1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // It contains the tablegen backend that emits the decoder functions for
11 // targets with fixed length instruction set.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/CachedHashString.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/MC/MCFixedLenDisassembler.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/FormattedStream.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/TableGen/Error.h"
33 #include "llvm/TableGen/Record.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <map>
39 #include <memory>
40 #include <set>
41 #include <string>
42 #include <utility>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "decoder-emitter"
48 
49 namespace {
50 
51 struct EncodingField {
52   unsigned Base, Width, Offset;
EncodingField__anonc01b33bf0111::EncodingField53   EncodingField(unsigned B, unsigned W, unsigned O)
54     : Base(B), Width(W), Offset(O) { }
55 };
56 
57 struct OperandInfo {
58   std::vector<EncodingField> Fields;
59   std::string Decoder;
60   bool HasCompleteDecoder;
61 
OperandInfo__anonc01b33bf0111::OperandInfo62   OperandInfo(std::string D, bool HCD)
63       : Decoder(std::move(D)), HasCompleteDecoder(HCD) {}
64 
addField__anonc01b33bf0111::OperandInfo65   void addField(unsigned Base, unsigned Width, unsigned Offset) {
66     Fields.push_back(EncodingField(Base, Width, Offset));
67   }
68 
numFields__anonc01b33bf0111::OperandInfo69   unsigned numFields() const { return Fields.size(); }
70 
71   typedef std::vector<EncodingField>::const_iterator const_iterator;
72 
begin__anonc01b33bf0111::OperandInfo73   const_iterator begin() const { return Fields.begin(); }
end__anonc01b33bf0111::OperandInfo74   const_iterator end() const   { return Fields.end();   }
75 };
76 
77 typedef std::vector<uint8_t> DecoderTable;
78 typedef uint32_t DecoderFixup;
79 typedef std::vector<DecoderFixup> FixupList;
80 typedef std::vector<FixupList> FixupScopeList;
81 typedef SmallSetVector<CachedHashString, 16> PredicateSet;
82 typedef SmallSetVector<CachedHashString, 16> DecoderSet;
83 struct DecoderTableInfo {
84   DecoderTable Table;
85   FixupScopeList FixupStack;
86   PredicateSet Predicates;
87   DecoderSet Decoders;
88 };
89 
90 struct EncodingAndInst {
91   const Record *EncodingDef;
92   const CodeGenInstruction *Inst;
93 
EncodingAndInst__anonc01b33bf0111::EncodingAndInst94   EncodingAndInst(const Record *EncodingDef, const CodeGenInstruction *Inst)
95       : EncodingDef(EncodingDef), Inst(Inst) {}
96 };
97 
operator <<(raw_ostream & OS,const EncodingAndInst & Value)98 raw_ostream &operator<<(raw_ostream &OS, const EncodingAndInst &Value) {
99   if (Value.EncodingDef != Value.Inst->TheDef)
100     OS << Value.EncodingDef->getName() << ":";
101   OS << Value.Inst->TheDef->getName();
102   return OS;
103 }
104 
105 class FixedLenDecoderEmitter {
106   std::vector<EncodingAndInst> NumberedEncodings;
107 
108 public:
109   // Defaults preserved here for documentation, even though they aren't
110   // strictly necessary given the way that this is currently being called.
FixedLenDecoderEmitter(RecordKeeper & R,std::string PredicateNamespace,std::string GPrefix="if (",std::string GPostfix=" == MCDisassembler::Fail)",std::string ROK="MCDisassembler::Success",std::string RFail="MCDisassembler::Fail",std::string L="")111   FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace,
112                          std::string GPrefix = "if (",
113                          std::string GPostfix = " == MCDisassembler::Fail)",
114                          std::string ROK = "MCDisassembler::Success",
115                          std::string RFail = "MCDisassembler::Fail",
116                          std::string L = "")
117       : Target(R), PredicateNamespace(std::move(PredicateNamespace)),
118         GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)),
119         ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)),
120         Locals(std::move(L)) {}
121 
122   // Emit the decoder state machine table.
123   void emitTable(formatted_raw_ostream &o, DecoderTable &Table,
124                  unsigned Indentation, unsigned BitWidth,
125                  StringRef Namespace) const;
126   void emitPredicateFunction(formatted_raw_ostream &OS,
127                              PredicateSet &Predicates,
128                              unsigned Indentation) const;
129   void emitDecoderFunction(formatted_raw_ostream &OS,
130                            DecoderSet &Decoders,
131                            unsigned Indentation) const;
132 
133   // run - Output the code emitter
134   void run(raw_ostream &o);
135 
136 private:
137   CodeGenTarget Target;
138 
139 public:
140   std::string PredicateNamespace;
141   std::string GuardPrefix, GuardPostfix;
142   std::string ReturnOK, ReturnFail;
143   std::string Locals;
144 };
145 
146 } // end anonymous namespace
147 
148 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
149 // for a bit value.
150 //
151 // BIT_UNFILTERED is used as the init value for a filter position.  It is used
152 // only for filter processings.
153 typedef enum {
154   BIT_TRUE,      // '1'
155   BIT_FALSE,     // '0'
156   BIT_UNSET,     // '?'
157   BIT_UNFILTERED // unfiltered
158 } bit_value_t;
159 
ValueSet(bit_value_t V)160 static bool ValueSet(bit_value_t V) {
161   return (V == BIT_TRUE || V == BIT_FALSE);
162 }
163 
ValueNotSet(bit_value_t V)164 static bool ValueNotSet(bit_value_t V) {
165   return (V == BIT_UNSET);
166 }
167 
Value(bit_value_t V)168 static int Value(bit_value_t V) {
169   return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
170 }
171 
bitFromBits(const BitsInit & bits,unsigned index)172 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) {
173   if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index)))
174     return bit->getValue() ? BIT_TRUE : BIT_FALSE;
175 
176   // The bit is uninitialized.
177   return BIT_UNSET;
178 }
179 
180 // Prints the bit value for each position.
dumpBits(raw_ostream & o,const BitsInit & bits)181 static void dumpBits(raw_ostream &o, const BitsInit &bits) {
182   for (unsigned index = bits.getNumBits(); index > 0; --index) {
183     switch (bitFromBits(bits, index - 1)) {
184     case BIT_TRUE:
185       o << "1";
186       break;
187     case BIT_FALSE:
188       o << "0";
189       break;
190     case BIT_UNSET:
191       o << "_";
192       break;
193     default:
194       llvm_unreachable("unexpected return value from bitFromBits");
195     }
196   }
197 }
198 
getBitsField(const Record & def,StringRef str)199 static BitsInit &getBitsField(const Record &def, StringRef str) {
200   BitsInit *bits = def.getValueAsBitsInit(str);
201   return *bits;
202 }
203 
204 // Representation of the instruction to work on.
205 typedef std::vector<bit_value_t> insn_t;
206 
207 namespace {
208 
209 class FilterChooser;
210 
211 /// Filter - Filter works with FilterChooser to produce the decoding tree for
212 /// the ISA.
213 ///
214 /// It is useful to think of a Filter as governing the switch stmts of the
215 /// decoding tree in a certain level.  Each case stmt delegates to an inferior
216 /// FilterChooser to decide what further decoding logic to employ, or in another
217 /// words, what other remaining bits to look at.  The FilterChooser eventually
218 /// chooses a best Filter to do its job.
219 ///
220 /// This recursive scheme ends when the number of Opcodes assigned to the
221 /// FilterChooser becomes 1 or if there is a conflict.  A conflict happens when
222 /// the Filter/FilterChooser combo does not know how to distinguish among the
223 /// Opcodes assigned.
224 ///
225 /// An example of a conflict is
226 ///
227 /// Conflict:
228 ///                     111101000.00........00010000....
229 ///                     111101000.00........0001........
230 ///                     1111010...00........0001........
231 ///                     1111010...00....................
232 ///                     1111010.........................
233 ///                     1111............................
234 ///                     ................................
235 ///     VST4q8a         111101000_00________00010000____
236 ///     VST4q8b         111101000_00________00010000____
237 ///
238 /// The Debug output shows the path that the decoding tree follows to reach the
239 /// the conclusion that there is a conflict.  VST4q8a is a vst4 to double-spaced
240 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers.
241 ///
242 /// The encoding info in the .td files does not specify this meta information,
243 /// which could have been used by the decoder to resolve the conflict.  The
244 /// decoder could try to decode the even/odd register numbering and assign to
245 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
246 /// version and return the Opcode since the two have the same Asm format string.
247 class Filter {
248 protected:
249   const FilterChooser *Owner;// points to the FilterChooser who owns this filter
250   unsigned StartBit; // the starting bit position
251   unsigned NumBits; // number of bits to filter
252   bool Mixed; // a mixed region contains both set and unset bits
253 
254   // Map of well-known segment value to the set of uid's with that value.
255   std::map<uint64_t, std::vector<unsigned>> FilteredInstructions;
256 
257   // Set of uid's with non-constant segment values.
258   std::vector<unsigned> VariableInstructions;
259 
260   // Map of well-known segment value to its delegate.
261   std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap;
262 
263   // Number of instructions which fall under FilteredInstructions category.
264   unsigned NumFiltered;
265 
266   // Keeps track of the last opcode in the filtered bucket.
267   unsigned LastOpcFiltered;
268 
269 public:
270   Filter(Filter &&f);
271   Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
272 
273   ~Filter() = default;
274 
getNumFiltered() const275   unsigned getNumFiltered() const { return NumFiltered; }
276 
getSingletonOpc() const277   unsigned getSingletonOpc() const {
278     assert(NumFiltered == 1);
279     return LastOpcFiltered;
280   }
281 
282   // Return the filter chooser for the group of instructions without constant
283   // segment values.
getVariableFC() const284   const FilterChooser &getVariableFC() const {
285     assert(NumFiltered == 1);
286     assert(FilterChooserMap.size() == 1);
287     return *(FilterChooserMap.find((unsigned)-1)->second);
288   }
289 
290   // Divides the decoding task into sub tasks and delegates them to the
291   // inferior FilterChooser's.
292   //
293   // A special case arises when there's only one entry in the filtered
294   // instructions.  In order to unambiguously decode the singleton, we need to
295   // match the remaining undecoded encoding bits against the singleton.
296   void recurse();
297 
298   // Emit table entries to decode instructions given a segment or segments of
299   // bits.
300   void emitTableEntry(DecoderTableInfo &TableInfo) const;
301 
302   // Returns the number of fanout produced by the filter.  More fanout implies
303   // the filter distinguishes more categories of instructions.
304   unsigned usefulness() const;
305 }; // end class Filter
306 
307 } // end anonymous namespace
308 
309 // These are states of our finite state machines used in FilterChooser's
310 // filterProcessor() which produces the filter candidates to use.
311 typedef enum {
312   ATTR_NONE,
313   ATTR_FILTERED,
314   ATTR_ALL_SET,
315   ATTR_ALL_UNSET,
316   ATTR_MIXED
317 } bitAttr_t;
318 
319 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters
320 /// in order to perform the decoding of instructions at the current level.
321 ///
322 /// Decoding proceeds from the top down.  Based on the well-known encoding bits
323 /// of instructions available, FilterChooser builds up the possible Filters that
324 /// can further the task of decoding by distinguishing among the remaining
325 /// candidate instructions.
326 ///
327 /// Once a filter has been chosen, it is called upon to divide the decoding task
328 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
329 /// processings.
330 ///
331 /// It is useful to think of a Filter as governing the switch stmts of the
332 /// decoding tree.  And each case is delegated to an inferior FilterChooser to
333 /// decide what further remaining bits to look at.
334 namespace {
335 
336 class FilterChooser {
337 protected:
338   friend class Filter;
339 
340   // Vector of codegen instructions to choose our filter.
341   ArrayRef<EncodingAndInst> AllInstructions;
342 
343   // Vector of uid's for this filter chooser to work on.
344   const std::vector<unsigned> &Opcodes;
345 
346   // Lookup table for the operand decoding of instructions.
347   const std::map<unsigned, std::vector<OperandInfo>> &Operands;
348 
349   // Vector of candidate filters.
350   std::vector<Filter> Filters;
351 
352   // Array of bit values passed down from our parent.
353   // Set to all BIT_UNFILTERED's for Parent == NULL.
354   std::vector<bit_value_t> FilterBitValues;
355 
356   // Links to the FilterChooser above us in the decoding tree.
357   const FilterChooser *Parent;
358 
359   // Index of the best filter from Filters.
360   int BestIndex;
361 
362   // Width of instructions
363   unsigned BitWidth;
364 
365   // Parent emitter
366   const FixedLenDecoderEmitter *Emitter;
367 
368 public:
FilterChooser(ArrayRef<EncodingAndInst> Insts,const std::vector<unsigned> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,unsigned BW,const FixedLenDecoderEmitter * E)369   FilterChooser(ArrayRef<EncodingAndInst> Insts,
370                 const std::vector<unsigned> &IDs,
371                 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
372                 unsigned BW, const FixedLenDecoderEmitter *E)
373       : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
374         FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1),
375         BitWidth(BW), Emitter(E) {
376     doFilter();
377   }
378 
FilterChooser(ArrayRef<EncodingAndInst> Insts,const std::vector<unsigned> & IDs,const std::map<unsigned,std::vector<OperandInfo>> & Ops,const std::vector<bit_value_t> & ParentFilterBitValues,const FilterChooser & parent)379   FilterChooser(ArrayRef<EncodingAndInst> Insts,
380                 const std::vector<unsigned> &IDs,
381                 const std::map<unsigned, std::vector<OperandInfo>> &Ops,
382                 const std::vector<bit_value_t> &ParentFilterBitValues,
383                 const FilterChooser &parent)
384       : AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
385         FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1),
386         BitWidth(parent.BitWidth), Emitter(parent.Emitter) {
387     doFilter();
388   }
389 
390   FilterChooser(const FilterChooser &) = delete;
391   void operator=(const FilterChooser &) = delete;
392 
getBitWidth() const393   unsigned getBitWidth() const { return BitWidth; }
394 
395 protected:
396   // Populates the insn given the uid.
insnWithID(insn_t & Insn,unsigned Opcode) const397   void insnWithID(insn_t &Insn, unsigned Opcode) const {
398     BitsInit &Bits = getBitsField(*AllInstructions[Opcode].EncodingDef, "Inst");
399 
400     // We may have a SoftFail bitmask, which specifies a mask where an encoding
401     // may differ from the value in "Inst" and yet still be valid, but the
402     // disassembler should return SoftFail instead of Success.
403     //
404     // This is used for marking UNPREDICTABLE instructions in the ARM world.
405     BitsInit *SFBits =
406         AllInstructions[Opcode].EncodingDef->getValueAsBitsInit("SoftFail");
407 
408     for (unsigned i = 0; i < BitWidth; ++i) {
409       if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE)
410         Insn.push_back(BIT_UNSET);
411       else
412         Insn.push_back(bitFromBits(Bits, i));
413     }
414   }
415 
416   // Populates the field of the insn given the start position and the number of
417   // consecutive bits to scan for.
418   //
419   // Returns false if there exists any uninitialized bit value in the range.
420   // Returns true, otherwise.
421   bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
422                      unsigned NumBits) const;
423 
424   /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
425   /// filter array as a series of chars.
426   void dumpFilterArray(raw_ostream &o,
427                        const std::vector<bit_value_t> & filter) const;
428 
429   /// dumpStack - dumpStack traverses the filter chooser chain and calls
430   /// dumpFilterArray on each filter chooser up to the top level one.
431   void dumpStack(raw_ostream &o, const char *prefix) const;
432 
bestFilter()433   Filter &bestFilter() {
434     assert(BestIndex != -1 && "BestIndex not set");
435     return Filters[BestIndex];
436   }
437 
PositionFiltered(unsigned i) const438   bool PositionFiltered(unsigned i) const {
439     return ValueSet(FilterBitValues[i]);
440   }
441 
442   // Calculates the island(s) needed to decode the instruction.
443   // This returns a lit of undecoded bits of an instructions, for example,
444   // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
445   // decoded bits in order to verify that the instruction matches the Opcode.
446   unsigned getIslands(std::vector<unsigned> &StartBits,
447                       std::vector<unsigned> &EndBits,
448                       std::vector<uint64_t> &FieldVals,
449                       const insn_t &Insn) const;
450 
451   // Emits code to check the Predicates member of an instruction are true.
452   // Returns true if predicate matches were emitted, false otherwise.
453   bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
454                           unsigned Opc) const;
455 
456   bool doesOpcodeNeedPredicate(unsigned Opc) const;
457   unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const;
458   void emitPredicateTableEntry(DecoderTableInfo &TableInfo,
459                                unsigned Opc) const;
460 
461   void emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
462                               unsigned Opc) const;
463 
464   // Emits table entries to decode the singleton.
465   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
466                                unsigned Opc) const;
467 
468   // Emits code to decode the singleton, and then to decode the rest.
469   void emitSingletonTableEntry(DecoderTableInfo &TableInfo,
470                                const Filter &Best) const;
471 
472   void emitBinaryParser(raw_ostream &o, unsigned &Indentation,
473                         const OperandInfo &OpInfo,
474                         bool &OpHasCompleteDecoder) const;
475 
476   void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc,
477                    bool &HasCompleteDecoder) const;
478   unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc,
479                            bool &HasCompleteDecoder) const;
480 
481   // Assign a single filter and run with it.
482   void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed);
483 
484   // reportRegion is a helper function for filterProcessor to mark a region as
485   // eligible for use as a filter region.
486   void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
487                     bool AllowMixed);
488 
489   // FilterProcessor scans the well-known encoding bits of the instructions and
490   // builds up a list of candidate filters.  It chooses the best filter and
491   // recursively descends down the decoding tree.
492   bool filterProcessor(bool AllowMixed, bool Greedy = true);
493 
494   // Decides on the best configuration of filter(s) to use in order to decode
495   // the instructions.  A conflict of instructions may occur, in which case we
496   // dump the conflict set to the standard error.
497   void doFilter();
498 
499 public:
500   // emitTableEntries - Emit state machine entries to decode our share of
501   // instructions.
502   void emitTableEntries(DecoderTableInfo &TableInfo) const;
503 };
504 
505 } // end anonymous namespace
506 
507 ///////////////////////////
508 //                       //
509 // Filter Implementation //
510 //                       //
511 ///////////////////////////
512 
Filter(Filter && f)513 Filter::Filter(Filter &&f)
514   : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
515     FilteredInstructions(std::move(f.FilteredInstructions)),
516     VariableInstructions(std::move(f.VariableInstructions)),
517     FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered),
518     LastOpcFiltered(f.LastOpcFiltered) {
519 }
520 
Filter(FilterChooser & owner,unsigned startBit,unsigned numBits,bool mixed)521 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
522                bool mixed)
523   : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) {
524   assert(StartBit + NumBits - 1 < Owner->BitWidth);
525 
526   NumFiltered = 0;
527   LastOpcFiltered = 0;
528 
529   for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
530     insn_t Insn;
531 
532     // Populates the insn given the uid.
533     Owner->insnWithID(Insn, Owner->Opcodes[i]);
534 
535     uint64_t Field;
536     // Scans the segment for possibly well-specified encoding bits.
537     bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
538 
539     if (ok) {
540       // The encoding bits are well-known.  Lets add the uid of the
541       // instruction into the bucket keyed off the constant field value.
542       LastOpcFiltered = Owner->Opcodes[i];
543       FilteredInstructions[Field].push_back(LastOpcFiltered);
544       ++NumFiltered;
545     } else {
546       // Some of the encoding bit(s) are unspecified.  This contributes to
547       // one additional member of "Variable" instructions.
548       VariableInstructions.push_back(Owner->Opcodes[i]);
549     }
550   }
551 
552   assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
553          && "Filter returns no instruction categories");
554 }
555 
556 // Divides the decoding task into sub tasks and delegates them to the
557 // inferior FilterChooser's.
558 //
559 // A special case arises when there's only one entry in the filtered
560 // instructions.  In order to unambiguously decode the singleton, we need to
561 // match the remaining undecoded encoding bits against the singleton.
recurse()562 void Filter::recurse() {
563   // Starts by inheriting our parent filter chooser's filter bit values.
564   std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
565 
566   if (!VariableInstructions.empty()) {
567     // Conservatively marks each segment position as BIT_UNSET.
568     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex)
569       BitValueArray[StartBit + bitIndex] = BIT_UNSET;
570 
571     // Delegates to an inferior filter chooser for further processing on this
572     // group of instructions whose segment values are variable.
573     FilterChooserMap.insert(
574         std::make_pair(-1U, llvm::make_unique<FilterChooser>(
575                                 Owner->AllInstructions, VariableInstructions,
576                                 Owner->Operands, BitValueArray, *Owner)));
577   }
578 
579   // No need to recurse for a singleton filtered instruction.
580   // See also Filter::emit*().
581   if (getNumFiltered() == 1) {
582     assert(FilterChooserMap.size() == 1);
583     return;
584   }
585 
586   // Otherwise, create sub choosers.
587   for (const auto &Inst : FilteredInstructions) {
588 
589     // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
590     for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) {
591       if (Inst.first & (1ULL << bitIndex))
592         BitValueArray[StartBit + bitIndex] = BIT_TRUE;
593       else
594         BitValueArray[StartBit + bitIndex] = BIT_FALSE;
595     }
596 
597     // Delegates to an inferior filter chooser for further processing on this
598     // category of instructions.
599     FilterChooserMap.insert(std::make_pair(
600         Inst.first, llvm::make_unique<FilterChooser>(
601                                 Owner->AllInstructions, Inst.second,
602                                 Owner->Operands, BitValueArray, *Owner)));
603   }
604 }
605 
resolveTableFixups(DecoderTable & Table,const FixupList & Fixups,uint32_t DestIdx)606 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups,
607                                uint32_t DestIdx) {
608   // Any NumToSkip fixups in the current scope can resolve to the
609   // current location.
610   for (FixupList::const_reverse_iterator I = Fixups.rbegin(),
611                                          E = Fixups.rend();
612        I != E; ++I) {
613     // Calculate the distance from the byte following the fixup entry byte
614     // to the destination. The Target is calculated from after the 16-bit
615     // NumToSkip entry itself, so subtract two  from the displacement here
616     // to account for that.
617     uint32_t FixupIdx = *I;
618     uint32_t Delta = DestIdx - FixupIdx - 3;
619     // Our NumToSkip entries are 24-bits. Make sure our table isn't too
620     // big.
621     assert(Delta < (1u << 24));
622     Table[FixupIdx] = (uint8_t)Delta;
623     Table[FixupIdx + 1] = (uint8_t)(Delta >> 8);
624     Table[FixupIdx + 2] = (uint8_t)(Delta >> 16);
625   }
626 }
627 
628 // Emit table entries to decode instructions given a segment or segments
629 // of bits.
emitTableEntry(DecoderTableInfo & TableInfo) const630 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const {
631   TableInfo.Table.push_back(MCD::OPC_ExtractField);
632   TableInfo.Table.push_back(StartBit);
633   TableInfo.Table.push_back(NumBits);
634 
635   // A new filter entry begins a new scope for fixup resolution.
636   TableInfo.FixupStack.emplace_back();
637 
638   DecoderTable &Table = TableInfo.Table;
639 
640   size_t PrevFilter = 0;
641   bool HasFallthrough = false;
642   for (auto &Filter : FilterChooserMap) {
643     // Field value -1 implies a non-empty set of variable instructions.
644     // See also recurse().
645     if (Filter.first == (unsigned)-1) {
646       HasFallthrough = true;
647 
648       // Each scope should always have at least one filter value to check
649       // for.
650       assert(PrevFilter != 0 && "empty filter set!");
651       FixupList &CurScope = TableInfo.FixupStack.back();
652       // Resolve any NumToSkip fixups in the current scope.
653       resolveTableFixups(Table, CurScope, Table.size());
654       CurScope.clear();
655       PrevFilter = 0;  // Don't re-process the filter's fallthrough.
656     } else {
657       Table.push_back(MCD::OPC_FilterValue);
658       // Encode and emit the value to filter against.
659       uint8_t Buffer[16];
660       unsigned Len = encodeULEB128(Filter.first, Buffer);
661       Table.insert(Table.end(), Buffer, Buffer + Len);
662       // Reserve space for the NumToSkip entry. We'll backpatch the value
663       // later.
664       PrevFilter = Table.size();
665       Table.push_back(0);
666       Table.push_back(0);
667       Table.push_back(0);
668     }
669 
670     // We arrive at a category of instructions with the same segment value.
671     // Now delegate to the sub filter chooser for further decodings.
672     // The case may fallthrough, which happens if the remaining well-known
673     // encoding bits do not match exactly.
674     Filter.second->emitTableEntries(TableInfo);
675 
676     // Now that we've emitted the body of the handler, update the NumToSkip
677     // of the filter itself to be able to skip forward when false. Subtract
678     // two as to account for the width of the NumToSkip field itself.
679     if (PrevFilter) {
680       uint32_t NumToSkip = Table.size() - PrevFilter - 3;
681       assert(NumToSkip < (1u << 24) && "disassembler decoding table too large!");
682       Table[PrevFilter] = (uint8_t)NumToSkip;
683       Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8);
684       Table[PrevFilter + 2] = (uint8_t)(NumToSkip >> 16);
685     }
686   }
687 
688   // Any remaining unresolved fixups bubble up to the parent fixup scope.
689   assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!");
690   FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1;
691   FixupScopeList::iterator Dest = Source - 1;
692   Dest->insert(Dest->end(), Source->begin(), Source->end());
693   TableInfo.FixupStack.pop_back();
694 
695   // If there is no fallthrough, then the final filter should get fixed
696   // up according to the enclosing scope rather than the current position.
697   if (!HasFallthrough)
698     TableInfo.FixupStack.back().push_back(PrevFilter);
699 }
700 
701 // Returns the number of fanout produced by the filter.  More fanout implies
702 // the filter distinguishes more categories of instructions.
usefulness() const703 unsigned Filter::usefulness() const {
704   if (!VariableInstructions.empty())
705     return FilteredInstructions.size();
706   else
707     return FilteredInstructions.size() + 1;
708 }
709 
710 //////////////////////////////////
711 //                              //
712 // Filterchooser Implementation //
713 //                              //
714 //////////////////////////////////
715 
716 // Emit the decoder state machine table.
emitTable(formatted_raw_ostream & OS,DecoderTable & Table,unsigned Indentation,unsigned BitWidth,StringRef Namespace) const717 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS,
718                                        DecoderTable &Table,
719                                        unsigned Indentation,
720                                        unsigned BitWidth,
721                                        StringRef Namespace) const {
722   OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace
723     << BitWidth << "[] = {\n";
724 
725   Indentation += 2;
726 
727   // FIXME: We may be able to use the NumToSkip values to recover
728   // appropriate indentation levels.
729   DecoderTable::const_iterator I = Table.begin();
730   DecoderTable::const_iterator E = Table.end();
731   while (I != E) {
732     assert (I < E && "incomplete decode table entry!");
733 
734     uint64_t Pos = I - Table.begin();
735     OS << "/* " << Pos << " */";
736     OS.PadToColumn(12);
737 
738     switch (*I) {
739     default:
740       PrintFatalError("invalid decode table opcode");
741     case MCD::OPC_ExtractField: {
742       ++I;
743       unsigned Start = *I++;
744       unsigned Len = *I++;
745       OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", "
746         << Len << ",  // Inst{";
747       if (Len > 1)
748         OS << (Start + Len - 1) << "-";
749       OS << Start << "} ...\n";
750       break;
751     }
752     case MCD::OPC_FilterValue: {
753       ++I;
754       OS.indent(Indentation) << "MCD::OPC_FilterValue, ";
755       // The filter value is ULEB128 encoded.
756       while (*I >= 128)
757         OS << (unsigned)*I++ << ", ";
758       OS << (unsigned)*I++ << ", ";
759 
760       // 24-bit numtoskip value.
761       uint8_t Byte = *I++;
762       uint32_t NumToSkip = Byte;
763       OS << (unsigned)Byte << ", ";
764       Byte = *I++;
765       OS << (unsigned)Byte << ", ";
766       NumToSkip |= Byte << 8;
767       Byte = *I++;
768       OS << utostr(Byte) << ", ";
769       NumToSkip |= Byte << 16;
770       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
771       break;
772     }
773     case MCD::OPC_CheckField: {
774       ++I;
775       unsigned Start = *I++;
776       unsigned Len = *I++;
777       OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", "
778         << Len << ", ";// << Val << ", " << NumToSkip << ",\n";
779       // ULEB128 encoded field value.
780       for (; *I >= 128; ++I)
781         OS << (unsigned)*I << ", ";
782       OS << (unsigned)*I++ << ", ";
783       // 24-bit numtoskip value.
784       uint8_t Byte = *I++;
785       uint32_t NumToSkip = Byte;
786       OS << (unsigned)Byte << ", ";
787       Byte = *I++;
788       OS << (unsigned)Byte << ", ";
789       NumToSkip |= Byte << 8;
790       Byte = *I++;
791       OS << utostr(Byte) << ", ";
792       NumToSkip |= Byte << 16;
793       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
794       break;
795     }
796     case MCD::OPC_CheckPredicate: {
797       ++I;
798       OS.indent(Indentation) << "MCD::OPC_CheckPredicate, ";
799       for (; *I >= 128; ++I)
800         OS << (unsigned)*I << ", ";
801       OS << (unsigned)*I++ << ", ";
802 
803       // 24-bit numtoskip value.
804       uint8_t Byte = *I++;
805       uint32_t NumToSkip = Byte;
806       OS << (unsigned)Byte << ", ";
807       Byte = *I++;
808       OS << (unsigned)Byte << ", ";
809       NumToSkip |= Byte << 8;
810       Byte = *I++;
811       OS << utostr(Byte) << ", ";
812       NumToSkip |= Byte << 16;
813       OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
814       break;
815     }
816     case MCD::OPC_Decode:
817     case MCD::OPC_TryDecode: {
818       bool IsTry = *I == MCD::OPC_TryDecode;
819       ++I;
820       // Extract the ULEB128 encoded Opcode to a buffer.
821       uint8_t Buffer[16], *p = Buffer;
822       while ((*p++ = *I++) >= 128)
823         assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer)
824                && "ULEB128 value too large!");
825       // Decode the Opcode value.
826       unsigned Opc = decodeULEB128(Buffer);
827       OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "")
828         << "Decode, ";
829       for (p = Buffer; *p >= 128; ++p)
830         OS << (unsigned)*p << ", ";
831       OS << (unsigned)*p << ", ";
832 
833       // Decoder index.
834       for (; *I >= 128; ++I)
835         OS << (unsigned)*I << ", ";
836       OS << (unsigned)*I++ << ", ";
837 
838       if (!IsTry) {
839         OS << "// Opcode: " << NumberedEncodings[Opc] << "\n";
840         break;
841       }
842 
843       // Fallthrough for OPC_TryDecode.
844 
845       // 24-bit numtoskip value.
846       uint8_t Byte = *I++;
847       uint32_t NumToSkip = Byte;
848       OS << (unsigned)Byte << ", ";
849       Byte = *I++;
850       OS << (unsigned)Byte << ", ";
851       NumToSkip |= Byte << 8;
852       Byte = *I++;
853       OS << utostr(Byte) << ", ";
854       NumToSkip |= Byte << 16;
855 
856       OS << "// Opcode: " << NumberedEncodings[Opc]
857          << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n";
858       break;
859     }
860     case MCD::OPC_SoftFail: {
861       ++I;
862       OS.indent(Indentation) << "MCD::OPC_SoftFail";
863       // Positive mask
864       uint64_t Value = 0;
865       unsigned Shift = 0;
866       do {
867         OS << ", " << (unsigned)*I;
868         Value += (*I & 0x7f) << Shift;
869         Shift += 7;
870       } while (*I++ >= 128);
871       if (Value > 127) {
872         OS << " /* 0x";
873         OS.write_hex(Value);
874         OS << " */";
875       }
876       // Negative mask
877       Value = 0;
878       Shift = 0;
879       do {
880         OS << ", " << (unsigned)*I;
881         Value += (*I & 0x7f) << Shift;
882         Shift += 7;
883       } while (*I++ >= 128);
884       if (Value > 127) {
885         OS << " /* 0x";
886         OS.write_hex(Value);
887         OS << " */";
888       }
889       OS << ",\n";
890       break;
891     }
892     case MCD::OPC_Fail: {
893       ++I;
894       OS.indent(Indentation) << "MCD::OPC_Fail,\n";
895       break;
896     }
897     }
898   }
899   OS.indent(Indentation) << "0\n";
900 
901   Indentation -= 2;
902 
903   OS.indent(Indentation) << "};\n\n";
904 }
905 
906 void FixedLenDecoderEmitter::
emitPredicateFunction(formatted_raw_ostream & OS,PredicateSet & Predicates,unsigned Indentation) const907 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates,
908                       unsigned Indentation) const {
909   // The predicate function is just a big switch statement based on the
910   // input predicate index.
911   OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, "
912     << "const FeatureBitset& Bits) {\n";
913   Indentation += 2;
914   if (!Predicates.empty()) {
915     OS.indent(Indentation) << "switch (Idx) {\n";
916     OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
917     unsigned Index = 0;
918     for (const auto &Predicate : Predicates) {
919       OS.indent(Indentation) << "case " << Index++ << ":\n";
920       OS.indent(Indentation+2) << "return (" << Predicate << ");\n";
921     }
922     OS.indent(Indentation) << "}\n";
923   } else {
924     // No case statement to emit
925     OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n";
926   }
927   Indentation -= 2;
928   OS.indent(Indentation) << "}\n\n";
929 }
930 
931 void FixedLenDecoderEmitter::
emitDecoderFunction(formatted_raw_ostream & OS,DecoderSet & Decoders,unsigned Indentation) const932 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders,
933                     unsigned Indentation) const {
934   // The decoder function is just a big switch statement based on the
935   // input decoder index.
936   OS.indent(Indentation) << "template<typename InsnType>\n";
937   OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S,"
938     << " unsigned Idx, InsnType insn, MCInst &MI,\n";
939   OS.indent(Indentation) << "                                   uint64_t "
940     << "Address, const void *Decoder, bool &DecodeComplete) {\n";
941   Indentation += 2;
942   OS.indent(Indentation) << "DecodeComplete = true;\n";
943   OS.indent(Indentation) << "InsnType tmp;\n";
944   OS.indent(Indentation) << "switch (Idx) {\n";
945   OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n";
946   unsigned Index = 0;
947   for (const auto &Decoder : Decoders) {
948     OS.indent(Indentation) << "case " << Index++ << ":\n";
949     OS << Decoder;
950     OS.indent(Indentation+2) << "return S;\n";
951   }
952   OS.indent(Indentation) << "}\n";
953   Indentation -= 2;
954   OS.indent(Indentation) << "}\n\n";
955 }
956 
957 // Populates the field of the insn given the start position and the number of
958 // consecutive bits to scan for.
959 //
960 // Returns false if and on the first uninitialized bit value encountered.
961 // Returns true, otherwise.
fieldFromInsn(uint64_t & Field,insn_t & Insn,unsigned StartBit,unsigned NumBits) const962 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
963                                   unsigned StartBit, unsigned NumBits) const {
964   Field = 0;
965 
966   for (unsigned i = 0; i < NumBits; ++i) {
967     if (Insn[StartBit + i] == BIT_UNSET)
968       return false;
969 
970     if (Insn[StartBit + i] == BIT_TRUE)
971       Field = Field | (1ULL << i);
972   }
973 
974   return true;
975 }
976 
977 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
978 /// filter array as a series of chars.
dumpFilterArray(raw_ostream & o,const std::vector<bit_value_t> & filter) const979 void FilterChooser::dumpFilterArray(raw_ostream &o,
980                                  const std::vector<bit_value_t> &filter) const {
981   for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
982     switch (filter[bitIndex - 1]) {
983     case BIT_UNFILTERED:
984       o << ".";
985       break;
986     case BIT_UNSET:
987       o << "_";
988       break;
989     case BIT_TRUE:
990       o << "1";
991       break;
992     case BIT_FALSE:
993       o << "0";
994       break;
995     }
996   }
997 }
998 
999 /// dumpStack - dumpStack traverses the filter chooser chain and calls
1000 /// dumpFilterArray on each filter chooser up to the top level one.
dumpStack(raw_ostream & o,const char * prefix) const1001 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const {
1002   const FilterChooser *current = this;
1003 
1004   while (current) {
1005     o << prefix;
1006     dumpFilterArray(o, current->FilterBitValues);
1007     o << '\n';
1008     current = current->Parent;
1009   }
1010 }
1011 
1012 // Calculates the island(s) needed to decode the instruction.
1013 // This returns a list of undecoded bits of an instructions, for example,
1014 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
1015 // decoded bits in order to verify that the instruction matches the Opcode.
getIslands(std::vector<unsigned> & StartBits,std::vector<unsigned> & EndBits,std::vector<uint64_t> & FieldVals,const insn_t & Insn) const1016 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
1017                                    std::vector<unsigned> &EndBits,
1018                                    std::vector<uint64_t> &FieldVals,
1019                                    const insn_t &Insn) const {
1020   unsigned Num, BitNo;
1021   Num = BitNo = 0;
1022 
1023   uint64_t FieldVal = 0;
1024 
1025   // 0: Init
1026   // 1: Water (the bit value does not affect decoding)
1027   // 2: Island (well-known bit value needed for decoding)
1028   int State = 0;
1029   int Val = -1;
1030 
1031   for (unsigned i = 0; i < BitWidth; ++i) {
1032     Val = Value(Insn[i]);
1033     bool Filtered = PositionFiltered(i);
1034     switch (State) {
1035     default: llvm_unreachable("Unreachable code!");
1036     case 0:
1037     case 1:
1038       if (Filtered || Val == -1)
1039         State = 1; // Still in Water
1040       else {
1041         State = 2; // Into the Island
1042         BitNo = 0;
1043         StartBits.push_back(i);
1044         FieldVal = Val;
1045       }
1046       break;
1047     case 2:
1048       if (Filtered || Val == -1) {
1049         State = 1; // Into the Water
1050         EndBits.push_back(i - 1);
1051         FieldVals.push_back(FieldVal);
1052         ++Num;
1053       } else {
1054         State = 2; // Still in Island
1055         ++BitNo;
1056         FieldVal = FieldVal | Val << BitNo;
1057       }
1058       break;
1059     }
1060   }
1061   // If we are still in Island after the loop, do some housekeeping.
1062   if (State == 2) {
1063     EndBits.push_back(BitWidth - 1);
1064     FieldVals.push_back(FieldVal);
1065     ++Num;
1066   }
1067 
1068   assert(StartBits.size() == Num && EndBits.size() == Num &&
1069          FieldVals.size() == Num);
1070   return Num;
1071 }
1072 
emitBinaryParser(raw_ostream & o,unsigned & Indentation,const OperandInfo & OpInfo,bool & OpHasCompleteDecoder) const1073 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
1074                                      const OperandInfo &OpInfo,
1075                                      bool &OpHasCompleteDecoder) const {
1076   const std::string &Decoder = OpInfo.Decoder;
1077 
1078   if (OpInfo.numFields() != 1)
1079     o.indent(Indentation) << "tmp = 0;\n";
1080 
1081   for (const EncodingField &EF : OpInfo) {
1082     o.indent(Indentation) << "tmp ";
1083     if (OpInfo.numFields() != 1) o << '|';
1084     o << "= fieldFromInstruction"
1085       << "(insn, " << EF.Base << ", " << EF.Width << ')';
1086     if (OpInfo.numFields() != 1 || EF.Offset != 0)
1087       o << " << " << EF.Offset;
1088     o << ";\n";
1089   }
1090 
1091   if (Decoder != "") {
1092     OpHasCompleteDecoder = OpInfo.HasCompleteDecoder;
1093     o.indent(Indentation) << Emitter->GuardPrefix << Decoder
1094       << "(MI, tmp, Address, Decoder)"
1095       << Emitter->GuardPostfix
1096       << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ")
1097       << "return MCDisassembler::Fail; }\n";
1098   } else {
1099     OpHasCompleteDecoder = true;
1100     o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n";
1101   }
1102 }
1103 
emitDecoder(raw_ostream & OS,unsigned Indentation,unsigned Opc,bool & HasCompleteDecoder) const1104 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation,
1105                                 unsigned Opc, bool &HasCompleteDecoder) const {
1106   HasCompleteDecoder = true;
1107 
1108   for (const auto &Op : Operands.find(Opc)->second) {
1109     // If a custom instruction decoder was specified, use that.
1110     if (Op.numFields() == 0 && !Op.Decoder.empty()) {
1111       HasCompleteDecoder = Op.HasCompleteDecoder;
1112       OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder
1113         << "(MI, insn, Address, Decoder)"
1114         << Emitter->GuardPostfix
1115         << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ")
1116         << "return MCDisassembler::Fail; }\n";
1117       break;
1118     }
1119 
1120     bool OpHasCompleteDecoder;
1121     emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder);
1122     if (!OpHasCompleteDecoder)
1123       HasCompleteDecoder = false;
1124   }
1125 }
1126 
getDecoderIndex(DecoderSet & Decoders,unsigned Opc,bool & HasCompleteDecoder) const1127 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders,
1128                                         unsigned Opc,
1129                                         bool &HasCompleteDecoder) const {
1130   // Build up the predicate string.
1131   SmallString<256> Decoder;
1132   // FIXME: emitDecoder() function can take a buffer directly rather than
1133   // a stream.
1134   raw_svector_ostream S(Decoder);
1135   unsigned I = 4;
1136   emitDecoder(S, I, Opc, HasCompleteDecoder);
1137 
1138   // Using the full decoder string as the key value here is a bit
1139   // heavyweight, but is effective. If the string comparisons become a
1140   // performance concern, we can implement a mangling of the predicate
1141   // data easily enough with a map back to the actual string. That's
1142   // overkill for now, though.
1143 
1144   // Make sure the predicate is in the table.
1145   Decoders.insert(CachedHashString(Decoder));
1146   // Now figure out the index for when we write out the table.
1147   DecoderSet::const_iterator P = find(Decoders, Decoder.str());
1148   return (unsigned)(P - Decoders.begin());
1149 }
1150 
emitSinglePredicateMatch(raw_ostream & o,StringRef str,const std::string & PredicateNamespace)1151 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
1152                                      const std::string &PredicateNamespace) {
1153   if (str[0] == '!')
1154     o << "!Bits[" << PredicateNamespace << "::"
1155       << str.slice(1,str.size()) << "]";
1156   else
1157     o << "Bits[" << PredicateNamespace << "::" << str << "]";
1158 }
1159 
emitPredicateMatch(raw_ostream & o,unsigned & Indentation,unsigned Opc) const1160 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
1161                                        unsigned Opc) const {
1162   ListInit *Predicates =
1163       AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1164   bool IsFirstEmission = true;
1165   for (unsigned i = 0; i < Predicates->size(); ++i) {
1166     Record *Pred = Predicates->getElementAsRecord(i);
1167     if (!Pred->getValue("AssemblerMatcherPredicate"))
1168       continue;
1169 
1170     StringRef P = Pred->getValueAsString("AssemblerCondString");
1171 
1172     if (P.empty())
1173       continue;
1174 
1175     if (!IsFirstEmission)
1176       o << " && ";
1177 
1178     std::pair<StringRef, StringRef> pairs = P.split(',');
1179     while (!pairs.second.empty()) {
1180       emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1181       o << " && ";
1182       pairs = pairs.second.split(',');
1183     }
1184     emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
1185     IsFirstEmission = false;
1186   }
1187   return !Predicates->empty();
1188 }
1189 
doesOpcodeNeedPredicate(unsigned Opc) const1190 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const {
1191   ListInit *Predicates =
1192       AllInstructions[Opc].EncodingDef->getValueAsListInit("Predicates");
1193   for (unsigned i = 0; i < Predicates->size(); ++i) {
1194     Record *Pred = Predicates->getElementAsRecord(i);
1195     if (!Pred->getValue("AssemblerMatcherPredicate"))
1196       continue;
1197 
1198     StringRef P = Pred->getValueAsString("AssemblerCondString");
1199 
1200     if (P.empty())
1201       continue;
1202 
1203     return true;
1204   }
1205   return false;
1206 }
1207 
getPredicateIndex(DecoderTableInfo & TableInfo,StringRef Predicate) const1208 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo,
1209                                           StringRef Predicate) const {
1210   // Using the full predicate string as the key value here is a bit
1211   // heavyweight, but is effective. If the string comparisons become a
1212   // performance concern, we can implement a mangling of the predicate
1213   // data easily enough with a map back to the actual string. That's
1214   // overkill for now, though.
1215 
1216   // Make sure the predicate is in the table.
1217   TableInfo.Predicates.insert(CachedHashString(Predicate));
1218   // Now figure out the index for when we write out the table.
1219   PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate);
1220   return (unsigned)(P - TableInfo.Predicates.begin());
1221 }
1222 
emitPredicateTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1223 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo,
1224                                             unsigned Opc) const {
1225   if (!doesOpcodeNeedPredicate(Opc))
1226     return;
1227 
1228   // Build up the predicate string.
1229   SmallString<256> Predicate;
1230   // FIXME: emitPredicateMatch() functions can take a buffer directly rather
1231   // than a stream.
1232   raw_svector_ostream PS(Predicate);
1233   unsigned I = 0;
1234   emitPredicateMatch(PS, I, Opc);
1235 
1236   // Figure out the index into the predicate table for the predicate just
1237   // computed.
1238   unsigned PIdx = getPredicateIndex(TableInfo, PS.str());
1239   SmallString<16> PBytes;
1240   raw_svector_ostream S(PBytes);
1241   encodeULEB128(PIdx, S);
1242 
1243   TableInfo.Table.push_back(MCD::OPC_CheckPredicate);
1244   // Predicate index
1245   for (unsigned i = 0, e = PBytes.size(); i != e; ++i)
1246     TableInfo.Table.push_back(PBytes[i]);
1247   // Push location for NumToSkip backpatching.
1248   TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1249   TableInfo.Table.push_back(0);
1250   TableInfo.Table.push_back(0);
1251   TableInfo.Table.push_back(0);
1252 }
1253 
emitSoftFailTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1254 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo,
1255                                            unsigned Opc) const {
1256   BitsInit *SFBits =
1257       AllInstructions[Opc].EncodingDef->getValueAsBitsInit("SoftFail");
1258   if (!SFBits) return;
1259   BitsInit *InstBits =
1260       AllInstructions[Opc].EncodingDef->getValueAsBitsInit("Inst");
1261 
1262   APInt PositiveMask(BitWidth, 0ULL);
1263   APInt NegativeMask(BitWidth, 0ULL);
1264   for (unsigned i = 0; i < BitWidth; ++i) {
1265     bit_value_t B = bitFromBits(*SFBits, i);
1266     bit_value_t IB = bitFromBits(*InstBits, i);
1267 
1268     if (B != BIT_TRUE) continue;
1269 
1270     switch (IB) {
1271     case BIT_FALSE:
1272       // The bit is meant to be false, so emit a check to see if it is true.
1273       PositiveMask.setBit(i);
1274       break;
1275     case BIT_TRUE:
1276       // The bit is meant to be true, so emit a check to see if it is false.
1277       NegativeMask.setBit(i);
1278       break;
1279     default:
1280       // The bit is not set; this must be an error!
1281       errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in "
1282              << AllInstructions[Opc] << " is set but Inst{" << i
1283              << "} is unset!\n"
1284              << "  - You can only mark a bit as SoftFail if it is fully defined"
1285              << " (1/0 - not '?') in Inst\n";
1286       return;
1287     }
1288   }
1289 
1290   bool NeedPositiveMask = PositiveMask.getBoolValue();
1291   bool NeedNegativeMask = NegativeMask.getBoolValue();
1292 
1293   if (!NeedPositiveMask && !NeedNegativeMask)
1294     return;
1295 
1296   TableInfo.Table.push_back(MCD::OPC_SoftFail);
1297 
1298   SmallString<16> MaskBytes;
1299   raw_svector_ostream S(MaskBytes);
1300   if (NeedPositiveMask) {
1301     encodeULEB128(PositiveMask.getZExtValue(), S);
1302     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1303       TableInfo.Table.push_back(MaskBytes[i]);
1304   } else
1305     TableInfo.Table.push_back(0);
1306   if (NeedNegativeMask) {
1307     MaskBytes.clear();
1308     encodeULEB128(NegativeMask.getZExtValue(), S);
1309     for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i)
1310       TableInfo.Table.push_back(MaskBytes[i]);
1311   } else
1312     TableInfo.Table.push_back(0);
1313 }
1314 
1315 // Emits table entries to decode the singleton.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,unsigned Opc) const1316 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1317                                             unsigned Opc) const {
1318   std::vector<unsigned> StartBits;
1319   std::vector<unsigned> EndBits;
1320   std::vector<uint64_t> FieldVals;
1321   insn_t Insn;
1322   insnWithID(Insn, Opc);
1323 
1324   // Look for islands of undecoded bits of the singleton.
1325   getIslands(StartBits, EndBits, FieldVals, Insn);
1326 
1327   unsigned Size = StartBits.size();
1328 
1329   // Emit the predicate table entry if one is needed.
1330   emitPredicateTableEntry(TableInfo, Opc);
1331 
1332   // Check any additional encoding fields needed.
1333   for (unsigned I = Size; I != 0; --I) {
1334     unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1335     TableInfo.Table.push_back(MCD::OPC_CheckField);
1336     TableInfo.Table.push_back(StartBits[I-1]);
1337     TableInfo.Table.push_back(NumBits);
1338     uint8_t Buffer[16], *p;
1339     encodeULEB128(FieldVals[I-1], Buffer);
1340     for (p = Buffer; *p >= 128 ; ++p)
1341       TableInfo.Table.push_back(*p);
1342     TableInfo.Table.push_back(*p);
1343     // Push location for NumToSkip backpatching.
1344     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1345     // The fixup is always 24-bits, so go ahead and allocate the space
1346     // in the table so all our relative position calculations work OK even
1347     // before we fully resolve the real value here.
1348     TableInfo.Table.push_back(0);
1349     TableInfo.Table.push_back(0);
1350     TableInfo.Table.push_back(0);
1351   }
1352 
1353   // Check for soft failure of the match.
1354   emitSoftFailTableEntry(TableInfo, Opc);
1355 
1356   bool HasCompleteDecoder;
1357   unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc, HasCompleteDecoder);
1358 
1359   // Produce OPC_Decode or OPC_TryDecode opcode based on the information
1360   // whether the instruction decoder is complete or not. If it is complete
1361   // then it handles all possible values of remaining variable/unfiltered bits
1362   // and for any value can determine if the bitpattern is a valid instruction
1363   // or not. This means OPC_Decode will be the final step in the decoding
1364   // process. If it is not complete, then the Fail return code from the
1365   // decoder method indicates that additional processing should be done to see
1366   // if there is any other instruction that also matches the bitpattern and
1367   // can decode it.
1368   TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode :
1369       MCD::OPC_TryDecode);
1370   uint8_t Buffer[16], *p;
1371   encodeULEB128(Opc, Buffer);
1372   for (p = Buffer; *p >= 128 ; ++p)
1373     TableInfo.Table.push_back(*p);
1374   TableInfo.Table.push_back(*p);
1375 
1376   SmallString<16> Bytes;
1377   raw_svector_ostream S(Bytes);
1378   encodeULEB128(DIdx, S);
1379 
1380   // Decoder index
1381   for (unsigned i = 0, e = Bytes.size(); i != e; ++i)
1382     TableInfo.Table.push_back(Bytes[i]);
1383 
1384   if (!HasCompleteDecoder) {
1385     // Push location for NumToSkip backpatching.
1386     TableInfo.FixupStack.back().push_back(TableInfo.Table.size());
1387     // Allocate the space for the fixup.
1388     TableInfo.Table.push_back(0);
1389     TableInfo.Table.push_back(0);
1390     TableInfo.Table.push_back(0);
1391   }
1392 }
1393 
1394 // Emits table entries to decode the singleton, and then to decode the rest.
emitSingletonTableEntry(DecoderTableInfo & TableInfo,const Filter & Best) const1395 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo,
1396                                             const Filter &Best) const {
1397   unsigned Opc = Best.getSingletonOpc();
1398 
1399   // complex singletons need predicate checks from the first singleton
1400   // to refer forward to the variable filterchooser that follows.
1401   TableInfo.FixupStack.emplace_back();
1402 
1403   emitSingletonTableEntry(TableInfo, Opc);
1404 
1405   resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
1406                      TableInfo.Table.size());
1407   TableInfo.FixupStack.pop_back();
1408 
1409   Best.getVariableFC().emitTableEntries(TableInfo);
1410 }
1411 
1412 // Assign a single filter and run with it.  Top level API client can initialize
1413 // with a single filter to start the filtering process.
runSingleFilter(unsigned startBit,unsigned numBit,bool mixed)1414 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit,
1415                                     bool mixed) {
1416   Filters.clear();
1417   Filters.emplace_back(*this, startBit, numBit, true);
1418   BestIndex = 0; // Sole Filter instance to choose from.
1419   bestFilter().recurse();
1420 }
1421 
1422 // reportRegion is a helper function for filterProcessor to mark a region as
1423 // eligible for use as a filter region.
reportRegion(bitAttr_t RA,unsigned StartBit,unsigned BitIndex,bool AllowMixed)1424 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1425                                  unsigned BitIndex, bool AllowMixed) {
1426   if (RA == ATTR_MIXED && AllowMixed)
1427     Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true);
1428   else if (RA == ATTR_ALL_SET && !AllowMixed)
1429     Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false);
1430 }
1431 
1432 // FilterProcessor scans the well-known encoding bits of the instructions and
1433 // builds up a list of candidate filters.  It chooses the best filter and
1434 // recursively descends down the decoding tree.
filterProcessor(bool AllowMixed,bool Greedy)1435 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1436   Filters.clear();
1437   BestIndex = -1;
1438   unsigned numInstructions = Opcodes.size();
1439 
1440   assert(numInstructions && "Filter created with no instructions");
1441 
1442   // No further filtering is necessary.
1443   if (numInstructions == 1)
1444     return true;
1445 
1446   // Heuristics.  See also doFilter()'s "Heuristics" comment when num of
1447   // instructions is 3.
1448   if (AllowMixed && !Greedy) {
1449     assert(numInstructions == 3);
1450 
1451     for (unsigned i = 0; i < Opcodes.size(); ++i) {
1452       std::vector<unsigned> StartBits;
1453       std::vector<unsigned> EndBits;
1454       std::vector<uint64_t> FieldVals;
1455       insn_t Insn;
1456 
1457       insnWithID(Insn, Opcodes[i]);
1458 
1459       // Look for islands of undecoded bits of any instruction.
1460       if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1461         // Found an instruction with island(s).  Now just assign a filter.
1462         runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true);
1463         return true;
1464       }
1465     }
1466   }
1467 
1468   unsigned BitIndex;
1469 
1470   // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1471   // The automaton consumes the corresponding bit from each
1472   // instruction.
1473   //
1474   //   Input symbols: 0, 1, and _ (unset).
1475   //   States:        NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1476   //   Initial state: NONE.
1477   //
1478   // (NONE) ------- [01] -> (ALL_SET)
1479   // (NONE) ------- _ ----> (ALL_UNSET)
1480   // (ALL_SET) ---- [01] -> (ALL_SET)
1481   // (ALL_SET) ---- _ ----> (MIXED)
1482   // (ALL_UNSET) -- [01] -> (MIXED)
1483   // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1484   // (MIXED) ------ . ----> (MIXED)
1485   // (FILTERED)---- . ----> (FILTERED)
1486 
1487   std::vector<bitAttr_t> bitAttrs;
1488 
1489   // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1490   // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1491   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
1492     if (FilterBitValues[BitIndex] == BIT_TRUE ||
1493         FilterBitValues[BitIndex] == BIT_FALSE)
1494       bitAttrs.push_back(ATTR_FILTERED);
1495     else
1496       bitAttrs.push_back(ATTR_NONE);
1497 
1498   for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1499     insn_t insn;
1500 
1501     insnWithID(insn, Opcodes[InsnIndex]);
1502 
1503     for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1504       switch (bitAttrs[BitIndex]) {
1505       case ATTR_NONE:
1506         if (insn[BitIndex] == BIT_UNSET)
1507           bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1508         else
1509           bitAttrs[BitIndex] = ATTR_ALL_SET;
1510         break;
1511       case ATTR_ALL_SET:
1512         if (insn[BitIndex] == BIT_UNSET)
1513           bitAttrs[BitIndex] = ATTR_MIXED;
1514         break;
1515       case ATTR_ALL_UNSET:
1516         if (insn[BitIndex] != BIT_UNSET)
1517           bitAttrs[BitIndex] = ATTR_MIXED;
1518         break;
1519       case ATTR_MIXED:
1520       case ATTR_FILTERED:
1521         break;
1522       }
1523     }
1524   }
1525 
1526   // The regionAttr automaton consumes the bitAttrs automatons' state,
1527   // lowest-to-highest.
1528   //
1529   //   Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1530   //   States:        NONE, ALL_SET, MIXED
1531   //   Initial state: NONE
1532   //
1533   // (NONE) ----- F --> (NONE)
1534   // (NONE) ----- S --> (ALL_SET)     ; and set region start
1535   // (NONE) ----- U --> (NONE)
1536   // (NONE) ----- M --> (MIXED)       ; and set region start
1537   // (ALL_SET) -- F --> (NONE)        ; and report an ALL_SET region
1538   // (ALL_SET) -- S --> (ALL_SET)
1539   // (ALL_SET) -- U --> (NONE)        ; and report an ALL_SET region
1540   // (ALL_SET) -- M --> (MIXED)       ; and report an ALL_SET region
1541   // (MIXED) ---- F --> (NONE)        ; and report a MIXED region
1542   // (MIXED) ---- S --> (ALL_SET)     ; and report a MIXED region
1543   // (MIXED) ---- U --> (NONE)        ; and report a MIXED region
1544   // (MIXED) ---- M --> (MIXED)
1545 
1546   bitAttr_t RA = ATTR_NONE;
1547   unsigned StartBit = 0;
1548 
1549   for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
1550     bitAttr_t bitAttr = bitAttrs[BitIndex];
1551 
1552     assert(bitAttr != ATTR_NONE && "Bit without attributes");
1553 
1554     switch (RA) {
1555     case ATTR_NONE:
1556       switch (bitAttr) {
1557       case ATTR_FILTERED:
1558         break;
1559       case ATTR_ALL_SET:
1560         StartBit = BitIndex;
1561         RA = ATTR_ALL_SET;
1562         break;
1563       case ATTR_ALL_UNSET:
1564         break;
1565       case ATTR_MIXED:
1566         StartBit = BitIndex;
1567         RA = ATTR_MIXED;
1568         break;
1569       default:
1570         llvm_unreachable("Unexpected bitAttr!");
1571       }
1572       break;
1573     case ATTR_ALL_SET:
1574       switch (bitAttr) {
1575       case ATTR_FILTERED:
1576         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1577         RA = ATTR_NONE;
1578         break;
1579       case ATTR_ALL_SET:
1580         break;
1581       case ATTR_ALL_UNSET:
1582         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1583         RA = ATTR_NONE;
1584         break;
1585       case ATTR_MIXED:
1586         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1587         StartBit = BitIndex;
1588         RA = ATTR_MIXED;
1589         break;
1590       default:
1591         llvm_unreachable("Unexpected bitAttr!");
1592       }
1593       break;
1594     case ATTR_MIXED:
1595       switch (bitAttr) {
1596       case ATTR_FILTERED:
1597         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1598         StartBit = BitIndex;
1599         RA = ATTR_NONE;
1600         break;
1601       case ATTR_ALL_SET:
1602         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1603         StartBit = BitIndex;
1604         RA = ATTR_ALL_SET;
1605         break;
1606       case ATTR_ALL_UNSET:
1607         reportRegion(RA, StartBit, BitIndex, AllowMixed);
1608         RA = ATTR_NONE;
1609         break;
1610       case ATTR_MIXED:
1611         break;
1612       default:
1613         llvm_unreachable("Unexpected bitAttr!");
1614       }
1615       break;
1616     case ATTR_ALL_UNSET:
1617       llvm_unreachable("regionAttr state machine has no ATTR_UNSET state");
1618     case ATTR_FILTERED:
1619       llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state");
1620     }
1621   }
1622 
1623   // At the end, if we're still in ALL_SET or MIXED states, report a region
1624   switch (RA) {
1625   case ATTR_NONE:
1626     break;
1627   case ATTR_FILTERED:
1628     break;
1629   case ATTR_ALL_SET:
1630     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1631     break;
1632   case ATTR_ALL_UNSET:
1633     break;
1634   case ATTR_MIXED:
1635     reportRegion(RA, StartBit, BitIndex, AllowMixed);
1636     break;
1637   }
1638 
1639   // We have finished with the filter processings.  Now it's time to choose
1640   // the best performing filter.
1641   BestIndex = 0;
1642   bool AllUseless = true;
1643   unsigned BestScore = 0;
1644 
1645   for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1646     unsigned Usefulness = Filters[i].usefulness();
1647 
1648     if (Usefulness)
1649       AllUseless = false;
1650 
1651     if (Usefulness > BestScore) {
1652       BestIndex = i;
1653       BestScore = Usefulness;
1654     }
1655   }
1656 
1657   if (!AllUseless)
1658     bestFilter().recurse();
1659 
1660   return !AllUseless;
1661 } // end of FilterChooser::filterProcessor(bool)
1662 
1663 // Decides on the best configuration of filter(s) to use in order to decode
1664 // the instructions.  A conflict of instructions may occur, in which case we
1665 // dump the conflict set to the standard error.
doFilter()1666 void FilterChooser::doFilter() {
1667   unsigned Num = Opcodes.size();
1668   assert(Num && "FilterChooser created with no instructions");
1669 
1670   // Try regions of consecutive known bit values first.
1671   if (filterProcessor(false))
1672     return;
1673 
1674   // Then regions of mixed bits (both known and unitialized bit values allowed).
1675   if (filterProcessor(true))
1676     return;
1677 
1678   // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1679   // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1680   // well-known encoding pattern.  In such case, we backtrack and scan for the
1681   // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1682   if (Num == 3 && filterProcessor(true, false))
1683     return;
1684 
1685   // If we come to here, the instruction decoding has failed.
1686   // Set the BestIndex to -1 to indicate so.
1687   BestIndex = -1;
1688 }
1689 
1690 // emitTableEntries - Emit state machine entries to decode our share of
1691 // instructions.
emitTableEntries(DecoderTableInfo & TableInfo) const1692 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const {
1693   if (Opcodes.size() == 1) {
1694     // There is only one instruction in the set, which is great!
1695     // Call emitSingletonDecoder() to see whether there are any remaining
1696     // encodings bits.
1697     emitSingletonTableEntry(TableInfo, Opcodes[0]);
1698     return;
1699   }
1700 
1701   // Choose the best filter to do the decodings!
1702   if (BestIndex != -1) {
1703     const Filter &Best = Filters[BestIndex];
1704     if (Best.getNumFiltered() == 1)
1705       emitSingletonTableEntry(TableInfo, Best);
1706     else
1707       Best.emitTableEntry(TableInfo);
1708     return;
1709   }
1710 
1711   // We don't know how to decode these instructions!  Dump the
1712   // conflict set and bail.
1713 
1714   // Print out useful conflict information for postmortem analysis.
1715   errs() << "Decoding Conflict:\n";
1716 
1717   dumpStack(errs(), "\t\t");
1718 
1719   for (unsigned i = 0; i < Opcodes.size(); ++i) {
1720     errs() << '\t' << AllInstructions[Opcodes[i]] << " ";
1721     dumpBits(errs(),
1722              getBitsField(*AllInstructions[Opcodes[i]].EncodingDef, "Inst"));
1723     errs() << '\n';
1724   }
1725 }
1726 
findOperandDecoderMethod(TypedInit * TI)1727 static std::string findOperandDecoderMethod(TypedInit *TI) {
1728   std::string Decoder;
1729 
1730   Record *Record = cast<DefInit>(TI)->getDef();
1731 
1732   RecordVal *DecoderString = Record->getValue("DecoderMethod");
1733   StringInit *String = DecoderString ?
1734     dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1735   if (String) {
1736     Decoder = String->getValue();
1737     if (!Decoder.empty())
1738       return Decoder;
1739   }
1740 
1741   if (Record->isSubClassOf("RegisterOperand"))
1742     Record = Record->getValueAsDef("RegClass");
1743 
1744   if (Record->isSubClassOf("RegisterClass")) {
1745     Decoder = "Decode" + Record->getName().str() + "RegisterClass";
1746   } else if (Record->isSubClassOf("PointerLikeRegClass")) {
1747     Decoder = "DecodePointerLikeRegClass" +
1748       utostr(Record->getValueAsInt("RegClassKind"));
1749   }
1750 
1751   return Decoder;
1752 }
1753 
populateInstruction(CodeGenTarget & Target,const CodeGenInstruction & CGI,unsigned Opc,std::map<unsigned,std::vector<OperandInfo>> & Operands)1754 static bool populateInstruction(CodeGenTarget &Target,
1755                        const CodeGenInstruction &CGI, unsigned Opc,
1756                        std::map<unsigned, std::vector<OperandInfo>> &Operands){
1757   const Record &Def = *CGI.TheDef;
1758   // If all the bit positions are not specified; do not decode this instruction.
1759   // We are bound to fail!  For proper disassembly, the well-known encoding bits
1760   // of the instruction must be fully specified.
1761 
1762   BitsInit &Bits = getBitsField(Def, "Inst");
1763   if (Bits.allInComplete()) return false;
1764 
1765   std::vector<OperandInfo> InsnOperands;
1766 
1767   // If the instruction has specified a custom decoding hook, use that instead
1768   // of trying to auto-generate the decoder.
1769   StringRef InstDecoder = Def.getValueAsString("DecoderMethod");
1770   if (InstDecoder != "") {
1771     bool HasCompleteInstDecoder = Def.getValueAsBit("hasCompleteDecoder");
1772     InsnOperands.push_back(OperandInfo(InstDecoder, HasCompleteInstDecoder));
1773     Operands[Opc] = InsnOperands;
1774     return true;
1775   }
1776 
1777   // Generate a description of the operand of the instruction that we know
1778   // how to decode automatically.
1779   // FIXME: We'll need to have a way to manually override this as needed.
1780 
1781   // Gather the outputs/inputs of the instruction, so we can find their
1782   // positions in the encoding.  This assumes for now that they appear in the
1783   // MCInst in the order that they're listed.
1784   std::vector<std::pair<Init*, StringRef>> InOutOperands;
1785   DagInit *Out  = Def.getValueAsDag("OutOperandList");
1786   DagInit *In  = Def.getValueAsDag("InOperandList");
1787   for (unsigned i = 0; i < Out->getNumArgs(); ++i)
1788     InOutOperands.push_back(std::make_pair(Out->getArg(i),
1789                                            Out->getArgNameStr(i)));
1790   for (unsigned i = 0; i < In->getNumArgs(); ++i)
1791     InOutOperands.push_back(std::make_pair(In->getArg(i),
1792                                            In->getArgNameStr(i)));
1793 
1794   // Search for tied operands, so that we can correctly instantiate
1795   // operands that are not explicitly represented in the encoding.
1796   std::map<std::string, std::string> TiedNames;
1797   for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
1798     int tiedTo = CGI.Operands[i].getTiedRegister();
1799     if (tiedTo != -1) {
1800       std::pair<unsigned, unsigned> SO =
1801         CGI.Operands.getSubOperandNumber(tiedTo);
1802       TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second;
1803       TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second;
1804     }
1805   }
1806 
1807   std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands;
1808   std::set<std::string> NumberedInsnOperandsNoTie;
1809   if (Target.getInstructionSet()->
1810         getValueAsBit("decodePositionallyEncodedOperands")) {
1811     const std::vector<RecordVal> &Vals = Def.getValues();
1812     unsigned NumberedOp = 0;
1813 
1814     std::set<unsigned> NamedOpIndices;
1815     if (Target.getInstructionSet()->
1816          getValueAsBit("noNamedPositionallyEncodedOperands"))
1817       // Collect the set of operand indices that might correspond to named
1818       // operand, and skip these when assigning operands based on position.
1819       for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1820         unsigned OpIdx;
1821         if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1822           continue;
1823 
1824         NamedOpIndices.insert(OpIdx);
1825       }
1826 
1827     for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1828       // Ignore fixed fields in the record, we're looking for values like:
1829       //    bits<5> RST = { ?, ?, ?, ?, ? };
1830       if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
1831         continue;
1832 
1833       // Determine if Vals[i] actually contributes to the Inst encoding.
1834       unsigned bi = 0;
1835       for (; bi < Bits.getNumBits(); ++bi) {
1836         VarInit *Var = nullptr;
1837         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1838         if (BI)
1839           Var = dyn_cast<VarInit>(BI->getBitVar());
1840         else
1841           Var = dyn_cast<VarInit>(Bits.getBit(bi));
1842 
1843         if (Var && Var->getName() == Vals[i].getName())
1844           break;
1845       }
1846 
1847       if (bi == Bits.getNumBits())
1848         continue;
1849 
1850       // Skip variables that correspond to explicitly-named operands.
1851       unsigned OpIdx;
1852       if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
1853         continue;
1854 
1855       // Get the bit range for this operand:
1856       unsigned bitStart = bi++, bitWidth = 1;
1857       for (; bi < Bits.getNumBits(); ++bi) {
1858         VarInit *Var = nullptr;
1859         VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
1860         if (BI)
1861           Var = dyn_cast<VarInit>(BI->getBitVar());
1862         else
1863           Var = dyn_cast<VarInit>(Bits.getBit(bi));
1864 
1865         if (!Var)
1866           break;
1867 
1868         if (Var->getName() != Vals[i].getName())
1869           break;
1870 
1871         ++bitWidth;
1872       }
1873 
1874       unsigned NumberOps = CGI.Operands.size();
1875       while (NumberedOp < NumberOps &&
1876              (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
1877               (!NamedOpIndices.empty() && NamedOpIndices.count(
1878                 CGI.Operands.getSubOperandNumber(NumberedOp).first))))
1879         ++NumberedOp;
1880 
1881       OpIdx = NumberedOp++;
1882 
1883       // OpIdx now holds the ordered operand number of Vals[i].
1884       std::pair<unsigned, unsigned> SO =
1885         CGI.Operands.getSubOperandNumber(OpIdx);
1886       const std::string &Name = CGI.Operands[SO.first].Name;
1887 
1888       LLVM_DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName()
1889                         << ": " << Name << "(" << SO.first << ", " << SO.second
1890                         << ") => " << Vals[i].getName() << "\n");
1891 
1892       std::string Decoder;
1893       Record *TypeRecord = CGI.Operands[SO.first].Rec;
1894 
1895       RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
1896       StringInit *String = DecoderString ?
1897         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1898       if (String && String->getValue() != "")
1899         Decoder = String->getValue();
1900 
1901       if (Decoder == "" &&
1902           CGI.Operands[SO.first].MIOperandInfo &&
1903           CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) {
1904         Init *Arg = CGI.Operands[SO.first].MIOperandInfo->
1905                       getArg(SO.second);
1906         if (DefInit *DI = cast<DefInit>(Arg))
1907           TypeRecord = DI->getDef();
1908       }
1909 
1910       bool isReg = false;
1911       if (TypeRecord->isSubClassOf("RegisterOperand"))
1912         TypeRecord = TypeRecord->getValueAsDef("RegClass");
1913       if (TypeRecord->isSubClassOf("RegisterClass")) {
1914         Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass";
1915         isReg = true;
1916       } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) {
1917         Decoder = "DecodePointerLikeRegClass" +
1918                   utostr(TypeRecord->getValueAsInt("RegClassKind"));
1919         isReg = true;
1920       }
1921 
1922       DecoderString = TypeRecord->getValue("DecoderMethod");
1923       String = DecoderString ?
1924         dyn_cast<StringInit>(DecoderString->getValue()) : nullptr;
1925       if (!isReg && String && String->getValue() != "")
1926         Decoder = String->getValue();
1927 
1928       RecordVal *HasCompleteDecoderVal =
1929         TypeRecord->getValue("hasCompleteDecoder");
1930       BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
1931         dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
1932       bool HasCompleteDecoder = HasCompleteDecoderBit ?
1933         HasCompleteDecoderBit->getValue() : true;
1934 
1935       OperandInfo OpInfo(Decoder, HasCompleteDecoder);
1936       OpInfo.addField(bitStart, bitWidth, 0);
1937 
1938       NumberedInsnOperands[Name].push_back(OpInfo);
1939 
1940       // FIXME: For complex operands with custom decoders we can't handle tied
1941       // sub-operands automatically. Skip those here and assume that this is
1942       // fixed up elsewhere.
1943       if (CGI.Operands[SO.first].MIOperandInfo &&
1944           CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 &&
1945           String && String->getValue() != "")
1946         NumberedInsnOperandsNoTie.insert(Name);
1947     }
1948   }
1949 
1950   // For each operand, see if we can figure out where it is encoded.
1951   for (const auto &Op : InOutOperands) {
1952     if (!NumberedInsnOperands[Op.second].empty()) {
1953       InsnOperands.insert(InsnOperands.end(),
1954                           NumberedInsnOperands[Op.second].begin(),
1955                           NumberedInsnOperands[Op.second].end());
1956       continue;
1957     }
1958     if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) {
1959       if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) {
1960         // Figure out to which (sub)operand we're tied.
1961         unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]);
1962         int tiedTo = CGI.Operands[i].getTiedRegister();
1963         if (tiedTo == -1) {
1964           i = CGI.Operands.getOperandNamed(Op.second);
1965           tiedTo = CGI.Operands[i].getTiedRegister();
1966         }
1967 
1968         if (tiedTo != -1) {
1969           std::pair<unsigned, unsigned> SO =
1970             CGI.Operands.getSubOperandNumber(tiedTo);
1971 
1972           InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]]
1973                                    [SO.second]);
1974         }
1975       }
1976       continue;
1977     }
1978 
1979     TypedInit *TI = cast<TypedInit>(Op.first);
1980 
1981     // At this point, we can locate the decoder field, but we need to know how
1982     // to interpret it.  As a first step, require the target to provide
1983     // callbacks for decoding register classes.
1984     std::string Decoder = findOperandDecoderMethod(TI);
1985     Record *TypeRecord = cast<DefInit>(TI)->getDef();
1986 
1987     RecordVal *HasCompleteDecoderVal =
1988       TypeRecord->getValue("hasCompleteDecoder");
1989     BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ?
1990       dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr;
1991     bool HasCompleteDecoder = HasCompleteDecoderBit ?
1992       HasCompleteDecoderBit->getValue() : true;
1993 
1994     OperandInfo OpInfo(Decoder, HasCompleteDecoder);
1995     unsigned Base = ~0U;
1996     unsigned Width = 0;
1997     unsigned Offset = 0;
1998 
1999     for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
2000       VarInit *Var = nullptr;
2001       VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi));
2002       if (BI)
2003         Var = dyn_cast<VarInit>(BI->getBitVar());
2004       else
2005         Var = dyn_cast<VarInit>(Bits.getBit(bi));
2006 
2007       if (!Var) {
2008         if (Base != ~0U) {
2009           OpInfo.addField(Base, Width, Offset);
2010           Base = ~0U;
2011           Width = 0;
2012           Offset = 0;
2013         }
2014         continue;
2015       }
2016 
2017       if (Var->getName() != Op.second &&
2018           Var->getName() != TiedNames[Op.second]) {
2019         if (Base != ~0U) {
2020           OpInfo.addField(Base, Width, Offset);
2021           Base = ~0U;
2022           Width = 0;
2023           Offset = 0;
2024         }
2025         continue;
2026       }
2027 
2028       if (Base == ~0U) {
2029         Base = bi;
2030         Width = 1;
2031         Offset = BI ? BI->getBitNum() : 0;
2032       } else if (BI && BI->getBitNum() != Offset + Width) {
2033         OpInfo.addField(Base, Width, Offset);
2034         Base = bi;
2035         Width = 1;
2036         Offset = BI->getBitNum();
2037       } else {
2038         ++Width;
2039       }
2040     }
2041 
2042     if (Base != ~0U)
2043       OpInfo.addField(Base, Width, Offset);
2044 
2045     if (OpInfo.numFields() > 0)
2046       InsnOperands.push_back(OpInfo);
2047   }
2048 
2049   Operands[Opc] = InsnOperands;
2050 
2051 #if 0
2052   LLVM_DEBUG({
2053       // Dumps the instruction encoding bits.
2054       dumpBits(errs(), Bits);
2055 
2056       errs() << '\n';
2057 
2058       // Dumps the list of operand info.
2059       for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
2060         const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
2061         const std::string &OperandName = Info.Name;
2062         const Record &OperandDef = *Info.Rec;
2063 
2064         errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
2065       }
2066     });
2067 #endif
2068 
2069   return true;
2070 }
2071 
2072 // emitFieldFromInstruction - Emit the templated helper function
2073 // fieldFromInstruction().
2074 // On Windows we make sure that this function is not inlined when
2075 // using the VS compiler. It has a bug which causes the function
2076 // to be optimized out in some circustances. See llvm.org/pr38292
emitFieldFromInstruction(formatted_raw_ostream & OS)2077 static void emitFieldFromInstruction(formatted_raw_ostream &OS) {
2078   OS << "// Helper functions for extracting fields from encoded instructions.\n"
2079      << "// InsnType must either be integral or an APInt-like object that "
2080         "must:\n"
2081      << "// * Have a static const max_size_in_bits equal to the number of bits "
2082         "in the\n"
2083      << "//   encoding.\n"
2084      << "// * be default-constructible and copy-constructible\n"
2085      << "// * be constructible from a uint64_t\n"
2086      << "// * be constructible from an APInt (this can be private)\n"
2087      << "// * Support getBitsSet(loBit, hiBit)\n"
2088      << "// * be convertible to uint64_t\n"
2089      << "// * Support the ~, &, ==, !=, and |= operators with other objects of "
2090         "the same type\n"
2091      << "// * Support shift (<<, >>) with signed and unsigned integers on the "
2092         "RHS\n"
2093      << "// * Support put (<<) to raw_ostream&\n"
2094      << "template<typename InsnType>\n"
2095      << "#if defined(_MSC_VER) && !defined(__clang__)\n"
2096      << "__declspec(noinline)\n"
2097      << "#endif\n"
2098      << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2099         "startBit,\n"
2100      << "                                     unsigned numBits, "
2101         "std::true_type) {\n"
2102      << "  assert(startBit + numBits <= 64 && \"Cannot support >64-bit "
2103         "extractions!\");\n"
2104      << "  assert(startBit + numBits <= (sizeof(InsnType) * 8) &&\n"
2105      << "         \"Instruction field out of bounds!\");\n"
2106      << "  InsnType fieldMask;\n"
2107      << "  if (numBits == sizeof(InsnType) * 8)\n"
2108      << "    fieldMask = (InsnType)(-1LL);\n"
2109      << "  else\n"
2110      << "    fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n"
2111      << "  return (insn & fieldMask) >> startBit;\n"
2112      << "}\n"
2113      << "\n"
2114      << "template<typename InsnType>\n"
2115      << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2116         "startBit,\n"
2117      << "                                     unsigned numBits, "
2118         "std::false_type) {\n"
2119      << "  assert(startBit + numBits <= InsnType::max_size_in_bits && "
2120         "\"Instruction field out of bounds!\");\n"
2121      << "  InsnType fieldMask = InsnType::getBitsSet(0, numBits);\n"
2122      << "  return (insn >> startBit) & fieldMask;\n"
2123      << "}\n"
2124      << "\n"
2125      << "template<typename InsnType>\n"
2126      << "static InsnType fieldFromInstruction(InsnType insn, unsigned "
2127         "startBit,\n"
2128      << "                                     unsigned numBits) {\n"
2129      << "  return fieldFromInstruction(insn, startBit, numBits, "
2130         "std::is_integral<InsnType>());\n"
2131      << "}\n\n";
2132 }
2133 
2134 // emitDecodeInstruction - Emit the templated helper function
2135 // decodeInstruction().
emitDecodeInstruction(formatted_raw_ostream & OS)2136 static void emitDecodeInstruction(formatted_raw_ostream &OS) {
2137   OS << "template<typename InsnType>\n"
2138      << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], "
2139         "MCInst &MI,\n"
2140      << "                                      InsnType insn, uint64_t "
2141         "Address,\n"
2142      << "                                      const void *DisAsm,\n"
2143      << "                                      const MCSubtargetInfo &STI) {\n"
2144      << "  const FeatureBitset& Bits = STI.getFeatureBits();\n"
2145      << "\n"
2146      << "  const uint8_t *Ptr = DecodeTable;\n"
2147      << "  uint32_t CurFieldValue = 0;\n"
2148      << "  DecodeStatus S = MCDisassembler::Success;\n"
2149      << "  while (true) {\n"
2150      << "    ptrdiff_t Loc = Ptr - DecodeTable;\n"
2151      << "    switch (*Ptr) {\n"
2152      << "    default:\n"
2153      << "      errs() << Loc << \": Unexpected decode table opcode!\\n\";\n"
2154      << "      return MCDisassembler::Fail;\n"
2155      << "    case MCD::OPC_ExtractField: {\n"
2156      << "      unsigned Start = *++Ptr;\n"
2157      << "      unsigned Len = *++Ptr;\n"
2158      << "      ++Ptr;\n"
2159      << "      CurFieldValue = fieldFromInstruction(insn, Start, Len);\n"
2160      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << "
2161         "\", \"\n"
2162      << "                   << Len << \"): \" << CurFieldValue << \"\\n\");\n"
2163      << "      break;\n"
2164      << "    }\n"
2165      << "    case MCD::OPC_FilterValue: {\n"
2166      << "      // Decode the field value.\n"
2167      << "      unsigned Len;\n"
2168      << "      InsnType Val = decodeULEB128(++Ptr, &Len);\n"
2169      << "      Ptr += Len;\n"
2170      << "      // NumToSkip is a plain 24-bit integer.\n"
2171      << "      unsigned NumToSkip = *Ptr++;\n"
2172      << "      NumToSkip |= (*Ptr++) << 8;\n"
2173      << "      NumToSkip |= (*Ptr++) << 16;\n"
2174      << "\n"
2175      << "      // Perform the filter operation.\n"
2176      << "      if (Val != CurFieldValue)\n"
2177      << "        Ptr += NumToSkip;\n"
2178      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << "
2179         "\", \" << NumToSkip\n"
2180      << "                   << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" "
2181         ": \"PASS:\")\n"
2182      << "                   << \" continuing at \" << (Ptr - DecodeTable) << "
2183         "\"\\n\");\n"
2184      << "\n"
2185      << "      break;\n"
2186      << "    }\n"
2187      << "    case MCD::OPC_CheckField: {\n"
2188      << "      unsigned Start = *++Ptr;\n"
2189      << "      unsigned Len = *++Ptr;\n"
2190      << "      InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n"
2191      << "      // Decode the field value.\n"
2192      << "      uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n"
2193      << "      Ptr += Len;\n"
2194      << "      // NumToSkip is a plain 24-bit integer.\n"
2195      << "      unsigned NumToSkip = *Ptr++;\n"
2196      << "      NumToSkip |= (*Ptr++) << 8;\n"
2197      << "      NumToSkip |= (*Ptr++) << 16;\n"
2198      << "\n"
2199      << "      // If the actual and expected values don't match, skip.\n"
2200      << "      if (ExpectedValue != FieldValue)\n"
2201      << "        Ptr += NumToSkip;\n"
2202      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << "
2203         "\", \"\n"
2204      << "                   << Len << \", \" << ExpectedValue << \", \" << "
2205         "NumToSkip\n"
2206      << "                   << \"): FieldValue = \" << FieldValue << \", "
2207         "ExpectedValue = \"\n"
2208      << "                   << ExpectedValue << \": \"\n"
2209      << "                   << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : "
2210         "\"FAIL\\n\"));\n"
2211      << "      break;\n"
2212      << "    }\n"
2213      << "    case MCD::OPC_CheckPredicate: {\n"
2214      << "      unsigned Len;\n"
2215      << "      // Decode the Predicate Index value.\n"
2216      << "      unsigned PIdx = decodeULEB128(++Ptr, &Len);\n"
2217      << "      Ptr += Len;\n"
2218      << "      // NumToSkip is a plain 24-bit integer.\n"
2219      << "      unsigned NumToSkip = *Ptr++;\n"
2220      << "      NumToSkip |= (*Ptr++) << 8;\n"
2221      << "      NumToSkip |= (*Ptr++) << 16;\n"
2222      << "      // Check the predicate.\n"
2223      << "      bool Pred;\n"
2224      << "      if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n"
2225      << "        Ptr += NumToSkip;\n"
2226      << "      (void)Pred;\n"
2227      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx "
2228         "<< \"): \"\n"
2229      << "            << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n"
2230      << "\n"
2231      << "      break;\n"
2232      << "    }\n"
2233      << "    case MCD::OPC_Decode: {\n"
2234      << "      unsigned Len;\n"
2235      << "      // Decode the Opcode value.\n"
2236      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2237      << "      Ptr += Len;\n"
2238      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2239      << "      Ptr += Len;\n"
2240      << "\n"
2241      << "      MI.clear();\n"
2242      << "      MI.setOpcode(Opc);\n"
2243      << "      bool DecodeComplete;\n"
2244      << "      S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, "
2245         "DecodeComplete);\n"
2246      << "      assert(DecodeComplete);\n"
2247      << "\n"
2248      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n"
2249      << "                   << \", using decoder \" << DecodeIdx << \": \"\n"
2250      << "                   << (S != MCDisassembler::Fail ? \"PASS\" : "
2251         "\"FAIL\") << \"\\n\");\n"
2252      << "      return S;\n"
2253      << "    }\n"
2254      << "    case MCD::OPC_TryDecode: {\n"
2255      << "      unsigned Len;\n"
2256      << "      // Decode the Opcode value.\n"
2257      << "      unsigned Opc = decodeULEB128(++Ptr, &Len);\n"
2258      << "      Ptr += Len;\n"
2259      << "      unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n"
2260      << "      Ptr += Len;\n"
2261      << "      // NumToSkip is a plain 24-bit integer.\n"
2262      << "      unsigned NumToSkip = *Ptr++;\n"
2263      << "      NumToSkip |= (*Ptr++) << 8;\n"
2264      << "      NumToSkip |= (*Ptr++) << 16;\n"
2265      << "\n"
2266      << "      // Perform the decode operation.\n"
2267      << "      MCInst TmpMI;\n"
2268      << "      TmpMI.setOpcode(Opc);\n"
2269      << "      bool DecodeComplete;\n"
2270      << "      S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, "
2271         "DecodeComplete);\n"
2272      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << "
2273         "Opc\n"
2274      << "                   << \", using decoder \" << DecodeIdx << \": \");\n"
2275      << "\n"
2276      << "      if (DecodeComplete) {\n"
2277      << "        // Decoding complete.\n"
2278      << "        LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : "
2279         "\"FAIL\") << \"\\n\");\n"
2280      << "        MI = TmpMI;\n"
2281      << "        return S;\n"
2282      << "      } else {\n"
2283      << "        assert(S == MCDisassembler::Fail);\n"
2284      << "        // If the decoding was incomplete, skip.\n"
2285      << "        Ptr += NumToSkip;\n"
2286      << "        LLVM_DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - "
2287         "DecodeTable) << \"\\n\");\n"
2288      << "        // Reset decode status. This also drops a SoftFail status "
2289         "that could be\n"
2290      << "        // set before the decode attempt.\n"
2291      << "        S = MCDisassembler::Success;\n"
2292      << "      }\n"
2293      << "      break;\n"
2294      << "    }\n"
2295      << "    case MCD::OPC_SoftFail: {\n"
2296      << "      // Decode the mask values.\n"
2297      << "      unsigned Len;\n"
2298      << "      InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n"
2299      << "      Ptr += Len;\n"
2300      << "      InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n"
2301      << "      Ptr += Len;\n"
2302      << "      bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n"
2303      << "      if (Fail)\n"
2304      << "        S = MCDisassembler::SoftFail;\n"
2305      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? "
2306         "\"FAIL\\n\":\"PASS\\n\"));\n"
2307      << "      break;\n"
2308      << "    }\n"
2309      << "    case MCD::OPC_Fail: {\n"
2310      << "      LLVM_DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n"
2311      << "      return MCDisassembler::Fail;\n"
2312      << "    }\n"
2313      << "    }\n"
2314      << "  }\n"
2315      << "  llvm_unreachable(\"bogosity detected in disassembler state "
2316         "machine!\");\n"
2317      << "}\n\n";
2318 }
2319 
2320 // Emits disassembler code for instruction decoding.
run(raw_ostream & o)2321 void FixedLenDecoderEmitter::run(raw_ostream &o) {
2322   formatted_raw_ostream OS(o);
2323   OS << "#include \"llvm/MC/MCInst.h\"\n";
2324   OS << "#include \"llvm/Support/Debug.h\"\n";
2325   OS << "#include \"llvm/Support/DataTypes.h\"\n";
2326   OS << "#include \"llvm/Support/LEB128.h\"\n";
2327   OS << "#include \"llvm/Support/raw_ostream.h\"\n";
2328   OS << "#include <assert.h>\n";
2329   OS << '\n';
2330   OS << "namespace llvm {\n\n";
2331 
2332   emitFieldFromInstruction(OS);
2333 
2334   Target.reverseBitsForLittleEndianEncoding();
2335 
2336   // Parameterize the decoders based on namespace and instruction width.
2337   const auto &NumberedInstructions = Target.getInstructionsByEnumValue();
2338   NumberedEncodings.reserve(NumberedInstructions.size());
2339   for (const auto &NumberedInstruction : NumberedInstructions)
2340     NumberedEncodings.emplace_back(NumberedInstruction->TheDef, NumberedInstruction);
2341 
2342   std::map<std::pair<std::string, unsigned>,
2343            std::vector<unsigned>> OpcMap;
2344   std::map<unsigned, std::vector<OperandInfo>> Operands;
2345 
2346   for (unsigned i = 0; i < NumberedEncodings.size(); ++i) {
2347     const CodeGenInstruction *Inst = NumberedEncodings[i].Inst;
2348     const Record *Def = Inst->TheDef;
2349     unsigned Size = Def->getValueAsInt("Size");
2350     if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
2351         Def->getValueAsBit("isPseudo") ||
2352         Def->getValueAsBit("isAsmParserOnly") ||
2353         Def->getValueAsBit("isCodeGenOnly"))
2354       continue;
2355 
2356     StringRef DecoderNamespace = Def->getValueAsString("DecoderNamespace");
2357 
2358     if (Size) {
2359       if (populateInstruction(Target, *Inst, i, Operands)) {
2360         OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
2361       }
2362     }
2363   }
2364 
2365   DecoderTableInfo TableInfo;
2366   for (const auto &Opc : OpcMap) {
2367     // Emit the decoder for this namespace+width combination.
2368     ArrayRef<EncodingAndInst> NumberedEncodingsRef(NumberedEncodings.data(),
2369                                                    NumberedEncodings.size());
2370     FilterChooser FC(NumberedEncodingsRef, Opc.second, Operands,
2371                      8 * Opc.first.second, this);
2372 
2373     // The decode table is cleared for each top level decoder function. The
2374     // predicates and decoders themselves, however, are shared across all
2375     // decoders to give more opportunities for uniqueing.
2376     TableInfo.Table.clear();
2377     TableInfo.FixupStack.clear();
2378     TableInfo.Table.reserve(16384);
2379     TableInfo.FixupStack.emplace_back();
2380     FC.emitTableEntries(TableInfo);
2381     // Any NumToSkip fixups in the top level scope can resolve to the
2382     // OPC_Fail at the end of the table.
2383     assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!");
2384     // Resolve any NumToSkip fixups in the current scope.
2385     resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(),
2386                        TableInfo.Table.size());
2387     TableInfo.FixupStack.clear();
2388 
2389     TableInfo.Table.push_back(MCD::OPC_Fail);
2390 
2391     // Print the table to the output stream.
2392     emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first);
2393     OS.flush();
2394   }
2395 
2396   // Emit the predicate function.
2397   emitPredicateFunction(OS, TableInfo.Predicates, 0);
2398 
2399   // Emit the decoder function.
2400   emitDecoderFunction(OS, TableInfo.Decoders, 0);
2401 
2402   // Emit the main entry point for the decoder, decodeInstruction().
2403   emitDecodeInstruction(OS);
2404 
2405   OS << "\n} // End llvm namespace\n";
2406 }
2407 
2408 namespace llvm {
2409 
EmitFixedLenDecoder(RecordKeeper & RK,raw_ostream & OS,const std::string & PredicateNamespace,const std::string & GPrefix,const std::string & GPostfix,const std::string & ROK,const std::string & RFail,const std::string & L)2410 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS,
2411                          const std::string &PredicateNamespace,
2412                          const std::string &GPrefix,
2413                          const std::string &GPostfix, const std::string &ROK,
2414                          const std::string &RFail, const std::string &L) {
2415   FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix,
2416                          ROK, RFail, L).run(OS);
2417 }
2418 
2419 } // end namespace llvm
2420