1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 #include <utility>
42 
43 using namespace llvm;
44 using namespace PatternMatch;
45 
46 #define DEBUG_TYPE "instcombine"
47 
48 /// Return true if the value is cheaper to scalarize than it is to leave as a
49 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
50 /// one known element from a vector constant.
51 ///
52 /// FIXME: It's possible to create more instructions than previously existed.
cheapToScalarize(Value * V,bool IsConstantExtractIndex)53 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
54   // If we can pick a scalar constant value out of a vector, that is free.
55   if (auto *C = dyn_cast<Constant>(V))
56     return IsConstantExtractIndex || C->getSplatValue();
57 
58   // An insertelement to the same constant index as our extract will simplify
59   // to the scalar inserted element. An insertelement to a different constant
60   // index is irrelevant to our extract.
61   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
62     return IsConstantExtractIndex;
63 
64   if (match(V, m_OneUse(m_Load(m_Value()))))
65     return true;
66 
67   Value *V0, *V1;
68   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
69     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
70         cheapToScalarize(V1, IsConstantExtractIndex))
71       return true;
72 
73   CmpInst::Predicate UnusedPred;
74   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
75     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
76         cheapToScalarize(V1, IsConstantExtractIndex))
77       return true;
78 
79   return false;
80 }
81 
82 // If we have a PHI node with a vector type that is only used to feed
83 // itself and be an operand of extractelement at a constant location,
84 // try to replace the PHI of the vector type with a PHI of a scalar type.
scalarizePHI(ExtractElementInst & EI,PHINode * PN)85 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
86   SmallVector<Instruction *, 2> Extracts;
87   // The users we want the PHI to have are:
88   // 1) The EI ExtractElement (we already know this)
89   // 2) Possibly more ExtractElements with the same index.
90   // 3) Another operand, which will feed back into the PHI.
91   Instruction *PHIUser = nullptr;
92   for (auto U : PN->users()) {
93     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
94       if (EI.getIndexOperand() == EU->getIndexOperand())
95         Extracts.push_back(EU);
96       else
97         return nullptr;
98     } else if (!PHIUser) {
99       PHIUser = cast<Instruction>(U);
100     } else {
101       return nullptr;
102     }
103   }
104 
105   if (!PHIUser)
106     return nullptr;
107 
108   // Verify that this PHI user has one use, which is the PHI itself,
109   // and that it is a binary operation which is cheap to scalarize.
110   // otherwise return nullptr.
111   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
112       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
113     return nullptr;
114 
115   // Create a scalar PHI node that will replace the vector PHI node
116   // just before the current PHI node.
117   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
118       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
119   // Scalarize each PHI operand.
120   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
121     Value *PHIInVal = PN->getIncomingValue(i);
122     BasicBlock *inBB = PN->getIncomingBlock(i);
123     Value *Elt = EI.getIndexOperand();
124     // If the operand is the PHI induction variable:
125     if (PHIInVal == PHIUser) {
126       // Scalarize the binary operation. Its first operand is the
127       // scalar PHI, and the second operand is extracted from the other
128       // vector operand.
129       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
130       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
131       Value *Op = InsertNewInstWith(
132           ExtractElementInst::Create(B0->getOperand(opId), Elt,
133                                      B0->getOperand(opId)->getName() + ".Elt"),
134           *B0);
135       Value *newPHIUser = InsertNewInstWith(
136           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
137                                                 scalarPHI, Op, B0), *B0);
138       scalarPHI->addIncoming(newPHIUser, inBB);
139     } else {
140       // Scalarize PHI input:
141       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
142       // Insert the new instruction into the predecessor basic block.
143       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
144       BasicBlock::iterator InsertPos;
145       if (pos && !isa<PHINode>(pos)) {
146         InsertPos = ++pos->getIterator();
147       } else {
148         InsertPos = inBB->getFirstInsertionPt();
149       }
150 
151       InsertNewInstWith(newEI, *InsertPos);
152 
153       scalarPHI->addIncoming(newEI, inBB);
154     }
155   }
156 
157   for (auto E : Extracts)
158     replaceInstUsesWith(*E, scalarPHI);
159 
160   return &EI;
161 }
162 
foldBitcastExtElt(ExtractElementInst & Ext,InstCombiner::BuilderTy & Builder,bool IsBigEndian)163 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
164                                       InstCombiner::BuilderTy &Builder,
165                                       bool IsBigEndian) {
166   Value *X;
167   uint64_t ExtIndexC;
168   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
169       !X->getType()->isVectorTy() ||
170       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
171     return nullptr;
172 
173   // If this extractelement is using a bitcast from a vector of the same number
174   // of elements, see if we can find the source element from the source vector:
175   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
176   Type *SrcTy = X->getType();
177   Type *DestTy = Ext.getType();
178   unsigned NumSrcElts = SrcTy->getVectorNumElements();
179   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
180   if (NumSrcElts == NumElts)
181     if (Value *Elt = findScalarElement(X, ExtIndexC))
182       return new BitCastInst(Elt, DestTy);
183 
184   // If the source elements are wider than the destination, try to shift and
185   // truncate a subset of scalar bits of an insert op.
186   if (NumSrcElts < NumElts) {
187     Value *Scalar;
188     uint64_t InsIndexC;
189     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
190                                   m_ConstantInt(InsIndexC))))
191       return nullptr;
192 
193     // The extract must be from the subset of vector elements that we inserted
194     // into. Example: if we inserted element 1 of a <2 x i64> and we are
195     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
196     // of elements 4-7 of the bitcasted vector.
197     unsigned NarrowingRatio = NumElts / NumSrcElts;
198     if (ExtIndexC / NarrowingRatio != InsIndexC)
199       return nullptr;
200 
201     // We are extracting part of the original scalar. How that scalar is
202     // inserted into the vector depends on the endian-ness. Example:
203     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
204     //                                       +--+--+--+--+--+--+--+--+
205     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
206     // extelt <4 x i16> V', 3:               |                 |S2|S3|
207     //                                       +--+--+--+--+--+--+--+--+
208     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
209     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
210     // In this example, we must right-shift little-endian. Big-endian is just a
211     // truncate.
212     unsigned Chunk = ExtIndexC % NarrowingRatio;
213     if (IsBigEndian)
214       Chunk = NarrowingRatio - 1 - Chunk;
215 
216     // Bail out if this is an FP vector to FP vector sequence. That would take
217     // more instructions than we started with unless there is no shift, and it
218     // may not be handled as well in the backend.
219     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
220     bool NeedDestBitcast = DestTy->isFloatingPointTy();
221     if (NeedSrcBitcast && NeedDestBitcast)
222       return nullptr;
223 
224     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
225     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
226     unsigned ShAmt = Chunk * DestWidth;
227 
228     // TODO: This limitation is more strict than necessary. We could sum the
229     // number of new instructions and subtract the number eliminated to know if
230     // we can proceed.
231     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
232       if (NeedSrcBitcast || NeedDestBitcast)
233         return nullptr;
234 
235     if (NeedSrcBitcast) {
236       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
237       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
238     }
239 
240     if (ShAmt) {
241       // Bail out if we could end with more instructions than we started with.
242       if (!Ext.getVectorOperand()->hasOneUse())
243         return nullptr;
244       Scalar = Builder.CreateLShr(Scalar, ShAmt);
245     }
246 
247     if (NeedDestBitcast) {
248       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
249       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
250     }
251     return new TruncInst(Scalar, DestTy);
252   }
253 
254   return nullptr;
255 }
256 
visitExtractElementInst(ExtractElementInst & EI)257 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
258   Value *SrcVec = EI.getVectorOperand();
259   Value *Index = EI.getIndexOperand();
260   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
261                                             SQ.getWithInstruction(&EI)))
262     return replaceInstUsesWith(EI, V);
263 
264   // If extracting a specified index from the vector, see if we can recursively
265   // find a previously computed scalar that was inserted into the vector.
266   auto *IndexC = dyn_cast<ConstantInt>(Index);
267   if (IndexC) {
268     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
269 
270     // InstSimplify should handle cases where the index is invalid.
271     if (!IndexC->getValue().ule(NumElts))
272       return nullptr;
273 
274     // This instruction only demands the single element from the input vector.
275     // If the input vector has a single use, simplify it based on this use
276     // property.
277     if (SrcVec->hasOneUse() && NumElts != 1) {
278       APInt UndefElts(NumElts, 0);
279       APInt DemandedElts(NumElts, 0);
280       DemandedElts.setBit(IndexC->getZExtValue());
281       if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
282                                                 UndefElts)) {
283         EI.setOperand(0, V);
284         return &EI;
285       }
286     }
287 
288     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
289       return I;
290 
291     // If there's a vector PHI feeding a scalar use through this extractelement
292     // instruction, try to scalarize the PHI.
293     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
294       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
295         return ScalarPHI;
296   }
297 
298   BinaryOperator *BO;
299   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
300     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
301     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
302     Value *E0 = Builder.CreateExtractElement(X, Index);
303     Value *E1 = Builder.CreateExtractElement(Y, Index);
304     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
305   }
306 
307   Value *X, *Y;
308   CmpInst::Predicate Pred;
309   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
310       cheapToScalarize(SrcVec, IndexC)) {
311     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
312     Value *E0 = Builder.CreateExtractElement(X, Index);
313     Value *E1 = Builder.CreateExtractElement(Y, Index);
314     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
315   }
316 
317   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
318     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
319       // Extracting the inserted element?
320       if (IE->getOperand(2) == Index)
321         return replaceInstUsesWith(EI, IE->getOperand(1));
322       // If the inserted and extracted elements are constants, they must not
323       // be the same value, extract from the pre-inserted value instead.
324       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
325         Worklist.AddValue(SrcVec);
326         EI.setOperand(0, IE->getOperand(0));
327         return &EI;
328       }
329     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
330       // If this is extracting an element from a shufflevector, figure out where
331       // it came from and extract from the appropriate input element instead.
332       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
333         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
334         Value *Src;
335         unsigned LHSWidth =
336           SVI->getOperand(0)->getType()->getVectorNumElements();
337 
338         if (SrcIdx < 0)
339           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
340         if (SrcIdx < (int)LHSWidth)
341           Src = SVI->getOperand(0);
342         else {
343           SrcIdx -= LHSWidth;
344           Src = SVI->getOperand(1);
345         }
346         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
347         return ExtractElementInst::Create(Src,
348                                           ConstantInt::get(Int32Ty,
349                                                            SrcIdx, false));
350       }
351     } else if (auto *CI = dyn_cast<CastInst>(I)) {
352       // Canonicalize extractelement(cast) -> cast(extractelement).
353       // Bitcasts can change the number of vector elements, and they cost
354       // nothing.
355       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
356         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
357         Worklist.AddValue(EE);
358         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
359       }
360     }
361   }
362   return nullptr;
363 }
364 
365 /// If V is a shuffle of values that ONLY returns elements from either LHS or
366 /// RHS, return the shuffle mask and true. Otherwise, return false.
collectSingleShuffleElements(Value * V,Value * LHS,Value * RHS,SmallVectorImpl<Constant * > & Mask)367 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
368                                          SmallVectorImpl<Constant*> &Mask) {
369   assert(LHS->getType() == RHS->getType() &&
370          "Invalid CollectSingleShuffleElements");
371   unsigned NumElts = V->getType()->getVectorNumElements();
372 
373   if (isa<UndefValue>(V)) {
374     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
375     return true;
376   }
377 
378   if (V == LHS) {
379     for (unsigned i = 0; i != NumElts; ++i)
380       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
381     return true;
382   }
383 
384   if (V == RHS) {
385     for (unsigned i = 0; i != NumElts; ++i)
386       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
387                                       i+NumElts));
388     return true;
389   }
390 
391   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
392     // If this is an insert of an extract from some other vector, include it.
393     Value *VecOp    = IEI->getOperand(0);
394     Value *ScalarOp = IEI->getOperand(1);
395     Value *IdxOp    = IEI->getOperand(2);
396 
397     if (!isa<ConstantInt>(IdxOp))
398       return false;
399     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
400 
401     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
402       // We can handle this if the vector we are inserting into is
403       // transitively ok.
404       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
405         // If so, update the mask to reflect the inserted undef.
406         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
407         return true;
408       }
409     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
410       if (isa<ConstantInt>(EI->getOperand(1))) {
411         unsigned ExtractedIdx =
412         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
413         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
414 
415         // This must be extracting from either LHS or RHS.
416         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
417           // We can handle this if the vector we are inserting into is
418           // transitively ok.
419           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
420             // If so, update the mask to reflect the inserted value.
421             if (EI->getOperand(0) == LHS) {
422               Mask[InsertedIdx % NumElts] =
423               ConstantInt::get(Type::getInt32Ty(V->getContext()),
424                                ExtractedIdx);
425             } else {
426               assert(EI->getOperand(0) == RHS);
427               Mask[InsertedIdx % NumElts] =
428               ConstantInt::get(Type::getInt32Ty(V->getContext()),
429                                ExtractedIdx + NumLHSElts);
430             }
431             return true;
432           }
433         }
434       }
435     }
436   }
437 
438   return false;
439 }
440 
441 /// If we have insertion into a vector that is wider than the vector that we
442 /// are extracting from, try to widen the source vector to allow a single
443 /// shufflevector to replace one or more insert/extract pairs.
replaceExtractElements(InsertElementInst * InsElt,ExtractElementInst * ExtElt,InstCombiner & IC)444 static void replaceExtractElements(InsertElementInst *InsElt,
445                                    ExtractElementInst *ExtElt,
446                                    InstCombiner &IC) {
447   VectorType *InsVecType = InsElt->getType();
448   VectorType *ExtVecType = ExtElt->getVectorOperandType();
449   unsigned NumInsElts = InsVecType->getVectorNumElements();
450   unsigned NumExtElts = ExtVecType->getVectorNumElements();
451 
452   // The inserted-to vector must be wider than the extracted-from vector.
453   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
454       NumExtElts >= NumInsElts)
455     return;
456 
457   // Create a shuffle mask to widen the extended-from vector using undefined
458   // values. The mask selects all of the values of the original vector followed
459   // by as many undefined values as needed to create a vector of the same length
460   // as the inserted-to vector.
461   SmallVector<Constant *, 16> ExtendMask;
462   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
463   for (unsigned i = 0; i < NumExtElts; ++i)
464     ExtendMask.push_back(ConstantInt::get(IntType, i));
465   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
466     ExtendMask.push_back(UndefValue::get(IntType));
467 
468   Value *ExtVecOp = ExtElt->getVectorOperand();
469   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
470   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
471                                    ? ExtVecOpInst->getParent()
472                                    : ExtElt->getParent();
473 
474   // TODO: This restriction matches the basic block check below when creating
475   // new extractelement instructions. If that limitation is removed, this one
476   // could also be removed. But for now, we just bail out to ensure that we
477   // will replace the extractelement instruction that is feeding our
478   // insertelement instruction. This allows the insertelement to then be
479   // replaced by a shufflevector. If the insertelement is not replaced, we can
480   // induce infinite looping because there's an optimization for extractelement
481   // that will delete our widening shuffle. This would trigger another attempt
482   // here to create that shuffle, and we spin forever.
483   if (InsertionBlock != InsElt->getParent())
484     return;
485 
486   // TODO: This restriction matches the check in visitInsertElementInst() and
487   // prevents an infinite loop caused by not turning the extract/insert pair
488   // into a shuffle. We really should not need either check, but we're lacking
489   // folds for shufflevectors because we're afraid to generate shuffle masks
490   // that the backend can't handle.
491   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
492     return;
493 
494   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
495                                         ConstantVector::get(ExtendMask));
496 
497   // Insert the new shuffle after the vector operand of the extract is defined
498   // (as long as it's not a PHI) or at the start of the basic block of the
499   // extract, so any subsequent extracts in the same basic block can use it.
500   // TODO: Insert before the earliest ExtractElementInst that is replaced.
501   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
502     WideVec->insertAfter(ExtVecOpInst);
503   else
504     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
505 
506   // Replace extracts from the original narrow vector with extracts from the new
507   // wide vector.
508   for (User *U : ExtVecOp->users()) {
509     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
510     if (!OldExt || OldExt->getParent() != WideVec->getParent())
511       continue;
512     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
513     NewExt->insertAfter(OldExt);
514     IC.replaceInstUsesWith(*OldExt, NewExt);
515   }
516 }
517 
518 /// We are building a shuffle to create V, which is a sequence of insertelement,
519 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
520 /// not rely on the second vector source. Return a std::pair containing the
521 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
522 /// parameter as required.
523 ///
524 /// Note: we intentionally don't try to fold earlier shuffles since they have
525 /// often been chosen carefully to be efficiently implementable on the target.
526 using ShuffleOps = std::pair<Value *, Value *>;
527 
collectShuffleElements(Value * V,SmallVectorImpl<Constant * > & Mask,Value * PermittedRHS,InstCombiner & IC)528 static ShuffleOps collectShuffleElements(Value *V,
529                                          SmallVectorImpl<Constant *> &Mask,
530                                          Value *PermittedRHS,
531                                          InstCombiner &IC) {
532   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
533   unsigned NumElts = V->getType()->getVectorNumElements();
534 
535   if (isa<UndefValue>(V)) {
536     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
537     return std::make_pair(
538         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
539   }
540 
541   if (isa<ConstantAggregateZero>(V)) {
542     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
543     return std::make_pair(V, nullptr);
544   }
545 
546   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
547     // If this is an insert of an extract from some other vector, include it.
548     Value *VecOp    = IEI->getOperand(0);
549     Value *ScalarOp = IEI->getOperand(1);
550     Value *IdxOp    = IEI->getOperand(2);
551 
552     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
553       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
554         unsigned ExtractedIdx =
555           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
556         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
557 
558         // Either the extracted from or inserted into vector must be RHSVec,
559         // otherwise we'd end up with a shuffle of three inputs.
560         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
561           Value *RHS = EI->getOperand(0);
562           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
563           assert(LR.second == nullptr || LR.second == RHS);
564 
565           if (LR.first->getType() != RHS->getType()) {
566             // Although we are giving up for now, see if we can create extracts
567             // that match the inserts for another round of combining.
568             replaceExtractElements(IEI, EI, IC);
569 
570             // We tried our best, but we can't find anything compatible with RHS
571             // further up the chain. Return a trivial shuffle.
572             for (unsigned i = 0; i < NumElts; ++i)
573               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
574             return std::make_pair(V, nullptr);
575           }
576 
577           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
578           Mask[InsertedIdx % NumElts] =
579             ConstantInt::get(Type::getInt32Ty(V->getContext()),
580                              NumLHSElts+ExtractedIdx);
581           return std::make_pair(LR.first, RHS);
582         }
583 
584         if (VecOp == PermittedRHS) {
585           // We've gone as far as we can: anything on the other side of the
586           // extractelement will already have been converted into a shuffle.
587           unsigned NumLHSElts =
588               EI->getOperand(0)->getType()->getVectorNumElements();
589           for (unsigned i = 0; i != NumElts; ++i)
590             Mask.push_back(ConstantInt::get(
591                 Type::getInt32Ty(V->getContext()),
592                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
593           return std::make_pair(EI->getOperand(0), PermittedRHS);
594         }
595 
596         // If this insertelement is a chain that comes from exactly these two
597         // vectors, return the vector and the effective shuffle.
598         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
599             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
600                                          Mask))
601           return std::make_pair(EI->getOperand(0), PermittedRHS);
602       }
603     }
604   }
605 
606   // Otherwise, we can't do anything fancy. Return an identity vector.
607   for (unsigned i = 0; i != NumElts; ++i)
608     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
609   return std::make_pair(V, nullptr);
610 }
611 
612 /// Try to find redundant insertvalue instructions, like the following ones:
613 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
614 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
615 /// Here the second instruction inserts values at the same indices, as the
616 /// first one, making the first one redundant.
617 /// It should be transformed to:
618 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
visitInsertValueInst(InsertValueInst & I)619 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
620   bool IsRedundant = false;
621   ArrayRef<unsigned int> FirstIndices = I.getIndices();
622 
623   // If there is a chain of insertvalue instructions (each of them except the
624   // last one has only one use and it's another insertvalue insn from this
625   // chain), check if any of the 'children' uses the same indices as the first
626   // instruction. In this case, the first one is redundant.
627   Value *V = &I;
628   unsigned Depth = 0;
629   while (V->hasOneUse() && Depth < 10) {
630     User *U = V->user_back();
631     auto UserInsInst = dyn_cast<InsertValueInst>(U);
632     if (!UserInsInst || U->getOperand(0) != V)
633       break;
634     if (UserInsInst->getIndices() == FirstIndices) {
635       IsRedundant = true;
636       break;
637     }
638     V = UserInsInst;
639     Depth++;
640   }
641 
642   if (IsRedundant)
643     return replaceInstUsesWith(I, I.getOperand(0));
644   return nullptr;
645 }
646 
isShuffleEquivalentToSelect(ShuffleVectorInst & Shuf)647 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
648   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
649   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
650 
651   // A vector select does not change the size of the operands.
652   if (MaskSize != VecSize)
653     return false;
654 
655   // Each mask element must be undefined or choose a vector element from one of
656   // the source operands without crossing vector lanes.
657   for (int i = 0; i != MaskSize; ++i) {
658     int Elt = Shuf.getMaskValue(i);
659     if (Elt != -1 && Elt != i && Elt != i + VecSize)
660       return false;
661   }
662 
663   return true;
664 }
665 
666 // Turn a chain of inserts that splats a value into a canonical insert + shuffle
667 // splat. That is:
668 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
669 // shufflevector(insertelt(X, %k, 0), undef, zero)
foldInsSequenceIntoBroadcast(InsertElementInst & InsElt)670 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) {
671   // We are interested in the last insert in a chain. So, if this insert
672   // has a single user, and that user is an insert, bail.
673   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
674     return nullptr;
675 
676   VectorType *VT = cast<VectorType>(InsElt.getType());
677   int NumElements = VT->getNumElements();
678 
679   // Do not try to do this for a one-element vector, since that's a nop,
680   // and will cause an inf-loop.
681   if (NumElements == 1)
682     return nullptr;
683 
684   Value *SplatVal = InsElt.getOperand(1);
685   InsertElementInst *CurrIE = &InsElt;
686   SmallVector<bool, 16> ElementPresent(NumElements, false);
687   InsertElementInst *FirstIE = nullptr;
688 
689   // Walk the chain backwards, keeping track of which indices we inserted into,
690   // until we hit something that isn't an insert of the splatted value.
691   while (CurrIE) {
692     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
693     if (!Idx || CurrIE->getOperand(1) != SplatVal)
694       return nullptr;
695 
696     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
697     // Check none of the intermediate steps have any additional uses, except
698     // for the root insertelement instruction, which can be re-used, if it
699     // inserts at position 0.
700     if (CurrIE != &InsElt &&
701         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
702       return nullptr;
703 
704     ElementPresent[Idx->getZExtValue()] = true;
705     FirstIE = CurrIE;
706     CurrIE = NextIE;
707   }
708 
709   // Make sure we've seen an insert into every element.
710   if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; }))
711     return nullptr;
712 
713   // All right, create the insert + shuffle.
714   Instruction *InsertFirst;
715   if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
716     InsertFirst = FirstIE;
717   else
718     InsertFirst = InsertElementInst::Create(
719         UndefValue::get(VT), SplatVal,
720         ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0),
721         "", &InsElt);
722 
723   Constant *ZeroMask = ConstantAggregateZero::get(
724       VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements));
725 
726   return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask);
727 }
728 
729 /// If we have an insertelement instruction feeding into another insertelement
730 /// and the 2nd is inserting a constant into the vector, canonicalize that
731 /// constant insertion before the insertion of a variable:
732 ///
733 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
734 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
735 ///
736 /// This has the potential of eliminating the 2nd insertelement instruction
737 /// via constant folding of the scalar constant into a vector constant.
hoistInsEltConst(InsertElementInst & InsElt2,InstCombiner::BuilderTy & Builder)738 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
739                                      InstCombiner::BuilderTy &Builder) {
740   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
741   if (!InsElt1 || !InsElt1->hasOneUse())
742     return nullptr;
743 
744   Value *X, *Y;
745   Constant *ScalarC;
746   ConstantInt *IdxC1, *IdxC2;
747   if (match(InsElt1->getOperand(0), m_Value(X)) &&
748       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
749       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
750       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
751       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
752     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
753     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
754   }
755 
756   return nullptr;
757 }
758 
759 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
760 /// --> shufflevector X, CVec', Mask'
foldConstantInsEltIntoShuffle(InsertElementInst & InsElt)761 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
762   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
763   // Bail out if the parent has more than one use. In that case, we'd be
764   // replacing the insertelt with a shuffle, and that's not a clear win.
765   if (!Inst || !Inst->hasOneUse())
766     return nullptr;
767   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
768     // The shuffle must have a constant vector operand. The insertelt must have
769     // a constant scalar being inserted at a constant position in the vector.
770     Constant *ShufConstVec, *InsEltScalar;
771     uint64_t InsEltIndex;
772     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
773         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
774         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
775       return nullptr;
776 
777     // Adding an element to an arbitrary shuffle could be expensive, but a
778     // shuffle that selects elements from vectors without crossing lanes is
779     // assumed cheap.
780     // If we're just adding a constant into that shuffle, it will still be
781     // cheap.
782     if (!isShuffleEquivalentToSelect(*Shuf))
783       return nullptr;
784 
785     // From the above 'select' check, we know that the mask has the same number
786     // of elements as the vector input operands. We also know that each constant
787     // input element is used in its lane and can not be used more than once by
788     // the shuffle. Therefore, replace the constant in the shuffle's constant
789     // vector with the insertelt constant. Replace the constant in the shuffle's
790     // mask vector with the insertelt index plus the length of the vector
791     // (because the constant vector operand of a shuffle is always the 2nd
792     // operand).
793     Constant *Mask = Shuf->getMask();
794     unsigned NumElts = Mask->getType()->getVectorNumElements();
795     SmallVector<Constant *, 16> NewShufElts(NumElts);
796     SmallVector<Constant *, 16> NewMaskElts(NumElts);
797     for (unsigned I = 0; I != NumElts; ++I) {
798       if (I == InsEltIndex) {
799         NewShufElts[I] = InsEltScalar;
800         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
801         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
802       } else {
803         // Copy over the existing values.
804         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
805         NewMaskElts[I] = Mask->getAggregateElement(I);
806       }
807     }
808 
809     // Create new operands for a shuffle that includes the constant of the
810     // original insertelt. The old shuffle will be dead now.
811     return new ShuffleVectorInst(Shuf->getOperand(0),
812                                  ConstantVector::get(NewShufElts),
813                                  ConstantVector::get(NewMaskElts));
814   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
815     // Transform sequences of insertelements ops with constant data/indexes into
816     // a single shuffle op.
817     unsigned NumElts = InsElt.getType()->getNumElements();
818 
819     uint64_t InsertIdx[2];
820     Constant *Val[2];
821     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
822         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
823         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
824         !match(IEI->getOperand(1), m_Constant(Val[1])))
825       return nullptr;
826     SmallVector<Constant *, 16> Values(NumElts);
827     SmallVector<Constant *, 16> Mask(NumElts);
828     auto ValI = std::begin(Val);
829     // Generate new constant vector and mask.
830     // We have 2 values/masks from the insertelements instructions. Insert them
831     // into new value/mask vectors.
832     for (uint64_t I : InsertIdx) {
833       if (!Values[I]) {
834         assert(!Mask[I]);
835         Values[I] = *ValI;
836         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
837                                    NumElts + I);
838       }
839       ++ValI;
840     }
841     // Remaining values are filled with 'undef' values.
842     for (unsigned I = 0; I < NumElts; ++I) {
843       if (!Values[I]) {
844         assert(!Mask[I]);
845         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
846         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
847       }
848     }
849     // Create new operands for a shuffle that includes the constant of the
850     // original insertelt.
851     return new ShuffleVectorInst(IEI->getOperand(0),
852                                  ConstantVector::get(Values),
853                                  ConstantVector::get(Mask));
854   }
855   return nullptr;
856 }
857 
visitInsertElementInst(InsertElementInst & IE)858 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
859   Value *VecOp    = IE.getOperand(0);
860   Value *ScalarOp = IE.getOperand(1);
861   Value *IdxOp    = IE.getOperand(2);
862 
863   if (auto *V = SimplifyInsertElementInst(
864           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
865     return replaceInstUsesWith(IE, V);
866 
867   // Inserting an undef or into an undefined place, remove this.
868   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
869     replaceInstUsesWith(IE, VecOp);
870 
871   // If the inserted element was extracted from some other vector and both
872   // indexes are constant, try to turn this into a shuffle.
873   uint64_t InsertedIdx, ExtractedIdx;
874   Value *ExtVecOp;
875   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
876       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
877                                        m_ConstantInt(ExtractedIdx)))) {
878     unsigned NumInsertVectorElts = IE.getType()->getNumElements();
879     unsigned NumExtractVectorElts = ExtVecOp->getType()->getVectorNumElements();
880     if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
881       return replaceInstUsesWith(IE, VecOp);
882 
883     if (InsertedIdx >= NumInsertVectorElts)  // Out of range insert.
884       return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
885 
886     // If we are extracting a value from a vector, then inserting it right
887     // back into the same place, just use the input vector.
888     if (ExtVecOp == VecOp && ExtractedIdx == InsertedIdx)
889       return replaceInstUsesWith(IE, VecOp);
890 
891     // TODO: Looking at the user(s) to determine if this insert is a
892     // fold-to-shuffle opportunity does not match the usual instcombine
893     // constraints. We should decide if the transform is worthy based only
894     // on this instruction and its operands, but that may not work currently.
895     //
896     // Here, we are trying to avoid creating shuffles before reaching
897     // the end of a chain of extract-insert pairs. This is complicated because
898     // we do not generally form arbitrary shuffle masks in instcombine
899     // (because those may codegen poorly), but collectShuffleElements() does
900     // exactly that.
901     //
902     // The rules for determining what is an acceptable target-independent
903     // shuffle mask are fuzzy because they evolve based on the backend's
904     // capabilities and real-world impact.
905     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
906       if (!Insert.hasOneUse())
907         return true;
908       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
909       if (!InsertUser)
910         return true;
911       return false;
912     };
913 
914     // Try to form a shuffle from a chain of extract-insert ops.
915     if (isShuffleRootCandidate(IE)) {
916       SmallVector<Constant*, 16> Mask;
917       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
918 
919       // The proposed shuffle may be trivial, in which case we shouldn't
920       // perform the combine.
921       if (LR.first != &IE && LR.second != &IE) {
922         // We now have a shuffle of LHS, RHS, Mask.
923         if (LR.second == nullptr)
924           LR.second = UndefValue::get(LR.first->getType());
925         return new ShuffleVectorInst(LR.first, LR.second,
926                                      ConstantVector::get(Mask));
927       }
928     }
929   }
930 
931   unsigned VWidth = VecOp->getType()->getVectorNumElements();
932   APInt UndefElts(VWidth, 0);
933   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
934   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
935     if (V != &IE)
936       return replaceInstUsesWith(IE, V);
937     return &IE;
938   }
939 
940   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
941     return Shuf;
942 
943   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
944     return NewInsElt;
945 
946   // Turn a sequence of inserts that broadcasts a scalar into a single
947   // insert + shufflevector.
948   if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE))
949     return Broadcast;
950 
951   return nullptr;
952 }
953 
954 /// Return true if we can evaluate the specified expression tree if the vector
955 /// elements were shuffled in a different order.
canEvaluateShuffled(Value * V,ArrayRef<int> Mask,unsigned Depth=5)956 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
957                                 unsigned Depth = 5) {
958   // We can always reorder the elements of a constant.
959   if (isa<Constant>(V))
960     return true;
961 
962   // We won't reorder vector arguments. No IPO here.
963   Instruction *I = dyn_cast<Instruction>(V);
964   if (!I) return false;
965 
966   // Two users may expect different orders of the elements. Don't try it.
967   if (!I->hasOneUse())
968     return false;
969 
970   if (Depth == 0) return false;
971 
972   switch (I->getOpcode()) {
973     case Instruction::Add:
974     case Instruction::FAdd:
975     case Instruction::Sub:
976     case Instruction::FSub:
977     case Instruction::Mul:
978     case Instruction::FMul:
979     case Instruction::UDiv:
980     case Instruction::SDiv:
981     case Instruction::FDiv:
982     case Instruction::URem:
983     case Instruction::SRem:
984     case Instruction::FRem:
985     case Instruction::Shl:
986     case Instruction::LShr:
987     case Instruction::AShr:
988     case Instruction::And:
989     case Instruction::Or:
990     case Instruction::Xor:
991     case Instruction::ICmp:
992     case Instruction::FCmp:
993     case Instruction::Trunc:
994     case Instruction::ZExt:
995     case Instruction::SExt:
996     case Instruction::FPToUI:
997     case Instruction::FPToSI:
998     case Instruction::UIToFP:
999     case Instruction::SIToFP:
1000     case Instruction::FPTrunc:
1001     case Instruction::FPExt:
1002     case Instruction::GetElementPtr: {
1003       // Bail out if we would create longer vector ops. We could allow creating
1004       // longer vector ops, but that may result in more expensive codegen. We
1005       // would also need to limit the transform to avoid undefined behavior for
1006       // integer div/rem.
1007       Type *ITy = I->getType();
1008       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1009         return false;
1010       for (Value *Operand : I->operands()) {
1011         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1012           return false;
1013       }
1014       return true;
1015     }
1016     case Instruction::InsertElement: {
1017       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1018       if (!CI) return false;
1019       int ElementNumber = CI->getLimitedValue();
1020 
1021       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1022       // can't put an element into multiple indices.
1023       bool SeenOnce = false;
1024       for (int i = 0, e = Mask.size(); i != e; ++i) {
1025         if (Mask[i] == ElementNumber) {
1026           if (SeenOnce)
1027             return false;
1028           SeenOnce = true;
1029         }
1030       }
1031       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1032     }
1033   }
1034   return false;
1035 }
1036 
1037 /// Rebuild a new instruction just like 'I' but with the new operands given.
1038 /// In the event of type mismatch, the type of the operands is correct.
buildNew(Instruction * I,ArrayRef<Value * > NewOps)1039 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1040   // We don't want to use the IRBuilder here because we want the replacement
1041   // instructions to appear next to 'I', not the builder's insertion point.
1042   switch (I->getOpcode()) {
1043     case Instruction::Add:
1044     case Instruction::FAdd:
1045     case Instruction::Sub:
1046     case Instruction::FSub:
1047     case Instruction::Mul:
1048     case Instruction::FMul:
1049     case Instruction::UDiv:
1050     case Instruction::SDiv:
1051     case Instruction::FDiv:
1052     case Instruction::URem:
1053     case Instruction::SRem:
1054     case Instruction::FRem:
1055     case Instruction::Shl:
1056     case Instruction::LShr:
1057     case Instruction::AShr:
1058     case Instruction::And:
1059     case Instruction::Or:
1060     case Instruction::Xor: {
1061       BinaryOperator *BO = cast<BinaryOperator>(I);
1062       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1063       BinaryOperator *New =
1064           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1065                                  NewOps[0], NewOps[1], "", BO);
1066       if (isa<OverflowingBinaryOperator>(BO)) {
1067         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1068         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1069       }
1070       if (isa<PossiblyExactOperator>(BO)) {
1071         New->setIsExact(BO->isExact());
1072       }
1073       if (isa<FPMathOperator>(BO))
1074         New->copyFastMathFlags(I);
1075       return New;
1076     }
1077     case Instruction::ICmp:
1078       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1079       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1080                           NewOps[0], NewOps[1]);
1081     case Instruction::FCmp:
1082       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1083       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1084                           NewOps[0], NewOps[1]);
1085     case Instruction::Trunc:
1086     case Instruction::ZExt:
1087     case Instruction::SExt:
1088     case Instruction::FPToUI:
1089     case Instruction::FPToSI:
1090     case Instruction::UIToFP:
1091     case Instruction::SIToFP:
1092     case Instruction::FPTrunc:
1093     case Instruction::FPExt: {
1094       // It's possible that the mask has a different number of elements from
1095       // the original cast. We recompute the destination type to match the mask.
1096       Type *DestTy =
1097           VectorType::get(I->getType()->getScalarType(),
1098                           NewOps[0]->getType()->getVectorNumElements());
1099       assert(NewOps.size() == 1 && "cast with #ops != 1");
1100       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1101                               "", I);
1102     }
1103     case Instruction::GetElementPtr: {
1104       Value *Ptr = NewOps[0];
1105       ArrayRef<Value*> Idx = NewOps.slice(1);
1106       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1107           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1108       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1109       return GEP;
1110     }
1111   }
1112   llvm_unreachable("failed to rebuild vector instructions");
1113 }
1114 
evaluateInDifferentElementOrder(Value * V,ArrayRef<int> Mask)1115 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1116   // Mask.size() does not need to be equal to the number of vector elements.
1117 
1118   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1119   Type *EltTy = V->getType()->getScalarType();
1120   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1121   if (isa<UndefValue>(V))
1122     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1123 
1124   if (isa<ConstantAggregateZero>(V))
1125     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1126 
1127   if (Constant *C = dyn_cast<Constant>(V)) {
1128     SmallVector<Constant *, 16> MaskValues;
1129     for (int i = 0, e = Mask.size(); i != e; ++i) {
1130       if (Mask[i] == -1)
1131         MaskValues.push_back(UndefValue::get(I32Ty));
1132       else
1133         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1134     }
1135     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1136                                           ConstantVector::get(MaskValues));
1137   }
1138 
1139   Instruction *I = cast<Instruction>(V);
1140   switch (I->getOpcode()) {
1141     case Instruction::Add:
1142     case Instruction::FAdd:
1143     case Instruction::Sub:
1144     case Instruction::FSub:
1145     case Instruction::Mul:
1146     case Instruction::FMul:
1147     case Instruction::UDiv:
1148     case Instruction::SDiv:
1149     case Instruction::FDiv:
1150     case Instruction::URem:
1151     case Instruction::SRem:
1152     case Instruction::FRem:
1153     case Instruction::Shl:
1154     case Instruction::LShr:
1155     case Instruction::AShr:
1156     case Instruction::And:
1157     case Instruction::Or:
1158     case Instruction::Xor:
1159     case Instruction::ICmp:
1160     case Instruction::FCmp:
1161     case Instruction::Trunc:
1162     case Instruction::ZExt:
1163     case Instruction::SExt:
1164     case Instruction::FPToUI:
1165     case Instruction::FPToSI:
1166     case Instruction::UIToFP:
1167     case Instruction::SIToFP:
1168     case Instruction::FPTrunc:
1169     case Instruction::FPExt:
1170     case Instruction::Select:
1171     case Instruction::GetElementPtr: {
1172       SmallVector<Value*, 8> NewOps;
1173       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1174       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1175         Value *V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1176         NewOps.push_back(V);
1177         NeedsRebuild |= (V != I->getOperand(i));
1178       }
1179       if (NeedsRebuild) {
1180         return buildNew(I, NewOps);
1181       }
1182       return I;
1183     }
1184     case Instruction::InsertElement: {
1185       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1186 
1187       // The insertelement was inserting at Element. Figure out which element
1188       // that becomes after shuffling. The answer is guaranteed to be unique
1189       // by CanEvaluateShuffled.
1190       bool Found = false;
1191       int Index = 0;
1192       for (int e = Mask.size(); Index != e; ++Index) {
1193         if (Mask[Index] == Element) {
1194           Found = true;
1195           break;
1196         }
1197       }
1198 
1199       // If element is not in Mask, no need to handle the operand 1 (element to
1200       // be inserted). Just evaluate values in operand 0 according to Mask.
1201       if (!Found)
1202         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1203 
1204       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1205       return InsertElementInst::Create(V, I->getOperand(1),
1206                                        ConstantInt::get(I32Ty, Index), "", I);
1207     }
1208   }
1209   llvm_unreachable("failed to reorder elements of vector instruction!");
1210 }
1211 
recognizeIdentityMask(const SmallVectorImpl<int> & Mask,bool & isLHSID,bool & isRHSID)1212 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1213                                   bool &isLHSID, bool &isRHSID) {
1214   isLHSID = isRHSID = true;
1215 
1216   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1217     if (Mask[i] < 0) continue;  // Ignore undef values.
1218     // Is this an identity shuffle of the LHS value?
1219     isLHSID &= (Mask[i] == (int)i);
1220 
1221     // Is this an identity shuffle of the RHS value?
1222     isRHSID &= (Mask[i]-e == i);
1223   }
1224 }
1225 
1226 // Returns true if the shuffle is extracting a contiguous range of values from
1227 // LHS, for example:
1228 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1229 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1230 //   Shuffles to:  |EE|FF|GG|HH|
1231 //                 +--+--+--+--+
isShuffleExtractingFromLHS(ShuffleVectorInst & SVI,SmallVector<int,16> & Mask)1232 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1233                                        SmallVector<int, 16> &Mask) {
1234   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1235   unsigned MaskElems = Mask.size();
1236   unsigned BegIdx = Mask.front();
1237   unsigned EndIdx = Mask.back();
1238   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1239     return false;
1240   for (unsigned I = 0; I != MaskElems; ++I)
1241     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1242       return false;
1243   return true;
1244 }
1245 
1246 /// These are the ingredients in an alternate form binary operator as described
1247 /// below.
1248 struct BinopElts {
1249   BinaryOperator::BinaryOps Opcode;
1250   Value *Op0;
1251   Value *Op1;
BinopEltsBinopElts1252   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1253             Value *V0 = nullptr, Value *V1 = nullptr) :
1254       Opcode(Opc), Op0(V0), Op1(V1) {}
operator boolBinopElts1255   operator bool() const { return Opcode != 0; }
1256 };
1257 
1258 /// Binops may be transformed into binops with different opcodes and operands.
1259 /// Reverse the usual canonicalization to enable folds with the non-canonical
1260 /// form of the binop. If a transform is possible, return the elements of the
1261 /// new binop. If not, return invalid elements.
getAlternateBinop(BinaryOperator * BO,const DataLayout & DL)1262 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1263   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1264   Type *Ty = BO->getType();
1265   switch (BO->getOpcode()) {
1266     case Instruction::Shl: {
1267       // shl X, C --> mul X, (1 << C)
1268       Constant *C;
1269       if (match(BO1, m_Constant(C))) {
1270         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1271         return { Instruction::Mul, BO0, ShlOne };
1272       }
1273       break;
1274     }
1275     case Instruction::Or: {
1276       // or X, C --> add X, C (when X and C have no common bits set)
1277       const APInt *C;
1278       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1279         return { Instruction::Add, BO0, BO1 };
1280       break;
1281     }
1282     default:
1283       break;
1284   }
1285   return {};
1286 }
1287 
foldSelectShuffleWith1Binop(ShuffleVectorInst & Shuf)1288 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1289   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1290 
1291   // Are we shuffling together some value and that same value after it has been
1292   // modified by a binop with a constant?
1293   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1294   Constant *C;
1295   bool Op0IsBinop;
1296   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1297     Op0IsBinop = true;
1298   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1299     Op0IsBinop = false;
1300   else
1301     return nullptr;
1302 
1303   // The identity constant for a binop leaves a variable operand unchanged. For
1304   // a vector, this is a splat of something like 0, -1, or 1.
1305   // If there's no identity constant for this binop, we're done.
1306   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1307   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1308   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1309   if (!IdC)
1310     return nullptr;
1311 
1312   // Shuffle identity constants into the lanes that return the original value.
1313   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1314   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1315   // The existing binop constant vector remains in the same operand position.
1316   Constant *Mask = Shuf.getMask();
1317   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1318                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1319 
1320   bool MightCreatePoisonOrUB =
1321       Mask->containsUndefElement() &&
1322       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1323   if (MightCreatePoisonOrUB)
1324     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1325 
1326   // shuf (bop X, C), X, M --> bop X, C'
1327   // shuf X, (bop X, C), M --> bop X, C'
1328   Value *X = Op0IsBinop ? Op1 : Op0;
1329   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1330   NewBO->copyIRFlags(BO);
1331 
1332   // An undef shuffle mask element may propagate as an undef constant element in
1333   // the new binop. That would produce poison where the original code might not.
1334   // If we already made a safe constant, then there's no danger.
1335   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1336     NewBO->dropPoisonGeneratingFlags();
1337   return NewBO;
1338 }
1339 
1340 /// Try to fold shuffles that are the equivalent of a vector select.
foldSelectShuffle(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder,const DataLayout & DL)1341 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1342                                       InstCombiner::BuilderTy &Builder,
1343                                       const DataLayout &DL) {
1344   if (!Shuf.isSelect())
1345     return nullptr;
1346 
1347   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1348     return I;
1349 
1350   BinaryOperator *B0, *B1;
1351   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1352       !match(Shuf.getOperand(1), m_BinOp(B1)))
1353     return nullptr;
1354 
1355   Value *X, *Y;
1356   Constant *C0, *C1;
1357   bool ConstantsAreOp1;
1358   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1359       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1360     ConstantsAreOp1 = true;
1361   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1362            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1363     ConstantsAreOp1 = false;
1364   else
1365     return nullptr;
1366 
1367   // We need matching binops to fold the lanes together.
1368   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1369   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1370   bool DropNSW = false;
1371   if (ConstantsAreOp1 && Opc0 != Opc1) {
1372     // TODO: We drop "nsw" if shift is converted into multiply because it may
1373     // not be correct when the shift amount is BitWidth - 1. We could examine
1374     // each vector element to determine if it is safe to keep that flag.
1375     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1376       DropNSW = true;
1377     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1378       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1379       Opc0 = AltB0.Opcode;
1380       C0 = cast<Constant>(AltB0.Op1);
1381     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1382       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1383       Opc1 = AltB1.Opcode;
1384       C1 = cast<Constant>(AltB1.Op1);
1385     }
1386   }
1387 
1388   if (Opc0 != Opc1)
1389     return nullptr;
1390 
1391   // The opcodes must be the same. Use a new name to make that clear.
1392   BinaryOperator::BinaryOps BOpc = Opc0;
1393 
1394   // Select the constant elements needed for the single binop.
1395   Constant *Mask = Shuf.getMask();
1396   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1397 
1398   // We are moving a binop after a shuffle. When a shuffle has an undefined
1399   // mask element, the result is undefined, but it is not poison or undefined
1400   // behavior. That is not necessarily true for div/rem/shift.
1401   bool MightCreatePoisonOrUB =
1402       Mask->containsUndefElement() &&
1403       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1404   if (MightCreatePoisonOrUB)
1405     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1406 
1407   Value *V;
1408   if (X == Y) {
1409     // Remove a binop and the shuffle by rearranging the constant:
1410     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1411     // shuffle (op C0, V), (op C1, V), M --> op C', V
1412     V = X;
1413   } else {
1414     // If there are 2 different variable operands, we must create a new shuffle
1415     // (select) first, so check uses to ensure that we don't end up with more
1416     // instructions than we started with.
1417     if (!B0->hasOneUse() && !B1->hasOneUse())
1418       return nullptr;
1419 
1420     // If we use the original shuffle mask and op1 is *variable*, we would be
1421     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1422     // poison. We do not have to guard against UB when *constants* are op1
1423     // because safe constants guarantee that we do not overflow sdiv/srem (and
1424     // there's no danger for other opcodes).
1425     // TODO: To allow this case, create a new shuffle mask with no undefs.
1426     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1427       return nullptr;
1428 
1429     // Note: In general, we do not create new shuffles in InstCombine because we
1430     // do not know if a target can lower an arbitrary shuffle optimally. In this
1431     // case, the shuffle uses the existing mask, so there is no additional risk.
1432 
1433     // Select the variable vectors first, then perform the binop:
1434     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1435     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1436     V = Builder.CreateShuffleVector(X, Y, Mask);
1437   }
1438 
1439   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1440                                          BinaryOperator::Create(BOpc, NewC, V);
1441 
1442   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1443   // 1. If we changed an opcode, poison conditions might have changed.
1444   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1445   //    where the original code did not. But if we already made a safe constant,
1446   //    then there's no danger.
1447   NewBO->copyIRFlags(B0);
1448   NewBO->andIRFlags(B1);
1449   if (DropNSW)
1450     NewBO->setHasNoSignedWrap(false);
1451   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1452     NewBO->dropPoisonGeneratingFlags();
1453   return NewBO;
1454 }
1455 
1456 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1457 /// narrowing (concatenating with undef and extracting back to the original
1458 /// length). This allows replacing the wide select with a narrow select.
narrowVectorSelect(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)1459 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1460                                        InstCombiner::BuilderTy &Builder) {
1461   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1462   // of the 1st vector operand of a shuffle.
1463   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1464     return nullptr;
1465 
1466   // The vector being shuffled must be a vector select that we can eliminate.
1467   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1468   Value *Cond, *X, *Y;
1469   if (!match(Shuf.getOperand(0),
1470              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1471     return nullptr;
1472 
1473   // We need a narrow condition value. It must be extended with undef elements
1474   // and have the same number of elements as this shuffle.
1475   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1476   Value *NarrowCond;
1477   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1478                                             m_Constant()))) ||
1479       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1480       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1481     return nullptr;
1482 
1483   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1484   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1485   Value *Undef = UndefValue::get(X->getType());
1486   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1487   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1488   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1489 }
1490 
1491 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
foldIdentityExtractShuffle(ShuffleVectorInst & Shuf)1492 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1493   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1494   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1495     return nullptr;
1496 
1497   Value *X, *Y;
1498   Constant *Mask;
1499   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1500     return nullptr;
1501 
1502   // We are extracting a subvector from a shuffle. Remove excess elements from
1503   // the 1st shuffle mask to eliminate the extract.
1504   //
1505   // This transform is conservatively limited to identity extracts because we do
1506   // not allow arbitrary shuffle mask creation as a target-independent transform
1507   // (because we can't guarantee that will lower efficiently).
1508   //
1509   // If the extracting shuffle has an undef mask element, it transfers to the
1510   // new shuffle mask. Otherwise, copy the original mask element. Example:
1511   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1512   //   shuf X, Y, <C0, undef, C2, undef>
1513   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1514   SmallVector<Constant *, 16> NewMask(NumElts);
1515   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1516          "Identity with extract must have less elements than its inputs");
1517 
1518   for (unsigned i = 0; i != NumElts; ++i) {
1519     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1520     Constant *MaskElt = Mask->getAggregateElement(i);
1521     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1522   }
1523   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1524 }
1525 
1526 /// Try to replace a shuffle with an insertelement.
foldShuffleWithInsert(ShuffleVectorInst & Shuf)1527 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1528   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1529   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1530 
1531   // The shuffle must not change vector sizes.
1532   // TODO: This restriction could be removed if the insert has only one use
1533   //       (because the transform would require a new length-changing shuffle).
1534   int NumElts = Mask.size();
1535   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1536     return nullptr;
1537 
1538   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1539   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1540     // We need an insertelement with a constant index.
1541     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1542                                    m_ConstantInt(IndexC))))
1543       return false;
1544 
1545     // Test the shuffle mask to see if it splices the inserted scalar into the
1546     // operand 1 vector of the shuffle.
1547     int NewInsIndex = -1;
1548     for (int i = 0; i != NumElts; ++i) {
1549       // Ignore undef mask elements.
1550       if (Mask[i] == -1)
1551         continue;
1552 
1553       // The shuffle takes elements of operand 1 without lane changes.
1554       if (Mask[i] == NumElts + i)
1555         continue;
1556 
1557       // The shuffle must choose the inserted scalar exactly once.
1558       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1559         return false;
1560 
1561       // The shuffle is placing the inserted scalar into element i.
1562       NewInsIndex = i;
1563     }
1564 
1565     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1566 
1567     // Index is updated to the potentially translated insertion lane.
1568     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1569     return true;
1570   };
1571 
1572   // If the shuffle is unnecessary, insert the scalar operand directly into
1573   // operand 1 of the shuffle. Example:
1574   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1575   Value *Scalar;
1576   ConstantInt *IndexC;
1577   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1578     return InsertElementInst::Create(V1, Scalar, IndexC);
1579 
1580   // Try again after commuting shuffle. Example:
1581   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1582   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1583   std::swap(V0, V1);
1584   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1585   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1586     return InsertElementInst::Create(V1, Scalar, IndexC);
1587 
1588   return nullptr;
1589 }
1590 
visitShuffleVectorInst(ShuffleVectorInst & SVI)1591 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1592   Value *LHS = SVI.getOperand(0);
1593   Value *RHS = SVI.getOperand(1);
1594   if (auto *V = SimplifyShuffleVectorInst(
1595           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1596     return replaceInstUsesWith(SVI, V);
1597 
1598   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1599     return I;
1600 
1601   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1602     return I;
1603 
1604   unsigned VWidth = SVI.getType()->getVectorNumElements();
1605   APInt UndefElts(VWidth, 0);
1606   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1607   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1608     if (V != &SVI)
1609       return replaceInstUsesWith(SVI, V);
1610     return &SVI;
1611   }
1612 
1613   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1614     return I;
1615 
1616   // This transform has the potential to lose undef knowledge, so it is
1617   // intentionally placed after SimplifyDemandedVectorElts().
1618   if (Instruction *I = foldShuffleWithInsert(SVI))
1619     return I;
1620 
1621   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1622   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1623   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1624   bool MadeChange = false;
1625 
1626   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1627   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1628   if (LHS == RHS || isa<UndefValue>(LHS)) {
1629     // Remap any references to RHS to use LHS.
1630     SmallVector<Constant*, 16> Elts;
1631     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1632       if (Mask[i] < 0) {
1633         Elts.push_back(UndefValue::get(Int32Ty));
1634         continue;
1635       }
1636 
1637       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1638           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1639         Mask[i] = -1;     // Turn into undef.
1640         Elts.push_back(UndefValue::get(Int32Ty));
1641       } else {
1642         Mask[i] = Mask[i] % e;  // Force to LHS.
1643         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1644       }
1645     }
1646     SVI.setOperand(0, SVI.getOperand(1));
1647     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1648     SVI.setOperand(2, ConstantVector::get(Elts));
1649     LHS = SVI.getOperand(0);
1650     RHS = SVI.getOperand(1);
1651     MadeChange = true;
1652   }
1653 
1654   if (VWidth == LHSWidth) {
1655     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1656     bool isLHSID, isRHSID;
1657     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1658 
1659     // Eliminate identity shuffles.
1660     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1661     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1662   }
1663 
1664   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1665     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1666     return replaceInstUsesWith(SVI, V);
1667   }
1668 
1669   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1670   // a non-vector type. We can instead bitcast the original vector followed by
1671   // an extract of the desired element:
1672   //
1673   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1674   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1675   //   %1 = bitcast <4 x i8> %sroa to i32
1676   // Becomes:
1677   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1678   //   %ext = extractelement <4 x i32> %bc, i32 0
1679   //
1680   // If the shuffle is extracting a contiguous range of values from the input
1681   // vector then each use which is a bitcast of the extracted size can be
1682   // replaced. This will work if the vector types are compatible, and the begin
1683   // index is aligned to a value in the casted vector type. If the begin index
1684   // isn't aligned then we can shuffle the original vector (keeping the same
1685   // vector type) before extracting.
1686   //
1687   // This code will bail out if the target type is fundamentally incompatible
1688   // with vectors of the source type.
1689   //
1690   // Example of <16 x i8>, target type i32:
1691   // Index range [4,8):         v-----------v Will work.
1692   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1693   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1694   //     <4 x i32>: |           |           |           |           |
1695   //                +-----------+-----------+-----------+-----------+
1696   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1697   // Target type i40:           ^--------------^ Won't work, bail.
1698   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1699     Value *V = LHS;
1700     unsigned MaskElems = Mask.size();
1701     VectorType *SrcTy = cast<VectorType>(V->getType());
1702     unsigned VecBitWidth = SrcTy->getBitWidth();
1703     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1704     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1705     unsigned SrcNumElems = SrcTy->getNumElements();
1706     SmallVector<BitCastInst *, 8> BCs;
1707     DenseMap<Type *, Value *> NewBCs;
1708     for (User *U : SVI.users())
1709       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1710         if (!BC->use_empty())
1711           // Only visit bitcasts that weren't previously handled.
1712           BCs.push_back(BC);
1713     for (BitCastInst *BC : BCs) {
1714       unsigned BegIdx = Mask.front();
1715       Type *TgtTy = BC->getDestTy();
1716       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1717       if (!TgtElemBitWidth)
1718         continue;
1719       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1720       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1721       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1722       if (!VecBitWidthsEqual)
1723         continue;
1724       if (!VectorType::isValidElementType(TgtTy))
1725         continue;
1726       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1727       if (!BegIsAligned) {
1728         // Shuffle the input so [0,NumElements) contains the output, and
1729         // [NumElems,SrcNumElems) is undef.
1730         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1731                                                 UndefValue::get(Int32Ty));
1732         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1733           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1734         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1735                                         ConstantVector::get(ShuffleMask),
1736                                         SVI.getName() + ".extract");
1737         BegIdx = 0;
1738       }
1739       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1740       assert(SrcElemsPerTgtElem);
1741       BegIdx /= SrcElemsPerTgtElem;
1742       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1743       auto *NewBC =
1744           BCAlreadyExists
1745               ? NewBCs[CastSrcTy]
1746               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1747       if (!BCAlreadyExists)
1748         NewBCs[CastSrcTy] = NewBC;
1749       auto *Ext = Builder.CreateExtractElement(
1750           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1751       // The shufflevector isn't being replaced: the bitcast that used it
1752       // is. InstCombine will visit the newly-created instructions.
1753       replaceInstUsesWith(*BC, Ext);
1754       MadeChange = true;
1755     }
1756   }
1757 
1758   // If the LHS is a shufflevector itself, see if we can combine it with this
1759   // one without producing an unusual shuffle.
1760   // Cases that might be simplified:
1761   // 1.
1762   // x1=shuffle(v1,v2,mask1)
1763   //  x=shuffle(x1,undef,mask)
1764   //        ==>
1765   //  x=shuffle(v1,undef,newMask)
1766   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1767   // 2.
1768   // x1=shuffle(v1,undef,mask1)
1769   //  x=shuffle(x1,x2,mask)
1770   // where v1.size() == mask1.size()
1771   //        ==>
1772   //  x=shuffle(v1,x2,newMask)
1773   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1774   // 3.
1775   // x2=shuffle(v2,undef,mask2)
1776   //  x=shuffle(x1,x2,mask)
1777   // where v2.size() == mask2.size()
1778   //        ==>
1779   //  x=shuffle(x1,v2,newMask)
1780   // newMask[i] = (mask[i] < x1.size())
1781   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1782   // 4.
1783   // x1=shuffle(v1,undef,mask1)
1784   // x2=shuffle(v2,undef,mask2)
1785   //  x=shuffle(x1,x2,mask)
1786   // where v1.size() == v2.size()
1787   //        ==>
1788   //  x=shuffle(v1,v2,newMask)
1789   // newMask[i] = (mask[i] < x1.size())
1790   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1791   //
1792   // Here we are really conservative:
1793   // we are absolutely afraid of producing a shuffle mask not in the input
1794   // program, because the code gen may not be smart enough to turn a merged
1795   // shuffle into two specific shuffles: it may produce worse code.  As such,
1796   // we only merge two shuffles if the result is either a splat or one of the
1797   // input shuffle masks.  In this case, merging the shuffles just removes
1798   // one instruction, which we know is safe.  This is good for things like
1799   // turning: (splat(splat)) -> splat, or
1800   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1801   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1802   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1803   if (LHSShuffle)
1804     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1805       LHSShuffle = nullptr;
1806   if (RHSShuffle)
1807     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1808       RHSShuffle = nullptr;
1809   if (!LHSShuffle && !RHSShuffle)
1810     return MadeChange ? &SVI : nullptr;
1811 
1812   Value* LHSOp0 = nullptr;
1813   Value* LHSOp1 = nullptr;
1814   Value* RHSOp0 = nullptr;
1815   unsigned LHSOp0Width = 0;
1816   unsigned RHSOp0Width = 0;
1817   if (LHSShuffle) {
1818     LHSOp0 = LHSShuffle->getOperand(0);
1819     LHSOp1 = LHSShuffle->getOperand(1);
1820     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
1821   }
1822   if (RHSShuffle) {
1823     RHSOp0 = RHSShuffle->getOperand(0);
1824     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
1825   }
1826   Value* newLHS = LHS;
1827   Value* newRHS = RHS;
1828   if (LHSShuffle) {
1829     // case 1
1830     if (isa<UndefValue>(RHS)) {
1831       newLHS = LHSOp0;
1832       newRHS = LHSOp1;
1833     }
1834     // case 2 or 4
1835     else if (LHSOp0Width == LHSWidth) {
1836       newLHS = LHSOp0;
1837     }
1838   }
1839   // case 3 or 4
1840   if (RHSShuffle && RHSOp0Width == LHSWidth) {
1841     newRHS = RHSOp0;
1842   }
1843   // case 4
1844   if (LHSOp0 == RHSOp0) {
1845     newLHS = LHSOp0;
1846     newRHS = nullptr;
1847   }
1848 
1849   if (newLHS == LHS && newRHS == RHS)
1850     return MadeChange ? &SVI : nullptr;
1851 
1852   SmallVector<int, 16> LHSMask;
1853   SmallVector<int, 16> RHSMask;
1854   if (newLHS != LHS)
1855     LHSMask = LHSShuffle->getShuffleMask();
1856   if (RHSShuffle && newRHS != RHS)
1857     RHSMask = RHSShuffle->getShuffleMask();
1858 
1859   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1860   SmallVector<int, 16> newMask;
1861   bool isSplat = true;
1862   int SplatElt = -1;
1863   // Create a new mask for the new ShuffleVectorInst so that the new
1864   // ShuffleVectorInst is equivalent to the original one.
1865   for (unsigned i = 0; i < VWidth; ++i) {
1866     int eltMask;
1867     if (Mask[i] < 0) {
1868       // This element is an undef value.
1869       eltMask = -1;
1870     } else if (Mask[i] < (int)LHSWidth) {
1871       // This element is from left hand side vector operand.
1872       //
1873       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1874       // new mask value for the element.
1875       if (newLHS != LHS) {
1876         eltMask = LHSMask[Mask[i]];
1877         // If the value selected is an undef value, explicitly specify it
1878         // with a -1 mask value.
1879         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1880           eltMask = -1;
1881       } else
1882         eltMask = Mask[i];
1883     } else {
1884       // This element is from right hand side vector operand
1885       //
1886       // If the value selected is an undef value, explicitly specify it
1887       // with a -1 mask value. (case 1)
1888       if (isa<UndefValue>(RHS))
1889         eltMask = -1;
1890       // If RHS is going to be replaced (case 3 or 4), calculate the
1891       // new mask value for the element.
1892       else if (newRHS != RHS) {
1893         eltMask = RHSMask[Mask[i]-LHSWidth];
1894         // If the value selected is an undef value, explicitly specify it
1895         // with a -1 mask value.
1896         if (eltMask >= (int)RHSOp0Width) {
1897           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1898                  && "should have been check above");
1899           eltMask = -1;
1900         }
1901       } else
1902         eltMask = Mask[i]-LHSWidth;
1903 
1904       // If LHS's width is changed, shift the mask value accordingly.
1905       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
1906       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1907       // If newRHS == newLHS, we want to remap any references from newRHS to
1908       // newLHS so that we can properly identify splats that may occur due to
1909       // obfuscation across the two vectors.
1910       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1911         eltMask += newLHSWidth;
1912     }
1913 
1914     // Check if this could still be a splat.
1915     if (eltMask >= 0) {
1916       if (SplatElt >= 0 && SplatElt != eltMask)
1917         isSplat = false;
1918       SplatElt = eltMask;
1919     }
1920 
1921     newMask.push_back(eltMask);
1922   }
1923 
1924   // If the result mask is equal to one of the original shuffle masks,
1925   // or is a splat, do the replacement.
1926   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1927     SmallVector<Constant*, 16> Elts;
1928     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1929       if (newMask[i] < 0) {
1930         Elts.push_back(UndefValue::get(Int32Ty));
1931       } else {
1932         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1933       }
1934     }
1935     if (!newRHS)
1936       newRHS = UndefValue::get(newLHS->getType());
1937     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1938   }
1939 
1940   // If the result mask is an identity, replace uses of this instruction with
1941   // corresponding argument.
1942   bool isLHSID, isRHSID;
1943   recognizeIdentityMask(newMask, isLHSID, isRHSID);
1944   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
1945   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
1946 
1947   return MadeChange ? &SVI : nullptr;
1948 }
1949