1 //=-- ExprEngineCallAndReturn.cpp - Support for call/return -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines ExprEngine's support for calls and returns.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "PrettyStackTraceLocationContext.h"
14 #include "clang/AST/CXXInheritance.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/Analysis/Analyses/LiveVariables.h"
18 #include "clang/Analysis/ConstructionContext.h"
19 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
20 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/SaveAndRestore.h"
28
29 using namespace clang;
30 using namespace ento;
31
32 #define DEBUG_TYPE "ExprEngine"
33
34 STATISTIC(NumOfDynamicDispatchPathSplits,
35 "The # of times we split the path due to imprecise dynamic dispatch info");
36
37 STATISTIC(NumInlinedCalls,
38 "The # of times we inlined a call");
39
40 STATISTIC(NumReachedInlineCountMax,
41 "The # of times we reached inline count maximum");
42
processCallEnter(NodeBuilderContext & BC,CallEnter CE,ExplodedNode * Pred)43 void ExprEngine::processCallEnter(NodeBuilderContext& BC, CallEnter CE,
44 ExplodedNode *Pred) {
45 // Get the entry block in the CFG of the callee.
46 const StackFrameContext *calleeCtx = CE.getCalleeContext();
47 PrettyStackTraceLocationContext CrashInfo(calleeCtx);
48 const CFGBlock *Entry = CE.getEntry();
49
50 // Validate the CFG.
51 assert(Entry->empty());
52 assert(Entry->succ_size() == 1);
53
54 // Get the solitary successor.
55 const CFGBlock *Succ = *(Entry->succ_begin());
56
57 // Construct an edge representing the starting location in the callee.
58 BlockEdge Loc(Entry, Succ, calleeCtx);
59
60 ProgramStateRef state = Pred->getState();
61
62 // Construct a new node, notify checkers that analysis of the function has
63 // begun, and add the resultant nodes to the worklist.
64 bool isNew;
65 ExplodedNode *Node = G.getNode(Loc, state, false, &isNew);
66 Node->addPredecessor(Pred, G);
67 if (isNew) {
68 ExplodedNodeSet DstBegin;
69 processBeginOfFunction(BC, Node, DstBegin, Loc);
70 Engine.enqueue(DstBegin);
71 }
72 }
73
74 // Find the last statement on the path to the exploded node and the
75 // corresponding Block.
76 static std::pair<const Stmt*,
getLastStmt(const ExplodedNode * Node)77 const CFGBlock*> getLastStmt(const ExplodedNode *Node) {
78 const Stmt *S = nullptr;
79 const CFGBlock *Blk = nullptr;
80 const StackFrameContext *SF = Node->getStackFrame();
81
82 // Back up through the ExplodedGraph until we reach a statement node in this
83 // stack frame.
84 while (Node) {
85 const ProgramPoint &PP = Node->getLocation();
86
87 if (PP.getStackFrame() == SF) {
88 if (Optional<StmtPoint> SP = PP.getAs<StmtPoint>()) {
89 S = SP->getStmt();
90 break;
91 } else if (Optional<CallExitEnd> CEE = PP.getAs<CallExitEnd>()) {
92 S = CEE->getCalleeContext()->getCallSite();
93 if (S)
94 break;
95
96 // If there is no statement, this is an implicitly-generated call.
97 // We'll walk backwards over it and then continue the loop to find
98 // an actual statement.
99 Optional<CallEnter> CE;
100 do {
101 Node = Node->getFirstPred();
102 CE = Node->getLocationAs<CallEnter>();
103 } while (!CE || CE->getCalleeContext() != CEE->getCalleeContext());
104
105 // Continue searching the graph.
106 } else if (Optional<BlockEdge> BE = PP.getAs<BlockEdge>()) {
107 Blk = BE->getSrc();
108 }
109 } else if (Optional<CallEnter> CE = PP.getAs<CallEnter>()) {
110 // If we reached the CallEnter for this function, it has no statements.
111 if (CE->getCalleeContext() == SF)
112 break;
113 }
114
115 if (Node->pred_empty())
116 return std::make_pair(nullptr, nullptr);
117
118 Node = *Node->pred_begin();
119 }
120
121 return std::make_pair(S, Blk);
122 }
123
124 /// Adjusts a return value when the called function's return type does not
125 /// match the caller's expression type. This can happen when a dynamic call
126 /// is devirtualized, and the overriding method has a covariant (more specific)
127 /// return type than the parent's method. For C++ objects, this means we need
128 /// to add base casts.
adjustReturnValue(SVal V,QualType ExpectedTy,QualType ActualTy,StoreManager & StoreMgr)129 static SVal adjustReturnValue(SVal V, QualType ExpectedTy, QualType ActualTy,
130 StoreManager &StoreMgr) {
131 // For now, the only adjustments we handle apply only to locations.
132 if (!isa<Loc>(V))
133 return V;
134
135 // If the types already match, don't do any unnecessary work.
136 ExpectedTy = ExpectedTy.getCanonicalType();
137 ActualTy = ActualTy.getCanonicalType();
138 if (ExpectedTy == ActualTy)
139 return V;
140
141 // No adjustment is needed between Objective-C pointer types.
142 if (ExpectedTy->isObjCObjectPointerType() &&
143 ActualTy->isObjCObjectPointerType())
144 return V;
145
146 // C++ object pointers may need "derived-to-base" casts.
147 const CXXRecordDecl *ExpectedClass = ExpectedTy->getPointeeCXXRecordDecl();
148 const CXXRecordDecl *ActualClass = ActualTy->getPointeeCXXRecordDecl();
149 if (ExpectedClass && ActualClass) {
150 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
151 /*DetectVirtual=*/false);
152 if (ActualClass->isDerivedFrom(ExpectedClass, Paths) &&
153 !Paths.isAmbiguous(ActualTy->getCanonicalTypeUnqualified())) {
154 return StoreMgr.evalDerivedToBase(V, Paths.front());
155 }
156 }
157
158 // Unfortunately, Objective-C does not enforce that overridden methods have
159 // covariant return types, so we can't assert that that never happens.
160 // Be safe and return UnknownVal().
161 return UnknownVal();
162 }
163
removeDeadOnEndOfFunction(NodeBuilderContext & BC,ExplodedNode * Pred,ExplodedNodeSet & Dst)164 void ExprEngine::removeDeadOnEndOfFunction(NodeBuilderContext& BC,
165 ExplodedNode *Pred,
166 ExplodedNodeSet &Dst) {
167 // Find the last statement in the function and the corresponding basic block.
168 const Stmt *LastSt = nullptr;
169 const CFGBlock *Blk = nullptr;
170 std::tie(LastSt, Blk) = getLastStmt(Pred);
171 if (!Blk || !LastSt) {
172 Dst.Add(Pred);
173 return;
174 }
175
176 // Here, we destroy the current location context. We use the current
177 // function's entire body as a diagnostic statement, with which the program
178 // point will be associated. However, we only want to use LastStmt as a
179 // reference for what to clean up if it's a ReturnStmt; otherwise, everything
180 // is dead.
181 SaveAndRestore<const NodeBuilderContext *> NodeContextRAII(currBldrCtx, &BC);
182 const LocationContext *LCtx = Pred->getLocationContext();
183 removeDead(Pred, Dst, dyn_cast<ReturnStmt>(LastSt), LCtx,
184 LCtx->getAnalysisDeclContext()->getBody(),
185 ProgramPoint::PostStmtPurgeDeadSymbolsKind);
186 }
187
wasDifferentDeclUsedForInlining(CallEventRef<> Call,const StackFrameContext * calleeCtx)188 static bool wasDifferentDeclUsedForInlining(CallEventRef<> Call,
189 const StackFrameContext *calleeCtx) {
190 const Decl *RuntimeCallee = calleeCtx->getDecl();
191 const Decl *StaticDecl = Call->getDecl();
192 assert(RuntimeCallee);
193 if (!StaticDecl)
194 return true;
195 return RuntimeCallee->getCanonicalDecl() != StaticDecl->getCanonicalDecl();
196 }
197
198 /// The call exit is simulated with a sequence of nodes, which occur between
199 /// CallExitBegin and CallExitEnd. The following operations occur between the
200 /// two program points:
201 /// 1. CallExitBegin (triggers the start of call exit sequence)
202 /// 2. Bind the return value
203 /// 3. Run Remove dead bindings to clean up the dead symbols from the callee.
204 /// 4. CallExitEnd (switch to the caller context)
205 /// 5. PostStmt<CallExpr>
processCallExit(ExplodedNode * CEBNode)206 void ExprEngine::processCallExit(ExplodedNode *CEBNode) {
207 // Step 1 CEBNode was generated before the call.
208 PrettyStackTraceLocationContext CrashInfo(CEBNode->getLocationContext());
209 const StackFrameContext *calleeCtx = CEBNode->getStackFrame();
210
211 // The parent context might not be a stack frame, so make sure we
212 // look up the first enclosing stack frame.
213 const StackFrameContext *callerCtx =
214 calleeCtx->getParent()->getStackFrame();
215
216 const Stmt *CE = calleeCtx->getCallSite();
217 ProgramStateRef state = CEBNode->getState();
218 // Find the last statement in the function and the corresponding basic block.
219 const Stmt *LastSt = nullptr;
220 const CFGBlock *Blk = nullptr;
221 std::tie(LastSt, Blk) = getLastStmt(CEBNode);
222
223 // Generate a CallEvent /before/ cleaning the state, so that we can get the
224 // correct value for 'this' (if necessary).
225 CallEventManager &CEMgr = getStateManager().getCallEventManager();
226 CallEventRef<> Call = CEMgr.getCaller(calleeCtx, state);
227
228 // Step 2: generate node with bound return value: CEBNode -> BindedRetNode.
229
230 // If this variable is set to 'true' the analyzer will evaluate the call
231 // statement we are about to exit again, instead of continuing the execution
232 // from the statement after the call. This is useful for non-POD type array
233 // construction where the CXXConstructExpr is referenced only once in the CFG,
234 // but we want to evaluate it as many times as many elements the array has.
235 bool ShouldRepeatCall = false;
236
237 // If the callee returns an expression, bind its value to CallExpr.
238 if (CE) {
239 if (const ReturnStmt *RS = dyn_cast_or_null<ReturnStmt>(LastSt)) {
240 const LocationContext *LCtx = CEBNode->getLocationContext();
241 SVal V = state->getSVal(RS, LCtx);
242
243 // Ensure that the return type matches the type of the returned Expr.
244 if (wasDifferentDeclUsedForInlining(Call, calleeCtx)) {
245 QualType ReturnedTy =
246 CallEvent::getDeclaredResultType(calleeCtx->getDecl());
247 if (!ReturnedTy.isNull()) {
248 if (const Expr *Ex = dyn_cast<Expr>(CE)) {
249 V = adjustReturnValue(V, Ex->getType(), ReturnedTy,
250 getStoreManager());
251 }
252 }
253 }
254
255 state = state->BindExpr(CE, callerCtx, V);
256 }
257
258 // Bind the constructed object value to CXXConstructExpr.
259 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
260 loc::MemRegionVal This =
261 svalBuilder.getCXXThis(CCE->getConstructor()->getParent(), calleeCtx);
262 SVal ThisV = state->getSVal(This);
263 ThisV = state->getSVal(ThisV.castAs<Loc>());
264 state = state->BindExpr(CCE, callerCtx, ThisV);
265
266 ShouldRepeatCall = shouldRepeatCtorCall(state, CCE, callerCtx);
267
268 if (!ShouldRepeatCall) {
269 if (getIndexOfElementToConstruct(state, CCE, callerCtx))
270 state = removeIndexOfElementToConstruct(state, CCE, callerCtx);
271
272 if (getPendingInitLoop(state, CCE, callerCtx))
273 state = removePendingInitLoop(state, CCE, callerCtx);
274 }
275 }
276
277 if (const auto *CNE = dyn_cast<CXXNewExpr>(CE)) {
278 // We are currently evaluating a CXXNewAllocator CFGElement. It takes a
279 // while to reach the actual CXXNewExpr element from here, so keep the
280 // region for later use.
281 // Additionally cast the return value of the inlined operator new
282 // (which is of type 'void *') to the correct object type.
283 SVal AllocV = state->getSVal(CNE, callerCtx);
284 AllocV = svalBuilder.evalCast(
285 AllocV, CNE->getType(),
286 getContext().getPointerType(getContext().VoidTy));
287
288 state = addObjectUnderConstruction(state, CNE, calleeCtx->getParent(),
289 AllocV);
290 }
291 }
292
293 // Step 3: BindedRetNode -> CleanedNodes
294 // If we can find a statement and a block in the inlined function, run remove
295 // dead bindings before returning from the call. This is important to ensure
296 // that we report the issues such as leaks in the stack contexts in which
297 // they occurred.
298 ExplodedNodeSet CleanedNodes;
299 if (LastSt && Blk && AMgr.options.AnalysisPurgeOpt != PurgeNone) {
300 static SimpleProgramPointTag retValBind("ExprEngine", "Bind Return Value");
301 PostStmt Loc(LastSt, calleeCtx, &retValBind);
302 bool isNew;
303 ExplodedNode *BindedRetNode = G.getNode(Loc, state, false, &isNew);
304 BindedRetNode->addPredecessor(CEBNode, G);
305 if (!isNew)
306 return;
307
308 NodeBuilderContext Ctx(getCoreEngine(), Blk, BindedRetNode);
309 currBldrCtx = &Ctx;
310 // Here, we call the Symbol Reaper with 0 statement and callee location
311 // context, telling it to clean up everything in the callee's context
312 // (and its children). We use the callee's function body as a diagnostic
313 // statement, with which the program point will be associated.
314 removeDead(BindedRetNode, CleanedNodes, nullptr, calleeCtx,
315 calleeCtx->getAnalysisDeclContext()->getBody(),
316 ProgramPoint::PostStmtPurgeDeadSymbolsKind);
317 currBldrCtx = nullptr;
318 } else {
319 CleanedNodes.Add(CEBNode);
320 }
321
322 for (ExplodedNodeSet::iterator I = CleanedNodes.begin(),
323 E = CleanedNodes.end(); I != E; ++I) {
324
325 // Step 4: Generate the CallExit and leave the callee's context.
326 // CleanedNodes -> CEENode
327 CallExitEnd Loc(calleeCtx, callerCtx);
328 bool isNew;
329 ProgramStateRef CEEState = (*I == CEBNode) ? state : (*I)->getState();
330
331 ExplodedNode *CEENode = G.getNode(Loc, CEEState, false, &isNew);
332 CEENode->addPredecessor(*I, G);
333 if (!isNew)
334 return;
335
336 // Step 5: Perform the post-condition check of the CallExpr and enqueue the
337 // result onto the work list.
338 // CEENode -> Dst -> WorkList
339 NodeBuilderContext Ctx(Engine, calleeCtx->getCallSiteBlock(), CEENode);
340 SaveAndRestore<const NodeBuilderContext*> NBCSave(currBldrCtx,
341 &Ctx);
342 SaveAndRestore<unsigned> CBISave(currStmtIdx, calleeCtx->getIndex());
343
344 CallEventRef<> UpdatedCall = Call.cloneWithState(CEEState);
345
346 ExplodedNodeSet DstPostCall;
347 if (llvm::isa_and_nonnull<CXXNewExpr>(CE)) {
348 ExplodedNodeSet DstPostPostCallCallback;
349 getCheckerManager().runCheckersForPostCall(DstPostPostCallCallback,
350 CEENode, *UpdatedCall, *this,
351 /*wasInlined=*/true);
352 for (ExplodedNode *I : DstPostPostCallCallback) {
353 getCheckerManager().runCheckersForNewAllocator(
354 cast<CXXAllocatorCall>(*UpdatedCall), DstPostCall, I, *this,
355 /*wasInlined=*/true);
356 }
357 } else {
358 getCheckerManager().runCheckersForPostCall(DstPostCall, CEENode,
359 *UpdatedCall, *this,
360 /*wasInlined=*/true);
361 }
362 ExplodedNodeSet Dst;
363 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
364 getCheckerManager().runCheckersForPostObjCMessage(Dst, DstPostCall, *Msg,
365 *this,
366 /*wasInlined=*/true);
367 } else if (CE &&
368 !(isa<CXXNewExpr>(CE) && // Called when visiting CXXNewExpr.
369 AMgr.getAnalyzerOptions().MayInlineCXXAllocator)) {
370 getCheckerManager().runCheckersForPostStmt(Dst, DstPostCall, CE,
371 *this, /*wasInlined=*/true);
372 } else {
373 Dst.insert(DstPostCall);
374 }
375
376 // Enqueue the next element in the block.
377 for (ExplodedNodeSet::iterator PSI = Dst.begin(), PSE = Dst.end();
378 PSI != PSE; ++PSI) {
379 unsigned Idx = calleeCtx->getIndex() + (ShouldRepeatCall ? 0 : 1);
380
381 Engine.getWorkList()->enqueue(*PSI, calleeCtx->getCallSiteBlock(), Idx);
382 }
383 }
384 }
385
isSmall(AnalysisDeclContext * ADC) const386 bool ExprEngine::isSmall(AnalysisDeclContext *ADC) const {
387 // When there are no branches in the function, it means that there's no
388 // exponential complexity introduced by inlining such function.
389 // Such functions also don't trigger various fundamental problems
390 // with our inlining mechanism, such as the problem of
391 // inlined defensive checks. Hence isLinear().
392 const CFG *Cfg = ADC->getCFG();
393 return Cfg->isLinear() || Cfg->size() <= AMgr.options.AlwaysInlineSize;
394 }
395
isLarge(AnalysisDeclContext * ADC) const396 bool ExprEngine::isLarge(AnalysisDeclContext *ADC) const {
397 const CFG *Cfg = ADC->getCFG();
398 return Cfg->size() >= AMgr.options.MinCFGSizeTreatFunctionsAsLarge;
399 }
400
isHuge(AnalysisDeclContext * ADC) const401 bool ExprEngine::isHuge(AnalysisDeclContext *ADC) const {
402 const CFG *Cfg = ADC->getCFG();
403 return Cfg->getNumBlockIDs() > AMgr.options.MaxInlinableSize;
404 }
405
examineStackFrames(const Decl * D,const LocationContext * LCtx,bool & IsRecursive,unsigned & StackDepth)406 void ExprEngine::examineStackFrames(const Decl *D, const LocationContext *LCtx,
407 bool &IsRecursive, unsigned &StackDepth) {
408 IsRecursive = false;
409 StackDepth = 0;
410
411 while (LCtx) {
412 if (const StackFrameContext *SFC = dyn_cast<StackFrameContext>(LCtx)) {
413 const Decl *DI = SFC->getDecl();
414
415 // Mark recursive (and mutually recursive) functions and always count
416 // them when measuring the stack depth.
417 if (DI == D) {
418 IsRecursive = true;
419 ++StackDepth;
420 LCtx = LCtx->getParent();
421 continue;
422 }
423
424 // Do not count the small functions when determining the stack depth.
425 AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(DI);
426 if (!isSmall(CalleeADC))
427 ++StackDepth;
428 }
429 LCtx = LCtx->getParent();
430 }
431 }
432
433 // The GDM component containing the dynamic dispatch bifurcation info. When
434 // the exact type of the receiver is not known, we want to explore both paths -
435 // one on which we do inline it and the other one on which we don't. This is
436 // done to ensure we do not drop coverage.
437 // This is the map from the receiver region to a bool, specifying either we
438 // consider this region's information precise or not along the given path.
439 namespace {
440 enum DynamicDispatchMode {
441 DynamicDispatchModeInlined = 1,
442 DynamicDispatchModeConservative
443 };
444 } // end anonymous namespace
445
REGISTER_MAP_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,const MemRegion *,unsigned)446 REGISTER_MAP_WITH_PROGRAMSTATE(DynamicDispatchBifurcationMap,
447 const MemRegion *, unsigned)
448 REGISTER_TRAIT_WITH_PROGRAMSTATE(CTUDispatchBifurcation, bool)
449
450 void ExprEngine::ctuBifurcate(const CallEvent &Call, const Decl *D,
451 NodeBuilder &Bldr, ExplodedNode *Pred,
452 ProgramStateRef State) {
453 ProgramStateRef ConservativeEvalState = nullptr;
454 if (Call.isForeign() && !isSecondPhaseCTU()) {
455 const auto IK = AMgr.options.getCTUPhase1Inlining();
456 const bool DoInline = IK == CTUPhase1InliningKind::All ||
457 (IK == CTUPhase1InliningKind::Small &&
458 isSmall(AMgr.getAnalysisDeclContext(D)));
459 if (DoInline) {
460 inlineCall(Engine.getWorkList(), Call, D, Bldr, Pred, State);
461 return;
462 }
463 const bool BState = State->get<CTUDispatchBifurcation>();
464 if (!BState) { // This is the first time we see this foreign function.
465 // Enqueue it to be analyzed in the second (ctu) phase.
466 inlineCall(Engine.getCTUWorkList(), Call, D, Bldr, Pred, State);
467 // Conservatively evaluate in the first phase.
468 ConservativeEvalState = State->set<CTUDispatchBifurcation>(true);
469 conservativeEvalCall(Call, Bldr, Pred, ConservativeEvalState);
470 } else {
471 conservativeEvalCall(Call, Bldr, Pred, State);
472 }
473 return;
474 }
475 inlineCall(Engine.getWorkList(), Call, D, Bldr, Pred, State);
476 }
477
inlineCall(WorkList * WList,const CallEvent & Call,const Decl * D,NodeBuilder & Bldr,ExplodedNode * Pred,ProgramStateRef State)478 void ExprEngine::inlineCall(WorkList *WList, const CallEvent &Call,
479 const Decl *D, NodeBuilder &Bldr,
480 ExplodedNode *Pred, ProgramStateRef State) {
481 assert(D);
482
483 const LocationContext *CurLC = Pred->getLocationContext();
484 const StackFrameContext *CallerSFC = CurLC->getStackFrame();
485 const LocationContext *ParentOfCallee = CallerSFC;
486 if (Call.getKind() == CE_Block &&
487 !cast<BlockCall>(Call).isConversionFromLambda()) {
488 const BlockDataRegion *BR = cast<BlockCall>(Call).getBlockRegion();
489 assert(BR && "If we have the block definition we should have its region");
490 AnalysisDeclContext *BlockCtx = AMgr.getAnalysisDeclContext(D);
491 ParentOfCallee = BlockCtx->getBlockInvocationContext(CallerSFC,
492 cast<BlockDecl>(D),
493 BR);
494 }
495
496 // This may be NULL, but that's fine.
497 const Expr *CallE = Call.getOriginExpr();
498
499 // Construct a new stack frame for the callee.
500 AnalysisDeclContext *CalleeADC = AMgr.getAnalysisDeclContext(D);
501 const StackFrameContext *CalleeSFC =
502 CalleeADC->getStackFrame(ParentOfCallee, CallE, currBldrCtx->getBlock(),
503 currBldrCtx->blockCount(), currStmtIdx);
504
505 CallEnter Loc(CallE, CalleeSFC, CurLC);
506
507 // Construct a new state which contains the mapping from actual to
508 // formal arguments.
509 State = State->enterStackFrame(Call, CalleeSFC);
510
511 bool isNew;
512 if (ExplodedNode *N = G.getNode(Loc, State, false, &isNew)) {
513 N->addPredecessor(Pred, G);
514 if (isNew)
515 WList->enqueue(N);
516 }
517
518 // If we decided to inline the call, the successor has been manually
519 // added onto the work list so remove it from the node builder.
520 Bldr.takeNodes(Pred);
521
522 NumInlinedCalls++;
523 Engine.FunctionSummaries->bumpNumTimesInlined(D);
524
525 // Do not mark as visited in the 2nd run (CTUWList), so the function will
526 // be visited as top-level, this way we won't loose reports in non-ctu
527 // mode. Considering the case when a function in a foreign TU calls back
528 // into the main TU.
529 // Note, during the 1st run, it doesn't matter if we mark the foreign
530 // functions as visited (or not) because they can never appear as a top level
531 // function in the main TU.
532 if (!isSecondPhaseCTU())
533 // Mark the decl as visited.
534 if (VisitedCallees)
535 VisitedCallees->insert(D);
536 }
537
getInlineFailedState(ProgramStateRef State,const Stmt * CallE)538 static ProgramStateRef getInlineFailedState(ProgramStateRef State,
539 const Stmt *CallE) {
540 const void *ReplayState = State->get<ReplayWithoutInlining>();
541 if (!ReplayState)
542 return nullptr;
543
544 assert(ReplayState == CallE && "Backtracked to the wrong call.");
545 (void)CallE;
546
547 return State->remove<ReplayWithoutInlining>();
548 }
549
VisitCallExpr(const CallExpr * CE,ExplodedNode * Pred,ExplodedNodeSet & dst)550 void ExprEngine::VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred,
551 ExplodedNodeSet &dst) {
552 // Perform the previsit of the CallExpr.
553 ExplodedNodeSet dstPreVisit;
554 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, CE, *this);
555
556 // Get the call in its initial state. We use this as a template to perform
557 // all the checks.
558 CallEventManager &CEMgr = getStateManager().getCallEventManager();
559 CallEventRef<> CallTemplate
560 = CEMgr.getSimpleCall(CE, Pred->getState(), Pred->getLocationContext());
561
562 // Evaluate the function call. We try each of the checkers
563 // to see if the can evaluate the function call.
564 ExplodedNodeSet dstCallEvaluated;
565 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
566 I != E; ++I) {
567 evalCall(dstCallEvaluated, *I, *CallTemplate);
568 }
569
570 // Finally, perform the post-condition check of the CallExpr and store
571 // the created nodes in 'Dst'.
572 // Note that if the call was inlined, dstCallEvaluated will be empty.
573 // The post-CallExpr check will occur in processCallExit.
574 getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
575 *this);
576 }
577
finishArgumentConstruction(ProgramStateRef State,const CallEvent & Call)578 ProgramStateRef ExprEngine::finishArgumentConstruction(ProgramStateRef State,
579 const CallEvent &Call) {
580 const Expr *E = Call.getOriginExpr();
581 // FIXME: Constructors to placement arguments of operator new
582 // are not supported yet.
583 if (!E || isa<CXXNewExpr>(E))
584 return State;
585
586 const LocationContext *LC = Call.getLocationContext();
587 for (unsigned CallI = 0, CallN = Call.getNumArgs(); CallI != CallN; ++CallI) {
588 unsigned I = Call.getASTArgumentIndex(CallI);
589 if (Optional<SVal> V =
590 getObjectUnderConstruction(State, {E, I}, LC)) {
591 SVal VV = *V;
592 (void)VV;
593 assert(cast<VarRegion>(VV.castAs<loc::MemRegionVal>().getRegion())
594 ->getStackFrame()->getParent()
595 ->getStackFrame() == LC->getStackFrame());
596 State = finishObjectConstruction(State, {E, I}, LC);
597 }
598 }
599
600 return State;
601 }
602
finishArgumentConstruction(ExplodedNodeSet & Dst,ExplodedNode * Pred,const CallEvent & Call)603 void ExprEngine::finishArgumentConstruction(ExplodedNodeSet &Dst,
604 ExplodedNode *Pred,
605 const CallEvent &Call) {
606 ProgramStateRef State = Pred->getState();
607 ProgramStateRef CleanedState = finishArgumentConstruction(State, Call);
608 if (CleanedState == State) {
609 Dst.insert(Pred);
610 return;
611 }
612
613 const Expr *E = Call.getOriginExpr();
614 const LocationContext *LC = Call.getLocationContext();
615 NodeBuilder B(Pred, Dst, *currBldrCtx);
616 static SimpleProgramPointTag Tag("ExprEngine",
617 "Finish argument construction");
618 PreStmt PP(E, LC, &Tag);
619 B.generateNode(PP, CleanedState, Pred);
620 }
621
evalCall(ExplodedNodeSet & Dst,ExplodedNode * Pred,const CallEvent & Call)622 void ExprEngine::evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred,
623 const CallEvent &Call) {
624 // WARNING: At this time, the state attached to 'Call' may be older than the
625 // state in 'Pred'. This is a minor optimization since CheckerManager will
626 // use an updated CallEvent instance when calling checkers, but if 'Call' is
627 // ever used directly in this function all callers should be updated to pass
628 // the most recent state. (It is probably not worth doing the work here since
629 // for some callers this will not be necessary.)
630
631 // Run any pre-call checks using the generic call interface.
632 ExplodedNodeSet dstPreVisit;
633 getCheckerManager().runCheckersForPreCall(dstPreVisit, Pred,
634 Call, *this);
635
636 // Actually evaluate the function call. We try each of the checkers
637 // to see if the can evaluate the function call, and get a callback at
638 // defaultEvalCall if all of them fail.
639 ExplodedNodeSet dstCallEvaluated;
640 getCheckerManager().runCheckersForEvalCall(dstCallEvaluated, dstPreVisit,
641 Call, *this, EvalCallOptions());
642
643 // If there were other constructors called for object-type arguments
644 // of this call, clean them up.
645 ExplodedNodeSet dstArgumentCleanup;
646 for (ExplodedNode *I : dstCallEvaluated)
647 finishArgumentConstruction(dstArgumentCleanup, I, Call);
648
649 ExplodedNodeSet dstPostCall;
650 getCheckerManager().runCheckersForPostCall(dstPostCall, dstArgumentCleanup,
651 Call, *this);
652
653 // Escaping symbols conjured during invalidating the regions above.
654 // Note that, for inlined calls the nodes were put back into the worklist,
655 // so we can assume that every node belongs to a conservative call at this
656 // point.
657
658 // Run pointerEscape callback with the newly conjured symbols.
659 SmallVector<std::pair<SVal, SVal>, 8> Escaped;
660 for (ExplodedNode *I : dstPostCall) {
661 NodeBuilder B(I, Dst, *currBldrCtx);
662 ProgramStateRef State = I->getState();
663 Escaped.clear();
664 {
665 unsigned Arg = -1;
666 for (const ParmVarDecl *PVD : Call.parameters()) {
667 ++Arg;
668 QualType ParamTy = PVD->getType();
669 if (ParamTy.isNull() ||
670 (!ParamTy->isPointerType() && !ParamTy->isReferenceType()))
671 continue;
672 QualType Pointee = ParamTy->getPointeeType();
673 if (Pointee.isConstQualified() || Pointee->isVoidType())
674 continue;
675 if (const MemRegion *MR = Call.getArgSVal(Arg).getAsRegion())
676 Escaped.emplace_back(loc::MemRegionVal(MR), State->getSVal(MR, Pointee));
677 }
678 }
679
680 State = processPointerEscapedOnBind(State, Escaped, I->getLocationContext(),
681 PSK_EscapeOutParameters, &Call);
682
683 if (State == I->getState())
684 Dst.insert(I);
685 else
686 B.generateNode(I->getLocation(), State, I);
687 }
688 }
689
bindReturnValue(const CallEvent & Call,const LocationContext * LCtx,ProgramStateRef State)690 ProgramStateRef ExprEngine::bindReturnValue(const CallEvent &Call,
691 const LocationContext *LCtx,
692 ProgramStateRef State) {
693 const Expr *E = Call.getOriginExpr();
694 if (!E)
695 return State;
696
697 // Some method families have known return values.
698 if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(&Call)) {
699 switch (Msg->getMethodFamily()) {
700 default:
701 break;
702 case OMF_autorelease:
703 case OMF_retain:
704 case OMF_self: {
705 // These methods return their receivers.
706 return State->BindExpr(E, LCtx, Msg->getReceiverSVal());
707 }
708 }
709 } else if (const CXXConstructorCall *C = dyn_cast<CXXConstructorCall>(&Call)){
710 SVal ThisV = C->getCXXThisVal();
711 ThisV = State->getSVal(ThisV.castAs<Loc>());
712 return State->BindExpr(E, LCtx, ThisV);
713 }
714
715 SVal R;
716 QualType ResultTy = Call.getResultType();
717 unsigned Count = currBldrCtx->blockCount();
718 if (auto RTC = getCurrentCFGElement().getAs<CFGCXXRecordTypedCall>()) {
719 // Conjure a temporary if the function returns an object by value.
720 SVal Target;
721 assert(RTC->getStmt() == Call.getOriginExpr());
722 EvalCallOptions CallOpts; // FIXME: We won't really need those.
723 std::tie(State, Target) =
724 handleConstructionContext(Call.getOriginExpr(), State, LCtx,
725 RTC->getConstructionContext(), CallOpts);
726 const MemRegion *TargetR = Target.getAsRegion();
727 assert(TargetR);
728 // Invalidate the region so that it didn't look uninitialized. If this is
729 // a field or element constructor, we do not want to invalidate
730 // the whole structure. Pointer escape is meaningless because
731 // the structure is a product of conservative evaluation
732 // and therefore contains nothing interesting at this point.
733 RegionAndSymbolInvalidationTraits ITraits;
734 ITraits.setTrait(TargetR,
735 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
736 State = State->invalidateRegions(TargetR, E, Count, LCtx,
737 /* CausesPointerEscape=*/false, nullptr,
738 &Call, &ITraits);
739
740 R = State->getSVal(Target.castAs<Loc>(), E->getType());
741 } else {
742 // Conjure a symbol if the return value is unknown.
743
744 // See if we need to conjure a heap pointer instead of
745 // a regular unknown pointer.
746 const auto *CNE = dyn_cast<CXXNewExpr>(E);
747 if (CNE && CNE->getOperatorNew()->isReplaceableGlobalAllocationFunction()) {
748 R = svalBuilder.getConjuredHeapSymbolVal(E, LCtx, Count);
749 const MemRegion *MR = R.getAsRegion()->StripCasts();
750
751 // Store the extent of the allocated object(s).
752 SVal ElementCount;
753 if (const Expr *SizeExpr = CNE->getArraySize().value_or(nullptr)) {
754 ElementCount = State->getSVal(SizeExpr, LCtx);
755 } else {
756 ElementCount = svalBuilder.makeIntVal(1, /*IsUnsigned=*/true);
757 }
758
759 SVal ElementSize = getElementExtent(CNE->getAllocatedType(), svalBuilder);
760
761 SVal Size =
762 svalBuilder.evalBinOp(State, BO_Mul, ElementCount, ElementSize,
763 svalBuilder.getArrayIndexType());
764
765 State = setDynamicExtent(State, MR, Size.castAs<DefinedOrUnknownSVal>(),
766 svalBuilder);
767 } else {
768 R = svalBuilder.conjureSymbolVal(nullptr, E, LCtx, ResultTy, Count);
769 }
770 }
771 return State->BindExpr(E, LCtx, R);
772 }
773
774 // Conservatively evaluate call by invalidating regions and binding
775 // a conjured return value.
conservativeEvalCall(const CallEvent & Call,NodeBuilder & Bldr,ExplodedNode * Pred,ProgramStateRef State)776 void ExprEngine::conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr,
777 ExplodedNode *Pred, ProgramStateRef State) {
778 State = Call.invalidateRegions(currBldrCtx->blockCount(), State);
779 State = bindReturnValue(Call, Pred->getLocationContext(), State);
780
781 // And make the result node.
782 Bldr.generateNode(Call.getProgramPoint(), State, Pred);
783 }
784
785 ExprEngine::CallInlinePolicy
mayInlineCallKind(const CallEvent & Call,const ExplodedNode * Pred,AnalyzerOptions & Opts,const EvalCallOptions & CallOpts)786 ExprEngine::mayInlineCallKind(const CallEvent &Call, const ExplodedNode *Pred,
787 AnalyzerOptions &Opts,
788 const EvalCallOptions &CallOpts) {
789 const LocationContext *CurLC = Pred->getLocationContext();
790 const StackFrameContext *CallerSFC = CurLC->getStackFrame();
791 switch (Call.getKind()) {
792 case CE_Function:
793 case CE_Block:
794 break;
795 case CE_CXXMember:
796 case CE_CXXMemberOperator:
797 if (!Opts.mayInlineCXXMemberFunction(CIMK_MemberFunctions))
798 return CIP_DisallowedAlways;
799 break;
800 case CE_CXXConstructor: {
801 if (!Opts.mayInlineCXXMemberFunction(CIMK_Constructors))
802 return CIP_DisallowedAlways;
803
804 const CXXConstructorCall &Ctor = cast<CXXConstructorCall>(Call);
805
806 const CXXConstructExpr *CtorExpr = Ctor.getOriginExpr();
807
808 auto CCE = getCurrentCFGElement().getAs<CFGConstructor>();
809 const ConstructionContext *CC = CCE ? CCE->getConstructionContext()
810 : nullptr;
811
812 if (llvm::isa_and_nonnull<NewAllocatedObjectConstructionContext>(CC) &&
813 !Opts.MayInlineCXXAllocator)
814 return CIP_DisallowedOnce;
815
816 // FIXME: We don't handle constructors or destructors for arrays properly.
817 // Even once we do, we still need to be careful about implicitly-generated
818 // initializers for array fields in default move/copy constructors.
819 // We still allow construction into ElementRegion targets when they don't
820 // represent array elements.
821 if (CallOpts.IsArrayCtorOrDtor) {
822 if (!shouldInlineArrayConstruction(Pred->getState(), CtorExpr, CurLC))
823 return CIP_DisallowedOnce;
824 }
825
826 // Inlining constructors requires including initializers in the CFG.
827 const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
828 assert(ADC->getCFGBuildOptions().AddInitializers && "No CFG initializers");
829 (void)ADC;
830
831 // If the destructor is trivial, it's always safe to inline the constructor.
832 if (Ctor.getDecl()->getParent()->hasTrivialDestructor())
833 break;
834
835 // For other types, only inline constructors if destructor inlining is
836 // also enabled.
837 if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
838 return CIP_DisallowedAlways;
839
840 if (CtorExpr->getConstructionKind() == CXXConstructExpr::CK_Complete) {
841 // If we don't handle temporary destructors, we shouldn't inline
842 // their constructors.
843 if (CallOpts.IsTemporaryCtorOrDtor &&
844 !Opts.ShouldIncludeTemporaryDtorsInCFG)
845 return CIP_DisallowedOnce;
846
847 // If we did not find the correct this-region, it would be pointless
848 // to inline the constructor. Instead we will simply invalidate
849 // the fake temporary target.
850 if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
851 return CIP_DisallowedOnce;
852
853 // If the temporary is lifetime-extended by binding it to a reference-type
854 // field within an aggregate, automatic destructors don't work properly.
855 if (CallOpts.IsTemporaryLifetimeExtendedViaAggregate)
856 return CIP_DisallowedOnce;
857 }
858
859 break;
860 }
861 case CE_CXXInheritedConstructor: {
862 // This doesn't really increase the cost of inlining ever, because
863 // the stack frame of the inherited constructor is trivial.
864 return CIP_Allowed;
865 }
866 case CE_CXXDestructor: {
867 if (!Opts.mayInlineCXXMemberFunction(CIMK_Destructors))
868 return CIP_DisallowedAlways;
869
870 // Inlining destructors requires building the CFG correctly.
871 const AnalysisDeclContext *ADC = CallerSFC->getAnalysisDeclContext();
872 assert(ADC->getCFGBuildOptions().AddImplicitDtors && "No CFG destructors");
873 (void)ADC;
874
875 // FIXME: We don't handle destructors for arrays properly.
876 if (CallOpts.IsArrayCtorOrDtor)
877 return CIP_DisallowedOnce;
878
879 // Allow disabling temporary destructor inlining with a separate option.
880 if (CallOpts.IsTemporaryCtorOrDtor &&
881 !Opts.MayInlineCXXTemporaryDtors)
882 return CIP_DisallowedOnce;
883
884 // If we did not find the correct this-region, it would be pointless
885 // to inline the destructor. Instead we will simply invalidate
886 // the fake temporary target.
887 if (CallOpts.IsCtorOrDtorWithImproperlyModeledTargetRegion)
888 return CIP_DisallowedOnce;
889 break;
890 }
891 case CE_CXXDeallocator:
892 LLVM_FALLTHROUGH;
893 case CE_CXXAllocator:
894 if (Opts.MayInlineCXXAllocator)
895 break;
896 // Do not inline allocators until we model deallocators.
897 // This is unfortunate, but basically necessary for smart pointers and such.
898 return CIP_DisallowedAlways;
899 case CE_ObjCMessage:
900 if (!Opts.MayInlineObjCMethod)
901 return CIP_DisallowedAlways;
902 if (!(Opts.getIPAMode() == IPAK_DynamicDispatch ||
903 Opts.getIPAMode() == IPAK_DynamicDispatchBifurcate))
904 return CIP_DisallowedAlways;
905 break;
906 }
907
908 return CIP_Allowed;
909 }
910
911 /// Returns true if the given C++ class contains a member with the given name.
hasMember(const ASTContext & Ctx,const CXXRecordDecl * RD,StringRef Name)912 static bool hasMember(const ASTContext &Ctx, const CXXRecordDecl *RD,
913 StringRef Name) {
914 const IdentifierInfo &II = Ctx.Idents.get(Name);
915 return RD->hasMemberName(Ctx.DeclarationNames.getIdentifier(&II));
916 }
917
918 /// Returns true if the given C++ class is a container or iterator.
919 ///
920 /// Our heuristic for this is whether it contains a method named 'begin()' or a
921 /// nested type named 'iterator' or 'iterator_category'.
isContainerClass(const ASTContext & Ctx,const CXXRecordDecl * RD)922 static bool isContainerClass(const ASTContext &Ctx, const CXXRecordDecl *RD) {
923 return hasMember(Ctx, RD, "begin") ||
924 hasMember(Ctx, RD, "iterator") ||
925 hasMember(Ctx, RD, "iterator_category");
926 }
927
928 /// Returns true if the given function refers to a method of a C++ container
929 /// or iterator.
930 ///
931 /// We generally do a poor job modeling most containers right now, and might
932 /// prefer not to inline their methods.
isContainerMethod(const ASTContext & Ctx,const FunctionDecl * FD)933 static bool isContainerMethod(const ASTContext &Ctx,
934 const FunctionDecl *FD) {
935 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
936 return isContainerClass(Ctx, MD->getParent());
937 return false;
938 }
939
940 /// Returns true if the given function is the destructor of a class named
941 /// "shared_ptr".
isCXXSharedPtrDtor(const FunctionDecl * FD)942 static bool isCXXSharedPtrDtor(const FunctionDecl *FD) {
943 const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(FD);
944 if (!Dtor)
945 return false;
946
947 const CXXRecordDecl *RD = Dtor->getParent();
948 if (const IdentifierInfo *II = RD->getDeclName().getAsIdentifierInfo())
949 if (II->isStr("shared_ptr"))
950 return true;
951
952 return false;
953 }
954
955 /// Returns true if the function in \p CalleeADC may be inlined in general.
956 ///
957 /// This checks static properties of the function, such as its signature and
958 /// CFG, to determine whether the analyzer should ever consider inlining it,
959 /// in any context.
mayInlineDecl(AnalysisDeclContext * CalleeADC) const960 bool ExprEngine::mayInlineDecl(AnalysisDeclContext *CalleeADC) const {
961 AnalyzerOptions &Opts = AMgr.getAnalyzerOptions();
962 // FIXME: Do not inline variadic calls.
963 if (CallEvent::isVariadic(CalleeADC->getDecl()))
964 return false;
965
966 // Check certain C++-related inlining policies.
967 ASTContext &Ctx = CalleeADC->getASTContext();
968 if (Ctx.getLangOpts().CPlusPlus) {
969 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeADC->getDecl())) {
970 // Conditionally control the inlining of template functions.
971 if (!Opts.MayInlineTemplateFunctions)
972 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
973 return false;
974
975 // Conditionally control the inlining of C++ standard library functions.
976 if (!Opts.MayInlineCXXStandardLibrary)
977 if (Ctx.getSourceManager().isInSystemHeader(FD->getLocation()))
978 if (AnalysisDeclContext::isInStdNamespace(FD))
979 return false;
980
981 // Conditionally control the inlining of methods on objects that look
982 // like C++ containers.
983 if (!Opts.MayInlineCXXContainerMethods)
984 if (!AMgr.isInCodeFile(FD->getLocation()))
985 if (isContainerMethod(Ctx, FD))
986 return false;
987
988 // Conditionally control the inlining of the destructor of C++ shared_ptr.
989 // We don't currently do a good job modeling shared_ptr because we can't
990 // see the reference count, so treating as opaque is probably the best
991 // idea.
992 if (!Opts.MayInlineCXXSharedPtrDtor)
993 if (isCXXSharedPtrDtor(FD))
994 return false;
995 }
996 }
997
998 // It is possible that the CFG cannot be constructed.
999 // Be safe, and check if the CalleeCFG is valid.
1000 const CFG *CalleeCFG = CalleeADC->getCFG();
1001 if (!CalleeCFG)
1002 return false;
1003
1004 // Do not inline large functions.
1005 if (isHuge(CalleeADC))
1006 return false;
1007
1008 // It is possible that the live variables analysis cannot be
1009 // run. If so, bail out.
1010 if (!CalleeADC->getAnalysis<RelaxedLiveVariables>())
1011 return false;
1012
1013 return true;
1014 }
1015
shouldInlineCall(const CallEvent & Call,const Decl * D,const ExplodedNode * Pred,const EvalCallOptions & CallOpts)1016 bool ExprEngine::shouldInlineCall(const CallEvent &Call, const Decl *D,
1017 const ExplodedNode *Pred,
1018 const EvalCallOptions &CallOpts) {
1019 if (!D)
1020 return false;
1021
1022 AnalysisManager &AMgr = getAnalysisManager();
1023 AnalyzerOptions &Opts = AMgr.options;
1024 AnalysisDeclContextManager &ADCMgr = AMgr.getAnalysisDeclContextManager();
1025 AnalysisDeclContext *CalleeADC = ADCMgr.getContext(D);
1026
1027 // The auto-synthesized bodies are essential to inline as they are
1028 // usually small and commonly used. Note: we should do this check early on to
1029 // ensure we always inline these calls.
1030 if (CalleeADC->isBodyAutosynthesized())
1031 return true;
1032
1033 if (!AMgr.shouldInlineCall())
1034 return false;
1035
1036 // Check if this function has been marked as non-inlinable.
1037 Optional<bool> MayInline = Engine.FunctionSummaries->mayInline(D);
1038 if (MayInline) {
1039 if (!MayInline.value())
1040 return false;
1041
1042 } else {
1043 // We haven't actually checked the static properties of this function yet.
1044 // Do that now, and record our decision in the function summaries.
1045 if (mayInlineDecl(CalleeADC)) {
1046 Engine.FunctionSummaries->markMayInline(D);
1047 } else {
1048 Engine.FunctionSummaries->markShouldNotInline(D);
1049 return false;
1050 }
1051 }
1052
1053 // Check if we should inline a call based on its kind.
1054 // FIXME: this checks both static and dynamic properties of the call, which
1055 // means we're redoing a bit of work that could be cached in the function
1056 // summary.
1057 CallInlinePolicy CIP = mayInlineCallKind(Call, Pred, Opts, CallOpts);
1058 if (CIP != CIP_Allowed) {
1059 if (CIP == CIP_DisallowedAlways) {
1060 assert(!MayInline || *MayInline);
1061 Engine.FunctionSummaries->markShouldNotInline(D);
1062 }
1063 return false;
1064 }
1065
1066 // Do not inline if recursive or we've reached max stack frame count.
1067 bool IsRecursive = false;
1068 unsigned StackDepth = 0;
1069 examineStackFrames(D, Pred->getLocationContext(), IsRecursive, StackDepth);
1070 if ((StackDepth >= Opts.InlineMaxStackDepth) &&
1071 (!isSmall(CalleeADC) || IsRecursive))
1072 return false;
1073
1074 // Do not inline large functions too many times.
1075 if ((Engine.FunctionSummaries->getNumTimesInlined(D) >
1076 Opts.MaxTimesInlineLarge) &&
1077 isLarge(CalleeADC)) {
1078 NumReachedInlineCountMax++;
1079 return false;
1080 }
1081
1082 if (HowToInline == Inline_Minimal && (!isSmall(CalleeADC) || IsRecursive))
1083 return false;
1084
1085 return true;
1086 }
1087
shouldInlineArrayConstruction(const ProgramStateRef State,const CXXConstructExpr * CE,const LocationContext * LCtx)1088 bool ExprEngine::shouldInlineArrayConstruction(const ProgramStateRef State,
1089 const CXXConstructExpr *CE,
1090 const LocationContext *LCtx) {
1091 if (!CE)
1092 return false;
1093
1094 auto Type = CE->getType();
1095
1096 // FIXME: Handle other arrays types.
1097 if (const auto *CAT = dyn_cast<ConstantArrayType>(Type)) {
1098 unsigned Size = getContext().getConstantArrayElementCount(CAT);
1099
1100 return Size <= AMgr.options.maxBlockVisitOnPath;
1101 }
1102
1103 // Check if we're inside an ArrayInitLoopExpr, and it's sufficiently small.
1104 if (auto Size = getPendingInitLoop(State, CE, LCtx))
1105 return *Size <= AMgr.options.maxBlockVisitOnPath;
1106
1107 return false;
1108 }
1109
shouldRepeatCtorCall(ProgramStateRef State,const CXXConstructExpr * E,const LocationContext * LCtx)1110 bool ExprEngine::shouldRepeatCtorCall(ProgramStateRef State,
1111 const CXXConstructExpr *E,
1112 const LocationContext *LCtx) {
1113
1114 if (!E)
1115 return false;
1116
1117 auto Ty = E->getType();
1118
1119 // FIXME: Handle non constant array types
1120 if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty)) {
1121 unsigned Size = getContext().getConstantArrayElementCount(CAT);
1122 return Size > getIndexOfElementToConstruct(State, E, LCtx);
1123 }
1124
1125 if (auto Size = getPendingInitLoop(State, E, LCtx))
1126 return Size > getIndexOfElementToConstruct(State, E, LCtx);
1127
1128 return false;
1129 }
1130
isTrivialObjectAssignment(const CallEvent & Call)1131 static bool isTrivialObjectAssignment(const CallEvent &Call) {
1132 const CXXInstanceCall *ICall = dyn_cast<CXXInstanceCall>(&Call);
1133 if (!ICall)
1134 return false;
1135
1136 const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(ICall->getDecl());
1137 if (!MD)
1138 return false;
1139 if (!(MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()))
1140 return false;
1141
1142 return MD->isTrivial();
1143 }
1144
defaultEvalCall(NodeBuilder & Bldr,ExplodedNode * Pred,const CallEvent & CallTemplate,const EvalCallOptions & CallOpts)1145 void ExprEngine::defaultEvalCall(NodeBuilder &Bldr, ExplodedNode *Pred,
1146 const CallEvent &CallTemplate,
1147 const EvalCallOptions &CallOpts) {
1148 // Make sure we have the most recent state attached to the call.
1149 ProgramStateRef State = Pred->getState();
1150 CallEventRef<> Call = CallTemplate.cloneWithState(State);
1151
1152 // Special-case trivial assignment operators.
1153 if (isTrivialObjectAssignment(*Call)) {
1154 performTrivialCopy(Bldr, Pred, *Call);
1155 return;
1156 }
1157
1158 // Try to inline the call.
1159 // The origin expression here is just used as a kind of checksum;
1160 // this should still be safe even for CallEvents that don't come from exprs.
1161 const Expr *E = Call->getOriginExpr();
1162
1163 ProgramStateRef InlinedFailedState = getInlineFailedState(State, E);
1164 if (InlinedFailedState) {
1165 // If we already tried once and failed, make sure we don't retry later.
1166 State = InlinedFailedState;
1167 } else {
1168 RuntimeDefinition RD = Call->getRuntimeDefinition();
1169 Call->setForeign(RD.isForeign());
1170 const Decl *D = RD.getDecl();
1171 if (shouldInlineCall(*Call, D, Pred, CallOpts)) {
1172 if (RD.mayHaveOtherDefinitions()) {
1173 AnalyzerOptions &Options = getAnalysisManager().options;
1174
1175 // Explore with and without inlining the call.
1176 if (Options.getIPAMode() == IPAK_DynamicDispatchBifurcate) {
1177 BifurcateCall(RD.getDispatchRegion(), *Call, D, Bldr, Pred);
1178 return;
1179 }
1180
1181 // Don't inline if we're not in any dynamic dispatch mode.
1182 if (Options.getIPAMode() != IPAK_DynamicDispatch) {
1183 conservativeEvalCall(*Call, Bldr, Pred, State);
1184 return;
1185 }
1186 }
1187 ctuBifurcate(*Call, D, Bldr, Pred, State);
1188 return;
1189 }
1190 }
1191
1192 // If we can't inline it, handle the return value and invalidate the regions.
1193 conservativeEvalCall(*Call, Bldr, Pred, State);
1194 }
1195
BifurcateCall(const MemRegion * BifurReg,const CallEvent & Call,const Decl * D,NodeBuilder & Bldr,ExplodedNode * Pred)1196 void ExprEngine::BifurcateCall(const MemRegion *BifurReg,
1197 const CallEvent &Call, const Decl *D,
1198 NodeBuilder &Bldr, ExplodedNode *Pred) {
1199 assert(BifurReg);
1200 BifurReg = BifurReg->StripCasts();
1201
1202 // Check if we've performed the split already - note, we only want
1203 // to split the path once per memory region.
1204 ProgramStateRef State = Pred->getState();
1205 const unsigned *BState =
1206 State->get<DynamicDispatchBifurcationMap>(BifurReg);
1207 if (BState) {
1208 // If we are on "inline path", keep inlining if possible.
1209 if (*BState == DynamicDispatchModeInlined)
1210 ctuBifurcate(Call, D, Bldr, Pred, State);
1211 // If inline failed, or we are on the path where we assume we
1212 // don't have enough info about the receiver to inline, conjure the
1213 // return value and invalidate the regions.
1214 conservativeEvalCall(Call, Bldr, Pred, State);
1215 return;
1216 }
1217
1218 // If we got here, this is the first time we process a message to this
1219 // region, so split the path.
1220 ProgramStateRef IState =
1221 State->set<DynamicDispatchBifurcationMap>(BifurReg,
1222 DynamicDispatchModeInlined);
1223 ctuBifurcate(Call, D, Bldr, Pred, IState);
1224
1225 ProgramStateRef NoIState =
1226 State->set<DynamicDispatchBifurcationMap>(BifurReg,
1227 DynamicDispatchModeConservative);
1228 conservativeEvalCall(Call, Bldr, Pred, NoIState);
1229
1230 NumOfDynamicDispatchPathSplits++;
1231 }
1232
VisitReturnStmt(const ReturnStmt * RS,ExplodedNode * Pred,ExplodedNodeSet & Dst)1233 void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
1234 ExplodedNodeSet &Dst) {
1235 ExplodedNodeSet dstPreVisit;
1236 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, RS, *this);
1237
1238 StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
1239
1240 if (RS->getRetValue()) {
1241 for (ExplodedNodeSet::iterator it = dstPreVisit.begin(),
1242 ei = dstPreVisit.end(); it != ei; ++it) {
1243 B.generateNode(RS, *it, (*it)->getState());
1244 }
1245 }
1246 }
1247