1 //===- LinkerScript.cpp ---------------------------------------------------===//
2 //
3 // The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the parser/evaluator of the linker script.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LinkerScript.h"
15 #include "Config.h"
16 #include "InputSection.h"
17 #include "OutputSections.h"
18 #include "SymbolTable.h"
19 #include "Symbols.h"
20 #include "SyntheticSections.h"
21 #include "Target.h"
22 #include "Writer.h"
23 #include "lld/Common/Memory.h"
24 #include "lld/Common/Strings.h"
25 #include "lld/Common/Threads.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/BinaryFormat/ELF.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Endian.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/FileSystem.h"
33 #include "llvm/Support/Path.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <limits>
40 #include <string>
41 #include <vector>
42
43 using namespace llvm;
44 using namespace llvm::ELF;
45 using namespace llvm::object;
46 using namespace llvm::support::endian;
47 using namespace lld;
48 using namespace lld::elf;
49
50 LinkerScript *elf::Script;
51
getOutputSectionVA(SectionBase * InputSec,StringRef Loc)52 static uint64_t getOutputSectionVA(SectionBase *InputSec, StringRef Loc) {
53 if (OutputSection *OS = InputSec->getOutputSection())
54 return OS->Addr;
55 error(Loc + ": unable to evaluate expression: input section " +
56 InputSec->Name + " has no output section assigned");
57 return 0;
58 }
59
getValue() const60 uint64_t ExprValue::getValue() const {
61 if (Sec)
62 return alignTo(Sec->getOffset(Val) + getOutputSectionVA(Sec, Loc),
63 Alignment);
64 return alignTo(Val, Alignment);
65 }
66
getSecAddr() const67 uint64_t ExprValue::getSecAddr() const {
68 if (Sec)
69 return Sec->getOffset(0) + getOutputSectionVA(Sec, Loc);
70 return 0;
71 }
72
getSectionOffset() const73 uint64_t ExprValue::getSectionOffset() const {
74 // If the alignment is trivial, we don't have to compute the full
75 // value to know the offset. This allows this function to succeed in
76 // cases where the output section is not yet known.
77 if (Alignment == 1 && (!Sec || !Sec->getOutputSection()))
78 return Val;
79 return getValue() - getSecAddr();
80 }
81
createOutputSection(StringRef Name,StringRef Location)82 OutputSection *LinkerScript::createOutputSection(StringRef Name,
83 StringRef Location) {
84 OutputSection *&SecRef = NameToOutputSection[Name];
85 OutputSection *Sec;
86 if (SecRef && SecRef->Location.empty()) {
87 // There was a forward reference.
88 Sec = SecRef;
89 } else {
90 Sec = make<OutputSection>(Name, SHT_NOBITS, 0);
91 if (!SecRef)
92 SecRef = Sec;
93 }
94 Sec->Location = Location;
95 return Sec;
96 }
97
getOrCreateOutputSection(StringRef Name)98 OutputSection *LinkerScript::getOrCreateOutputSection(StringRef Name) {
99 OutputSection *&CmdRef = NameToOutputSection[Name];
100 if (!CmdRef)
101 CmdRef = make<OutputSection>(Name, SHT_PROGBITS, 0);
102 return CmdRef;
103 }
104
105 // Expands the memory region by the specified size.
expandMemoryRegion(MemoryRegion * MemRegion,uint64_t Size,StringRef RegionName,StringRef SecName)106 static void expandMemoryRegion(MemoryRegion *MemRegion, uint64_t Size,
107 StringRef RegionName, StringRef SecName) {
108 MemRegion->CurPos += Size;
109 uint64_t NewSize = MemRegion->CurPos - MemRegion->Origin;
110 if (NewSize > MemRegion->Length)
111 error("section '" + SecName + "' will not fit in region '" + RegionName +
112 "': overflowed by " + Twine(NewSize - MemRegion->Length) + " bytes");
113 }
114
expandMemoryRegions(uint64_t Size)115 void LinkerScript::expandMemoryRegions(uint64_t Size) {
116 if (Ctx->MemRegion)
117 expandMemoryRegion(Ctx->MemRegion, Size, Ctx->MemRegion->Name,
118 Ctx->OutSec->Name);
119 // Only expand the LMARegion if it is different from MemRegion.
120 if (Ctx->LMARegion && Ctx->MemRegion != Ctx->LMARegion)
121 expandMemoryRegion(Ctx->LMARegion, Size, Ctx->LMARegion->Name,
122 Ctx->OutSec->Name);
123 }
124
expandOutputSection(uint64_t Size)125 void LinkerScript::expandOutputSection(uint64_t Size) {
126 Ctx->OutSec->Size += Size;
127 expandMemoryRegions(Size);
128 }
129
setDot(Expr E,const Twine & Loc,bool InSec)130 void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) {
131 uint64_t Val = E().getValue();
132 if (Val < Dot && InSec)
133 error(Loc + ": unable to move location counter backward for: " +
134 Ctx->OutSec->Name);
135
136 // Update to location counter means update to section size.
137 if (InSec)
138 expandOutputSection(Val - Dot);
139 else
140 expandMemoryRegions(Val - Dot);
141
142 Dot = Val;
143 }
144
145 // Used for handling linker symbol assignments, for both finalizing
146 // their values and doing early declarations. Returns true if symbol
147 // should be defined from linker script.
shouldDefineSym(SymbolAssignment * Cmd)148 static bool shouldDefineSym(SymbolAssignment *Cmd) {
149 if (Cmd->Name == ".")
150 return false;
151
152 if (!Cmd->Provide)
153 return true;
154
155 // If a symbol was in PROVIDE(), we need to define it only
156 // when it is a referenced undefined symbol.
157 Symbol *B = Symtab->find(Cmd->Name);
158 if (B && !B->isDefined())
159 return true;
160 return false;
161 }
162
163 // This function is called from processSectionCommands,
164 // while we are fixing the output section layout.
addSymbol(SymbolAssignment * Cmd)165 void LinkerScript::addSymbol(SymbolAssignment *Cmd) {
166 if (!shouldDefineSym(Cmd))
167 return;
168
169 // Define a symbol.
170 Symbol *Sym;
171 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
172 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, Visibility,
173 /*CanOmitFromDynSym*/ false,
174 /*File*/ nullptr);
175 ExprValue Value = Cmd->Expression();
176 SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec;
177
178 // When this function is called, section addresses have not been
179 // fixed yet. So, we may or may not know the value of the RHS
180 // expression.
181 //
182 // For example, if an expression is `x = 42`, we know x is always 42.
183 // However, if an expression is `x = .`, there's no way to know its
184 // value at the moment.
185 //
186 // We want to set symbol values early if we can. This allows us to
187 // use symbols as variables in linker scripts. Doing so allows us to
188 // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
189 uint64_t SymValue = Value.Sec ? 0 : Value.getValue();
190
191 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility,
192 STT_NOTYPE, SymValue, 0, Sec);
193 Cmd->Sym = cast<Defined>(Sym);
194 }
195
196 // This function is called from LinkerScript::declareSymbols.
197 // It creates a placeholder symbol if needed.
declareSymbol(SymbolAssignment * Cmd)198 static void declareSymbol(SymbolAssignment *Cmd) {
199 if (!shouldDefineSym(Cmd))
200 return;
201
202 // We can't calculate final value right now.
203 Symbol *Sym;
204 uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT;
205 std::tie(Sym, std::ignore) = Symtab->insert(Cmd->Name, Visibility,
206 /*CanOmitFromDynSym*/ false,
207 /*File*/ nullptr);
208 replaceSymbol<Defined>(Sym, nullptr, Cmd->Name, STB_GLOBAL, Visibility,
209 STT_NOTYPE, 0, 0, nullptr);
210 Cmd->Sym = cast<Defined>(Sym);
211 Cmd->Provide = false;
212 Sym->ScriptDefined = true;
213 }
214
215 // This method is used to handle INSERT AFTER statement. Here we rebuild
216 // the list of script commands to mix sections inserted into.
processInsertCommands()217 void LinkerScript::processInsertCommands() {
218 std::vector<BaseCommand *> V;
219 auto Insert = [&](std::vector<BaseCommand *> &From) {
220 V.insert(V.end(), From.begin(), From.end());
221 From.clear();
222 };
223
224 for (BaseCommand *Base : SectionCommands) {
225 if (auto *OS = dyn_cast<OutputSection>(Base)) {
226 Insert(InsertBeforeCommands[OS->Name]);
227 V.push_back(Base);
228 Insert(InsertAfterCommands[OS->Name]);
229 continue;
230 }
231 V.push_back(Base);
232 }
233
234 for (auto &Cmds : {InsertBeforeCommands, InsertAfterCommands})
235 for (const std::pair<StringRef, std::vector<BaseCommand *>> &P : Cmds)
236 if (!P.second.empty())
237 error("unable to INSERT AFTER/BEFORE " + P.first +
238 ": section not defined");
239
240 SectionCommands = std::move(V);
241 }
242
243 // Symbols defined in script should not be inlined by LTO. At the same time
244 // we don't know their final values until late stages of link. Here we scan
245 // over symbol assignment commands and create placeholder symbols if needed.
declareSymbols()246 void LinkerScript::declareSymbols() {
247 assert(!Ctx);
248 for (BaseCommand *Base : SectionCommands) {
249 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
250 declareSymbol(Cmd);
251 continue;
252 }
253
254 // If the output section directive has constraints,
255 // we can't say for sure if it is going to be included or not.
256 // Skip such sections for now. Improve the checks if we ever
257 // need symbols from that sections to be declared early.
258 auto *Sec = cast<OutputSection>(Base);
259 if (Sec->Constraint != ConstraintKind::NoConstraint)
260 continue;
261 for (BaseCommand *Base2 : Sec->SectionCommands)
262 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base2))
263 declareSymbol(Cmd);
264 }
265 }
266
267 // This function is called from assignAddresses, while we are
268 // fixing the output section addresses. This function is supposed
269 // to set the final value for a given symbol assignment.
assignSymbol(SymbolAssignment * Cmd,bool InSec)270 void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) {
271 if (Cmd->Name == ".") {
272 setDot(Cmd->Expression, Cmd->Location, InSec);
273 return;
274 }
275
276 if (!Cmd->Sym)
277 return;
278
279 ExprValue V = Cmd->Expression();
280 if (V.isAbsolute()) {
281 Cmd->Sym->Section = nullptr;
282 Cmd->Sym->Value = V.getValue();
283 } else {
284 Cmd->Sym->Section = V.Sec;
285 Cmd->Sym->Value = V.getSectionOffset();
286 }
287 }
288
getFilename(InputFile * File)289 static std::string getFilename(InputFile *File) {
290 if (!File)
291 return "";
292 if (File->ArchiveName.empty())
293 return File->getName();
294 return (File->ArchiveName + "(" + File->getName() + ")").str();
295 }
296
shouldKeep(InputSectionBase * S)297 bool LinkerScript::shouldKeep(InputSectionBase *S) {
298 if (KeptSections.empty())
299 return false;
300 std::string Filename = getFilename(S->File);
301 for (InputSectionDescription *ID : KeptSections)
302 if (ID->FilePat.match(Filename))
303 for (SectionPattern &P : ID->SectionPatterns)
304 if (P.SectionPat.match(S->Name))
305 return true;
306 return false;
307 }
308
309 // A helper function for the SORT() command.
310 static std::function<bool(InputSectionBase *, InputSectionBase *)>
getComparator(SortSectionPolicy K)311 getComparator(SortSectionPolicy K) {
312 switch (K) {
313 case SortSectionPolicy::Alignment:
314 return [](InputSectionBase *A, InputSectionBase *B) {
315 // ">" is not a mistake. Sections with larger alignments are placed
316 // before sections with smaller alignments in order to reduce the
317 // amount of padding necessary. This is compatible with GNU.
318 return A->Alignment > B->Alignment;
319 };
320 case SortSectionPolicy::Name:
321 return [](InputSectionBase *A, InputSectionBase *B) {
322 return A->Name < B->Name;
323 };
324 case SortSectionPolicy::Priority:
325 return [](InputSectionBase *A, InputSectionBase *B) {
326 return getPriority(A->Name) < getPriority(B->Name);
327 };
328 default:
329 llvm_unreachable("unknown sort policy");
330 }
331 }
332
333 // A helper function for the SORT() command.
matchConstraints(ArrayRef<InputSection * > Sections,ConstraintKind Kind)334 static bool matchConstraints(ArrayRef<InputSection *> Sections,
335 ConstraintKind Kind) {
336 if (Kind == ConstraintKind::NoConstraint)
337 return true;
338
339 bool IsRW = llvm::any_of(
340 Sections, [](InputSection *Sec) { return Sec->Flags & SHF_WRITE; });
341
342 return (IsRW && Kind == ConstraintKind::ReadWrite) ||
343 (!IsRW && Kind == ConstraintKind::ReadOnly);
344 }
345
sortSections(MutableArrayRef<InputSection * > Vec,SortSectionPolicy K)346 static void sortSections(MutableArrayRef<InputSection *> Vec,
347 SortSectionPolicy K) {
348 if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None)
349 std::stable_sort(Vec.begin(), Vec.end(), getComparator(K));
350 }
351
352 // Sort sections as instructed by SORT-family commands and --sort-section
353 // option. Because SORT-family commands can be nested at most two depth
354 // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
355 // line option is respected even if a SORT command is given, the exact
356 // behavior we have here is a bit complicated. Here are the rules.
357 //
358 // 1. If two SORT commands are given, --sort-section is ignored.
359 // 2. If one SORT command is given, and if it is not SORT_NONE,
360 // --sort-section is handled as an inner SORT command.
361 // 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
362 // 4. If no SORT command is given, sort according to --sort-section.
sortInputSections(MutableArrayRef<InputSection * > Vec,const SectionPattern & Pat)363 static void sortInputSections(MutableArrayRef<InputSection *> Vec,
364 const SectionPattern &Pat) {
365 if (Pat.SortOuter == SortSectionPolicy::None)
366 return;
367
368 if (Pat.SortInner == SortSectionPolicy::Default)
369 sortSections(Vec, Config->SortSection);
370 else
371 sortSections(Vec, Pat.SortInner);
372 sortSections(Vec, Pat.SortOuter);
373 }
374
375 // Compute and remember which sections the InputSectionDescription matches.
376 std::vector<InputSection *>
computeInputSections(const InputSectionDescription * Cmd)377 LinkerScript::computeInputSections(const InputSectionDescription *Cmd) {
378 std::vector<InputSection *> Ret;
379
380 // Collects all sections that satisfy constraints of Cmd.
381 for (const SectionPattern &Pat : Cmd->SectionPatterns) {
382 size_t SizeBefore = Ret.size();
383
384 for (InputSectionBase *Sec : InputSections) {
385 if (!Sec->Live || Sec->Assigned)
386 continue;
387
388 // For -emit-relocs we have to ignore entries like
389 // .rela.dyn : { *(.rela.data) }
390 // which are common because they are in the default bfd script.
391 // We do not ignore SHT_REL[A] linker-synthesized sections here because
392 // want to support scripts that do custom layout for them.
393 if (auto *IS = dyn_cast<InputSection>(Sec))
394 if (IS->getRelocatedSection())
395 continue;
396
397 std::string Filename = getFilename(Sec->File);
398 if (!Cmd->FilePat.match(Filename) ||
399 Pat.ExcludedFilePat.match(Filename) ||
400 !Pat.SectionPat.match(Sec->Name))
401 continue;
402
403 // It is safe to assume that Sec is an InputSection
404 // because mergeable or EH input sections have already been
405 // handled and eliminated.
406 Ret.push_back(cast<InputSection>(Sec));
407 Sec->Assigned = true;
408 }
409
410 sortInputSections(MutableArrayRef<InputSection *>(Ret).slice(SizeBefore),
411 Pat);
412 }
413 return Ret;
414 }
415
discard(ArrayRef<InputSection * > V)416 void LinkerScript::discard(ArrayRef<InputSection *> V) {
417 for (InputSection *S : V) {
418 if (S == In.ShStrTab || S == In.RelaDyn || S == In.RelrDyn)
419 error("discarding " + S->Name + " section is not allowed");
420
421 // You can discard .hash and .gnu.hash sections by linker scripts. Since
422 // they are synthesized sections, we need to handle them differently than
423 // other regular sections.
424 if (S == In.GnuHashTab)
425 In.GnuHashTab = nullptr;
426 if (S == In.HashTab)
427 In.HashTab = nullptr;
428
429 S->Assigned = false;
430 S->Live = false;
431 discard(S->DependentSections);
432 }
433 }
434
435 std::vector<InputSection *>
createInputSectionList(OutputSection & OutCmd)436 LinkerScript::createInputSectionList(OutputSection &OutCmd) {
437 std::vector<InputSection *> Ret;
438
439 for (BaseCommand *Base : OutCmd.SectionCommands) {
440 if (auto *Cmd = dyn_cast<InputSectionDescription>(Base)) {
441 Cmd->Sections = computeInputSections(Cmd);
442 Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end());
443 }
444 }
445 return Ret;
446 }
447
processSectionCommands()448 void LinkerScript::processSectionCommands() {
449 // A symbol can be assigned before any section is mentioned in the linker
450 // script. In an DSO, the symbol values are addresses, so the only important
451 // section values are:
452 // * SHN_UNDEF
453 // * SHN_ABS
454 // * Any value meaning a regular section.
455 // To handle that, create a dummy aether section that fills the void before
456 // the linker scripts switches to another section. It has an index of one
457 // which will map to whatever the first actual section is.
458 Aether = make<OutputSection>("", 0, SHF_ALLOC);
459 Aether->SectionIndex = 1;
460
461 // Ctx captures the local AddressState and makes it accessible deliberately.
462 // This is needed as there are some cases where we cannot just
463 // thread the current state through to a lambda function created by the
464 // script parser.
465 auto Deleter = make_unique<AddressState>();
466 Ctx = Deleter.get();
467 Ctx->OutSec = Aether;
468
469 size_t I = 0;
470 // Add input sections to output sections.
471 for (BaseCommand *Base : SectionCommands) {
472 // Handle symbol assignments outside of any output section.
473 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
474 addSymbol(Cmd);
475 continue;
476 }
477
478 if (auto *Sec = dyn_cast<OutputSection>(Base)) {
479 std::vector<InputSection *> V = createInputSectionList(*Sec);
480
481 // The output section name `/DISCARD/' is special.
482 // Any input section assigned to it is discarded.
483 if (Sec->Name == "/DISCARD/") {
484 discard(V);
485 Sec->SectionCommands.clear();
486 continue;
487 }
488
489 // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
490 // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
491 // sections satisfy a given constraint. If not, a directive is handled
492 // as if it wasn't present from the beginning.
493 //
494 // Because we'll iterate over SectionCommands many more times, the easy
495 // way to "make it as if it wasn't present" is to make it empty.
496 if (!matchConstraints(V, Sec->Constraint)) {
497 for (InputSectionBase *S : V)
498 S->Assigned = false;
499 Sec->SectionCommands.clear();
500 continue;
501 }
502
503 // A directive may contain symbol definitions like this:
504 // ".foo : { ...; bar = .; }". Handle them.
505 for (BaseCommand *Base : Sec->SectionCommands)
506 if (auto *OutCmd = dyn_cast<SymbolAssignment>(Base))
507 addSymbol(OutCmd);
508
509 // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
510 // is given, input sections are aligned to that value, whether the
511 // given value is larger or smaller than the original section alignment.
512 if (Sec->SubalignExpr) {
513 uint32_t Subalign = Sec->SubalignExpr().getValue();
514 for (InputSectionBase *S : V)
515 S->Alignment = Subalign;
516 }
517
518 // Add input sections to an output section.
519 for (InputSection *S : V)
520 Sec->addSection(S);
521
522 Sec->SectionIndex = I++;
523 if (Sec->Noload)
524 Sec->Type = SHT_NOBITS;
525 if (Sec->NonAlloc)
526 Sec->Flags &= ~(uint64_t)SHF_ALLOC;
527 }
528 }
529 Ctx = nullptr;
530 }
531
findByName(ArrayRef<BaseCommand * > Vec,StringRef Name)532 static OutputSection *findByName(ArrayRef<BaseCommand *> Vec,
533 StringRef Name) {
534 for (BaseCommand *Base : Vec)
535 if (auto *Sec = dyn_cast<OutputSection>(Base))
536 if (Sec->Name == Name)
537 return Sec;
538 return nullptr;
539 }
540
createSection(InputSectionBase * IS,StringRef OutsecName)541 static OutputSection *createSection(InputSectionBase *IS,
542 StringRef OutsecName) {
543 OutputSection *Sec = Script->createOutputSection(OutsecName, "<internal>");
544 Sec->addSection(cast<InputSection>(IS));
545 return Sec;
546 }
547
addInputSec(StringMap<OutputSection * > & Map,InputSectionBase * IS,StringRef OutsecName)548 static OutputSection *addInputSec(StringMap<OutputSection *> &Map,
549 InputSectionBase *IS, StringRef OutsecName) {
550 // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
551 // option is given. A section with SHT_GROUP defines a "section group", and
552 // its members have SHF_GROUP attribute. Usually these flags have already been
553 // stripped by InputFiles.cpp as section groups are processed and uniquified.
554 // However, for the -r option, we want to pass through all section groups
555 // as-is because adding/removing members or merging them with other groups
556 // change their semantics.
557 if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP))
558 return createSection(IS, OutsecName);
559
560 // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
561 // relocation sections .rela.foo and .rela.bar for example. Most tools do
562 // not allow multiple REL[A] sections for output section. Hence we
563 // should combine these relocation sections into single output.
564 // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
565 // other REL[A] sections created by linker itself.
566 if (!isa<SyntheticSection>(IS) &&
567 (IS->Type == SHT_REL || IS->Type == SHT_RELA)) {
568 auto *Sec = cast<InputSection>(IS);
569 OutputSection *Out = Sec->getRelocatedSection()->getOutputSection();
570
571 if (Out->RelocationSection) {
572 Out->RelocationSection->addSection(Sec);
573 return nullptr;
574 }
575
576 Out->RelocationSection = createSection(IS, OutsecName);
577 return Out->RelocationSection;
578 }
579
580 // When control reaches here, mergeable sections have already been merged into
581 // synthetic sections. For relocatable case we want to create one output
582 // section per syntetic section so that they have a valid sh_entsize.
583 if (Config->Relocatable && (IS->Flags & SHF_MERGE))
584 return createSection(IS, OutsecName);
585
586 // The ELF spec just says
587 // ----------------------------------------------------------------
588 // In the first phase, input sections that match in name, type and
589 // attribute flags should be concatenated into single sections.
590 // ----------------------------------------------------------------
591 //
592 // However, it is clear that at least some flags have to be ignored for
593 // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
594 // ignored. We should not have two output .text sections just because one was
595 // in a group and another was not for example.
596 //
597 // It also seems that wording was a late addition and didn't get the
598 // necessary scrutiny.
599 //
600 // Merging sections with different flags is expected by some users. One
601 // reason is that if one file has
602 //
603 // int *const bar __attribute__((section(".foo"))) = (int *)0;
604 //
605 // gcc with -fPIC will produce a read only .foo section. But if another
606 // file has
607 //
608 // int zed;
609 // int *const bar __attribute__((section(".foo"))) = (int *)&zed;
610 //
611 // gcc with -fPIC will produce a read write section.
612 //
613 // Last but not least, when using linker script the merge rules are forced by
614 // the script. Unfortunately, linker scripts are name based. This means that
615 // expressions like *(.foo*) can refer to multiple input sections with
616 // different flags. We cannot put them in different output sections or we
617 // would produce wrong results for
618 //
619 // start = .; *(.foo.*) end = .; *(.bar)
620 //
621 // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
622 // another. The problem is that there is no way to layout those output
623 // sections such that the .foo sections are the only thing between the start
624 // and end symbols.
625 //
626 // Given the above issues, we instead merge sections by name and error on
627 // incompatible types and flags.
628 OutputSection *&Sec = Map[OutsecName];
629 if (Sec) {
630 Sec->addSection(cast<InputSection>(IS));
631 return nullptr;
632 }
633
634 Sec = createSection(IS, OutsecName);
635 return Sec;
636 }
637
638 // Add sections that didn't match any sections command.
addOrphanSections()639 void LinkerScript::addOrphanSections() {
640 unsigned End = SectionCommands.size();
641 StringMap<OutputSection *> Map;
642 std::vector<OutputSection *> V;
643
644 auto Add = [&](InputSectionBase *S) {
645 if (!S->Live || S->Parent)
646 return;
647
648 StringRef Name = getOutputSectionName(S);
649
650 if (Config->OrphanHandling == OrphanHandlingPolicy::Error)
651 error(toString(S) + " is being placed in '" + Name + "'");
652 else if (Config->OrphanHandling == OrphanHandlingPolicy::Warn)
653 warn(toString(S) + " is being placed in '" + Name + "'");
654
655 if (OutputSection *Sec =
656 findByName(makeArrayRef(SectionCommands).slice(0, End), Name)) {
657 Sec->addSection(cast<InputSection>(S));
658 return;
659 }
660
661 if (OutputSection *OS = addInputSec(Map, S, Name))
662 V.push_back(OS);
663 assert(S->getOutputSection()->SectionIndex == UINT32_MAX);
664 };
665
666 // For futher --emit-reloc handling code we need target output section
667 // to be created before we create relocation output section, so we want
668 // to create target sections first. We do not want priority handling
669 // for synthetic sections because them are special.
670 for (InputSectionBase *IS : InputSections) {
671 if (auto *Sec = dyn_cast<InputSection>(IS))
672 if (InputSectionBase *Rel = Sec->getRelocatedSection())
673 if (auto *RelIS = dyn_cast_or_null<InputSectionBase>(Rel->Parent))
674 Add(RelIS);
675 Add(IS);
676 }
677
678 // If no SECTIONS command was given, we should insert sections commands
679 // before others, so that we can handle scripts which refers them,
680 // for example: "foo = ABSOLUTE(ADDR(.text)));".
681 // When SECTIONS command is present we just add all orphans to the end.
682 if (HasSectionsCommand)
683 SectionCommands.insert(SectionCommands.end(), V.begin(), V.end());
684 else
685 SectionCommands.insert(SectionCommands.begin(), V.begin(), V.end());
686 }
687
advance(uint64_t Size,unsigned Alignment)688 uint64_t LinkerScript::advance(uint64_t Size, unsigned Alignment) {
689 bool IsTbss =
690 (Ctx->OutSec->Flags & SHF_TLS) && Ctx->OutSec->Type == SHT_NOBITS;
691 uint64_t Start = IsTbss ? Dot + Ctx->ThreadBssOffset : Dot;
692 Start = alignTo(Start, Alignment);
693 uint64_t End = Start + Size;
694
695 if (IsTbss)
696 Ctx->ThreadBssOffset = End - Dot;
697 else
698 Dot = End;
699 return End;
700 }
701
output(InputSection * S)702 void LinkerScript::output(InputSection *S) {
703 assert(Ctx->OutSec == S->getParent());
704 uint64_t Before = advance(0, 1);
705 uint64_t Pos = advance(S->getSize(), S->Alignment);
706 S->OutSecOff = Pos - S->getSize() - Ctx->OutSec->Addr;
707
708 // Update output section size after adding each section. This is so that
709 // SIZEOF works correctly in the case below:
710 // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
711 expandOutputSection(Pos - Before);
712 }
713
switchTo(OutputSection * Sec)714 void LinkerScript::switchTo(OutputSection *Sec) {
715 Ctx->OutSec = Sec;
716
717 uint64_t Before = advance(0, 1);
718 Ctx->OutSec->Addr = advance(0, Ctx->OutSec->Alignment);
719 expandMemoryRegions(Ctx->OutSec->Addr - Before);
720 }
721
722 // This function searches for a memory region to place the given output
723 // section in. If found, a pointer to the appropriate memory region is
724 // returned. Otherwise, a nullptr is returned.
findMemoryRegion(OutputSection * Sec)725 MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *Sec) {
726 // If a memory region name was specified in the output section command,
727 // then try to find that region first.
728 if (!Sec->MemoryRegionName.empty()) {
729 if (MemoryRegion *M = MemoryRegions.lookup(Sec->MemoryRegionName))
730 return M;
731 error("memory region '" + Sec->MemoryRegionName + "' not declared");
732 return nullptr;
733 }
734
735 // If at least one memory region is defined, all sections must
736 // belong to some memory region. Otherwise, we don't need to do
737 // anything for memory regions.
738 if (MemoryRegions.empty())
739 return nullptr;
740
741 // See if a region can be found by matching section flags.
742 for (auto &Pair : MemoryRegions) {
743 MemoryRegion *M = Pair.second;
744 if ((M->Flags & Sec->Flags) && (M->NegFlags & Sec->Flags) == 0)
745 return M;
746 }
747
748 // Otherwise, no suitable region was found.
749 if (Sec->Flags & SHF_ALLOC)
750 error("no memory region specified for section '" + Sec->Name + "'");
751 return nullptr;
752 }
753
findFirstSection(PhdrEntry * Load)754 static OutputSection *findFirstSection(PhdrEntry *Load) {
755 for (OutputSection *Sec : OutputSections)
756 if (Sec->PtLoad == Load)
757 return Sec;
758 return nullptr;
759 }
760
761 // This function assigns offsets to input sections and an output section
762 // for a single sections command (e.g. ".text { *(.text); }").
assignOffsets(OutputSection * Sec)763 void LinkerScript::assignOffsets(OutputSection *Sec) {
764 if (!(Sec->Flags & SHF_ALLOC))
765 Dot = 0;
766 else if (Sec->AddrExpr)
767 setDot(Sec->AddrExpr, Sec->Location, false);
768
769 Ctx->MemRegion = Sec->MemRegion;
770 Ctx->LMARegion = Sec->LMARegion;
771 if (Ctx->MemRegion)
772 Dot = Ctx->MemRegion->CurPos;
773
774 switchTo(Sec);
775
776 if (Sec->LMAExpr)
777 Ctx->LMAOffset = Sec->LMAExpr().getValue() - Dot;
778
779 if (MemoryRegion *MR = Sec->LMARegion)
780 Ctx->LMAOffset = MR->CurPos - Dot;
781
782 // If neither AT nor AT> is specified for an allocatable section, the linker
783 // will set the LMA such that the difference between VMA and LMA for the
784 // section is the same as the preceding output section in the same region
785 // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html
786 // This, however, should only be done by the first "non-header" section
787 // in the segment.
788 if (PhdrEntry *L = Ctx->OutSec->PtLoad)
789 if (Sec == findFirstSection(L))
790 L->LMAOffset = Ctx->LMAOffset;
791
792 // We can call this method multiple times during the creation of
793 // thunks and want to start over calculation each time.
794 Sec->Size = 0;
795
796 // We visited SectionsCommands from processSectionCommands to
797 // layout sections. Now, we visit SectionsCommands again to fix
798 // section offsets.
799 for (BaseCommand *Base : Sec->SectionCommands) {
800 // This handles the assignments to symbol or to the dot.
801 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
802 Cmd->Addr = Dot;
803 assignSymbol(Cmd, true);
804 Cmd->Size = Dot - Cmd->Addr;
805 continue;
806 }
807
808 // Handle BYTE(), SHORT(), LONG(), or QUAD().
809 if (auto *Cmd = dyn_cast<ByteCommand>(Base)) {
810 Cmd->Offset = Dot - Ctx->OutSec->Addr;
811 Dot += Cmd->Size;
812 expandOutputSection(Cmd->Size);
813 continue;
814 }
815
816 // Handle a single input section description command.
817 // It calculates and assigns the offsets for each section and also
818 // updates the output section size.
819 for (InputSection *Sec : cast<InputSectionDescription>(Base)->Sections)
820 output(Sec);
821 }
822 }
823
isDiscardable(OutputSection & Sec)824 static bool isDiscardable(OutputSection &Sec) {
825 // We do not remove empty sections that are explicitly
826 // assigned to any segment.
827 if (!Sec.Phdrs.empty())
828 return false;
829
830 // We do not want to remove sections that reference symbols in address and
831 // other expressions. We add script symbols as undefined, and want to ensure
832 // all of them are defined in the output, hence have to keep them.
833 if (Sec.ExpressionsUseSymbols)
834 return false;
835
836 for (BaseCommand *Base : Sec.SectionCommands) {
837 if (auto Cmd = dyn_cast<SymbolAssignment>(Base))
838 // Don't create empty output sections just for unreferenced PROVIDE
839 // symbols.
840 if (Cmd->Name != "." && !Cmd->Sym)
841 continue;
842
843 if (!isa<InputSectionDescription>(*Base))
844 return false;
845 }
846 return true;
847 }
848
adjustSectionsBeforeSorting()849 void LinkerScript::adjustSectionsBeforeSorting() {
850 // If the output section contains only symbol assignments, create a
851 // corresponding output section. The issue is what to do with linker script
852 // like ".foo : { symbol = 42; }". One option would be to convert it to
853 // "symbol = 42;". That is, move the symbol out of the empty section
854 // description. That seems to be what bfd does for this simple case. The
855 // problem is that this is not completely general. bfd will give up and
856 // create a dummy section too if there is a ". = . + 1" inside the section
857 // for example.
858 // Given that we want to create the section, we have to worry what impact
859 // it will have on the link. For example, if we just create a section with
860 // 0 for flags, it would change which PT_LOADs are created.
861 // We could remember that particular section is dummy and ignore it in
862 // other parts of the linker, but unfortunately there are quite a few places
863 // that would need to change:
864 // * The program header creation.
865 // * The orphan section placement.
866 // * The address assignment.
867 // The other option is to pick flags that minimize the impact the section
868 // will have on the rest of the linker. That is why we copy the flags from
869 // the previous sections. Only a few flags are needed to keep the impact low.
870 uint64_t Flags = SHF_ALLOC;
871
872 for (BaseCommand *&Cmd : SectionCommands) {
873 auto *Sec = dyn_cast<OutputSection>(Cmd);
874 if (!Sec)
875 continue;
876
877 // Handle align (e.g. ".foo : ALIGN(16) { ... }").
878 if (Sec->AlignExpr)
879 Sec->Alignment =
880 std::max<uint32_t>(Sec->Alignment, Sec->AlignExpr().getValue());
881
882 // A live output section means that some input section was added to it. It
883 // might have been removed (if it was empty synthetic section), but we at
884 // least know the flags.
885 if (Sec->Live)
886 Flags = Sec->Flags;
887
888 // We do not want to keep any special flags for output section
889 // in case it is empty.
890 bool IsEmpty = getInputSections(Sec).empty();
891 if (IsEmpty)
892 Sec->Flags = Flags & (SHF_ALLOC | SHF_WRITE | SHF_EXECINSTR);
893
894 if (IsEmpty && isDiscardable(*Sec)) {
895 Sec->Live = false;
896 Cmd = nullptr;
897 }
898 }
899
900 // It is common practice to use very generic linker scripts. So for any
901 // given run some of the output sections in the script will be empty.
902 // We could create corresponding empty output sections, but that would
903 // clutter the output.
904 // We instead remove trivially empty sections. The bfd linker seems even
905 // more aggressive at removing them.
906 llvm::erase_if(SectionCommands, [&](BaseCommand *Base) { return !Base; });
907 }
908
adjustSectionsAfterSorting()909 void LinkerScript::adjustSectionsAfterSorting() {
910 // Try and find an appropriate memory region to assign offsets in.
911 for (BaseCommand *Base : SectionCommands) {
912 if (auto *Sec = dyn_cast<OutputSection>(Base)) {
913 if (!Sec->LMARegionName.empty()) {
914 if (MemoryRegion *M = MemoryRegions.lookup(Sec->LMARegionName))
915 Sec->LMARegion = M;
916 else
917 error("memory region '" + Sec->LMARegionName + "' not declared");
918 }
919 Sec->MemRegion = findMemoryRegion(Sec);
920 }
921 }
922
923 // If output section command doesn't specify any segments,
924 // and we haven't previously assigned any section to segment,
925 // then we simply assign section to the very first load segment.
926 // Below is an example of such linker script:
927 // PHDRS { seg PT_LOAD; }
928 // SECTIONS { .aaa : { *(.aaa) } }
929 std::vector<StringRef> DefPhdrs;
930 auto FirstPtLoad = llvm::find_if(PhdrsCommands, [](const PhdrsCommand &Cmd) {
931 return Cmd.Type == PT_LOAD;
932 });
933 if (FirstPtLoad != PhdrsCommands.end())
934 DefPhdrs.push_back(FirstPtLoad->Name);
935
936 // Walk the commands and propagate the program headers to commands that don't
937 // explicitly specify them.
938 for (BaseCommand *Base : SectionCommands) {
939 auto *Sec = dyn_cast<OutputSection>(Base);
940 if (!Sec)
941 continue;
942
943 if (Sec->Phdrs.empty()) {
944 // To match the bfd linker script behaviour, only propagate program
945 // headers to sections that are allocated.
946 if (Sec->Flags & SHF_ALLOC)
947 Sec->Phdrs = DefPhdrs;
948 } else {
949 DefPhdrs = Sec->Phdrs;
950 }
951 }
952 }
953
computeBase(uint64_t Min,bool AllocateHeaders)954 static uint64_t computeBase(uint64_t Min, bool AllocateHeaders) {
955 // If there is no SECTIONS or if the linkerscript is explicit about program
956 // headers, do our best to allocate them.
957 if (!Script->HasSectionsCommand || AllocateHeaders)
958 return 0;
959 // Otherwise only allocate program headers if that would not add a page.
960 return alignDown(Min, Config->MaxPageSize);
961 }
962
963 // Try to find an address for the file and program headers output sections,
964 // which were unconditionally added to the first PT_LOAD segment earlier.
965 //
966 // When using the default layout, we check if the headers fit below the first
967 // allocated section. When using a linker script, we also check if the headers
968 // are covered by the output section. This allows omitting the headers by not
969 // leaving enough space for them in the linker script; this pattern is common
970 // in embedded systems.
971 //
972 // If there isn't enough space for these sections, we'll remove them from the
973 // PT_LOAD segment, and we'll also remove the PT_PHDR segment.
allocateHeaders(std::vector<PhdrEntry * > & Phdrs)974 void LinkerScript::allocateHeaders(std::vector<PhdrEntry *> &Phdrs) {
975 uint64_t Min = std::numeric_limits<uint64_t>::max();
976 for (OutputSection *Sec : OutputSections)
977 if (Sec->Flags & SHF_ALLOC)
978 Min = std::min<uint64_t>(Min, Sec->Addr);
979
980 auto It = llvm::find_if(
981 Phdrs, [](const PhdrEntry *E) { return E->p_type == PT_LOAD; });
982 if (It == Phdrs.end())
983 return;
984 PhdrEntry *FirstPTLoad = *It;
985
986 bool HasExplicitHeaders =
987 llvm::any_of(PhdrsCommands, [](const PhdrsCommand &Cmd) {
988 return Cmd.HasPhdrs || Cmd.HasFilehdr;
989 });
990 uint64_t HeaderSize = getHeaderSize();
991 if (HeaderSize <= Min - computeBase(Min, HasExplicitHeaders)) {
992 Min = alignDown(Min - HeaderSize, Config->MaxPageSize);
993 Out::ElfHeader->Addr = Min;
994 Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size;
995 return;
996 }
997
998 // Error if we were explicitly asked to allocate headers.
999 if (HasExplicitHeaders)
1000 error("could not allocate headers");
1001
1002 Out::ElfHeader->PtLoad = nullptr;
1003 Out::ProgramHeaders->PtLoad = nullptr;
1004 FirstPTLoad->FirstSec = findFirstSection(FirstPTLoad);
1005
1006 llvm::erase_if(Phdrs,
1007 [](const PhdrEntry *E) { return E->p_type == PT_PHDR; });
1008 }
1009
AddressState()1010 LinkerScript::AddressState::AddressState() {
1011 for (auto &MRI : Script->MemoryRegions) {
1012 MemoryRegion *MR = MRI.second;
1013 MR->CurPos = MR->Origin;
1014 }
1015 }
1016
getInitialDot()1017 static uint64_t getInitialDot() {
1018 // By default linker scripts use an initial value of 0 for '.',
1019 // but prefer -image-base if set.
1020 if (Script->HasSectionsCommand)
1021 return Config->ImageBase ? *Config->ImageBase : 0;
1022
1023 uint64_t StartAddr = UINT64_MAX;
1024 // The Sections with -T<section> have been sorted in order of ascending
1025 // address. We must lower StartAddr if the lowest -T<section address> as
1026 // calls to setDot() must be monotonically increasing.
1027 for (auto &KV : Config->SectionStartMap)
1028 StartAddr = std::min(StartAddr, KV.second);
1029 return std::min(StartAddr, Target->getImageBase() + elf::getHeaderSize());
1030 }
1031
1032 // Here we assign addresses as instructed by linker script SECTIONS
1033 // sub-commands. Doing that allows us to use final VA values, so here
1034 // we also handle rest commands like symbol assignments and ASSERTs.
assignAddresses()1035 void LinkerScript::assignAddresses() {
1036 Dot = getInitialDot();
1037
1038 auto Deleter = make_unique<AddressState>();
1039 Ctx = Deleter.get();
1040 ErrorOnMissingSection = true;
1041 switchTo(Aether);
1042
1043 for (BaseCommand *Base : SectionCommands) {
1044 if (auto *Cmd = dyn_cast<SymbolAssignment>(Base)) {
1045 Cmd->Addr = Dot;
1046 assignSymbol(Cmd, false);
1047 Cmd->Size = Dot - Cmd->Addr;
1048 continue;
1049 }
1050 assignOffsets(cast<OutputSection>(Base));
1051 }
1052 Ctx = nullptr;
1053 }
1054
1055 // Creates program headers as instructed by PHDRS linker script command.
createPhdrs()1056 std::vector<PhdrEntry *> LinkerScript::createPhdrs() {
1057 std::vector<PhdrEntry *> Ret;
1058
1059 // Process PHDRS and FILEHDR keywords because they are not
1060 // real output sections and cannot be added in the following loop.
1061 for (const PhdrsCommand &Cmd : PhdrsCommands) {
1062 PhdrEntry *Phdr = make<PhdrEntry>(Cmd.Type, Cmd.Flags ? *Cmd.Flags : PF_R);
1063
1064 if (Cmd.HasFilehdr)
1065 Phdr->add(Out::ElfHeader);
1066 if (Cmd.HasPhdrs)
1067 Phdr->add(Out::ProgramHeaders);
1068
1069 if (Cmd.LMAExpr) {
1070 Phdr->p_paddr = Cmd.LMAExpr().getValue();
1071 Phdr->HasLMA = true;
1072 }
1073 Ret.push_back(Phdr);
1074 }
1075
1076 // Add output sections to program headers.
1077 for (OutputSection *Sec : OutputSections) {
1078 // Assign headers specified by linker script
1079 for (size_t Id : getPhdrIndices(Sec)) {
1080 Ret[Id]->add(Sec);
1081 if (!PhdrsCommands[Id].Flags.hasValue())
1082 Ret[Id]->p_flags |= Sec->getPhdrFlags();
1083 }
1084 }
1085 return Ret;
1086 }
1087
1088 // Returns true if we should emit an .interp section.
1089 //
1090 // We usually do. But if PHDRS commands are given, and
1091 // no PT_INTERP is there, there's no place to emit an
1092 // .interp, so we don't do that in that case.
needsInterpSection()1093 bool LinkerScript::needsInterpSection() {
1094 if (PhdrsCommands.empty())
1095 return true;
1096 for (PhdrsCommand &Cmd : PhdrsCommands)
1097 if (Cmd.Type == PT_INTERP)
1098 return true;
1099 return false;
1100 }
1101
getSymbolValue(StringRef Name,const Twine & Loc)1102 ExprValue LinkerScript::getSymbolValue(StringRef Name, const Twine &Loc) {
1103 if (Name == ".") {
1104 if (Ctx)
1105 return {Ctx->OutSec, false, Dot - Ctx->OutSec->Addr, Loc};
1106 error(Loc + ": unable to get location counter value");
1107 return 0;
1108 }
1109
1110 if (Symbol *Sym = Symtab->find(Name)) {
1111 if (auto *DS = dyn_cast<Defined>(Sym))
1112 return {DS->Section, false, DS->Value, Loc};
1113 if (isa<SharedSymbol>(Sym))
1114 if (!ErrorOnMissingSection)
1115 return {nullptr, false, 0, Loc};
1116 }
1117
1118 error(Loc + ": symbol not found: " + Name);
1119 return 0;
1120 }
1121
1122 // Returns the index of the segment named Name.
getPhdrIndex(ArrayRef<PhdrsCommand> Vec,StringRef Name)1123 static Optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> Vec,
1124 StringRef Name) {
1125 for (size_t I = 0; I < Vec.size(); ++I)
1126 if (Vec[I].Name == Name)
1127 return I;
1128 return None;
1129 }
1130
1131 // Returns indices of ELF headers containing specific section. Each index is a
1132 // zero based number of ELF header listed within PHDRS {} script block.
getPhdrIndices(OutputSection * Cmd)1133 std::vector<size_t> LinkerScript::getPhdrIndices(OutputSection *Cmd) {
1134 std::vector<size_t> Ret;
1135
1136 for (StringRef S : Cmd->Phdrs) {
1137 if (Optional<size_t> Idx = getPhdrIndex(PhdrsCommands, S))
1138 Ret.push_back(*Idx);
1139 else if (S != "NONE")
1140 error(Cmd->Location + ": section header '" + S +
1141 "' is not listed in PHDRS");
1142 }
1143 return Ret;
1144 }
1145