1 //===-- FIROps.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "flang/Optimizer/Dialect/FIROps.h"
14 #include "flang/Optimizer/Dialect/FIRAttr.h"
15 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
16 #include "flang/Optimizer/Dialect/FIRType.h"
17 #include "flang/Optimizer/Support/FIRContext.h"
18 #include "flang/Optimizer/Support/KindMapping.h"
19 #include "flang/Optimizer/Support/Utils.h"
20 #include "mlir/Dialect/CommonFolders.h"
21 #include "mlir/Dialect/Func/IR/FuncOps.h"
22 #include "mlir/IR/BuiltinAttributes.h"
23 #include "mlir/IR/BuiltinOps.h"
24 #include "mlir/IR/Diagnostics.h"
25 #include "mlir/IR/Matchers.h"
26 #include "mlir/IR/OpDefinition.h"
27 #include "mlir/IR/PatternMatch.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/ADT/TypeSwitch.h"
32
33 namespace {
34 #include "flang/Optimizer/Dialect/CanonicalizationPatterns.inc"
35 } // namespace
36
37 /// Return true if a sequence type is of some incomplete size or a record type
38 /// is malformed or contains an incomplete sequence type. An incomplete sequence
39 /// type is one with more unknown extents in the type than have been provided
40 /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by
41 /// definition.
verifyInType(mlir::Type inType,llvm::SmallVectorImpl<llvm::StringRef> & visited,unsigned dynamicExtents=0)42 static bool verifyInType(mlir::Type inType,
43 llvm::SmallVectorImpl<llvm::StringRef> &visited,
44 unsigned dynamicExtents = 0) {
45 if (auto st = inType.dyn_cast<fir::SequenceType>()) {
46 auto shape = st.getShape();
47 if (shape.size() == 0)
48 return true;
49 for (std::size_t i = 0, end = shape.size(); i < end; ++i) {
50 if (shape[i] != fir::SequenceType::getUnknownExtent())
51 continue;
52 if (dynamicExtents-- == 0)
53 return true;
54 }
55 } else if (auto rt = inType.dyn_cast<fir::RecordType>()) {
56 // don't recurse if we're already visiting this one
57 if (llvm::is_contained(visited, rt.getName()))
58 return false;
59 // keep track of record types currently being visited
60 visited.push_back(rt.getName());
61 for (auto &field : rt.getTypeList())
62 if (verifyInType(field.second, visited))
63 return true;
64 visited.pop_back();
65 }
66 return false;
67 }
68
verifyTypeParamCount(mlir::Type inType,unsigned numParams)69 static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) {
70 auto ty = fir::unwrapSequenceType(inType);
71 if (numParams > 0) {
72 if (auto recTy = ty.dyn_cast<fir::RecordType>())
73 return numParams != recTy.getNumLenParams();
74 if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
75 return !(numParams == 1 && chrTy.hasDynamicLen());
76 return true;
77 }
78 if (auto chrTy = ty.dyn_cast<fir::CharacterType>())
79 return !chrTy.hasConstantLen();
80 return false;
81 }
82
83 /// Parser shared by Alloca and Allocmem
84 ///
85 /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type
86 /// ( `(` $typeparams `)` )? ( `,` $shape )?
87 /// attr-dict-without-keyword
88 template <typename FN>
parseAllocatableOp(FN wrapResultType,mlir::OpAsmParser & parser,mlir::OperationState & result)89 static mlir::ParseResult parseAllocatableOp(FN wrapResultType,
90 mlir::OpAsmParser &parser,
91 mlir::OperationState &result) {
92 mlir::Type intype;
93 if (parser.parseType(intype))
94 return mlir::failure();
95 auto &builder = parser.getBuilder();
96 result.addAttribute("in_type", mlir::TypeAttr::get(intype));
97 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
98 llvm::SmallVector<mlir::Type> typeVec;
99 bool hasOperands = false;
100 std::int32_t typeparamsSize = 0;
101 if (!parser.parseOptionalLParen()) {
102 // parse the LEN params of the derived type. (<params> : <types>)
103 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
104 parser.parseColonTypeList(typeVec) || parser.parseRParen())
105 return mlir::failure();
106 typeparamsSize = operands.size();
107 hasOperands = true;
108 }
109 std::int32_t shapeSize = 0;
110 if (!parser.parseOptionalComma()) {
111 // parse size to scale by, vector of n dimensions of type index
112 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None))
113 return mlir::failure();
114 shapeSize = operands.size() - typeparamsSize;
115 auto idxTy = builder.getIndexType();
116 for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i)
117 typeVec.push_back(idxTy);
118 hasOperands = true;
119 }
120 if (hasOperands &&
121 parser.resolveOperands(operands, typeVec, parser.getNameLoc(),
122 result.operands))
123 return mlir::failure();
124 mlir::Type restype = wrapResultType(intype);
125 if (!restype) {
126 parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype;
127 return mlir::failure();
128 }
129 result.addAttribute("operand_segment_sizes",
130 builder.getI32VectorAttr({typeparamsSize, shapeSize}));
131 if (parser.parseOptionalAttrDict(result.attributes) ||
132 parser.addTypeToList(restype, result.types))
133 return mlir::failure();
134 return mlir::success();
135 }
136
137 template <typename OP>
printAllocatableOp(mlir::OpAsmPrinter & p,OP & op)138 static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) {
139 p << ' ' << op.getInType();
140 if (!op.getTypeparams().empty()) {
141 p << '(' << op.getTypeparams() << " : " << op.getTypeparams().getTypes()
142 << ')';
143 }
144 // print the shape of the allocation (if any); all must be index type
145 for (auto sh : op.getShape()) {
146 p << ", ";
147 p.printOperand(sh);
148 }
149 p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"});
150 }
151
152 //===----------------------------------------------------------------------===//
153 // AllocaOp
154 //===----------------------------------------------------------------------===//
155
156 /// Create a legal memory reference as return type
wrapAllocaResultType(mlir::Type intype)157 static mlir::Type wrapAllocaResultType(mlir::Type intype) {
158 // FIR semantics: memory references to memory references are disallowed
159 if (intype.isa<fir::ReferenceType>())
160 return {};
161 return fir::ReferenceType::get(intype);
162 }
163
getAllocatedType()164 mlir::Type fir::AllocaOp::getAllocatedType() {
165 return getType().cast<fir::ReferenceType>().getEleTy();
166 }
167
getRefTy(mlir::Type ty)168 mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) {
169 return fir::ReferenceType::get(ty);
170 }
171
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,llvm::StringRef uniqName,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)172 void fir::AllocaOp::build(mlir::OpBuilder &builder,
173 mlir::OperationState &result, mlir::Type inType,
174 llvm::StringRef uniqName, mlir::ValueRange typeparams,
175 mlir::ValueRange shape,
176 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
177 auto nameAttr = builder.getStringAttr(uniqName);
178 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
179 /*pinned=*/false, typeparams, shape);
180 result.addAttributes(attributes);
181 }
182
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,llvm::StringRef uniqName,bool pinned,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)183 void fir::AllocaOp::build(mlir::OpBuilder &builder,
184 mlir::OperationState &result, mlir::Type inType,
185 llvm::StringRef uniqName, bool pinned,
186 mlir::ValueRange typeparams, mlir::ValueRange shape,
187 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
188 auto nameAttr = builder.getStringAttr(uniqName);
189 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {},
190 pinned, typeparams, shape);
191 result.addAttributes(attributes);
192 }
193
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,llvm::StringRef uniqName,llvm::StringRef bindcName,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)194 void fir::AllocaOp::build(mlir::OpBuilder &builder,
195 mlir::OperationState &result, mlir::Type inType,
196 llvm::StringRef uniqName, llvm::StringRef bindcName,
197 mlir::ValueRange typeparams, mlir::ValueRange shape,
198 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
199 auto nameAttr =
200 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
201 auto bindcAttr =
202 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
203 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
204 bindcAttr, /*pinned=*/false, typeparams, shape);
205 result.addAttributes(attributes);
206 }
207
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,llvm::StringRef uniqName,llvm::StringRef bindcName,bool pinned,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)208 void fir::AllocaOp::build(mlir::OpBuilder &builder,
209 mlir::OperationState &result, mlir::Type inType,
210 llvm::StringRef uniqName, llvm::StringRef bindcName,
211 bool pinned, mlir::ValueRange typeparams,
212 mlir::ValueRange shape,
213 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
214 auto nameAttr =
215 uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName);
216 auto bindcAttr =
217 bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName);
218 build(builder, result, wrapAllocaResultType(inType), inType, nameAttr,
219 bindcAttr, pinned, typeparams, shape);
220 result.addAttributes(attributes);
221 }
222
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)223 void fir::AllocaOp::build(mlir::OpBuilder &builder,
224 mlir::OperationState &result, mlir::Type inType,
225 mlir::ValueRange typeparams, mlir::ValueRange shape,
226 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
227 build(builder, result, wrapAllocaResultType(inType), inType, {}, {},
228 /*pinned=*/false, typeparams, shape);
229 result.addAttributes(attributes);
230 }
231
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,bool pinned,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)232 void fir::AllocaOp::build(mlir::OpBuilder &builder,
233 mlir::OperationState &result, mlir::Type inType,
234 bool pinned, mlir::ValueRange typeparams,
235 mlir::ValueRange shape,
236 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
237 build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned,
238 typeparams, shape);
239 result.addAttributes(attributes);
240 }
241
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)242 mlir::ParseResult fir::AllocaOp::parse(mlir::OpAsmParser &parser,
243 mlir::OperationState &result) {
244 return parseAllocatableOp(wrapAllocaResultType, parser, result);
245 }
246
print(mlir::OpAsmPrinter & p)247 void fir::AllocaOp::print(mlir::OpAsmPrinter &p) {
248 printAllocatableOp(p, *this);
249 }
250
verify()251 mlir::LogicalResult fir::AllocaOp::verify() {
252 llvm::SmallVector<llvm::StringRef> visited;
253 if (verifyInType(getInType(), visited, numShapeOperands()))
254 return emitOpError("invalid type for allocation");
255 if (verifyTypeParamCount(getInType(), numLenParams()))
256 return emitOpError("LEN params do not correspond to type");
257 mlir::Type outType = getType();
258 if (!outType.isa<fir::ReferenceType>())
259 return emitOpError("must be a !fir.ref type");
260 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
261 return emitOpError("cannot allocate !fir.box of unknown rank or type");
262 return mlir::success();
263 }
264
265 //===----------------------------------------------------------------------===//
266 // AllocMemOp
267 //===----------------------------------------------------------------------===//
268
269 /// Create a legal heap reference as return type
wrapAllocMemResultType(mlir::Type intype)270 static mlir::Type wrapAllocMemResultType(mlir::Type intype) {
271 // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER
272 // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well
273 // FIR semantics: one may not allocate a memory reference value
274 if (intype.isa<fir::ReferenceType, fir::HeapType, fir::PointerType,
275 mlir::FunctionType>())
276 return {};
277 return fir::HeapType::get(intype);
278 }
279
getAllocatedType()280 mlir::Type fir::AllocMemOp::getAllocatedType() {
281 return getType().cast<fir::HeapType>().getEleTy();
282 }
283
getRefTy(mlir::Type ty)284 mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) {
285 return fir::HeapType::get(ty);
286 }
287
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,llvm::StringRef uniqName,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)288 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
289 mlir::OperationState &result, mlir::Type inType,
290 llvm::StringRef uniqName,
291 mlir::ValueRange typeparams, mlir::ValueRange shape,
292 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
293 auto nameAttr = builder.getStringAttr(uniqName);
294 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {},
295 typeparams, shape);
296 result.addAttributes(attributes);
297 }
298
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,llvm::StringRef uniqName,llvm::StringRef bindcName,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)299 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
300 mlir::OperationState &result, mlir::Type inType,
301 llvm::StringRef uniqName, llvm::StringRef bindcName,
302 mlir::ValueRange typeparams, mlir::ValueRange shape,
303 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
304 auto nameAttr = builder.getStringAttr(uniqName);
305 auto bindcAttr = builder.getStringAttr(bindcName);
306 build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr,
307 bindcAttr, typeparams, shape);
308 result.addAttributes(attributes);
309 }
310
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Type inType,mlir::ValueRange typeparams,mlir::ValueRange shape,llvm::ArrayRef<mlir::NamedAttribute> attributes)311 void fir::AllocMemOp::build(mlir::OpBuilder &builder,
312 mlir::OperationState &result, mlir::Type inType,
313 mlir::ValueRange typeparams, mlir::ValueRange shape,
314 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
315 build(builder, result, wrapAllocMemResultType(inType), inType, {}, {},
316 typeparams, shape);
317 result.addAttributes(attributes);
318 }
319
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)320 mlir::ParseResult fir::AllocMemOp::parse(mlir::OpAsmParser &parser,
321 mlir::OperationState &result) {
322 return parseAllocatableOp(wrapAllocMemResultType, parser, result);
323 }
324
print(mlir::OpAsmPrinter & p)325 void fir::AllocMemOp::print(mlir::OpAsmPrinter &p) {
326 printAllocatableOp(p, *this);
327 }
328
verify()329 mlir::LogicalResult fir::AllocMemOp::verify() {
330 llvm::SmallVector<llvm::StringRef> visited;
331 if (verifyInType(getInType(), visited, numShapeOperands()))
332 return emitOpError("invalid type for allocation");
333 if (verifyTypeParamCount(getInType(), numLenParams()))
334 return emitOpError("LEN params do not correspond to type");
335 mlir::Type outType = getType();
336 if (!outType.dyn_cast<fir::HeapType>())
337 return emitOpError("must be a !fir.heap type");
338 if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType)))
339 return emitOpError("cannot allocate !fir.box of unknown rank or type");
340 return mlir::success();
341 }
342
343 //===----------------------------------------------------------------------===//
344 // ArrayCoorOp
345 //===----------------------------------------------------------------------===//
346
347 // CHARACTERs and derived types with LEN PARAMETERs are dependent types that
348 // require runtime values to fully define the type of an object.
validTypeParams(mlir::Type dynTy,mlir::ValueRange typeParams)349 static bool validTypeParams(mlir::Type dynTy, mlir::ValueRange typeParams) {
350 dynTy = fir::unwrapAllRefAndSeqType(dynTy);
351 // A box value will contain type parameter values itself.
352 if (dynTy.isa<fir::BoxType>())
353 return typeParams.size() == 0;
354 // Derived type must have all type parameters satisfied.
355 if (auto recTy = dynTy.dyn_cast<fir::RecordType>())
356 return typeParams.size() == recTy.getNumLenParams();
357 // Characters with non-constant LEN must have a type parameter value.
358 if (auto charTy = dynTy.dyn_cast<fir::CharacterType>())
359 if (charTy.hasDynamicLen())
360 return typeParams.size() == 1;
361 // Otherwise, any type parameters are invalid.
362 return typeParams.size() == 0;
363 }
364
verify()365 mlir::LogicalResult fir::ArrayCoorOp::verify() {
366 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
367 auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
368 if (!arrTy)
369 return emitOpError("must be a reference to an array");
370 auto arrDim = arrTy.getDimension();
371
372 if (auto shapeOp = getShape()) {
373 auto shapeTy = shapeOp.getType();
374 unsigned shapeTyRank = 0;
375 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
376 shapeTyRank = s.getRank();
377 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
378 shapeTyRank = ss.getRank();
379 } else {
380 auto s = shapeTy.cast<fir::ShiftType>();
381 shapeTyRank = s.getRank();
382 if (!getMemref().getType().isa<fir::BoxType>())
383 return emitOpError("shift can only be provided with fir.box memref");
384 }
385 if (arrDim && arrDim != shapeTyRank)
386 return emitOpError("rank of dimension mismatched");
387 if (shapeTyRank != getIndices().size())
388 return emitOpError("number of indices do not match dim rank");
389 }
390
391 if (auto sliceOp = getSlice()) {
392 if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
393 if (!sl.getSubstr().empty())
394 return emitOpError("array_coor cannot take a slice with substring");
395 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
396 if (sliceTy.getRank() != arrDim)
397 return emitOpError("rank of dimension in slice mismatched");
398 }
399 if (!validTypeParams(getMemref().getType(), getTypeparams()))
400 return emitOpError("invalid type parameters");
401
402 return mlir::success();
403 }
404
405 //===----------------------------------------------------------------------===//
406 // ArrayLoadOp
407 //===----------------------------------------------------------------------===//
408
adjustedElementType(mlir::Type t)409 static mlir::Type adjustedElementType(mlir::Type t) {
410 if (auto ty = t.dyn_cast<fir::ReferenceType>()) {
411 auto eleTy = ty.getEleTy();
412 if (fir::isa_char(eleTy))
413 return eleTy;
414 if (fir::isa_derived(eleTy))
415 return eleTy;
416 if (eleTy.isa<fir::SequenceType>())
417 return eleTy;
418 }
419 return t;
420 }
421
getExtents()422 std::vector<mlir::Value> fir::ArrayLoadOp::getExtents() {
423 if (auto sh = getShape())
424 if (auto *op = sh.getDefiningOp()) {
425 if (auto shOp = mlir::dyn_cast<fir::ShapeOp>(op)) {
426 auto extents = shOp.getExtents();
427 return {extents.begin(), extents.end()};
428 }
429 return mlir::cast<fir::ShapeShiftOp>(op).getExtents();
430 }
431 return {};
432 }
433
verify()434 mlir::LogicalResult fir::ArrayLoadOp::verify() {
435 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
436 auto arrTy = eleTy.dyn_cast<fir::SequenceType>();
437 if (!arrTy)
438 return emitOpError("must be a reference to an array");
439 auto arrDim = arrTy.getDimension();
440
441 if (auto shapeOp = getShape()) {
442 auto shapeTy = shapeOp.getType();
443 unsigned shapeTyRank = 0u;
444 if (auto s = shapeTy.dyn_cast<fir::ShapeType>()) {
445 shapeTyRank = s.getRank();
446 } else if (auto ss = shapeTy.dyn_cast<fir::ShapeShiftType>()) {
447 shapeTyRank = ss.getRank();
448 } else {
449 auto s = shapeTy.cast<fir::ShiftType>();
450 shapeTyRank = s.getRank();
451 if (!getMemref().getType().isa<fir::BoxType>())
452 return emitOpError("shift can only be provided with fir.box memref");
453 }
454 if (arrDim && arrDim != shapeTyRank)
455 return emitOpError("rank of dimension mismatched");
456 }
457
458 if (auto sliceOp = getSlice()) {
459 if (auto sl = mlir::dyn_cast_or_null<fir::SliceOp>(sliceOp.getDefiningOp()))
460 if (!sl.getSubstr().empty())
461 return emitOpError("array_load cannot take a slice with substring");
462 if (auto sliceTy = sliceOp.getType().dyn_cast<fir::SliceType>())
463 if (sliceTy.getRank() != arrDim)
464 return emitOpError("rank of dimension in slice mismatched");
465 }
466
467 if (!validTypeParams(getMemref().getType(), getTypeparams()))
468 return emitOpError("invalid type parameters");
469
470 return mlir::success();
471 }
472
473 //===----------------------------------------------------------------------===//
474 // ArrayMergeStoreOp
475 //===----------------------------------------------------------------------===//
476
verify()477 mlir::LogicalResult fir::ArrayMergeStoreOp::verify() {
478 if (!mlir::isa<fir::ArrayLoadOp>(getOriginal().getDefiningOp()))
479 return emitOpError("operand #0 must be result of a fir.array_load op");
480 if (auto sl = getSlice()) {
481 if (auto sliceOp =
482 mlir::dyn_cast_or_null<fir::SliceOp>(sl.getDefiningOp())) {
483 if (!sliceOp.getSubstr().empty())
484 return emitOpError(
485 "array_merge_store cannot take a slice with substring");
486 if (!sliceOp.getFields().empty()) {
487 // This is an intra-object merge, where the slice is projecting the
488 // subfields that are to be overwritten by the merge operation.
489 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
490 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
491 auto projTy =
492 fir::applyPathToType(seqTy.getEleTy(), sliceOp.getFields());
493 if (fir::unwrapSequenceType(getOriginal().getType()) != projTy)
494 return emitOpError(
495 "type of origin does not match sliced memref type");
496 if (fir::unwrapSequenceType(getSequence().getType()) != projTy)
497 return emitOpError(
498 "type of sequence does not match sliced memref type");
499 return mlir::success();
500 }
501 return emitOpError("referenced type is not an array");
502 }
503 }
504 return mlir::success();
505 }
506 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(getMemref().getType());
507 if (getOriginal().getType() != eleTy)
508 return emitOpError("type of origin does not match memref element type");
509 if (getSequence().getType() != eleTy)
510 return emitOpError("type of sequence does not match memref element type");
511 if (!validTypeParams(getMemref().getType(), getTypeparams()))
512 return emitOpError("invalid type parameters");
513 return mlir::success();
514 }
515
516 //===----------------------------------------------------------------------===//
517 // ArrayFetchOp
518 //===----------------------------------------------------------------------===//
519
520 // Template function used for both array_fetch and array_update verification.
521 template <typename A>
validArraySubobject(A op)522 mlir::Type validArraySubobject(A op) {
523 auto ty = op.getSequence().getType();
524 return fir::applyPathToType(ty, op.getIndices());
525 }
526
verify()527 mlir::LogicalResult fir::ArrayFetchOp::verify() {
528 auto arrTy = getSequence().getType().cast<fir::SequenceType>();
529 auto indSize = getIndices().size();
530 if (indSize < arrTy.getDimension())
531 return emitOpError("number of indices != dimension of array");
532 if (indSize == arrTy.getDimension() &&
533 ::adjustedElementType(getElement().getType()) != arrTy.getEleTy())
534 return emitOpError("return type does not match array");
535 auto ty = validArraySubobject(*this);
536 if (!ty || ty != ::adjustedElementType(getType()))
537 return emitOpError("return type and/or indices do not type check");
538 if (!mlir::isa<fir::ArrayLoadOp>(getSequence().getDefiningOp()))
539 return emitOpError("argument #0 must be result of fir.array_load");
540 if (!validTypeParams(arrTy, getTypeparams()))
541 return emitOpError("invalid type parameters");
542 return mlir::success();
543 }
544
545 //===----------------------------------------------------------------------===//
546 // ArrayAccessOp
547 //===----------------------------------------------------------------------===//
548
verify()549 mlir::LogicalResult fir::ArrayAccessOp::verify() {
550 auto arrTy = getSequence().getType().cast<fir::SequenceType>();
551 std::size_t indSize = getIndices().size();
552 if (indSize < arrTy.getDimension())
553 return emitOpError("number of indices != dimension of array");
554 if (indSize == arrTy.getDimension() &&
555 getElement().getType() != fir::ReferenceType::get(arrTy.getEleTy()))
556 return emitOpError("return type does not match array");
557 mlir::Type ty = validArraySubobject(*this);
558 if (!ty || fir::ReferenceType::get(ty) != getType())
559 return emitOpError("return type and/or indices do not type check");
560 if (!validTypeParams(arrTy, getTypeparams()))
561 return emitOpError("invalid type parameters");
562 return mlir::success();
563 }
564
565 //===----------------------------------------------------------------------===//
566 // ArrayUpdateOp
567 //===----------------------------------------------------------------------===//
568
verify()569 mlir::LogicalResult fir::ArrayUpdateOp::verify() {
570 if (fir::isa_ref_type(getMerge().getType()))
571 return emitOpError("does not support reference type for merge");
572 auto arrTy = getSequence().getType().cast<fir::SequenceType>();
573 auto indSize = getIndices().size();
574 if (indSize < arrTy.getDimension())
575 return emitOpError("number of indices != dimension of array");
576 if (indSize == arrTy.getDimension() &&
577 ::adjustedElementType(getMerge().getType()) != arrTy.getEleTy())
578 return emitOpError("merged value does not have element type");
579 auto ty = validArraySubobject(*this);
580 if (!ty || ty != ::adjustedElementType(getMerge().getType()))
581 return emitOpError("merged value and/or indices do not type check");
582 if (!validTypeParams(arrTy, getTypeparams()))
583 return emitOpError("invalid type parameters");
584 return mlir::success();
585 }
586
587 //===----------------------------------------------------------------------===//
588 // ArrayModifyOp
589 //===----------------------------------------------------------------------===//
590
verify()591 mlir::LogicalResult fir::ArrayModifyOp::verify() {
592 auto arrTy = getSequence().getType().cast<fir::SequenceType>();
593 auto indSize = getIndices().size();
594 if (indSize < arrTy.getDimension())
595 return emitOpError("number of indices must match array dimension");
596 return mlir::success();
597 }
598
599 //===----------------------------------------------------------------------===//
600 // BoxAddrOp
601 //===----------------------------------------------------------------------===//
602
fold(llvm::ArrayRef<mlir::Attribute> opnds)603 mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
604 if (auto *v = getVal().getDefiningOp()) {
605 if (auto box = mlir::dyn_cast<fir::EmboxOp>(v)) {
606 if (!box.getSlice()) // Fold only if not sliced
607 return box.getMemref();
608 }
609 if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(v))
610 return box.getMemref();
611 }
612 return {};
613 }
614
615 //===----------------------------------------------------------------------===//
616 // BoxCharLenOp
617 //===----------------------------------------------------------------------===//
618
619 mlir::OpFoldResult
fold(llvm::ArrayRef<mlir::Attribute> opnds)620 fir::BoxCharLenOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
621 if (auto v = getVal().getDefiningOp()) {
622 if (auto box = mlir::dyn_cast<fir::EmboxCharOp>(v))
623 return box.getLen();
624 }
625 return {};
626 }
627
628 //===----------------------------------------------------------------------===//
629 // BoxDimsOp
630 //===----------------------------------------------------------------------===//
631
632 /// Get the result types packed in a tuple tuple
getTupleType()633 mlir::Type fir::BoxDimsOp::getTupleType() {
634 // note: triple, but 4 is nearest power of 2
635 llvm::SmallVector<mlir::Type> triple{
636 getResult(0).getType(), getResult(1).getType(), getResult(2).getType()};
637 return mlir::TupleType::get(getContext(), triple);
638 }
639
640 //===----------------------------------------------------------------------===//
641 // CallOp
642 //===----------------------------------------------------------------------===//
643
getFunctionType()644 mlir::FunctionType fir::CallOp::getFunctionType() {
645 return mlir::FunctionType::get(getContext(), getOperandTypes(),
646 getResultTypes());
647 }
648
print(mlir::OpAsmPrinter & p)649 void fir::CallOp::print(mlir::OpAsmPrinter &p) {
650 bool isDirect = getCallee().has_value();
651 p << ' ';
652 if (isDirect)
653 p << *getCallee();
654 else
655 p << getOperand(0);
656 p << '(' << (*this)->getOperands().drop_front(isDirect ? 0 : 1) << ')';
657 p.printOptionalAttrDict((*this)->getAttrs(),
658 {fir::CallOp::getCalleeAttrNameStr()});
659 auto resultTypes{getResultTypes()};
660 llvm::SmallVector<mlir::Type> argTypes(
661 llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1));
662 p << " : " << mlir::FunctionType::get(getContext(), argTypes, resultTypes);
663 }
664
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)665 mlir::ParseResult fir::CallOp::parse(mlir::OpAsmParser &parser,
666 mlir::OperationState &result) {
667 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
668 if (parser.parseOperandList(operands))
669 return mlir::failure();
670
671 mlir::NamedAttrList attrs;
672 mlir::SymbolRefAttr funcAttr;
673 bool isDirect = operands.empty();
674 if (isDirect)
675 if (parser.parseAttribute(funcAttr, fir::CallOp::getCalleeAttrNameStr(),
676 attrs))
677 return mlir::failure();
678
679 mlir::Type type;
680 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
681 parser.parseOptionalAttrDict(attrs) || parser.parseColon() ||
682 parser.parseType(type))
683 return mlir::failure();
684
685 auto funcType = type.dyn_cast<mlir::FunctionType>();
686 if (!funcType)
687 return parser.emitError(parser.getNameLoc(), "expected function type");
688 if (isDirect) {
689 if (parser.resolveOperands(operands, funcType.getInputs(),
690 parser.getNameLoc(), result.operands))
691 return mlir::failure();
692 } else {
693 auto funcArgs =
694 llvm::ArrayRef<mlir::OpAsmParser::UnresolvedOperand>(operands)
695 .drop_front();
696 if (parser.resolveOperand(operands[0], funcType, result.operands) ||
697 parser.resolveOperands(funcArgs, funcType.getInputs(),
698 parser.getNameLoc(), result.operands))
699 return mlir::failure();
700 }
701 result.addTypes(funcType.getResults());
702 result.attributes = attrs;
703 return mlir::success();
704 }
705
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::func::FuncOp callee,mlir::ValueRange operands)706 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
707 mlir::func::FuncOp callee, mlir::ValueRange operands) {
708 result.addOperands(operands);
709 result.addAttribute(getCalleeAttrNameStr(), mlir::SymbolRefAttr::get(callee));
710 result.addTypes(callee.getFunctionType().getResults());
711 }
712
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::SymbolRefAttr callee,llvm::ArrayRef<mlir::Type> results,mlir::ValueRange operands)713 void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
714 mlir::SymbolRefAttr callee,
715 llvm::ArrayRef<mlir::Type> results,
716 mlir::ValueRange operands) {
717 result.addOperands(operands);
718 if (callee)
719 result.addAttribute(getCalleeAttrNameStr(), callee);
720 result.addTypes(results);
721 }
722
723 //===----------------------------------------------------------------------===//
724 // CharConvertOp
725 //===----------------------------------------------------------------------===//
726
verify()727 mlir::LogicalResult fir::CharConvertOp::verify() {
728 auto unwrap = [&](mlir::Type t) {
729 t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t));
730 return t.dyn_cast<fir::CharacterType>();
731 };
732 auto inTy = unwrap(getFrom().getType());
733 auto outTy = unwrap(getTo().getType());
734 if (!(inTy && outTy))
735 return emitOpError("not a reference to a character");
736 if (inTy.getFKind() == outTy.getFKind())
737 return emitOpError("buffers must have different KIND values");
738 return mlir::success();
739 }
740
741 //===----------------------------------------------------------------------===//
742 // CmpOp
743 //===----------------------------------------------------------------------===//
744
745 template <typename OPTY>
printCmpOp(mlir::OpAsmPrinter & p,OPTY op)746 static void printCmpOp(mlir::OpAsmPrinter &p, OPTY op) {
747 p << ' ';
748 auto predSym = mlir::arith::symbolizeCmpFPredicate(
749 op->template getAttrOfType<mlir::IntegerAttr>(
750 OPTY::getPredicateAttrName())
751 .getInt());
752 assert(predSym.has_value() && "invalid symbol value for predicate");
753 p << '"' << mlir::arith::stringifyCmpFPredicate(predSym.value()) << '"'
754 << ", ";
755 p.printOperand(op.getLhs());
756 p << ", ";
757 p.printOperand(op.getRhs());
758 p.printOptionalAttrDict(op->getAttrs(),
759 /*elidedAttrs=*/{OPTY::getPredicateAttrName()});
760 p << " : " << op.getLhs().getType();
761 }
762
763 template <typename OPTY>
parseCmpOp(mlir::OpAsmParser & parser,mlir::OperationState & result)764 static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser,
765 mlir::OperationState &result) {
766 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> ops;
767 mlir::NamedAttrList attrs;
768 mlir::Attribute predicateNameAttr;
769 mlir::Type type;
770 if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(),
771 attrs) ||
772 parser.parseComma() || parser.parseOperandList(ops, 2) ||
773 parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) ||
774 parser.resolveOperands(ops, type, result.operands))
775 return mlir::failure();
776
777 if (!predicateNameAttr.isa<mlir::StringAttr>())
778 return parser.emitError(parser.getNameLoc(),
779 "expected string comparison predicate attribute");
780
781 // Rewrite string attribute to an enum value.
782 llvm::StringRef predicateName =
783 predicateNameAttr.cast<mlir::StringAttr>().getValue();
784 auto predicate = fir::CmpcOp::getPredicateByName(predicateName);
785 auto builder = parser.getBuilder();
786 mlir::Type i1Type = builder.getI1Type();
787 attrs.set(OPTY::getPredicateAttrName(),
788 builder.getI64IntegerAttr(static_cast<std::int64_t>(predicate)));
789 result.attributes = attrs;
790 result.addTypes({i1Type});
791 return mlir::success();
792 }
793
794 //===----------------------------------------------------------------------===//
795 // CmpcOp
796 //===----------------------------------------------------------------------===//
797
buildCmpCOp(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::arith::CmpFPredicate predicate,mlir::Value lhs,mlir::Value rhs)798 void fir::buildCmpCOp(mlir::OpBuilder &builder, mlir::OperationState &result,
799 mlir::arith::CmpFPredicate predicate, mlir::Value lhs,
800 mlir::Value rhs) {
801 result.addOperands({lhs, rhs});
802 result.types.push_back(builder.getI1Type());
803 result.addAttribute(
804 fir::CmpcOp::getPredicateAttrName(),
805 builder.getI64IntegerAttr(static_cast<std::int64_t>(predicate)));
806 }
807
808 mlir::arith::CmpFPredicate
getPredicateByName(llvm::StringRef name)809 fir::CmpcOp::getPredicateByName(llvm::StringRef name) {
810 auto pred = mlir::arith::symbolizeCmpFPredicate(name);
811 assert(pred.has_value() && "invalid predicate name");
812 return pred.value();
813 }
814
print(mlir::OpAsmPrinter & p)815 void fir::CmpcOp::print(mlir::OpAsmPrinter &p) { printCmpOp(p, *this); }
816
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)817 mlir::ParseResult fir::CmpcOp::parse(mlir::OpAsmParser &parser,
818 mlir::OperationState &result) {
819 return parseCmpOp<fir::CmpcOp>(parser, result);
820 }
821
822 //===----------------------------------------------------------------------===//
823 // ConstcOp
824 //===----------------------------------------------------------------------===//
825
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)826 mlir::ParseResult fir::ConstcOp::parse(mlir::OpAsmParser &parser,
827 mlir::OperationState &result) {
828 fir::RealAttr realp;
829 fir::RealAttr imagp;
830 mlir::Type type;
831 if (parser.parseLParen() ||
832 parser.parseAttribute(realp, fir::ConstcOp::getRealAttrName(),
833 result.attributes) ||
834 parser.parseComma() ||
835 parser.parseAttribute(imagp, fir::ConstcOp::getImagAttrName(),
836 result.attributes) ||
837 parser.parseRParen() || parser.parseColonType(type) ||
838 parser.addTypesToList(type, result.types))
839 return mlir::failure();
840 return mlir::success();
841 }
842
print(mlir::OpAsmPrinter & p)843 void fir::ConstcOp::print(mlir::OpAsmPrinter &p) {
844 p << '(';
845 p << getOperation()->getAttr(fir::ConstcOp::getRealAttrName()) << ", ";
846 p << getOperation()->getAttr(fir::ConstcOp::getImagAttrName()) << ") : ";
847 p.printType(getType());
848 }
849
verify()850 mlir::LogicalResult fir::ConstcOp::verify() {
851 if (!getType().isa<fir::ComplexType>())
852 return emitOpError("must be a !fir.complex type");
853 return mlir::success();
854 }
855
856 //===----------------------------------------------------------------------===//
857 // ConvertOp
858 //===----------------------------------------------------------------------===//
859
getCanonicalizationPatterns(mlir::RewritePatternSet & results,mlir::MLIRContext * context)860 void fir::ConvertOp::getCanonicalizationPatterns(
861 mlir::RewritePatternSet &results, mlir::MLIRContext *context) {
862 results.insert<ConvertConvertOptPattern, ConvertAscendingIndexOptPattern,
863 ConvertDescendingIndexOptPattern, RedundantConvertOptPattern,
864 CombineConvertOptPattern, CombineConvertTruncOptPattern,
865 ForwardConstantConvertPattern>(context);
866 }
867
fold(llvm::ArrayRef<mlir::Attribute> opnds)868 mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef<mlir::Attribute> opnds) {
869 if (getValue().getType() == getType())
870 return getValue();
871 if (matchPattern(getValue(), mlir::m_Op<fir::ConvertOp>())) {
872 auto inner = mlir::cast<fir::ConvertOp>(getValue().getDefiningOp());
873 // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a
874 if (auto toTy = getType().dyn_cast<fir::LogicalType>())
875 if (auto fromTy = inner.getValue().getType().dyn_cast<fir::LogicalType>())
876 if (inner.getType().isa<mlir::IntegerType>() && (toTy == fromTy))
877 return inner.getValue();
878 // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a
879 if (auto toTy = getType().dyn_cast<mlir::IntegerType>())
880 if (auto fromTy =
881 inner.getValue().getType().dyn_cast<mlir::IntegerType>())
882 if (inner.getType().isa<fir::LogicalType>() && (toTy == fromTy) &&
883 (fromTy.getWidth() == 1))
884 return inner.getValue();
885 }
886 return {};
887 }
888
isIntegerCompatible(mlir::Type ty)889 bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) {
890 return ty.isa<mlir::IntegerType, mlir::IndexType, fir::IntegerType,
891 fir::LogicalType>();
892 }
893
isFloatCompatible(mlir::Type ty)894 bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) {
895 return ty.isa<mlir::FloatType, fir::RealType>();
896 }
897
isPointerCompatible(mlir::Type ty)898 bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) {
899 return ty.isa<fir::ReferenceType, fir::PointerType, fir::HeapType,
900 fir::LLVMPointerType, mlir::MemRefType, mlir::FunctionType,
901 fir::TypeDescType>();
902 }
903
verify()904 mlir::LogicalResult fir::ConvertOp::verify() {
905 auto inType = getValue().getType();
906 auto outType = getType();
907 if (inType == outType)
908 return mlir::success();
909 if ((isPointerCompatible(inType) && isPointerCompatible(outType)) ||
910 (isIntegerCompatible(inType) && isIntegerCompatible(outType)) ||
911 (isIntegerCompatible(inType) && isFloatCompatible(outType)) ||
912 (isFloatCompatible(inType) && isIntegerCompatible(outType)) ||
913 (isFloatCompatible(inType) && isFloatCompatible(outType)) ||
914 (isIntegerCompatible(inType) && isPointerCompatible(outType)) ||
915 (isPointerCompatible(inType) && isIntegerCompatible(outType)) ||
916 (inType.isa<fir::BoxType>() && outType.isa<fir::BoxType>()) ||
917 (inType.isa<fir::BoxProcType>() && outType.isa<fir::BoxProcType>()) ||
918 (fir::isa_complex(inType) && fir::isa_complex(outType)))
919 return mlir::success();
920 return emitOpError("invalid type conversion");
921 }
922
923 //===----------------------------------------------------------------------===//
924 // CoordinateOp
925 //===----------------------------------------------------------------------===//
926
print(mlir::OpAsmPrinter & p)927 void fir::CoordinateOp::print(mlir::OpAsmPrinter &p) {
928 p << ' ' << getRef() << ", " << getCoor();
929 p.printOptionalAttrDict((*this)->getAttrs(), /*elideAttrs=*/{"baseType"});
930 p << " : ";
931 p.printFunctionalType(getOperandTypes(), (*this)->getResultTypes());
932 }
933
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)934 mlir::ParseResult fir::CoordinateOp::parse(mlir::OpAsmParser &parser,
935 mlir::OperationState &result) {
936 mlir::OpAsmParser::UnresolvedOperand memref;
937 if (parser.parseOperand(memref) || parser.parseComma())
938 return mlir::failure();
939 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> coorOperands;
940 if (parser.parseOperandList(coorOperands))
941 return mlir::failure();
942 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> allOperands;
943 allOperands.push_back(memref);
944 allOperands.append(coorOperands.begin(), coorOperands.end());
945 mlir::FunctionType funcTy;
946 auto loc = parser.getCurrentLocation();
947 if (parser.parseOptionalAttrDict(result.attributes) ||
948 parser.parseColonType(funcTy) ||
949 parser.resolveOperands(allOperands, funcTy.getInputs(), loc,
950 result.operands) ||
951 parser.addTypesToList(funcTy.getResults(), result.types))
952 return mlir::failure();
953 result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0)));
954 return mlir::success();
955 }
956
verify()957 mlir::LogicalResult fir::CoordinateOp::verify() {
958 const mlir::Type refTy = getRef().getType();
959 if (fir::isa_ref_type(refTy)) {
960 auto eleTy = fir::dyn_cast_ptrEleTy(refTy);
961 if (auto arrTy = eleTy.dyn_cast<fir::SequenceType>()) {
962 if (arrTy.hasUnknownShape())
963 return emitOpError("cannot find coordinate in unknown shape");
964 if (arrTy.getConstantRows() < arrTy.getDimension() - 1)
965 return emitOpError("cannot find coordinate with unknown extents");
966 }
967 if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) ||
968 fir::isa_char_string(eleTy)))
969 return emitOpError("cannot apply to this element type");
970 }
971 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(refTy);
972 unsigned dimension = 0;
973 const unsigned numCoors = getCoor().size();
974 for (auto coorOperand : llvm::enumerate(getCoor())) {
975 auto co = coorOperand.value();
976 if (dimension == 0 && eleTy.isa<fir::SequenceType>()) {
977 dimension = eleTy.cast<fir::SequenceType>().getDimension();
978 if (dimension == 0)
979 return emitOpError("cannot apply to array of unknown rank");
980 }
981 if (auto *defOp = co.getDefiningOp()) {
982 if (auto index = mlir::dyn_cast<fir::LenParamIndexOp>(defOp)) {
983 // Recovering a LEN type parameter only makes sense from a boxed
984 // value. For a bare reference, the LEN type parameters must be
985 // passed as additional arguments to `index`.
986 if (refTy.isa<fir::BoxType>()) {
987 if (coorOperand.index() != numCoors - 1)
988 return emitOpError("len_param_index must be last argument");
989 if (getNumOperands() != 2)
990 return emitOpError("too many operands for len_param_index case");
991 }
992 if (eleTy != index.getOnType())
993 emitOpError(
994 "len_param_index type not compatible with reference type");
995 return mlir::success();
996 } else if (auto index = mlir::dyn_cast<fir::FieldIndexOp>(defOp)) {
997 if (eleTy != index.getOnType())
998 emitOpError("field_index type not compatible with reference type");
999 if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) {
1000 eleTy = recTy.getType(index.getFieldName());
1001 continue;
1002 }
1003 return emitOpError("field_index not applied to !fir.type");
1004 }
1005 }
1006 if (dimension) {
1007 if (--dimension == 0)
1008 eleTy = eleTy.cast<fir::SequenceType>().getEleTy();
1009 } else {
1010 if (auto t = eleTy.dyn_cast<mlir::TupleType>()) {
1011 // FIXME: Generally, we don't know which field of the tuple is being
1012 // referred to unless the operand is a constant. Just assume everything
1013 // is good in the tuple case for now.
1014 return mlir::success();
1015 } else if (auto t = eleTy.dyn_cast<fir::RecordType>()) {
1016 // FIXME: This is the same as the tuple case.
1017 return mlir::success();
1018 } else if (auto t = eleTy.dyn_cast<fir::ComplexType>()) {
1019 eleTy = t.getElementType();
1020 } else if (auto t = eleTy.dyn_cast<mlir::ComplexType>()) {
1021 eleTy = t.getElementType();
1022 } else if (auto t = eleTy.dyn_cast<fir::CharacterType>()) {
1023 if (t.getLen() == fir::CharacterType::singleton())
1024 return emitOpError("cannot apply to character singleton");
1025 eleTy = fir::CharacterType::getSingleton(t.getContext(), t.getFKind());
1026 if (fir::unwrapRefType(getType()) != eleTy)
1027 return emitOpError("character type mismatch");
1028 } else {
1029 return emitOpError("invalid parameters (too many)");
1030 }
1031 }
1032 }
1033 return mlir::success();
1034 }
1035
1036 //===----------------------------------------------------------------------===//
1037 // DispatchOp
1038 //===----------------------------------------------------------------------===//
1039
getFunctionType()1040 mlir::FunctionType fir::DispatchOp::getFunctionType() {
1041 return mlir::FunctionType::get(getContext(), getOperandTypes(),
1042 getResultTypes());
1043 }
1044
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1045 mlir::ParseResult fir::DispatchOp::parse(mlir::OpAsmParser &parser,
1046 mlir::OperationState &result) {
1047 mlir::FunctionType calleeType;
1048 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1049 auto calleeLoc = parser.getNameLoc();
1050 llvm::StringRef calleeName;
1051 if (failed(parser.parseOptionalKeyword(&calleeName))) {
1052 mlir::StringAttr calleeAttr;
1053 if (parser.parseAttribute(calleeAttr,
1054 fir::DispatchOp::getMethodAttrNameStr(),
1055 result.attributes))
1056 return mlir::failure();
1057 } else {
1058 result.addAttribute(fir::DispatchOp::getMethodAttrNameStr(),
1059 parser.getBuilder().getStringAttr(calleeName));
1060 }
1061 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) ||
1062 parser.parseOptionalAttrDict(result.attributes) ||
1063 parser.parseColonType(calleeType) ||
1064 parser.addTypesToList(calleeType.getResults(), result.types) ||
1065 parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc,
1066 result.operands))
1067 return mlir::failure();
1068 return mlir::success();
1069 }
1070
print(mlir::OpAsmPrinter & p)1071 void fir::DispatchOp::print(mlir::OpAsmPrinter &p) {
1072 p << ' ' << getMethodAttr() << '(';
1073 p.printOperand(getObject());
1074 if (!getArgs().empty()) {
1075 p << ", ";
1076 p.printOperands(getArgs());
1077 }
1078 p << ") : ";
1079 p.printFunctionalType(getOperation()->getOperandTypes(),
1080 getOperation()->getResultTypes());
1081 }
1082
1083 //===----------------------------------------------------------------------===//
1084 // DispatchTableOp
1085 //===----------------------------------------------------------------------===//
1086
appendTableEntry(mlir::Operation * op)1087 void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) {
1088 assert(mlir::isa<fir::DTEntryOp>(*op) && "operation must be a DTEntryOp");
1089 auto &block = getBlock();
1090 block.getOperations().insert(block.end(), op);
1091 }
1092
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1093 mlir::ParseResult fir::DispatchTableOp::parse(mlir::OpAsmParser &parser,
1094 mlir::OperationState &result) {
1095 // Parse the name as a symbol reference attribute.
1096 mlir::SymbolRefAttr nameAttr;
1097 if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(),
1098 result.attributes))
1099 return mlir::failure();
1100
1101 // Convert the parsed name attr into a string attr.
1102 result.attributes.set(mlir::SymbolTable::getSymbolAttrName(),
1103 nameAttr.getRootReference());
1104
1105 // Parse the optional table body.
1106 mlir::Region *body = result.addRegion();
1107 mlir::OptionalParseResult parseResult = parser.parseOptionalRegion(*body);
1108 if (parseResult.hasValue() && failed(*parseResult))
1109 return mlir::failure();
1110
1111 fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(),
1112 result.location);
1113 return mlir::success();
1114 }
1115
print(mlir::OpAsmPrinter & p)1116 void fir::DispatchTableOp::print(mlir::OpAsmPrinter &p) {
1117 auto tableName = getOperation()
1118 ->getAttrOfType<mlir::StringAttr>(
1119 mlir::SymbolTable::getSymbolAttrName())
1120 .getValue();
1121 p << " @" << tableName;
1122
1123 mlir::Region &body = getOperation()->getRegion(0);
1124 if (!body.empty()) {
1125 p << ' ';
1126 p.printRegion(body, /*printEntryBlockArgs=*/false,
1127 /*printBlockTerminators=*/false);
1128 }
1129 }
1130
verify()1131 mlir::LogicalResult fir::DispatchTableOp::verify() {
1132 for (auto &op : getBlock())
1133 if (!mlir::isa<fir::DTEntryOp, fir::FirEndOp>(op))
1134 return op.emitOpError("dispatch table must contain dt_entry");
1135 return mlir::success();
1136 }
1137
1138 //===----------------------------------------------------------------------===//
1139 // EmboxOp
1140 //===----------------------------------------------------------------------===//
1141
verify()1142 mlir::LogicalResult fir::EmboxOp::verify() {
1143 auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType());
1144 bool isArray = false;
1145 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>()) {
1146 eleTy = seqTy.getEleTy();
1147 isArray = true;
1148 }
1149 if (hasLenParams()) {
1150 auto lenPs = numLenParams();
1151 if (auto rt = eleTy.dyn_cast<fir::RecordType>()) {
1152 if (lenPs != rt.getNumLenParams())
1153 return emitOpError("number of LEN params does not correspond"
1154 " to the !fir.type type");
1155 } else if (auto strTy = eleTy.dyn_cast<fir::CharacterType>()) {
1156 if (strTy.getLen() != fir::CharacterType::unknownLen())
1157 return emitOpError("CHARACTER already has static LEN");
1158 } else {
1159 return emitOpError("LEN parameters require CHARACTER or derived type");
1160 }
1161 for (auto lp : getTypeparams())
1162 if (!fir::isa_integer(lp.getType()))
1163 return emitOpError("LEN parameters must be integral type");
1164 }
1165 if (getShape() && !isArray)
1166 return emitOpError("shape must not be provided for a scalar");
1167 if (getSlice() && !isArray)
1168 return emitOpError("slice must not be provided for a scalar");
1169 return mlir::success();
1170 }
1171
1172 //===----------------------------------------------------------------------===//
1173 // EmboxCharOp
1174 //===----------------------------------------------------------------------===//
1175
verify()1176 mlir::LogicalResult fir::EmboxCharOp::verify() {
1177 auto eleTy = fir::dyn_cast_ptrEleTy(getMemref().getType());
1178 if (!eleTy.dyn_cast_or_null<fir::CharacterType>())
1179 return mlir::failure();
1180 return mlir::success();
1181 }
1182
1183 //===----------------------------------------------------------------------===//
1184 // EmboxProcOp
1185 //===----------------------------------------------------------------------===//
1186
verify()1187 mlir::LogicalResult fir::EmboxProcOp::verify() {
1188 // host bindings (optional) must be a reference to a tuple
1189 if (auto h = getHost()) {
1190 if (auto r = h.getType().dyn_cast<fir::ReferenceType>())
1191 if (r.getEleTy().isa<mlir::TupleType>())
1192 return mlir::success();
1193 return mlir::failure();
1194 }
1195 return mlir::success();
1196 }
1197
1198 //===----------------------------------------------------------------------===//
1199 // GenTypeDescOp
1200 //===----------------------------------------------------------------------===//
1201
build(mlir::OpBuilder &,mlir::OperationState & result,mlir::TypeAttr inty)1202 void fir::GenTypeDescOp::build(mlir::OpBuilder &, mlir::OperationState &result,
1203 mlir::TypeAttr inty) {
1204 result.addAttribute("in_type", inty);
1205 result.addTypes(TypeDescType::get(inty.getValue()));
1206 }
1207
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1208 mlir::ParseResult fir::GenTypeDescOp::parse(mlir::OpAsmParser &parser,
1209 mlir::OperationState &result) {
1210 mlir::Type intype;
1211 if (parser.parseType(intype))
1212 return mlir::failure();
1213 result.addAttribute("in_type", mlir::TypeAttr::get(intype));
1214 mlir::Type restype = fir::TypeDescType::get(intype);
1215 if (parser.addTypeToList(restype, result.types))
1216 return mlir::failure();
1217 return mlir::success();
1218 }
1219
print(mlir::OpAsmPrinter & p)1220 void fir::GenTypeDescOp::print(mlir::OpAsmPrinter &p) {
1221 p << ' ' << getOperation()->getAttr("in_type");
1222 p.printOptionalAttrDict(getOperation()->getAttrs(), {"in_type"});
1223 }
1224
verify()1225 mlir::LogicalResult fir::GenTypeDescOp::verify() {
1226 mlir::Type resultTy = getType();
1227 if (auto tdesc = resultTy.dyn_cast<fir::TypeDescType>()) {
1228 if (tdesc.getOfTy() != getInType())
1229 return emitOpError("wrapped type mismatched");
1230 return mlir::success();
1231 }
1232 return emitOpError("must be !fir.tdesc type");
1233 }
1234
1235 //===----------------------------------------------------------------------===//
1236 // GlobalOp
1237 //===----------------------------------------------------------------------===//
1238
resultType()1239 mlir::Type fir::GlobalOp::resultType() {
1240 return wrapAllocaResultType(getType());
1241 }
1242
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1243 mlir::ParseResult fir::GlobalOp::parse(mlir::OpAsmParser &parser,
1244 mlir::OperationState &result) {
1245 // Parse the optional linkage
1246 llvm::StringRef linkage;
1247 auto &builder = parser.getBuilder();
1248 if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) {
1249 if (fir::GlobalOp::verifyValidLinkage(linkage))
1250 return mlir::failure();
1251 mlir::StringAttr linkAttr = builder.getStringAttr(linkage);
1252 result.addAttribute(fir::GlobalOp::getLinkageAttrNameStr(), linkAttr);
1253 }
1254
1255 // Parse the name as a symbol reference attribute.
1256 mlir::SymbolRefAttr nameAttr;
1257 if (parser.parseAttribute(nameAttr, fir::GlobalOp::getSymbolAttrNameStr(),
1258 result.attributes))
1259 return mlir::failure();
1260 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
1261 nameAttr.getRootReference());
1262
1263 bool simpleInitializer = false;
1264 if (mlir::succeeded(parser.parseOptionalLParen())) {
1265 mlir::Attribute attr;
1266 if (parser.parseAttribute(attr, "initVal", result.attributes) ||
1267 parser.parseRParen())
1268 return mlir::failure();
1269 simpleInitializer = true;
1270 }
1271
1272 if (succeeded(parser.parseOptionalKeyword("constant"))) {
1273 // if "constant" keyword then mark this as a constant, not a variable
1274 result.addAttribute("constant", builder.getUnitAttr());
1275 }
1276
1277 mlir::Type globalType;
1278 if (parser.parseColonType(globalType))
1279 return mlir::failure();
1280
1281 result.addAttribute(fir::GlobalOp::getTypeAttrName(result.name),
1282 mlir::TypeAttr::get(globalType));
1283
1284 if (simpleInitializer) {
1285 result.addRegion();
1286 } else {
1287 // Parse the optional initializer body.
1288 auto parseResult =
1289 parser.parseOptionalRegion(*result.addRegion(), /*arguments=*/{});
1290 if (parseResult.hasValue() && mlir::failed(*parseResult))
1291 return mlir::failure();
1292 }
1293 return mlir::success();
1294 }
1295
print(mlir::OpAsmPrinter & p)1296 void fir::GlobalOp::print(mlir::OpAsmPrinter &p) {
1297 if (getLinkName())
1298 p << ' ' << *getLinkName();
1299 p << ' ';
1300 p.printAttributeWithoutType(getSymrefAttr());
1301 if (auto val = getValueOrNull())
1302 p << '(' << val << ')';
1303 if (getOperation()->getAttr(fir::GlobalOp::getConstantAttrNameStr()))
1304 p << " constant";
1305 p << " : ";
1306 p.printType(getType());
1307 if (hasInitializationBody()) {
1308 p << ' ';
1309 p.printRegion(getOperation()->getRegion(0),
1310 /*printEntryBlockArgs=*/false,
1311 /*printBlockTerminators=*/true);
1312 }
1313 }
1314
appendInitialValue(mlir::Operation * op)1315 void fir::GlobalOp::appendInitialValue(mlir::Operation *op) {
1316 getBlock().getOperations().push_back(op);
1317 }
1318
build(mlir::OpBuilder & builder,mlir::OperationState & result,llvm::StringRef name,bool isConstant,mlir::Type type,mlir::Attribute initialVal,mlir::StringAttr linkage,llvm::ArrayRef<mlir::NamedAttribute> attrs)1319 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1320 mlir::OperationState &result, llvm::StringRef name,
1321 bool isConstant, mlir::Type type,
1322 mlir::Attribute initialVal, mlir::StringAttr linkage,
1323 llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1324 result.addRegion();
1325 result.addAttribute(getTypeAttrName(result.name), mlir::TypeAttr::get(type));
1326 result.addAttribute(mlir::SymbolTable::getSymbolAttrName(),
1327 builder.getStringAttr(name));
1328 result.addAttribute(getSymbolAttrNameStr(),
1329 mlir::SymbolRefAttr::get(builder.getContext(), name));
1330 if (isConstant)
1331 result.addAttribute(getConstantAttrName(result.name),
1332 builder.getUnitAttr());
1333 if (initialVal)
1334 result.addAttribute(getInitValAttrName(result.name), initialVal);
1335 if (linkage)
1336 result.addAttribute(getLinkageAttrNameStr(), linkage);
1337 result.attributes.append(attrs.begin(), attrs.end());
1338 }
1339
build(mlir::OpBuilder & builder,mlir::OperationState & result,llvm::StringRef name,mlir::Type type,mlir::Attribute initialVal,mlir::StringAttr linkage,llvm::ArrayRef<mlir::NamedAttribute> attrs)1340 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1341 mlir::OperationState &result, llvm::StringRef name,
1342 mlir::Type type, mlir::Attribute initialVal,
1343 mlir::StringAttr linkage,
1344 llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1345 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
1346 }
1347
build(mlir::OpBuilder & builder,mlir::OperationState & result,llvm::StringRef name,bool isConstant,mlir::Type type,mlir::StringAttr linkage,llvm::ArrayRef<mlir::NamedAttribute> attrs)1348 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1349 mlir::OperationState &result, llvm::StringRef name,
1350 bool isConstant, mlir::Type type,
1351 mlir::StringAttr linkage,
1352 llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1353 build(builder, result, name, isConstant, type, {}, linkage, attrs);
1354 }
1355
build(mlir::OpBuilder & builder,mlir::OperationState & result,llvm::StringRef name,mlir::Type type,mlir::StringAttr linkage,llvm::ArrayRef<mlir::NamedAttribute> attrs)1356 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1357 mlir::OperationState &result, llvm::StringRef name,
1358 mlir::Type type, mlir::StringAttr linkage,
1359 llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1360 build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs);
1361 }
1362
build(mlir::OpBuilder & builder,mlir::OperationState & result,llvm::StringRef name,bool isConstant,mlir::Type type,llvm::ArrayRef<mlir::NamedAttribute> attrs)1363 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1364 mlir::OperationState &result, llvm::StringRef name,
1365 bool isConstant, mlir::Type type,
1366 llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1367 build(builder, result, name, isConstant, type, mlir::StringAttr{}, attrs);
1368 }
1369
build(mlir::OpBuilder & builder,mlir::OperationState & result,llvm::StringRef name,mlir::Type type,llvm::ArrayRef<mlir::NamedAttribute> attrs)1370 void fir::GlobalOp::build(mlir::OpBuilder &builder,
1371 mlir::OperationState &result, llvm::StringRef name,
1372 mlir::Type type,
1373 llvm::ArrayRef<mlir::NamedAttribute> attrs) {
1374 build(builder, result, name, /*isConstant=*/false, type, attrs);
1375 }
1376
verifyValidLinkage(llvm::StringRef linkage)1377 mlir::ParseResult fir::GlobalOp::verifyValidLinkage(llvm::StringRef linkage) {
1378 // Supporting only a subset of the LLVM linkage types for now
1379 static const char *validNames[] = {"common", "internal", "linkonce",
1380 "linkonce_odr", "weak"};
1381 return mlir::success(llvm::is_contained(validNames, linkage));
1382 }
1383
1384 //===----------------------------------------------------------------------===//
1385 // GlobalLenOp
1386 //===----------------------------------------------------------------------===//
1387
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1388 mlir::ParseResult fir::GlobalLenOp::parse(mlir::OpAsmParser &parser,
1389 mlir::OperationState &result) {
1390 llvm::StringRef fieldName;
1391 if (failed(parser.parseOptionalKeyword(&fieldName))) {
1392 mlir::StringAttr fieldAttr;
1393 if (parser.parseAttribute(fieldAttr,
1394 fir::GlobalLenOp::getLenParamAttrName(),
1395 result.attributes))
1396 return mlir::failure();
1397 } else {
1398 result.addAttribute(fir::GlobalLenOp::getLenParamAttrName(),
1399 parser.getBuilder().getStringAttr(fieldName));
1400 }
1401 mlir::IntegerAttr constant;
1402 if (parser.parseComma() ||
1403 parser.parseAttribute(constant, fir::GlobalLenOp::getIntAttrName(),
1404 result.attributes))
1405 return mlir::failure();
1406 return mlir::success();
1407 }
1408
print(mlir::OpAsmPrinter & p)1409 void fir::GlobalLenOp::print(mlir::OpAsmPrinter &p) {
1410 p << ' ' << getOperation()->getAttr(fir::GlobalLenOp::getLenParamAttrName())
1411 << ", " << getOperation()->getAttr(fir::GlobalLenOp::getIntAttrName());
1412 }
1413
1414 //===----------------------------------------------------------------------===//
1415 // FieldIndexOp
1416 //===----------------------------------------------------------------------===//
1417
1418 template <typename TY>
parseFieldLikeOp(mlir::OpAsmParser & parser,mlir::OperationState & result)1419 mlir::ParseResult parseFieldLikeOp(mlir::OpAsmParser &parser,
1420 mlir::OperationState &result) {
1421 llvm::StringRef fieldName;
1422 auto &builder = parser.getBuilder();
1423 mlir::Type recty;
1424 if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() ||
1425 parser.parseType(recty))
1426 return mlir::failure();
1427 result.addAttribute(fir::FieldIndexOp::getFieldAttrName(),
1428 builder.getStringAttr(fieldName));
1429 if (!recty.dyn_cast<fir::RecordType>())
1430 return mlir::failure();
1431 result.addAttribute(fir::FieldIndexOp::getTypeAttrName(),
1432 mlir::TypeAttr::get(recty));
1433 if (!parser.parseOptionalLParen()) {
1434 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1435 llvm::SmallVector<mlir::Type> types;
1436 auto loc = parser.getNameLoc();
1437 if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) ||
1438 parser.parseColonTypeList(types) || parser.parseRParen() ||
1439 parser.resolveOperands(operands, types, loc, result.operands))
1440 return mlir::failure();
1441 }
1442 mlir::Type fieldType = TY::get(builder.getContext());
1443 if (parser.addTypeToList(fieldType, result.types))
1444 return mlir::failure();
1445 return mlir::success();
1446 }
1447
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1448 mlir::ParseResult fir::FieldIndexOp::parse(mlir::OpAsmParser &parser,
1449 mlir::OperationState &result) {
1450 return parseFieldLikeOp<fir::FieldType>(parser, result);
1451 }
1452
1453 template <typename OP>
printFieldLikeOp(mlir::OpAsmPrinter & p,OP & op)1454 void printFieldLikeOp(mlir::OpAsmPrinter &p, OP &op) {
1455 p << ' '
1456 << op.getOperation()
1457 ->template getAttrOfType<mlir::StringAttr>(
1458 fir::FieldIndexOp::getFieldAttrName())
1459 .getValue()
1460 << ", " << op.getOperation()->getAttr(fir::FieldIndexOp::getTypeAttrName());
1461 if (op.getNumOperands()) {
1462 p << '(';
1463 p.printOperands(op.getTypeparams());
1464 auto sep = ") : ";
1465 for (auto op : op.getTypeparams()) {
1466 p << sep;
1467 if (op)
1468 p.printType(op.getType());
1469 else
1470 p << "()";
1471 sep = ", ";
1472 }
1473 }
1474 }
1475
print(mlir::OpAsmPrinter & p)1476 void fir::FieldIndexOp::print(mlir::OpAsmPrinter &p) {
1477 printFieldLikeOp(p, *this);
1478 }
1479
build(mlir::OpBuilder & builder,mlir::OperationState & result,llvm::StringRef fieldName,mlir::Type recTy,mlir::ValueRange operands)1480 void fir::FieldIndexOp::build(mlir::OpBuilder &builder,
1481 mlir::OperationState &result,
1482 llvm::StringRef fieldName, mlir::Type recTy,
1483 mlir::ValueRange operands) {
1484 result.addAttribute(getFieldAttrName(), builder.getStringAttr(fieldName));
1485 result.addAttribute(getTypeAttrName(), mlir::TypeAttr::get(recTy));
1486 result.addOperands(operands);
1487 }
1488
getAttributes()1489 llvm::SmallVector<mlir::Attribute> fir::FieldIndexOp::getAttributes() {
1490 llvm::SmallVector<mlir::Attribute> attrs;
1491 attrs.push_back(getFieldIdAttr());
1492 attrs.push_back(getOnTypeAttr());
1493 return attrs;
1494 }
1495
1496 //===----------------------------------------------------------------------===//
1497 // InsertOnRangeOp
1498 //===----------------------------------------------------------------------===//
1499
1500 static mlir::ParseResult
parseCustomRangeSubscript(mlir::OpAsmParser & parser,mlir::DenseIntElementsAttr & coord)1501 parseCustomRangeSubscript(mlir::OpAsmParser &parser,
1502 mlir::DenseIntElementsAttr &coord) {
1503 llvm::SmallVector<std::int64_t> lbounds;
1504 llvm::SmallVector<std::int64_t> ubounds;
1505 if (parser.parseKeyword("from") ||
1506 parser.parseCommaSeparatedList(
1507 mlir::AsmParser::Delimiter::Paren,
1508 [&] { return parser.parseInteger(lbounds.emplace_back(0)); }) ||
1509 parser.parseKeyword("to") ||
1510 parser.parseCommaSeparatedList(mlir::AsmParser::Delimiter::Paren, [&] {
1511 return parser.parseInteger(ubounds.emplace_back(0));
1512 }))
1513 return mlir::failure();
1514 llvm::SmallVector<std::int64_t> zippedBounds;
1515 for (auto zip : llvm::zip(lbounds, ubounds)) {
1516 zippedBounds.push_back(std::get<0>(zip));
1517 zippedBounds.push_back(std::get<1>(zip));
1518 }
1519 coord = mlir::Builder(parser.getContext()).getIndexTensorAttr(zippedBounds);
1520 return mlir::success();
1521 }
1522
printCustomRangeSubscript(mlir::OpAsmPrinter & printer,fir::InsertOnRangeOp op,mlir::DenseIntElementsAttr coord)1523 static void printCustomRangeSubscript(mlir::OpAsmPrinter &printer,
1524 fir::InsertOnRangeOp op,
1525 mlir::DenseIntElementsAttr coord) {
1526 printer << "from (";
1527 auto enumerate = llvm::enumerate(coord.getValues<std::int64_t>());
1528 // Even entries are the lower bounds.
1529 llvm::interleaveComma(
1530 make_filter_range(
1531 enumerate,
1532 [](auto indexed_value) { return indexed_value.index() % 2 == 0; }),
1533 printer, [&](auto indexed_value) { printer << indexed_value.value(); });
1534 printer << ") to (";
1535 // Odd entries are the upper bounds.
1536 llvm::interleaveComma(
1537 make_filter_range(
1538 enumerate,
1539 [](auto indexed_value) { return indexed_value.index() % 2 != 0; }),
1540 printer, [&](auto indexed_value) { printer << indexed_value.value(); });
1541 printer << ")";
1542 }
1543
1544 /// Range bounds must be nonnegative, and the range must not be empty.
verify()1545 mlir::LogicalResult fir::InsertOnRangeOp::verify() {
1546 if (fir::hasDynamicSize(getSeq().getType()))
1547 return emitOpError("must have constant shape and size");
1548 mlir::DenseIntElementsAttr coorAttr = getCoor();
1549 if (coorAttr.size() < 2 || coorAttr.size() % 2 != 0)
1550 return emitOpError("has uneven number of values in ranges");
1551 bool rangeIsKnownToBeNonempty = false;
1552 for (auto i = coorAttr.getValues<std::int64_t>().end(),
1553 b = coorAttr.getValues<std::int64_t>().begin();
1554 i != b;) {
1555 int64_t ub = (*--i);
1556 int64_t lb = (*--i);
1557 if (lb < 0 || ub < 0)
1558 return emitOpError("negative range bound");
1559 if (rangeIsKnownToBeNonempty)
1560 continue;
1561 if (lb > ub)
1562 return emitOpError("empty range");
1563 rangeIsKnownToBeNonempty = lb < ub;
1564 }
1565 return mlir::success();
1566 }
1567
1568 //===----------------------------------------------------------------------===//
1569 // InsertValueOp
1570 //===----------------------------------------------------------------------===//
1571
checkIsIntegerConstant(mlir::Attribute attr,std::int64_t conVal)1572 static bool checkIsIntegerConstant(mlir::Attribute attr, std::int64_t conVal) {
1573 if (auto iattr = attr.dyn_cast<mlir::IntegerAttr>())
1574 return iattr.getInt() == conVal;
1575 return false;
1576 }
1577
isZero(mlir::Attribute a)1578 static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); }
isOne(mlir::Attribute a)1579 static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); }
1580
1581 // Undo some complex patterns created in the front-end and turn them back into
1582 // complex ops.
1583 template <typename FltOp, typename CpxOp>
1584 struct UndoComplexPattern : public mlir::RewritePattern {
UndoComplexPatternUndoComplexPattern1585 UndoComplexPattern(mlir::MLIRContext *ctx)
1586 : mlir::RewritePattern("fir.insert_value", 2, ctx) {}
1587
1588 mlir::LogicalResult
matchAndRewriteUndoComplexPattern1589 matchAndRewrite(mlir::Operation *op,
1590 mlir::PatternRewriter &rewriter) const override {
1591 auto insval = mlir::dyn_cast_or_null<fir::InsertValueOp>(op);
1592 if (!insval || !insval.getType().isa<fir::ComplexType>())
1593 return mlir::failure();
1594 auto insval2 = mlir::dyn_cast_or_null<fir::InsertValueOp>(
1595 insval.getAdt().getDefiningOp());
1596 if (!insval2)
1597 return mlir::failure();
1598 auto binf = mlir::dyn_cast_or_null<FltOp>(insval.getVal().getDefiningOp());
1599 auto binf2 =
1600 mlir::dyn_cast_or_null<FltOp>(insval2.getVal().getDefiningOp());
1601 if (!binf || !binf2 || insval.getCoor().size() != 1 ||
1602 !isOne(insval.getCoor()[0]) || insval2.getCoor().size() != 1 ||
1603 !isZero(insval2.getCoor()[0]))
1604 return mlir::failure();
1605 auto eai = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1606 binf.getLhs().getDefiningOp());
1607 auto ebi = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1608 binf.getRhs().getDefiningOp());
1609 auto ear = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1610 binf2.getLhs().getDefiningOp());
1611 auto ebr = mlir::dyn_cast_or_null<fir::ExtractValueOp>(
1612 binf2.getRhs().getDefiningOp());
1613 if (!eai || !ebi || !ear || !ebr || ear.getAdt() != eai.getAdt() ||
1614 ebr.getAdt() != ebi.getAdt() || eai.getCoor().size() != 1 ||
1615 !isOne(eai.getCoor()[0]) || ebi.getCoor().size() != 1 ||
1616 !isOne(ebi.getCoor()[0]) || ear.getCoor().size() != 1 ||
1617 !isZero(ear.getCoor()[0]) || ebr.getCoor().size() != 1 ||
1618 !isZero(ebr.getCoor()[0]))
1619 return mlir::failure();
1620 rewriter.replaceOpWithNewOp<CpxOp>(op, ear.getAdt(), ebr.getAdt());
1621 return mlir::success();
1622 }
1623 };
1624
getCanonicalizationPatterns(mlir::RewritePatternSet & results,mlir::MLIRContext * context)1625 void fir::InsertValueOp::getCanonicalizationPatterns(
1626 mlir::RewritePatternSet &results, mlir::MLIRContext *context) {
1627 results.insert<UndoComplexPattern<mlir::arith::AddFOp, fir::AddcOp>,
1628 UndoComplexPattern<mlir::arith::SubFOp, fir::SubcOp>>(context);
1629 }
1630
1631 //===----------------------------------------------------------------------===//
1632 // IterWhileOp
1633 //===----------------------------------------------------------------------===//
1634
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Value lb,mlir::Value ub,mlir::Value step,mlir::Value iterate,bool finalCountValue,mlir::ValueRange iterArgs,llvm::ArrayRef<mlir::NamedAttribute> attributes)1635 void fir::IterWhileOp::build(mlir::OpBuilder &builder,
1636 mlir::OperationState &result, mlir::Value lb,
1637 mlir::Value ub, mlir::Value step,
1638 mlir::Value iterate, bool finalCountValue,
1639 mlir::ValueRange iterArgs,
1640 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
1641 result.addOperands({lb, ub, step, iterate});
1642 if (finalCountValue) {
1643 result.addTypes(builder.getIndexType());
1644 result.addAttribute(getFinalValueAttrNameStr(), builder.getUnitAttr());
1645 }
1646 result.addTypes(iterate.getType());
1647 result.addOperands(iterArgs);
1648 for (auto v : iterArgs)
1649 result.addTypes(v.getType());
1650 mlir::Region *bodyRegion = result.addRegion();
1651 bodyRegion->push_back(new mlir::Block{});
1652 bodyRegion->front().addArgument(builder.getIndexType(), result.location);
1653 bodyRegion->front().addArgument(iterate.getType(), result.location);
1654 bodyRegion->front().addArguments(
1655 iterArgs.getTypes(),
1656 llvm::SmallVector<mlir::Location>(iterArgs.size(), result.location));
1657 result.addAttributes(attributes);
1658 }
1659
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1660 mlir::ParseResult fir::IterWhileOp::parse(mlir::OpAsmParser &parser,
1661 mlir::OperationState &result) {
1662 auto &builder = parser.getBuilder();
1663 mlir::OpAsmParser::Argument inductionVariable, iterateVar;
1664 mlir::OpAsmParser::UnresolvedOperand lb, ub, step, iterateInput;
1665 if (parser.parseLParen() || parser.parseArgument(inductionVariable) ||
1666 parser.parseEqual())
1667 return mlir::failure();
1668
1669 // Parse loop bounds.
1670 auto indexType = builder.getIndexType();
1671 auto i1Type = builder.getIntegerType(1);
1672 if (parser.parseOperand(lb) ||
1673 parser.resolveOperand(lb, indexType, result.operands) ||
1674 parser.parseKeyword("to") || parser.parseOperand(ub) ||
1675 parser.resolveOperand(ub, indexType, result.operands) ||
1676 parser.parseKeyword("step") || parser.parseOperand(step) ||
1677 parser.parseRParen() ||
1678 parser.resolveOperand(step, indexType, result.operands) ||
1679 parser.parseKeyword("and") || parser.parseLParen() ||
1680 parser.parseArgument(iterateVar) || parser.parseEqual() ||
1681 parser.parseOperand(iterateInput) || parser.parseRParen() ||
1682 parser.resolveOperand(iterateInput, i1Type, result.operands))
1683 return mlir::failure();
1684
1685 // Parse the initial iteration arguments.
1686 auto prependCount = false;
1687
1688 // Induction variable.
1689 llvm::SmallVector<mlir::OpAsmParser::Argument> regionArgs;
1690 regionArgs.push_back(inductionVariable);
1691 regionArgs.push_back(iterateVar);
1692
1693 if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
1694 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1695 llvm::SmallVector<mlir::Type> regionTypes;
1696 // Parse assignment list and results type list.
1697 if (parser.parseAssignmentList(regionArgs, operands) ||
1698 parser.parseArrowTypeList(regionTypes))
1699 return mlir::failure();
1700 if (regionTypes.size() == operands.size() + 2)
1701 prependCount = true;
1702 llvm::ArrayRef<mlir::Type> resTypes = regionTypes;
1703 resTypes = prependCount ? resTypes.drop_front(2) : resTypes;
1704 // Resolve input operands.
1705 for (auto operandType : llvm::zip(operands, resTypes))
1706 if (parser.resolveOperand(std::get<0>(operandType),
1707 std::get<1>(operandType), result.operands))
1708 return mlir::failure();
1709 if (prependCount) {
1710 result.addTypes(regionTypes);
1711 } else {
1712 result.addTypes(i1Type);
1713 result.addTypes(resTypes);
1714 }
1715 } else if (succeeded(parser.parseOptionalArrow())) {
1716 llvm::SmallVector<mlir::Type> typeList;
1717 if (parser.parseLParen() || parser.parseTypeList(typeList) ||
1718 parser.parseRParen())
1719 return mlir::failure();
1720 // Type list must be "(index, i1)".
1721 if (typeList.size() != 2 || !typeList[0].isa<mlir::IndexType>() ||
1722 !typeList[1].isSignlessInteger(1))
1723 return mlir::failure();
1724 result.addTypes(typeList);
1725 prependCount = true;
1726 } else {
1727 result.addTypes(i1Type);
1728 }
1729
1730 if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
1731 return mlir::failure();
1732
1733 llvm::SmallVector<mlir::Type> argTypes;
1734 // Induction variable (hidden)
1735 if (prependCount)
1736 result.addAttribute(IterWhileOp::getFinalValueAttrNameStr(),
1737 builder.getUnitAttr());
1738 else
1739 argTypes.push_back(indexType);
1740 // Loop carried variables (including iterate)
1741 argTypes.append(result.types.begin(), result.types.end());
1742 // Parse the body region.
1743 auto *body = result.addRegion();
1744 if (regionArgs.size() != argTypes.size())
1745 return parser.emitError(
1746 parser.getNameLoc(),
1747 "mismatch in number of loop-carried values and defined values");
1748
1749 for (size_t i = 0, e = regionArgs.size(); i != e; ++i)
1750 regionArgs[i].type = argTypes[i];
1751
1752 if (parser.parseRegion(*body, regionArgs))
1753 return mlir::failure();
1754
1755 fir::IterWhileOp::ensureTerminator(*body, builder, result.location);
1756 return mlir::success();
1757 }
1758
verify()1759 mlir::LogicalResult fir::IterWhileOp::verify() {
1760 // Check that the body defines as single block argument for the induction
1761 // variable.
1762 auto *body = getBody();
1763 if (!body->getArgument(1).getType().isInteger(1))
1764 return emitOpError(
1765 "expected body second argument to be an index argument for "
1766 "the induction variable");
1767 if (!body->getArgument(0).getType().isIndex())
1768 return emitOpError(
1769 "expected body first argument to be an index argument for "
1770 "the induction variable");
1771
1772 auto opNumResults = getNumResults();
1773 if (getFinalValue()) {
1774 // Result type must be "(index, i1, ...)".
1775 if (!getResult(0).getType().isa<mlir::IndexType>())
1776 return emitOpError("result #0 expected to be index");
1777 if (!getResult(1).getType().isSignlessInteger(1))
1778 return emitOpError("result #1 expected to be i1");
1779 opNumResults--;
1780 } else {
1781 // iterate_while always returns the early exit induction value.
1782 // Result type must be "(i1, ...)"
1783 if (!getResult(0).getType().isSignlessInteger(1))
1784 return emitOpError("result #0 expected to be i1");
1785 }
1786 if (opNumResults == 0)
1787 return mlir::failure();
1788 if (getNumIterOperands() != opNumResults)
1789 return emitOpError(
1790 "mismatch in number of loop-carried values and defined values");
1791 if (getNumRegionIterArgs() != opNumResults)
1792 return emitOpError(
1793 "mismatch in number of basic block args and defined values");
1794 auto iterOperands = getIterOperands();
1795 auto iterArgs = getRegionIterArgs();
1796 auto opResults = getFinalValue() ? getResults().drop_front() : getResults();
1797 unsigned i = 0u;
1798 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
1799 if (std::get<0>(e).getType() != std::get<2>(e).getType())
1800 return emitOpError() << "types mismatch between " << i
1801 << "th iter operand and defined value";
1802 if (std::get<1>(e).getType() != std::get<2>(e).getType())
1803 return emitOpError() << "types mismatch between " << i
1804 << "th iter region arg and defined value";
1805
1806 i++;
1807 }
1808 return mlir::success();
1809 }
1810
print(mlir::OpAsmPrinter & p)1811 void fir::IterWhileOp::print(mlir::OpAsmPrinter &p) {
1812 p << " (" << getInductionVar() << " = " << getLowerBound() << " to "
1813 << getUpperBound() << " step " << getStep() << ") and (";
1814 assert(hasIterOperands());
1815 auto regionArgs = getRegionIterArgs();
1816 auto operands = getIterOperands();
1817 p << regionArgs.front() << " = " << *operands.begin() << ")";
1818 if (regionArgs.size() > 1) {
1819 p << " iter_args(";
1820 llvm::interleaveComma(
1821 llvm::zip(regionArgs.drop_front(), operands.drop_front()), p,
1822 [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); });
1823 p << ") -> (";
1824 llvm::interleaveComma(
1825 llvm::drop_begin(getResultTypes(), getFinalValue() ? 0 : 1), p);
1826 p << ")";
1827 } else if (getFinalValue()) {
1828 p << " -> (" << getResultTypes() << ')';
1829 }
1830 p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
1831 {getFinalValueAttrNameStr()});
1832 p << ' ';
1833 p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
1834 /*printBlockTerminators=*/true);
1835 }
1836
getLoopBody()1837 mlir::Region &fir::IterWhileOp::getLoopBody() { return getRegion(); }
1838
iterArgToBlockArg(mlir::Value iterArg)1839 mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) {
1840 for (auto i : llvm::enumerate(getInitArgs()))
1841 if (iterArg == i.value())
1842 return getRegion().front().getArgument(i.index() + 1);
1843 return {};
1844 }
1845
resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> & results,unsigned resultNum)1846 void fir::IterWhileOp::resultToSourceOps(
1847 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
1848 auto oper = getFinalValue() ? resultNum + 1 : resultNum;
1849 auto *term = getRegion().front().getTerminator();
1850 if (oper < term->getNumOperands())
1851 results.push_back(term->getOperand(oper));
1852 }
1853
blockArgToSourceOp(unsigned blockArgNum)1854 mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) {
1855 if (blockArgNum > 0 && blockArgNum <= getInitArgs().size())
1856 return getInitArgs()[blockArgNum - 1];
1857 return {};
1858 }
1859
1860 //===----------------------------------------------------------------------===//
1861 // LenParamIndexOp
1862 //===----------------------------------------------------------------------===//
1863
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1864 mlir::ParseResult fir::LenParamIndexOp::parse(mlir::OpAsmParser &parser,
1865 mlir::OperationState &result) {
1866 return parseFieldLikeOp<fir::LenType>(parser, result);
1867 }
1868
print(mlir::OpAsmPrinter & p)1869 void fir::LenParamIndexOp::print(mlir::OpAsmPrinter &p) {
1870 printFieldLikeOp(p, *this);
1871 }
1872
build(mlir::OpBuilder & builder,mlir::OperationState & result,llvm::StringRef fieldName,mlir::Type recTy,mlir::ValueRange operands)1873 void fir::LenParamIndexOp::build(mlir::OpBuilder &builder,
1874 mlir::OperationState &result,
1875 llvm::StringRef fieldName, mlir::Type recTy,
1876 mlir::ValueRange operands) {
1877 result.addAttribute(getFieldAttrName(), builder.getStringAttr(fieldName));
1878 result.addAttribute(getTypeAttrName(), mlir::TypeAttr::get(recTy));
1879 result.addOperands(operands);
1880 }
1881
getAttributes()1882 llvm::SmallVector<mlir::Attribute> fir::LenParamIndexOp::getAttributes() {
1883 llvm::SmallVector<mlir::Attribute> attrs;
1884 attrs.push_back(getFieldIdAttr());
1885 attrs.push_back(getOnTypeAttr());
1886 return attrs;
1887 }
1888
1889 //===----------------------------------------------------------------------===//
1890 // LoadOp
1891 //===----------------------------------------------------------------------===//
1892
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Value refVal)1893 void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
1894 mlir::Value refVal) {
1895 if (!refVal) {
1896 mlir::emitError(result.location, "LoadOp has null argument");
1897 return;
1898 }
1899 auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType());
1900 if (!eleTy) {
1901 mlir::emitError(result.location, "not a memory reference type");
1902 return;
1903 }
1904 result.addOperands(refVal);
1905 result.addTypes(eleTy);
1906 }
1907
getElementOf(mlir::Type & ele,mlir::Type ref)1908 mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) {
1909 if ((ele = fir::dyn_cast_ptrEleTy(ref)))
1910 return mlir::success();
1911 return mlir::failure();
1912 }
1913
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1914 mlir::ParseResult fir::LoadOp::parse(mlir::OpAsmParser &parser,
1915 mlir::OperationState &result) {
1916 mlir::Type type;
1917 mlir::OpAsmParser::UnresolvedOperand oper;
1918 if (parser.parseOperand(oper) ||
1919 parser.parseOptionalAttrDict(result.attributes) ||
1920 parser.parseColonType(type) ||
1921 parser.resolveOperand(oper, type, result.operands))
1922 return mlir::failure();
1923 mlir::Type eleTy;
1924 if (fir::LoadOp::getElementOf(eleTy, type) ||
1925 parser.addTypeToList(eleTy, result.types))
1926 return mlir::failure();
1927 return mlir::success();
1928 }
1929
print(mlir::OpAsmPrinter & p)1930 void fir::LoadOp::print(mlir::OpAsmPrinter &p) {
1931 p << ' ';
1932 p.printOperand(getMemref());
1933 p.printOptionalAttrDict(getOperation()->getAttrs(), {});
1934 p << " : " << getMemref().getType();
1935 }
1936
1937 //===----------------------------------------------------------------------===//
1938 // DoLoopOp
1939 //===----------------------------------------------------------------------===//
1940
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Value lb,mlir::Value ub,mlir::Value step,bool unordered,bool finalCountValue,mlir::ValueRange iterArgs,llvm::ArrayRef<mlir::NamedAttribute> attributes)1941 void fir::DoLoopOp::build(mlir::OpBuilder &builder,
1942 mlir::OperationState &result, mlir::Value lb,
1943 mlir::Value ub, mlir::Value step, bool unordered,
1944 bool finalCountValue, mlir::ValueRange iterArgs,
1945 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
1946 result.addOperands({lb, ub, step});
1947 result.addOperands(iterArgs);
1948 if (finalCountValue) {
1949 result.addTypes(builder.getIndexType());
1950 result.addAttribute(getFinalValueAttrName(result.name),
1951 builder.getUnitAttr());
1952 }
1953 for (auto v : iterArgs)
1954 result.addTypes(v.getType());
1955 mlir::Region *bodyRegion = result.addRegion();
1956 bodyRegion->push_back(new mlir::Block{});
1957 if (iterArgs.empty() && !finalCountValue)
1958 fir::DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location);
1959 bodyRegion->front().addArgument(builder.getIndexType(), result.location);
1960 bodyRegion->front().addArguments(
1961 iterArgs.getTypes(),
1962 llvm::SmallVector<mlir::Location>(iterArgs.size(), result.location));
1963 if (unordered)
1964 result.addAttribute(getUnorderedAttrName(result.name),
1965 builder.getUnitAttr());
1966 result.addAttributes(attributes);
1967 }
1968
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)1969 mlir::ParseResult fir::DoLoopOp::parse(mlir::OpAsmParser &parser,
1970 mlir::OperationState &result) {
1971 auto &builder = parser.getBuilder();
1972 mlir::OpAsmParser::Argument inductionVariable;
1973 mlir::OpAsmParser::UnresolvedOperand lb, ub, step;
1974 // Parse the induction variable followed by '='.
1975 if (parser.parseArgument(inductionVariable) || parser.parseEqual())
1976 return mlir::failure();
1977
1978 // Parse loop bounds.
1979 auto indexType = builder.getIndexType();
1980 if (parser.parseOperand(lb) ||
1981 parser.resolveOperand(lb, indexType, result.operands) ||
1982 parser.parseKeyword("to") || parser.parseOperand(ub) ||
1983 parser.resolveOperand(ub, indexType, result.operands) ||
1984 parser.parseKeyword("step") || parser.parseOperand(step) ||
1985 parser.resolveOperand(step, indexType, result.operands))
1986 return mlir::failure();
1987
1988 if (mlir::succeeded(parser.parseOptionalKeyword("unordered")))
1989 result.addAttribute("unordered", builder.getUnitAttr());
1990
1991 // Parse the optional initial iteration arguments.
1992 llvm::SmallVector<mlir::OpAsmParser::Argument> regionArgs;
1993 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> operands;
1994 llvm::SmallVector<mlir::Type> argTypes;
1995 bool prependCount = false;
1996 regionArgs.push_back(inductionVariable);
1997
1998 if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
1999 // Parse assignment list and results type list.
2000 if (parser.parseAssignmentList(regionArgs, operands) ||
2001 parser.parseArrowTypeList(result.types))
2002 return mlir::failure();
2003 if (result.types.size() == operands.size() + 1)
2004 prependCount = true;
2005 // Resolve input operands.
2006 llvm::ArrayRef<mlir::Type> resTypes = result.types;
2007 for (auto operand_type :
2008 llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes))
2009 if (parser.resolveOperand(std::get<0>(operand_type),
2010 std::get<1>(operand_type), result.operands))
2011 return mlir::failure();
2012 } else if (succeeded(parser.parseOptionalArrow())) {
2013 if (parser.parseKeyword("index"))
2014 return mlir::failure();
2015 result.types.push_back(indexType);
2016 prependCount = true;
2017 }
2018
2019 if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
2020 return mlir::failure();
2021
2022 // Induction variable.
2023 if (prependCount)
2024 result.addAttribute(DoLoopOp::getFinalValueAttrName(result.name),
2025 builder.getUnitAttr());
2026 else
2027 argTypes.push_back(indexType);
2028 // Loop carried variables
2029 argTypes.append(result.types.begin(), result.types.end());
2030 // Parse the body region.
2031 auto *body = result.addRegion();
2032 if (regionArgs.size() != argTypes.size())
2033 return parser.emitError(
2034 parser.getNameLoc(),
2035 "mismatch in number of loop-carried values and defined values");
2036 for (size_t i = 0, e = regionArgs.size(); i != e; ++i)
2037 regionArgs[i].type = argTypes[i];
2038
2039 if (parser.parseRegion(*body, regionArgs))
2040 return mlir::failure();
2041
2042 DoLoopOp::ensureTerminator(*body, builder, result.location);
2043
2044 return mlir::success();
2045 }
2046
getForInductionVarOwner(mlir::Value val)2047 fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) {
2048 auto ivArg = val.dyn_cast<mlir::BlockArgument>();
2049 if (!ivArg)
2050 return {};
2051 assert(ivArg.getOwner() && "unlinked block argument");
2052 auto *containingInst = ivArg.getOwner()->getParentOp();
2053 return mlir::dyn_cast_or_null<fir::DoLoopOp>(containingInst);
2054 }
2055
2056 // Lifted from loop.loop
verify()2057 mlir::LogicalResult fir::DoLoopOp::verify() {
2058 // Check that the body defines as single block argument for the induction
2059 // variable.
2060 auto *body = getBody();
2061 if (!body->getArgument(0).getType().isIndex())
2062 return emitOpError(
2063 "expected body first argument to be an index argument for "
2064 "the induction variable");
2065
2066 auto opNumResults = getNumResults();
2067 if (opNumResults == 0)
2068 return mlir::success();
2069
2070 if (getFinalValue()) {
2071 if (getUnordered())
2072 return emitOpError("unordered loop has no final value");
2073 opNumResults--;
2074 }
2075 if (getNumIterOperands() != opNumResults)
2076 return emitOpError(
2077 "mismatch in number of loop-carried values and defined values");
2078 if (getNumRegionIterArgs() != opNumResults)
2079 return emitOpError(
2080 "mismatch in number of basic block args and defined values");
2081 auto iterOperands = getIterOperands();
2082 auto iterArgs = getRegionIterArgs();
2083 auto opResults = getFinalValue() ? getResults().drop_front() : getResults();
2084 unsigned i = 0u;
2085 for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
2086 if (std::get<0>(e).getType() != std::get<2>(e).getType())
2087 return emitOpError() << "types mismatch between " << i
2088 << "th iter operand and defined value";
2089 if (std::get<1>(e).getType() != std::get<2>(e).getType())
2090 return emitOpError() << "types mismatch between " << i
2091 << "th iter region arg and defined value";
2092
2093 i++;
2094 }
2095 return mlir::success();
2096 }
2097
print(mlir::OpAsmPrinter & p)2098 void fir::DoLoopOp::print(mlir::OpAsmPrinter &p) {
2099 bool printBlockTerminators = false;
2100 p << ' ' << getInductionVar() << " = " << getLowerBound() << " to "
2101 << getUpperBound() << " step " << getStep();
2102 if (getUnordered())
2103 p << " unordered";
2104 if (hasIterOperands()) {
2105 p << " iter_args(";
2106 auto regionArgs = getRegionIterArgs();
2107 auto operands = getIterOperands();
2108 llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) {
2109 p << std::get<0>(it) << " = " << std::get<1>(it);
2110 });
2111 p << ") -> (" << getResultTypes() << ')';
2112 printBlockTerminators = true;
2113 } else if (getFinalValue()) {
2114 p << " -> " << getResultTypes();
2115 printBlockTerminators = true;
2116 }
2117 p.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
2118 {"unordered", "finalValue"});
2119 p << ' ';
2120 p.printRegion(getRegion(), /*printEntryBlockArgs=*/false,
2121 printBlockTerminators);
2122 }
2123
getLoopBody()2124 mlir::Region &fir::DoLoopOp::getLoopBody() { return getRegion(); }
2125
2126 /// Translate a value passed as an iter_arg to the corresponding block
2127 /// argument in the body of the loop.
iterArgToBlockArg(mlir::Value iterArg)2128 mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) {
2129 for (auto i : llvm::enumerate(getInitArgs()))
2130 if (iterArg == i.value())
2131 return getRegion().front().getArgument(i.index() + 1);
2132 return {};
2133 }
2134
2135 /// Translate the result vector (by index number) to the corresponding value
2136 /// to the `fir.result` Op.
resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> & results,unsigned resultNum)2137 void fir::DoLoopOp::resultToSourceOps(
2138 llvm::SmallVectorImpl<mlir::Value> &results, unsigned resultNum) {
2139 auto oper = getFinalValue() ? resultNum + 1 : resultNum;
2140 auto *term = getRegion().front().getTerminator();
2141 if (oper < term->getNumOperands())
2142 results.push_back(term->getOperand(oper));
2143 }
2144
2145 /// Translate the block argument (by index number) to the corresponding value
2146 /// passed as an iter_arg to the parent DoLoopOp.
blockArgToSourceOp(unsigned blockArgNum)2147 mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) {
2148 if (blockArgNum > 0 && blockArgNum <= getInitArgs().size())
2149 return getInitArgs()[blockArgNum - 1];
2150 return {};
2151 }
2152
2153 //===----------------------------------------------------------------------===//
2154 // DTEntryOp
2155 //===----------------------------------------------------------------------===//
2156
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)2157 mlir::ParseResult fir::DTEntryOp::parse(mlir::OpAsmParser &parser,
2158 mlir::OperationState &result) {
2159 llvm::StringRef methodName;
2160 // allow `methodName` or `"methodName"`
2161 if (failed(parser.parseOptionalKeyword(&methodName))) {
2162 mlir::StringAttr methodAttr;
2163 if (parser.parseAttribute(methodAttr,
2164 fir::DTEntryOp::getMethodAttrNameStr(),
2165 result.attributes))
2166 return mlir::failure();
2167 } else {
2168 result.addAttribute(fir::DTEntryOp::getMethodAttrNameStr(),
2169 parser.getBuilder().getStringAttr(methodName));
2170 }
2171 mlir::SymbolRefAttr calleeAttr;
2172 if (parser.parseComma() ||
2173 parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrNameStr(),
2174 result.attributes))
2175 return mlir::failure();
2176 return mlir::success();
2177 }
2178
print(mlir::OpAsmPrinter & p)2179 void fir::DTEntryOp::print(mlir::OpAsmPrinter &p) {
2180 p << ' ' << getMethodAttr() << ", " << getProcAttr();
2181 }
2182
2183 //===----------------------------------------------------------------------===//
2184 // ReboxOp
2185 //===----------------------------------------------------------------------===//
2186
2187 /// Get the scalar type related to a fir.box type.
2188 /// Example: return f32 for !fir.box<!fir.heap<!fir.array<?x?xf32>>.
getBoxScalarEleTy(mlir::Type boxTy)2189 static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) {
2190 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
2191 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
2192 return seqTy.getEleTy();
2193 return eleTy;
2194 }
2195
2196 /// Get the rank from a !fir.box type
getBoxRank(mlir::Type boxTy)2197 static unsigned getBoxRank(mlir::Type boxTy) {
2198 auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy);
2199 if (auto seqTy = eleTy.dyn_cast<fir::SequenceType>())
2200 return seqTy.getDimension();
2201 return 0;
2202 }
2203
2204 /// Test if \p t1 and \p t2 are compatible character types (if they can
2205 /// represent the same type at runtime).
areCompatibleCharacterTypes(mlir::Type t1,mlir::Type t2)2206 static bool areCompatibleCharacterTypes(mlir::Type t1, mlir::Type t2) {
2207 auto c1 = t1.dyn_cast<fir::CharacterType>();
2208 auto c2 = t2.dyn_cast<fir::CharacterType>();
2209 if (!c1 || !c2)
2210 return false;
2211 if (c1.hasDynamicLen() || c2.hasDynamicLen())
2212 return true;
2213 return c1.getLen() == c2.getLen();
2214 }
2215
verify()2216 mlir::LogicalResult fir::ReboxOp::verify() {
2217 auto inputBoxTy = getBox().getType();
2218 if (fir::isa_unknown_size_box(inputBoxTy))
2219 return emitOpError("box operand must not have unknown rank or type");
2220 auto outBoxTy = getType();
2221 if (fir::isa_unknown_size_box(outBoxTy))
2222 return emitOpError("result type must not have unknown rank or type");
2223 auto inputRank = getBoxRank(inputBoxTy);
2224 auto inputEleTy = getBoxScalarEleTy(inputBoxTy);
2225 auto outRank = getBoxRank(outBoxTy);
2226 auto outEleTy = getBoxScalarEleTy(outBoxTy);
2227
2228 if (auto sliceVal = getSlice()) {
2229 // Slicing case
2230 if (sliceVal.getType().cast<fir::SliceType>().getRank() != inputRank)
2231 return emitOpError("slice operand rank must match box operand rank");
2232 if (auto shapeVal = getShape()) {
2233 if (auto shiftTy = shapeVal.getType().dyn_cast<fir::ShiftType>()) {
2234 if (shiftTy.getRank() != inputRank)
2235 return emitOpError("shape operand and input box ranks must match "
2236 "when there is a slice");
2237 } else {
2238 return emitOpError("shape operand must absent or be a fir.shift "
2239 "when there is a slice");
2240 }
2241 }
2242 if (auto sliceOp = sliceVal.getDefiningOp()) {
2243 auto slicedRank = mlir::cast<fir::SliceOp>(sliceOp).getOutRank();
2244 if (slicedRank != outRank)
2245 return emitOpError("result type rank and rank after applying slice "
2246 "operand must match");
2247 }
2248 } else {
2249 // Reshaping case
2250 unsigned shapeRank = inputRank;
2251 if (auto shapeVal = getShape()) {
2252 auto ty = shapeVal.getType();
2253 if (auto shapeTy = ty.dyn_cast<fir::ShapeType>()) {
2254 shapeRank = shapeTy.getRank();
2255 } else if (auto shapeShiftTy = ty.dyn_cast<fir::ShapeShiftType>()) {
2256 shapeRank = shapeShiftTy.getRank();
2257 } else {
2258 auto shiftTy = ty.cast<fir::ShiftType>();
2259 shapeRank = shiftTy.getRank();
2260 if (shapeRank != inputRank)
2261 return emitOpError("shape operand and input box ranks must match "
2262 "when the shape is a fir.shift");
2263 }
2264 }
2265 if (shapeRank != outRank)
2266 return emitOpError("result type and shape operand ranks must match");
2267 }
2268
2269 if (inputEleTy != outEleTy) {
2270 // TODO: check that outBoxTy is a parent type of inputBoxTy for derived
2271 // types.
2272 // Character input and output types with constant length may be different if
2273 // there is a substring in the slice, otherwise, they must match. If any of
2274 // the types is a character with dynamic length, the other type can be any
2275 // character type.
2276 const bool typeCanMismatch =
2277 inputEleTy.isa<fir::RecordType>() ||
2278 (getSlice() && inputEleTy.isa<fir::CharacterType>()) ||
2279 areCompatibleCharacterTypes(inputEleTy, outEleTy);
2280 if (!typeCanMismatch)
2281 return emitOpError(
2282 "op input and output element types must match for intrinsic types");
2283 }
2284 return mlir::success();
2285 }
2286
2287 //===----------------------------------------------------------------------===//
2288 // ResultOp
2289 //===----------------------------------------------------------------------===//
2290
verify()2291 mlir::LogicalResult fir::ResultOp::verify() {
2292 auto *parentOp = (*this)->getParentOp();
2293 auto results = parentOp->getResults();
2294 auto operands = (*this)->getOperands();
2295
2296 if (parentOp->getNumResults() != getNumOperands())
2297 return emitOpError() << "parent of result must have same arity";
2298 for (auto e : llvm::zip(results, operands))
2299 if (std::get<0>(e).getType() != std::get<1>(e).getType())
2300 return emitOpError() << "types mismatch between result op and its parent";
2301 return mlir::success();
2302 }
2303
2304 //===----------------------------------------------------------------------===//
2305 // SaveResultOp
2306 //===----------------------------------------------------------------------===//
2307
verify()2308 mlir::LogicalResult fir::SaveResultOp::verify() {
2309 auto resultType = getValue().getType();
2310 if (resultType != fir::dyn_cast_ptrEleTy(getMemref().getType()))
2311 return emitOpError("value type must match memory reference type");
2312 if (fir::isa_unknown_size_box(resultType))
2313 return emitOpError("cannot save !fir.box of unknown rank or type");
2314
2315 if (resultType.isa<fir::BoxType>()) {
2316 if (getShape() || !getTypeparams().empty())
2317 return emitOpError(
2318 "must not have shape or length operands if the value is a fir.box");
2319 return mlir::success();
2320 }
2321
2322 // fir.record or fir.array case.
2323 unsigned shapeTyRank = 0;
2324 if (auto shapeVal = getShape()) {
2325 auto shapeTy = shapeVal.getType();
2326 if (auto s = shapeTy.dyn_cast<fir::ShapeType>())
2327 shapeTyRank = s.getRank();
2328 else
2329 shapeTyRank = shapeTy.cast<fir::ShapeShiftType>().getRank();
2330 }
2331
2332 auto eleTy = resultType;
2333 if (auto seqTy = resultType.dyn_cast<fir::SequenceType>()) {
2334 if (seqTy.getDimension() != shapeTyRank)
2335 emitOpError("shape operand must be provided and have the value rank "
2336 "when the value is a fir.array");
2337 eleTy = seqTy.getEleTy();
2338 } else {
2339 if (shapeTyRank != 0)
2340 emitOpError(
2341 "shape operand should only be provided if the value is a fir.array");
2342 }
2343
2344 if (auto recTy = eleTy.dyn_cast<fir::RecordType>()) {
2345 if (recTy.getNumLenParams() != getTypeparams().size())
2346 emitOpError("length parameters number must match with the value type "
2347 "length parameters");
2348 } else if (auto charTy = eleTy.dyn_cast<fir::CharacterType>()) {
2349 if (getTypeparams().size() > 1)
2350 emitOpError("no more than one length parameter must be provided for "
2351 "character value");
2352 } else {
2353 if (!getTypeparams().empty())
2354 emitOpError("length parameters must not be provided for this value type");
2355 }
2356
2357 return mlir::success();
2358 }
2359
2360 //===----------------------------------------------------------------------===//
2361 // IntegralSwitchTerminator
2362 //===----------------------------------------------------------------------===//
getCompareOffsetAttr()2363 static constexpr llvm::StringRef getCompareOffsetAttr() {
2364 return "compare_operand_offsets";
2365 }
2366
getTargetOffsetAttr()2367 static constexpr llvm::StringRef getTargetOffsetAttr() {
2368 return "target_operand_offsets";
2369 }
2370
2371 template <typename OpT>
verifyIntegralSwitchTerminator(OpT op)2372 static mlir::LogicalResult verifyIntegralSwitchTerminator(OpT op) {
2373 if (!op.getSelector()
2374 .getType()
2375 .template isa<mlir::IntegerType, mlir::IndexType,
2376 fir::IntegerType>())
2377 return op.emitOpError("must be an integer");
2378 auto cases =
2379 op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue();
2380 auto count = op.getNumDest();
2381 if (count == 0)
2382 return op.emitOpError("must have at least one successor");
2383 if (op.getNumConditions() != count)
2384 return op.emitOpError("number of cases and targets don't match");
2385 if (op.targetOffsetSize() != count)
2386 return op.emitOpError("incorrect number of successor operand groups");
2387 for (decltype(count) i = 0; i != count; ++i) {
2388 if (!cases[i].template isa<mlir::IntegerAttr, mlir::UnitAttr>())
2389 return op.emitOpError("invalid case alternative");
2390 }
2391 return mlir::success();
2392 }
2393
parseIntegralSwitchTerminator(mlir::OpAsmParser & parser,mlir::OperationState & result,llvm::StringRef casesAttr,llvm::StringRef operandSegmentAttr)2394 static mlir::ParseResult parseIntegralSwitchTerminator(
2395 mlir::OpAsmParser &parser, mlir::OperationState &result,
2396 llvm::StringRef casesAttr, llvm::StringRef operandSegmentAttr) {
2397 mlir::OpAsmParser::UnresolvedOperand selector;
2398 mlir::Type type;
2399 if (fir::parseSelector(parser, result, selector, type))
2400 return mlir::failure();
2401
2402 llvm::SmallVector<mlir::Attribute> ivalues;
2403 llvm::SmallVector<mlir::Block *> dests;
2404 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2405 while (true) {
2406 mlir::Attribute ivalue; // Integer or Unit
2407 mlir::Block *dest;
2408 llvm::SmallVector<mlir::Value> destArg;
2409 mlir::NamedAttrList temp;
2410 if (parser.parseAttribute(ivalue, "i", temp) || parser.parseComma() ||
2411 parser.parseSuccessorAndUseList(dest, destArg))
2412 return mlir::failure();
2413 ivalues.push_back(ivalue);
2414 dests.push_back(dest);
2415 destArgs.push_back(destArg);
2416 if (!parser.parseOptionalRSquare())
2417 break;
2418 if (parser.parseComma())
2419 return mlir::failure();
2420 }
2421 auto &bld = parser.getBuilder();
2422 result.addAttribute(casesAttr, bld.getArrayAttr(ivalues));
2423 llvm::SmallVector<int32_t> argOffs;
2424 int32_t sumArgs = 0;
2425 const auto count = dests.size();
2426 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2427 result.addSuccessors(dests[i]);
2428 result.addOperands(destArgs[i]);
2429 auto argSize = destArgs[i].size();
2430 argOffs.push_back(argSize);
2431 sumArgs += argSize;
2432 }
2433 result.addAttribute(operandSegmentAttr,
2434 bld.getI32VectorAttr({1, 0, sumArgs}));
2435 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
2436 return mlir::success();
2437 }
2438
2439 template <typename OpT>
printIntegralSwitchTerminator(OpT op,mlir::OpAsmPrinter & p)2440 static void printIntegralSwitchTerminator(OpT op, mlir::OpAsmPrinter &p) {
2441 p << ' ';
2442 p.printOperand(op.getSelector());
2443 p << " : " << op.getSelector().getType() << " [";
2444 auto cases =
2445 op->template getAttrOfType<mlir::ArrayAttr>(op.getCasesAttr()).getValue();
2446 auto count = op.getNumConditions();
2447 for (decltype(count) i = 0; i != count; ++i) {
2448 if (i)
2449 p << ", ";
2450 auto &attr = cases[i];
2451 if (auto intAttr = attr.template dyn_cast_or_null<mlir::IntegerAttr>())
2452 p << intAttr.getValue();
2453 else
2454 p.printAttribute(attr);
2455 p << ", ";
2456 op.printSuccessorAtIndex(p, i);
2457 }
2458 p << ']';
2459 p.printOptionalAttrDict(
2460 op->getAttrs(), {op.getCasesAttr(), getCompareOffsetAttr(),
2461 getTargetOffsetAttr(), op.getOperandSegmentSizeAttr()});
2462 }
2463
2464 //===----------------------------------------------------------------------===//
2465 // SelectOp
2466 //===----------------------------------------------------------------------===//
2467
verify()2468 mlir::LogicalResult fir::SelectOp::verify() {
2469 return verifyIntegralSwitchTerminator(*this);
2470 }
2471
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)2472 mlir::ParseResult fir::SelectOp::parse(mlir::OpAsmParser &parser,
2473 mlir::OperationState &result) {
2474 return parseIntegralSwitchTerminator(parser, result, getCasesAttr(),
2475 getOperandSegmentSizeAttr());
2476 }
2477
print(mlir::OpAsmPrinter & p)2478 void fir::SelectOp::print(mlir::OpAsmPrinter &p) {
2479 printIntegralSwitchTerminator(*this, p);
2480 }
2481
2482 template <typename A, typename... AdditionalArgs>
getSubOperands(unsigned pos,A allArgs,mlir::DenseIntElementsAttr ranges,AdditionalArgs &&...additionalArgs)2483 static A getSubOperands(unsigned pos, A allArgs,
2484 mlir::DenseIntElementsAttr ranges,
2485 AdditionalArgs &&...additionalArgs) {
2486 unsigned start = 0;
2487 for (unsigned i = 0; i < pos; ++i)
2488 start += (*(ranges.begin() + i)).getZExtValue();
2489 return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(),
2490 std::forward<AdditionalArgs>(additionalArgs)...);
2491 }
2492
2493 static mlir::MutableOperandRange
getMutableSuccessorOperands(unsigned pos,mlir::MutableOperandRange operands,llvm::StringRef offsetAttr)2494 getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands,
2495 llvm::StringRef offsetAttr) {
2496 mlir::Operation *owner = operands.getOwner();
2497 mlir::NamedAttribute targetOffsetAttr =
2498 *owner->getAttrDictionary().getNamed(offsetAttr);
2499 return getSubOperands(
2500 pos, operands,
2501 targetOffsetAttr.getValue().cast<mlir::DenseIntElementsAttr>(),
2502 mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr));
2503 }
2504
denseElementsSize(mlir::DenseIntElementsAttr attr)2505 static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) {
2506 return attr.getNumElements();
2507 }
2508
getCompareOperands(unsigned)2509 llvm::Optional<mlir::OperandRange> fir::SelectOp::getCompareOperands(unsigned) {
2510 return {};
2511 }
2512
2513 llvm::Optional<llvm::ArrayRef<mlir::Value>>
getCompareOperands(llvm::ArrayRef<mlir::Value>,unsigned)2514 fir::SelectOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2515 return {};
2516 }
2517
getSuccessorOperands(unsigned oper)2518 mlir::SuccessorOperands fir::SelectOp::getSuccessorOperands(unsigned oper) {
2519 return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2520 oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2521 }
2522
2523 llvm::Optional<llvm::ArrayRef<mlir::Value>>
getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,unsigned oper)2524 fir::SelectOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2525 unsigned oper) {
2526 auto a =
2527 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2528 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2529 getOperandSegmentSizeAttr());
2530 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2531 }
2532
2533 llvm::Optional<mlir::ValueRange>
getSuccessorOperands(mlir::ValueRange operands,unsigned oper)2534 fir::SelectOp::getSuccessorOperands(mlir::ValueRange operands, unsigned oper) {
2535 auto a =
2536 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2537 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2538 getOperandSegmentSizeAttr());
2539 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2540 }
2541
targetOffsetSize()2542 unsigned fir::SelectOp::targetOffsetSize() {
2543 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2544 getTargetOffsetAttr()));
2545 }
2546
2547 //===----------------------------------------------------------------------===//
2548 // SelectCaseOp
2549 //===----------------------------------------------------------------------===//
2550
2551 llvm::Optional<mlir::OperandRange>
getCompareOperands(unsigned cond)2552 fir::SelectCaseOp::getCompareOperands(unsigned cond) {
2553 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2554 getCompareOffsetAttr());
2555 return {getSubOperands(cond, getCompareArgs(), a)};
2556 }
2557
2558 llvm::Optional<llvm::ArrayRef<mlir::Value>>
getCompareOperands(llvm::ArrayRef<mlir::Value> operands,unsigned cond)2559 fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef<mlir::Value> operands,
2560 unsigned cond) {
2561 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2562 getCompareOffsetAttr());
2563 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2564 getOperandSegmentSizeAttr());
2565 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
2566 }
2567
2568 llvm::Optional<mlir::ValueRange>
getCompareOperands(mlir::ValueRange operands,unsigned cond)2569 fir::SelectCaseOp::getCompareOperands(mlir::ValueRange operands,
2570 unsigned cond) {
2571 auto a = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2572 getCompareOffsetAttr());
2573 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2574 getOperandSegmentSizeAttr());
2575 return {getSubOperands(cond, getSubOperands(1, operands, segments), a)};
2576 }
2577
getSuccessorOperands(unsigned oper)2578 mlir::SuccessorOperands fir::SelectCaseOp::getSuccessorOperands(unsigned oper) {
2579 return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2580 oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2581 }
2582
2583 llvm::Optional<llvm::ArrayRef<mlir::Value>>
getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,unsigned oper)2584 fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2585 unsigned oper) {
2586 auto a =
2587 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2588 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2589 getOperandSegmentSizeAttr());
2590 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2591 }
2592
2593 llvm::Optional<mlir::ValueRange>
getSuccessorOperands(mlir::ValueRange operands,unsigned oper)2594 fir::SelectCaseOp::getSuccessorOperands(mlir::ValueRange operands,
2595 unsigned oper) {
2596 auto a =
2597 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2598 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2599 getOperandSegmentSizeAttr());
2600 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2601 }
2602
2603 // parser for fir.select_case Op
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)2604 mlir::ParseResult fir::SelectCaseOp::parse(mlir::OpAsmParser &parser,
2605 mlir::OperationState &result) {
2606 mlir::OpAsmParser::UnresolvedOperand selector;
2607 mlir::Type type;
2608 if (fir::parseSelector(parser, result, selector, type))
2609 return mlir::failure();
2610
2611 llvm::SmallVector<mlir::Attribute> attrs;
2612 llvm::SmallVector<mlir::OpAsmParser::UnresolvedOperand> opers;
2613 llvm::SmallVector<mlir::Block *> dests;
2614 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2615 llvm::SmallVector<std::int32_t> argOffs;
2616 std::int32_t offSize = 0;
2617 while (true) {
2618 mlir::Attribute attr;
2619 mlir::Block *dest;
2620 llvm::SmallVector<mlir::Value> destArg;
2621 mlir::NamedAttrList temp;
2622 if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) ||
2623 parser.parseComma())
2624 return mlir::failure();
2625 attrs.push_back(attr);
2626 if (attr.dyn_cast_or_null<mlir::UnitAttr>()) {
2627 argOffs.push_back(0);
2628 } else if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>()) {
2629 mlir::OpAsmParser::UnresolvedOperand oper1;
2630 mlir::OpAsmParser::UnresolvedOperand oper2;
2631 if (parser.parseOperand(oper1) || parser.parseComma() ||
2632 parser.parseOperand(oper2) || parser.parseComma())
2633 return mlir::failure();
2634 opers.push_back(oper1);
2635 opers.push_back(oper2);
2636 argOffs.push_back(2);
2637 offSize += 2;
2638 } else {
2639 mlir::OpAsmParser::UnresolvedOperand oper;
2640 if (parser.parseOperand(oper) || parser.parseComma())
2641 return mlir::failure();
2642 opers.push_back(oper);
2643 argOffs.push_back(1);
2644 ++offSize;
2645 }
2646 if (parser.parseSuccessorAndUseList(dest, destArg))
2647 return mlir::failure();
2648 dests.push_back(dest);
2649 destArgs.push_back(destArg);
2650 if (mlir::succeeded(parser.parseOptionalRSquare()))
2651 break;
2652 if (parser.parseComma())
2653 return mlir::failure();
2654 }
2655 result.addAttribute(fir::SelectCaseOp::getCasesAttr(),
2656 parser.getBuilder().getArrayAttr(attrs));
2657 if (parser.resolveOperands(opers, type, result.operands))
2658 return mlir::failure();
2659 llvm::SmallVector<int32_t> targOffs;
2660 int32_t toffSize = 0;
2661 const auto count = dests.size();
2662 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2663 result.addSuccessors(dests[i]);
2664 result.addOperands(destArgs[i]);
2665 auto argSize = destArgs[i].size();
2666 targOffs.push_back(argSize);
2667 toffSize += argSize;
2668 }
2669 auto &bld = parser.getBuilder();
2670 result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(),
2671 bld.getI32VectorAttr({1, offSize, toffSize}));
2672 result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs));
2673 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs));
2674 return mlir::success();
2675 }
2676
print(mlir::OpAsmPrinter & p)2677 void fir::SelectCaseOp::print(mlir::OpAsmPrinter &p) {
2678 p << ' ';
2679 p.printOperand(getSelector());
2680 p << " : " << getSelector().getType() << " [";
2681 auto cases =
2682 getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2683 auto count = getNumConditions();
2684 for (decltype(count) i = 0; i != count; ++i) {
2685 if (i)
2686 p << ", ";
2687 p << cases[i] << ", ";
2688 if (!cases[i].isa<mlir::UnitAttr>()) {
2689 auto caseArgs = *getCompareOperands(i);
2690 p.printOperand(*caseArgs.begin());
2691 p << ", ";
2692 if (cases[i].isa<fir::ClosedIntervalAttr>()) {
2693 p.printOperand(*(++caseArgs.begin()));
2694 p << ", ";
2695 }
2696 }
2697 printSuccessorAtIndex(p, i);
2698 }
2699 p << ']';
2700 p.printOptionalAttrDict(getOperation()->getAttrs(),
2701 {getCasesAttr(), getCompareOffsetAttr(),
2702 getTargetOffsetAttr(), getOperandSegmentSizeAttr()});
2703 }
2704
compareOffsetSize()2705 unsigned fir::SelectCaseOp::compareOffsetSize() {
2706 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2707 getCompareOffsetAttr()));
2708 }
2709
targetOffsetSize()2710 unsigned fir::SelectCaseOp::targetOffsetSize() {
2711 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2712 getTargetOffsetAttr()));
2713 }
2714
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Value selector,llvm::ArrayRef<mlir::Attribute> compareAttrs,llvm::ArrayRef<mlir::ValueRange> cmpOperands,llvm::ArrayRef<mlir::Block * > destinations,llvm::ArrayRef<mlir::ValueRange> destOperands,llvm::ArrayRef<mlir::NamedAttribute> attributes)2715 void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
2716 mlir::OperationState &result,
2717 mlir::Value selector,
2718 llvm::ArrayRef<mlir::Attribute> compareAttrs,
2719 llvm::ArrayRef<mlir::ValueRange> cmpOperands,
2720 llvm::ArrayRef<mlir::Block *> destinations,
2721 llvm::ArrayRef<mlir::ValueRange> destOperands,
2722 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2723 result.addOperands(selector);
2724 result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs));
2725 llvm::SmallVector<int32_t> operOffs;
2726 int32_t operSize = 0;
2727 for (auto attr : compareAttrs) {
2728 if (attr.isa<fir::ClosedIntervalAttr>()) {
2729 operOffs.push_back(2);
2730 operSize += 2;
2731 } else if (attr.isa<mlir::UnitAttr>()) {
2732 operOffs.push_back(0);
2733 } else {
2734 operOffs.push_back(1);
2735 ++operSize;
2736 }
2737 }
2738 for (auto ops : cmpOperands)
2739 result.addOperands(ops);
2740 result.addAttribute(getCompareOffsetAttr(),
2741 builder.getI32VectorAttr(operOffs));
2742 const auto count = destinations.size();
2743 for (auto d : destinations)
2744 result.addSuccessors(d);
2745 const auto opCount = destOperands.size();
2746 llvm::SmallVector<std::int32_t> argOffs;
2747 std::int32_t sumArgs = 0;
2748 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2749 if (i < opCount) {
2750 result.addOperands(destOperands[i]);
2751 const auto argSz = destOperands[i].size();
2752 argOffs.push_back(argSz);
2753 sumArgs += argSz;
2754 } else {
2755 argOffs.push_back(0);
2756 }
2757 }
2758 result.addAttribute(getOperandSegmentSizeAttr(),
2759 builder.getI32VectorAttr({1, operSize, sumArgs}));
2760 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
2761 result.addAttributes(attributes);
2762 }
2763
2764 /// This builder has a slightly simplified interface in that the list of
2765 /// operands need not be partitioned by the builder. Instead the operands are
2766 /// partitioned here, before being passed to the default builder. This
2767 /// partitioning is unchecked, so can go awry on bad input.
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Value selector,llvm::ArrayRef<mlir::Attribute> compareAttrs,llvm::ArrayRef<mlir::Value> cmpOpList,llvm::ArrayRef<mlir::Block * > destinations,llvm::ArrayRef<mlir::ValueRange> destOperands,llvm::ArrayRef<mlir::NamedAttribute> attributes)2768 void fir::SelectCaseOp::build(mlir::OpBuilder &builder,
2769 mlir::OperationState &result,
2770 mlir::Value selector,
2771 llvm::ArrayRef<mlir::Attribute> compareAttrs,
2772 llvm::ArrayRef<mlir::Value> cmpOpList,
2773 llvm::ArrayRef<mlir::Block *> destinations,
2774 llvm::ArrayRef<mlir::ValueRange> destOperands,
2775 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
2776 llvm::SmallVector<mlir::ValueRange> cmpOpers;
2777 auto iter = cmpOpList.begin();
2778 for (auto &attr : compareAttrs) {
2779 if (attr.isa<fir::ClosedIntervalAttr>()) {
2780 cmpOpers.push_back(mlir::ValueRange({iter, iter + 2}));
2781 iter += 2;
2782 } else if (attr.isa<mlir::UnitAttr>()) {
2783 cmpOpers.push_back(mlir::ValueRange{});
2784 } else {
2785 cmpOpers.push_back(mlir::ValueRange({iter, iter + 1}));
2786 ++iter;
2787 }
2788 }
2789 build(builder, result, selector, compareAttrs, cmpOpers, destinations,
2790 destOperands, attributes);
2791 }
2792
verify()2793 mlir::LogicalResult fir::SelectCaseOp::verify() {
2794 if (!getSelector()
2795 .getType()
2796 .isa<mlir::IntegerType, mlir::IndexType, fir::IntegerType,
2797 fir::LogicalType, fir::CharacterType>())
2798 return emitOpError("must be an integer, character, or logical");
2799 auto cases =
2800 getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2801 auto count = getNumDest();
2802 if (count == 0)
2803 return emitOpError("must have at least one successor");
2804 if (getNumConditions() != count)
2805 return emitOpError("number of conditions and successors don't match");
2806 if (compareOffsetSize() != count)
2807 return emitOpError("incorrect number of compare operand groups");
2808 if (targetOffsetSize() != count)
2809 return emitOpError("incorrect number of successor operand groups");
2810 for (decltype(count) i = 0; i != count; ++i) {
2811 auto &attr = cases[i];
2812 if (!(attr.isa<fir::PointIntervalAttr>() ||
2813 attr.isa<fir::LowerBoundAttr>() || attr.isa<fir::UpperBoundAttr>() ||
2814 attr.isa<fir::ClosedIntervalAttr>() || attr.isa<mlir::UnitAttr>()))
2815 return emitOpError("incorrect select case attribute type");
2816 }
2817 return mlir::success();
2818 }
2819
2820 //===----------------------------------------------------------------------===//
2821 // SelectRankOp
2822 //===----------------------------------------------------------------------===//
2823
verify()2824 mlir::LogicalResult fir::SelectRankOp::verify() {
2825 return verifyIntegralSwitchTerminator(*this);
2826 }
2827
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)2828 mlir::ParseResult fir::SelectRankOp::parse(mlir::OpAsmParser &parser,
2829 mlir::OperationState &result) {
2830 return parseIntegralSwitchTerminator(parser, result, getCasesAttr(),
2831 getOperandSegmentSizeAttr());
2832 }
2833
print(mlir::OpAsmPrinter & p)2834 void fir::SelectRankOp::print(mlir::OpAsmPrinter &p) {
2835 printIntegralSwitchTerminator(*this, p);
2836 }
2837
2838 llvm::Optional<mlir::OperandRange>
getCompareOperands(unsigned)2839 fir::SelectRankOp::getCompareOperands(unsigned) {
2840 return {};
2841 }
2842
2843 llvm::Optional<llvm::ArrayRef<mlir::Value>>
getCompareOperands(llvm::ArrayRef<mlir::Value>,unsigned)2844 fir::SelectRankOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2845 return {};
2846 }
2847
getSuccessorOperands(unsigned oper)2848 mlir::SuccessorOperands fir::SelectRankOp::getSuccessorOperands(unsigned oper) {
2849 return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2850 oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2851 }
2852
2853 llvm::Optional<llvm::ArrayRef<mlir::Value>>
getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,unsigned oper)2854 fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2855 unsigned oper) {
2856 auto a =
2857 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2858 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2859 getOperandSegmentSizeAttr());
2860 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2861 }
2862
2863 llvm::Optional<mlir::ValueRange>
getSuccessorOperands(mlir::ValueRange operands,unsigned oper)2864 fir::SelectRankOp::getSuccessorOperands(mlir::ValueRange operands,
2865 unsigned oper) {
2866 auto a =
2867 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2868 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2869 getOperandSegmentSizeAttr());
2870 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2871 }
2872
targetOffsetSize()2873 unsigned fir::SelectRankOp::targetOffsetSize() {
2874 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2875 getTargetOffsetAttr()));
2876 }
2877
2878 //===----------------------------------------------------------------------===//
2879 // SelectTypeOp
2880 //===----------------------------------------------------------------------===//
2881
2882 llvm::Optional<mlir::OperandRange>
getCompareOperands(unsigned)2883 fir::SelectTypeOp::getCompareOperands(unsigned) {
2884 return {};
2885 }
2886
2887 llvm::Optional<llvm::ArrayRef<mlir::Value>>
getCompareOperands(llvm::ArrayRef<mlir::Value>,unsigned)2888 fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef<mlir::Value>, unsigned) {
2889 return {};
2890 }
2891
getSuccessorOperands(unsigned oper)2892 mlir::SuccessorOperands fir::SelectTypeOp::getSuccessorOperands(unsigned oper) {
2893 return mlir::SuccessorOperands(::getMutableSuccessorOperands(
2894 oper, getTargetArgsMutable(), getTargetOffsetAttr()));
2895 }
2896
2897 llvm::Optional<llvm::ArrayRef<mlir::Value>>
getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,unsigned oper)2898 fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef<mlir::Value> operands,
2899 unsigned oper) {
2900 auto a =
2901 (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(getTargetOffsetAttr());
2902 auto segments = (*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2903 getOperandSegmentSizeAttr());
2904 return {getSubOperands(oper, getSubOperands(2, operands, segments), a)};
2905 }
2906
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)2907 mlir::ParseResult fir::SelectTypeOp::parse(mlir::OpAsmParser &parser,
2908 mlir::OperationState &result) {
2909 mlir::OpAsmParser::UnresolvedOperand selector;
2910 mlir::Type type;
2911 if (fir::parseSelector(parser, result, selector, type))
2912 return mlir::failure();
2913
2914 llvm::SmallVector<mlir::Attribute> attrs;
2915 llvm::SmallVector<mlir::Block *> dests;
2916 llvm::SmallVector<llvm::SmallVector<mlir::Value>> destArgs;
2917 while (true) {
2918 mlir::Attribute attr;
2919 mlir::Block *dest;
2920 llvm::SmallVector<mlir::Value> destArg;
2921 mlir::NamedAttrList temp;
2922 if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() ||
2923 parser.parseSuccessorAndUseList(dest, destArg))
2924 return mlir::failure();
2925 attrs.push_back(attr);
2926 dests.push_back(dest);
2927 destArgs.push_back(destArg);
2928 if (mlir::succeeded(parser.parseOptionalRSquare()))
2929 break;
2930 if (parser.parseComma())
2931 return mlir::failure();
2932 }
2933 auto &bld = parser.getBuilder();
2934 result.addAttribute(fir::SelectTypeOp::getCasesAttr(),
2935 bld.getArrayAttr(attrs));
2936 llvm::SmallVector<int32_t> argOffs;
2937 int32_t offSize = 0;
2938 const auto count = dests.size();
2939 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
2940 result.addSuccessors(dests[i]);
2941 result.addOperands(destArgs[i]);
2942 auto argSize = destArgs[i].size();
2943 argOffs.push_back(argSize);
2944 offSize += argSize;
2945 }
2946 result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(),
2947 bld.getI32VectorAttr({1, 0, offSize}));
2948 result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs));
2949 return mlir::success();
2950 }
2951
targetOffsetSize()2952 unsigned fir::SelectTypeOp::targetOffsetSize() {
2953 return denseElementsSize((*this)->getAttrOfType<mlir::DenseIntElementsAttr>(
2954 getTargetOffsetAttr()));
2955 }
2956
print(mlir::OpAsmPrinter & p)2957 void fir::SelectTypeOp::print(mlir::OpAsmPrinter &p) {
2958 p << ' ';
2959 p.printOperand(getSelector());
2960 p << " : " << getSelector().getType() << " [";
2961 auto cases =
2962 getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2963 auto count = getNumConditions();
2964 for (decltype(count) i = 0; i != count; ++i) {
2965 if (i)
2966 p << ", ";
2967 p << cases[i] << ", ";
2968 printSuccessorAtIndex(p, i);
2969 }
2970 p << ']';
2971 p.printOptionalAttrDict(getOperation()->getAttrs(),
2972 {getCasesAttr(), getCompareOffsetAttr(),
2973 getTargetOffsetAttr(),
2974 fir::SelectTypeOp::getOperandSegmentSizeAttr()});
2975 }
2976
verify()2977 mlir::LogicalResult fir::SelectTypeOp::verify() {
2978 if (!(getSelector().getType().isa<fir::BoxType>()))
2979 return emitOpError("must be a boxed type");
2980 auto cases =
2981 getOperation()->getAttrOfType<mlir::ArrayAttr>(getCasesAttr()).getValue();
2982 auto count = getNumDest();
2983 if (count == 0)
2984 return emitOpError("must have at least one successor");
2985 if (getNumConditions() != count)
2986 return emitOpError("number of conditions and successors don't match");
2987 if (targetOffsetSize() != count)
2988 return emitOpError("incorrect number of successor operand groups");
2989 for (decltype(count) i = 0; i != count; ++i) {
2990 auto &attr = cases[i];
2991 if (!(attr.isa<fir::ExactTypeAttr>() || attr.isa<fir::SubclassAttr>() ||
2992 attr.isa<mlir::UnitAttr>()))
2993 return emitOpError("invalid type-case alternative");
2994 }
2995 return mlir::success();
2996 }
2997
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Value selector,llvm::ArrayRef<mlir::Attribute> typeOperands,llvm::ArrayRef<mlir::Block * > destinations,llvm::ArrayRef<mlir::ValueRange> destOperands,llvm::ArrayRef<mlir::NamedAttribute> attributes)2998 void fir::SelectTypeOp::build(mlir::OpBuilder &builder,
2999 mlir::OperationState &result,
3000 mlir::Value selector,
3001 llvm::ArrayRef<mlir::Attribute> typeOperands,
3002 llvm::ArrayRef<mlir::Block *> destinations,
3003 llvm::ArrayRef<mlir::ValueRange> destOperands,
3004 llvm::ArrayRef<mlir::NamedAttribute> attributes) {
3005 result.addOperands(selector);
3006 result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands));
3007 const auto count = destinations.size();
3008 for (mlir::Block *dest : destinations)
3009 result.addSuccessors(dest);
3010 const auto opCount = destOperands.size();
3011 llvm::SmallVector<int32_t> argOffs;
3012 int32_t sumArgs = 0;
3013 for (std::remove_const_t<decltype(count)> i = 0; i != count; ++i) {
3014 if (i < opCount) {
3015 result.addOperands(destOperands[i]);
3016 const auto argSz = destOperands[i].size();
3017 argOffs.push_back(argSz);
3018 sumArgs += argSz;
3019 } else {
3020 argOffs.push_back(0);
3021 }
3022 }
3023 result.addAttribute(getOperandSegmentSizeAttr(),
3024 builder.getI32VectorAttr({1, 0, sumArgs}));
3025 result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs));
3026 result.addAttributes(attributes);
3027 }
3028
3029 //===----------------------------------------------------------------------===//
3030 // ShapeOp
3031 //===----------------------------------------------------------------------===//
3032
verify()3033 mlir::LogicalResult fir::ShapeOp::verify() {
3034 auto size = getExtents().size();
3035 auto shapeTy = getType().dyn_cast<fir::ShapeType>();
3036 assert(shapeTy && "must be a shape type");
3037 if (shapeTy.getRank() != size)
3038 return emitOpError("shape type rank mismatch");
3039 return mlir::success();
3040 }
3041
3042 //===----------------------------------------------------------------------===//
3043 // ShapeShiftOp
3044 //===----------------------------------------------------------------------===//
3045
verify()3046 mlir::LogicalResult fir::ShapeShiftOp::verify() {
3047 auto size = getPairs().size();
3048 if (size < 2 || size > 16 * 2)
3049 return emitOpError("incorrect number of args");
3050 if (size % 2 != 0)
3051 return emitOpError("requires a multiple of 2 args");
3052 auto shapeTy = getType().dyn_cast<fir::ShapeShiftType>();
3053 assert(shapeTy && "must be a shape shift type");
3054 if (shapeTy.getRank() * 2 != size)
3055 return emitOpError("shape type rank mismatch");
3056 return mlir::success();
3057 }
3058
3059 //===----------------------------------------------------------------------===//
3060 // ShiftOp
3061 //===----------------------------------------------------------------------===//
3062
verify()3063 mlir::LogicalResult fir::ShiftOp::verify() {
3064 auto size = getOrigins().size();
3065 auto shiftTy = getType().dyn_cast<fir::ShiftType>();
3066 assert(shiftTy && "must be a shift type");
3067 if (shiftTy.getRank() != size)
3068 return emitOpError("shift type rank mismatch");
3069 return mlir::success();
3070 }
3071
3072 //===----------------------------------------------------------------------===//
3073 // SliceOp
3074 //===----------------------------------------------------------------------===//
3075
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::ValueRange trips,mlir::ValueRange path,mlir::ValueRange substr)3076 void fir::SliceOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
3077 mlir::ValueRange trips, mlir::ValueRange path,
3078 mlir::ValueRange substr) {
3079 const auto rank = trips.size() / 3;
3080 auto sliceTy = fir::SliceType::get(builder.getContext(), rank);
3081 build(builder, result, sliceTy, trips, path, substr);
3082 }
3083
3084 /// Return the output rank of a slice op. The output rank must be between 1 and
3085 /// the rank of the array being sliced (inclusive).
getOutputRank(mlir::ValueRange triples)3086 unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) {
3087 unsigned rank = 0;
3088 if (!triples.empty()) {
3089 for (unsigned i = 1, end = triples.size(); i < end; i += 3) {
3090 auto *op = triples[i].getDefiningOp();
3091 if (!mlir::isa_and_nonnull<fir::UndefOp>(op))
3092 ++rank;
3093 }
3094 assert(rank > 0);
3095 }
3096 return rank;
3097 }
3098
verify()3099 mlir::LogicalResult fir::SliceOp::verify() {
3100 auto size = getTriples().size();
3101 if (size < 3 || size > 16 * 3)
3102 return emitOpError("incorrect number of args for triple");
3103 if (size % 3 != 0)
3104 return emitOpError("requires a multiple of 3 args");
3105 auto sliceTy = getType().dyn_cast<fir::SliceType>();
3106 assert(sliceTy && "must be a slice type");
3107 if (sliceTy.getRank() * 3 != size)
3108 return emitOpError("slice type rank mismatch");
3109 return mlir::success();
3110 }
3111
3112 //===----------------------------------------------------------------------===//
3113 // StoreOp
3114 //===----------------------------------------------------------------------===//
3115
elementType(mlir::Type refType)3116 mlir::Type fir::StoreOp::elementType(mlir::Type refType) {
3117 return fir::dyn_cast_ptrEleTy(refType);
3118 }
3119
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)3120 mlir::ParseResult fir::StoreOp::parse(mlir::OpAsmParser &parser,
3121 mlir::OperationState &result) {
3122 mlir::Type type;
3123 mlir::OpAsmParser::UnresolvedOperand oper;
3124 mlir::OpAsmParser::UnresolvedOperand store;
3125 if (parser.parseOperand(oper) || parser.parseKeyword("to") ||
3126 parser.parseOperand(store) ||
3127 parser.parseOptionalAttrDict(result.attributes) ||
3128 parser.parseColonType(type) ||
3129 parser.resolveOperand(oper, fir::StoreOp::elementType(type),
3130 result.operands) ||
3131 parser.resolveOperand(store, type, result.operands))
3132 return mlir::failure();
3133 return mlir::success();
3134 }
3135
print(mlir::OpAsmPrinter & p)3136 void fir::StoreOp::print(mlir::OpAsmPrinter &p) {
3137 p << ' ';
3138 p.printOperand(getValue());
3139 p << " to ";
3140 p.printOperand(getMemref());
3141 p.printOptionalAttrDict(getOperation()->getAttrs(), {});
3142 p << " : " << getMemref().getType();
3143 }
3144
verify()3145 mlir::LogicalResult fir::StoreOp::verify() {
3146 if (getValue().getType() != fir::dyn_cast_ptrEleTy(getMemref().getType()))
3147 return emitOpError("store value type must match memory reference type");
3148 if (fir::isa_unknown_size_box(getValue().getType()))
3149 return emitOpError("cannot store !fir.box of unknown rank or type");
3150 return mlir::success();
3151 }
3152
3153 //===----------------------------------------------------------------------===//
3154 // StringLitOp
3155 //===----------------------------------------------------------------------===//
3156
stringLitOpGetKind(fir::StringLitOp op)3157 inline fir::CharacterType::KindTy stringLitOpGetKind(fir::StringLitOp op) {
3158 auto eleTy = op.getType().cast<fir::SequenceType>().getEleTy();
3159 return eleTy.cast<fir::CharacterType>().getFKind();
3160 }
3161
isWideValue()3162 bool fir::StringLitOp::isWideValue() { return stringLitOpGetKind(*this) != 1; }
3163
3164 static mlir::NamedAttribute
mkNamedIntegerAttr(mlir::OpBuilder & builder,llvm::StringRef name,int64_t v)3165 mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) {
3166 assert(v > 0);
3167 return builder.getNamedAttr(
3168 name, builder.getIntegerAttr(builder.getIntegerType(64), v));
3169 }
3170
build(mlir::OpBuilder & builder,mlir::OperationState & result,fir::CharacterType inType,llvm::StringRef val,llvm::Optional<int64_t> len)3171 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3172 mlir::OperationState &result,
3173 fir::CharacterType inType, llvm::StringRef val,
3174 llvm::Optional<int64_t> len) {
3175 auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val));
3176 int64_t length = len ? *len : inType.getLen();
3177 auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3178 result.addAttributes({valAttr, lenAttr});
3179 result.addTypes(inType);
3180 }
3181
3182 template <typename C>
convertToArrayAttr(mlir::OpBuilder & builder,llvm::ArrayRef<C> xlist)3183 static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder,
3184 llvm::ArrayRef<C> xlist) {
3185 llvm::SmallVector<mlir::Attribute> attrs;
3186 auto ty = builder.getIntegerType(8 * sizeof(C));
3187 for (auto ch : xlist)
3188 attrs.push_back(builder.getIntegerAttr(ty, ch));
3189 return builder.getArrayAttr(attrs);
3190 }
3191
build(mlir::OpBuilder & builder,mlir::OperationState & result,fir::CharacterType inType,llvm::ArrayRef<char> vlist,llvm::Optional<std::int64_t> len)3192 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3193 mlir::OperationState &result,
3194 fir::CharacterType inType,
3195 llvm::ArrayRef<char> vlist,
3196 llvm::Optional<std::int64_t> len) {
3197 auto valAttr =
3198 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3199 std::int64_t length = len ? *len : inType.getLen();
3200 auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3201 result.addAttributes({valAttr, lenAttr});
3202 result.addTypes(inType);
3203 }
3204
build(mlir::OpBuilder & builder,mlir::OperationState & result,fir::CharacterType inType,llvm::ArrayRef<char16_t> vlist,llvm::Optional<std::int64_t> len)3205 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3206 mlir::OperationState &result,
3207 fir::CharacterType inType,
3208 llvm::ArrayRef<char16_t> vlist,
3209 llvm::Optional<std::int64_t> len) {
3210 auto valAttr =
3211 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3212 std::int64_t length = len ? *len : inType.getLen();
3213 auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3214 result.addAttributes({valAttr, lenAttr});
3215 result.addTypes(inType);
3216 }
3217
build(mlir::OpBuilder & builder,mlir::OperationState & result,fir::CharacterType inType,llvm::ArrayRef<char32_t> vlist,llvm::Optional<std::int64_t> len)3218 void fir::StringLitOp::build(mlir::OpBuilder &builder,
3219 mlir::OperationState &result,
3220 fir::CharacterType inType,
3221 llvm::ArrayRef<char32_t> vlist,
3222 llvm::Optional<std::int64_t> len) {
3223 auto valAttr =
3224 builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist));
3225 std::int64_t length = len ? *len : inType.getLen();
3226 auto lenAttr = mkNamedIntegerAttr(builder, size(), length);
3227 result.addAttributes({valAttr, lenAttr});
3228 result.addTypes(inType);
3229 }
3230
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)3231 mlir::ParseResult fir::StringLitOp::parse(mlir::OpAsmParser &parser,
3232 mlir::OperationState &result) {
3233 auto &builder = parser.getBuilder();
3234 mlir::Attribute val;
3235 mlir::NamedAttrList attrs;
3236 llvm::SMLoc trailingTypeLoc;
3237 if (parser.parseAttribute(val, "fake", attrs))
3238 return mlir::failure();
3239 if (auto v = val.dyn_cast<mlir::StringAttr>())
3240 result.attributes.push_back(
3241 builder.getNamedAttr(fir::StringLitOp::value(), v));
3242 else if (auto v = val.dyn_cast<mlir::DenseElementsAttr>())
3243 result.attributes.push_back(
3244 builder.getNamedAttr(fir::StringLitOp::xlist(), v));
3245 else if (auto v = val.dyn_cast<mlir::ArrayAttr>())
3246 result.attributes.push_back(
3247 builder.getNamedAttr(fir::StringLitOp::xlist(), v));
3248 else
3249 return parser.emitError(parser.getCurrentLocation(),
3250 "found an invalid constant");
3251 mlir::IntegerAttr sz;
3252 mlir::Type type;
3253 if (parser.parseLParen() ||
3254 parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) ||
3255 parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) ||
3256 parser.parseColonType(type))
3257 return mlir::failure();
3258 auto charTy = type.dyn_cast<fir::CharacterType>();
3259 if (!charTy)
3260 return parser.emitError(trailingTypeLoc, "must have character type");
3261 type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(),
3262 sz.getInt());
3263 if (!type || parser.addTypesToList(type, result.types))
3264 return mlir::failure();
3265 return mlir::success();
3266 }
3267
print(mlir::OpAsmPrinter & p)3268 void fir::StringLitOp::print(mlir::OpAsmPrinter &p) {
3269 p << ' ' << getValue() << '(';
3270 p << getSize().cast<mlir::IntegerAttr>().getValue() << ") : ";
3271 p.printType(getType());
3272 }
3273
verify()3274 mlir::LogicalResult fir::StringLitOp::verify() {
3275 if (getSize().cast<mlir::IntegerAttr>().getValue().isNegative())
3276 return emitOpError("size must be non-negative");
3277 if (auto xl = getOperation()->getAttr(fir::StringLitOp::xlist())) {
3278 if (auto xList = xl.dyn_cast<mlir::ArrayAttr>()) {
3279 for (auto a : xList)
3280 if (!a.isa<mlir::IntegerAttr>())
3281 return emitOpError("values in initializer must be integers");
3282 } else if (xl.isa<mlir::DenseElementsAttr>()) {
3283 // do nothing
3284 } else {
3285 return emitOpError("has unexpected attribute");
3286 }
3287 }
3288 return mlir::success();
3289 }
3290
3291 //===----------------------------------------------------------------------===//
3292 // UnboxProcOp
3293 //===----------------------------------------------------------------------===//
3294
verify()3295 mlir::LogicalResult fir::UnboxProcOp::verify() {
3296 if (auto eleTy = fir::dyn_cast_ptrEleTy(getRefTuple().getType()))
3297 if (eleTy.isa<mlir::TupleType>())
3298 return mlir::success();
3299 return emitOpError("second output argument has bad type");
3300 }
3301
3302 //===----------------------------------------------------------------------===//
3303 // IfOp
3304 //===----------------------------------------------------------------------===//
3305
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::Value cond,bool withElseRegion)3306 void fir::IfOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
3307 mlir::Value cond, bool withElseRegion) {
3308 build(builder, result, llvm::None, cond, withElseRegion);
3309 }
3310
build(mlir::OpBuilder & builder,mlir::OperationState & result,mlir::TypeRange resultTypes,mlir::Value cond,bool withElseRegion)3311 void fir::IfOp::build(mlir::OpBuilder &builder, mlir::OperationState &result,
3312 mlir::TypeRange resultTypes, mlir::Value cond,
3313 bool withElseRegion) {
3314 result.addOperands(cond);
3315 result.addTypes(resultTypes);
3316
3317 mlir::Region *thenRegion = result.addRegion();
3318 thenRegion->push_back(new mlir::Block());
3319 if (resultTypes.empty())
3320 IfOp::ensureTerminator(*thenRegion, builder, result.location);
3321
3322 mlir::Region *elseRegion = result.addRegion();
3323 if (withElseRegion) {
3324 elseRegion->push_back(new mlir::Block());
3325 if (resultTypes.empty())
3326 IfOp::ensureTerminator(*elseRegion, builder, result.location);
3327 }
3328 }
3329
parse(mlir::OpAsmParser & parser,mlir::OperationState & result)3330 mlir::ParseResult fir::IfOp::parse(mlir::OpAsmParser &parser,
3331 mlir::OperationState &result) {
3332 result.regions.reserve(2);
3333 mlir::Region *thenRegion = result.addRegion();
3334 mlir::Region *elseRegion = result.addRegion();
3335
3336 auto &builder = parser.getBuilder();
3337 mlir::OpAsmParser::UnresolvedOperand cond;
3338 mlir::Type i1Type = builder.getIntegerType(1);
3339 if (parser.parseOperand(cond) ||
3340 parser.resolveOperand(cond, i1Type, result.operands))
3341 return mlir::failure();
3342
3343 if (parser.parseOptionalArrowTypeList(result.types))
3344 return mlir::failure();
3345
3346 if (parser.parseRegion(*thenRegion, {}, {}))
3347 return mlir::failure();
3348 fir::IfOp::ensureTerminator(*thenRegion, parser.getBuilder(),
3349 result.location);
3350
3351 if (mlir::succeeded(parser.parseOptionalKeyword("else"))) {
3352 if (parser.parseRegion(*elseRegion, {}, {}))
3353 return mlir::failure();
3354 fir::IfOp::ensureTerminator(*elseRegion, parser.getBuilder(),
3355 result.location);
3356 }
3357
3358 // Parse the optional attribute list.
3359 if (parser.parseOptionalAttrDict(result.attributes))
3360 return mlir::failure();
3361 return mlir::success();
3362 }
3363
verify()3364 mlir::LogicalResult fir::IfOp::verify() {
3365 if (getNumResults() != 0 && getElseRegion().empty())
3366 return emitOpError("must have an else block if defining values");
3367
3368 return mlir::success();
3369 }
3370
print(mlir::OpAsmPrinter & p)3371 void fir::IfOp::print(mlir::OpAsmPrinter &p) {
3372 bool printBlockTerminators = false;
3373 p << ' ' << getCondition();
3374 if (!getResults().empty()) {
3375 p << " -> (" << getResultTypes() << ')';
3376 printBlockTerminators = true;
3377 }
3378 p << ' ';
3379 p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false,
3380 printBlockTerminators);
3381
3382 // Print the 'else' regions if it exists and has a block.
3383 auto &otherReg = getElseRegion();
3384 if (!otherReg.empty()) {
3385 p << " else ";
3386 p.printRegion(otherReg, /*printEntryBlockArgs=*/false,
3387 printBlockTerminators);
3388 }
3389 p.printOptionalAttrDict((*this)->getAttrs());
3390 }
3391
resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> & results,unsigned resultNum)3392 void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl<mlir::Value> &results,
3393 unsigned resultNum) {
3394 auto *term = getThenRegion().front().getTerminator();
3395 if (resultNum < term->getNumOperands())
3396 results.push_back(term->getOperand(resultNum));
3397 term = getElseRegion().front().getTerminator();
3398 if (resultNum < term->getNumOperands())
3399 results.push_back(term->getOperand(resultNum));
3400 }
3401
3402 //===----------------------------------------------------------------------===//
3403
isValidCaseAttr(mlir::Attribute attr)3404 mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) {
3405 if (attr.isa<mlir::UnitAttr, fir::ClosedIntervalAttr, fir::PointIntervalAttr,
3406 fir::LowerBoundAttr, fir::UpperBoundAttr>())
3407 return mlir::success();
3408 return mlir::failure();
3409 }
3410
getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases,unsigned dest)3411 unsigned fir::getCaseArgumentOffset(llvm::ArrayRef<mlir::Attribute> cases,
3412 unsigned dest) {
3413 unsigned o = 0;
3414 for (unsigned i = 0; i < dest; ++i) {
3415 auto &attr = cases[i];
3416 if (!attr.dyn_cast_or_null<mlir::UnitAttr>()) {
3417 ++o;
3418 if (attr.dyn_cast_or_null<fir::ClosedIntervalAttr>())
3419 ++o;
3420 }
3421 }
3422 return o;
3423 }
3424
3425 mlir::ParseResult
parseSelector(mlir::OpAsmParser & parser,mlir::OperationState & result,mlir::OpAsmParser::UnresolvedOperand & selector,mlir::Type & type)3426 fir::parseSelector(mlir::OpAsmParser &parser, mlir::OperationState &result,
3427 mlir::OpAsmParser::UnresolvedOperand &selector,
3428 mlir::Type &type) {
3429 if (parser.parseOperand(selector) || parser.parseColonType(type) ||
3430 parser.resolveOperand(selector, type, result.operands) ||
3431 parser.parseLSquare())
3432 return mlir::failure();
3433 return mlir::success();
3434 }
3435
3436 mlir::func::FuncOp
createFuncOp(mlir::Location loc,mlir::ModuleOp module,llvm::StringRef name,mlir::FunctionType type,llvm::ArrayRef<mlir::NamedAttribute> attrs)3437 fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module,
3438 llvm::StringRef name, mlir::FunctionType type,
3439 llvm::ArrayRef<mlir::NamedAttribute> attrs) {
3440 if (auto f = module.lookupSymbol<mlir::func::FuncOp>(name))
3441 return f;
3442 mlir::OpBuilder modBuilder(module.getBodyRegion());
3443 modBuilder.setInsertionPointToEnd(module.getBody());
3444 auto result = modBuilder.create<mlir::func::FuncOp>(loc, name, type, attrs);
3445 result.setVisibility(mlir::SymbolTable::Visibility::Private);
3446 return result;
3447 }
3448
createGlobalOp(mlir::Location loc,mlir::ModuleOp module,llvm::StringRef name,mlir::Type type,llvm::ArrayRef<mlir::NamedAttribute> attrs)3449 fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module,
3450 llvm::StringRef name, mlir::Type type,
3451 llvm::ArrayRef<mlir::NamedAttribute> attrs) {
3452 if (auto g = module.lookupSymbol<fir::GlobalOp>(name))
3453 return g;
3454 mlir::OpBuilder modBuilder(module.getBodyRegion());
3455 auto result = modBuilder.create<fir::GlobalOp>(loc, name, type, attrs);
3456 result.setVisibility(mlir::SymbolTable::Visibility::Private);
3457 return result;
3458 }
3459
hasHostAssociationArgument(mlir::func::FuncOp func)3460 bool fir::hasHostAssociationArgument(mlir::func::FuncOp func) {
3461 if (auto allArgAttrs = func.getAllArgAttrs())
3462 for (auto attr : allArgAttrs)
3463 if (auto dict = attr.template dyn_cast_or_null<mlir::DictionaryAttr>())
3464 if (dict.get(fir::getHostAssocAttrName()))
3465 return true;
3466 return false;
3467 }
3468
valueHasFirAttribute(mlir::Value value,llvm::StringRef attributeName)3469 bool fir::valueHasFirAttribute(mlir::Value value,
3470 llvm::StringRef attributeName) {
3471 // If this is a fir.box that was loaded, the fir attributes will be on the
3472 // related fir.ref<fir.box> creation.
3473 if (value.getType().isa<fir::BoxType>())
3474 if (auto definingOp = value.getDefiningOp())
3475 if (auto loadOp = mlir::dyn_cast<fir::LoadOp>(definingOp))
3476 value = loadOp.getMemref();
3477 // If this is a function argument, look in the argument attributes.
3478 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) {
3479 if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock())
3480 if (auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(
3481 blockArg.getOwner()->getParentOp()))
3482 if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName))
3483 return true;
3484 return false;
3485 }
3486
3487 if (auto definingOp = value.getDefiningOp()) {
3488 // If this is an allocated value, look at the allocation attributes.
3489 if (mlir::isa<fir::AllocMemOp>(definingOp) ||
3490 mlir::isa<AllocaOp>(definingOp))
3491 return definingOp->hasAttr(attributeName);
3492 // If this is an imported global, look at AddrOfOp and GlobalOp attributes.
3493 // Both operations are looked at because use/host associated variable (the
3494 // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate
3495 // entity (the globalOp) does not have them.
3496 if (auto addressOfOp = mlir::dyn_cast<fir::AddrOfOp>(definingOp)) {
3497 if (addressOfOp->hasAttr(attributeName))
3498 return true;
3499 if (auto module = definingOp->getParentOfType<mlir::ModuleOp>())
3500 if (auto globalOp =
3501 module.lookupSymbol<fir::GlobalOp>(addressOfOp.getSymbol()))
3502 return globalOp->hasAttr(attributeName);
3503 }
3504 }
3505 // TODO: Construct associated entities attributes. Decide where the fir
3506 // attributes must be placed/looked for in this case.
3507 return false;
3508 }
3509
anyFuncArgsHaveAttr(mlir::func::FuncOp func,llvm::StringRef attr)3510 bool fir::anyFuncArgsHaveAttr(mlir::func::FuncOp func, llvm::StringRef attr) {
3511 for (unsigned i = 0, end = func.getNumArguments(); i < end; ++i)
3512 if (func.getArgAttr(i, attr))
3513 return true;
3514 return false;
3515 }
3516
applyPathToType(mlir::Type eleTy,mlir::ValueRange path)3517 mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) {
3518 for (auto i = path.begin(), end = path.end(); eleTy && i < end;) {
3519 eleTy = llvm::TypeSwitch<mlir::Type, mlir::Type>(eleTy)
3520 .Case<fir::RecordType>([&](fir::RecordType ty) {
3521 if (auto *op = (*i++).getDefiningOp()) {
3522 if (auto off = mlir::dyn_cast<fir::FieldIndexOp>(op))
3523 return ty.getType(off.getFieldName());
3524 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
3525 return ty.getType(fir::toInt(off));
3526 }
3527 return mlir::Type{};
3528 })
3529 .Case<fir::SequenceType>([&](fir::SequenceType ty) {
3530 bool valid = true;
3531 const auto rank = ty.getDimension();
3532 for (std::remove_const_t<decltype(rank)> ii = 0;
3533 valid && ii < rank; ++ii)
3534 valid = i < end && fir::isa_integer((*i++).getType());
3535 return valid ? ty.getEleTy() : mlir::Type{};
3536 })
3537 .Case<mlir::TupleType>([&](mlir::TupleType ty) {
3538 if (auto *op = (*i++).getDefiningOp())
3539 if (auto off = mlir::dyn_cast<mlir::arith::ConstantOp>(op))
3540 return ty.getType(fir::toInt(off));
3541 return mlir::Type{};
3542 })
3543 .Case<fir::ComplexType>([&](fir::ComplexType ty) {
3544 auto x = *i;
3545 if (auto *op = (*i++).getDefiningOp())
3546 if (fir::isa_integer(x.getType()))
3547 return ty.getEleType(fir::getKindMapping(
3548 op->getParentOfType<mlir::ModuleOp>()));
3549 return mlir::Type{};
3550 })
3551 .Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
3552 if (fir::isa_integer((*i++).getType()))
3553 return ty.getElementType();
3554 return mlir::Type{};
3555 })
3556 .Default([&](const auto &) { return mlir::Type{}; });
3557 }
3558 return eleTy;
3559 }
3560
3561 // Tablegen operators
3562
3563 #define GET_OP_CLASSES
3564 #include "flang/Optimizer/Dialect/FIROps.cpp.inc"
3565