxDistance,
216 const Loop &L,
217 DependenceInfo &DI,
218 AAResults &AA) const {
219 assert(IsValid && "Expecting a valid reference");
220
221 if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
222 LLVM_DEBUG(dbgs().indent(2)
223 << "No temporal reuse: different base pointer\n");
224 return false;
225 }
226
227 std::unique_ptr<Dependence> D =
228 DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
229
230 if (D == nullptr) {
231 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
232 return false;
233 }
234
235 if (D->isLoopIndependent()) {
236 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
237 return true;
238 }
239
240 // Check the dependence distance at every loop level. There is temporal reuse
241 // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
242 // it is zero at every other loop level.
243 int LoopDepth = L.getLoopDepth();
244 int Levels = D->getLevels();
245 for (int Level = 1; Level <= Levels; ++Level) {
246 const SCEV *Distance = D->getDistance(Level);
247 const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
248
249 if (SCEVConst == nullptr) {
250 LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
251 return None;
252 }
253
254 const ConstantInt &CI = *SCEVConst->getValue();
255 if (Level != LoopDepth && !CI.isZero()) {
256 LLVM_DEBUG(dbgs().indent(2)
257 << "No temporal reuse: distance is not zero at depth=" << Level
258 << "\n");
259 return false;
260 } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
261 LLVM_DEBUG(
262 dbgs().indent(2)
263 << "No temporal reuse: distance is greater than MaxDistance at depth="
264 << Level << "\n");
265 return false;
266 }
267 }
268
269 LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
270 return true;
271 }
272
computeRefCost(const Loop & L,unsigned CLS) const273 CacheCostTy IndexedReference::computeRefCost(const Loop &L,
274 unsigned CLS) const {
275 assert(IsValid && "Expecting a valid reference");
276 LLVM_DEBUG({
277 dbgs().indent(2) << "Computing cache cost for:\n";
278 dbgs().indent(4) << *this << "\n";
279 });
280
281 // If the indexed reference is loop invariant the cost is one.
282 if (isLoopInvariant(L)) {
283 LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
284 return 1;
285 }
286
287 const SCEV *TripCount = computeTripCount(L, *Sizes.back(), SE);
288 assert(TripCount && "Expecting valid TripCount");
289 LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
290
291 const SCEV *RefCost = nullptr;
292 const SCEV *Stride = nullptr;
293 if (isConsecutive(L, Stride, CLS)) {
294 // If the indexed reference is 'consecutive' the cost is
295 // (TripCount*Stride)/CLS.
296 assert(Stride != nullptr &&
297 "Stride should not be null for consecutive access!");
298 Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
299 const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS);
300 Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
301 TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
302 const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
303 RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
304
305 LLVM_DEBUG(dbgs().indent(4)
306 << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
307 << *RefCost << "\n");
308 } else {
309 // If the indexed reference is not 'consecutive' the cost is proportional to
310 // the trip count and the depth of the dimension which the subject loop
311 // subscript is accessing. We try to estimate this by multiplying the cost
312 // by the trip counts of loops corresponding to the inner dimensions. For
313 // example, given the indexed reference 'A[i][j][k]', and assuming the
314 // i-loop is in the innermost position, the cost would be equal to the
315 // iterations of the i-loop multiplied by iterations of the j-loop.
316 RefCost = TripCount;
317
318 int Index = getSubscriptIndex(L);
319 assert(Index >= 0 && "Cound not locate a valid Index");
320
321 for (unsigned I = Index + 1; I < getNumSubscripts() - 1; ++I) {
322 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(I));
323 assert(AR && AR->getLoop() && "Expecting valid loop");
324 const SCEV *TripCount =
325 computeTripCount(*AR->getLoop(), *Sizes.back(), SE);
326 Type *WiderType = SE.getWiderType(RefCost->getType(), TripCount->getType());
327 RefCost = SE.getMulExpr(SE.getNoopOrAnyExtend(RefCost, WiderType),
328 SE.getNoopOrAnyExtend(TripCount, WiderType));
329 }
330
331 LLVM_DEBUG(dbgs().indent(4)
332 << "Access is not consecutive: RefCost=" << *RefCost << "\n");
333 }
334 assert(RefCost && "Expecting a valid RefCost");
335
336 // Attempt to fold RefCost into a constant.
337 if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
338 return ConstantCost->getValue()->getSExtValue();
339
340 LLVM_DEBUG(dbgs().indent(4)
341 << "RefCost is not a constant! Setting to RefCost=InvalidCost "
342 "(invalid value).\n");
343
344 return CacheCost::InvalidCost;
345 }
346
tryDelinearizeFixedSize(const SCEV * AccessFn,SmallVectorImpl<const SCEV * > & Subscripts)347 bool IndexedReference::tryDelinearizeFixedSize(
348 const SCEV *AccessFn, SmallVectorImpl<const SCEV *> &Subscripts) {
349 SmallVector<int, 4> ArraySizes;
350 if (!tryDelinearizeFixedSizeImpl(&SE, &StoreOrLoadInst, AccessFn, Subscripts,
351 ArraySizes))
352 return false;
353
354 // Populate Sizes with scev expressions to be used in calculations later.
355 for (auto Idx : seq<unsigned>(1, Subscripts.size()))
356 Sizes.push_back(
357 SE.getConstant(Subscripts[Idx]->getType(), ArraySizes[Idx - 1]));
358
359 LLVM_DEBUG({
360 dbgs() << "Delinearized subscripts of fixed-size array\n"
361 << "GEP:" << *getLoadStorePointerOperand(&StoreOrLoadInst)
362 << "\n";
363 });
364 return true;
365 }
366
delinearize(const LoopInfo & LI)367 bool IndexedReference::delinearize(const LoopInfo &LI) {
368 assert(Subscripts.empty() && "Subscripts should be empty");
369 assert(Sizes.empty() && "Sizes should be empty");
370 assert(!IsValid && "Should be called once from the constructor");
371 LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
372
373 const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
374 const BasicBlock *BB = StoreOrLoadInst.getParent();
375
376 if (Loop *L = LI.getLoopFor(BB)) {
377 const SCEV *AccessFn =
378 SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
379
380 BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
381 if (BasePointer == nullptr) {
382 LLVM_DEBUG(
383 dbgs().indent(2)
384 << "ERROR: failed to delinearize, can't identify base pointer\n");
385 return false;
386 }
387
388 bool IsFixedSize = false;
389 // Try to delinearize fixed-size arrays.
390 if (tryDelinearizeFixedSize(AccessFn, Subscripts)) {
391 IsFixedSize = true;
392 // The last element of Sizes is the element size.
393 Sizes.push_back(ElemSize);
394 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
395 << "', AccessFn: " << *AccessFn << "\n");
396 }
397
398 AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
399
400 // Try to delinearize parametric-size arrays.
401 if (!IsFixedSize) {
402 LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
403 << "', AccessFn: " << *AccessFn << "\n");
404 llvm::delinearize(SE, AccessFn, Subscripts, Sizes,
405 SE.getElementSize(&StoreOrLoadInst));
406 }
407
408 if (Subscripts.empty() || Sizes.empty() ||
409 Subscripts.size() != Sizes.size()) {
410 // Attempt to determine whether we have a single dimensional array access.
411 // before giving up.
412 if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
413 LLVM_DEBUG(dbgs().indent(2)
414 << "ERROR: failed to delinearize reference\n");
415 Subscripts.clear();
416 Sizes.clear();
417 return false;
418 }
419
420 // The array may be accessed in reverse, for example:
421 // for (i = N; i > 0; i--)
422 // A[i] = 0;
423 // In this case, reconstruct the access function using the absolute value
424 // of the step recurrence.
425 const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
426 const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;
427
428 if (StepRec && SE.isKnownNegative(StepRec))
429 AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(),
430 SE.getNegativeSCEV(StepRec),
431 AccessFnAR->getLoop(),
432 AccessFnAR->getNoWrapFlags());
433 const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
434 Subscripts.push_back(Div);
435 Sizes.push_back(ElemSize);
436 }
437
438 return all_of(Subscripts, [&](const SCEV *Subscript) {
439 return isSimpleAddRecurrence(*Subscript, *L);
440 });
441 }
442
443 return false;
444 }
445
isLoopInvariant(const Loop & L) const446 bool IndexedReference::isLoopInvariant(const Loop &L) const {
447 Value *Addr = getPointerOperand(&StoreOrLoadInst);
448 assert(Addr != nullptr && "Expecting either a load or a store instruction");
449 assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
450
451 if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
452 return true;
453
454 // The indexed reference is loop invariant if none of the coefficients use
455 // the loop induction variable.
456 bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
457 return isCoeffForLoopZeroOrInvariant(*Subscript, L);
458 });
459
460 return allCoeffForLoopAreZero;
461 }
462
isConsecutive(const Loop & L,const SCEV * & Stride,unsigned CLS) const463 bool IndexedReference::isConsecutive(const Loop &L, const SCEV *&Stride,
464 unsigned CLS) const {
465 // The indexed reference is 'consecutive' if the only coefficient that uses
466 // the loop induction variable is the last one...
467 const SCEV *LastSubscript = Subscripts.back();
468 for (const SCEV *Subscript : Subscripts) {
469 if (Subscript == LastSubscript)
470 continue;
471 if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
472 return false;
473 }
474
475 // ...and the access stride is less than the cache line size.
476 const SCEV *Coeff = getLastCoefficient();
477 const SCEV *ElemSize = Sizes.back();
478 Type *WiderType = SE.getWiderType(Coeff->getType(), ElemSize->getType());
479 // FIXME: This assumes that all values are signed integers which may
480 // be incorrect in unusual codes and incorrectly use sext instead of zext.
481 // for (uint32_t i = 0; i < 512; ++i) {
482 // uint8_t trunc = i;
483 // A[trunc] = 42;
484 // }
485 // This consecutively iterates twice over A. If `trunc` is sign-extended,
486 // we would conclude that this may iterate backwards over the array.
487 // However, LoopCacheAnalysis is heuristic anyway and transformations must
488 // not result in wrong optimizations if the heuristic was incorrect.
489 Stride = SE.getMulExpr(SE.getNoopOrSignExtend(Coeff, WiderType),
490 SE.getNoopOrSignExtend(ElemSize, WiderType));
491 const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
492
493 Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
494 return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
495 }
496
getSubscriptIndex(const Loop & L) const497 int IndexedReference::getSubscriptIndex(const Loop &L) const {
498 for (auto Idx : seq<int>(0, getNumSubscripts())) {
499 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(getSubscript(Idx));
500 if (AR && AR->getLoop() == &L) {
501 return Idx;
502 }
503 }
504 return -1;
505 }
506
getLastCoefficient() const507 const SCEV *IndexedReference::getLastCoefficient() const {
508 const SCEV *LastSubscript = getLastSubscript();
509 auto *AR = cast<SCEVAddRecExpr>(LastSubscript);
510 return AR->getStepRecurrence(SE);
511 }
512
isCoeffForLoopZeroOrInvariant(const SCEV & Subscript,const Loop & L) const513 bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
514 const Loop &L) const {
515 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
516 return (AR != nullptr) ? AR->getLoop() != &L
517 : SE.isLoopInvariant(&Subscript, &L);
518 }
519
isSimpleAddRecurrence(const SCEV & Subscript,const Loop & L) const520 bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
521 const Loop &L) const {
522 if (!isa<SCEVAddRecExpr>(Subscript))
523 return false;
524
525 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
526 assert(AR->getLoop() && "AR should have a loop");
527
528 if (!AR->isAffine())
529 return false;
530
531 const SCEV *Start = AR->getStart();
532 const SCEV *Step = AR->getStepRecurrence(SE);
533
534 if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
535 return false;
536
537 return true;
538 }
539
isAliased(const IndexedReference & Other,AAResults & AA) const540 bool IndexedReference::isAliased(const IndexedReference &Other,
541 AAResults &AA) const {
542 const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
543 const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
544 return AA.isMustAlias(Loc1, Loc2);
545 }
546
547 //===----------------------------------------------------------------------===//
548 // CacheCost implementation
549 //
operator <<(raw_ostream & OS,const CacheCost & CC)550 raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
551 for (const auto &LC : CC.LoopCosts) {
552 const Loop *L = LC.first;
553 OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
554 }
555 return OS;
556 }
557
CacheCost(const LoopVectorTy & Loops,const LoopInfo & LI,ScalarEvolution & SE,TargetTransformInfo & TTI,AAResults & AA,DependenceInfo & DI,Optional<unsigned> TRT)558 CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
559 ScalarEvolution &SE, TargetTransformInfo &TTI,
560 AAResults &AA, DependenceInfo &DI, Optional<unsigned> TRT)
561 : Loops(Loops),
562 TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
563 LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
564 assert(!Loops.empty() && "Expecting a non-empty loop vector.");
565
566 for (const Loop *L : Loops) {
567 unsigned TripCount = SE.getSmallConstantTripCount(L);
568 TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
569 TripCounts.push_back({L, TripCount});
570 }
571
572 calculateCacheFootprint();
573 }
574
575 std::unique_ptr<CacheCost>
getCacheCost(Loop & Root,LoopStandardAnalysisResults & AR,DependenceInfo & DI,Optional<unsigned> TRT)576 CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
577 DependenceInfo &DI, Optional<unsigned> TRT) {
578 if (!Root.isOutermost()) {
579 LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
580 return nullptr;
581 }
582
583 LoopVectorTy Loops;
584 append_range(Loops, breadth_first(&Root));
585
586 if (!getInnerMostLoop(Loops)) {
587 LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
588 "than one innermost loop\n");
589 return nullptr;
590 }
591
592 return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
593 }
594
calculateCacheFootprint()595 void CacheCost::calculateCacheFootprint() {
596 LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
597 ReferenceGroupsTy RefGroups;
598 if (!populateReferenceGroups(RefGroups))
599 return;
600
601 LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
602 for (const Loop *L : Loops) {
603 assert(llvm::none_of(
604 LoopCosts,
605 [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) &&
606 "Should not add duplicate element");
607 CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
608 LoopCosts.push_back(std::make_pair(L, LoopCost));
609 }
610
611 sortLoopCosts();
612 RefGroups.clear();
613 }
614
populateReferenceGroups(ReferenceGroupsTy & RefGroups) const615 bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
616 assert(RefGroups.empty() && "Reference groups should be empty");
617
618 unsigned CLS = TTI.getCacheLineSize();
619 Loop *InnerMostLoop = getInnerMostLoop(Loops);
620 assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
621
622 for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
623 for (Instruction &I : *BB) {
624 if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
625 continue;
626
627 std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
628 if (!R->isValid())
629 continue;
630
631 bool Added = false;
632 for (ReferenceGroupTy &RefGroup : RefGroups) {
633 const IndexedReference &Representative = *RefGroup.front();
634 LLVM_DEBUG({
635 dbgs() << "References:\n";
636 dbgs().indent(2) << *R << "\n";
637 dbgs().indent(2) << Representative << "\n";
638 });
639
640
641 // FIXME: Both positive and negative access functions will be placed
642 // into the same reference group, resulting in a bi-directional array
643 // access such as:
644 // for (i = N; i > 0; i--)
645 // A[i] = A[N - i];
646 // having the same cost calculation as a single dimention access pattern
647 // for (i = 0; i < N; i++)
648 // A[i] = A[i];
649 // when in actuality, depending on the array size, the first example
650 // should have a cost closer to 2x the second due to the two cache
651 // access per iteration from opposite ends of the array
652 Optional<bool> HasTemporalReuse =
653 R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
654 Optional<bool> HasSpacialReuse =
655 R->hasSpacialReuse(Representative, CLS, AA);
656
657 if ((HasTemporalReuse && *HasTemporalReuse) ||
658 (HasSpacialReuse && *HasSpacialReuse)) {
659 RefGroup.push_back(std::move(R));
660 Added = true;
661 break;
662 }
663 }
664
665 if (!Added) {
666 ReferenceGroupTy RG;
667 RG.push_back(std::move(R));
668 RefGroups.push_back(std::move(RG));
669 }
670 }
671 }
672
673 if (RefGroups.empty())
674 return false;
675
676 LLVM_DEBUG({
677 dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
678 int n = 1;
679 for (const ReferenceGroupTy &RG : RefGroups) {
680 dbgs().indent(2) << "RefGroup " << n << ":\n";
681 for (const auto &IR : RG)
682 dbgs().indent(4) << *IR << "\n";
683 n++;
684 }
685 dbgs() << "\n";
686 });
687
688 return true;
689 }
690
691 CacheCostTy
computeLoopCacheCost(const Loop & L,const ReferenceGroupsTy & RefGroups) const692 CacheCost::computeLoopCacheCost(const Loop &L,
693 const ReferenceGroupsTy &RefGroups) const {
694 if (!L.isLoopSimplifyForm())
695 return InvalidCost;
696
697 LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
698 << "' as innermost loop.\n");
699
700 // Compute the product of the trip counts of each other loop in the nest.
701 CacheCostTy TripCountsProduct = 1;
702 for (const auto &TC : TripCounts) {
703 if (TC.first == &L)
704 continue;
705 TripCountsProduct *= TC.second;
706 }
707
708 CacheCostTy LoopCost = 0;
709 for (const ReferenceGroupTy &RG : RefGroups) {
710 CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
711 LoopCost += RefGroupCost * TripCountsProduct;
712 }
713
714 LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
715 << "' has cost=" << LoopCost << "\n");
716
717 return LoopCost;
718 }
719
computeRefGroupCacheCost(const ReferenceGroupTy & RG,const Loop & L) const720 CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
721 const Loop &L) const {
722 assert(!RG.empty() && "Reference group should have at least one member.");
723
724 const IndexedReference *Representative = RG.front().get();
725 return Representative->computeRefCost(L, TTI.getCacheLineSize());
726 }
727
728 //===----------------------------------------------------------------------===//
729 // LoopCachePrinterPass implementation
730 //
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)731 PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
732 LoopStandardAnalysisResults &AR,
733 LPMUpdater &U) {
734 Function *F = L.getHeader()->getParent();
735 DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
736
737 if (auto CC = CacheCost::getCacheCost(L, AR, DI))
738 OS << *CC;
739
740 return PreservedAnalyses::all();
741 }
742