1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements instcombine for ExtractElement, InsertElement and
11 // ShuffleVector.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstCombineInternal.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/User.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 #include <utility>
42
43 using namespace llvm;
44 using namespace PatternMatch;
45
46 #define DEBUG_TYPE "instcombine"
47
48 /// Return true if the value is cheaper to scalarize than it is to leave as a
49 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
50 /// one known element from a vector constant.
51 ///
52 /// FIXME: It's possible to create more instructions than previously existed.
cheapToScalarize(Value * V,bool IsConstantExtractIndex)53 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
54 // If we can pick a scalar constant value out of a vector, that is free.
55 if (auto *C = dyn_cast<Constant>(V))
56 return IsConstantExtractIndex || C->getSplatValue();
57
58 // An insertelement to the same constant index as our extract will simplify
59 // to the scalar inserted element. An insertelement to a different constant
60 // index is irrelevant to our extract.
61 if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
62 return IsConstantExtractIndex;
63
64 if (match(V, m_OneUse(m_Load(m_Value()))))
65 return true;
66
67 Value *V0, *V1;
68 if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
69 if (cheapToScalarize(V0, IsConstantExtractIndex) ||
70 cheapToScalarize(V1, IsConstantExtractIndex))
71 return true;
72
73 CmpInst::Predicate UnusedPred;
74 if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
75 if (cheapToScalarize(V0, IsConstantExtractIndex) ||
76 cheapToScalarize(V1, IsConstantExtractIndex))
77 return true;
78
79 return false;
80 }
81
82 // If we have a PHI node with a vector type that is only used to feed
83 // itself and be an operand of extractelement at a constant location,
84 // try to replace the PHI of the vector type with a PHI of a scalar type.
scalarizePHI(ExtractElementInst & EI,PHINode * PN)85 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
86 SmallVector<Instruction *, 2> Extracts;
87 // The users we want the PHI to have are:
88 // 1) The EI ExtractElement (we already know this)
89 // 2) Possibly more ExtractElements with the same index.
90 // 3) Another operand, which will feed back into the PHI.
91 Instruction *PHIUser = nullptr;
92 for (auto U : PN->users()) {
93 if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
94 if (EI.getIndexOperand() == EU->getIndexOperand())
95 Extracts.push_back(EU);
96 else
97 return nullptr;
98 } else if (!PHIUser) {
99 PHIUser = cast<Instruction>(U);
100 } else {
101 return nullptr;
102 }
103 }
104
105 if (!PHIUser)
106 return nullptr;
107
108 // Verify that this PHI user has one use, which is the PHI itself,
109 // and that it is a binary operation which is cheap to scalarize.
110 // otherwise return nullptr.
111 if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
112 !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
113 return nullptr;
114
115 // Create a scalar PHI node that will replace the vector PHI node
116 // just before the current PHI node.
117 PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
118 PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
119 // Scalarize each PHI operand.
120 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
121 Value *PHIInVal = PN->getIncomingValue(i);
122 BasicBlock *inBB = PN->getIncomingBlock(i);
123 Value *Elt = EI.getIndexOperand();
124 // If the operand is the PHI induction variable:
125 if (PHIInVal == PHIUser) {
126 // Scalarize the binary operation. Its first operand is the
127 // scalar PHI, and the second operand is extracted from the other
128 // vector operand.
129 BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
130 unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
131 Value *Op = InsertNewInstWith(
132 ExtractElementInst::Create(B0->getOperand(opId), Elt,
133 B0->getOperand(opId)->getName() + ".Elt"),
134 *B0);
135 Value *newPHIUser = InsertNewInstWith(
136 BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
137 scalarPHI, Op, B0), *B0);
138 scalarPHI->addIncoming(newPHIUser, inBB);
139 } else {
140 // Scalarize PHI input:
141 Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
142 // Insert the new instruction into the predecessor basic block.
143 Instruction *pos = dyn_cast<Instruction>(PHIInVal);
144 BasicBlock::iterator InsertPos;
145 if (pos && !isa<PHINode>(pos)) {
146 InsertPos = ++pos->getIterator();
147 } else {
148 InsertPos = inBB->getFirstInsertionPt();
149 }
150
151 InsertNewInstWith(newEI, *InsertPos);
152
153 scalarPHI->addIncoming(newEI, inBB);
154 }
155 }
156
157 for (auto E : Extracts)
158 replaceInstUsesWith(*E, scalarPHI);
159
160 return &EI;
161 }
162
foldBitcastExtElt(ExtractElementInst & Ext,InstCombiner::BuilderTy & Builder,bool IsBigEndian)163 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
164 InstCombiner::BuilderTy &Builder,
165 bool IsBigEndian) {
166 Value *X;
167 uint64_t ExtIndexC;
168 if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
169 !X->getType()->isVectorTy() ||
170 !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
171 return nullptr;
172
173 // If this extractelement is using a bitcast from a vector of the same number
174 // of elements, see if we can find the source element from the source vector:
175 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
176 Type *SrcTy = X->getType();
177 Type *DestTy = Ext.getType();
178 unsigned NumSrcElts = SrcTy->getVectorNumElements();
179 unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
180 if (NumSrcElts == NumElts)
181 if (Value *Elt = findScalarElement(X, ExtIndexC))
182 return new BitCastInst(Elt, DestTy);
183
184 // If the source elements are wider than the destination, try to shift and
185 // truncate a subset of scalar bits of an insert op.
186 if (NumSrcElts < NumElts) {
187 Value *Scalar;
188 uint64_t InsIndexC;
189 if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
190 m_ConstantInt(InsIndexC))))
191 return nullptr;
192
193 // The extract must be from the subset of vector elements that we inserted
194 // into. Example: if we inserted element 1 of a <2 x i64> and we are
195 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
196 // of elements 4-7 of the bitcasted vector.
197 unsigned NarrowingRatio = NumElts / NumSrcElts;
198 if (ExtIndexC / NarrowingRatio != InsIndexC)
199 return nullptr;
200
201 // We are extracting part of the original scalar. How that scalar is
202 // inserted into the vector depends on the endian-ness. Example:
203 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
204 // +--+--+--+--+--+--+--+--+
205 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
206 // extelt <4 x i16> V', 3: | |S2|S3|
207 // +--+--+--+--+--+--+--+--+
208 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
209 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
210 // In this example, we must right-shift little-endian. Big-endian is just a
211 // truncate.
212 unsigned Chunk = ExtIndexC % NarrowingRatio;
213 if (IsBigEndian)
214 Chunk = NarrowingRatio - 1 - Chunk;
215
216 // Bail out if this is an FP vector to FP vector sequence. That would take
217 // more instructions than we started with unless there is no shift, and it
218 // may not be handled as well in the backend.
219 bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
220 bool NeedDestBitcast = DestTy->isFloatingPointTy();
221 if (NeedSrcBitcast && NeedDestBitcast)
222 return nullptr;
223
224 unsigned SrcWidth = SrcTy->getScalarSizeInBits();
225 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
226 unsigned ShAmt = Chunk * DestWidth;
227
228 // TODO: This limitation is more strict than necessary. We could sum the
229 // number of new instructions and subtract the number eliminated to know if
230 // we can proceed.
231 if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
232 if (NeedSrcBitcast || NeedDestBitcast)
233 return nullptr;
234
235 if (NeedSrcBitcast) {
236 Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
237 Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
238 }
239
240 if (ShAmt) {
241 // Bail out if we could end with more instructions than we started with.
242 if (!Ext.getVectorOperand()->hasOneUse())
243 return nullptr;
244 Scalar = Builder.CreateLShr(Scalar, ShAmt);
245 }
246
247 if (NeedDestBitcast) {
248 Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
249 return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
250 }
251 return new TruncInst(Scalar, DestTy);
252 }
253
254 return nullptr;
255 }
256
visitExtractElementInst(ExtractElementInst & EI)257 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
258 Value *SrcVec = EI.getVectorOperand();
259 Value *Index = EI.getIndexOperand();
260 if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
261 SQ.getWithInstruction(&EI)))
262 return replaceInstUsesWith(EI, V);
263
264 // If extracting a specified index from the vector, see if we can recursively
265 // find a previously computed scalar that was inserted into the vector.
266 auto *IndexC = dyn_cast<ConstantInt>(Index);
267 if (IndexC) {
268 unsigned NumElts = EI.getVectorOperandType()->getNumElements();
269
270 // InstSimplify should handle cases where the index is invalid.
271 if (!IndexC->getValue().ule(NumElts))
272 return nullptr;
273
274 // This instruction only demands the single element from the input vector.
275 // If the input vector has a single use, simplify it based on this use
276 // property.
277 if (SrcVec->hasOneUse() && NumElts != 1) {
278 APInt UndefElts(NumElts, 0);
279 APInt DemandedElts(NumElts, 0);
280 DemandedElts.setBit(IndexC->getZExtValue());
281 if (Value *V = SimplifyDemandedVectorElts(SrcVec, DemandedElts,
282 UndefElts)) {
283 EI.setOperand(0, V);
284 return &EI;
285 }
286 }
287
288 if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
289 return I;
290
291 // If there's a vector PHI feeding a scalar use through this extractelement
292 // instruction, try to scalarize the PHI.
293 if (auto *Phi = dyn_cast<PHINode>(SrcVec))
294 if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
295 return ScalarPHI;
296 }
297
298 BinaryOperator *BO;
299 if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
300 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
301 Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
302 Value *E0 = Builder.CreateExtractElement(X, Index);
303 Value *E1 = Builder.CreateExtractElement(Y, Index);
304 return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
305 }
306
307 Value *X, *Y;
308 CmpInst::Predicate Pred;
309 if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
310 cheapToScalarize(SrcVec, IndexC)) {
311 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
312 Value *E0 = Builder.CreateExtractElement(X, Index);
313 Value *E1 = Builder.CreateExtractElement(Y, Index);
314 return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
315 }
316
317 if (auto *I = dyn_cast<Instruction>(SrcVec)) {
318 if (auto *IE = dyn_cast<InsertElementInst>(I)) {
319 // Extracting the inserted element?
320 if (IE->getOperand(2) == Index)
321 return replaceInstUsesWith(EI, IE->getOperand(1));
322 // If the inserted and extracted elements are constants, they must not
323 // be the same value, extract from the pre-inserted value instead.
324 if (isa<Constant>(IE->getOperand(2)) && IndexC) {
325 Worklist.AddValue(SrcVec);
326 EI.setOperand(0, IE->getOperand(0));
327 return &EI;
328 }
329 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
330 // If this is extracting an element from a shufflevector, figure out where
331 // it came from and extract from the appropriate input element instead.
332 if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
333 int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
334 Value *Src;
335 unsigned LHSWidth =
336 SVI->getOperand(0)->getType()->getVectorNumElements();
337
338 if (SrcIdx < 0)
339 return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
340 if (SrcIdx < (int)LHSWidth)
341 Src = SVI->getOperand(0);
342 else {
343 SrcIdx -= LHSWidth;
344 Src = SVI->getOperand(1);
345 }
346 Type *Int32Ty = Type::getInt32Ty(EI.getContext());
347 return ExtractElementInst::Create(Src,
348 ConstantInt::get(Int32Ty,
349 SrcIdx, false));
350 }
351 } else if (auto *CI = dyn_cast<CastInst>(I)) {
352 // Canonicalize extractelement(cast) -> cast(extractelement).
353 // Bitcasts can change the number of vector elements, and they cost
354 // nothing.
355 if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
356 Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
357 Worklist.AddValue(EE);
358 return CastInst::Create(CI->getOpcode(), EE, EI.getType());
359 }
360 }
361 }
362 return nullptr;
363 }
364
365 /// If V is a shuffle of values that ONLY returns elements from either LHS or
366 /// RHS, return the shuffle mask and true. Otherwise, return false.
collectSingleShuffleElements(Value * V,Value * LHS,Value * RHS,SmallVectorImpl<Constant * > & Mask)367 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
368 SmallVectorImpl<Constant*> &Mask) {
369 assert(LHS->getType() == RHS->getType() &&
370 "Invalid CollectSingleShuffleElements");
371 unsigned NumElts = V->getType()->getVectorNumElements();
372
373 if (isa<UndefValue>(V)) {
374 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
375 return true;
376 }
377
378 if (V == LHS) {
379 for (unsigned i = 0; i != NumElts; ++i)
380 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
381 return true;
382 }
383
384 if (V == RHS) {
385 for (unsigned i = 0; i != NumElts; ++i)
386 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
387 i+NumElts));
388 return true;
389 }
390
391 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
392 // If this is an insert of an extract from some other vector, include it.
393 Value *VecOp = IEI->getOperand(0);
394 Value *ScalarOp = IEI->getOperand(1);
395 Value *IdxOp = IEI->getOperand(2);
396
397 if (!isa<ConstantInt>(IdxOp))
398 return false;
399 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
400
401 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
402 // We can handle this if the vector we are inserting into is
403 // transitively ok.
404 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
405 // If so, update the mask to reflect the inserted undef.
406 Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
407 return true;
408 }
409 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
410 if (isa<ConstantInt>(EI->getOperand(1))) {
411 unsigned ExtractedIdx =
412 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
413 unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
414
415 // This must be extracting from either LHS or RHS.
416 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
417 // We can handle this if the vector we are inserting into is
418 // transitively ok.
419 if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
420 // If so, update the mask to reflect the inserted value.
421 if (EI->getOperand(0) == LHS) {
422 Mask[InsertedIdx % NumElts] =
423 ConstantInt::get(Type::getInt32Ty(V->getContext()),
424 ExtractedIdx);
425 } else {
426 assert(EI->getOperand(0) == RHS);
427 Mask[InsertedIdx % NumElts] =
428 ConstantInt::get(Type::getInt32Ty(V->getContext()),
429 ExtractedIdx + NumLHSElts);
430 }
431 return true;
432 }
433 }
434 }
435 }
436 }
437
438 return false;
439 }
440
441 /// If we have insertion into a vector that is wider than the vector that we
442 /// are extracting from, try to widen the source vector to allow a single
443 /// shufflevector to replace one or more insert/extract pairs.
replaceExtractElements(InsertElementInst * InsElt,ExtractElementInst * ExtElt,InstCombiner & IC)444 static void replaceExtractElements(InsertElementInst *InsElt,
445 ExtractElementInst *ExtElt,
446 InstCombiner &IC) {
447 VectorType *InsVecType = InsElt->getType();
448 VectorType *ExtVecType = ExtElt->getVectorOperandType();
449 unsigned NumInsElts = InsVecType->getVectorNumElements();
450 unsigned NumExtElts = ExtVecType->getVectorNumElements();
451
452 // The inserted-to vector must be wider than the extracted-from vector.
453 if (InsVecType->getElementType() != ExtVecType->getElementType() ||
454 NumExtElts >= NumInsElts)
455 return;
456
457 // Create a shuffle mask to widen the extended-from vector using undefined
458 // values. The mask selects all of the values of the original vector followed
459 // by as many undefined values as needed to create a vector of the same length
460 // as the inserted-to vector.
461 SmallVector<Constant *, 16> ExtendMask;
462 IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
463 for (unsigned i = 0; i < NumExtElts; ++i)
464 ExtendMask.push_back(ConstantInt::get(IntType, i));
465 for (unsigned i = NumExtElts; i < NumInsElts; ++i)
466 ExtendMask.push_back(UndefValue::get(IntType));
467
468 Value *ExtVecOp = ExtElt->getVectorOperand();
469 auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
470 BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
471 ? ExtVecOpInst->getParent()
472 : ExtElt->getParent();
473
474 // TODO: This restriction matches the basic block check below when creating
475 // new extractelement instructions. If that limitation is removed, this one
476 // could also be removed. But for now, we just bail out to ensure that we
477 // will replace the extractelement instruction that is feeding our
478 // insertelement instruction. This allows the insertelement to then be
479 // replaced by a shufflevector. If the insertelement is not replaced, we can
480 // induce infinite looping because there's an optimization for extractelement
481 // that will delete our widening shuffle. This would trigger another attempt
482 // here to create that shuffle, and we spin forever.
483 if (InsertionBlock != InsElt->getParent())
484 return;
485
486 // TODO: This restriction matches the check in visitInsertElementInst() and
487 // prevents an infinite loop caused by not turning the extract/insert pair
488 // into a shuffle. We really should not need either check, but we're lacking
489 // folds for shufflevectors because we're afraid to generate shuffle masks
490 // that the backend can't handle.
491 if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
492 return;
493
494 auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
495 ConstantVector::get(ExtendMask));
496
497 // Insert the new shuffle after the vector operand of the extract is defined
498 // (as long as it's not a PHI) or at the start of the basic block of the
499 // extract, so any subsequent extracts in the same basic block can use it.
500 // TODO: Insert before the earliest ExtractElementInst that is replaced.
501 if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
502 WideVec->insertAfter(ExtVecOpInst);
503 else
504 IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
505
506 // Replace extracts from the original narrow vector with extracts from the new
507 // wide vector.
508 for (User *U : ExtVecOp->users()) {
509 ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
510 if (!OldExt || OldExt->getParent() != WideVec->getParent())
511 continue;
512 auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
513 NewExt->insertAfter(OldExt);
514 IC.replaceInstUsesWith(*OldExt, NewExt);
515 }
516 }
517
518 /// We are building a shuffle to create V, which is a sequence of insertelement,
519 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
520 /// not rely on the second vector source. Return a std::pair containing the
521 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
522 /// parameter as required.
523 ///
524 /// Note: we intentionally don't try to fold earlier shuffles since they have
525 /// often been chosen carefully to be efficiently implementable on the target.
526 using ShuffleOps = std::pair<Value *, Value *>;
527
collectShuffleElements(Value * V,SmallVectorImpl<Constant * > & Mask,Value * PermittedRHS,InstCombiner & IC)528 static ShuffleOps collectShuffleElements(Value *V,
529 SmallVectorImpl<Constant *> &Mask,
530 Value *PermittedRHS,
531 InstCombiner &IC) {
532 assert(V->getType()->isVectorTy() && "Invalid shuffle!");
533 unsigned NumElts = V->getType()->getVectorNumElements();
534
535 if (isa<UndefValue>(V)) {
536 Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
537 return std::make_pair(
538 PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
539 }
540
541 if (isa<ConstantAggregateZero>(V)) {
542 Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
543 return std::make_pair(V, nullptr);
544 }
545
546 if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
547 // If this is an insert of an extract from some other vector, include it.
548 Value *VecOp = IEI->getOperand(0);
549 Value *ScalarOp = IEI->getOperand(1);
550 Value *IdxOp = IEI->getOperand(2);
551
552 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
553 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
554 unsigned ExtractedIdx =
555 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
556 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
557
558 // Either the extracted from or inserted into vector must be RHSVec,
559 // otherwise we'd end up with a shuffle of three inputs.
560 if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
561 Value *RHS = EI->getOperand(0);
562 ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
563 assert(LR.second == nullptr || LR.second == RHS);
564
565 if (LR.first->getType() != RHS->getType()) {
566 // Although we are giving up for now, see if we can create extracts
567 // that match the inserts for another round of combining.
568 replaceExtractElements(IEI, EI, IC);
569
570 // We tried our best, but we can't find anything compatible with RHS
571 // further up the chain. Return a trivial shuffle.
572 for (unsigned i = 0; i < NumElts; ++i)
573 Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
574 return std::make_pair(V, nullptr);
575 }
576
577 unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
578 Mask[InsertedIdx % NumElts] =
579 ConstantInt::get(Type::getInt32Ty(V->getContext()),
580 NumLHSElts+ExtractedIdx);
581 return std::make_pair(LR.first, RHS);
582 }
583
584 if (VecOp == PermittedRHS) {
585 // We've gone as far as we can: anything on the other side of the
586 // extractelement will already have been converted into a shuffle.
587 unsigned NumLHSElts =
588 EI->getOperand(0)->getType()->getVectorNumElements();
589 for (unsigned i = 0; i != NumElts; ++i)
590 Mask.push_back(ConstantInt::get(
591 Type::getInt32Ty(V->getContext()),
592 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
593 return std::make_pair(EI->getOperand(0), PermittedRHS);
594 }
595
596 // If this insertelement is a chain that comes from exactly these two
597 // vectors, return the vector and the effective shuffle.
598 if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
599 collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
600 Mask))
601 return std::make_pair(EI->getOperand(0), PermittedRHS);
602 }
603 }
604 }
605
606 // Otherwise, we can't do anything fancy. Return an identity vector.
607 for (unsigned i = 0; i != NumElts; ++i)
608 Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
609 return std::make_pair(V, nullptr);
610 }
611
612 /// Try to find redundant insertvalue instructions, like the following ones:
613 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
614 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
615 /// Here the second instruction inserts values at the same indices, as the
616 /// first one, making the first one redundant.
617 /// It should be transformed to:
618 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
visitInsertValueInst(InsertValueInst & I)619 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
620 bool IsRedundant = false;
621 ArrayRef<unsigned int> FirstIndices = I.getIndices();
622
623 // If there is a chain of insertvalue instructions (each of them except the
624 // last one has only one use and it's another insertvalue insn from this
625 // chain), check if any of the 'children' uses the same indices as the first
626 // instruction. In this case, the first one is redundant.
627 Value *V = &I;
628 unsigned Depth = 0;
629 while (V->hasOneUse() && Depth < 10) {
630 User *U = V->user_back();
631 auto UserInsInst = dyn_cast<InsertValueInst>(U);
632 if (!UserInsInst || U->getOperand(0) != V)
633 break;
634 if (UserInsInst->getIndices() == FirstIndices) {
635 IsRedundant = true;
636 break;
637 }
638 V = UserInsInst;
639 Depth++;
640 }
641
642 if (IsRedundant)
643 return replaceInstUsesWith(I, I.getOperand(0));
644 return nullptr;
645 }
646
isShuffleEquivalentToSelect(ShuffleVectorInst & Shuf)647 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
648 int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
649 int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
650
651 // A vector select does not change the size of the operands.
652 if (MaskSize != VecSize)
653 return false;
654
655 // Each mask element must be undefined or choose a vector element from one of
656 // the source operands without crossing vector lanes.
657 for (int i = 0; i != MaskSize; ++i) {
658 int Elt = Shuf.getMaskValue(i);
659 if (Elt != -1 && Elt != i && Elt != i + VecSize)
660 return false;
661 }
662
663 return true;
664 }
665
666 // Turn a chain of inserts that splats a value into a canonical insert + shuffle
667 // splat. That is:
668 // insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
669 // shufflevector(insertelt(X, %k, 0), undef, zero)
foldInsSequenceIntoBroadcast(InsertElementInst & InsElt)670 static Instruction *foldInsSequenceIntoBroadcast(InsertElementInst &InsElt) {
671 // We are interested in the last insert in a chain. So, if this insert
672 // has a single user, and that user is an insert, bail.
673 if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
674 return nullptr;
675
676 VectorType *VT = cast<VectorType>(InsElt.getType());
677 int NumElements = VT->getNumElements();
678
679 // Do not try to do this for a one-element vector, since that's a nop,
680 // and will cause an inf-loop.
681 if (NumElements == 1)
682 return nullptr;
683
684 Value *SplatVal = InsElt.getOperand(1);
685 InsertElementInst *CurrIE = &InsElt;
686 SmallVector<bool, 16> ElementPresent(NumElements, false);
687 InsertElementInst *FirstIE = nullptr;
688
689 // Walk the chain backwards, keeping track of which indices we inserted into,
690 // until we hit something that isn't an insert of the splatted value.
691 while (CurrIE) {
692 auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
693 if (!Idx || CurrIE->getOperand(1) != SplatVal)
694 return nullptr;
695
696 auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
697 // Check none of the intermediate steps have any additional uses, except
698 // for the root insertelement instruction, which can be re-used, if it
699 // inserts at position 0.
700 if (CurrIE != &InsElt &&
701 (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
702 return nullptr;
703
704 ElementPresent[Idx->getZExtValue()] = true;
705 FirstIE = CurrIE;
706 CurrIE = NextIE;
707 }
708
709 // Make sure we've seen an insert into every element.
710 if (llvm::any_of(ElementPresent, [](bool Present) { return !Present; }))
711 return nullptr;
712
713 // All right, create the insert + shuffle.
714 Instruction *InsertFirst;
715 if (cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
716 InsertFirst = FirstIE;
717 else
718 InsertFirst = InsertElementInst::Create(
719 UndefValue::get(VT), SplatVal,
720 ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), 0),
721 "", &InsElt);
722
723 Constant *ZeroMask = ConstantAggregateZero::get(
724 VectorType::get(Type::getInt32Ty(InsElt.getContext()), NumElements));
725
726 return new ShuffleVectorInst(InsertFirst, UndefValue::get(VT), ZeroMask);
727 }
728
729 /// If we have an insertelement instruction feeding into another insertelement
730 /// and the 2nd is inserting a constant into the vector, canonicalize that
731 /// constant insertion before the insertion of a variable:
732 ///
733 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
734 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
735 ///
736 /// This has the potential of eliminating the 2nd insertelement instruction
737 /// via constant folding of the scalar constant into a vector constant.
hoistInsEltConst(InsertElementInst & InsElt2,InstCombiner::BuilderTy & Builder)738 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
739 InstCombiner::BuilderTy &Builder) {
740 auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
741 if (!InsElt1 || !InsElt1->hasOneUse())
742 return nullptr;
743
744 Value *X, *Y;
745 Constant *ScalarC;
746 ConstantInt *IdxC1, *IdxC2;
747 if (match(InsElt1->getOperand(0), m_Value(X)) &&
748 match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
749 match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
750 match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
751 match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
752 Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
753 return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
754 }
755
756 return nullptr;
757 }
758
759 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
760 /// --> shufflevector X, CVec', Mask'
foldConstantInsEltIntoShuffle(InsertElementInst & InsElt)761 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
762 auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
763 // Bail out if the parent has more than one use. In that case, we'd be
764 // replacing the insertelt with a shuffle, and that's not a clear win.
765 if (!Inst || !Inst->hasOneUse())
766 return nullptr;
767 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
768 // The shuffle must have a constant vector operand. The insertelt must have
769 // a constant scalar being inserted at a constant position in the vector.
770 Constant *ShufConstVec, *InsEltScalar;
771 uint64_t InsEltIndex;
772 if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
773 !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
774 !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
775 return nullptr;
776
777 // Adding an element to an arbitrary shuffle could be expensive, but a
778 // shuffle that selects elements from vectors without crossing lanes is
779 // assumed cheap.
780 // If we're just adding a constant into that shuffle, it will still be
781 // cheap.
782 if (!isShuffleEquivalentToSelect(*Shuf))
783 return nullptr;
784
785 // From the above 'select' check, we know that the mask has the same number
786 // of elements as the vector input operands. We also know that each constant
787 // input element is used in its lane and can not be used more than once by
788 // the shuffle. Therefore, replace the constant in the shuffle's constant
789 // vector with the insertelt constant. Replace the constant in the shuffle's
790 // mask vector with the insertelt index plus the length of the vector
791 // (because the constant vector operand of a shuffle is always the 2nd
792 // operand).
793 Constant *Mask = Shuf->getMask();
794 unsigned NumElts = Mask->getType()->getVectorNumElements();
795 SmallVector<Constant *, 16> NewShufElts(NumElts);
796 SmallVector<Constant *, 16> NewMaskElts(NumElts);
797 for (unsigned I = 0; I != NumElts; ++I) {
798 if (I == InsEltIndex) {
799 NewShufElts[I] = InsEltScalar;
800 Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
801 NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
802 } else {
803 // Copy over the existing values.
804 NewShufElts[I] = ShufConstVec->getAggregateElement(I);
805 NewMaskElts[I] = Mask->getAggregateElement(I);
806 }
807 }
808
809 // Create new operands for a shuffle that includes the constant of the
810 // original insertelt. The old shuffle will be dead now.
811 return new ShuffleVectorInst(Shuf->getOperand(0),
812 ConstantVector::get(NewShufElts),
813 ConstantVector::get(NewMaskElts));
814 } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
815 // Transform sequences of insertelements ops with constant data/indexes into
816 // a single shuffle op.
817 unsigned NumElts = InsElt.getType()->getNumElements();
818
819 uint64_t InsertIdx[2];
820 Constant *Val[2];
821 if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
822 !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
823 !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
824 !match(IEI->getOperand(1), m_Constant(Val[1])))
825 return nullptr;
826 SmallVector<Constant *, 16> Values(NumElts);
827 SmallVector<Constant *, 16> Mask(NumElts);
828 auto ValI = std::begin(Val);
829 // Generate new constant vector and mask.
830 // We have 2 values/masks from the insertelements instructions. Insert them
831 // into new value/mask vectors.
832 for (uint64_t I : InsertIdx) {
833 if (!Values[I]) {
834 assert(!Mask[I]);
835 Values[I] = *ValI;
836 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
837 NumElts + I);
838 }
839 ++ValI;
840 }
841 // Remaining values are filled with 'undef' values.
842 for (unsigned I = 0; I < NumElts; ++I) {
843 if (!Values[I]) {
844 assert(!Mask[I]);
845 Values[I] = UndefValue::get(InsElt.getType()->getElementType());
846 Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
847 }
848 }
849 // Create new operands for a shuffle that includes the constant of the
850 // original insertelt.
851 return new ShuffleVectorInst(IEI->getOperand(0),
852 ConstantVector::get(Values),
853 ConstantVector::get(Mask));
854 }
855 return nullptr;
856 }
857
visitInsertElementInst(InsertElementInst & IE)858 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
859 Value *VecOp = IE.getOperand(0);
860 Value *ScalarOp = IE.getOperand(1);
861 Value *IdxOp = IE.getOperand(2);
862
863 if (auto *V = SimplifyInsertElementInst(
864 VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
865 return replaceInstUsesWith(IE, V);
866
867 // Inserting an undef or into an undefined place, remove this.
868 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
869 replaceInstUsesWith(IE, VecOp);
870
871 // If the inserted element was extracted from some other vector and both
872 // indexes are constant, try to turn this into a shuffle.
873 uint64_t InsertedIdx, ExtractedIdx;
874 Value *ExtVecOp;
875 if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
876 match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
877 m_ConstantInt(ExtractedIdx)))) {
878 unsigned NumInsertVectorElts = IE.getType()->getNumElements();
879 unsigned NumExtractVectorElts = ExtVecOp->getType()->getVectorNumElements();
880 if (ExtractedIdx >= NumExtractVectorElts) // Out of range extract.
881 return replaceInstUsesWith(IE, VecOp);
882
883 if (InsertedIdx >= NumInsertVectorElts) // Out of range insert.
884 return replaceInstUsesWith(IE, UndefValue::get(IE.getType()));
885
886 // If we are extracting a value from a vector, then inserting it right
887 // back into the same place, just use the input vector.
888 if (ExtVecOp == VecOp && ExtractedIdx == InsertedIdx)
889 return replaceInstUsesWith(IE, VecOp);
890
891 // TODO: Looking at the user(s) to determine if this insert is a
892 // fold-to-shuffle opportunity does not match the usual instcombine
893 // constraints. We should decide if the transform is worthy based only
894 // on this instruction and its operands, but that may not work currently.
895 //
896 // Here, we are trying to avoid creating shuffles before reaching
897 // the end of a chain of extract-insert pairs. This is complicated because
898 // we do not generally form arbitrary shuffle masks in instcombine
899 // (because those may codegen poorly), but collectShuffleElements() does
900 // exactly that.
901 //
902 // The rules for determining what is an acceptable target-independent
903 // shuffle mask are fuzzy because they evolve based on the backend's
904 // capabilities and real-world impact.
905 auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
906 if (!Insert.hasOneUse())
907 return true;
908 auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
909 if (!InsertUser)
910 return true;
911 return false;
912 };
913
914 // Try to form a shuffle from a chain of extract-insert ops.
915 if (isShuffleRootCandidate(IE)) {
916 SmallVector<Constant*, 16> Mask;
917 ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
918
919 // The proposed shuffle may be trivial, in which case we shouldn't
920 // perform the combine.
921 if (LR.first != &IE && LR.second != &IE) {
922 // We now have a shuffle of LHS, RHS, Mask.
923 if (LR.second == nullptr)
924 LR.second = UndefValue::get(LR.first->getType());
925 return new ShuffleVectorInst(LR.first, LR.second,
926 ConstantVector::get(Mask));
927 }
928 }
929 }
930
931 unsigned VWidth = VecOp->getType()->getVectorNumElements();
932 APInt UndefElts(VWidth, 0);
933 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
934 if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
935 if (V != &IE)
936 return replaceInstUsesWith(IE, V);
937 return &IE;
938 }
939
940 if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
941 return Shuf;
942
943 if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
944 return NewInsElt;
945
946 // Turn a sequence of inserts that broadcasts a scalar into a single
947 // insert + shufflevector.
948 if (Instruction *Broadcast = foldInsSequenceIntoBroadcast(IE))
949 return Broadcast;
950
951 return nullptr;
952 }
953
954 /// Return true if we can evaluate the specified expression tree if the vector
955 /// elements were shuffled in a different order.
canEvaluateShuffled(Value * V,ArrayRef<int> Mask,unsigned Depth=5)956 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
957 unsigned Depth = 5) {
958 // We can always reorder the elements of a constant.
959 if (isa<Constant>(V))
960 return true;
961
962 // We won't reorder vector arguments. No IPO here.
963 Instruction *I = dyn_cast<Instruction>(V);
964 if (!I) return false;
965
966 // Two users may expect different orders of the elements. Don't try it.
967 if (!I->hasOneUse())
968 return false;
969
970 if (Depth == 0) return false;
971
972 switch (I->getOpcode()) {
973 case Instruction::Add:
974 case Instruction::FAdd:
975 case Instruction::Sub:
976 case Instruction::FSub:
977 case Instruction::Mul:
978 case Instruction::FMul:
979 case Instruction::UDiv:
980 case Instruction::SDiv:
981 case Instruction::FDiv:
982 case Instruction::URem:
983 case Instruction::SRem:
984 case Instruction::FRem:
985 case Instruction::Shl:
986 case Instruction::LShr:
987 case Instruction::AShr:
988 case Instruction::And:
989 case Instruction::Or:
990 case Instruction::Xor:
991 case Instruction::ICmp:
992 case Instruction::FCmp:
993 case Instruction::Trunc:
994 case Instruction::ZExt:
995 case Instruction::SExt:
996 case Instruction::FPToUI:
997 case Instruction::FPToSI:
998 case Instruction::UIToFP:
999 case Instruction::SIToFP:
1000 case Instruction::FPTrunc:
1001 case Instruction::FPExt:
1002 case Instruction::GetElementPtr: {
1003 // Bail out if we would create longer vector ops. We could allow creating
1004 // longer vector ops, but that may result in more expensive codegen. We
1005 // would also need to limit the transform to avoid undefined behavior for
1006 // integer div/rem.
1007 Type *ITy = I->getType();
1008 if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1009 return false;
1010 for (Value *Operand : I->operands()) {
1011 if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1012 return false;
1013 }
1014 return true;
1015 }
1016 case Instruction::InsertElement: {
1017 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1018 if (!CI) return false;
1019 int ElementNumber = CI->getLimitedValue();
1020
1021 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1022 // can't put an element into multiple indices.
1023 bool SeenOnce = false;
1024 for (int i = 0, e = Mask.size(); i != e; ++i) {
1025 if (Mask[i] == ElementNumber) {
1026 if (SeenOnce)
1027 return false;
1028 SeenOnce = true;
1029 }
1030 }
1031 return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1032 }
1033 }
1034 return false;
1035 }
1036
1037 /// Rebuild a new instruction just like 'I' but with the new operands given.
1038 /// In the event of type mismatch, the type of the operands is correct.
buildNew(Instruction * I,ArrayRef<Value * > NewOps)1039 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1040 // We don't want to use the IRBuilder here because we want the replacement
1041 // instructions to appear next to 'I', not the builder's insertion point.
1042 switch (I->getOpcode()) {
1043 case Instruction::Add:
1044 case Instruction::FAdd:
1045 case Instruction::Sub:
1046 case Instruction::FSub:
1047 case Instruction::Mul:
1048 case Instruction::FMul:
1049 case Instruction::UDiv:
1050 case Instruction::SDiv:
1051 case Instruction::FDiv:
1052 case Instruction::URem:
1053 case Instruction::SRem:
1054 case Instruction::FRem:
1055 case Instruction::Shl:
1056 case Instruction::LShr:
1057 case Instruction::AShr:
1058 case Instruction::And:
1059 case Instruction::Or:
1060 case Instruction::Xor: {
1061 BinaryOperator *BO = cast<BinaryOperator>(I);
1062 assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1063 BinaryOperator *New =
1064 BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1065 NewOps[0], NewOps[1], "", BO);
1066 if (isa<OverflowingBinaryOperator>(BO)) {
1067 New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1068 New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1069 }
1070 if (isa<PossiblyExactOperator>(BO)) {
1071 New->setIsExact(BO->isExact());
1072 }
1073 if (isa<FPMathOperator>(BO))
1074 New->copyFastMathFlags(I);
1075 return New;
1076 }
1077 case Instruction::ICmp:
1078 assert(NewOps.size() == 2 && "icmp with #ops != 2");
1079 return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1080 NewOps[0], NewOps[1]);
1081 case Instruction::FCmp:
1082 assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1083 return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1084 NewOps[0], NewOps[1]);
1085 case Instruction::Trunc:
1086 case Instruction::ZExt:
1087 case Instruction::SExt:
1088 case Instruction::FPToUI:
1089 case Instruction::FPToSI:
1090 case Instruction::UIToFP:
1091 case Instruction::SIToFP:
1092 case Instruction::FPTrunc:
1093 case Instruction::FPExt: {
1094 // It's possible that the mask has a different number of elements from
1095 // the original cast. We recompute the destination type to match the mask.
1096 Type *DestTy =
1097 VectorType::get(I->getType()->getScalarType(),
1098 NewOps[0]->getType()->getVectorNumElements());
1099 assert(NewOps.size() == 1 && "cast with #ops != 1");
1100 return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1101 "", I);
1102 }
1103 case Instruction::GetElementPtr: {
1104 Value *Ptr = NewOps[0];
1105 ArrayRef<Value*> Idx = NewOps.slice(1);
1106 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1107 cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1108 GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1109 return GEP;
1110 }
1111 }
1112 llvm_unreachable("failed to rebuild vector instructions");
1113 }
1114
evaluateInDifferentElementOrder(Value * V,ArrayRef<int> Mask)1115 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1116 // Mask.size() does not need to be equal to the number of vector elements.
1117
1118 assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1119 Type *EltTy = V->getType()->getScalarType();
1120 Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1121 if (isa<UndefValue>(V))
1122 return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1123
1124 if (isa<ConstantAggregateZero>(V))
1125 return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1126
1127 if (Constant *C = dyn_cast<Constant>(V)) {
1128 SmallVector<Constant *, 16> MaskValues;
1129 for (int i = 0, e = Mask.size(); i != e; ++i) {
1130 if (Mask[i] == -1)
1131 MaskValues.push_back(UndefValue::get(I32Ty));
1132 else
1133 MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1134 }
1135 return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1136 ConstantVector::get(MaskValues));
1137 }
1138
1139 Instruction *I = cast<Instruction>(V);
1140 switch (I->getOpcode()) {
1141 case Instruction::Add:
1142 case Instruction::FAdd:
1143 case Instruction::Sub:
1144 case Instruction::FSub:
1145 case Instruction::Mul:
1146 case Instruction::FMul:
1147 case Instruction::UDiv:
1148 case Instruction::SDiv:
1149 case Instruction::FDiv:
1150 case Instruction::URem:
1151 case Instruction::SRem:
1152 case Instruction::FRem:
1153 case Instruction::Shl:
1154 case Instruction::LShr:
1155 case Instruction::AShr:
1156 case Instruction::And:
1157 case Instruction::Or:
1158 case Instruction::Xor:
1159 case Instruction::ICmp:
1160 case Instruction::FCmp:
1161 case Instruction::Trunc:
1162 case Instruction::ZExt:
1163 case Instruction::SExt:
1164 case Instruction::FPToUI:
1165 case Instruction::FPToSI:
1166 case Instruction::UIToFP:
1167 case Instruction::SIToFP:
1168 case Instruction::FPTrunc:
1169 case Instruction::FPExt:
1170 case Instruction::Select:
1171 case Instruction::GetElementPtr: {
1172 SmallVector<Value*, 8> NewOps;
1173 bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1174 for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1175 Value *V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1176 NewOps.push_back(V);
1177 NeedsRebuild |= (V != I->getOperand(i));
1178 }
1179 if (NeedsRebuild) {
1180 return buildNew(I, NewOps);
1181 }
1182 return I;
1183 }
1184 case Instruction::InsertElement: {
1185 int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1186
1187 // The insertelement was inserting at Element. Figure out which element
1188 // that becomes after shuffling. The answer is guaranteed to be unique
1189 // by CanEvaluateShuffled.
1190 bool Found = false;
1191 int Index = 0;
1192 for (int e = Mask.size(); Index != e; ++Index) {
1193 if (Mask[Index] == Element) {
1194 Found = true;
1195 break;
1196 }
1197 }
1198
1199 // If element is not in Mask, no need to handle the operand 1 (element to
1200 // be inserted). Just evaluate values in operand 0 according to Mask.
1201 if (!Found)
1202 return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1203
1204 Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1205 return InsertElementInst::Create(V, I->getOperand(1),
1206 ConstantInt::get(I32Ty, Index), "", I);
1207 }
1208 }
1209 llvm_unreachable("failed to reorder elements of vector instruction!");
1210 }
1211
recognizeIdentityMask(const SmallVectorImpl<int> & Mask,bool & isLHSID,bool & isRHSID)1212 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1213 bool &isLHSID, bool &isRHSID) {
1214 isLHSID = isRHSID = true;
1215
1216 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1217 if (Mask[i] < 0) continue; // Ignore undef values.
1218 // Is this an identity shuffle of the LHS value?
1219 isLHSID &= (Mask[i] == (int)i);
1220
1221 // Is this an identity shuffle of the RHS value?
1222 isRHSID &= (Mask[i]-e == i);
1223 }
1224 }
1225
1226 // Returns true if the shuffle is extracting a contiguous range of values from
1227 // LHS, for example:
1228 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1229 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1230 // Shuffles to: |EE|FF|GG|HH|
1231 // +--+--+--+--+
isShuffleExtractingFromLHS(ShuffleVectorInst & SVI,SmallVector<int,16> & Mask)1232 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1233 SmallVector<int, 16> &Mask) {
1234 unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1235 unsigned MaskElems = Mask.size();
1236 unsigned BegIdx = Mask.front();
1237 unsigned EndIdx = Mask.back();
1238 if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1239 return false;
1240 for (unsigned I = 0; I != MaskElems; ++I)
1241 if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1242 return false;
1243 return true;
1244 }
1245
1246 /// These are the ingredients in an alternate form binary operator as described
1247 /// below.
1248 struct BinopElts {
1249 BinaryOperator::BinaryOps Opcode;
1250 Value *Op0;
1251 Value *Op1;
BinopEltsBinopElts1252 BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1253 Value *V0 = nullptr, Value *V1 = nullptr) :
1254 Opcode(Opc), Op0(V0), Op1(V1) {}
operator boolBinopElts1255 operator bool() const { return Opcode != 0; }
1256 };
1257
1258 /// Binops may be transformed into binops with different opcodes and operands.
1259 /// Reverse the usual canonicalization to enable folds with the non-canonical
1260 /// form of the binop. If a transform is possible, return the elements of the
1261 /// new binop. If not, return invalid elements.
getAlternateBinop(BinaryOperator * BO,const DataLayout & DL)1262 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1263 Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1264 Type *Ty = BO->getType();
1265 switch (BO->getOpcode()) {
1266 case Instruction::Shl: {
1267 // shl X, C --> mul X, (1 << C)
1268 Constant *C;
1269 if (match(BO1, m_Constant(C))) {
1270 Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1271 return { Instruction::Mul, BO0, ShlOne };
1272 }
1273 break;
1274 }
1275 case Instruction::Or: {
1276 // or X, C --> add X, C (when X and C have no common bits set)
1277 const APInt *C;
1278 if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1279 return { Instruction::Add, BO0, BO1 };
1280 break;
1281 }
1282 default:
1283 break;
1284 }
1285 return {};
1286 }
1287
foldSelectShuffleWith1Binop(ShuffleVectorInst & Shuf)1288 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1289 assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1290
1291 // Are we shuffling together some value and that same value after it has been
1292 // modified by a binop with a constant?
1293 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1294 Constant *C;
1295 bool Op0IsBinop;
1296 if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1297 Op0IsBinop = true;
1298 else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1299 Op0IsBinop = false;
1300 else
1301 return nullptr;
1302
1303 // The identity constant for a binop leaves a variable operand unchanged. For
1304 // a vector, this is a splat of something like 0, -1, or 1.
1305 // If there's no identity constant for this binop, we're done.
1306 auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1307 BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1308 Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1309 if (!IdC)
1310 return nullptr;
1311
1312 // Shuffle identity constants into the lanes that return the original value.
1313 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1314 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1315 // The existing binop constant vector remains in the same operand position.
1316 Constant *Mask = Shuf.getMask();
1317 Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1318 ConstantExpr::getShuffleVector(IdC, C, Mask);
1319
1320 bool MightCreatePoisonOrUB =
1321 Mask->containsUndefElement() &&
1322 (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1323 if (MightCreatePoisonOrUB)
1324 NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1325
1326 // shuf (bop X, C), X, M --> bop X, C'
1327 // shuf X, (bop X, C), M --> bop X, C'
1328 Value *X = Op0IsBinop ? Op1 : Op0;
1329 Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1330 NewBO->copyIRFlags(BO);
1331
1332 // An undef shuffle mask element may propagate as an undef constant element in
1333 // the new binop. That would produce poison where the original code might not.
1334 // If we already made a safe constant, then there's no danger.
1335 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1336 NewBO->dropPoisonGeneratingFlags();
1337 return NewBO;
1338 }
1339
1340 /// Try to fold shuffles that are the equivalent of a vector select.
foldSelectShuffle(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder,const DataLayout & DL)1341 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1342 InstCombiner::BuilderTy &Builder,
1343 const DataLayout &DL) {
1344 if (!Shuf.isSelect())
1345 return nullptr;
1346
1347 if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1348 return I;
1349
1350 BinaryOperator *B0, *B1;
1351 if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1352 !match(Shuf.getOperand(1), m_BinOp(B1)))
1353 return nullptr;
1354
1355 Value *X, *Y;
1356 Constant *C0, *C1;
1357 bool ConstantsAreOp1;
1358 if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1359 match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1360 ConstantsAreOp1 = true;
1361 else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1362 match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1363 ConstantsAreOp1 = false;
1364 else
1365 return nullptr;
1366
1367 // We need matching binops to fold the lanes together.
1368 BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1369 BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1370 bool DropNSW = false;
1371 if (ConstantsAreOp1 && Opc0 != Opc1) {
1372 // TODO: We drop "nsw" if shift is converted into multiply because it may
1373 // not be correct when the shift amount is BitWidth - 1. We could examine
1374 // each vector element to determine if it is safe to keep that flag.
1375 if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1376 DropNSW = true;
1377 if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1378 assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1379 Opc0 = AltB0.Opcode;
1380 C0 = cast<Constant>(AltB0.Op1);
1381 } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1382 assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1383 Opc1 = AltB1.Opcode;
1384 C1 = cast<Constant>(AltB1.Op1);
1385 }
1386 }
1387
1388 if (Opc0 != Opc1)
1389 return nullptr;
1390
1391 // The opcodes must be the same. Use a new name to make that clear.
1392 BinaryOperator::BinaryOps BOpc = Opc0;
1393
1394 // Select the constant elements needed for the single binop.
1395 Constant *Mask = Shuf.getMask();
1396 Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1397
1398 // We are moving a binop after a shuffle. When a shuffle has an undefined
1399 // mask element, the result is undefined, but it is not poison or undefined
1400 // behavior. That is not necessarily true for div/rem/shift.
1401 bool MightCreatePoisonOrUB =
1402 Mask->containsUndefElement() &&
1403 (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1404 if (MightCreatePoisonOrUB)
1405 NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1406
1407 Value *V;
1408 if (X == Y) {
1409 // Remove a binop and the shuffle by rearranging the constant:
1410 // shuffle (op V, C0), (op V, C1), M --> op V, C'
1411 // shuffle (op C0, V), (op C1, V), M --> op C', V
1412 V = X;
1413 } else {
1414 // If there are 2 different variable operands, we must create a new shuffle
1415 // (select) first, so check uses to ensure that we don't end up with more
1416 // instructions than we started with.
1417 if (!B0->hasOneUse() && !B1->hasOneUse())
1418 return nullptr;
1419
1420 // If we use the original shuffle mask and op1 is *variable*, we would be
1421 // putting an undef into operand 1 of div/rem/shift. This is either UB or
1422 // poison. We do not have to guard against UB when *constants* are op1
1423 // because safe constants guarantee that we do not overflow sdiv/srem (and
1424 // there's no danger for other opcodes).
1425 // TODO: To allow this case, create a new shuffle mask with no undefs.
1426 if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1427 return nullptr;
1428
1429 // Note: In general, we do not create new shuffles in InstCombine because we
1430 // do not know if a target can lower an arbitrary shuffle optimally. In this
1431 // case, the shuffle uses the existing mask, so there is no additional risk.
1432
1433 // Select the variable vectors first, then perform the binop:
1434 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1435 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1436 V = Builder.CreateShuffleVector(X, Y, Mask);
1437 }
1438
1439 Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1440 BinaryOperator::Create(BOpc, NewC, V);
1441
1442 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1443 // 1. If we changed an opcode, poison conditions might have changed.
1444 // 2. If the shuffle had undef mask elements, the new binop might have undefs
1445 // where the original code did not. But if we already made a safe constant,
1446 // then there's no danger.
1447 NewBO->copyIRFlags(B0);
1448 NewBO->andIRFlags(B1);
1449 if (DropNSW)
1450 NewBO->setHasNoSignedWrap(false);
1451 if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1452 NewBO->dropPoisonGeneratingFlags();
1453 return NewBO;
1454 }
1455
1456 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1457 /// narrowing (concatenating with undef and extracting back to the original
1458 /// length). This allows replacing the wide select with a narrow select.
narrowVectorSelect(ShuffleVectorInst & Shuf,InstCombiner::BuilderTy & Builder)1459 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1460 InstCombiner::BuilderTy &Builder) {
1461 // This must be a narrowing identity shuffle. It extracts the 1st N elements
1462 // of the 1st vector operand of a shuffle.
1463 if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1464 return nullptr;
1465
1466 // The vector being shuffled must be a vector select that we can eliminate.
1467 // TODO: The one-use requirement could be eased if X and/or Y are constants.
1468 Value *Cond, *X, *Y;
1469 if (!match(Shuf.getOperand(0),
1470 m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1471 return nullptr;
1472
1473 // We need a narrow condition value. It must be extended with undef elements
1474 // and have the same number of elements as this shuffle.
1475 unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1476 Value *NarrowCond;
1477 if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1478 m_Constant()))) ||
1479 NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1480 !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1481 return nullptr;
1482
1483 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1484 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1485 Value *Undef = UndefValue::get(X->getType());
1486 Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1487 Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1488 return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1489 }
1490
1491 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
foldIdentityExtractShuffle(ShuffleVectorInst & Shuf)1492 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1493 Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1494 if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1495 return nullptr;
1496
1497 Value *X, *Y;
1498 Constant *Mask;
1499 if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1500 return nullptr;
1501
1502 // We are extracting a subvector from a shuffle. Remove excess elements from
1503 // the 1st shuffle mask to eliminate the extract.
1504 //
1505 // This transform is conservatively limited to identity extracts because we do
1506 // not allow arbitrary shuffle mask creation as a target-independent transform
1507 // (because we can't guarantee that will lower efficiently).
1508 //
1509 // If the extracting shuffle has an undef mask element, it transfers to the
1510 // new shuffle mask. Otherwise, copy the original mask element. Example:
1511 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1512 // shuf X, Y, <C0, undef, C2, undef>
1513 unsigned NumElts = Shuf.getType()->getVectorNumElements();
1514 SmallVector<Constant *, 16> NewMask(NumElts);
1515 assert(NumElts < Mask->getType()->getVectorNumElements() &&
1516 "Identity with extract must have less elements than its inputs");
1517
1518 for (unsigned i = 0; i != NumElts; ++i) {
1519 Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1520 Constant *MaskElt = Mask->getAggregateElement(i);
1521 NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1522 }
1523 return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1524 }
1525
1526 /// Try to replace a shuffle with an insertelement.
foldShuffleWithInsert(ShuffleVectorInst & Shuf)1527 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1528 Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1529 SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1530
1531 // The shuffle must not change vector sizes.
1532 // TODO: This restriction could be removed if the insert has only one use
1533 // (because the transform would require a new length-changing shuffle).
1534 int NumElts = Mask.size();
1535 if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1536 return nullptr;
1537
1538 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1539 auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1540 // We need an insertelement with a constant index.
1541 if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1542 m_ConstantInt(IndexC))))
1543 return false;
1544
1545 // Test the shuffle mask to see if it splices the inserted scalar into the
1546 // operand 1 vector of the shuffle.
1547 int NewInsIndex = -1;
1548 for (int i = 0; i != NumElts; ++i) {
1549 // Ignore undef mask elements.
1550 if (Mask[i] == -1)
1551 continue;
1552
1553 // The shuffle takes elements of operand 1 without lane changes.
1554 if (Mask[i] == NumElts + i)
1555 continue;
1556
1557 // The shuffle must choose the inserted scalar exactly once.
1558 if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1559 return false;
1560
1561 // The shuffle is placing the inserted scalar into element i.
1562 NewInsIndex = i;
1563 }
1564
1565 assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1566
1567 // Index is updated to the potentially translated insertion lane.
1568 IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1569 return true;
1570 };
1571
1572 // If the shuffle is unnecessary, insert the scalar operand directly into
1573 // operand 1 of the shuffle. Example:
1574 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1575 Value *Scalar;
1576 ConstantInt *IndexC;
1577 if (isShufflingScalarIntoOp1(Scalar, IndexC))
1578 return InsertElementInst::Create(V1, Scalar, IndexC);
1579
1580 // Try again after commuting shuffle. Example:
1581 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1582 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1583 std::swap(V0, V1);
1584 ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1585 if (isShufflingScalarIntoOp1(Scalar, IndexC))
1586 return InsertElementInst::Create(V1, Scalar, IndexC);
1587
1588 return nullptr;
1589 }
1590
visitShuffleVectorInst(ShuffleVectorInst & SVI)1591 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1592 Value *LHS = SVI.getOperand(0);
1593 Value *RHS = SVI.getOperand(1);
1594 if (auto *V = SimplifyShuffleVectorInst(
1595 LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1596 return replaceInstUsesWith(SVI, V);
1597
1598 if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1599 return I;
1600
1601 if (Instruction *I = narrowVectorSelect(SVI, Builder))
1602 return I;
1603
1604 unsigned VWidth = SVI.getType()->getVectorNumElements();
1605 APInt UndefElts(VWidth, 0);
1606 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1607 if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1608 if (V != &SVI)
1609 return replaceInstUsesWith(SVI, V);
1610 return &SVI;
1611 }
1612
1613 if (Instruction *I = foldIdentityExtractShuffle(SVI))
1614 return I;
1615
1616 // This transform has the potential to lose undef knowledge, so it is
1617 // intentionally placed after SimplifyDemandedVectorElts().
1618 if (Instruction *I = foldShuffleWithInsert(SVI))
1619 return I;
1620
1621 SmallVector<int, 16> Mask = SVI.getShuffleMask();
1622 Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1623 unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1624 bool MadeChange = false;
1625
1626 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
1627 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1628 if (LHS == RHS || isa<UndefValue>(LHS)) {
1629 // Remap any references to RHS to use LHS.
1630 SmallVector<Constant*, 16> Elts;
1631 for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1632 if (Mask[i] < 0) {
1633 Elts.push_back(UndefValue::get(Int32Ty));
1634 continue;
1635 }
1636
1637 if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1638 (Mask[i] < (int)e && isa<UndefValue>(LHS))) {
1639 Mask[i] = -1; // Turn into undef.
1640 Elts.push_back(UndefValue::get(Int32Ty));
1641 } else {
1642 Mask[i] = Mask[i] % e; // Force to LHS.
1643 Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1644 }
1645 }
1646 SVI.setOperand(0, SVI.getOperand(1));
1647 SVI.setOperand(1, UndefValue::get(RHS->getType()));
1648 SVI.setOperand(2, ConstantVector::get(Elts));
1649 LHS = SVI.getOperand(0);
1650 RHS = SVI.getOperand(1);
1651 MadeChange = true;
1652 }
1653
1654 if (VWidth == LHSWidth) {
1655 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1656 bool isLHSID, isRHSID;
1657 recognizeIdentityMask(Mask, isLHSID, isRHSID);
1658
1659 // Eliminate identity shuffles.
1660 if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1661 if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1662 }
1663
1664 if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1665 Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1666 return replaceInstUsesWith(SVI, V);
1667 }
1668
1669 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1670 // a non-vector type. We can instead bitcast the original vector followed by
1671 // an extract of the desired element:
1672 //
1673 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1674 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1675 // %1 = bitcast <4 x i8> %sroa to i32
1676 // Becomes:
1677 // %bc = bitcast <16 x i8> %in to <4 x i32>
1678 // %ext = extractelement <4 x i32> %bc, i32 0
1679 //
1680 // If the shuffle is extracting a contiguous range of values from the input
1681 // vector then each use which is a bitcast of the extracted size can be
1682 // replaced. This will work if the vector types are compatible, and the begin
1683 // index is aligned to a value in the casted vector type. If the begin index
1684 // isn't aligned then we can shuffle the original vector (keeping the same
1685 // vector type) before extracting.
1686 //
1687 // This code will bail out if the target type is fundamentally incompatible
1688 // with vectors of the source type.
1689 //
1690 // Example of <16 x i8>, target type i32:
1691 // Index range [4,8): v-----------v Will work.
1692 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1693 // <16 x i8>: | | | | | | | | | | | | | | | | |
1694 // <4 x i32>: | | | | |
1695 // +-----------+-----------+-----------+-----------+
1696 // Index range [6,10): ^-----------^ Needs an extra shuffle.
1697 // Target type i40: ^--------------^ Won't work, bail.
1698 if (isShuffleExtractingFromLHS(SVI, Mask)) {
1699 Value *V = LHS;
1700 unsigned MaskElems = Mask.size();
1701 VectorType *SrcTy = cast<VectorType>(V->getType());
1702 unsigned VecBitWidth = SrcTy->getBitWidth();
1703 unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
1704 assert(SrcElemBitWidth && "vector elements must have a bitwidth");
1705 unsigned SrcNumElems = SrcTy->getNumElements();
1706 SmallVector<BitCastInst *, 8> BCs;
1707 DenseMap<Type *, Value *> NewBCs;
1708 for (User *U : SVI.users())
1709 if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
1710 if (!BC->use_empty())
1711 // Only visit bitcasts that weren't previously handled.
1712 BCs.push_back(BC);
1713 for (BitCastInst *BC : BCs) {
1714 unsigned BegIdx = Mask.front();
1715 Type *TgtTy = BC->getDestTy();
1716 unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
1717 if (!TgtElemBitWidth)
1718 continue;
1719 unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
1720 bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
1721 bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
1722 if (!VecBitWidthsEqual)
1723 continue;
1724 if (!VectorType::isValidElementType(TgtTy))
1725 continue;
1726 VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
1727 if (!BegIsAligned) {
1728 // Shuffle the input so [0,NumElements) contains the output, and
1729 // [NumElems,SrcNumElems) is undef.
1730 SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
1731 UndefValue::get(Int32Ty));
1732 for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
1733 ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
1734 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
1735 ConstantVector::get(ShuffleMask),
1736 SVI.getName() + ".extract");
1737 BegIdx = 0;
1738 }
1739 unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
1740 assert(SrcElemsPerTgtElem);
1741 BegIdx /= SrcElemsPerTgtElem;
1742 bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
1743 auto *NewBC =
1744 BCAlreadyExists
1745 ? NewBCs[CastSrcTy]
1746 : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
1747 if (!BCAlreadyExists)
1748 NewBCs[CastSrcTy] = NewBC;
1749 auto *Ext = Builder.CreateExtractElement(
1750 NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
1751 // The shufflevector isn't being replaced: the bitcast that used it
1752 // is. InstCombine will visit the newly-created instructions.
1753 replaceInstUsesWith(*BC, Ext);
1754 MadeChange = true;
1755 }
1756 }
1757
1758 // If the LHS is a shufflevector itself, see if we can combine it with this
1759 // one without producing an unusual shuffle.
1760 // Cases that might be simplified:
1761 // 1.
1762 // x1=shuffle(v1,v2,mask1)
1763 // x=shuffle(x1,undef,mask)
1764 // ==>
1765 // x=shuffle(v1,undef,newMask)
1766 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
1767 // 2.
1768 // x1=shuffle(v1,undef,mask1)
1769 // x=shuffle(x1,x2,mask)
1770 // where v1.size() == mask1.size()
1771 // ==>
1772 // x=shuffle(v1,x2,newMask)
1773 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
1774 // 3.
1775 // x2=shuffle(v2,undef,mask2)
1776 // x=shuffle(x1,x2,mask)
1777 // where v2.size() == mask2.size()
1778 // ==>
1779 // x=shuffle(x1,v2,newMask)
1780 // newMask[i] = (mask[i] < x1.size())
1781 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
1782 // 4.
1783 // x1=shuffle(v1,undef,mask1)
1784 // x2=shuffle(v2,undef,mask2)
1785 // x=shuffle(x1,x2,mask)
1786 // where v1.size() == v2.size()
1787 // ==>
1788 // x=shuffle(v1,v2,newMask)
1789 // newMask[i] = (mask[i] < x1.size())
1790 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
1791 //
1792 // Here we are really conservative:
1793 // we are absolutely afraid of producing a shuffle mask not in the input
1794 // program, because the code gen may not be smart enough to turn a merged
1795 // shuffle into two specific shuffles: it may produce worse code. As such,
1796 // we only merge two shuffles if the result is either a splat or one of the
1797 // input shuffle masks. In this case, merging the shuffles just removes
1798 // one instruction, which we know is safe. This is good for things like
1799 // turning: (splat(splat)) -> splat, or
1800 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
1801 ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
1802 ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
1803 if (LHSShuffle)
1804 if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
1805 LHSShuffle = nullptr;
1806 if (RHSShuffle)
1807 if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
1808 RHSShuffle = nullptr;
1809 if (!LHSShuffle && !RHSShuffle)
1810 return MadeChange ? &SVI : nullptr;
1811
1812 Value* LHSOp0 = nullptr;
1813 Value* LHSOp1 = nullptr;
1814 Value* RHSOp0 = nullptr;
1815 unsigned LHSOp0Width = 0;
1816 unsigned RHSOp0Width = 0;
1817 if (LHSShuffle) {
1818 LHSOp0 = LHSShuffle->getOperand(0);
1819 LHSOp1 = LHSShuffle->getOperand(1);
1820 LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
1821 }
1822 if (RHSShuffle) {
1823 RHSOp0 = RHSShuffle->getOperand(0);
1824 RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
1825 }
1826 Value* newLHS = LHS;
1827 Value* newRHS = RHS;
1828 if (LHSShuffle) {
1829 // case 1
1830 if (isa<UndefValue>(RHS)) {
1831 newLHS = LHSOp0;
1832 newRHS = LHSOp1;
1833 }
1834 // case 2 or 4
1835 else if (LHSOp0Width == LHSWidth) {
1836 newLHS = LHSOp0;
1837 }
1838 }
1839 // case 3 or 4
1840 if (RHSShuffle && RHSOp0Width == LHSWidth) {
1841 newRHS = RHSOp0;
1842 }
1843 // case 4
1844 if (LHSOp0 == RHSOp0) {
1845 newLHS = LHSOp0;
1846 newRHS = nullptr;
1847 }
1848
1849 if (newLHS == LHS && newRHS == RHS)
1850 return MadeChange ? &SVI : nullptr;
1851
1852 SmallVector<int, 16> LHSMask;
1853 SmallVector<int, 16> RHSMask;
1854 if (newLHS != LHS)
1855 LHSMask = LHSShuffle->getShuffleMask();
1856 if (RHSShuffle && newRHS != RHS)
1857 RHSMask = RHSShuffle->getShuffleMask();
1858
1859 unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
1860 SmallVector<int, 16> newMask;
1861 bool isSplat = true;
1862 int SplatElt = -1;
1863 // Create a new mask for the new ShuffleVectorInst so that the new
1864 // ShuffleVectorInst is equivalent to the original one.
1865 for (unsigned i = 0; i < VWidth; ++i) {
1866 int eltMask;
1867 if (Mask[i] < 0) {
1868 // This element is an undef value.
1869 eltMask = -1;
1870 } else if (Mask[i] < (int)LHSWidth) {
1871 // This element is from left hand side vector operand.
1872 //
1873 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
1874 // new mask value for the element.
1875 if (newLHS != LHS) {
1876 eltMask = LHSMask[Mask[i]];
1877 // If the value selected is an undef value, explicitly specify it
1878 // with a -1 mask value.
1879 if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
1880 eltMask = -1;
1881 } else
1882 eltMask = Mask[i];
1883 } else {
1884 // This element is from right hand side vector operand
1885 //
1886 // If the value selected is an undef value, explicitly specify it
1887 // with a -1 mask value. (case 1)
1888 if (isa<UndefValue>(RHS))
1889 eltMask = -1;
1890 // If RHS is going to be replaced (case 3 or 4), calculate the
1891 // new mask value for the element.
1892 else if (newRHS != RHS) {
1893 eltMask = RHSMask[Mask[i]-LHSWidth];
1894 // If the value selected is an undef value, explicitly specify it
1895 // with a -1 mask value.
1896 if (eltMask >= (int)RHSOp0Width) {
1897 assert(isa<UndefValue>(RHSShuffle->getOperand(1))
1898 && "should have been check above");
1899 eltMask = -1;
1900 }
1901 } else
1902 eltMask = Mask[i]-LHSWidth;
1903
1904 // If LHS's width is changed, shift the mask value accordingly.
1905 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
1906 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
1907 // If newRHS == newLHS, we want to remap any references from newRHS to
1908 // newLHS so that we can properly identify splats that may occur due to
1909 // obfuscation across the two vectors.
1910 if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
1911 eltMask += newLHSWidth;
1912 }
1913
1914 // Check if this could still be a splat.
1915 if (eltMask >= 0) {
1916 if (SplatElt >= 0 && SplatElt != eltMask)
1917 isSplat = false;
1918 SplatElt = eltMask;
1919 }
1920
1921 newMask.push_back(eltMask);
1922 }
1923
1924 // If the result mask is equal to one of the original shuffle masks,
1925 // or is a splat, do the replacement.
1926 if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
1927 SmallVector<Constant*, 16> Elts;
1928 for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
1929 if (newMask[i] < 0) {
1930 Elts.push_back(UndefValue::get(Int32Ty));
1931 } else {
1932 Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
1933 }
1934 }
1935 if (!newRHS)
1936 newRHS = UndefValue::get(newLHS->getType());
1937 return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
1938 }
1939
1940 // If the result mask is an identity, replace uses of this instruction with
1941 // corresponding argument.
1942 bool isLHSID, isRHSID;
1943 recognizeIdentityMask(newMask, isLHSID, isRHSID);
1944 if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
1945 if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
1946
1947 return MadeChange ? &SVI : nullptr;
1948 }
1949