1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DomTreeUpdater.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/BlockFrequency.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <memory>
78 #include <utility>
79
80 using namespace llvm;
81 using namespace jumpthreading;
82
83 #define DEBUG_TYPE "jump-threading"
84
85 STATISTIC(NumThreads, "Number of jumps threaded");
86 STATISTIC(NumFolds, "Number of terminators folded");
87 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
88
89 static cl::opt<unsigned>
90 BBDuplicateThreshold("jump-threading-threshold",
91 cl::desc("Max block size to duplicate for jump threading"),
92 cl::init(6), cl::Hidden);
93
94 static cl::opt<unsigned>
95 ImplicationSearchThreshold(
96 "jump-threading-implication-search-threshold",
97 cl::desc("The number of predecessors to search for a stronger "
98 "condition to use to thread over a weaker condition"),
99 cl::init(3), cl::Hidden);
100
101 static cl::opt<bool> PrintLVIAfterJumpThreading(
102 "print-lvi-after-jump-threading",
103 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
104 cl::Hidden);
105
106 namespace {
107
108 /// This pass performs 'jump threading', which looks at blocks that have
109 /// multiple predecessors and multiple successors. If one or more of the
110 /// predecessors of the block can be proven to always jump to one of the
111 /// successors, we forward the edge from the predecessor to the successor by
112 /// duplicating the contents of this block.
113 ///
114 /// An example of when this can occur is code like this:
115 ///
116 /// if () { ...
117 /// X = 4;
118 /// }
119 /// if (X < 3) {
120 ///
121 /// In this case, the unconditional branch at the end of the first if can be
122 /// revectored to the false side of the second if.
123 class JumpThreading : public FunctionPass {
124 JumpThreadingPass Impl;
125
126 public:
127 static char ID; // Pass identification
128
JumpThreading(int T=-1)129 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
130 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
131 }
132
133 bool runOnFunction(Function &F) override;
134
getAnalysisUsage(AnalysisUsage & AU) const135 void getAnalysisUsage(AnalysisUsage &AU) const override {
136 AU.addRequired<DominatorTreeWrapperPass>();
137 AU.addPreserved<DominatorTreeWrapperPass>();
138 AU.addRequired<AAResultsWrapperPass>();
139 AU.addRequired<LazyValueInfoWrapperPass>();
140 AU.addPreserved<LazyValueInfoWrapperPass>();
141 AU.addPreserved<GlobalsAAWrapperPass>();
142 AU.addRequired<TargetLibraryInfoWrapperPass>();
143 }
144
releaseMemory()145 void releaseMemory() override { Impl.releaseMemory(); }
146 };
147
148 } // end anonymous namespace
149
150 char JumpThreading::ID = 0;
151
152 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
153 "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)154 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
157 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
158 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
159 "Jump Threading", false, false)
160
161 // Public interface to the Jump Threading pass
162 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
163 return new JumpThreading(Threshold);
164 }
165
JumpThreadingPass(int T)166 JumpThreadingPass::JumpThreadingPass(int T) {
167 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
168 }
169
170 // Update branch probability information according to conditional
171 // branch probability. This is usually made possible for cloned branches
172 // in inline instances by the context specific profile in the caller.
173 // For instance,
174 //
175 // [Block PredBB]
176 // [Branch PredBr]
177 // if (t) {
178 // Block A;
179 // } else {
180 // Block B;
181 // }
182 //
183 // [Block BB]
184 // cond = PN([true, %A], [..., %B]); // PHI node
185 // [Branch CondBr]
186 // if (cond) {
187 // ... // P(cond == true) = 1%
188 // }
189 //
190 // Here we know that when block A is taken, cond must be true, which means
191 // P(cond == true | A) = 1
192 //
193 // Given that P(cond == true) = P(cond == true | A) * P(A) +
194 // P(cond == true | B) * P(B)
195 // we get:
196 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
197 //
198 // which gives us:
199 // P(A) is less than P(cond == true), i.e.
200 // P(t == true) <= P(cond == true)
201 //
202 // In other words, if we know P(cond == true) is unlikely, we know
203 // that P(t == true) is also unlikely.
204 //
updatePredecessorProfileMetadata(PHINode * PN,BasicBlock * BB)205 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
206 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
207 if (!CondBr)
208 return;
209
210 BranchProbability BP;
211 uint64_t TrueWeight, FalseWeight;
212 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
213 return;
214
215 // Returns the outgoing edge of the dominating predecessor block
216 // that leads to the PhiNode's incoming block:
217 auto GetPredOutEdge =
218 [](BasicBlock *IncomingBB,
219 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
220 auto *PredBB = IncomingBB;
221 auto *SuccBB = PhiBB;
222 while (true) {
223 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
224 if (PredBr && PredBr->isConditional())
225 return {PredBB, SuccBB};
226 auto *SinglePredBB = PredBB->getSinglePredecessor();
227 if (!SinglePredBB)
228 return {nullptr, nullptr};
229 SuccBB = PredBB;
230 PredBB = SinglePredBB;
231 }
232 };
233
234 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
235 Value *PhiOpnd = PN->getIncomingValue(i);
236 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
237
238 if (!CI || !CI->getType()->isIntegerTy(1))
239 continue;
240
241 BP = (CI->isOne() ? BranchProbability::getBranchProbability(
242 TrueWeight, TrueWeight + FalseWeight)
243 : BranchProbability::getBranchProbability(
244 FalseWeight, TrueWeight + FalseWeight));
245
246 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
247 if (!PredOutEdge.first)
248 return;
249
250 BasicBlock *PredBB = PredOutEdge.first;
251 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
252
253 uint64_t PredTrueWeight, PredFalseWeight;
254 // FIXME: We currently only set the profile data when it is missing.
255 // With PGO, this can be used to refine even existing profile data with
256 // context information. This needs to be done after more performance
257 // testing.
258 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
259 continue;
260
261 // We can not infer anything useful when BP >= 50%, because BP is the
262 // upper bound probability value.
263 if (BP >= BranchProbability(50, 100))
264 continue;
265
266 SmallVector<uint32_t, 2> Weights;
267 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
268 Weights.push_back(BP.getNumerator());
269 Weights.push_back(BP.getCompl().getNumerator());
270 } else {
271 Weights.push_back(BP.getCompl().getNumerator());
272 Weights.push_back(BP.getNumerator());
273 }
274 PredBr->setMetadata(LLVMContext::MD_prof,
275 MDBuilder(PredBr->getParent()->getContext())
276 .createBranchWeights(Weights));
277 }
278 }
279
280 /// runOnFunction - Toplevel algorithm.
runOnFunction(Function & F)281 bool JumpThreading::runOnFunction(Function &F) {
282 if (skipFunction(F))
283 return false;
284 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
285 // Get DT analysis before LVI. When LVI is initialized it conditionally adds
286 // DT if it's available.
287 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
288 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
289 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
290 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
291 std::unique_ptr<BlockFrequencyInfo> BFI;
292 std::unique_ptr<BranchProbabilityInfo> BPI;
293 bool HasProfileData = F.hasProfileData();
294 if (HasProfileData) {
295 LoopInfo LI{DominatorTree(F)};
296 BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
297 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
298 }
299
300 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData,
301 std::move(BFI), std::move(BPI));
302 if (PrintLVIAfterJumpThreading) {
303 dbgs() << "LVI for function '" << F.getName() << "':\n";
304 LVI->printLVI(F, *DT, dbgs());
305 }
306 return Changed;
307 }
308
run(Function & F,FunctionAnalysisManager & AM)309 PreservedAnalyses JumpThreadingPass::run(Function &F,
310 FunctionAnalysisManager &AM) {
311 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
312 // Get DT analysis before LVI. When LVI is initialized it conditionally adds
313 // DT if it's available.
314 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
315 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
316 auto &AA = AM.getResult<AAManager>(F);
317 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
318
319 std::unique_ptr<BlockFrequencyInfo> BFI;
320 std::unique_ptr<BranchProbabilityInfo> BPI;
321 if (F.hasProfileData()) {
322 LoopInfo LI{DominatorTree(F)};
323 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
324 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
325 }
326
327 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData,
328 std::move(BFI), std::move(BPI));
329
330 if (!Changed)
331 return PreservedAnalyses::all();
332 PreservedAnalyses PA;
333 PA.preserve<GlobalsAA>();
334 PA.preserve<DominatorTreeAnalysis>();
335 PA.preserve<LazyValueAnalysis>();
336 return PA;
337 }
338
runImpl(Function & F,TargetLibraryInfo * TLI_,LazyValueInfo * LVI_,AliasAnalysis * AA_,DomTreeUpdater * DTU_,bool HasProfileData_,std::unique_ptr<BlockFrequencyInfo> BFI_,std::unique_ptr<BranchProbabilityInfo> BPI_)339 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
340 LazyValueInfo *LVI_, AliasAnalysis *AA_,
341 DomTreeUpdater *DTU_, bool HasProfileData_,
342 std::unique_ptr<BlockFrequencyInfo> BFI_,
343 std::unique_ptr<BranchProbabilityInfo> BPI_) {
344 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
345 TLI = TLI_;
346 LVI = LVI_;
347 AA = AA_;
348 DTU = DTU_;
349 BFI.reset();
350 BPI.reset();
351 // When profile data is available, we need to update edge weights after
352 // successful jump threading, which requires both BPI and BFI being available.
353 HasProfileData = HasProfileData_;
354 auto *GuardDecl = F.getParent()->getFunction(
355 Intrinsic::getName(Intrinsic::experimental_guard));
356 HasGuards = GuardDecl && !GuardDecl->use_empty();
357 if (HasProfileData) {
358 BPI = std::move(BPI_);
359 BFI = std::move(BFI_);
360 }
361
362 // JumpThreading must not processes blocks unreachable from entry. It's a
363 // waste of compute time and can potentially lead to hangs.
364 SmallPtrSet<BasicBlock *, 16> Unreachable;
365 assert(DTU && "DTU isn't passed into JumpThreading before using it.");
366 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
367 DominatorTree &DT = DTU->getDomTree();
368 for (auto &BB : F)
369 if (!DT.isReachableFromEntry(&BB))
370 Unreachable.insert(&BB);
371
372 FindLoopHeaders(F);
373
374 bool EverChanged = false;
375 bool Changed;
376 do {
377 Changed = false;
378 for (auto &BB : F) {
379 if (Unreachable.count(&BB))
380 continue;
381 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
382 Changed = true;
383 // Stop processing BB if it's the entry or is now deleted. The following
384 // routines attempt to eliminate BB and locating a suitable replacement
385 // for the entry is non-trivial.
386 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
387 continue;
388
389 if (pred_empty(&BB)) {
390 // When ProcessBlock makes BB unreachable it doesn't bother to fix up
391 // the instructions in it. We must remove BB to prevent invalid IR.
392 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
393 << "' with terminator: " << *BB.getTerminator()
394 << '\n');
395 LoopHeaders.erase(&BB);
396 LVI->eraseBlock(&BB);
397 DeleteDeadBlock(&BB, DTU);
398 Changed = true;
399 continue;
400 }
401
402 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
403 // is "almost empty", we attempt to merge BB with its sole successor.
404 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
405 if (BI && BI->isUnconditional() &&
406 // The terminator must be the only non-phi instruction in BB.
407 BB.getFirstNonPHIOrDbg()->isTerminator() &&
408 // Don't alter Loop headers and latches to ensure another pass can
409 // detect and transform nested loops later.
410 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
411 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
412 // BB is valid for cleanup here because we passed in DTU. F remains
413 // BB's parent until a DTU->getDomTree() event.
414 LVI->eraseBlock(&BB);
415 Changed = true;
416 }
417 }
418 EverChanged |= Changed;
419 } while (Changed);
420
421 LoopHeaders.clear();
422 // Flush only the Dominator Tree.
423 DTU->getDomTree();
424 LVI->enableDT();
425 return EverChanged;
426 }
427
428 // Replace uses of Cond with ToVal when safe to do so. If all uses are
429 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
430 // because we may incorrectly replace uses when guards/assumes are uses of
431 // of `Cond` and we used the guards/assume to reason about the `Cond` value
432 // at the end of block. RAUW unconditionally replaces all uses
433 // including the guards/assumes themselves and the uses before the
434 // guard/assume.
ReplaceFoldableUses(Instruction * Cond,Value * ToVal)435 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
436 assert(Cond->getType() == ToVal->getType());
437 auto *BB = Cond->getParent();
438 // We can unconditionally replace all uses in non-local blocks (i.e. uses
439 // strictly dominated by BB), since LVI information is true from the
440 // terminator of BB.
441 replaceNonLocalUsesWith(Cond, ToVal);
442 for (Instruction &I : reverse(*BB)) {
443 // Reached the Cond whose uses we are trying to replace, so there are no
444 // more uses.
445 if (&I == Cond)
446 break;
447 // We only replace uses in instructions that are guaranteed to reach the end
448 // of BB, where we know Cond is ToVal.
449 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
450 break;
451 I.replaceUsesOfWith(Cond, ToVal);
452 }
453 if (Cond->use_empty() && !Cond->mayHaveSideEffects())
454 Cond->eraseFromParent();
455 }
456
457 /// Return the cost of duplicating a piece of this block from first non-phi
458 /// and before StopAt instruction to thread across it. Stop scanning the block
459 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
getJumpThreadDuplicationCost(BasicBlock * BB,Instruction * StopAt,unsigned Threshold)460 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
461 Instruction *StopAt,
462 unsigned Threshold) {
463 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
464 /// Ignore PHI nodes, these will be flattened when duplication happens.
465 BasicBlock::const_iterator I(BB->getFirstNonPHI());
466
467 // FIXME: THREADING will delete values that are just used to compute the
468 // branch, so they shouldn't count against the duplication cost.
469
470 unsigned Bonus = 0;
471 if (BB->getTerminator() == StopAt) {
472 // Threading through a switch statement is particularly profitable. If this
473 // block ends in a switch, decrease its cost to make it more likely to
474 // happen.
475 if (isa<SwitchInst>(StopAt))
476 Bonus = 6;
477
478 // The same holds for indirect branches, but slightly more so.
479 if (isa<IndirectBrInst>(StopAt))
480 Bonus = 8;
481 }
482
483 // Bump the threshold up so the early exit from the loop doesn't skip the
484 // terminator-based Size adjustment at the end.
485 Threshold += Bonus;
486
487 // Sum up the cost of each instruction until we get to the terminator. Don't
488 // include the terminator because the copy won't include it.
489 unsigned Size = 0;
490 for (; &*I != StopAt; ++I) {
491
492 // Stop scanning the block if we've reached the threshold.
493 if (Size > Threshold)
494 return Size;
495
496 // Debugger intrinsics don't incur code size.
497 if (isa<DbgInfoIntrinsic>(I)) continue;
498
499 // If this is a pointer->pointer bitcast, it is free.
500 if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
501 continue;
502
503 // Bail out if this instruction gives back a token type, it is not possible
504 // to duplicate it if it is used outside this BB.
505 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
506 return ~0U;
507
508 // All other instructions count for at least one unit.
509 ++Size;
510
511 // Calls are more expensive. If they are non-intrinsic calls, we model them
512 // as having cost of 4. If they are a non-vector intrinsic, we model them
513 // as having cost of 2 total, and if they are a vector intrinsic, we model
514 // them as having cost 1.
515 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
516 if (CI->cannotDuplicate() || CI->isConvergent())
517 // Blocks with NoDuplicate are modelled as having infinite cost, so they
518 // are never duplicated.
519 return ~0U;
520 else if (!isa<IntrinsicInst>(CI))
521 Size += 3;
522 else if (!CI->getType()->isVectorTy())
523 Size += 1;
524 }
525 }
526
527 return Size > Bonus ? Size - Bonus : 0;
528 }
529
530 /// FindLoopHeaders - We do not want jump threading to turn proper loop
531 /// structures into irreducible loops. Doing this breaks up the loop nesting
532 /// hierarchy and pessimizes later transformations. To prevent this from
533 /// happening, we first have to find the loop headers. Here we approximate this
534 /// by finding targets of backedges in the CFG.
535 ///
536 /// Note that there definitely are cases when we want to allow threading of
537 /// edges across a loop header. For example, threading a jump from outside the
538 /// loop (the preheader) to an exit block of the loop is definitely profitable.
539 /// It is also almost always profitable to thread backedges from within the loop
540 /// to exit blocks, and is often profitable to thread backedges to other blocks
541 /// within the loop (forming a nested loop). This simple analysis is not rich
542 /// enough to track all of these properties and keep it up-to-date as the CFG
543 /// mutates, so we don't allow any of these transformations.
FindLoopHeaders(Function & F)544 void JumpThreadingPass::FindLoopHeaders(Function &F) {
545 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
546 FindFunctionBackedges(F, Edges);
547
548 for (const auto &Edge : Edges)
549 LoopHeaders.insert(Edge.second);
550 }
551
552 /// getKnownConstant - Helper method to determine if we can thread over a
553 /// terminator with the given value as its condition, and if so what value to
554 /// use for that. What kind of value this is depends on whether we want an
555 /// integer or a block address, but an undef is always accepted.
556 /// Returns null if Val is null or not an appropriate constant.
getKnownConstant(Value * Val,ConstantPreference Preference)557 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
558 if (!Val)
559 return nullptr;
560
561 // Undef is "known" enough.
562 if (UndefValue *U = dyn_cast<UndefValue>(Val))
563 return U;
564
565 if (Preference == WantBlockAddress)
566 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
567
568 return dyn_cast<ConstantInt>(Val);
569 }
570
571 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
572 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
573 /// in any of our predecessors. If so, return the known list of value and pred
574 /// BB in the result vector.
575 ///
576 /// This returns true if there were any known values.
ComputeValueKnownInPredecessorsImpl(Value * V,BasicBlock * BB,PredValueInfo & Result,ConstantPreference Preference,DenseSet<std::pair<Value *,BasicBlock * >> & RecursionSet,Instruction * CxtI)577 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
578 Value *V, BasicBlock *BB, PredValueInfo &Result,
579 ConstantPreference Preference,
580 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet,
581 Instruction *CxtI) {
582 // This method walks up use-def chains recursively. Because of this, we could
583 // get into an infinite loop going around loops in the use-def chain. To
584 // prevent this, keep track of what (value, block) pairs we've already visited
585 // and terminate the search if we loop back to them
586 if (!RecursionSet.insert(std::make_pair(V, BB)).second)
587 return false;
588
589 // If V is a constant, then it is known in all predecessors.
590 if (Constant *KC = getKnownConstant(V, Preference)) {
591 for (BasicBlock *Pred : predecessors(BB))
592 Result.push_back(std::make_pair(KC, Pred));
593
594 return !Result.empty();
595 }
596
597 // If V is a non-instruction value, or an instruction in a different block,
598 // then it can't be derived from a PHI.
599 Instruction *I = dyn_cast<Instruction>(V);
600 if (!I || I->getParent() != BB) {
601
602 // Okay, if this is a live-in value, see if it has a known value at the end
603 // of any of our predecessors.
604 //
605 // FIXME: This should be an edge property, not a block end property.
606 /// TODO: Per PR2563, we could infer value range information about a
607 /// predecessor based on its terminator.
608 //
609 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
610 // "I" is a non-local compare-with-a-constant instruction. This would be
611 // able to handle value inequalities better, for example if the compare is
612 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
613 // Perhaps getConstantOnEdge should be smart enough to do this?
614
615 if (DTU->hasPendingDomTreeUpdates())
616 LVI->disableDT();
617 else
618 LVI->enableDT();
619 for (BasicBlock *P : predecessors(BB)) {
620 // If the value is known by LazyValueInfo to be a constant in a
621 // predecessor, use that information to try to thread this block.
622 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
623 if (Constant *KC = getKnownConstant(PredCst, Preference))
624 Result.push_back(std::make_pair(KC, P));
625 }
626
627 return !Result.empty();
628 }
629
630 /// If I is a PHI node, then we know the incoming values for any constants.
631 if (PHINode *PN = dyn_cast<PHINode>(I)) {
632 if (DTU->hasPendingDomTreeUpdates())
633 LVI->disableDT();
634 else
635 LVI->enableDT();
636 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
637 Value *InVal = PN->getIncomingValue(i);
638 if (Constant *KC = getKnownConstant(InVal, Preference)) {
639 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
640 } else {
641 Constant *CI = LVI->getConstantOnEdge(InVal,
642 PN->getIncomingBlock(i),
643 BB, CxtI);
644 if (Constant *KC = getKnownConstant(CI, Preference))
645 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
646 }
647 }
648
649 return !Result.empty();
650 }
651
652 // Handle Cast instructions. Only see through Cast when the source operand is
653 // PHI or Cmp to save the compilation time.
654 if (CastInst *CI = dyn_cast<CastInst>(I)) {
655 Value *Source = CI->getOperand(0);
656 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
657 return false;
658 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
659 RecursionSet, CxtI);
660 if (Result.empty())
661 return false;
662
663 // Convert the known values.
664 for (auto &R : Result)
665 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
666
667 return true;
668 }
669
670 // Handle some boolean conditions.
671 if (I->getType()->getPrimitiveSizeInBits() == 1) {
672 assert(Preference == WantInteger && "One-bit non-integer type?");
673 // X | true -> true
674 // X & false -> false
675 if (I->getOpcode() == Instruction::Or ||
676 I->getOpcode() == Instruction::And) {
677 PredValueInfoTy LHSVals, RHSVals;
678
679 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
680 WantInteger, RecursionSet, CxtI);
681 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
682 WantInteger, RecursionSet, CxtI);
683
684 if (LHSVals.empty() && RHSVals.empty())
685 return false;
686
687 ConstantInt *InterestingVal;
688 if (I->getOpcode() == Instruction::Or)
689 InterestingVal = ConstantInt::getTrue(I->getContext());
690 else
691 InterestingVal = ConstantInt::getFalse(I->getContext());
692
693 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
694
695 // Scan for the sentinel. If we find an undef, force it to the
696 // interesting value: x|undef -> true and x&undef -> false.
697 for (const auto &LHSVal : LHSVals)
698 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
699 Result.emplace_back(InterestingVal, LHSVal.second);
700 LHSKnownBBs.insert(LHSVal.second);
701 }
702 for (const auto &RHSVal : RHSVals)
703 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
704 // If we already inferred a value for this block on the LHS, don't
705 // re-add it.
706 if (!LHSKnownBBs.count(RHSVal.second))
707 Result.emplace_back(InterestingVal, RHSVal.second);
708 }
709
710 return !Result.empty();
711 }
712
713 // Handle the NOT form of XOR.
714 if (I->getOpcode() == Instruction::Xor &&
715 isa<ConstantInt>(I->getOperand(1)) &&
716 cast<ConstantInt>(I->getOperand(1))->isOne()) {
717 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
718 WantInteger, RecursionSet, CxtI);
719 if (Result.empty())
720 return false;
721
722 // Invert the known values.
723 for (auto &R : Result)
724 R.first = ConstantExpr::getNot(R.first);
725
726 return true;
727 }
728
729 // Try to simplify some other binary operator values.
730 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
731 assert(Preference != WantBlockAddress
732 && "A binary operator creating a block address?");
733 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
734 PredValueInfoTy LHSVals;
735 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
736 WantInteger, RecursionSet, CxtI);
737
738 // Try to use constant folding to simplify the binary operator.
739 for (const auto &LHSVal : LHSVals) {
740 Constant *V = LHSVal.first;
741 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
742
743 if (Constant *KC = getKnownConstant(Folded, WantInteger))
744 Result.push_back(std::make_pair(KC, LHSVal.second));
745 }
746 }
747
748 return !Result.empty();
749 }
750
751 // Handle compare with phi operand, where the PHI is defined in this block.
752 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
753 assert(Preference == WantInteger && "Compares only produce integers");
754 Type *CmpType = Cmp->getType();
755 Value *CmpLHS = Cmp->getOperand(0);
756 Value *CmpRHS = Cmp->getOperand(1);
757 CmpInst::Predicate Pred = Cmp->getPredicate();
758
759 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
760 if (!PN)
761 PN = dyn_cast<PHINode>(CmpRHS);
762 if (PN && PN->getParent() == BB) {
763 const DataLayout &DL = PN->getModule()->getDataLayout();
764 // We can do this simplification if any comparisons fold to true or false.
765 // See if any do.
766 if (DTU->hasPendingDomTreeUpdates())
767 LVI->disableDT();
768 else
769 LVI->enableDT();
770 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
771 BasicBlock *PredBB = PN->getIncomingBlock(i);
772 Value *LHS, *RHS;
773 if (PN == CmpLHS) {
774 LHS = PN->getIncomingValue(i);
775 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
776 } else {
777 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
778 RHS = PN->getIncomingValue(i);
779 }
780 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
781 if (!Res) {
782 if (!isa<Constant>(RHS))
783 continue;
784
785 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
786 auto LHSInst = dyn_cast<Instruction>(LHS);
787 if (LHSInst && LHSInst->getParent() == BB)
788 continue;
789
790 LazyValueInfo::Tristate
791 ResT = LVI->getPredicateOnEdge(Pred, LHS,
792 cast<Constant>(RHS), PredBB, BB,
793 CxtI ? CxtI : Cmp);
794 if (ResT == LazyValueInfo::Unknown)
795 continue;
796 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
797 }
798
799 if (Constant *KC = getKnownConstant(Res, WantInteger))
800 Result.push_back(std::make_pair(KC, PredBB));
801 }
802
803 return !Result.empty();
804 }
805
806 // If comparing a live-in value against a constant, see if we know the
807 // live-in value on any predecessors.
808 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
809 Constant *CmpConst = cast<Constant>(CmpRHS);
810
811 if (!isa<Instruction>(CmpLHS) ||
812 cast<Instruction>(CmpLHS)->getParent() != BB) {
813 if (DTU->hasPendingDomTreeUpdates())
814 LVI->disableDT();
815 else
816 LVI->enableDT();
817 for (BasicBlock *P : predecessors(BB)) {
818 // If the value is known by LazyValueInfo to be a constant in a
819 // predecessor, use that information to try to thread this block.
820 LazyValueInfo::Tristate Res =
821 LVI->getPredicateOnEdge(Pred, CmpLHS,
822 CmpConst, P, BB, CxtI ? CxtI : Cmp);
823 if (Res == LazyValueInfo::Unknown)
824 continue;
825
826 Constant *ResC = ConstantInt::get(CmpType, Res);
827 Result.push_back(std::make_pair(ResC, P));
828 }
829
830 return !Result.empty();
831 }
832
833 // InstCombine can fold some forms of constant range checks into
834 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
835 // x as a live-in.
836 {
837 using namespace PatternMatch;
838
839 Value *AddLHS;
840 ConstantInt *AddConst;
841 if (isa<ConstantInt>(CmpConst) &&
842 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
843 if (!isa<Instruction>(AddLHS) ||
844 cast<Instruction>(AddLHS)->getParent() != BB) {
845 if (DTU->hasPendingDomTreeUpdates())
846 LVI->disableDT();
847 else
848 LVI->enableDT();
849 for (BasicBlock *P : predecessors(BB)) {
850 // If the value is known by LazyValueInfo to be a ConstantRange in
851 // a predecessor, use that information to try to thread this
852 // block.
853 ConstantRange CR = LVI->getConstantRangeOnEdge(
854 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
855 // Propagate the range through the addition.
856 CR = CR.add(AddConst->getValue());
857
858 // Get the range where the compare returns true.
859 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
860 Pred, cast<ConstantInt>(CmpConst)->getValue());
861
862 Constant *ResC;
863 if (CmpRange.contains(CR))
864 ResC = ConstantInt::getTrue(CmpType);
865 else if (CmpRange.inverse().contains(CR))
866 ResC = ConstantInt::getFalse(CmpType);
867 else
868 continue;
869
870 Result.push_back(std::make_pair(ResC, P));
871 }
872
873 return !Result.empty();
874 }
875 }
876 }
877
878 // Try to find a constant value for the LHS of a comparison,
879 // and evaluate it statically if we can.
880 PredValueInfoTy LHSVals;
881 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
882 WantInteger, RecursionSet, CxtI);
883
884 for (const auto &LHSVal : LHSVals) {
885 Constant *V = LHSVal.first;
886 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
887 if (Constant *KC = getKnownConstant(Folded, WantInteger))
888 Result.push_back(std::make_pair(KC, LHSVal.second));
889 }
890
891 return !Result.empty();
892 }
893 }
894
895 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
896 // Handle select instructions where at least one operand is a known constant
897 // and we can figure out the condition value for any predecessor block.
898 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
899 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
900 PredValueInfoTy Conds;
901 if ((TrueVal || FalseVal) &&
902 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
903 WantInteger, RecursionSet, CxtI)) {
904 for (auto &C : Conds) {
905 Constant *Cond = C.first;
906
907 // Figure out what value to use for the condition.
908 bool KnownCond;
909 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
910 // A known boolean.
911 KnownCond = CI->isOne();
912 } else {
913 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
914 // Either operand will do, so be sure to pick the one that's a known
915 // constant.
916 // FIXME: Do this more cleverly if both values are known constants?
917 KnownCond = (TrueVal != nullptr);
918 }
919
920 // See if the select has a known constant value for this predecessor.
921 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
922 Result.push_back(std::make_pair(Val, C.second));
923 }
924
925 return !Result.empty();
926 }
927 }
928
929 // If all else fails, see if LVI can figure out a constant value for us.
930 if (DTU->hasPendingDomTreeUpdates())
931 LVI->disableDT();
932 else
933 LVI->enableDT();
934 Constant *CI = LVI->getConstant(V, BB, CxtI);
935 if (Constant *KC = getKnownConstant(CI, Preference)) {
936 for (BasicBlock *Pred : predecessors(BB))
937 Result.push_back(std::make_pair(KC, Pred));
938 }
939
940 return !Result.empty();
941 }
942
943 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
944 /// in an undefined jump, decide which block is best to revector to.
945 ///
946 /// Since we can pick an arbitrary destination, we pick the successor with the
947 /// fewest predecessors. This should reduce the in-degree of the others.
GetBestDestForJumpOnUndef(BasicBlock * BB)948 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
949 Instruction *BBTerm = BB->getTerminator();
950 unsigned MinSucc = 0;
951 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
952 // Compute the successor with the minimum number of predecessors.
953 unsigned MinNumPreds = pred_size(TestBB);
954 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
955 TestBB = BBTerm->getSuccessor(i);
956 unsigned NumPreds = pred_size(TestBB);
957 if (NumPreds < MinNumPreds) {
958 MinSucc = i;
959 MinNumPreds = NumPreds;
960 }
961 }
962
963 return MinSucc;
964 }
965
hasAddressTakenAndUsed(BasicBlock * BB)966 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
967 if (!BB->hasAddressTaken()) return false;
968
969 // If the block has its address taken, it may be a tree of dead constants
970 // hanging off of it. These shouldn't keep the block alive.
971 BlockAddress *BA = BlockAddress::get(BB);
972 BA->removeDeadConstantUsers();
973 return !BA->use_empty();
974 }
975
976 /// ProcessBlock - If there are any predecessors whose control can be threaded
977 /// through to a successor, transform them now.
ProcessBlock(BasicBlock * BB)978 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
979 // If the block is trivially dead, just return and let the caller nuke it.
980 // This simplifies other transformations.
981 if (DTU->isBBPendingDeletion(BB) ||
982 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
983 return false;
984
985 // If this block has a single predecessor, and if that pred has a single
986 // successor, merge the blocks. This encourages recursive jump threading
987 // because now the condition in this block can be threaded through
988 // predecessors of our predecessor block.
989 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
990 const Instruction *TI = SinglePred->getTerminator();
991 if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 &&
992 SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
993 // If SinglePred was a loop header, BB becomes one.
994 if (LoopHeaders.erase(SinglePred))
995 LoopHeaders.insert(BB);
996
997 LVI->eraseBlock(SinglePred);
998 MergeBasicBlockIntoOnlyPred(BB, DTU);
999
1000 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1001 // BB code within one basic block `BB`), we need to invalidate the LVI
1002 // information associated with BB, because the LVI information need not be
1003 // true for all of BB after the merge. For example,
1004 // Before the merge, LVI info and code is as follows:
1005 // SinglePred: <LVI info1 for %p val>
1006 // %y = use of %p
1007 // call @exit() // need not transfer execution to successor.
1008 // assume(%p) // from this point on %p is true
1009 // br label %BB
1010 // BB: <LVI info2 for %p val, i.e. %p is true>
1011 // %x = use of %p
1012 // br label exit
1013 //
1014 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1015 // (info2 and info1 respectively). After the merge and the deletion of the
1016 // LVI info1 for SinglePred. We have the following code:
1017 // BB: <LVI info2 for %p val>
1018 // %y = use of %p
1019 // call @exit()
1020 // assume(%p)
1021 // %x = use of %p <-- LVI info2 is correct from here onwards.
1022 // br label exit
1023 // LVI info2 for BB is incorrect at the beginning of BB.
1024
1025 // Invalidate LVI information for BB if the LVI is not provably true for
1026 // all of BB.
1027 if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1028 LVI->eraseBlock(BB);
1029 return true;
1030 }
1031 }
1032
1033 if (TryToUnfoldSelectInCurrBB(BB))
1034 return true;
1035
1036 // Look if we can propagate guards to predecessors.
1037 if (HasGuards && ProcessGuards(BB))
1038 return true;
1039
1040 // What kind of constant we're looking for.
1041 ConstantPreference Preference = WantInteger;
1042
1043 // Look to see if the terminator is a conditional branch, switch or indirect
1044 // branch, if not we can't thread it.
1045 Value *Condition;
1046 Instruction *Terminator = BB->getTerminator();
1047 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1048 // Can't thread an unconditional jump.
1049 if (BI->isUnconditional()) return false;
1050 Condition = BI->getCondition();
1051 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1052 Condition = SI->getCondition();
1053 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1054 // Can't thread indirect branch with no successors.
1055 if (IB->getNumSuccessors() == 0) return false;
1056 Condition = IB->getAddress()->stripPointerCasts();
1057 Preference = WantBlockAddress;
1058 } else {
1059 return false; // Must be an invoke.
1060 }
1061
1062 // Run constant folding to see if we can reduce the condition to a simple
1063 // constant.
1064 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1065 Value *SimpleVal =
1066 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1067 if (SimpleVal) {
1068 I->replaceAllUsesWith(SimpleVal);
1069 if (isInstructionTriviallyDead(I, TLI))
1070 I->eraseFromParent();
1071 Condition = SimpleVal;
1072 }
1073 }
1074
1075 // If the terminator is branching on an undef, we can pick any of the
1076 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
1077 if (isa<UndefValue>(Condition)) {
1078 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1079 std::vector<DominatorTree::UpdateType> Updates;
1080
1081 // Fold the branch/switch.
1082 Instruction *BBTerm = BB->getTerminator();
1083 Updates.reserve(BBTerm->getNumSuccessors());
1084 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1085 if (i == BestSucc) continue;
1086 BasicBlock *Succ = BBTerm->getSuccessor(i);
1087 Succ->removePredecessor(BB, true);
1088 Updates.push_back({DominatorTree::Delete, BB, Succ});
1089 }
1090
1091 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1092 << "' folding undef terminator: " << *BBTerm << '\n');
1093 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1094 BBTerm->eraseFromParent();
1095 DTU->applyUpdates(Updates);
1096 return true;
1097 }
1098
1099 // If the terminator of this block is branching on a constant, simplify the
1100 // terminator to an unconditional branch. This can occur due to threading in
1101 // other blocks.
1102 if (getKnownConstant(Condition, Preference)) {
1103 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1104 << "' folding terminator: " << *BB->getTerminator()
1105 << '\n');
1106 ++NumFolds;
1107 ConstantFoldTerminator(BB, true, nullptr, DTU);
1108 return true;
1109 }
1110
1111 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1112
1113 // All the rest of our checks depend on the condition being an instruction.
1114 if (!CondInst) {
1115 // FIXME: Unify this with code below.
1116 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1117 return true;
1118 return false;
1119 }
1120
1121 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1122 // If we're branching on a conditional, LVI might be able to determine
1123 // it's value at the branch instruction. We only handle comparisons
1124 // against a constant at this time.
1125 // TODO: This should be extended to handle switches as well.
1126 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1127 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1128 if (CondBr && CondConst) {
1129 // We should have returned as soon as we turn a conditional branch to
1130 // unconditional. Because its no longer interesting as far as jump
1131 // threading is concerned.
1132 assert(CondBr->isConditional() && "Threading on unconditional terminator");
1133
1134 if (DTU->hasPendingDomTreeUpdates())
1135 LVI->disableDT();
1136 else
1137 LVI->enableDT();
1138 LazyValueInfo::Tristate Ret =
1139 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1140 CondConst, CondBr);
1141 if (Ret != LazyValueInfo::Unknown) {
1142 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1143 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1144 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1145 ToRemoveSucc->removePredecessor(BB, true);
1146 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1147 CondBr->eraseFromParent();
1148 if (CondCmp->use_empty())
1149 CondCmp->eraseFromParent();
1150 // We can safely replace *some* uses of the CondInst if it has
1151 // exactly one value as returned by LVI. RAUW is incorrect in the
1152 // presence of guards and assumes, that have the `Cond` as the use. This
1153 // is because we use the guards/assume to reason about the `Cond` value
1154 // at the end of block, but RAUW unconditionally replaces all uses
1155 // including the guards/assumes themselves and the uses before the
1156 // guard/assume.
1157 else if (CondCmp->getParent() == BB) {
1158 auto *CI = Ret == LazyValueInfo::True ?
1159 ConstantInt::getTrue(CondCmp->getType()) :
1160 ConstantInt::getFalse(CondCmp->getType());
1161 ReplaceFoldableUses(CondCmp, CI);
1162 }
1163 DTU->deleteEdgeRelaxed(BB, ToRemoveSucc);
1164 return true;
1165 }
1166
1167 // We did not manage to simplify this branch, try to see whether
1168 // CondCmp depends on a known phi-select pattern.
1169 if (TryToUnfoldSelect(CondCmp, BB))
1170 return true;
1171 }
1172 }
1173
1174 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1175 TryToUnfoldSelect(SI, BB);
1176
1177 // Check for some cases that are worth simplifying. Right now we want to look
1178 // for loads that are used by a switch or by the condition for the branch. If
1179 // we see one, check to see if it's partially redundant. If so, insert a PHI
1180 // which can then be used to thread the values.
1181 Value *SimplifyValue = CondInst;
1182 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1183 if (isa<Constant>(CondCmp->getOperand(1)))
1184 SimplifyValue = CondCmp->getOperand(0);
1185
1186 // TODO: There are other places where load PRE would be profitable, such as
1187 // more complex comparisons.
1188 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1189 if (SimplifyPartiallyRedundantLoad(LoadI))
1190 return true;
1191
1192 // Before threading, try to propagate profile data backwards:
1193 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1194 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1195 updatePredecessorProfileMetadata(PN, BB);
1196
1197 // Handle a variety of cases where we are branching on something derived from
1198 // a PHI node in the current block. If we can prove that any predecessors
1199 // compute a predictable value based on a PHI node, thread those predecessors.
1200 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1201 return true;
1202
1203 // If this is an otherwise-unfoldable branch on a phi node in the current
1204 // block, see if we can simplify.
1205 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1206 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1207 return ProcessBranchOnPHI(PN);
1208
1209 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1210 if (CondInst->getOpcode() == Instruction::Xor &&
1211 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1212 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1213
1214 // Search for a stronger dominating condition that can be used to simplify a
1215 // conditional branch leaving BB.
1216 if (ProcessImpliedCondition(BB))
1217 return true;
1218
1219 return false;
1220 }
1221
ProcessImpliedCondition(BasicBlock * BB)1222 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1223 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1224 if (!BI || !BI->isConditional())
1225 return false;
1226
1227 Value *Cond = BI->getCondition();
1228 BasicBlock *CurrentBB = BB;
1229 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1230 unsigned Iter = 0;
1231
1232 auto &DL = BB->getModule()->getDataLayout();
1233
1234 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1235 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1236 if (!PBI || !PBI->isConditional())
1237 return false;
1238 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1239 return false;
1240
1241 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1242 Optional<bool> Implication =
1243 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1244 if (Implication) {
1245 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1246 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1247 RemoveSucc->removePredecessor(BB);
1248 BranchInst::Create(KeepSucc, BI);
1249 BI->eraseFromParent();
1250 DTU->deleteEdgeRelaxed(BB, RemoveSucc);
1251 return true;
1252 }
1253 CurrentBB = CurrentPred;
1254 CurrentPred = CurrentBB->getSinglePredecessor();
1255 }
1256
1257 return false;
1258 }
1259
1260 /// Return true if Op is an instruction defined in the given block.
isOpDefinedInBlock(Value * Op,BasicBlock * BB)1261 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1262 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1263 if (OpInst->getParent() == BB)
1264 return true;
1265 return false;
1266 }
1267
1268 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1269 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1270 /// This is an important optimization that encourages jump threading, and needs
1271 /// to be run interlaced with other jump threading tasks.
SimplifyPartiallyRedundantLoad(LoadInst * LoadI)1272 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1273 // Don't hack volatile and ordered loads.
1274 if (!LoadI->isUnordered()) return false;
1275
1276 // If the load is defined in a block with exactly one predecessor, it can't be
1277 // partially redundant.
1278 BasicBlock *LoadBB = LoadI->getParent();
1279 if (LoadBB->getSinglePredecessor())
1280 return false;
1281
1282 // If the load is defined in an EH pad, it can't be partially redundant,
1283 // because the edges between the invoke and the EH pad cannot have other
1284 // instructions between them.
1285 if (LoadBB->isEHPad())
1286 return false;
1287
1288 Value *LoadedPtr = LoadI->getOperand(0);
1289
1290 // If the loaded operand is defined in the LoadBB and its not a phi,
1291 // it can't be available in predecessors.
1292 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1293 return false;
1294
1295 // Scan a few instructions up from the load, to see if it is obviously live at
1296 // the entry to its block.
1297 BasicBlock::iterator BBIt(LoadI);
1298 bool IsLoadCSE;
1299 if (Value *AvailableVal = FindAvailableLoadedValue(
1300 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1301 // If the value of the load is locally available within the block, just use
1302 // it. This frequently occurs for reg2mem'd allocas.
1303
1304 if (IsLoadCSE) {
1305 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1306 combineMetadataForCSE(NLoadI, LoadI, false);
1307 };
1308
1309 // If the returned value is the load itself, replace with an undef. This can
1310 // only happen in dead loops.
1311 if (AvailableVal == LoadI)
1312 AvailableVal = UndefValue::get(LoadI->getType());
1313 if (AvailableVal->getType() != LoadI->getType())
1314 AvailableVal = CastInst::CreateBitOrPointerCast(
1315 AvailableVal, LoadI->getType(), "", LoadI);
1316 LoadI->replaceAllUsesWith(AvailableVal);
1317 LoadI->eraseFromParent();
1318 return true;
1319 }
1320
1321 // Otherwise, if we scanned the whole block and got to the top of the block,
1322 // we know the block is locally transparent to the load. If not, something
1323 // might clobber its value.
1324 if (BBIt != LoadBB->begin())
1325 return false;
1326
1327 // If all of the loads and stores that feed the value have the same AA tags,
1328 // then we can propagate them onto any newly inserted loads.
1329 AAMDNodes AATags;
1330 LoadI->getAAMetadata(AATags);
1331
1332 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1333
1334 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1335
1336 AvailablePredsTy AvailablePreds;
1337 BasicBlock *OneUnavailablePred = nullptr;
1338 SmallVector<LoadInst*, 8> CSELoads;
1339
1340 // If we got here, the loaded value is transparent through to the start of the
1341 // block. Check to see if it is available in any of the predecessor blocks.
1342 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1343 // If we already scanned this predecessor, skip it.
1344 if (!PredsScanned.insert(PredBB).second)
1345 continue;
1346
1347 BBIt = PredBB->end();
1348 unsigned NumScanedInst = 0;
1349 Value *PredAvailable = nullptr;
1350 // NOTE: We don't CSE load that is volatile or anything stronger than
1351 // unordered, that should have been checked when we entered the function.
1352 assert(LoadI->isUnordered() &&
1353 "Attempting to CSE volatile or atomic loads");
1354 // If this is a load on a phi pointer, phi-translate it and search
1355 // for available load/store to the pointer in predecessors.
1356 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1357 PredAvailable = FindAvailablePtrLoadStore(
1358 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1359 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1360
1361 // If PredBB has a single predecessor, continue scanning through the
1362 // single predecessor.
1363 BasicBlock *SinglePredBB = PredBB;
1364 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1365 NumScanedInst < DefMaxInstsToScan) {
1366 SinglePredBB = SinglePredBB->getSinglePredecessor();
1367 if (SinglePredBB) {
1368 BBIt = SinglePredBB->end();
1369 PredAvailable = FindAvailablePtrLoadStore(
1370 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1371 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1372 &NumScanedInst);
1373 }
1374 }
1375
1376 if (!PredAvailable) {
1377 OneUnavailablePred = PredBB;
1378 continue;
1379 }
1380
1381 if (IsLoadCSE)
1382 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1383
1384 // If so, this load is partially redundant. Remember this info so that we
1385 // can create a PHI node.
1386 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1387 }
1388
1389 // If the loaded value isn't available in any predecessor, it isn't partially
1390 // redundant.
1391 if (AvailablePreds.empty()) return false;
1392
1393 // Okay, the loaded value is available in at least one (and maybe all!)
1394 // predecessors. If the value is unavailable in more than one unique
1395 // predecessor, we want to insert a merge block for those common predecessors.
1396 // This ensures that we only have to insert one reload, thus not increasing
1397 // code size.
1398 BasicBlock *UnavailablePred = nullptr;
1399
1400 // If the value is unavailable in one of predecessors, we will end up
1401 // inserting a new instruction into them. It is only valid if all the
1402 // instructions before LoadI are guaranteed to pass execution to its
1403 // successor, or if LoadI is safe to speculate.
1404 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1405 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1406 // It requires domination tree analysis, so for this simple case it is an
1407 // overkill.
1408 if (PredsScanned.size() != AvailablePreds.size() &&
1409 !isSafeToSpeculativelyExecute(LoadI))
1410 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1411 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1412 return false;
1413
1414 // If there is exactly one predecessor where the value is unavailable, the
1415 // already computed 'OneUnavailablePred' block is it. If it ends in an
1416 // unconditional branch, we know that it isn't a critical edge.
1417 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1418 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1419 UnavailablePred = OneUnavailablePred;
1420 } else if (PredsScanned.size() != AvailablePreds.size()) {
1421 // Otherwise, we had multiple unavailable predecessors or we had a critical
1422 // edge from the one.
1423 SmallVector<BasicBlock*, 8> PredsToSplit;
1424 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1425
1426 for (const auto &AvailablePred : AvailablePreds)
1427 AvailablePredSet.insert(AvailablePred.first);
1428
1429 // Add all the unavailable predecessors to the PredsToSplit list.
1430 for (BasicBlock *P : predecessors(LoadBB)) {
1431 // If the predecessor is an indirect goto, we can't split the edge.
1432 if (isa<IndirectBrInst>(P->getTerminator()))
1433 return false;
1434
1435 if (!AvailablePredSet.count(P))
1436 PredsToSplit.push_back(P);
1437 }
1438
1439 // Split them out to their own block.
1440 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1441 }
1442
1443 // If the value isn't available in all predecessors, then there will be
1444 // exactly one where it isn't available. Insert a load on that edge and add
1445 // it to the AvailablePreds list.
1446 if (UnavailablePred) {
1447 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1448 "Can't handle critical edge here!");
1449 LoadInst *NewVal =
1450 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1451 LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1452 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1453 UnavailablePred->getTerminator());
1454 NewVal->setDebugLoc(LoadI->getDebugLoc());
1455 if (AATags)
1456 NewVal->setAAMetadata(AATags);
1457
1458 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1459 }
1460
1461 // Now we know that each predecessor of this block has a value in
1462 // AvailablePreds, sort them for efficient access as we're walking the preds.
1463 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1464
1465 // Create a PHI node at the start of the block for the PRE'd load value.
1466 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1467 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1468 &LoadBB->front());
1469 PN->takeName(LoadI);
1470 PN->setDebugLoc(LoadI->getDebugLoc());
1471
1472 // Insert new entries into the PHI for each predecessor. A single block may
1473 // have multiple entries here.
1474 for (pred_iterator PI = PB; PI != PE; ++PI) {
1475 BasicBlock *P = *PI;
1476 AvailablePredsTy::iterator I =
1477 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1478 std::make_pair(P, (Value*)nullptr));
1479
1480 assert(I != AvailablePreds.end() && I->first == P &&
1481 "Didn't find entry for predecessor!");
1482
1483 // If we have an available predecessor but it requires casting, insert the
1484 // cast in the predecessor and use the cast. Note that we have to update the
1485 // AvailablePreds vector as we go so that all of the PHI entries for this
1486 // predecessor use the same bitcast.
1487 Value *&PredV = I->second;
1488 if (PredV->getType() != LoadI->getType())
1489 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1490 P->getTerminator());
1491
1492 PN->addIncoming(PredV, I->first);
1493 }
1494
1495 for (LoadInst *PredLoadI : CSELoads) {
1496 combineMetadataForCSE(PredLoadI, LoadI, true);
1497 }
1498
1499 LoadI->replaceAllUsesWith(PN);
1500 LoadI->eraseFromParent();
1501
1502 return true;
1503 }
1504
1505 /// FindMostPopularDest - The specified list contains multiple possible
1506 /// threadable destinations. Pick the one that occurs the most frequently in
1507 /// the list.
1508 static BasicBlock *
FindMostPopularDest(BasicBlock * BB,const SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & PredToDestList)1509 FindMostPopularDest(BasicBlock *BB,
1510 const SmallVectorImpl<std::pair<BasicBlock *,
1511 BasicBlock *>> &PredToDestList) {
1512 assert(!PredToDestList.empty());
1513
1514 // Determine popularity. If there are multiple possible destinations, we
1515 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1516 // blocks with known and real destinations to threading undef. We'll handle
1517 // them later if interesting.
1518 DenseMap<BasicBlock*, unsigned> DestPopularity;
1519 for (const auto &PredToDest : PredToDestList)
1520 if (PredToDest.second)
1521 DestPopularity[PredToDest.second]++;
1522
1523 if (DestPopularity.empty())
1524 return nullptr;
1525
1526 // Find the most popular dest.
1527 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1528 BasicBlock *MostPopularDest = DPI->first;
1529 unsigned Popularity = DPI->second;
1530 SmallVector<BasicBlock*, 4> SamePopularity;
1531
1532 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1533 // If the popularity of this entry isn't higher than the popularity we've
1534 // seen so far, ignore it.
1535 if (DPI->second < Popularity)
1536 ; // ignore.
1537 else if (DPI->second == Popularity) {
1538 // If it is the same as what we've seen so far, keep track of it.
1539 SamePopularity.push_back(DPI->first);
1540 } else {
1541 // If it is more popular, remember it.
1542 SamePopularity.clear();
1543 MostPopularDest = DPI->first;
1544 Popularity = DPI->second;
1545 }
1546 }
1547
1548 // Okay, now we know the most popular destination. If there is more than one
1549 // destination, we need to determine one. This is arbitrary, but we need
1550 // to make a deterministic decision. Pick the first one that appears in the
1551 // successor list.
1552 if (!SamePopularity.empty()) {
1553 SamePopularity.push_back(MostPopularDest);
1554 Instruction *TI = BB->getTerminator();
1555 for (unsigned i = 0; ; ++i) {
1556 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1557
1558 if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1559 continue;
1560
1561 MostPopularDest = TI->getSuccessor(i);
1562 break;
1563 }
1564 }
1565
1566 // Okay, we have finally picked the most popular destination.
1567 return MostPopularDest;
1568 }
1569
ProcessThreadableEdges(Value * Cond,BasicBlock * BB,ConstantPreference Preference,Instruction * CxtI)1570 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1571 ConstantPreference Preference,
1572 Instruction *CxtI) {
1573 // If threading this would thread across a loop header, don't even try to
1574 // thread the edge.
1575 if (LoopHeaders.count(BB))
1576 return false;
1577
1578 PredValueInfoTy PredValues;
1579 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1580 return false;
1581
1582 assert(!PredValues.empty() &&
1583 "ComputeValueKnownInPredecessors returned true with no values");
1584
1585 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1586 for (const auto &PredValue : PredValues) {
1587 dbgs() << " BB '" << BB->getName()
1588 << "': FOUND condition = " << *PredValue.first
1589 << " for pred '" << PredValue.second->getName() << "'.\n";
1590 });
1591
1592 // Decide what we want to thread through. Convert our list of known values to
1593 // a list of known destinations for each pred. This also discards duplicate
1594 // predecessors and keeps track of the undefined inputs (which are represented
1595 // as a null dest in the PredToDestList).
1596 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1597 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1598
1599 BasicBlock *OnlyDest = nullptr;
1600 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1601 Constant *OnlyVal = nullptr;
1602 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1603
1604 unsigned PredWithKnownDest = 0;
1605 for (const auto &PredValue : PredValues) {
1606 BasicBlock *Pred = PredValue.second;
1607 if (!SeenPreds.insert(Pred).second)
1608 continue; // Duplicate predecessor entry.
1609
1610 Constant *Val = PredValue.first;
1611
1612 BasicBlock *DestBB;
1613 if (isa<UndefValue>(Val))
1614 DestBB = nullptr;
1615 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1616 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1617 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1618 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1619 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1620 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1621 } else {
1622 assert(isa<IndirectBrInst>(BB->getTerminator())
1623 && "Unexpected terminator");
1624 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1625 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1626 }
1627
1628 // If we have exactly one destination, remember it for efficiency below.
1629 if (PredToDestList.empty()) {
1630 OnlyDest = DestBB;
1631 OnlyVal = Val;
1632 } else {
1633 if (OnlyDest != DestBB)
1634 OnlyDest = MultipleDestSentinel;
1635 // It possible we have same destination, but different value, e.g. default
1636 // case in switchinst.
1637 if (Val != OnlyVal)
1638 OnlyVal = MultipleVal;
1639 }
1640
1641 // We know where this predecessor is going.
1642 ++PredWithKnownDest;
1643
1644 // If the predecessor ends with an indirect goto, we can't change its
1645 // destination.
1646 if (isa<IndirectBrInst>(Pred->getTerminator()))
1647 continue;
1648
1649 PredToDestList.push_back(std::make_pair(Pred, DestBB));
1650 }
1651
1652 // If all edges were unthreadable, we fail.
1653 if (PredToDestList.empty())
1654 return false;
1655
1656 // If all the predecessors go to a single known successor, we want to fold,
1657 // not thread. By doing so, we do not need to duplicate the current block and
1658 // also miss potential opportunities in case we dont/cant duplicate.
1659 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1660 if (PredWithKnownDest == (size_t)pred_size(BB)) {
1661 bool SeenFirstBranchToOnlyDest = false;
1662 std::vector <DominatorTree::UpdateType> Updates;
1663 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1664 for (BasicBlock *SuccBB : successors(BB)) {
1665 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1666 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1667 } else {
1668 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1669 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1670 }
1671 }
1672
1673 // Finally update the terminator.
1674 Instruction *Term = BB->getTerminator();
1675 BranchInst::Create(OnlyDest, Term);
1676 Term->eraseFromParent();
1677 DTU->applyUpdates(Updates);
1678
1679 // If the condition is now dead due to the removal of the old terminator,
1680 // erase it.
1681 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1682 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1683 CondInst->eraseFromParent();
1684 // We can safely replace *some* uses of the CondInst if it has
1685 // exactly one value as returned by LVI. RAUW is incorrect in the
1686 // presence of guards and assumes, that have the `Cond` as the use. This
1687 // is because we use the guards/assume to reason about the `Cond` value
1688 // at the end of block, but RAUW unconditionally replaces all uses
1689 // including the guards/assumes themselves and the uses before the
1690 // guard/assume.
1691 else if (OnlyVal && OnlyVal != MultipleVal &&
1692 CondInst->getParent() == BB)
1693 ReplaceFoldableUses(CondInst, OnlyVal);
1694 }
1695 return true;
1696 }
1697 }
1698
1699 // Determine which is the most common successor. If we have many inputs and
1700 // this block is a switch, we want to start by threading the batch that goes
1701 // to the most popular destination first. If we only know about one
1702 // threadable destination (the common case) we can avoid this.
1703 BasicBlock *MostPopularDest = OnlyDest;
1704
1705 if (MostPopularDest == MultipleDestSentinel) {
1706 // Remove any loop headers from the Dest list, ThreadEdge conservatively
1707 // won't process them, but we might have other destination that are eligible
1708 // and we still want to process.
1709 erase_if(PredToDestList,
1710 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1711 return LoopHeaders.count(PredToDest.second) != 0;
1712 });
1713
1714 if (PredToDestList.empty())
1715 return false;
1716
1717 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1718 }
1719
1720 // Now that we know what the most popular destination is, factor all
1721 // predecessors that will jump to it into a single predecessor.
1722 SmallVector<BasicBlock*, 16> PredsToFactor;
1723 for (const auto &PredToDest : PredToDestList)
1724 if (PredToDest.second == MostPopularDest) {
1725 BasicBlock *Pred = PredToDest.first;
1726
1727 // This predecessor may be a switch or something else that has multiple
1728 // edges to the block. Factor each of these edges by listing them
1729 // according to # occurrences in PredsToFactor.
1730 for (BasicBlock *Succ : successors(Pred))
1731 if (Succ == BB)
1732 PredsToFactor.push_back(Pred);
1733 }
1734
1735 // If the threadable edges are branching on an undefined value, we get to pick
1736 // the destination that these predecessors should get to.
1737 if (!MostPopularDest)
1738 MostPopularDest = BB->getTerminator()->
1739 getSuccessor(GetBestDestForJumpOnUndef(BB));
1740
1741 // Ok, try to thread it!
1742 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1743 }
1744
1745 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1746 /// a PHI node in the current block. See if there are any simplifications we
1747 /// can do based on inputs to the phi node.
ProcessBranchOnPHI(PHINode * PN)1748 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1749 BasicBlock *BB = PN->getParent();
1750
1751 // TODO: We could make use of this to do it once for blocks with common PHI
1752 // values.
1753 SmallVector<BasicBlock*, 1> PredBBs;
1754 PredBBs.resize(1);
1755
1756 // If any of the predecessor blocks end in an unconditional branch, we can
1757 // *duplicate* the conditional branch into that block in order to further
1758 // encourage jump threading and to eliminate cases where we have branch on a
1759 // phi of an icmp (branch on icmp is much better).
1760 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1761 BasicBlock *PredBB = PN->getIncomingBlock(i);
1762 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1763 if (PredBr->isUnconditional()) {
1764 PredBBs[0] = PredBB;
1765 // Try to duplicate BB into PredBB.
1766 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1767 return true;
1768 }
1769 }
1770
1771 return false;
1772 }
1773
1774 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1775 /// a xor instruction in the current block. See if there are any
1776 /// simplifications we can do based on inputs to the xor.
ProcessBranchOnXOR(BinaryOperator * BO)1777 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1778 BasicBlock *BB = BO->getParent();
1779
1780 // If either the LHS or RHS of the xor is a constant, don't do this
1781 // optimization.
1782 if (isa<ConstantInt>(BO->getOperand(0)) ||
1783 isa<ConstantInt>(BO->getOperand(1)))
1784 return false;
1785
1786 // If the first instruction in BB isn't a phi, we won't be able to infer
1787 // anything special about any particular predecessor.
1788 if (!isa<PHINode>(BB->front()))
1789 return false;
1790
1791 // If this BB is a landing pad, we won't be able to split the edge into it.
1792 if (BB->isEHPad())
1793 return false;
1794
1795 // If we have a xor as the branch input to this block, and we know that the
1796 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1797 // the condition into the predecessor and fix that value to true, saving some
1798 // logical ops on that path and encouraging other paths to simplify.
1799 //
1800 // This copies something like this:
1801 //
1802 // BB:
1803 // %X = phi i1 [1], [%X']
1804 // %Y = icmp eq i32 %A, %B
1805 // %Z = xor i1 %X, %Y
1806 // br i1 %Z, ...
1807 //
1808 // Into:
1809 // BB':
1810 // %Y = icmp ne i32 %A, %B
1811 // br i1 %Y, ...
1812
1813 PredValueInfoTy XorOpValues;
1814 bool isLHS = true;
1815 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1816 WantInteger, BO)) {
1817 assert(XorOpValues.empty());
1818 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1819 WantInteger, BO))
1820 return false;
1821 isLHS = false;
1822 }
1823
1824 assert(!XorOpValues.empty() &&
1825 "ComputeValueKnownInPredecessors returned true with no values");
1826
1827 // Scan the information to see which is most popular: true or false. The
1828 // predecessors can be of the set true, false, or undef.
1829 unsigned NumTrue = 0, NumFalse = 0;
1830 for (const auto &XorOpValue : XorOpValues) {
1831 if (isa<UndefValue>(XorOpValue.first))
1832 // Ignore undefs for the count.
1833 continue;
1834 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1835 ++NumFalse;
1836 else
1837 ++NumTrue;
1838 }
1839
1840 // Determine which value to split on, true, false, or undef if neither.
1841 ConstantInt *SplitVal = nullptr;
1842 if (NumTrue > NumFalse)
1843 SplitVal = ConstantInt::getTrue(BB->getContext());
1844 else if (NumTrue != 0 || NumFalse != 0)
1845 SplitVal = ConstantInt::getFalse(BB->getContext());
1846
1847 // Collect all of the blocks that this can be folded into so that we can
1848 // factor this once and clone it once.
1849 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1850 for (const auto &XorOpValue : XorOpValues) {
1851 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1852 continue;
1853
1854 BlocksToFoldInto.push_back(XorOpValue.second);
1855 }
1856
1857 // If we inferred a value for all of the predecessors, then duplication won't
1858 // help us. However, we can just replace the LHS or RHS with the constant.
1859 if (BlocksToFoldInto.size() ==
1860 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1861 if (!SplitVal) {
1862 // If all preds provide undef, just nuke the xor, because it is undef too.
1863 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1864 BO->eraseFromParent();
1865 } else if (SplitVal->isZero()) {
1866 // If all preds provide 0, replace the xor with the other input.
1867 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1868 BO->eraseFromParent();
1869 } else {
1870 // If all preds provide 1, set the computed value to 1.
1871 BO->setOperand(!isLHS, SplitVal);
1872 }
1873
1874 return true;
1875 }
1876
1877 // Try to duplicate BB into PredBB.
1878 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1879 }
1880
1881 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1882 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1883 /// NewPred using the entries from OldPred (suitably mapped).
AddPHINodeEntriesForMappedBlock(BasicBlock * PHIBB,BasicBlock * OldPred,BasicBlock * NewPred,DenseMap<Instruction *,Value * > & ValueMap)1884 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1885 BasicBlock *OldPred,
1886 BasicBlock *NewPred,
1887 DenseMap<Instruction*, Value*> &ValueMap) {
1888 for (PHINode &PN : PHIBB->phis()) {
1889 // Ok, we have a PHI node. Figure out what the incoming value was for the
1890 // DestBlock.
1891 Value *IV = PN.getIncomingValueForBlock(OldPred);
1892
1893 // Remap the value if necessary.
1894 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1895 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1896 if (I != ValueMap.end())
1897 IV = I->second;
1898 }
1899
1900 PN.addIncoming(IV, NewPred);
1901 }
1902 }
1903
1904 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1905 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1906 /// across BB. Transform the IR to reflect this change.
ThreadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)1907 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1908 const SmallVectorImpl<BasicBlock *> &PredBBs,
1909 BasicBlock *SuccBB) {
1910 // If threading to the same block as we come from, we would infinite loop.
1911 if (SuccBB == BB) {
1912 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
1913 << "' - would thread to self!\n");
1914 return false;
1915 }
1916
1917 // If threading this would thread across a loop header, don't thread the edge.
1918 // See the comments above FindLoopHeaders for justifications and caveats.
1919 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1920 LLVM_DEBUG({
1921 bool BBIsHeader = LoopHeaders.count(BB);
1922 bool SuccIsHeader = LoopHeaders.count(SuccBB);
1923 dbgs() << " Not threading across "
1924 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1925 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1926 << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1927 });
1928 return false;
1929 }
1930
1931 unsigned JumpThreadCost =
1932 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1933 if (JumpThreadCost > BBDupThreshold) {
1934 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
1935 << "' - Cost is too high: " << JumpThreadCost << "\n");
1936 return false;
1937 }
1938
1939 // And finally, do it! Start by factoring the predecessors if needed.
1940 BasicBlock *PredBB;
1941 if (PredBBs.size() == 1)
1942 PredBB = PredBBs[0];
1943 else {
1944 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
1945 << " common predecessors.\n");
1946 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1947 }
1948
1949 // And finally, do it!
1950 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
1951 << "' to '" << SuccBB->getName()
1952 << "' with cost: " << JumpThreadCost
1953 << ", across block:\n " << *BB << "\n");
1954
1955 if (DTU->hasPendingDomTreeUpdates())
1956 LVI->disableDT();
1957 else
1958 LVI->enableDT();
1959 LVI->threadEdge(PredBB, BB, SuccBB);
1960
1961 // We are going to have to map operands from the original BB block to the new
1962 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1963 // account for entry from PredBB.
1964 DenseMap<Instruction*, Value*> ValueMapping;
1965
1966 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1967 BB->getName()+".thread",
1968 BB->getParent(), BB);
1969 NewBB->moveAfter(PredBB);
1970
1971 // Set the block frequency of NewBB.
1972 if (HasProfileData) {
1973 auto NewBBFreq =
1974 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1975 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1976 }
1977
1978 BasicBlock::iterator BI = BB->begin();
1979 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1980 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1981
1982 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1983 // mapping and using it to remap operands in the cloned instructions.
1984 for (; !BI->isTerminator(); ++BI) {
1985 Instruction *New = BI->clone();
1986 New->setName(BI->getName());
1987 NewBB->getInstList().push_back(New);
1988 ValueMapping[&*BI] = New;
1989
1990 // Remap operands to patch up intra-block references.
1991 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1992 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1993 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1994 if (I != ValueMapping.end())
1995 New->setOperand(i, I->second);
1996 }
1997 }
1998
1999 // We didn't copy the terminator from BB over to NewBB, because there is now
2000 // an unconditional jump to SuccBB. Insert the unconditional jump.
2001 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2002 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2003
2004 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2005 // PHI nodes for NewBB now.
2006 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2007
2008 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2009 // eliminates predecessors from BB, which requires us to simplify any PHI
2010 // nodes in BB.
2011 Instruction *PredTerm = PredBB->getTerminator();
2012 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2013 if (PredTerm->getSuccessor(i) == BB) {
2014 BB->removePredecessor(PredBB, true);
2015 PredTerm->setSuccessor(i, NewBB);
2016 }
2017
2018 // Enqueue required DT updates.
2019 DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2020 {DominatorTree::Insert, PredBB, NewBB},
2021 {DominatorTree::Delete, PredBB, BB}});
2022
2023 // If there were values defined in BB that are used outside the block, then we
2024 // now have to update all uses of the value to use either the original value,
2025 // the cloned value, or some PHI derived value. This can require arbitrary
2026 // PHI insertion, of which we are prepared to do, clean these up now.
2027 SSAUpdater SSAUpdate;
2028 SmallVector<Use*, 16> UsesToRename;
2029
2030 for (Instruction &I : *BB) {
2031 // Scan all uses of this instruction to see if their uses are no longer
2032 // dominated by the previous def and if so, record them in UsesToRename.
2033 // Also, skip phi operands from PredBB - we'll remove them anyway.
2034 for (Use &U : I.uses()) {
2035 Instruction *User = cast<Instruction>(U.getUser());
2036 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2037 if (UserPN->getIncomingBlock(U) == BB)
2038 continue;
2039 } else if (User->getParent() == BB)
2040 continue;
2041
2042 UsesToRename.push_back(&U);
2043 }
2044
2045 // If there are no uses outside the block, we're done with this instruction.
2046 if (UsesToRename.empty())
2047 continue;
2048 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2049
2050 // We found a use of I outside of BB. Rename all uses of I that are outside
2051 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2052 // with the two values we know.
2053 SSAUpdate.Initialize(I.getType(), I.getName());
2054 SSAUpdate.AddAvailableValue(BB, &I);
2055 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2056
2057 while (!UsesToRename.empty())
2058 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2059 LLVM_DEBUG(dbgs() << "\n");
2060 }
2061
2062 // At this point, the IR is fully up to date and consistent. Do a quick scan
2063 // over the new instructions and zap any that are constants or dead. This
2064 // frequently happens because of phi translation.
2065 SimplifyInstructionsInBlock(NewBB, TLI);
2066
2067 // Update the edge weight from BB to SuccBB, which should be less than before.
2068 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2069
2070 // Threaded an edge!
2071 ++NumThreads;
2072 return true;
2073 }
2074
2075 /// Create a new basic block that will be the predecessor of BB and successor of
2076 /// all blocks in Preds. When profile data is available, update the frequency of
2077 /// this new block.
SplitBlockPreds(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix)2078 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2079 ArrayRef<BasicBlock *> Preds,
2080 const char *Suffix) {
2081 SmallVector<BasicBlock *, 2> NewBBs;
2082
2083 // Collect the frequencies of all predecessors of BB, which will be used to
2084 // update the edge weight of the result of splitting predecessors.
2085 DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2086 if (HasProfileData)
2087 for (auto Pred : Preds)
2088 FreqMap.insert(std::make_pair(
2089 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2090
2091 // In the case when BB is a LandingPad block we create 2 new predecessors
2092 // instead of just one.
2093 if (BB->isLandingPad()) {
2094 std::string NewName = std::string(Suffix) + ".split-lp";
2095 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2096 } else {
2097 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2098 }
2099
2100 std::vector<DominatorTree::UpdateType> Updates;
2101 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2102 for (auto NewBB : NewBBs) {
2103 BlockFrequency NewBBFreq(0);
2104 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2105 for (auto Pred : predecessors(NewBB)) {
2106 Updates.push_back({DominatorTree::Delete, Pred, BB});
2107 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2108 if (HasProfileData) // Update frequencies between Pred -> NewBB.
2109 NewBBFreq += FreqMap.lookup(Pred);
2110 }
2111 if (HasProfileData) // Apply the summed frequency to NewBB.
2112 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2113 }
2114
2115 DTU->applyUpdates(Updates);
2116 return NewBBs[0];
2117 }
2118
doesBlockHaveProfileData(BasicBlock * BB)2119 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2120 const Instruction *TI = BB->getTerminator();
2121 assert(TI->getNumSuccessors() > 1 && "not a split");
2122
2123 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2124 if (!WeightsNode)
2125 return false;
2126
2127 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2128 if (MDName->getString() != "branch_weights")
2129 return false;
2130
2131 // Ensure there are weights for all of the successors. Note that the first
2132 // operand to the metadata node is a name, not a weight.
2133 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2134 }
2135
2136 /// Update the block frequency of BB and branch weight and the metadata on the
2137 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2138 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
UpdateBlockFreqAndEdgeWeight(BasicBlock * PredBB,BasicBlock * BB,BasicBlock * NewBB,BasicBlock * SuccBB)2139 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2140 BasicBlock *BB,
2141 BasicBlock *NewBB,
2142 BasicBlock *SuccBB) {
2143 if (!HasProfileData)
2144 return;
2145
2146 assert(BFI && BPI && "BFI & BPI should have been created here");
2147
2148 // As the edge from PredBB to BB is deleted, we have to update the block
2149 // frequency of BB.
2150 auto BBOrigFreq = BFI->getBlockFreq(BB);
2151 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2152 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2153 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2154 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2155
2156 // Collect updated outgoing edges' frequencies from BB and use them to update
2157 // edge probabilities.
2158 SmallVector<uint64_t, 4> BBSuccFreq;
2159 for (BasicBlock *Succ : successors(BB)) {
2160 auto SuccFreq = (Succ == SuccBB)
2161 ? BB2SuccBBFreq - NewBBFreq
2162 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2163 BBSuccFreq.push_back(SuccFreq.getFrequency());
2164 }
2165
2166 uint64_t MaxBBSuccFreq =
2167 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2168
2169 SmallVector<BranchProbability, 4> BBSuccProbs;
2170 if (MaxBBSuccFreq == 0)
2171 BBSuccProbs.assign(BBSuccFreq.size(),
2172 {1, static_cast<unsigned>(BBSuccFreq.size())});
2173 else {
2174 for (uint64_t Freq : BBSuccFreq)
2175 BBSuccProbs.push_back(
2176 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2177 // Normalize edge probabilities so that they sum up to one.
2178 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2179 BBSuccProbs.end());
2180 }
2181
2182 // Update edge probabilities in BPI.
2183 for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2184 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2185
2186 // Update the profile metadata as well.
2187 //
2188 // Don't do this if the profile of the transformed blocks was statically
2189 // estimated. (This could occur despite the function having an entry
2190 // frequency in completely cold parts of the CFG.)
2191 //
2192 // In this case we don't want to suggest to subsequent passes that the
2193 // calculated weights are fully consistent. Consider this graph:
2194 //
2195 // check_1
2196 // 50% / |
2197 // eq_1 | 50%
2198 // \ |
2199 // check_2
2200 // 50% / |
2201 // eq_2 | 50%
2202 // \ |
2203 // check_3
2204 // 50% / |
2205 // eq_3 | 50%
2206 // \ |
2207 //
2208 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2209 // the overall probabilities are inconsistent; the total probability that the
2210 // value is either 1, 2 or 3 is 150%.
2211 //
2212 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2213 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2214 // the loop exit edge. Then based solely on static estimation we would assume
2215 // the loop was extremely hot.
2216 //
2217 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2218 // shouldn't make edges extremely likely or unlikely based solely on static
2219 // estimation.
2220 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2221 SmallVector<uint32_t, 4> Weights;
2222 for (auto Prob : BBSuccProbs)
2223 Weights.push_back(Prob.getNumerator());
2224
2225 auto TI = BB->getTerminator();
2226 TI->setMetadata(
2227 LLVMContext::MD_prof,
2228 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2229 }
2230 }
2231
2232 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2233 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2234 /// If we can duplicate the contents of BB up into PredBB do so now, this
2235 /// improves the odds that the branch will be on an analyzable instruction like
2236 /// a compare.
DuplicateCondBranchOnPHIIntoPred(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs)2237 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2238 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2239 assert(!PredBBs.empty() && "Can't handle an empty set");
2240
2241 // If BB is a loop header, then duplicating this block outside the loop would
2242 // cause us to transform this into an irreducible loop, don't do this.
2243 // See the comments above FindLoopHeaders for justifications and caveats.
2244 if (LoopHeaders.count(BB)) {
2245 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
2246 << "' into predecessor block '" << PredBBs[0]->getName()
2247 << "' - it might create an irreducible loop!\n");
2248 return false;
2249 }
2250
2251 unsigned DuplicationCost =
2252 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2253 if (DuplicationCost > BBDupThreshold) {
2254 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
2255 << "' - Cost is too high: " << DuplicationCost << "\n");
2256 return false;
2257 }
2258
2259 // And finally, do it! Start by factoring the predecessors if needed.
2260 std::vector<DominatorTree::UpdateType> Updates;
2261 BasicBlock *PredBB;
2262 if (PredBBs.size() == 1)
2263 PredBB = PredBBs[0];
2264 else {
2265 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2266 << " common predecessors.\n");
2267 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2268 }
2269 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2270
2271 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2272 // of PredBB.
2273 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
2274 << "' into end of '" << PredBB->getName()
2275 << "' to eliminate branch on phi. Cost: "
2276 << DuplicationCost << " block is:" << *BB << "\n");
2277
2278 // Unless PredBB ends with an unconditional branch, split the edge so that we
2279 // can just clone the bits from BB into the end of the new PredBB.
2280 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2281
2282 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2283 BasicBlock *OldPredBB = PredBB;
2284 PredBB = SplitEdge(OldPredBB, BB);
2285 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2286 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2287 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2288 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2289 }
2290
2291 // We are going to have to map operands from the original BB block into the
2292 // PredBB block. Evaluate PHI nodes in BB.
2293 DenseMap<Instruction*, Value*> ValueMapping;
2294
2295 BasicBlock::iterator BI = BB->begin();
2296 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2297 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2298 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2299 // mapping and using it to remap operands in the cloned instructions.
2300 for (; BI != BB->end(); ++BI) {
2301 Instruction *New = BI->clone();
2302
2303 // Remap operands to patch up intra-block references.
2304 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2305 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2306 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2307 if (I != ValueMapping.end())
2308 New->setOperand(i, I->second);
2309 }
2310
2311 // If this instruction can be simplified after the operands are updated,
2312 // just use the simplified value instead. This frequently happens due to
2313 // phi translation.
2314 if (Value *IV = SimplifyInstruction(
2315 New,
2316 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2317 ValueMapping[&*BI] = IV;
2318 if (!New->mayHaveSideEffects()) {
2319 New->deleteValue();
2320 New = nullptr;
2321 }
2322 } else {
2323 ValueMapping[&*BI] = New;
2324 }
2325 if (New) {
2326 // Otherwise, insert the new instruction into the block.
2327 New->setName(BI->getName());
2328 PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2329 // Update Dominance from simplified New instruction operands.
2330 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2331 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2332 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2333 }
2334 }
2335
2336 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2337 // add entries to the PHI nodes for branch from PredBB now.
2338 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2339 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2340 ValueMapping);
2341 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2342 ValueMapping);
2343
2344 // If there were values defined in BB that are used outside the block, then we
2345 // now have to update all uses of the value to use either the original value,
2346 // the cloned value, or some PHI derived value. This can require arbitrary
2347 // PHI insertion, of which we are prepared to do, clean these up now.
2348 SSAUpdater SSAUpdate;
2349 SmallVector<Use*, 16> UsesToRename;
2350 for (Instruction &I : *BB) {
2351 // Scan all uses of this instruction to see if it is used outside of its
2352 // block, and if so, record them in UsesToRename.
2353 for (Use &U : I.uses()) {
2354 Instruction *User = cast<Instruction>(U.getUser());
2355 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2356 if (UserPN->getIncomingBlock(U) == BB)
2357 continue;
2358 } else if (User->getParent() == BB)
2359 continue;
2360
2361 UsesToRename.push_back(&U);
2362 }
2363
2364 // If there are no uses outside the block, we're done with this instruction.
2365 if (UsesToRename.empty())
2366 continue;
2367
2368 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2369
2370 // We found a use of I outside of BB. Rename all uses of I that are outside
2371 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2372 // with the two values we know.
2373 SSAUpdate.Initialize(I.getType(), I.getName());
2374 SSAUpdate.AddAvailableValue(BB, &I);
2375 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2376
2377 while (!UsesToRename.empty())
2378 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2379 LLVM_DEBUG(dbgs() << "\n");
2380 }
2381
2382 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2383 // that we nuked.
2384 BB->removePredecessor(PredBB, true);
2385
2386 // Remove the unconditional branch at the end of the PredBB block.
2387 OldPredBranch->eraseFromParent();
2388 DTU->applyUpdates(Updates);
2389
2390 ++NumDupes;
2391 return true;
2392 }
2393
2394 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2395 // a Select instruction in Pred. BB has other predecessors and SI is used in
2396 // a PHI node in BB. SI has no other use.
2397 // A new basic block, NewBB, is created and SI is converted to compare and
2398 // conditional branch. SI is erased from parent.
UnfoldSelectInstr(BasicBlock * Pred,BasicBlock * BB,SelectInst * SI,PHINode * SIUse,unsigned Idx)2399 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2400 SelectInst *SI, PHINode *SIUse,
2401 unsigned Idx) {
2402 // Expand the select.
2403 //
2404 // Pred --
2405 // | v
2406 // | NewBB
2407 // | |
2408 // |-----
2409 // v
2410 // BB
2411 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2412 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2413 BB->getParent(), BB);
2414 // Move the unconditional branch to NewBB.
2415 PredTerm->removeFromParent();
2416 NewBB->getInstList().insert(NewBB->end(), PredTerm);
2417 // Create a conditional branch and update PHI nodes.
2418 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2419 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2420 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2421
2422 // The select is now dead.
2423 SI->eraseFromParent();
2424 DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2425 {DominatorTree::Insert, Pred, NewBB}});
2426
2427 // Update any other PHI nodes in BB.
2428 for (BasicBlock::iterator BI = BB->begin();
2429 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2430 if (Phi != SIUse)
2431 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2432 }
2433
TryToUnfoldSelect(SwitchInst * SI,BasicBlock * BB)2434 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2435 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2436
2437 if (!CondPHI || CondPHI->getParent() != BB)
2438 return false;
2439
2440 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2441 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2442 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2443
2444 // The second and third condition can be potentially relaxed. Currently
2445 // the conditions help to simplify the code and allow us to reuse existing
2446 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2447 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2448 continue;
2449
2450 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2451 if (!PredTerm || !PredTerm->isUnconditional())
2452 continue;
2453
2454 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2455 return true;
2456 }
2457 return false;
2458 }
2459
2460 /// TryToUnfoldSelect - Look for blocks of the form
2461 /// bb1:
2462 /// %a = select
2463 /// br bb2
2464 ///
2465 /// bb2:
2466 /// %p = phi [%a, %bb1] ...
2467 /// %c = icmp %p
2468 /// br i1 %c
2469 ///
2470 /// And expand the select into a branch structure if one of its arms allows %c
2471 /// to be folded. This later enables threading from bb1 over bb2.
TryToUnfoldSelect(CmpInst * CondCmp,BasicBlock * BB)2472 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2473 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2474 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2475 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2476
2477 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2478 CondLHS->getParent() != BB)
2479 return false;
2480
2481 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2482 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2483 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2484
2485 // Look if one of the incoming values is a select in the corresponding
2486 // predecessor.
2487 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2488 continue;
2489
2490 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2491 if (!PredTerm || !PredTerm->isUnconditional())
2492 continue;
2493
2494 // Now check if one of the select values would allow us to constant fold the
2495 // terminator in BB. We don't do the transform if both sides fold, those
2496 // cases will be threaded in any case.
2497 if (DTU->hasPendingDomTreeUpdates())
2498 LVI->disableDT();
2499 else
2500 LVI->enableDT();
2501 LazyValueInfo::Tristate LHSFolds =
2502 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2503 CondRHS, Pred, BB, CondCmp);
2504 LazyValueInfo::Tristate RHSFolds =
2505 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2506 CondRHS, Pred, BB, CondCmp);
2507 if ((LHSFolds != LazyValueInfo::Unknown ||
2508 RHSFolds != LazyValueInfo::Unknown) &&
2509 LHSFolds != RHSFolds) {
2510 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2511 return true;
2512 }
2513 }
2514 return false;
2515 }
2516
2517 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2518 /// same BB in the form
2519 /// bb:
2520 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2521 /// %s = select %p, trueval, falseval
2522 ///
2523 /// or
2524 ///
2525 /// bb:
2526 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2527 /// %c = cmp %p, 0
2528 /// %s = select %c, trueval, falseval
2529 ///
2530 /// And expand the select into a branch structure. This later enables
2531 /// jump-threading over bb in this pass.
2532 ///
2533 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2534 /// select if the associated PHI has at least one constant. If the unfolded
2535 /// select is not jump-threaded, it will be folded again in the later
2536 /// optimizations.
TryToUnfoldSelectInCurrBB(BasicBlock * BB)2537 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2538 // If threading this would thread across a loop header, don't thread the edge.
2539 // See the comments above FindLoopHeaders for justifications and caveats.
2540 if (LoopHeaders.count(BB))
2541 return false;
2542
2543 for (BasicBlock::iterator BI = BB->begin();
2544 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2545 // Look for a Phi having at least one constant incoming value.
2546 if (llvm::all_of(PN->incoming_values(),
2547 [](Value *V) { return !isa<ConstantInt>(V); }))
2548 continue;
2549
2550 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2551 // Check if SI is in BB and use V as condition.
2552 if (SI->getParent() != BB)
2553 return false;
2554 Value *Cond = SI->getCondition();
2555 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2556 };
2557
2558 SelectInst *SI = nullptr;
2559 for (Use &U : PN->uses()) {
2560 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2561 // Look for a ICmp in BB that compares PN with a constant and is the
2562 // condition of a Select.
2563 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2564 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2565 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2566 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2567 SI = SelectI;
2568 break;
2569 }
2570 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2571 // Look for a Select in BB that uses PN as condition.
2572 if (isUnfoldCandidate(SelectI, U.get())) {
2573 SI = SelectI;
2574 break;
2575 }
2576 }
2577 }
2578
2579 if (!SI)
2580 continue;
2581 // Expand the select.
2582 Instruction *Term =
2583 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2584 BasicBlock *SplitBB = SI->getParent();
2585 BasicBlock *NewBB = Term->getParent();
2586 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2587 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2588 NewPN->addIncoming(SI->getFalseValue(), BB);
2589 SI->replaceAllUsesWith(NewPN);
2590 SI->eraseFromParent();
2591 // NewBB and SplitBB are newly created blocks which require insertion.
2592 std::vector<DominatorTree::UpdateType> Updates;
2593 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2594 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2595 Updates.push_back({DominatorTree::Insert, BB, NewBB});
2596 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2597 // BB's successors were moved to SplitBB, update DTU accordingly.
2598 for (auto *Succ : successors(SplitBB)) {
2599 Updates.push_back({DominatorTree::Delete, BB, Succ});
2600 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2601 }
2602 DTU->applyUpdates(Updates);
2603 return true;
2604 }
2605 return false;
2606 }
2607
2608 /// Try to propagate a guard from the current BB into one of its predecessors
2609 /// in case if another branch of execution implies that the condition of this
2610 /// guard is always true. Currently we only process the simplest case that
2611 /// looks like:
2612 ///
2613 /// Start:
2614 /// %cond = ...
2615 /// br i1 %cond, label %T1, label %F1
2616 /// T1:
2617 /// br label %Merge
2618 /// F1:
2619 /// br label %Merge
2620 /// Merge:
2621 /// %condGuard = ...
2622 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2623 ///
2624 /// And cond either implies condGuard or !condGuard. In this case all the
2625 /// instructions before the guard can be duplicated in both branches, and the
2626 /// guard is then threaded to one of them.
ProcessGuards(BasicBlock * BB)2627 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2628 using namespace PatternMatch;
2629
2630 // We only want to deal with two predecessors.
2631 BasicBlock *Pred1, *Pred2;
2632 auto PI = pred_begin(BB), PE = pred_end(BB);
2633 if (PI == PE)
2634 return false;
2635 Pred1 = *PI++;
2636 if (PI == PE)
2637 return false;
2638 Pred2 = *PI++;
2639 if (PI != PE)
2640 return false;
2641 if (Pred1 == Pred2)
2642 return false;
2643
2644 // Try to thread one of the guards of the block.
2645 // TODO: Look up deeper than to immediate predecessor?
2646 auto *Parent = Pred1->getSinglePredecessor();
2647 if (!Parent || Parent != Pred2->getSinglePredecessor())
2648 return false;
2649
2650 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2651 for (auto &I : *BB)
2652 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2653 return true;
2654
2655 return false;
2656 }
2657
2658 /// Try to propagate the guard from BB which is the lower block of a diamond
2659 /// to one of its branches, in case if diamond's condition implies guard's
2660 /// condition.
ThreadGuard(BasicBlock * BB,IntrinsicInst * Guard,BranchInst * BI)2661 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2662 BranchInst *BI) {
2663 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2664 assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2665 Value *GuardCond = Guard->getArgOperand(0);
2666 Value *BranchCond = BI->getCondition();
2667 BasicBlock *TrueDest = BI->getSuccessor(0);
2668 BasicBlock *FalseDest = BI->getSuccessor(1);
2669
2670 auto &DL = BB->getModule()->getDataLayout();
2671 bool TrueDestIsSafe = false;
2672 bool FalseDestIsSafe = false;
2673
2674 // True dest is safe if BranchCond => GuardCond.
2675 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2676 if (Impl && *Impl)
2677 TrueDestIsSafe = true;
2678 else {
2679 // False dest is safe if !BranchCond => GuardCond.
2680 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2681 if (Impl && *Impl)
2682 FalseDestIsSafe = true;
2683 }
2684
2685 if (!TrueDestIsSafe && !FalseDestIsSafe)
2686 return false;
2687
2688 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2689 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2690
2691 ValueToValueMapTy UnguardedMapping, GuardedMapping;
2692 Instruction *AfterGuard = Guard->getNextNode();
2693 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2694 if (Cost > BBDupThreshold)
2695 return false;
2696 // Duplicate all instructions before the guard and the guard itself to the
2697 // branch where implication is not proved.
2698 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2699 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2700 assert(GuardedBlock && "Could not create the guarded block?");
2701 // Duplicate all instructions before the guard in the unguarded branch.
2702 // Since we have successfully duplicated the guarded block and this block
2703 // has fewer instructions, we expect it to succeed.
2704 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2705 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2706 assert(UnguardedBlock && "Could not create the unguarded block?");
2707 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2708 << GuardedBlock->getName() << "\n");
2709 // Some instructions before the guard may still have uses. For them, we need
2710 // to create Phi nodes merging their copies in both guarded and unguarded
2711 // branches. Those instructions that have no uses can be just removed.
2712 SmallVector<Instruction *, 4> ToRemove;
2713 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2714 if (!isa<PHINode>(&*BI))
2715 ToRemove.push_back(&*BI);
2716
2717 Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2718 assert(InsertionPoint && "Empty block?");
2719 // Substitute with Phis & remove.
2720 for (auto *Inst : reverse(ToRemove)) {
2721 if (!Inst->use_empty()) {
2722 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2723 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2724 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2725 NewPN->insertBefore(InsertionPoint);
2726 Inst->replaceAllUsesWith(NewPN);
2727 }
2728 Inst->eraseFromParent();
2729 }
2730 return true;
2731 }
2732