1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the Emit routines for the SelectionDAG class, which creates
11 // MachineInstrs based on the decisions of the SelectionDAG instruction
12 // selection.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "InstrEmitter.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 using namespace llvm;
33
34 #define DEBUG_TYPE "instr-emitter"
35
36 /// MinRCSize - Smallest register class we allow when constraining virtual
37 /// registers. If satisfying all register class constraints would require
38 /// using a smaller register class, emit a COPY to a new virtual register
39 /// instead.
40 const unsigned MinRCSize = 4;
41
42 /// CountResults - The results of target nodes have register or immediate
43 /// operands first, then an optional chain, and optional glue operands (which do
44 /// not go into the resulting MachineInstr).
CountResults(SDNode * Node)45 unsigned InstrEmitter::CountResults(SDNode *Node) {
46 unsigned N = Node->getNumValues();
47 while (N && Node->getValueType(N - 1) == MVT::Glue)
48 --N;
49 if (N && Node->getValueType(N - 1) == MVT::Other)
50 --N; // Skip over chain result.
51 return N;
52 }
53
54 /// countOperands - The inputs to target nodes have any actual inputs first,
55 /// followed by an optional chain operand, then an optional glue operand.
56 /// Compute the number of actual operands that will go into the resulting
57 /// MachineInstr.
58 ///
59 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
60 /// the chain and glue. These operands may be implicit on the machine instr.
countOperands(SDNode * Node,unsigned NumExpUses,unsigned & NumImpUses)61 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
62 unsigned &NumImpUses) {
63 unsigned N = Node->getNumOperands();
64 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
65 --N;
66 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
67 --N; // Ignore chain if it exists.
68
69 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
70 NumImpUses = N - NumExpUses;
71 for (unsigned I = N; I > NumExpUses; --I) {
72 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
73 continue;
74 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
75 if (TargetRegisterInfo::isPhysicalRegister(RN->getReg()))
76 continue;
77 NumImpUses = N - I;
78 break;
79 }
80
81 return N;
82 }
83
84 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
85 /// implicit physical register output.
86 void InstrEmitter::
EmitCopyFromReg(SDNode * Node,unsigned ResNo,bool IsClone,bool IsCloned,unsigned SrcReg,DenseMap<SDValue,unsigned> & VRBaseMap)87 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
88 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
89 unsigned VRBase = 0;
90 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
91 // Just use the input register directly!
92 SDValue Op(Node, ResNo);
93 if (IsClone)
94 VRBaseMap.erase(Op);
95 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
96 (void)isNew; // Silence compiler warning.
97 assert(isNew && "Node emitted out of order - early");
98 return;
99 }
100
101 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
102 // the CopyToReg'd destination register instead of creating a new vreg.
103 bool MatchReg = true;
104 const TargetRegisterClass *UseRC = nullptr;
105 MVT VT = Node->getSimpleValueType(ResNo);
106
107 // Stick to the preferred register classes for legal types.
108 if (TLI->isTypeLegal(VT))
109 UseRC = TLI->getRegClassFor(VT);
110
111 if (!IsClone && !IsCloned)
112 for (SDNode *User : Node->uses()) {
113 bool Match = true;
114 if (User->getOpcode() == ISD::CopyToReg &&
115 User->getOperand(2).getNode() == Node &&
116 User->getOperand(2).getResNo() == ResNo) {
117 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
118 if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
119 VRBase = DestReg;
120 Match = false;
121 } else if (DestReg != SrcReg)
122 Match = false;
123 } else {
124 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
125 SDValue Op = User->getOperand(i);
126 if (Op.getNode() != Node || Op.getResNo() != ResNo)
127 continue;
128 MVT VT = Node->getSimpleValueType(Op.getResNo());
129 if (VT == MVT::Other || VT == MVT::Glue)
130 continue;
131 Match = false;
132 if (User->isMachineOpcode()) {
133 const MCInstrDesc &II = TII->get(User->getMachineOpcode());
134 const TargetRegisterClass *RC = nullptr;
135 if (i+II.getNumDefs() < II.getNumOperands()) {
136 RC = TRI->getAllocatableClass(
137 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
138 }
139 if (!UseRC)
140 UseRC = RC;
141 else if (RC) {
142 const TargetRegisterClass *ComRC =
143 TRI->getCommonSubClass(UseRC, RC, VT.SimpleTy);
144 // If multiple uses expect disjoint register classes, we emit
145 // copies in AddRegisterOperand.
146 if (ComRC)
147 UseRC = ComRC;
148 }
149 }
150 }
151 }
152 MatchReg &= Match;
153 if (VRBase)
154 break;
155 }
156
157 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
158 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
159
160 // Figure out the register class to create for the destreg.
161 if (VRBase) {
162 DstRC = MRI->getRegClass(VRBase);
163 } else if (UseRC) {
164 assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
165 "Incompatible phys register def and uses!");
166 DstRC = UseRC;
167 } else {
168 DstRC = TLI->getRegClassFor(VT);
169 }
170
171 // If all uses are reading from the src physical register and copying the
172 // register is either impossible or very expensive, then don't create a copy.
173 if (MatchReg && SrcRC->getCopyCost() < 0) {
174 VRBase = SrcReg;
175 } else {
176 // Create the reg, emit the copy.
177 VRBase = MRI->createVirtualRegister(DstRC);
178 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
179 VRBase).addReg(SrcReg);
180 }
181
182 SDValue Op(Node, ResNo);
183 if (IsClone)
184 VRBaseMap.erase(Op);
185 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
186 (void)isNew; // Silence compiler warning.
187 assert(isNew && "Node emitted out of order - early");
188 }
189
190 /// getDstOfCopyToRegUse - If the only use of the specified result number of
191 /// node is a CopyToReg, return its destination register. Return 0 otherwise.
getDstOfOnlyCopyToRegUse(SDNode * Node,unsigned ResNo) const192 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
193 unsigned ResNo) const {
194 if (!Node->hasOneUse())
195 return 0;
196
197 SDNode *User = *Node->use_begin();
198 if (User->getOpcode() == ISD::CopyToReg &&
199 User->getOperand(2).getNode() == Node &&
200 User->getOperand(2).getResNo() == ResNo) {
201 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
202 if (TargetRegisterInfo::isVirtualRegister(Reg))
203 return Reg;
204 }
205 return 0;
206 }
207
CreateVirtualRegisters(SDNode * Node,MachineInstrBuilder & MIB,const MCInstrDesc & II,bool IsClone,bool IsCloned,DenseMap<SDValue,unsigned> & VRBaseMap)208 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
209 MachineInstrBuilder &MIB,
210 const MCInstrDesc &II,
211 bool IsClone, bool IsCloned,
212 DenseMap<SDValue, unsigned> &VRBaseMap) {
213 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
214 "IMPLICIT_DEF should have been handled as a special case elsewhere!");
215
216 unsigned NumResults = CountResults(Node);
217 for (unsigned i = 0; i < II.getNumDefs(); ++i) {
218 // If the specific node value is only used by a CopyToReg and the dest reg
219 // is a vreg in the same register class, use the CopyToReg'd destination
220 // register instead of creating a new vreg.
221 unsigned VRBase = 0;
222 const TargetRegisterClass *RC =
223 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
224 // Always let the value type influence the used register class. The
225 // constraints on the instruction may be too lax to represent the value
226 // type correctly. For example, a 64-bit float (X86::FR64) can't live in
227 // the 32-bit float super-class (X86::FR32).
228 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
229 const TargetRegisterClass *VTRC =
230 TLI->getRegClassFor(Node->getSimpleValueType(i));
231 if (RC)
232 VTRC = TRI->getCommonSubClass(RC, VTRC);
233 if (VTRC)
234 RC = VTRC;
235 }
236
237 if (II.OpInfo[i].isOptionalDef()) {
238 // Optional def must be a physical register.
239 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
240 assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
241 MIB.addReg(VRBase, RegState::Define);
242 }
243
244 if (!VRBase && !IsClone && !IsCloned)
245 for (SDNode *User : Node->uses()) {
246 if (User->getOpcode() == ISD::CopyToReg &&
247 User->getOperand(2).getNode() == Node &&
248 User->getOperand(2).getResNo() == i) {
249 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
250 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
251 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
252 if (RegRC == RC) {
253 VRBase = Reg;
254 MIB.addReg(VRBase, RegState::Define);
255 break;
256 }
257 }
258 }
259 }
260
261 // Create the result registers for this node and add the result regs to
262 // the machine instruction.
263 if (VRBase == 0) {
264 assert(RC && "Isn't a register operand!");
265 VRBase = MRI->createVirtualRegister(RC);
266 MIB.addReg(VRBase, RegState::Define);
267 }
268
269 // If this def corresponds to a result of the SDNode insert the VRBase into
270 // the lookup map.
271 if (i < NumResults) {
272 SDValue Op(Node, i);
273 if (IsClone)
274 VRBaseMap.erase(Op);
275 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
276 (void)isNew; // Silence compiler warning.
277 assert(isNew && "Node emitted out of order - early");
278 }
279 }
280 }
281
282 /// getVR - Return the virtual register corresponding to the specified result
283 /// of the specified node.
getVR(SDValue Op,DenseMap<SDValue,unsigned> & VRBaseMap)284 unsigned InstrEmitter::getVR(SDValue Op,
285 DenseMap<SDValue, unsigned> &VRBaseMap) {
286 if (Op.isMachineOpcode() &&
287 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
288 // Add an IMPLICIT_DEF instruction before every use.
289 unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
290 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
291 // does not include operand register class info.
292 if (!VReg) {
293 const TargetRegisterClass *RC =
294 TLI->getRegClassFor(Op.getSimpleValueType());
295 VReg = MRI->createVirtualRegister(RC);
296 }
297 BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
298 TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
299 return VReg;
300 }
301
302 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
303 assert(I != VRBaseMap.end() && "Node emitted out of order - late");
304 return I->second;
305 }
306
307
308 /// AddRegisterOperand - Add the specified register as an operand to the
309 /// specified machine instr. Insert register copies if the register is
310 /// not in the required register class.
311 void
AddRegisterOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,unsigned> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)312 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
313 SDValue Op,
314 unsigned IIOpNum,
315 const MCInstrDesc *II,
316 DenseMap<SDValue, unsigned> &VRBaseMap,
317 bool IsDebug, bool IsClone, bool IsCloned) {
318 assert(Op.getValueType() != MVT::Other &&
319 Op.getValueType() != MVT::Glue &&
320 "Chain and glue operands should occur at end of operand list!");
321 // Get/emit the operand.
322 unsigned VReg = getVR(Op, VRBaseMap);
323
324 const MCInstrDesc &MCID = MIB->getDesc();
325 bool isOptDef = IIOpNum < MCID.getNumOperands() &&
326 MCID.OpInfo[IIOpNum].isOptionalDef();
327
328 // If the instruction requires a register in a different class, create
329 // a new virtual register and copy the value into it, but first attempt to
330 // shrink VReg's register class within reason. For example, if VReg == GR32
331 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
332 if (II) {
333 const TargetRegisterClass *OpRC = nullptr;
334 if (IIOpNum < II->getNumOperands())
335 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
336
337 if (OpRC) {
338 const TargetRegisterClass *ConstrainedRC
339 = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
340 if (!ConstrainedRC) {
341 OpRC = TRI->getAllocatableClass(OpRC);
342 assert(OpRC && "Constraints cannot be fulfilled for allocation");
343 unsigned NewVReg = MRI->createVirtualRegister(OpRC);
344 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
345 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
346 VReg = NewVReg;
347 } else {
348 assert(ConstrainedRC->isAllocatable() &&
349 "Constraining an allocatable VReg produced an unallocatable class?");
350 }
351 }
352 }
353
354 // If this value has only one use, that use is a kill. This is a
355 // conservative approximation. InstrEmitter does trivial coalescing
356 // with CopyFromReg nodes, so don't emit kill flags for them.
357 // Avoid kill flags on Schedule cloned nodes, since there will be
358 // multiple uses.
359 // Tied operands are never killed, so we need to check that. And that
360 // means we need to determine the index of the operand.
361 bool isKill = Op.hasOneUse() &&
362 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
363 !IsDebug &&
364 !(IsClone || IsCloned);
365 if (isKill) {
366 unsigned Idx = MIB->getNumOperands();
367 while (Idx > 0 &&
368 MIB->getOperand(Idx-1).isReg() &&
369 MIB->getOperand(Idx-1).isImplicit())
370 --Idx;
371 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
372 if (isTied)
373 isKill = false;
374 }
375
376 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
377 getDebugRegState(IsDebug));
378 }
379
380 /// AddOperand - Add the specified operand to the specified machine instr. II
381 /// specifies the instruction information for the node, and IIOpNum is the
382 /// operand number (in the II) that we are adding.
AddOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,unsigned> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)383 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
384 SDValue Op,
385 unsigned IIOpNum,
386 const MCInstrDesc *II,
387 DenseMap<SDValue, unsigned> &VRBaseMap,
388 bool IsDebug, bool IsClone, bool IsCloned) {
389 if (Op.isMachineOpcode()) {
390 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
391 IsDebug, IsClone, IsCloned);
392 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
393 MIB.addImm(C->getSExtValue());
394 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
395 MIB.addFPImm(F->getConstantFPValue());
396 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
397 unsigned VReg = R->getReg();
398 MVT OpVT = Op.getSimpleValueType();
399 const TargetRegisterClass *OpRC =
400 TLI->isTypeLegal(OpVT) ? TLI->getRegClassFor(OpVT) : nullptr;
401 const TargetRegisterClass *IIRC =
402 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
403 : nullptr;
404
405 if (OpRC && IIRC && OpRC != IIRC &&
406 TargetRegisterInfo::isVirtualRegister(VReg)) {
407 unsigned NewVReg = MRI->createVirtualRegister(IIRC);
408 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
409 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
410 VReg = NewVReg;
411 }
412 // Turn additional physreg operands into implicit uses on non-variadic
413 // instructions. This is used by call and return instructions passing
414 // arguments in registers.
415 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
416 MIB.addReg(VReg, getImplRegState(Imp));
417 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
418 MIB.addRegMask(RM->getRegMask());
419 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
420 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
421 TGA->getTargetFlags());
422 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
423 MIB.addMBB(BBNode->getBasicBlock());
424 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
425 MIB.addFrameIndex(FI->getIndex());
426 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
427 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
428 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
429 int Offset = CP->getOffset();
430 unsigned Align = CP->getAlignment();
431 Type *Type = CP->getType();
432 // MachineConstantPool wants an explicit alignment.
433 if (Align == 0) {
434 Align = MF->getDataLayout().getPrefTypeAlignment(Type);
435 if (Align == 0) {
436 // Alignment of vector types. FIXME!
437 Align = MF->getDataLayout().getTypeAllocSize(Type);
438 }
439 }
440
441 unsigned Idx;
442 MachineConstantPool *MCP = MF->getConstantPool();
443 if (CP->isMachineConstantPoolEntry())
444 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
445 else
446 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
447 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
448 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
449 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
450 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
451 MIB.addSym(SymNode->getMCSymbol());
452 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
453 MIB.addBlockAddress(BA->getBlockAddress(),
454 BA->getOffset(),
455 BA->getTargetFlags());
456 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
457 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
458 } else {
459 assert(Op.getValueType() != MVT::Other &&
460 Op.getValueType() != MVT::Glue &&
461 "Chain and glue operands should occur at end of operand list!");
462 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
463 IsDebug, IsClone, IsCloned);
464 }
465 }
466
ConstrainForSubReg(unsigned VReg,unsigned SubIdx,MVT VT,const DebugLoc & DL)467 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
468 MVT VT, const DebugLoc &DL) {
469 const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
470 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
471
472 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
473 // within reason.
474 if (RC && RC != VRC)
475 RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
476
477 // VReg has been adjusted. It can be used with SubIdx operands now.
478 if (RC)
479 return VReg;
480
481 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
482 // register instead.
483 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx);
484 assert(RC && "No legal register class for VT supports that SubIdx");
485 unsigned NewReg = MRI->createVirtualRegister(RC);
486 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
487 .addReg(VReg);
488 return NewReg;
489 }
490
491 /// EmitSubregNode - Generate machine code for subreg nodes.
492 ///
EmitSubregNode(SDNode * Node,DenseMap<SDValue,unsigned> & VRBaseMap,bool IsClone,bool IsCloned)493 void InstrEmitter::EmitSubregNode(SDNode *Node,
494 DenseMap<SDValue, unsigned> &VRBaseMap,
495 bool IsClone, bool IsCloned) {
496 unsigned VRBase = 0;
497 unsigned Opc = Node->getMachineOpcode();
498
499 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
500 // the CopyToReg'd destination register instead of creating a new vreg.
501 for (SDNode *User : Node->uses()) {
502 if (User->getOpcode() == ISD::CopyToReg &&
503 User->getOperand(2).getNode() == Node) {
504 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
505 if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
506 VRBase = DestReg;
507 break;
508 }
509 }
510 }
511
512 if (Opc == TargetOpcode::EXTRACT_SUBREG) {
513 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
514 // constraints on the %dst register, COPY can target all legal register
515 // classes.
516 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
517 const TargetRegisterClass *TRC =
518 TLI->getRegClassFor(Node->getSimpleValueType(0));
519
520 unsigned Reg;
521 MachineInstr *DefMI;
522 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
523 if (R && TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
524 Reg = R->getReg();
525 DefMI = nullptr;
526 } else {
527 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
528 DefMI = MRI->getVRegDef(Reg);
529 }
530
531 unsigned SrcReg, DstReg, DefSubIdx;
532 if (DefMI &&
533 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
534 SubIdx == DefSubIdx &&
535 TRC == MRI->getRegClass(SrcReg)) {
536 // Optimize these:
537 // r1025 = s/zext r1024, 4
538 // r1026 = extract_subreg r1025, 4
539 // to a copy
540 // r1026 = copy r1024
541 VRBase = MRI->createVirtualRegister(TRC);
542 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
543 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
544 MRI->clearKillFlags(SrcReg);
545 } else {
546 // Reg may not support a SubIdx sub-register, and we may need to
547 // constrain its register class or issue a COPY to a compatible register
548 // class.
549 if (TargetRegisterInfo::isVirtualRegister(Reg))
550 Reg = ConstrainForSubReg(Reg, SubIdx,
551 Node->getOperand(0).getSimpleValueType(),
552 Node->getDebugLoc());
553
554 // Create the destreg if it is missing.
555 if (VRBase == 0)
556 VRBase = MRI->createVirtualRegister(TRC);
557
558 // Create the extract_subreg machine instruction.
559 MachineInstrBuilder CopyMI =
560 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
561 TII->get(TargetOpcode::COPY), VRBase);
562 if (TargetRegisterInfo::isVirtualRegister(Reg))
563 CopyMI.addReg(Reg, 0, SubIdx);
564 else
565 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
566 }
567 } else if (Opc == TargetOpcode::INSERT_SUBREG ||
568 Opc == TargetOpcode::SUBREG_TO_REG) {
569 SDValue N0 = Node->getOperand(0);
570 SDValue N1 = Node->getOperand(1);
571 SDValue N2 = Node->getOperand(2);
572 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
573
574 // Figure out the register class to create for the destreg. It should be
575 // the largest legal register class supporting SubIdx sub-registers.
576 // RegisterCoalescer will constrain it further if it decides to eliminate
577 // the INSERT_SUBREG instruction.
578 //
579 // %dst = INSERT_SUBREG %src, %sub, SubIdx
580 //
581 // is lowered by TwoAddressInstructionPass to:
582 //
583 // %dst = COPY %src
584 // %dst:SubIdx = COPY %sub
585 //
586 // There is no constraint on the %src register class.
587 //
588 const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0));
589 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
590 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
591
592 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
593 VRBase = MRI->createVirtualRegister(SRC);
594
595 // Create the insert_subreg or subreg_to_reg machine instruction.
596 MachineInstrBuilder MIB =
597 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
598
599 // If creating a subreg_to_reg, then the first input operand
600 // is an implicit value immediate, otherwise it's a register
601 if (Opc == TargetOpcode::SUBREG_TO_REG) {
602 const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
603 MIB.addImm(SD->getZExtValue());
604 } else
605 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
606 IsClone, IsCloned);
607 // Add the subregister being inserted
608 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
609 IsClone, IsCloned);
610 MIB.addImm(SubIdx);
611 MBB->insert(InsertPos, MIB);
612 } else
613 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
614
615 SDValue Op(Node, 0);
616 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
617 (void)isNew; // Silence compiler warning.
618 assert(isNew && "Node emitted out of order - early");
619 }
620
621 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
622 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
623 /// register is constrained to be in a particular register class.
624 ///
625 void
EmitCopyToRegClassNode(SDNode * Node,DenseMap<SDValue,unsigned> & VRBaseMap)626 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
627 DenseMap<SDValue, unsigned> &VRBaseMap) {
628 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
629
630 // Create the new VReg in the destination class and emit a copy.
631 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
632 const TargetRegisterClass *DstRC =
633 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
634 unsigned NewVReg = MRI->createVirtualRegister(DstRC);
635 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
636 NewVReg).addReg(VReg);
637
638 SDValue Op(Node, 0);
639 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
640 (void)isNew; // Silence compiler warning.
641 assert(isNew && "Node emitted out of order - early");
642 }
643
644 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
645 ///
EmitRegSequence(SDNode * Node,DenseMap<SDValue,unsigned> & VRBaseMap,bool IsClone,bool IsCloned)646 void InstrEmitter::EmitRegSequence(SDNode *Node,
647 DenseMap<SDValue, unsigned> &VRBaseMap,
648 bool IsClone, bool IsCloned) {
649 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
650 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
651 unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
652 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
653 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
654 unsigned NumOps = Node->getNumOperands();
655 // If the input pattern has a chain, then the root of the corresponding
656 // output pattern will get a chain as well. This can happen to be a
657 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
658 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
659 --NumOps; // Ignore chain if it exists.
660
661 assert((NumOps & 1) == 1 &&
662 "REG_SEQUENCE must have an odd number of operands!");
663 for (unsigned i = 1; i != NumOps; ++i) {
664 SDValue Op = Node->getOperand(i);
665 if ((i & 1) == 0) {
666 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
667 // Skip physical registers as they don't have a vreg to get and we'll
668 // insert copies for them in TwoAddressInstructionPass anyway.
669 if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
670 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
671 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
672 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
673 const TargetRegisterClass *SRC =
674 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
675 if (SRC && SRC != RC) {
676 MRI->setRegClass(NewVReg, SRC);
677 RC = SRC;
678 }
679 }
680 }
681 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
682 IsClone, IsCloned);
683 }
684
685 MBB->insert(InsertPos, MIB);
686 SDValue Op(Node, 0);
687 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
688 (void)isNew; // Silence compiler warning.
689 assert(isNew && "Node emitted out of order - early");
690 }
691
692 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
693 ///
694 MachineInstr *
EmitDbgValue(SDDbgValue * SD,DenseMap<SDValue,unsigned> & VRBaseMap)695 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
696 DenseMap<SDValue, unsigned> &VRBaseMap) {
697 MDNode *Var = SD->getVariable();
698 MDNode *Expr = SD->getExpression();
699 DebugLoc DL = SD->getDebugLoc();
700 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
701 "Expected inlined-at fields to agree");
702
703 SD->setIsEmitted();
704
705 if (SD->isInvalidated()) {
706 // An invalidated SDNode must generate an undef DBG_VALUE: although the
707 // original value is no longer computed, earlier DBG_VALUEs live ranges
708 // must not leak into later code.
709 auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
710 MIB.addReg(0U);
711 MIB.addReg(0U, RegState::Debug);
712 MIB.addMetadata(Var);
713 MIB.addMetadata(Expr);
714 return &*MIB;
715 }
716
717 if (SD->getKind() == SDDbgValue::FRAMEIX) {
718 // Stack address; this needs to be lowered in target-dependent fashion.
719 // EmitTargetCodeForFrameDebugValue is responsible for allocation.
720 auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
721 .addFrameIndex(SD->getFrameIx());
722 if (SD->isIndirect())
723 // Push [fi + 0] onto the DIExpression stack.
724 FrameMI.addImm(0);
725 else
726 // Push fi onto the DIExpression stack.
727 FrameMI.addReg(0);
728 return FrameMI.addMetadata(Var).addMetadata(Expr);
729 }
730 // Otherwise, we're going to create an instruction here.
731 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
732 MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
733 if (SD->getKind() == SDDbgValue::SDNODE) {
734 SDNode *Node = SD->getSDNode();
735 SDValue Op = SDValue(Node, SD->getResNo());
736 // It's possible we replaced this SDNode with other(s) and therefore
737 // didn't generate code for it. It's better to catch these cases where
738 // they happen and transfer the debug info, but trying to guarantee that
739 // in all cases would be very fragile; this is a safeguard for any
740 // that were missed.
741 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
742 if (I==VRBaseMap.end())
743 MIB.addReg(0U); // undef
744 else
745 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
746 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
747 } else if (SD->getKind() == SDDbgValue::VREG) {
748 MIB.addReg(SD->getVReg(), RegState::Debug);
749 } else if (SD->getKind() == SDDbgValue::CONST) {
750 const Value *V = SD->getConst();
751 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
752 if (CI->getBitWidth() > 64)
753 MIB.addCImm(CI);
754 else
755 MIB.addImm(CI->getSExtValue());
756 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
757 MIB.addFPImm(CF);
758 } else if (isa<ConstantPointerNull>(V)) {
759 // Note: This assumes that all nullptr constants are zero-valued.
760 MIB.addImm(0);
761 } else {
762 // Could be an Undef. In any case insert an Undef so we can see what we
763 // dropped.
764 MIB.addReg(0U);
765 }
766 } else {
767 // Insert an Undef so we can see what we dropped.
768 MIB.addReg(0U);
769 }
770
771 // Indirect addressing is indicated by an Imm as the second parameter.
772 if (SD->isIndirect())
773 MIB.addImm(0U);
774 else
775 MIB.addReg(0U, RegState::Debug);
776
777 MIB.addMetadata(Var);
778 MIB.addMetadata(Expr);
779
780 return &*MIB;
781 }
782
783 MachineInstr *
EmitDbgLabel(SDDbgLabel * SD)784 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
785 MDNode *Label = SD->getLabel();
786 DebugLoc DL = SD->getDebugLoc();
787 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
788 "Expected inlined-at fields to agree");
789
790 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
791 MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
792 MIB.addMetadata(Label);
793
794 return &*MIB;
795 }
796
797 /// EmitMachineNode - Generate machine code for a target-specific node and
798 /// needed dependencies.
799 ///
800 void InstrEmitter::
EmitMachineNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,unsigned> & VRBaseMap)801 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
802 DenseMap<SDValue, unsigned> &VRBaseMap) {
803 unsigned Opc = Node->getMachineOpcode();
804
805 // Handle subreg insert/extract specially
806 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
807 Opc == TargetOpcode::INSERT_SUBREG ||
808 Opc == TargetOpcode::SUBREG_TO_REG) {
809 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
810 return;
811 }
812
813 // Handle COPY_TO_REGCLASS specially.
814 if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
815 EmitCopyToRegClassNode(Node, VRBaseMap);
816 return;
817 }
818
819 // Handle REG_SEQUENCE specially.
820 if (Opc == TargetOpcode::REG_SEQUENCE) {
821 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
822 return;
823 }
824
825 if (Opc == TargetOpcode::IMPLICIT_DEF)
826 // We want a unique VR for each IMPLICIT_DEF use.
827 return;
828
829 const MCInstrDesc &II = TII->get(Opc);
830 unsigned NumResults = CountResults(Node);
831 unsigned NumDefs = II.getNumDefs();
832 const MCPhysReg *ScratchRegs = nullptr;
833
834 // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
835 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
836 // Stackmaps do not have arguments and do not preserve their calling
837 // convention. However, to simplify runtime support, they clobber the same
838 // scratch registers as AnyRegCC.
839 unsigned CC = CallingConv::AnyReg;
840 if (Opc == TargetOpcode::PATCHPOINT) {
841 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
842 NumDefs = NumResults;
843 }
844 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
845 }
846
847 unsigned NumImpUses = 0;
848 unsigned NodeOperands =
849 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
850 bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr;
851 #ifndef NDEBUG
852 unsigned NumMIOperands = NodeOperands + NumResults;
853 if (II.isVariadic())
854 assert(NumMIOperands >= II.getNumOperands() &&
855 "Too few operands for a variadic node!");
856 else
857 assert(NumMIOperands >= II.getNumOperands() &&
858 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
859 NumImpUses &&
860 "#operands for dag node doesn't match .td file!");
861 #endif
862
863 // Create the new machine instruction.
864 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
865
866 // Add result register values for things that are defined by this
867 // instruction.
868 if (NumResults) {
869 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
870
871 // Transfer any IR flags from the SDNode to the MachineInstr
872 MachineInstr *MI = MIB.getInstr();
873 const SDNodeFlags Flags = Node->getFlags();
874 if (Flags.hasNoSignedZeros())
875 MI->setFlag(MachineInstr::MIFlag::FmNsz);
876
877 if (Flags.hasAllowReciprocal())
878 MI->setFlag(MachineInstr::MIFlag::FmArcp);
879
880 if (Flags.hasNoNaNs())
881 MI->setFlag(MachineInstr::MIFlag::FmNoNans);
882
883 if (Flags.hasNoInfs())
884 MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
885
886 if (Flags.hasAllowContract())
887 MI->setFlag(MachineInstr::MIFlag::FmContract);
888
889 if (Flags.hasApproximateFuncs())
890 MI->setFlag(MachineInstr::MIFlag::FmAfn);
891
892 if (Flags.hasAllowReassociation())
893 MI->setFlag(MachineInstr::MIFlag::FmReassoc);
894
895 if (Flags.hasNoUnsignedWrap())
896 MI->setFlag(MachineInstr::MIFlag::NoUWrap);
897
898 if (Flags.hasNoSignedWrap())
899 MI->setFlag(MachineInstr::MIFlag::NoSWrap);
900
901 if (Flags.hasExact())
902 MI->setFlag(MachineInstr::MIFlag::IsExact);
903 }
904
905 // Emit all of the actual operands of this instruction, adding them to the
906 // instruction as appropriate.
907 bool HasOptPRefs = NumDefs > NumResults;
908 assert((!HasOptPRefs || !HasPhysRegOuts) &&
909 "Unable to cope with optional defs and phys regs defs!");
910 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
911 for (unsigned i = NumSkip; i != NodeOperands; ++i)
912 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
913 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
914
915 // Add scratch registers as implicit def and early clobber
916 if (ScratchRegs)
917 for (unsigned i = 0; ScratchRegs[i]; ++i)
918 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
919 RegState::EarlyClobber);
920
921 // Set the memory reference descriptions of this instruction now that it is
922 // part of the function.
923 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
924
925 // Insert the instruction into position in the block. This needs to
926 // happen before any custom inserter hook is called so that the
927 // hook knows where in the block to insert the replacement code.
928 MBB->insert(InsertPos, MIB);
929
930 // The MachineInstr may also define physregs instead of virtregs. These
931 // physreg values can reach other instructions in different ways:
932 //
933 // 1. When there is a use of a Node value beyond the explicitly defined
934 // virtual registers, we emit a CopyFromReg for one of the implicitly
935 // defined physregs. This only happens when HasPhysRegOuts is true.
936 //
937 // 2. A CopyFromReg reading a physreg may be glued to this instruction.
938 //
939 // 3. A glued instruction may implicitly use a physreg.
940 //
941 // 4. A glued instruction may use a RegisterSDNode operand.
942 //
943 // Collect all the used physreg defs, and make sure that any unused physreg
944 // defs are marked as dead.
945 SmallVector<unsigned, 8> UsedRegs;
946
947 // Additional results must be physical register defs.
948 if (HasPhysRegOuts) {
949 for (unsigned i = NumDefs; i < NumResults; ++i) {
950 unsigned Reg = II.getImplicitDefs()[i - NumDefs];
951 if (!Node->hasAnyUseOfValue(i))
952 continue;
953 // This implicitly defined physreg has a use.
954 UsedRegs.push_back(Reg);
955 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
956 }
957 }
958
959 // Scan the glue chain for any used physregs.
960 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
961 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
962 if (F->getOpcode() == ISD::CopyFromReg) {
963 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
964 continue;
965 } else if (F->getOpcode() == ISD::CopyToReg) {
966 // Skip CopyToReg nodes that are internal to the glue chain.
967 continue;
968 }
969 // Collect declared implicit uses.
970 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
971 UsedRegs.append(MCID.getImplicitUses(),
972 MCID.getImplicitUses() + MCID.getNumImplicitUses());
973 // In addition to declared implicit uses, we must also check for
974 // direct RegisterSDNode operands.
975 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
976 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
977 unsigned Reg = R->getReg();
978 if (TargetRegisterInfo::isPhysicalRegister(Reg))
979 UsedRegs.push_back(Reg);
980 }
981 }
982 }
983
984 // Finally mark unused registers as dead.
985 if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
986 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
987
988 // Run post-isel target hook to adjust this instruction if needed.
989 if (II.hasPostISelHook())
990 TLI->AdjustInstrPostInstrSelection(*MIB, Node);
991 }
992
993 /// EmitSpecialNode - Generate machine code for a target-independent node and
994 /// needed dependencies.
995 void InstrEmitter::
EmitSpecialNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,unsigned> & VRBaseMap)996 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
997 DenseMap<SDValue, unsigned> &VRBaseMap) {
998 switch (Node->getOpcode()) {
999 default:
1000 #ifndef NDEBUG
1001 Node->dump();
1002 #endif
1003 llvm_unreachable("This target-independent node should have been selected!");
1004 case ISD::EntryToken:
1005 llvm_unreachable("EntryToken should have been excluded from the schedule!");
1006 case ISD::MERGE_VALUES:
1007 case ISD::TokenFactor: // fall thru
1008 break;
1009 case ISD::CopyToReg: {
1010 unsigned SrcReg;
1011 SDValue SrcVal = Node->getOperand(2);
1012 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1013 SrcReg = R->getReg();
1014 else
1015 SrcReg = getVR(SrcVal, VRBaseMap);
1016
1017 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1018 if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1019 break;
1020
1021 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1022 DestReg).addReg(SrcReg);
1023 break;
1024 }
1025 case ISD::CopyFromReg: {
1026 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1027 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1028 break;
1029 }
1030 case ISD::EH_LABEL:
1031 case ISD::ANNOTATION_LABEL: {
1032 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1033 ? TargetOpcode::EH_LABEL
1034 : TargetOpcode::ANNOTATION_LABEL;
1035 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1036 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1037 TII->get(Opc)).addSym(S);
1038 break;
1039 }
1040
1041 case ISD::LIFETIME_START:
1042 case ISD::LIFETIME_END: {
1043 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
1044 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
1045
1046 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
1047 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1048 .addFrameIndex(FI->getIndex());
1049 break;
1050 }
1051
1052 case ISD::INLINEASM: {
1053 unsigned NumOps = Node->getNumOperands();
1054 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1055 --NumOps; // Ignore the glue operand.
1056
1057 // Create the inline asm machine instruction.
1058 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(),
1059 TII->get(TargetOpcode::INLINEASM));
1060
1061 // Add the asm string as an external symbol operand.
1062 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1063 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1064 MIB.addExternalSymbol(AsmStr);
1065
1066 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1067 // bits.
1068 int64_t ExtraInfo =
1069 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1070 getZExtValue();
1071 MIB.addImm(ExtraInfo);
1072
1073 // Remember to operand index of the group flags.
1074 SmallVector<unsigned, 8> GroupIdx;
1075
1076 // Remember registers that are part of early-clobber defs.
1077 SmallVector<unsigned, 8> ECRegs;
1078
1079 // Add all of the operand registers to the instruction.
1080 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1081 unsigned Flags =
1082 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1083 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1084
1085 GroupIdx.push_back(MIB->getNumOperands());
1086 MIB.addImm(Flags);
1087 ++i; // Skip the ID value.
1088
1089 switch (InlineAsm::getKind(Flags)) {
1090 default: llvm_unreachable("Bad flags!");
1091 case InlineAsm::Kind_RegDef:
1092 for (unsigned j = 0; j != NumVals; ++j, ++i) {
1093 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1094 // FIXME: Add dead flags for physical and virtual registers defined.
1095 // For now, mark physical register defs as implicit to help fast
1096 // regalloc. This makes inline asm look a lot like calls.
1097 MIB.addReg(Reg, RegState::Define |
1098 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
1099 }
1100 break;
1101 case InlineAsm::Kind_RegDefEarlyClobber:
1102 case InlineAsm::Kind_Clobber:
1103 for (unsigned j = 0; j != NumVals; ++j, ++i) {
1104 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1105 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
1106 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
1107 ECRegs.push_back(Reg);
1108 }
1109 break;
1110 case InlineAsm::Kind_RegUse: // Use of register.
1111 case InlineAsm::Kind_Imm: // Immediate.
1112 case InlineAsm::Kind_Mem: // Addressing mode.
1113 // The addressing mode has been selected, just add all of the
1114 // operands to the machine instruction.
1115 for (unsigned j = 0; j != NumVals; ++j, ++i)
1116 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1117 /*IsDebug=*/false, IsClone, IsCloned);
1118
1119 // Manually set isTied bits.
1120 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1121 unsigned DefGroup = 0;
1122 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1123 unsigned DefIdx = GroupIdx[DefGroup] + 1;
1124 unsigned UseIdx = GroupIdx.back() + 1;
1125 for (unsigned j = 0; j != NumVals; ++j)
1126 MIB->tieOperands(DefIdx + j, UseIdx + j);
1127 }
1128 }
1129 break;
1130 }
1131 }
1132
1133 // GCC inline assembly allows input operands to also be early-clobber
1134 // output operands (so long as the operand is written only after it's
1135 // used), but this does not match the semantics of our early-clobber flag.
1136 // If an early-clobber operand register is also an input operand register,
1137 // then remove the early-clobber flag.
1138 for (unsigned Reg : ECRegs) {
1139 if (MIB->readsRegister(Reg, TRI)) {
1140 MachineOperand *MO = MIB->findRegisterDefOperand(Reg, false, TRI);
1141 assert(MO && "No def operand for clobbered register?");
1142 MO->setIsEarlyClobber(false);
1143 }
1144 }
1145
1146 // Get the mdnode from the asm if it exists and add it to the instruction.
1147 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1148 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1149 if (MD)
1150 MIB.addMetadata(MD);
1151
1152 MBB->insert(InsertPos, MIB);
1153 break;
1154 }
1155 }
1156 }
1157
1158 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1159 /// at the given position in the given block.
InstrEmitter(MachineBasicBlock * mbb,MachineBasicBlock::iterator insertpos)1160 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1161 MachineBasicBlock::iterator insertpos)
1162 : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1163 TII(MF->getSubtarget().getInstrInfo()),
1164 TRI(MF->getSubtarget().getRegisterInfo()),
1165 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1166 InsertPos(insertpos) {}
1167