1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DomTreeUpdater.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/BlockFrequency.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Scalar.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <memory>
78 #include <utility>
79 
80 using namespace llvm;
81 using namespace jumpthreading;
82 
83 #define DEBUG_TYPE "jump-threading"
84 
85 STATISTIC(NumThreads, "Number of jumps threaded");
86 STATISTIC(NumFolds,   "Number of terminators folded");
87 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
88 
89 static cl::opt<unsigned>
90 BBDuplicateThreshold("jump-threading-threshold",
91           cl::desc("Max block size to duplicate for jump threading"),
92           cl::init(6), cl::Hidden);
93 
94 static cl::opt<unsigned>
95 ImplicationSearchThreshold(
96   "jump-threading-implication-search-threshold",
97   cl::desc("The number of predecessors to search for a stronger "
98            "condition to use to thread over a weaker condition"),
99   cl::init(3), cl::Hidden);
100 
101 static cl::opt<bool> PrintLVIAfterJumpThreading(
102     "print-lvi-after-jump-threading",
103     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
104     cl::Hidden);
105 
106 namespace {
107 
108   /// This pass performs 'jump threading', which looks at blocks that have
109   /// multiple predecessors and multiple successors.  If one or more of the
110   /// predecessors of the block can be proven to always jump to one of the
111   /// successors, we forward the edge from the predecessor to the successor by
112   /// duplicating the contents of this block.
113   ///
114   /// An example of when this can occur is code like this:
115   ///
116   ///   if () { ...
117   ///     X = 4;
118   ///   }
119   ///   if (X < 3) {
120   ///
121   /// In this case, the unconditional branch at the end of the first if can be
122   /// revectored to the false side of the second if.
123   class JumpThreading : public FunctionPass {
124     JumpThreadingPass Impl;
125 
126   public:
127     static char ID; // Pass identification
128 
JumpThreading(int T=-1)129     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
130       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
131     }
132 
133     bool runOnFunction(Function &F) override;
134 
getAnalysisUsage(AnalysisUsage & AU) const135     void getAnalysisUsage(AnalysisUsage &AU) const override {
136       AU.addRequired<DominatorTreeWrapperPass>();
137       AU.addPreserved<DominatorTreeWrapperPass>();
138       AU.addRequired<AAResultsWrapperPass>();
139       AU.addRequired<LazyValueInfoWrapperPass>();
140       AU.addPreserved<LazyValueInfoWrapperPass>();
141       AU.addPreserved<GlobalsAAWrapperPass>();
142       AU.addRequired<TargetLibraryInfoWrapperPass>();
143     }
144 
releaseMemory()145     void releaseMemory() override { Impl.releaseMemory(); }
146   };
147 
148 } // end anonymous namespace
149 
150 char JumpThreading::ID = 0;
151 
152 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
153                 "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)154 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
157 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
158 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
159                 "Jump Threading", false, false)
160 
161 // Public interface to the Jump Threading pass
162 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
163   return new JumpThreading(Threshold);
164 }
165 
JumpThreadingPass(int T)166 JumpThreadingPass::JumpThreadingPass(int T) {
167   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
168 }
169 
170 // Update branch probability information according to conditional
171 // branch probability. This is usually made possible for cloned branches
172 // in inline instances by the context specific profile in the caller.
173 // For instance,
174 //
175 //  [Block PredBB]
176 //  [Branch PredBr]
177 //  if (t) {
178 //     Block A;
179 //  } else {
180 //     Block B;
181 //  }
182 //
183 //  [Block BB]
184 //  cond = PN([true, %A], [..., %B]); // PHI node
185 //  [Branch CondBr]
186 //  if (cond) {
187 //    ...  // P(cond == true) = 1%
188 //  }
189 //
190 //  Here we know that when block A is taken, cond must be true, which means
191 //      P(cond == true | A) = 1
192 //
193 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
194 //                               P(cond == true | B) * P(B)
195 //  we get:
196 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
197 //
198 //  which gives us:
199 //     P(A) is less than P(cond == true), i.e.
200 //     P(t == true) <= P(cond == true)
201 //
202 //  In other words, if we know P(cond == true) is unlikely, we know
203 //  that P(t == true) is also unlikely.
204 //
updatePredecessorProfileMetadata(PHINode * PN,BasicBlock * BB)205 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
206   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
207   if (!CondBr)
208     return;
209 
210   BranchProbability BP;
211   uint64_t TrueWeight, FalseWeight;
212   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
213     return;
214 
215   // Returns the outgoing edge of the dominating predecessor block
216   // that leads to the PhiNode's incoming block:
217   auto GetPredOutEdge =
218       [](BasicBlock *IncomingBB,
219          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
220     auto *PredBB = IncomingBB;
221     auto *SuccBB = PhiBB;
222     while (true) {
223       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
224       if (PredBr && PredBr->isConditional())
225         return {PredBB, SuccBB};
226       auto *SinglePredBB = PredBB->getSinglePredecessor();
227       if (!SinglePredBB)
228         return {nullptr, nullptr};
229       SuccBB = PredBB;
230       PredBB = SinglePredBB;
231     }
232   };
233 
234   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
235     Value *PhiOpnd = PN->getIncomingValue(i);
236     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
237 
238     if (!CI || !CI->getType()->isIntegerTy(1))
239       continue;
240 
241     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
242                             TrueWeight, TrueWeight + FalseWeight)
243                       : BranchProbability::getBranchProbability(
244                             FalseWeight, TrueWeight + FalseWeight));
245 
246     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
247     if (!PredOutEdge.first)
248       return;
249 
250     BasicBlock *PredBB = PredOutEdge.first;
251     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
252 
253     uint64_t PredTrueWeight, PredFalseWeight;
254     // FIXME: We currently only set the profile data when it is missing.
255     // With PGO, this can be used to refine even existing profile data with
256     // context information. This needs to be done after more performance
257     // testing.
258     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
259       continue;
260 
261     // We can not infer anything useful when BP >= 50%, because BP is the
262     // upper bound probability value.
263     if (BP >= BranchProbability(50, 100))
264       continue;
265 
266     SmallVector<uint32_t, 2> Weights;
267     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
268       Weights.push_back(BP.getNumerator());
269       Weights.push_back(BP.getCompl().getNumerator());
270     } else {
271       Weights.push_back(BP.getCompl().getNumerator());
272       Weights.push_back(BP.getNumerator());
273     }
274     PredBr->setMetadata(LLVMContext::MD_prof,
275                         MDBuilder(PredBr->getParent()->getContext())
276                             .createBranchWeights(Weights));
277   }
278 }
279 
280 /// runOnFunction - Toplevel algorithm.
runOnFunction(Function & F)281 bool JumpThreading::runOnFunction(Function &F) {
282   if (skipFunction(F))
283     return false;
284   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
285   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
286   // DT if it's available.
287   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
288   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
289   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
290   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
291   std::unique_ptr<BlockFrequencyInfo> BFI;
292   std::unique_ptr<BranchProbabilityInfo> BPI;
293   bool HasProfileData = F.hasProfileData();
294   if (HasProfileData) {
295     LoopInfo LI{DominatorTree(F)};
296     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
297     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
298   }
299 
300   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData,
301                               std::move(BFI), std::move(BPI));
302   if (PrintLVIAfterJumpThreading) {
303     dbgs() << "LVI for function '" << F.getName() << "':\n";
304     LVI->printLVI(F, *DT, dbgs());
305   }
306   return Changed;
307 }
308 
run(Function & F,FunctionAnalysisManager & AM)309 PreservedAnalyses JumpThreadingPass::run(Function &F,
310                                          FunctionAnalysisManager &AM) {
311   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
312   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
313   // DT if it's available.
314   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
315   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
316   auto &AA = AM.getResult<AAManager>(F);
317   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
318 
319   std::unique_ptr<BlockFrequencyInfo> BFI;
320   std::unique_ptr<BranchProbabilityInfo> BPI;
321   if (F.hasProfileData()) {
322     LoopInfo LI{DominatorTree(F)};
323     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
324     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
325   }
326 
327   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData,
328                          std::move(BFI), std::move(BPI));
329 
330   if (!Changed)
331     return PreservedAnalyses::all();
332   PreservedAnalyses PA;
333   PA.preserve<GlobalsAA>();
334   PA.preserve<DominatorTreeAnalysis>();
335   PA.preserve<LazyValueAnalysis>();
336   return PA;
337 }
338 
runImpl(Function & F,TargetLibraryInfo * TLI_,LazyValueInfo * LVI_,AliasAnalysis * AA_,DomTreeUpdater * DTU_,bool HasProfileData_,std::unique_ptr<BlockFrequencyInfo> BFI_,std::unique_ptr<BranchProbabilityInfo> BPI_)339 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
340                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
341                                 DomTreeUpdater *DTU_, bool HasProfileData_,
342                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
343                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
344   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
345   TLI = TLI_;
346   LVI = LVI_;
347   AA = AA_;
348   DTU = DTU_;
349   BFI.reset();
350   BPI.reset();
351   // When profile data is available, we need to update edge weights after
352   // successful jump threading, which requires both BPI and BFI being available.
353   HasProfileData = HasProfileData_;
354   auto *GuardDecl = F.getParent()->getFunction(
355       Intrinsic::getName(Intrinsic::experimental_guard));
356   HasGuards = GuardDecl && !GuardDecl->use_empty();
357   if (HasProfileData) {
358     BPI = std::move(BPI_);
359     BFI = std::move(BFI_);
360   }
361 
362   // JumpThreading must not processes blocks unreachable from entry. It's a
363   // waste of compute time and can potentially lead to hangs.
364   SmallPtrSet<BasicBlock *, 16> Unreachable;
365   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
366   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
367   DominatorTree &DT = DTU->getDomTree();
368   for (auto &BB : F)
369     if (!DT.isReachableFromEntry(&BB))
370       Unreachable.insert(&BB);
371 
372   FindLoopHeaders(F);
373 
374   bool EverChanged = false;
375   bool Changed;
376   do {
377     Changed = false;
378     for (auto &BB : F) {
379       if (Unreachable.count(&BB))
380         continue;
381       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
382         Changed = true;
383       // Stop processing BB if it's the entry or is now deleted. The following
384       // routines attempt to eliminate BB and locating a suitable replacement
385       // for the entry is non-trivial.
386       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
387         continue;
388 
389       if (pred_empty(&BB)) {
390         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
391         // the instructions in it. We must remove BB to prevent invalid IR.
392         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
393                           << "' with terminator: " << *BB.getTerminator()
394                           << '\n');
395         LoopHeaders.erase(&BB);
396         LVI->eraseBlock(&BB);
397         DeleteDeadBlock(&BB, DTU);
398         Changed = true;
399         continue;
400       }
401 
402       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
403       // is "almost empty", we attempt to merge BB with its sole successor.
404       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
405       if (BI && BI->isUnconditional() &&
406           // The terminator must be the only non-phi instruction in BB.
407           BB.getFirstNonPHIOrDbg()->isTerminator() &&
408           // Don't alter Loop headers and latches to ensure another pass can
409           // detect and transform nested loops later.
410           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
411           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
412         // BB is valid for cleanup here because we passed in DTU. F remains
413         // BB's parent until a DTU->getDomTree() event.
414         LVI->eraseBlock(&BB);
415         Changed = true;
416       }
417     }
418     EverChanged |= Changed;
419   } while (Changed);
420 
421   LoopHeaders.clear();
422   // Flush only the Dominator Tree.
423   DTU->getDomTree();
424   LVI->enableDT();
425   return EverChanged;
426 }
427 
428 // Replace uses of Cond with ToVal when safe to do so. If all uses are
429 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
430 // because we may incorrectly replace uses when guards/assumes are uses of
431 // of `Cond` and we used the guards/assume to reason about the `Cond` value
432 // at the end of block. RAUW unconditionally replaces all uses
433 // including the guards/assumes themselves and the uses before the
434 // guard/assume.
ReplaceFoldableUses(Instruction * Cond,Value * ToVal)435 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
436   assert(Cond->getType() == ToVal->getType());
437   auto *BB = Cond->getParent();
438   // We can unconditionally replace all uses in non-local blocks (i.e. uses
439   // strictly dominated by BB), since LVI information is true from the
440   // terminator of BB.
441   replaceNonLocalUsesWith(Cond, ToVal);
442   for (Instruction &I : reverse(*BB)) {
443     // Reached the Cond whose uses we are trying to replace, so there are no
444     // more uses.
445     if (&I == Cond)
446       break;
447     // We only replace uses in instructions that are guaranteed to reach the end
448     // of BB, where we know Cond is ToVal.
449     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
450       break;
451     I.replaceUsesOfWith(Cond, ToVal);
452   }
453   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
454     Cond->eraseFromParent();
455 }
456 
457 /// Return the cost of duplicating a piece of this block from first non-phi
458 /// and before StopAt instruction to thread across it. Stop scanning the block
459 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
getJumpThreadDuplicationCost(BasicBlock * BB,Instruction * StopAt,unsigned Threshold)460 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
461                                              Instruction *StopAt,
462                                              unsigned Threshold) {
463   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
464   /// Ignore PHI nodes, these will be flattened when duplication happens.
465   BasicBlock::const_iterator I(BB->getFirstNonPHI());
466 
467   // FIXME: THREADING will delete values that are just used to compute the
468   // branch, so they shouldn't count against the duplication cost.
469 
470   unsigned Bonus = 0;
471   if (BB->getTerminator() == StopAt) {
472     // Threading through a switch statement is particularly profitable.  If this
473     // block ends in a switch, decrease its cost to make it more likely to
474     // happen.
475     if (isa<SwitchInst>(StopAt))
476       Bonus = 6;
477 
478     // The same holds for indirect branches, but slightly more so.
479     if (isa<IndirectBrInst>(StopAt))
480       Bonus = 8;
481   }
482 
483   // Bump the threshold up so the early exit from the loop doesn't skip the
484   // terminator-based Size adjustment at the end.
485   Threshold += Bonus;
486 
487   // Sum up the cost of each instruction until we get to the terminator.  Don't
488   // include the terminator because the copy won't include it.
489   unsigned Size = 0;
490   for (; &*I != StopAt; ++I) {
491 
492     // Stop scanning the block if we've reached the threshold.
493     if (Size > Threshold)
494       return Size;
495 
496     // Debugger intrinsics don't incur code size.
497     if (isa<DbgInfoIntrinsic>(I)) continue;
498 
499     // If this is a pointer->pointer bitcast, it is free.
500     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
501       continue;
502 
503     // Bail out if this instruction gives back a token type, it is not possible
504     // to duplicate it if it is used outside this BB.
505     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
506       return ~0U;
507 
508     // All other instructions count for at least one unit.
509     ++Size;
510 
511     // Calls are more expensive.  If they are non-intrinsic calls, we model them
512     // as having cost of 4.  If they are a non-vector intrinsic, we model them
513     // as having cost of 2 total, and if they are a vector intrinsic, we model
514     // them as having cost 1.
515     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
516       if (CI->cannotDuplicate() || CI->isConvergent())
517         // Blocks with NoDuplicate are modelled as having infinite cost, so they
518         // are never duplicated.
519         return ~0U;
520       else if (!isa<IntrinsicInst>(CI))
521         Size += 3;
522       else if (!CI->getType()->isVectorTy())
523         Size += 1;
524     }
525   }
526 
527   return Size > Bonus ? Size - Bonus : 0;
528 }
529 
530 /// FindLoopHeaders - We do not want jump threading to turn proper loop
531 /// structures into irreducible loops.  Doing this breaks up the loop nesting
532 /// hierarchy and pessimizes later transformations.  To prevent this from
533 /// happening, we first have to find the loop headers.  Here we approximate this
534 /// by finding targets of backedges in the CFG.
535 ///
536 /// Note that there definitely are cases when we want to allow threading of
537 /// edges across a loop header.  For example, threading a jump from outside the
538 /// loop (the preheader) to an exit block of the loop is definitely profitable.
539 /// It is also almost always profitable to thread backedges from within the loop
540 /// to exit blocks, and is often profitable to thread backedges to other blocks
541 /// within the loop (forming a nested loop).  This simple analysis is not rich
542 /// enough to track all of these properties and keep it up-to-date as the CFG
543 /// mutates, so we don't allow any of these transformations.
FindLoopHeaders(Function & F)544 void JumpThreadingPass::FindLoopHeaders(Function &F) {
545   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
546   FindFunctionBackedges(F, Edges);
547 
548   for (const auto &Edge : Edges)
549     LoopHeaders.insert(Edge.second);
550 }
551 
552 /// getKnownConstant - Helper method to determine if we can thread over a
553 /// terminator with the given value as its condition, and if so what value to
554 /// use for that. What kind of value this is depends on whether we want an
555 /// integer or a block address, but an undef is always accepted.
556 /// Returns null if Val is null or not an appropriate constant.
getKnownConstant(Value * Val,ConstantPreference Preference)557 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
558   if (!Val)
559     return nullptr;
560 
561   // Undef is "known" enough.
562   if (UndefValue *U = dyn_cast<UndefValue>(Val))
563     return U;
564 
565   if (Preference == WantBlockAddress)
566     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
567 
568   return dyn_cast<ConstantInt>(Val);
569 }
570 
571 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
572 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
573 /// in any of our predecessors.  If so, return the known list of value and pred
574 /// BB in the result vector.
575 ///
576 /// This returns true if there were any known values.
ComputeValueKnownInPredecessorsImpl(Value * V,BasicBlock * BB,PredValueInfo & Result,ConstantPreference Preference,DenseSet<std::pair<Value *,BasicBlock * >> & RecursionSet,Instruction * CxtI)577 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
578     Value *V, BasicBlock *BB, PredValueInfo &Result,
579     ConstantPreference Preference,
580     DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet,
581     Instruction *CxtI) {
582   // This method walks up use-def chains recursively.  Because of this, we could
583   // get into an infinite loop going around loops in the use-def chain.  To
584   // prevent this, keep track of what (value, block) pairs we've already visited
585   // and terminate the search if we loop back to them
586   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
587     return false;
588 
589   // If V is a constant, then it is known in all predecessors.
590   if (Constant *KC = getKnownConstant(V, Preference)) {
591     for (BasicBlock *Pred : predecessors(BB))
592       Result.push_back(std::make_pair(KC, Pred));
593 
594     return !Result.empty();
595   }
596 
597   // If V is a non-instruction value, or an instruction in a different block,
598   // then it can't be derived from a PHI.
599   Instruction *I = dyn_cast<Instruction>(V);
600   if (!I || I->getParent() != BB) {
601 
602     // Okay, if this is a live-in value, see if it has a known value at the end
603     // of any of our predecessors.
604     //
605     // FIXME: This should be an edge property, not a block end property.
606     /// TODO: Per PR2563, we could infer value range information about a
607     /// predecessor based on its terminator.
608     //
609     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
610     // "I" is a non-local compare-with-a-constant instruction.  This would be
611     // able to handle value inequalities better, for example if the compare is
612     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
613     // Perhaps getConstantOnEdge should be smart enough to do this?
614 
615     if (DTU->hasPendingDomTreeUpdates())
616       LVI->disableDT();
617     else
618       LVI->enableDT();
619     for (BasicBlock *P : predecessors(BB)) {
620       // If the value is known by LazyValueInfo to be a constant in a
621       // predecessor, use that information to try to thread this block.
622       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
623       if (Constant *KC = getKnownConstant(PredCst, Preference))
624         Result.push_back(std::make_pair(KC, P));
625     }
626 
627     return !Result.empty();
628   }
629 
630   /// If I is a PHI node, then we know the incoming values for any constants.
631   if (PHINode *PN = dyn_cast<PHINode>(I)) {
632     if (DTU->hasPendingDomTreeUpdates())
633       LVI->disableDT();
634     else
635       LVI->enableDT();
636     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
637       Value *InVal = PN->getIncomingValue(i);
638       if (Constant *KC = getKnownConstant(InVal, Preference)) {
639         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
640       } else {
641         Constant *CI = LVI->getConstantOnEdge(InVal,
642                                               PN->getIncomingBlock(i),
643                                               BB, CxtI);
644         if (Constant *KC = getKnownConstant(CI, Preference))
645           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
646       }
647     }
648 
649     return !Result.empty();
650   }
651 
652   // Handle Cast instructions.  Only see through Cast when the source operand is
653   // PHI or Cmp to save the compilation time.
654   if (CastInst *CI = dyn_cast<CastInst>(I)) {
655     Value *Source = CI->getOperand(0);
656     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
657       return false;
658     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
659                                         RecursionSet, CxtI);
660     if (Result.empty())
661       return false;
662 
663     // Convert the known values.
664     for (auto &R : Result)
665       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
666 
667     return true;
668   }
669 
670   // Handle some boolean conditions.
671   if (I->getType()->getPrimitiveSizeInBits() == 1) {
672     assert(Preference == WantInteger && "One-bit non-integer type?");
673     // X | true -> true
674     // X & false -> false
675     if (I->getOpcode() == Instruction::Or ||
676         I->getOpcode() == Instruction::And) {
677       PredValueInfoTy LHSVals, RHSVals;
678 
679       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
680                                       WantInteger, RecursionSet, CxtI);
681       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
682                                           WantInteger, RecursionSet, CxtI);
683 
684       if (LHSVals.empty() && RHSVals.empty())
685         return false;
686 
687       ConstantInt *InterestingVal;
688       if (I->getOpcode() == Instruction::Or)
689         InterestingVal = ConstantInt::getTrue(I->getContext());
690       else
691         InterestingVal = ConstantInt::getFalse(I->getContext());
692 
693       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
694 
695       // Scan for the sentinel.  If we find an undef, force it to the
696       // interesting value: x|undef -> true and x&undef -> false.
697       for (const auto &LHSVal : LHSVals)
698         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
699           Result.emplace_back(InterestingVal, LHSVal.second);
700           LHSKnownBBs.insert(LHSVal.second);
701         }
702       for (const auto &RHSVal : RHSVals)
703         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
704           // If we already inferred a value for this block on the LHS, don't
705           // re-add it.
706           if (!LHSKnownBBs.count(RHSVal.second))
707             Result.emplace_back(InterestingVal, RHSVal.second);
708         }
709 
710       return !Result.empty();
711     }
712 
713     // Handle the NOT form of XOR.
714     if (I->getOpcode() == Instruction::Xor &&
715         isa<ConstantInt>(I->getOperand(1)) &&
716         cast<ConstantInt>(I->getOperand(1))->isOne()) {
717       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
718                                           WantInteger, RecursionSet, CxtI);
719       if (Result.empty())
720         return false;
721 
722       // Invert the known values.
723       for (auto &R : Result)
724         R.first = ConstantExpr::getNot(R.first);
725 
726       return true;
727     }
728 
729   // Try to simplify some other binary operator values.
730   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
731     assert(Preference != WantBlockAddress
732             && "A binary operator creating a block address?");
733     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
734       PredValueInfoTy LHSVals;
735       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
736                                           WantInteger, RecursionSet, CxtI);
737 
738       // Try to use constant folding to simplify the binary operator.
739       for (const auto &LHSVal : LHSVals) {
740         Constant *V = LHSVal.first;
741         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
742 
743         if (Constant *KC = getKnownConstant(Folded, WantInteger))
744           Result.push_back(std::make_pair(KC, LHSVal.second));
745       }
746     }
747 
748     return !Result.empty();
749   }
750 
751   // Handle compare with phi operand, where the PHI is defined in this block.
752   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
753     assert(Preference == WantInteger && "Compares only produce integers");
754     Type *CmpType = Cmp->getType();
755     Value *CmpLHS = Cmp->getOperand(0);
756     Value *CmpRHS = Cmp->getOperand(1);
757     CmpInst::Predicate Pred = Cmp->getPredicate();
758 
759     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
760     if (!PN)
761       PN = dyn_cast<PHINode>(CmpRHS);
762     if (PN && PN->getParent() == BB) {
763       const DataLayout &DL = PN->getModule()->getDataLayout();
764       // We can do this simplification if any comparisons fold to true or false.
765       // See if any do.
766       if (DTU->hasPendingDomTreeUpdates())
767         LVI->disableDT();
768       else
769         LVI->enableDT();
770       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
771         BasicBlock *PredBB = PN->getIncomingBlock(i);
772         Value *LHS, *RHS;
773         if (PN == CmpLHS) {
774           LHS = PN->getIncomingValue(i);
775           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
776         } else {
777           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
778           RHS = PN->getIncomingValue(i);
779         }
780         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
781         if (!Res) {
782           if (!isa<Constant>(RHS))
783             continue;
784 
785           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
786           auto LHSInst = dyn_cast<Instruction>(LHS);
787           if (LHSInst && LHSInst->getParent() == BB)
788             continue;
789 
790           LazyValueInfo::Tristate
791             ResT = LVI->getPredicateOnEdge(Pred, LHS,
792                                            cast<Constant>(RHS), PredBB, BB,
793                                            CxtI ? CxtI : Cmp);
794           if (ResT == LazyValueInfo::Unknown)
795             continue;
796           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
797         }
798 
799         if (Constant *KC = getKnownConstant(Res, WantInteger))
800           Result.push_back(std::make_pair(KC, PredBB));
801       }
802 
803       return !Result.empty();
804     }
805 
806     // If comparing a live-in value against a constant, see if we know the
807     // live-in value on any predecessors.
808     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
809       Constant *CmpConst = cast<Constant>(CmpRHS);
810 
811       if (!isa<Instruction>(CmpLHS) ||
812           cast<Instruction>(CmpLHS)->getParent() != BB) {
813         if (DTU->hasPendingDomTreeUpdates())
814           LVI->disableDT();
815         else
816           LVI->enableDT();
817         for (BasicBlock *P : predecessors(BB)) {
818           // If the value is known by LazyValueInfo to be a constant in a
819           // predecessor, use that information to try to thread this block.
820           LazyValueInfo::Tristate Res =
821             LVI->getPredicateOnEdge(Pred, CmpLHS,
822                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
823           if (Res == LazyValueInfo::Unknown)
824             continue;
825 
826           Constant *ResC = ConstantInt::get(CmpType, Res);
827           Result.push_back(std::make_pair(ResC, P));
828         }
829 
830         return !Result.empty();
831       }
832 
833       // InstCombine can fold some forms of constant range checks into
834       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
835       // x as a live-in.
836       {
837         using namespace PatternMatch;
838 
839         Value *AddLHS;
840         ConstantInt *AddConst;
841         if (isa<ConstantInt>(CmpConst) &&
842             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
843           if (!isa<Instruction>(AddLHS) ||
844               cast<Instruction>(AddLHS)->getParent() != BB) {
845             if (DTU->hasPendingDomTreeUpdates())
846               LVI->disableDT();
847             else
848               LVI->enableDT();
849             for (BasicBlock *P : predecessors(BB)) {
850               // If the value is known by LazyValueInfo to be a ConstantRange in
851               // a predecessor, use that information to try to thread this
852               // block.
853               ConstantRange CR = LVI->getConstantRangeOnEdge(
854                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
855               // Propagate the range through the addition.
856               CR = CR.add(AddConst->getValue());
857 
858               // Get the range where the compare returns true.
859               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
860                   Pred, cast<ConstantInt>(CmpConst)->getValue());
861 
862               Constant *ResC;
863               if (CmpRange.contains(CR))
864                 ResC = ConstantInt::getTrue(CmpType);
865               else if (CmpRange.inverse().contains(CR))
866                 ResC = ConstantInt::getFalse(CmpType);
867               else
868                 continue;
869 
870               Result.push_back(std::make_pair(ResC, P));
871             }
872 
873             return !Result.empty();
874           }
875         }
876       }
877 
878       // Try to find a constant value for the LHS of a comparison,
879       // and evaluate it statically if we can.
880       PredValueInfoTy LHSVals;
881       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
882                                           WantInteger, RecursionSet, CxtI);
883 
884       for (const auto &LHSVal : LHSVals) {
885         Constant *V = LHSVal.first;
886         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
887         if (Constant *KC = getKnownConstant(Folded, WantInteger))
888           Result.push_back(std::make_pair(KC, LHSVal.second));
889       }
890 
891       return !Result.empty();
892     }
893   }
894 
895   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
896     // Handle select instructions where at least one operand is a known constant
897     // and we can figure out the condition value for any predecessor block.
898     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
899     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
900     PredValueInfoTy Conds;
901     if ((TrueVal || FalseVal) &&
902         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
903                                             WantInteger, RecursionSet, CxtI)) {
904       for (auto &C : Conds) {
905         Constant *Cond = C.first;
906 
907         // Figure out what value to use for the condition.
908         bool KnownCond;
909         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
910           // A known boolean.
911           KnownCond = CI->isOne();
912         } else {
913           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
914           // Either operand will do, so be sure to pick the one that's a known
915           // constant.
916           // FIXME: Do this more cleverly if both values are known constants?
917           KnownCond = (TrueVal != nullptr);
918         }
919 
920         // See if the select has a known constant value for this predecessor.
921         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
922           Result.push_back(std::make_pair(Val, C.second));
923       }
924 
925       return !Result.empty();
926     }
927   }
928 
929   // If all else fails, see if LVI can figure out a constant value for us.
930   if (DTU->hasPendingDomTreeUpdates())
931     LVI->disableDT();
932   else
933     LVI->enableDT();
934   Constant *CI = LVI->getConstant(V, BB, CxtI);
935   if (Constant *KC = getKnownConstant(CI, Preference)) {
936     for (BasicBlock *Pred : predecessors(BB))
937       Result.push_back(std::make_pair(KC, Pred));
938   }
939 
940   return !Result.empty();
941 }
942 
943 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
944 /// in an undefined jump, decide which block is best to revector to.
945 ///
946 /// Since we can pick an arbitrary destination, we pick the successor with the
947 /// fewest predecessors.  This should reduce the in-degree of the others.
GetBestDestForJumpOnUndef(BasicBlock * BB)948 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
949   Instruction *BBTerm = BB->getTerminator();
950   unsigned MinSucc = 0;
951   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
952   // Compute the successor with the minimum number of predecessors.
953   unsigned MinNumPreds = pred_size(TestBB);
954   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
955     TestBB = BBTerm->getSuccessor(i);
956     unsigned NumPreds = pred_size(TestBB);
957     if (NumPreds < MinNumPreds) {
958       MinSucc = i;
959       MinNumPreds = NumPreds;
960     }
961   }
962 
963   return MinSucc;
964 }
965 
hasAddressTakenAndUsed(BasicBlock * BB)966 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
967   if (!BB->hasAddressTaken()) return false;
968 
969   // If the block has its address taken, it may be a tree of dead constants
970   // hanging off of it.  These shouldn't keep the block alive.
971   BlockAddress *BA = BlockAddress::get(BB);
972   BA->removeDeadConstantUsers();
973   return !BA->use_empty();
974 }
975 
976 /// ProcessBlock - If there are any predecessors whose control can be threaded
977 /// through to a successor, transform them now.
ProcessBlock(BasicBlock * BB)978 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
979   // If the block is trivially dead, just return and let the caller nuke it.
980   // This simplifies other transformations.
981   if (DTU->isBBPendingDeletion(BB) ||
982       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
983     return false;
984 
985   // If this block has a single predecessor, and if that pred has a single
986   // successor, merge the blocks.  This encourages recursive jump threading
987   // because now the condition in this block can be threaded through
988   // predecessors of our predecessor block.
989   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
990     const Instruction *TI = SinglePred->getTerminator();
991     if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 &&
992         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
993       // If SinglePred was a loop header, BB becomes one.
994       if (LoopHeaders.erase(SinglePred))
995         LoopHeaders.insert(BB);
996 
997       LVI->eraseBlock(SinglePred);
998       MergeBasicBlockIntoOnlyPred(BB, DTU);
999 
1000       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1001       // BB code within one basic block `BB`), we need to invalidate the LVI
1002       // information associated with BB, because the LVI information need not be
1003       // true for all of BB after the merge. For example,
1004       // Before the merge, LVI info and code is as follows:
1005       // SinglePred: <LVI info1 for %p val>
1006       // %y = use of %p
1007       // call @exit() // need not transfer execution to successor.
1008       // assume(%p) // from this point on %p is true
1009       // br label %BB
1010       // BB: <LVI info2 for %p val, i.e. %p is true>
1011       // %x = use of %p
1012       // br label exit
1013       //
1014       // Note that this LVI info for blocks BB and SinglPred is correct for %p
1015       // (info2 and info1 respectively). After the merge and the deletion of the
1016       // LVI info1 for SinglePred. We have the following code:
1017       // BB: <LVI info2 for %p val>
1018       // %y = use of %p
1019       // call @exit()
1020       // assume(%p)
1021       // %x = use of %p <-- LVI info2 is correct from here onwards.
1022       // br label exit
1023       // LVI info2 for BB is incorrect at the beginning of BB.
1024 
1025       // Invalidate LVI information for BB if the LVI is not provably true for
1026       // all of BB.
1027       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1028         LVI->eraseBlock(BB);
1029       return true;
1030     }
1031   }
1032 
1033   if (TryToUnfoldSelectInCurrBB(BB))
1034     return true;
1035 
1036   // Look if we can propagate guards to predecessors.
1037   if (HasGuards && ProcessGuards(BB))
1038     return true;
1039 
1040   // What kind of constant we're looking for.
1041   ConstantPreference Preference = WantInteger;
1042 
1043   // Look to see if the terminator is a conditional branch, switch or indirect
1044   // branch, if not we can't thread it.
1045   Value *Condition;
1046   Instruction *Terminator = BB->getTerminator();
1047   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1048     // Can't thread an unconditional jump.
1049     if (BI->isUnconditional()) return false;
1050     Condition = BI->getCondition();
1051   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1052     Condition = SI->getCondition();
1053   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1054     // Can't thread indirect branch with no successors.
1055     if (IB->getNumSuccessors() == 0) return false;
1056     Condition = IB->getAddress()->stripPointerCasts();
1057     Preference = WantBlockAddress;
1058   } else {
1059     return false; // Must be an invoke.
1060   }
1061 
1062   // Run constant folding to see if we can reduce the condition to a simple
1063   // constant.
1064   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1065     Value *SimpleVal =
1066         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1067     if (SimpleVal) {
1068       I->replaceAllUsesWith(SimpleVal);
1069       if (isInstructionTriviallyDead(I, TLI))
1070         I->eraseFromParent();
1071       Condition = SimpleVal;
1072     }
1073   }
1074 
1075   // If the terminator is branching on an undef, we can pick any of the
1076   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1077   if (isa<UndefValue>(Condition)) {
1078     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1079     std::vector<DominatorTree::UpdateType> Updates;
1080 
1081     // Fold the branch/switch.
1082     Instruction *BBTerm = BB->getTerminator();
1083     Updates.reserve(BBTerm->getNumSuccessors());
1084     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1085       if (i == BestSucc) continue;
1086       BasicBlock *Succ = BBTerm->getSuccessor(i);
1087       Succ->removePredecessor(BB, true);
1088       Updates.push_back({DominatorTree::Delete, BB, Succ});
1089     }
1090 
1091     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1092                       << "' folding undef terminator: " << *BBTerm << '\n');
1093     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1094     BBTerm->eraseFromParent();
1095     DTU->applyUpdates(Updates);
1096     return true;
1097   }
1098 
1099   // If the terminator of this block is branching on a constant, simplify the
1100   // terminator to an unconditional branch.  This can occur due to threading in
1101   // other blocks.
1102   if (getKnownConstant(Condition, Preference)) {
1103     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1104                       << "' folding terminator: " << *BB->getTerminator()
1105                       << '\n');
1106     ++NumFolds;
1107     ConstantFoldTerminator(BB, true, nullptr, DTU);
1108     return true;
1109   }
1110 
1111   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1112 
1113   // All the rest of our checks depend on the condition being an instruction.
1114   if (!CondInst) {
1115     // FIXME: Unify this with code below.
1116     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1117       return true;
1118     return false;
1119   }
1120 
1121   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1122     // If we're branching on a conditional, LVI might be able to determine
1123     // it's value at the branch instruction.  We only handle comparisons
1124     // against a constant at this time.
1125     // TODO: This should be extended to handle switches as well.
1126     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1127     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1128     if (CondBr && CondConst) {
1129       // We should have returned as soon as we turn a conditional branch to
1130       // unconditional. Because its no longer interesting as far as jump
1131       // threading is concerned.
1132       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1133 
1134       if (DTU->hasPendingDomTreeUpdates())
1135         LVI->disableDT();
1136       else
1137         LVI->enableDT();
1138       LazyValueInfo::Tristate Ret =
1139         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1140                             CondConst, CondBr);
1141       if (Ret != LazyValueInfo::Unknown) {
1142         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1143         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1144         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1145         ToRemoveSucc->removePredecessor(BB, true);
1146         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1147         CondBr->eraseFromParent();
1148         if (CondCmp->use_empty())
1149           CondCmp->eraseFromParent();
1150         // We can safely replace *some* uses of the CondInst if it has
1151         // exactly one value as returned by LVI. RAUW is incorrect in the
1152         // presence of guards and assumes, that have the `Cond` as the use. This
1153         // is because we use the guards/assume to reason about the `Cond` value
1154         // at the end of block, but RAUW unconditionally replaces all uses
1155         // including the guards/assumes themselves and the uses before the
1156         // guard/assume.
1157         else if (CondCmp->getParent() == BB) {
1158           auto *CI = Ret == LazyValueInfo::True ?
1159             ConstantInt::getTrue(CondCmp->getType()) :
1160             ConstantInt::getFalse(CondCmp->getType());
1161           ReplaceFoldableUses(CondCmp, CI);
1162         }
1163         DTU->deleteEdgeRelaxed(BB, ToRemoveSucc);
1164         return true;
1165       }
1166 
1167       // We did not manage to simplify this branch, try to see whether
1168       // CondCmp depends on a known phi-select pattern.
1169       if (TryToUnfoldSelect(CondCmp, BB))
1170         return true;
1171     }
1172   }
1173 
1174   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1175     TryToUnfoldSelect(SI, BB);
1176 
1177   // Check for some cases that are worth simplifying.  Right now we want to look
1178   // for loads that are used by a switch or by the condition for the branch.  If
1179   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1180   // which can then be used to thread the values.
1181   Value *SimplifyValue = CondInst;
1182   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1183     if (isa<Constant>(CondCmp->getOperand(1)))
1184       SimplifyValue = CondCmp->getOperand(0);
1185 
1186   // TODO: There are other places where load PRE would be profitable, such as
1187   // more complex comparisons.
1188   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1189     if (SimplifyPartiallyRedundantLoad(LoadI))
1190       return true;
1191 
1192   // Before threading, try to propagate profile data backwards:
1193   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1194     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1195       updatePredecessorProfileMetadata(PN, BB);
1196 
1197   // Handle a variety of cases where we are branching on something derived from
1198   // a PHI node in the current block.  If we can prove that any predecessors
1199   // compute a predictable value based on a PHI node, thread those predecessors.
1200   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1201     return true;
1202 
1203   // If this is an otherwise-unfoldable branch on a phi node in the current
1204   // block, see if we can simplify.
1205   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1206     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1207       return ProcessBranchOnPHI(PN);
1208 
1209   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1210   if (CondInst->getOpcode() == Instruction::Xor &&
1211       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1212     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1213 
1214   // Search for a stronger dominating condition that can be used to simplify a
1215   // conditional branch leaving BB.
1216   if (ProcessImpliedCondition(BB))
1217     return true;
1218 
1219   return false;
1220 }
1221 
ProcessImpliedCondition(BasicBlock * BB)1222 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1223   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1224   if (!BI || !BI->isConditional())
1225     return false;
1226 
1227   Value *Cond = BI->getCondition();
1228   BasicBlock *CurrentBB = BB;
1229   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1230   unsigned Iter = 0;
1231 
1232   auto &DL = BB->getModule()->getDataLayout();
1233 
1234   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1235     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1236     if (!PBI || !PBI->isConditional())
1237       return false;
1238     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1239       return false;
1240 
1241     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1242     Optional<bool> Implication =
1243         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1244     if (Implication) {
1245       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1246       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1247       RemoveSucc->removePredecessor(BB);
1248       BranchInst::Create(KeepSucc, BI);
1249       BI->eraseFromParent();
1250       DTU->deleteEdgeRelaxed(BB, RemoveSucc);
1251       return true;
1252     }
1253     CurrentBB = CurrentPred;
1254     CurrentPred = CurrentBB->getSinglePredecessor();
1255   }
1256 
1257   return false;
1258 }
1259 
1260 /// Return true if Op is an instruction defined in the given block.
isOpDefinedInBlock(Value * Op,BasicBlock * BB)1261 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1262   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1263     if (OpInst->getParent() == BB)
1264       return true;
1265   return false;
1266 }
1267 
1268 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1269 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1270 /// This is an important optimization that encourages jump threading, and needs
1271 /// to be run interlaced with other jump threading tasks.
SimplifyPartiallyRedundantLoad(LoadInst * LoadI)1272 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1273   // Don't hack volatile and ordered loads.
1274   if (!LoadI->isUnordered()) return false;
1275 
1276   // If the load is defined in a block with exactly one predecessor, it can't be
1277   // partially redundant.
1278   BasicBlock *LoadBB = LoadI->getParent();
1279   if (LoadBB->getSinglePredecessor())
1280     return false;
1281 
1282   // If the load is defined in an EH pad, it can't be partially redundant,
1283   // because the edges between the invoke and the EH pad cannot have other
1284   // instructions between them.
1285   if (LoadBB->isEHPad())
1286     return false;
1287 
1288   Value *LoadedPtr = LoadI->getOperand(0);
1289 
1290   // If the loaded operand is defined in the LoadBB and its not a phi,
1291   // it can't be available in predecessors.
1292   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1293     return false;
1294 
1295   // Scan a few instructions up from the load, to see if it is obviously live at
1296   // the entry to its block.
1297   BasicBlock::iterator BBIt(LoadI);
1298   bool IsLoadCSE;
1299   if (Value *AvailableVal = FindAvailableLoadedValue(
1300           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1301     // If the value of the load is locally available within the block, just use
1302     // it.  This frequently occurs for reg2mem'd allocas.
1303 
1304     if (IsLoadCSE) {
1305       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1306       combineMetadataForCSE(NLoadI, LoadI, false);
1307     };
1308 
1309     // If the returned value is the load itself, replace with an undef. This can
1310     // only happen in dead loops.
1311     if (AvailableVal == LoadI)
1312       AvailableVal = UndefValue::get(LoadI->getType());
1313     if (AvailableVal->getType() != LoadI->getType())
1314       AvailableVal = CastInst::CreateBitOrPointerCast(
1315           AvailableVal, LoadI->getType(), "", LoadI);
1316     LoadI->replaceAllUsesWith(AvailableVal);
1317     LoadI->eraseFromParent();
1318     return true;
1319   }
1320 
1321   // Otherwise, if we scanned the whole block and got to the top of the block,
1322   // we know the block is locally transparent to the load.  If not, something
1323   // might clobber its value.
1324   if (BBIt != LoadBB->begin())
1325     return false;
1326 
1327   // If all of the loads and stores that feed the value have the same AA tags,
1328   // then we can propagate them onto any newly inserted loads.
1329   AAMDNodes AATags;
1330   LoadI->getAAMetadata(AATags);
1331 
1332   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1333 
1334   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1335 
1336   AvailablePredsTy AvailablePreds;
1337   BasicBlock *OneUnavailablePred = nullptr;
1338   SmallVector<LoadInst*, 8> CSELoads;
1339 
1340   // If we got here, the loaded value is transparent through to the start of the
1341   // block.  Check to see if it is available in any of the predecessor blocks.
1342   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1343     // If we already scanned this predecessor, skip it.
1344     if (!PredsScanned.insert(PredBB).second)
1345       continue;
1346 
1347     BBIt = PredBB->end();
1348     unsigned NumScanedInst = 0;
1349     Value *PredAvailable = nullptr;
1350     // NOTE: We don't CSE load that is volatile or anything stronger than
1351     // unordered, that should have been checked when we entered the function.
1352     assert(LoadI->isUnordered() &&
1353            "Attempting to CSE volatile or atomic loads");
1354     // If this is a load on a phi pointer, phi-translate it and search
1355     // for available load/store to the pointer in predecessors.
1356     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1357     PredAvailable = FindAvailablePtrLoadStore(
1358         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1359         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1360 
1361     // If PredBB has a single predecessor, continue scanning through the
1362     // single predecessor.
1363     BasicBlock *SinglePredBB = PredBB;
1364     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1365            NumScanedInst < DefMaxInstsToScan) {
1366       SinglePredBB = SinglePredBB->getSinglePredecessor();
1367       if (SinglePredBB) {
1368         BBIt = SinglePredBB->end();
1369         PredAvailable = FindAvailablePtrLoadStore(
1370             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1371             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1372             &NumScanedInst);
1373       }
1374     }
1375 
1376     if (!PredAvailable) {
1377       OneUnavailablePred = PredBB;
1378       continue;
1379     }
1380 
1381     if (IsLoadCSE)
1382       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1383 
1384     // If so, this load is partially redundant.  Remember this info so that we
1385     // can create a PHI node.
1386     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1387   }
1388 
1389   // If the loaded value isn't available in any predecessor, it isn't partially
1390   // redundant.
1391   if (AvailablePreds.empty()) return false;
1392 
1393   // Okay, the loaded value is available in at least one (and maybe all!)
1394   // predecessors.  If the value is unavailable in more than one unique
1395   // predecessor, we want to insert a merge block for those common predecessors.
1396   // This ensures that we only have to insert one reload, thus not increasing
1397   // code size.
1398   BasicBlock *UnavailablePred = nullptr;
1399 
1400   // If the value is unavailable in one of predecessors, we will end up
1401   // inserting a new instruction into them. It is only valid if all the
1402   // instructions before LoadI are guaranteed to pass execution to its
1403   // successor, or if LoadI is safe to speculate.
1404   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1405   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1406   // It requires domination tree analysis, so for this simple case it is an
1407   // overkill.
1408   if (PredsScanned.size() != AvailablePreds.size() &&
1409       !isSafeToSpeculativelyExecute(LoadI))
1410     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1411       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1412         return false;
1413 
1414   // If there is exactly one predecessor where the value is unavailable, the
1415   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1416   // unconditional branch, we know that it isn't a critical edge.
1417   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1418       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1419     UnavailablePred = OneUnavailablePred;
1420   } else if (PredsScanned.size() != AvailablePreds.size()) {
1421     // Otherwise, we had multiple unavailable predecessors or we had a critical
1422     // edge from the one.
1423     SmallVector<BasicBlock*, 8> PredsToSplit;
1424     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1425 
1426     for (const auto &AvailablePred : AvailablePreds)
1427       AvailablePredSet.insert(AvailablePred.first);
1428 
1429     // Add all the unavailable predecessors to the PredsToSplit list.
1430     for (BasicBlock *P : predecessors(LoadBB)) {
1431       // If the predecessor is an indirect goto, we can't split the edge.
1432       if (isa<IndirectBrInst>(P->getTerminator()))
1433         return false;
1434 
1435       if (!AvailablePredSet.count(P))
1436         PredsToSplit.push_back(P);
1437     }
1438 
1439     // Split them out to their own block.
1440     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1441   }
1442 
1443   // If the value isn't available in all predecessors, then there will be
1444   // exactly one where it isn't available.  Insert a load on that edge and add
1445   // it to the AvailablePreds list.
1446   if (UnavailablePred) {
1447     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1448            "Can't handle critical edge here!");
1449     LoadInst *NewVal =
1450         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1451                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1452                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1453                      UnavailablePred->getTerminator());
1454     NewVal->setDebugLoc(LoadI->getDebugLoc());
1455     if (AATags)
1456       NewVal->setAAMetadata(AATags);
1457 
1458     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1459   }
1460 
1461   // Now we know that each predecessor of this block has a value in
1462   // AvailablePreds, sort them for efficient access as we're walking the preds.
1463   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1464 
1465   // Create a PHI node at the start of the block for the PRE'd load value.
1466   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1467   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1468                                 &LoadBB->front());
1469   PN->takeName(LoadI);
1470   PN->setDebugLoc(LoadI->getDebugLoc());
1471 
1472   // Insert new entries into the PHI for each predecessor.  A single block may
1473   // have multiple entries here.
1474   for (pred_iterator PI = PB; PI != PE; ++PI) {
1475     BasicBlock *P = *PI;
1476     AvailablePredsTy::iterator I =
1477       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1478                        std::make_pair(P, (Value*)nullptr));
1479 
1480     assert(I != AvailablePreds.end() && I->first == P &&
1481            "Didn't find entry for predecessor!");
1482 
1483     // If we have an available predecessor but it requires casting, insert the
1484     // cast in the predecessor and use the cast. Note that we have to update the
1485     // AvailablePreds vector as we go so that all of the PHI entries for this
1486     // predecessor use the same bitcast.
1487     Value *&PredV = I->second;
1488     if (PredV->getType() != LoadI->getType())
1489       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1490                                                P->getTerminator());
1491 
1492     PN->addIncoming(PredV, I->first);
1493   }
1494 
1495   for (LoadInst *PredLoadI : CSELoads) {
1496     combineMetadataForCSE(PredLoadI, LoadI, true);
1497   }
1498 
1499   LoadI->replaceAllUsesWith(PN);
1500   LoadI->eraseFromParent();
1501 
1502   return true;
1503 }
1504 
1505 /// FindMostPopularDest - The specified list contains multiple possible
1506 /// threadable destinations.  Pick the one that occurs the most frequently in
1507 /// the list.
1508 static BasicBlock *
FindMostPopularDest(BasicBlock * BB,const SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & PredToDestList)1509 FindMostPopularDest(BasicBlock *BB,
1510                     const SmallVectorImpl<std::pair<BasicBlock *,
1511                                           BasicBlock *>> &PredToDestList) {
1512   assert(!PredToDestList.empty());
1513 
1514   // Determine popularity.  If there are multiple possible destinations, we
1515   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1516   // blocks with known and real destinations to threading undef.  We'll handle
1517   // them later if interesting.
1518   DenseMap<BasicBlock*, unsigned> DestPopularity;
1519   for (const auto &PredToDest : PredToDestList)
1520     if (PredToDest.second)
1521       DestPopularity[PredToDest.second]++;
1522 
1523   if (DestPopularity.empty())
1524     return nullptr;
1525 
1526   // Find the most popular dest.
1527   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1528   BasicBlock *MostPopularDest = DPI->first;
1529   unsigned Popularity = DPI->second;
1530   SmallVector<BasicBlock*, 4> SamePopularity;
1531 
1532   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1533     // If the popularity of this entry isn't higher than the popularity we've
1534     // seen so far, ignore it.
1535     if (DPI->second < Popularity)
1536       ; // ignore.
1537     else if (DPI->second == Popularity) {
1538       // If it is the same as what we've seen so far, keep track of it.
1539       SamePopularity.push_back(DPI->first);
1540     } else {
1541       // If it is more popular, remember it.
1542       SamePopularity.clear();
1543       MostPopularDest = DPI->first;
1544       Popularity = DPI->second;
1545     }
1546   }
1547 
1548   // Okay, now we know the most popular destination.  If there is more than one
1549   // destination, we need to determine one.  This is arbitrary, but we need
1550   // to make a deterministic decision.  Pick the first one that appears in the
1551   // successor list.
1552   if (!SamePopularity.empty()) {
1553     SamePopularity.push_back(MostPopularDest);
1554     Instruction *TI = BB->getTerminator();
1555     for (unsigned i = 0; ; ++i) {
1556       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1557 
1558       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1559         continue;
1560 
1561       MostPopularDest = TI->getSuccessor(i);
1562       break;
1563     }
1564   }
1565 
1566   // Okay, we have finally picked the most popular destination.
1567   return MostPopularDest;
1568 }
1569 
ProcessThreadableEdges(Value * Cond,BasicBlock * BB,ConstantPreference Preference,Instruction * CxtI)1570 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1571                                                ConstantPreference Preference,
1572                                                Instruction *CxtI) {
1573   // If threading this would thread across a loop header, don't even try to
1574   // thread the edge.
1575   if (LoopHeaders.count(BB))
1576     return false;
1577 
1578   PredValueInfoTy PredValues;
1579   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1580     return false;
1581 
1582   assert(!PredValues.empty() &&
1583          "ComputeValueKnownInPredecessors returned true with no values");
1584 
1585   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1586              for (const auto &PredValue : PredValues) {
1587                dbgs() << "  BB '" << BB->getName()
1588                       << "': FOUND condition = " << *PredValue.first
1589                       << " for pred '" << PredValue.second->getName() << "'.\n";
1590   });
1591 
1592   // Decide what we want to thread through.  Convert our list of known values to
1593   // a list of known destinations for each pred.  This also discards duplicate
1594   // predecessors and keeps track of the undefined inputs (which are represented
1595   // as a null dest in the PredToDestList).
1596   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1597   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1598 
1599   BasicBlock *OnlyDest = nullptr;
1600   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1601   Constant *OnlyVal = nullptr;
1602   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1603 
1604   unsigned PredWithKnownDest = 0;
1605   for (const auto &PredValue : PredValues) {
1606     BasicBlock *Pred = PredValue.second;
1607     if (!SeenPreds.insert(Pred).second)
1608       continue;  // Duplicate predecessor entry.
1609 
1610     Constant *Val = PredValue.first;
1611 
1612     BasicBlock *DestBB;
1613     if (isa<UndefValue>(Val))
1614       DestBB = nullptr;
1615     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1616       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1617       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1618     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1619       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1620       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1621     } else {
1622       assert(isa<IndirectBrInst>(BB->getTerminator())
1623               && "Unexpected terminator");
1624       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1625       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1626     }
1627 
1628     // If we have exactly one destination, remember it for efficiency below.
1629     if (PredToDestList.empty()) {
1630       OnlyDest = DestBB;
1631       OnlyVal = Val;
1632     } else {
1633       if (OnlyDest != DestBB)
1634         OnlyDest = MultipleDestSentinel;
1635       // It possible we have same destination, but different value, e.g. default
1636       // case in switchinst.
1637       if (Val != OnlyVal)
1638         OnlyVal = MultipleVal;
1639     }
1640 
1641     // We know where this predecessor is going.
1642     ++PredWithKnownDest;
1643 
1644     // If the predecessor ends with an indirect goto, we can't change its
1645     // destination.
1646     if (isa<IndirectBrInst>(Pred->getTerminator()))
1647       continue;
1648 
1649     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1650   }
1651 
1652   // If all edges were unthreadable, we fail.
1653   if (PredToDestList.empty())
1654     return false;
1655 
1656   // If all the predecessors go to a single known successor, we want to fold,
1657   // not thread. By doing so, we do not need to duplicate the current block and
1658   // also miss potential opportunities in case we dont/cant duplicate.
1659   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1660     if (PredWithKnownDest == (size_t)pred_size(BB)) {
1661       bool SeenFirstBranchToOnlyDest = false;
1662       std::vector <DominatorTree::UpdateType> Updates;
1663       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1664       for (BasicBlock *SuccBB : successors(BB)) {
1665         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1666           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1667         } else {
1668           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1669           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1670         }
1671       }
1672 
1673       // Finally update the terminator.
1674       Instruction *Term = BB->getTerminator();
1675       BranchInst::Create(OnlyDest, Term);
1676       Term->eraseFromParent();
1677       DTU->applyUpdates(Updates);
1678 
1679       // If the condition is now dead due to the removal of the old terminator,
1680       // erase it.
1681       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1682         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1683           CondInst->eraseFromParent();
1684         // We can safely replace *some* uses of the CondInst if it has
1685         // exactly one value as returned by LVI. RAUW is incorrect in the
1686         // presence of guards and assumes, that have the `Cond` as the use. This
1687         // is because we use the guards/assume to reason about the `Cond` value
1688         // at the end of block, but RAUW unconditionally replaces all uses
1689         // including the guards/assumes themselves and the uses before the
1690         // guard/assume.
1691         else if (OnlyVal && OnlyVal != MultipleVal &&
1692                  CondInst->getParent() == BB)
1693           ReplaceFoldableUses(CondInst, OnlyVal);
1694       }
1695       return true;
1696     }
1697   }
1698 
1699   // Determine which is the most common successor.  If we have many inputs and
1700   // this block is a switch, we want to start by threading the batch that goes
1701   // to the most popular destination first.  If we only know about one
1702   // threadable destination (the common case) we can avoid this.
1703   BasicBlock *MostPopularDest = OnlyDest;
1704 
1705   if (MostPopularDest == MultipleDestSentinel) {
1706     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1707     // won't process them, but we might have other destination that are eligible
1708     // and we still want to process.
1709     erase_if(PredToDestList,
1710              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1711                return LoopHeaders.count(PredToDest.second) != 0;
1712              });
1713 
1714     if (PredToDestList.empty())
1715       return false;
1716 
1717     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1718   }
1719 
1720   // Now that we know what the most popular destination is, factor all
1721   // predecessors that will jump to it into a single predecessor.
1722   SmallVector<BasicBlock*, 16> PredsToFactor;
1723   for (const auto &PredToDest : PredToDestList)
1724     if (PredToDest.second == MostPopularDest) {
1725       BasicBlock *Pred = PredToDest.first;
1726 
1727       // This predecessor may be a switch or something else that has multiple
1728       // edges to the block.  Factor each of these edges by listing them
1729       // according to # occurrences in PredsToFactor.
1730       for (BasicBlock *Succ : successors(Pred))
1731         if (Succ == BB)
1732           PredsToFactor.push_back(Pred);
1733     }
1734 
1735   // If the threadable edges are branching on an undefined value, we get to pick
1736   // the destination that these predecessors should get to.
1737   if (!MostPopularDest)
1738     MostPopularDest = BB->getTerminator()->
1739                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1740 
1741   // Ok, try to thread it!
1742   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1743 }
1744 
1745 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1746 /// a PHI node in the current block.  See if there are any simplifications we
1747 /// can do based on inputs to the phi node.
ProcessBranchOnPHI(PHINode * PN)1748 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1749   BasicBlock *BB = PN->getParent();
1750 
1751   // TODO: We could make use of this to do it once for blocks with common PHI
1752   // values.
1753   SmallVector<BasicBlock*, 1> PredBBs;
1754   PredBBs.resize(1);
1755 
1756   // If any of the predecessor blocks end in an unconditional branch, we can
1757   // *duplicate* the conditional branch into that block in order to further
1758   // encourage jump threading and to eliminate cases where we have branch on a
1759   // phi of an icmp (branch on icmp is much better).
1760   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1761     BasicBlock *PredBB = PN->getIncomingBlock(i);
1762     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1763       if (PredBr->isUnconditional()) {
1764         PredBBs[0] = PredBB;
1765         // Try to duplicate BB into PredBB.
1766         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1767           return true;
1768       }
1769   }
1770 
1771   return false;
1772 }
1773 
1774 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1775 /// a xor instruction in the current block.  See if there are any
1776 /// simplifications we can do based on inputs to the xor.
ProcessBranchOnXOR(BinaryOperator * BO)1777 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1778   BasicBlock *BB = BO->getParent();
1779 
1780   // If either the LHS or RHS of the xor is a constant, don't do this
1781   // optimization.
1782   if (isa<ConstantInt>(BO->getOperand(0)) ||
1783       isa<ConstantInt>(BO->getOperand(1)))
1784     return false;
1785 
1786   // If the first instruction in BB isn't a phi, we won't be able to infer
1787   // anything special about any particular predecessor.
1788   if (!isa<PHINode>(BB->front()))
1789     return false;
1790 
1791   // If this BB is a landing pad, we won't be able to split the edge into it.
1792   if (BB->isEHPad())
1793     return false;
1794 
1795   // If we have a xor as the branch input to this block, and we know that the
1796   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1797   // the condition into the predecessor and fix that value to true, saving some
1798   // logical ops on that path and encouraging other paths to simplify.
1799   //
1800   // This copies something like this:
1801   //
1802   //  BB:
1803   //    %X = phi i1 [1],  [%X']
1804   //    %Y = icmp eq i32 %A, %B
1805   //    %Z = xor i1 %X, %Y
1806   //    br i1 %Z, ...
1807   //
1808   // Into:
1809   //  BB':
1810   //    %Y = icmp ne i32 %A, %B
1811   //    br i1 %Y, ...
1812 
1813   PredValueInfoTy XorOpValues;
1814   bool isLHS = true;
1815   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1816                                        WantInteger, BO)) {
1817     assert(XorOpValues.empty());
1818     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1819                                          WantInteger, BO))
1820       return false;
1821     isLHS = false;
1822   }
1823 
1824   assert(!XorOpValues.empty() &&
1825          "ComputeValueKnownInPredecessors returned true with no values");
1826 
1827   // Scan the information to see which is most popular: true or false.  The
1828   // predecessors can be of the set true, false, or undef.
1829   unsigned NumTrue = 0, NumFalse = 0;
1830   for (const auto &XorOpValue : XorOpValues) {
1831     if (isa<UndefValue>(XorOpValue.first))
1832       // Ignore undefs for the count.
1833       continue;
1834     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1835       ++NumFalse;
1836     else
1837       ++NumTrue;
1838   }
1839 
1840   // Determine which value to split on, true, false, or undef if neither.
1841   ConstantInt *SplitVal = nullptr;
1842   if (NumTrue > NumFalse)
1843     SplitVal = ConstantInt::getTrue(BB->getContext());
1844   else if (NumTrue != 0 || NumFalse != 0)
1845     SplitVal = ConstantInt::getFalse(BB->getContext());
1846 
1847   // Collect all of the blocks that this can be folded into so that we can
1848   // factor this once and clone it once.
1849   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1850   for (const auto &XorOpValue : XorOpValues) {
1851     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1852       continue;
1853 
1854     BlocksToFoldInto.push_back(XorOpValue.second);
1855   }
1856 
1857   // If we inferred a value for all of the predecessors, then duplication won't
1858   // help us.  However, we can just replace the LHS or RHS with the constant.
1859   if (BlocksToFoldInto.size() ==
1860       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1861     if (!SplitVal) {
1862       // If all preds provide undef, just nuke the xor, because it is undef too.
1863       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1864       BO->eraseFromParent();
1865     } else if (SplitVal->isZero()) {
1866       // If all preds provide 0, replace the xor with the other input.
1867       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1868       BO->eraseFromParent();
1869     } else {
1870       // If all preds provide 1, set the computed value to 1.
1871       BO->setOperand(!isLHS, SplitVal);
1872     }
1873 
1874     return true;
1875   }
1876 
1877   // Try to duplicate BB into PredBB.
1878   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1879 }
1880 
1881 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1882 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1883 /// NewPred using the entries from OldPred (suitably mapped).
AddPHINodeEntriesForMappedBlock(BasicBlock * PHIBB,BasicBlock * OldPred,BasicBlock * NewPred,DenseMap<Instruction *,Value * > & ValueMap)1884 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1885                                             BasicBlock *OldPred,
1886                                             BasicBlock *NewPred,
1887                                      DenseMap<Instruction*, Value*> &ValueMap) {
1888   for (PHINode &PN : PHIBB->phis()) {
1889     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1890     // DestBlock.
1891     Value *IV = PN.getIncomingValueForBlock(OldPred);
1892 
1893     // Remap the value if necessary.
1894     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1895       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1896       if (I != ValueMap.end())
1897         IV = I->second;
1898     }
1899 
1900     PN.addIncoming(IV, NewPred);
1901   }
1902 }
1903 
1904 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1905 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1906 /// across BB.  Transform the IR to reflect this change.
ThreadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)1907 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1908                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1909                                    BasicBlock *SuccBB) {
1910   // If threading to the same block as we come from, we would infinite loop.
1911   if (SuccBB == BB) {
1912     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1913                       << "' - would thread to self!\n");
1914     return false;
1915   }
1916 
1917   // If threading this would thread across a loop header, don't thread the edge.
1918   // See the comments above FindLoopHeaders for justifications and caveats.
1919   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1920     LLVM_DEBUG({
1921       bool BBIsHeader = LoopHeaders.count(BB);
1922       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1923       dbgs() << "  Not threading across "
1924           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1925           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1926           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1927     });
1928     return false;
1929   }
1930 
1931   unsigned JumpThreadCost =
1932       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1933   if (JumpThreadCost > BBDupThreshold) {
1934     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1935                       << "' - Cost is too high: " << JumpThreadCost << "\n");
1936     return false;
1937   }
1938 
1939   // And finally, do it!  Start by factoring the predecessors if needed.
1940   BasicBlock *PredBB;
1941   if (PredBBs.size() == 1)
1942     PredBB = PredBBs[0];
1943   else {
1944     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1945                       << " common predecessors.\n");
1946     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1947   }
1948 
1949   // And finally, do it!
1950   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
1951                     << "' to '" << SuccBB->getName()
1952                     << "' with cost: " << JumpThreadCost
1953                     << ", across block:\n    " << *BB << "\n");
1954 
1955   if (DTU->hasPendingDomTreeUpdates())
1956     LVI->disableDT();
1957   else
1958     LVI->enableDT();
1959   LVI->threadEdge(PredBB, BB, SuccBB);
1960 
1961   // We are going to have to map operands from the original BB block to the new
1962   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1963   // account for entry from PredBB.
1964   DenseMap<Instruction*, Value*> ValueMapping;
1965 
1966   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1967                                          BB->getName()+".thread",
1968                                          BB->getParent(), BB);
1969   NewBB->moveAfter(PredBB);
1970 
1971   // Set the block frequency of NewBB.
1972   if (HasProfileData) {
1973     auto NewBBFreq =
1974         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1975     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1976   }
1977 
1978   BasicBlock::iterator BI = BB->begin();
1979   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1980     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1981 
1982   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1983   // mapping and using it to remap operands in the cloned instructions.
1984   for (; !BI->isTerminator(); ++BI) {
1985     Instruction *New = BI->clone();
1986     New->setName(BI->getName());
1987     NewBB->getInstList().push_back(New);
1988     ValueMapping[&*BI] = New;
1989 
1990     // Remap operands to patch up intra-block references.
1991     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1992       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1993         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1994         if (I != ValueMapping.end())
1995           New->setOperand(i, I->second);
1996       }
1997   }
1998 
1999   // We didn't copy the terminator from BB over to NewBB, because there is now
2000   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2001   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2002   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2003 
2004   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2005   // PHI nodes for NewBB now.
2006   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2007 
2008   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2009   // eliminates predecessors from BB, which requires us to simplify any PHI
2010   // nodes in BB.
2011   Instruction *PredTerm = PredBB->getTerminator();
2012   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2013     if (PredTerm->getSuccessor(i) == BB) {
2014       BB->removePredecessor(PredBB, true);
2015       PredTerm->setSuccessor(i, NewBB);
2016     }
2017 
2018   // Enqueue required DT updates.
2019   DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2020                      {DominatorTree::Insert, PredBB, NewBB},
2021                      {DominatorTree::Delete, PredBB, BB}});
2022 
2023   // If there were values defined in BB that are used outside the block, then we
2024   // now have to update all uses of the value to use either the original value,
2025   // the cloned value, or some PHI derived value.  This can require arbitrary
2026   // PHI insertion, of which we are prepared to do, clean these up now.
2027   SSAUpdater SSAUpdate;
2028   SmallVector<Use*, 16> UsesToRename;
2029 
2030   for (Instruction &I : *BB) {
2031     // Scan all uses of this instruction to see if their uses are no longer
2032     // dominated by the previous def and if so, record them in UsesToRename.
2033     // Also, skip phi operands from PredBB - we'll remove them anyway.
2034     for (Use &U : I.uses()) {
2035       Instruction *User = cast<Instruction>(U.getUser());
2036       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2037         if (UserPN->getIncomingBlock(U) == BB)
2038           continue;
2039       } else if (User->getParent() == BB)
2040         continue;
2041 
2042       UsesToRename.push_back(&U);
2043     }
2044 
2045     // If there are no uses outside the block, we're done with this instruction.
2046     if (UsesToRename.empty())
2047       continue;
2048     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2049 
2050     // We found a use of I outside of BB.  Rename all uses of I that are outside
2051     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2052     // with the two values we know.
2053     SSAUpdate.Initialize(I.getType(), I.getName());
2054     SSAUpdate.AddAvailableValue(BB, &I);
2055     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2056 
2057     while (!UsesToRename.empty())
2058       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2059     LLVM_DEBUG(dbgs() << "\n");
2060   }
2061 
2062   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2063   // over the new instructions and zap any that are constants or dead.  This
2064   // frequently happens because of phi translation.
2065   SimplifyInstructionsInBlock(NewBB, TLI);
2066 
2067   // Update the edge weight from BB to SuccBB, which should be less than before.
2068   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2069 
2070   // Threaded an edge!
2071   ++NumThreads;
2072   return true;
2073 }
2074 
2075 /// Create a new basic block that will be the predecessor of BB and successor of
2076 /// all blocks in Preds. When profile data is available, update the frequency of
2077 /// this new block.
SplitBlockPreds(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix)2078 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2079                                                ArrayRef<BasicBlock *> Preds,
2080                                                const char *Suffix) {
2081   SmallVector<BasicBlock *, 2> NewBBs;
2082 
2083   // Collect the frequencies of all predecessors of BB, which will be used to
2084   // update the edge weight of the result of splitting predecessors.
2085   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2086   if (HasProfileData)
2087     for (auto Pred : Preds)
2088       FreqMap.insert(std::make_pair(
2089           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2090 
2091   // In the case when BB is a LandingPad block we create 2 new predecessors
2092   // instead of just one.
2093   if (BB->isLandingPad()) {
2094     std::string NewName = std::string(Suffix) + ".split-lp";
2095     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2096   } else {
2097     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2098   }
2099 
2100   std::vector<DominatorTree::UpdateType> Updates;
2101   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2102   for (auto NewBB : NewBBs) {
2103     BlockFrequency NewBBFreq(0);
2104     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2105     for (auto Pred : predecessors(NewBB)) {
2106       Updates.push_back({DominatorTree::Delete, Pred, BB});
2107       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2108       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2109         NewBBFreq += FreqMap.lookup(Pred);
2110     }
2111     if (HasProfileData) // Apply the summed frequency to NewBB.
2112       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2113   }
2114 
2115   DTU->applyUpdates(Updates);
2116   return NewBBs[0];
2117 }
2118 
doesBlockHaveProfileData(BasicBlock * BB)2119 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2120   const Instruction *TI = BB->getTerminator();
2121   assert(TI->getNumSuccessors() > 1 && "not a split");
2122 
2123   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2124   if (!WeightsNode)
2125     return false;
2126 
2127   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2128   if (MDName->getString() != "branch_weights")
2129     return false;
2130 
2131   // Ensure there are weights for all of the successors. Note that the first
2132   // operand to the metadata node is a name, not a weight.
2133   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2134 }
2135 
2136 /// Update the block frequency of BB and branch weight and the metadata on the
2137 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2138 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
UpdateBlockFreqAndEdgeWeight(BasicBlock * PredBB,BasicBlock * BB,BasicBlock * NewBB,BasicBlock * SuccBB)2139 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2140                                                      BasicBlock *BB,
2141                                                      BasicBlock *NewBB,
2142                                                      BasicBlock *SuccBB) {
2143   if (!HasProfileData)
2144     return;
2145 
2146   assert(BFI && BPI && "BFI & BPI should have been created here");
2147 
2148   // As the edge from PredBB to BB is deleted, we have to update the block
2149   // frequency of BB.
2150   auto BBOrigFreq = BFI->getBlockFreq(BB);
2151   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2152   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2153   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2154   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2155 
2156   // Collect updated outgoing edges' frequencies from BB and use them to update
2157   // edge probabilities.
2158   SmallVector<uint64_t, 4> BBSuccFreq;
2159   for (BasicBlock *Succ : successors(BB)) {
2160     auto SuccFreq = (Succ == SuccBB)
2161                         ? BB2SuccBBFreq - NewBBFreq
2162                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2163     BBSuccFreq.push_back(SuccFreq.getFrequency());
2164   }
2165 
2166   uint64_t MaxBBSuccFreq =
2167       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2168 
2169   SmallVector<BranchProbability, 4> BBSuccProbs;
2170   if (MaxBBSuccFreq == 0)
2171     BBSuccProbs.assign(BBSuccFreq.size(),
2172                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2173   else {
2174     for (uint64_t Freq : BBSuccFreq)
2175       BBSuccProbs.push_back(
2176           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2177     // Normalize edge probabilities so that they sum up to one.
2178     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2179                                               BBSuccProbs.end());
2180   }
2181 
2182   // Update edge probabilities in BPI.
2183   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2184     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2185 
2186   // Update the profile metadata as well.
2187   //
2188   // Don't do this if the profile of the transformed blocks was statically
2189   // estimated.  (This could occur despite the function having an entry
2190   // frequency in completely cold parts of the CFG.)
2191   //
2192   // In this case we don't want to suggest to subsequent passes that the
2193   // calculated weights are fully consistent.  Consider this graph:
2194   //
2195   //                 check_1
2196   //             50% /  |
2197   //             eq_1   | 50%
2198   //                 \  |
2199   //                 check_2
2200   //             50% /  |
2201   //             eq_2   | 50%
2202   //                 \  |
2203   //                 check_3
2204   //             50% /  |
2205   //             eq_3   | 50%
2206   //                 \  |
2207   //
2208   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2209   // the overall probabilities are inconsistent; the total probability that the
2210   // value is either 1, 2 or 3 is 150%.
2211   //
2212   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2213   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2214   // the loop exit edge.  Then based solely on static estimation we would assume
2215   // the loop was extremely hot.
2216   //
2217   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2218   // shouldn't make edges extremely likely or unlikely based solely on static
2219   // estimation.
2220   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2221     SmallVector<uint32_t, 4> Weights;
2222     for (auto Prob : BBSuccProbs)
2223       Weights.push_back(Prob.getNumerator());
2224 
2225     auto TI = BB->getTerminator();
2226     TI->setMetadata(
2227         LLVMContext::MD_prof,
2228         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2229   }
2230 }
2231 
2232 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2233 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2234 /// If we can duplicate the contents of BB up into PredBB do so now, this
2235 /// improves the odds that the branch will be on an analyzable instruction like
2236 /// a compare.
DuplicateCondBranchOnPHIIntoPred(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs)2237 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2238     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2239   assert(!PredBBs.empty() && "Can't handle an empty set");
2240 
2241   // If BB is a loop header, then duplicating this block outside the loop would
2242   // cause us to transform this into an irreducible loop, don't do this.
2243   // See the comments above FindLoopHeaders for justifications and caveats.
2244   if (LoopHeaders.count(BB)) {
2245     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2246                       << "' into predecessor block '" << PredBBs[0]->getName()
2247                       << "' - it might create an irreducible loop!\n");
2248     return false;
2249   }
2250 
2251   unsigned DuplicationCost =
2252       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2253   if (DuplicationCost > BBDupThreshold) {
2254     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2255                       << "' - Cost is too high: " << DuplicationCost << "\n");
2256     return false;
2257   }
2258 
2259   // And finally, do it!  Start by factoring the predecessors if needed.
2260   std::vector<DominatorTree::UpdateType> Updates;
2261   BasicBlock *PredBB;
2262   if (PredBBs.size() == 1)
2263     PredBB = PredBBs[0];
2264   else {
2265     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2266                       << " common predecessors.\n");
2267     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2268   }
2269   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2270 
2271   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2272   // of PredBB.
2273   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2274                     << "' into end of '" << PredBB->getName()
2275                     << "' to eliminate branch on phi.  Cost: "
2276                     << DuplicationCost << " block is:" << *BB << "\n");
2277 
2278   // Unless PredBB ends with an unconditional branch, split the edge so that we
2279   // can just clone the bits from BB into the end of the new PredBB.
2280   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2281 
2282   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2283     BasicBlock *OldPredBB = PredBB;
2284     PredBB = SplitEdge(OldPredBB, BB);
2285     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2286     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2287     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2288     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2289   }
2290 
2291   // We are going to have to map operands from the original BB block into the
2292   // PredBB block.  Evaluate PHI nodes in BB.
2293   DenseMap<Instruction*, Value*> ValueMapping;
2294 
2295   BasicBlock::iterator BI = BB->begin();
2296   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2297     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2298   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2299   // mapping and using it to remap operands in the cloned instructions.
2300   for (; BI != BB->end(); ++BI) {
2301     Instruction *New = BI->clone();
2302 
2303     // Remap operands to patch up intra-block references.
2304     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2305       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2306         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2307         if (I != ValueMapping.end())
2308           New->setOperand(i, I->second);
2309       }
2310 
2311     // If this instruction can be simplified after the operands are updated,
2312     // just use the simplified value instead.  This frequently happens due to
2313     // phi translation.
2314     if (Value *IV = SimplifyInstruction(
2315             New,
2316             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2317       ValueMapping[&*BI] = IV;
2318       if (!New->mayHaveSideEffects()) {
2319         New->deleteValue();
2320         New = nullptr;
2321       }
2322     } else {
2323       ValueMapping[&*BI] = New;
2324     }
2325     if (New) {
2326       // Otherwise, insert the new instruction into the block.
2327       New->setName(BI->getName());
2328       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2329       // Update Dominance from simplified New instruction operands.
2330       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2331         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2332           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2333     }
2334   }
2335 
2336   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2337   // add entries to the PHI nodes for branch from PredBB now.
2338   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2339   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2340                                   ValueMapping);
2341   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2342                                   ValueMapping);
2343 
2344   // If there were values defined in BB that are used outside the block, then we
2345   // now have to update all uses of the value to use either the original value,
2346   // the cloned value, or some PHI derived value.  This can require arbitrary
2347   // PHI insertion, of which we are prepared to do, clean these up now.
2348   SSAUpdater SSAUpdate;
2349   SmallVector<Use*, 16> UsesToRename;
2350   for (Instruction &I : *BB) {
2351     // Scan all uses of this instruction to see if it is used outside of its
2352     // block, and if so, record them in UsesToRename.
2353     for (Use &U : I.uses()) {
2354       Instruction *User = cast<Instruction>(U.getUser());
2355       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2356         if (UserPN->getIncomingBlock(U) == BB)
2357           continue;
2358       } else if (User->getParent() == BB)
2359         continue;
2360 
2361       UsesToRename.push_back(&U);
2362     }
2363 
2364     // If there are no uses outside the block, we're done with this instruction.
2365     if (UsesToRename.empty())
2366       continue;
2367 
2368     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2369 
2370     // We found a use of I outside of BB.  Rename all uses of I that are outside
2371     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2372     // with the two values we know.
2373     SSAUpdate.Initialize(I.getType(), I.getName());
2374     SSAUpdate.AddAvailableValue(BB, &I);
2375     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2376 
2377     while (!UsesToRename.empty())
2378       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2379     LLVM_DEBUG(dbgs() << "\n");
2380   }
2381 
2382   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2383   // that we nuked.
2384   BB->removePredecessor(PredBB, true);
2385 
2386   // Remove the unconditional branch at the end of the PredBB block.
2387   OldPredBranch->eraseFromParent();
2388   DTU->applyUpdates(Updates);
2389 
2390   ++NumDupes;
2391   return true;
2392 }
2393 
2394 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2395 // a Select instruction in Pred. BB has other predecessors and SI is used in
2396 // a PHI node in BB. SI has no other use.
2397 // A new basic block, NewBB, is created and SI is converted to compare and
2398 // conditional branch. SI is erased from parent.
UnfoldSelectInstr(BasicBlock * Pred,BasicBlock * BB,SelectInst * SI,PHINode * SIUse,unsigned Idx)2399 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2400                                           SelectInst *SI, PHINode *SIUse,
2401                                           unsigned Idx) {
2402   // Expand the select.
2403   //
2404   // Pred --
2405   //  |    v
2406   //  |  NewBB
2407   //  |    |
2408   //  |-----
2409   //  v
2410   // BB
2411   BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2412   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2413                                          BB->getParent(), BB);
2414   // Move the unconditional branch to NewBB.
2415   PredTerm->removeFromParent();
2416   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2417   // Create a conditional branch and update PHI nodes.
2418   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2419   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2420   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2421 
2422   // The select is now dead.
2423   SI->eraseFromParent();
2424   DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2425                     {DominatorTree::Insert, Pred, NewBB}});
2426 
2427   // Update any other PHI nodes in BB.
2428   for (BasicBlock::iterator BI = BB->begin();
2429        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2430     if (Phi != SIUse)
2431       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2432 }
2433 
TryToUnfoldSelect(SwitchInst * SI,BasicBlock * BB)2434 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2435   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2436 
2437   if (!CondPHI || CondPHI->getParent() != BB)
2438     return false;
2439 
2440   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2441     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2442     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2443 
2444     // The second and third condition can be potentially relaxed. Currently
2445     // the conditions help to simplify the code and allow us to reuse existing
2446     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2447     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2448       continue;
2449 
2450     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2451     if (!PredTerm || !PredTerm->isUnconditional())
2452       continue;
2453 
2454     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2455     return true;
2456   }
2457   return false;
2458 }
2459 
2460 /// TryToUnfoldSelect - Look for blocks of the form
2461 /// bb1:
2462 ///   %a = select
2463 ///   br bb2
2464 ///
2465 /// bb2:
2466 ///   %p = phi [%a, %bb1] ...
2467 ///   %c = icmp %p
2468 ///   br i1 %c
2469 ///
2470 /// And expand the select into a branch structure if one of its arms allows %c
2471 /// to be folded. This later enables threading from bb1 over bb2.
TryToUnfoldSelect(CmpInst * CondCmp,BasicBlock * BB)2472 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2473   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2474   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2475   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2476 
2477   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2478       CondLHS->getParent() != BB)
2479     return false;
2480 
2481   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2482     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2483     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2484 
2485     // Look if one of the incoming values is a select in the corresponding
2486     // predecessor.
2487     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2488       continue;
2489 
2490     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2491     if (!PredTerm || !PredTerm->isUnconditional())
2492       continue;
2493 
2494     // Now check if one of the select values would allow us to constant fold the
2495     // terminator in BB. We don't do the transform if both sides fold, those
2496     // cases will be threaded in any case.
2497     if (DTU->hasPendingDomTreeUpdates())
2498       LVI->disableDT();
2499     else
2500       LVI->enableDT();
2501     LazyValueInfo::Tristate LHSFolds =
2502         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2503                                 CondRHS, Pred, BB, CondCmp);
2504     LazyValueInfo::Tristate RHSFolds =
2505         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2506                                 CondRHS, Pred, BB, CondCmp);
2507     if ((LHSFolds != LazyValueInfo::Unknown ||
2508          RHSFolds != LazyValueInfo::Unknown) &&
2509         LHSFolds != RHSFolds) {
2510       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2511       return true;
2512     }
2513   }
2514   return false;
2515 }
2516 
2517 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2518 /// same BB in the form
2519 /// bb:
2520 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2521 ///   %s = select %p, trueval, falseval
2522 ///
2523 /// or
2524 ///
2525 /// bb:
2526 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2527 ///   %c = cmp %p, 0
2528 ///   %s = select %c, trueval, falseval
2529 ///
2530 /// And expand the select into a branch structure. This later enables
2531 /// jump-threading over bb in this pass.
2532 ///
2533 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2534 /// select if the associated PHI has at least one constant.  If the unfolded
2535 /// select is not jump-threaded, it will be folded again in the later
2536 /// optimizations.
TryToUnfoldSelectInCurrBB(BasicBlock * BB)2537 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2538   // If threading this would thread across a loop header, don't thread the edge.
2539   // See the comments above FindLoopHeaders for justifications and caveats.
2540   if (LoopHeaders.count(BB))
2541     return false;
2542 
2543   for (BasicBlock::iterator BI = BB->begin();
2544        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2545     // Look for a Phi having at least one constant incoming value.
2546     if (llvm::all_of(PN->incoming_values(),
2547                      [](Value *V) { return !isa<ConstantInt>(V); }))
2548       continue;
2549 
2550     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2551       // Check if SI is in BB and use V as condition.
2552       if (SI->getParent() != BB)
2553         return false;
2554       Value *Cond = SI->getCondition();
2555       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2556     };
2557 
2558     SelectInst *SI = nullptr;
2559     for (Use &U : PN->uses()) {
2560       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2561         // Look for a ICmp in BB that compares PN with a constant and is the
2562         // condition of a Select.
2563         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2564             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2565           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2566             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2567               SI = SelectI;
2568               break;
2569             }
2570       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2571         // Look for a Select in BB that uses PN as condition.
2572         if (isUnfoldCandidate(SelectI, U.get())) {
2573           SI = SelectI;
2574           break;
2575         }
2576       }
2577     }
2578 
2579     if (!SI)
2580       continue;
2581     // Expand the select.
2582     Instruction *Term =
2583         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2584     BasicBlock *SplitBB = SI->getParent();
2585     BasicBlock *NewBB = Term->getParent();
2586     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2587     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2588     NewPN->addIncoming(SI->getFalseValue(), BB);
2589     SI->replaceAllUsesWith(NewPN);
2590     SI->eraseFromParent();
2591     // NewBB and SplitBB are newly created blocks which require insertion.
2592     std::vector<DominatorTree::UpdateType> Updates;
2593     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2594     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2595     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2596     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2597     // BB's successors were moved to SplitBB, update DTU accordingly.
2598     for (auto *Succ : successors(SplitBB)) {
2599       Updates.push_back({DominatorTree::Delete, BB, Succ});
2600       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2601     }
2602     DTU->applyUpdates(Updates);
2603     return true;
2604   }
2605   return false;
2606 }
2607 
2608 /// Try to propagate a guard from the current BB into one of its predecessors
2609 /// in case if another branch of execution implies that the condition of this
2610 /// guard is always true. Currently we only process the simplest case that
2611 /// looks like:
2612 ///
2613 /// Start:
2614 ///   %cond = ...
2615 ///   br i1 %cond, label %T1, label %F1
2616 /// T1:
2617 ///   br label %Merge
2618 /// F1:
2619 ///   br label %Merge
2620 /// Merge:
2621 ///   %condGuard = ...
2622 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2623 ///
2624 /// And cond either implies condGuard or !condGuard. In this case all the
2625 /// instructions before the guard can be duplicated in both branches, and the
2626 /// guard is then threaded to one of them.
ProcessGuards(BasicBlock * BB)2627 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2628   using namespace PatternMatch;
2629 
2630   // We only want to deal with two predecessors.
2631   BasicBlock *Pred1, *Pred2;
2632   auto PI = pred_begin(BB), PE = pred_end(BB);
2633   if (PI == PE)
2634     return false;
2635   Pred1 = *PI++;
2636   if (PI == PE)
2637     return false;
2638   Pred2 = *PI++;
2639   if (PI != PE)
2640     return false;
2641   if (Pred1 == Pred2)
2642     return false;
2643 
2644   // Try to thread one of the guards of the block.
2645   // TODO: Look up deeper than to immediate predecessor?
2646   auto *Parent = Pred1->getSinglePredecessor();
2647   if (!Parent || Parent != Pred2->getSinglePredecessor())
2648     return false;
2649 
2650   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2651     for (auto &I : *BB)
2652       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2653         return true;
2654 
2655   return false;
2656 }
2657 
2658 /// Try to propagate the guard from BB which is the lower block of a diamond
2659 /// to one of its branches, in case if diamond's condition implies guard's
2660 /// condition.
ThreadGuard(BasicBlock * BB,IntrinsicInst * Guard,BranchInst * BI)2661 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2662                                     BranchInst *BI) {
2663   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2664   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2665   Value *GuardCond = Guard->getArgOperand(0);
2666   Value *BranchCond = BI->getCondition();
2667   BasicBlock *TrueDest = BI->getSuccessor(0);
2668   BasicBlock *FalseDest = BI->getSuccessor(1);
2669 
2670   auto &DL = BB->getModule()->getDataLayout();
2671   bool TrueDestIsSafe = false;
2672   bool FalseDestIsSafe = false;
2673 
2674   // True dest is safe if BranchCond => GuardCond.
2675   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2676   if (Impl && *Impl)
2677     TrueDestIsSafe = true;
2678   else {
2679     // False dest is safe if !BranchCond => GuardCond.
2680     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2681     if (Impl && *Impl)
2682       FalseDestIsSafe = true;
2683   }
2684 
2685   if (!TrueDestIsSafe && !FalseDestIsSafe)
2686     return false;
2687 
2688   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2689   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2690 
2691   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2692   Instruction *AfterGuard = Guard->getNextNode();
2693   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2694   if (Cost > BBDupThreshold)
2695     return false;
2696   // Duplicate all instructions before the guard and the guard itself to the
2697   // branch where implication is not proved.
2698   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2699       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2700   assert(GuardedBlock && "Could not create the guarded block?");
2701   // Duplicate all instructions before the guard in the unguarded branch.
2702   // Since we have successfully duplicated the guarded block and this block
2703   // has fewer instructions, we expect it to succeed.
2704   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2705       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2706   assert(UnguardedBlock && "Could not create the unguarded block?");
2707   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2708                     << GuardedBlock->getName() << "\n");
2709   // Some instructions before the guard may still have uses. For them, we need
2710   // to create Phi nodes merging their copies in both guarded and unguarded
2711   // branches. Those instructions that have no uses can be just removed.
2712   SmallVector<Instruction *, 4> ToRemove;
2713   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2714     if (!isa<PHINode>(&*BI))
2715       ToRemove.push_back(&*BI);
2716 
2717   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2718   assert(InsertionPoint && "Empty block?");
2719   // Substitute with Phis & remove.
2720   for (auto *Inst : reverse(ToRemove)) {
2721     if (!Inst->use_empty()) {
2722       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2723       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2724       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2725       NewPN->insertBefore(InsertionPoint);
2726       Inst->replaceAllUsesWith(NewPN);
2727     }
2728     Inst->eraseFromParent();
2729   }
2730   return true;
2731 }
2732