1 //===- ELFObject.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "ELFObject.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/StringRef.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/ADT/iterator_range.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/MC/MCTargetOptions.h"
17 #include "llvm/Object/ELF.h"
18 #include "llvm/Object/ELFObjectFile.h"
19 #include "llvm/Support/Compression.h"
20 #include "llvm/Support/Endian.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/FileOutputBuffer.h"
23 #include "llvm/Support/Path.h"
24 #include <algorithm>
25 #include <cstddef>
26 #include <cstdint>
27 #include <iterator>
28 #include <unordered_set>
29 #include <utility>
30 #include <vector>
31
32 using namespace llvm;
33 using namespace llvm::ELF;
34 using namespace llvm::objcopy::elf;
35 using namespace llvm::object;
36
writePhdr(const Segment & Seg)37 template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
38 uint8_t *B = reinterpret_cast<uint8_t *>(Buf->getBufferStart()) +
39 Obj.ProgramHdrSegment.Offset + Seg.Index * sizeof(Elf_Phdr);
40 Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
41 Phdr.p_type = Seg.Type;
42 Phdr.p_flags = Seg.Flags;
43 Phdr.p_offset = Seg.Offset;
44 Phdr.p_vaddr = Seg.VAddr;
45 Phdr.p_paddr = Seg.PAddr;
46 Phdr.p_filesz = Seg.FileSize;
47 Phdr.p_memsz = Seg.MemSize;
48 Phdr.p_align = Seg.Align;
49 }
50
removeSectionReferences(bool,function_ref<bool (const SectionBase *)>)51 Error SectionBase::removeSectionReferences(
52 bool, function_ref<bool(const SectionBase *)>) {
53 return Error::success();
54 }
55
removeSymbols(function_ref<bool (const Symbol &)>)56 Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)>) {
57 return Error::success();
58 }
59
initialize(SectionTableRef)60 Error SectionBase::initialize(SectionTableRef) { return Error::success(); }
finalize()61 void SectionBase::finalize() {}
markSymbols()62 void SectionBase::markSymbols() {}
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > &)63 void SectionBase::replaceSectionReferences(
64 const DenseMap<SectionBase *, SectionBase *> &) {}
onRemove()65 void SectionBase::onRemove() {}
66
writeShdr(const SectionBase & Sec)67 template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
68 uint8_t *B =
69 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Sec.HeaderOffset;
70 Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
71 Shdr.sh_name = Sec.NameIndex;
72 Shdr.sh_type = Sec.Type;
73 Shdr.sh_flags = Sec.Flags;
74 Shdr.sh_addr = Sec.Addr;
75 Shdr.sh_offset = Sec.Offset;
76 Shdr.sh_size = Sec.Size;
77 Shdr.sh_link = Sec.Link;
78 Shdr.sh_info = Sec.Info;
79 Shdr.sh_addralign = Sec.Align;
80 Shdr.sh_entsize = Sec.EntrySize;
81 }
82
visit(Section &)83 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(Section &) {
84 return Error::success();
85 }
86
visit(OwnedDataSection &)87 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(OwnedDataSection &) {
88 return Error::success();
89 }
90
visit(StringTableSection &)91 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(StringTableSection &) {
92 return Error::success();
93 }
94
95 template <class ELFT>
visit(DynamicRelocationSection &)96 Error ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &) {
97 return Error::success();
98 }
99
100 template <class ELFT>
visit(SymbolTableSection & Sec)101 Error ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
102 Sec.EntrySize = sizeof(Elf_Sym);
103 Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
104 // Align to the largest field in Elf_Sym.
105 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
106 return Error::success();
107 }
108
109 template <class ELFT>
visit(RelocationSection & Sec)110 Error ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
111 Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
112 Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
113 // Align to the largest field in Elf_Rel(a).
114 Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
115 return Error::success();
116 }
117
118 template <class ELFT>
visit(GnuDebugLinkSection &)119 Error ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &) {
120 return Error::success();
121 }
122
visit(GroupSection & Sec)123 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
124 Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
125 return Error::success();
126 }
127
128 template <class ELFT>
visit(SectionIndexSection &)129 Error ELFSectionSizer<ELFT>::visit(SectionIndexSection &) {
130 return Error::success();
131 }
132
visit(CompressedSection &)133 template <class ELFT> Error ELFSectionSizer<ELFT>::visit(CompressedSection &) {
134 return Error::success();
135 }
136
137 template <class ELFT>
visit(DecompressedSection &)138 Error ELFSectionSizer<ELFT>::visit(DecompressedSection &) {
139 return Error::success();
140 }
141
visit(const SectionIndexSection & Sec)142 Error BinarySectionWriter::visit(const SectionIndexSection &Sec) {
143 return createStringError(errc::operation_not_permitted,
144 "cannot write symbol section index table '" +
145 Sec.Name + "' ");
146 }
147
visit(const SymbolTableSection & Sec)148 Error BinarySectionWriter::visit(const SymbolTableSection &Sec) {
149 return createStringError(errc::operation_not_permitted,
150 "cannot write symbol table '" + Sec.Name +
151 "' out to binary");
152 }
153
visit(const RelocationSection & Sec)154 Error BinarySectionWriter::visit(const RelocationSection &Sec) {
155 return createStringError(errc::operation_not_permitted,
156 "cannot write relocation section '" + Sec.Name +
157 "' out to binary");
158 }
159
visit(const GnuDebugLinkSection & Sec)160 Error BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
161 return createStringError(errc::operation_not_permitted,
162 "cannot write '" + Sec.Name + "' out to binary");
163 }
164
visit(const GroupSection & Sec)165 Error BinarySectionWriter::visit(const GroupSection &Sec) {
166 return createStringError(errc::operation_not_permitted,
167 "cannot write '" + Sec.Name + "' out to binary");
168 }
169
visit(const Section & Sec)170 Error SectionWriter::visit(const Section &Sec) {
171 if (Sec.Type != SHT_NOBITS)
172 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
173
174 return Error::success();
175 }
176
addressOverflows32bit(uint64_t Addr)177 static bool addressOverflows32bit(uint64_t Addr) {
178 // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
179 return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
180 }
181
checkedGetHex(StringRef S)182 template <class T> static T checkedGetHex(StringRef S) {
183 T Value;
184 bool Fail = S.getAsInteger(16, Value);
185 assert(!Fail);
186 (void)Fail;
187 return Value;
188 }
189
190 // Fills exactly Len bytes of buffer with hexadecimal characters
191 // representing value 'X'
192 template <class T, class Iterator>
toHexStr(T X,Iterator It,size_t Len)193 static Iterator toHexStr(T X, Iterator It, size_t Len) {
194 // Fill range with '0'
195 std::fill(It, It + Len, '0');
196
197 for (long I = Len - 1; I >= 0; --I) {
198 unsigned char Mod = static_cast<unsigned char>(X) & 15;
199 *(It + I) = hexdigit(Mod, false);
200 X >>= 4;
201 }
202 assert(X == 0);
203 return It + Len;
204 }
205
getChecksum(StringRef S)206 uint8_t IHexRecord::getChecksum(StringRef S) {
207 assert((S.size() & 1) == 0);
208 uint8_t Checksum = 0;
209 while (!S.empty()) {
210 Checksum += checkedGetHex<uint8_t>(S.take_front(2));
211 S = S.drop_front(2);
212 }
213 return -Checksum;
214 }
215
getLine(uint8_t Type,uint16_t Addr,ArrayRef<uint8_t> Data)216 IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
217 ArrayRef<uint8_t> Data) {
218 IHexLineData Line(getLineLength(Data.size()));
219 assert(Line.size());
220 auto Iter = Line.begin();
221 *Iter++ = ':';
222 Iter = toHexStr(Data.size(), Iter, 2);
223 Iter = toHexStr(Addr, Iter, 4);
224 Iter = toHexStr(Type, Iter, 2);
225 for (uint8_t X : Data)
226 Iter = toHexStr(X, Iter, 2);
227 StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
228 Iter = toHexStr(getChecksum(S), Iter, 2);
229 *Iter++ = '\r';
230 *Iter++ = '\n';
231 assert(Iter == Line.end());
232 return Line;
233 }
234
checkRecord(const IHexRecord & R)235 static Error checkRecord(const IHexRecord &R) {
236 switch (R.Type) {
237 case IHexRecord::Data:
238 if (R.HexData.size() == 0)
239 return createStringError(
240 errc::invalid_argument,
241 "zero data length is not allowed for data records");
242 break;
243 case IHexRecord::EndOfFile:
244 break;
245 case IHexRecord::SegmentAddr:
246 // 20-bit segment address. Data length must be 2 bytes
247 // (4 bytes in hex)
248 if (R.HexData.size() != 4)
249 return createStringError(
250 errc::invalid_argument,
251 "segment address data should be 2 bytes in size");
252 break;
253 case IHexRecord::StartAddr80x86:
254 case IHexRecord::StartAddr:
255 if (R.HexData.size() != 8)
256 return createStringError(errc::invalid_argument,
257 "start address data should be 4 bytes in size");
258 // According to Intel HEX specification '03' record
259 // only specifies the code address within the 20-bit
260 // segmented address space of the 8086/80186. This
261 // means 12 high order bits should be zeroes.
262 if (R.Type == IHexRecord::StartAddr80x86 &&
263 R.HexData.take_front(3) != "000")
264 return createStringError(errc::invalid_argument,
265 "start address exceeds 20 bit for 80x86");
266 break;
267 case IHexRecord::ExtendedAddr:
268 // 16-31 bits of linear base address
269 if (R.HexData.size() != 4)
270 return createStringError(
271 errc::invalid_argument,
272 "extended address data should be 2 bytes in size");
273 break;
274 default:
275 // Unknown record type
276 return createStringError(errc::invalid_argument, "unknown record type: %u",
277 static_cast<unsigned>(R.Type));
278 }
279 return Error::success();
280 }
281
282 // Checks that IHEX line contains valid characters.
283 // This allows converting hexadecimal data to integers
284 // without extra verification.
checkChars(StringRef Line)285 static Error checkChars(StringRef Line) {
286 assert(!Line.empty());
287 if (Line[0] != ':')
288 return createStringError(errc::invalid_argument,
289 "missing ':' in the beginning of line.");
290
291 for (size_t Pos = 1; Pos < Line.size(); ++Pos)
292 if (hexDigitValue(Line[Pos]) == -1U)
293 return createStringError(errc::invalid_argument,
294 "invalid character at position %zu.", Pos + 1);
295 return Error::success();
296 }
297
parse(StringRef Line)298 Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
299 assert(!Line.empty());
300
301 // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
302 if (Line.size() < 11)
303 return createStringError(errc::invalid_argument,
304 "line is too short: %zu chars.", Line.size());
305
306 if (Error E = checkChars(Line))
307 return std::move(E);
308
309 IHexRecord Rec;
310 size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
311 if (Line.size() != getLength(DataLen))
312 return createStringError(errc::invalid_argument,
313 "invalid line length %zu (should be %zu)",
314 Line.size(), getLength(DataLen));
315
316 Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
317 Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
318 Rec.HexData = Line.substr(9, DataLen * 2);
319
320 if (getChecksum(Line.drop_front(1)) != 0)
321 return createStringError(errc::invalid_argument, "incorrect checksum.");
322 if (Error E = checkRecord(Rec))
323 return std::move(E);
324 return Rec;
325 }
326
sectionPhysicalAddr(const SectionBase * Sec)327 static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
328 Segment *Seg = Sec->ParentSegment;
329 if (Seg && Seg->Type != ELF::PT_LOAD)
330 Seg = nullptr;
331 return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
332 : Sec->Addr;
333 }
334
writeSection(const SectionBase * Sec,ArrayRef<uint8_t> Data)335 void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
336 ArrayRef<uint8_t> Data) {
337 assert(Data.size() == Sec->Size);
338 const uint32_t ChunkSize = 16;
339 uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
340 while (!Data.empty()) {
341 uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
342 if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
343 if (Addr > 0xFFFFFU) {
344 // Write extended address record, zeroing segment address
345 // if needed.
346 if (SegmentAddr != 0)
347 SegmentAddr = writeSegmentAddr(0U);
348 BaseAddr = writeBaseAddr(Addr);
349 } else {
350 // We can still remain 16-bit
351 SegmentAddr = writeSegmentAddr(Addr);
352 }
353 }
354 uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
355 assert(SegOffset <= 0xFFFFU);
356 DataSize = std::min(DataSize, 0x10000U - SegOffset);
357 writeData(0, SegOffset, Data.take_front(DataSize));
358 Addr += DataSize;
359 Data = Data.drop_front(DataSize);
360 }
361 }
362
writeSegmentAddr(uint64_t Addr)363 uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
364 assert(Addr <= 0xFFFFFU);
365 uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
366 writeData(2, 0, Data);
367 return Addr & 0xF0000U;
368 }
369
writeBaseAddr(uint64_t Addr)370 uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
371 assert(Addr <= 0xFFFFFFFFU);
372 uint64_t Base = Addr & 0xFFFF0000U;
373 uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
374 static_cast<uint8_t>((Base >> 16) & 0xFF)};
375 writeData(4, 0, Data);
376 return Base;
377 }
378
writeData(uint8_t,uint16_t,ArrayRef<uint8_t> Data)379 void IHexSectionWriterBase::writeData(uint8_t, uint16_t,
380 ArrayRef<uint8_t> Data) {
381 Offset += IHexRecord::getLineLength(Data.size());
382 }
383
visit(const Section & Sec)384 Error IHexSectionWriterBase::visit(const Section &Sec) {
385 writeSection(&Sec, Sec.Contents);
386 return Error::success();
387 }
388
visit(const OwnedDataSection & Sec)389 Error IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
390 writeSection(&Sec, Sec.Data);
391 return Error::success();
392 }
393
visit(const StringTableSection & Sec)394 Error IHexSectionWriterBase::visit(const StringTableSection &Sec) {
395 // Check that sizer has already done its work
396 assert(Sec.Size == Sec.StrTabBuilder.getSize());
397 // We are free to pass an invalid pointer to writeSection as long
398 // as we don't actually write any data. The real writer class has
399 // to override this method .
400 writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
401 return Error::success();
402 }
403
visit(const DynamicRelocationSection & Sec)404 Error IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
405 writeSection(&Sec, Sec.Contents);
406 return Error::success();
407 }
408
writeData(uint8_t Type,uint16_t Addr,ArrayRef<uint8_t> Data)409 void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
410 ArrayRef<uint8_t> Data) {
411 IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
412 memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
413 Offset += HexData.size();
414 }
415
visit(const StringTableSection & Sec)416 Error IHexSectionWriter::visit(const StringTableSection &Sec) {
417 assert(Sec.Size == Sec.StrTabBuilder.getSize());
418 std::vector<uint8_t> Data(Sec.Size);
419 Sec.StrTabBuilder.write(Data.data());
420 writeSection(&Sec, Data);
421 return Error::success();
422 }
423
accept(SectionVisitor & Visitor) const424 Error Section::accept(SectionVisitor &Visitor) const {
425 return Visitor.visit(*this);
426 }
427
accept(MutableSectionVisitor & Visitor)428 Error Section::accept(MutableSectionVisitor &Visitor) {
429 return Visitor.visit(*this);
430 }
431
visit(const OwnedDataSection & Sec)432 Error SectionWriter::visit(const OwnedDataSection &Sec) {
433 llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
434 return Error::success();
435 }
436
437 template <class ELFT>
visit(const DecompressedSection & Sec)438 Error ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
439 ArrayRef<uint8_t> Compressed =
440 Sec.OriginalData.slice(sizeof(Elf_Chdr_Impl<ELFT>));
441 SmallVector<uint8_t, 128> DecompressedContent;
442 if (Error Err = compression::zlib::uncompress(Compressed, DecompressedContent,
443 static_cast<size_t>(Sec.Size)))
444 return createStringError(errc::invalid_argument,
445 "'" + Sec.Name + "': " + toString(std::move(Err)));
446
447 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
448 std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
449
450 return Error::success();
451 }
452
visit(const DecompressedSection & Sec)453 Error BinarySectionWriter::visit(const DecompressedSection &Sec) {
454 return createStringError(errc::operation_not_permitted,
455 "cannot write compressed section '" + Sec.Name +
456 "' ");
457 }
458
accept(SectionVisitor & Visitor) const459 Error DecompressedSection::accept(SectionVisitor &Visitor) const {
460 return Visitor.visit(*this);
461 }
462
accept(MutableSectionVisitor & Visitor)463 Error DecompressedSection::accept(MutableSectionVisitor &Visitor) {
464 return Visitor.visit(*this);
465 }
466
accept(SectionVisitor & Visitor) const467 Error OwnedDataSection::accept(SectionVisitor &Visitor) const {
468 return Visitor.visit(*this);
469 }
470
accept(MutableSectionVisitor & Visitor)471 Error OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
472 return Visitor.visit(*this);
473 }
474
appendHexData(StringRef HexData)475 void OwnedDataSection::appendHexData(StringRef HexData) {
476 assert((HexData.size() & 1) == 0);
477 while (!HexData.empty()) {
478 Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
479 HexData = HexData.drop_front(2);
480 }
481 Size = Data.size();
482 }
483
visit(const CompressedSection & Sec)484 Error BinarySectionWriter::visit(const CompressedSection &Sec) {
485 return createStringError(errc::operation_not_permitted,
486 "cannot write compressed section '" + Sec.Name +
487 "' ");
488 }
489
490 template <class ELFT>
visit(const CompressedSection & Sec)491 Error ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
492 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
493 Elf_Chdr_Impl<ELFT> Chdr = {};
494 switch (Sec.CompressionType) {
495 case DebugCompressionType::None:
496 std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
497 return Error::success();
498 case DebugCompressionType::Z:
499 Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
500 break;
501 }
502 Chdr.ch_size = Sec.DecompressedSize;
503 Chdr.ch_addralign = Sec.DecompressedAlign;
504 memcpy(Buf, &Chdr, sizeof(Chdr));
505 Buf += sizeof(Chdr);
506
507 std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
508 return Error::success();
509 }
510
CompressedSection(const SectionBase & Sec,DebugCompressionType CompressionType)511 CompressedSection::CompressedSection(const SectionBase &Sec,
512 DebugCompressionType CompressionType)
513 : SectionBase(Sec), CompressionType(CompressionType),
514 DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
515 compression::zlib::compress(OriginalData, CompressedData);
516
517 assert(CompressionType != DebugCompressionType::None);
518 Flags |= ELF::SHF_COMPRESSED;
519 size_t ChdrSize =
520 std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
521 sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
522 std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
523 sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
524 Size = ChdrSize + CompressedData.size();
525 Align = 8;
526 }
527
CompressedSection(ArrayRef<uint8_t> CompressedData,uint64_t DecompressedSize,uint64_t DecompressedAlign)528 CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
529 uint64_t DecompressedSize,
530 uint64_t DecompressedAlign)
531 : CompressionType(DebugCompressionType::None),
532 DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
533 OriginalData = CompressedData;
534 }
535
accept(SectionVisitor & Visitor) const536 Error CompressedSection::accept(SectionVisitor &Visitor) const {
537 return Visitor.visit(*this);
538 }
539
accept(MutableSectionVisitor & Visitor)540 Error CompressedSection::accept(MutableSectionVisitor &Visitor) {
541 return Visitor.visit(*this);
542 }
543
addString(StringRef Name)544 void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
545
findIndex(StringRef Name) const546 uint32_t StringTableSection::findIndex(StringRef Name) const {
547 return StrTabBuilder.getOffset(Name);
548 }
549
prepareForLayout()550 void StringTableSection::prepareForLayout() {
551 StrTabBuilder.finalize();
552 Size = StrTabBuilder.getSize();
553 }
554
visit(const StringTableSection & Sec)555 Error SectionWriter::visit(const StringTableSection &Sec) {
556 Sec.StrTabBuilder.write(reinterpret_cast<uint8_t *>(Out.getBufferStart()) +
557 Sec.Offset);
558 return Error::success();
559 }
560
accept(SectionVisitor & Visitor) const561 Error StringTableSection::accept(SectionVisitor &Visitor) const {
562 return Visitor.visit(*this);
563 }
564
accept(MutableSectionVisitor & Visitor)565 Error StringTableSection::accept(MutableSectionVisitor &Visitor) {
566 return Visitor.visit(*this);
567 }
568
569 template <class ELFT>
visit(const SectionIndexSection & Sec)570 Error ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
571 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
572 llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
573 return Error::success();
574 }
575
initialize(SectionTableRef SecTable)576 Error SectionIndexSection::initialize(SectionTableRef SecTable) {
577 Size = 0;
578 Expected<SymbolTableSection *> Sec =
579 SecTable.getSectionOfType<SymbolTableSection>(
580 Link,
581 "Link field value " + Twine(Link) + " in section " + Name +
582 " is invalid",
583 "Link field value " + Twine(Link) + " in section " + Name +
584 " is not a symbol table");
585 if (!Sec)
586 return Sec.takeError();
587
588 setSymTab(*Sec);
589 Symbols->setShndxTable(this);
590 return Error::success();
591 }
592
finalize()593 void SectionIndexSection::finalize() { Link = Symbols->Index; }
594
accept(SectionVisitor & Visitor) const595 Error SectionIndexSection::accept(SectionVisitor &Visitor) const {
596 return Visitor.visit(*this);
597 }
598
accept(MutableSectionVisitor & Visitor)599 Error SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
600 return Visitor.visit(*this);
601 }
602
isValidReservedSectionIndex(uint16_t Index,uint16_t Machine)603 static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
604 switch (Index) {
605 case SHN_ABS:
606 case SHN_COMMON:
607 return true;
608 }
609
610 if (Machine == EM_AMDGPU) {
611 return Index == SHN_AMDGPU_LDS;
612 }
613
614 if (Machine == EM_MIPS) {
615 switch (Index) {
616 case SHN_MIPS_ACOMMON:
617 case SHN_MIPS_SCOMMON:
618 case SHN_MIPS_SUNDEFINED:
619 return true;
620 }
621 }
622
623 if (Machine == EM_HEXAGON) {
624 switch (Index) {
625 case SHN_HEXAGON_SCOMMON:
626 case SHN_HEXAGON_SCOMMON_1:
627 case SHN_HEXAGON_SCOMMON_2:
628 case SHN_HEXAGON_SCOMMON_4:
629 case SHN_HEXAGON_SCOMMON_8:
630 return true;
631 }
632 }
633 return false;
634 }
635
636 // Large indexes force us to clarify exactly what this function should do. This
637 // function should return the value that will appear in st_shndx when written
638 // out.
getShndx() const639 uint16_t Symbol::getShndx() const {
640 if (DefinedIn != nullptr) {
641 if (DefinedIn->Index >= SHN_LORESERVE)
642 return SHN_XINDEX;
643 return DefinedIn->Index;
644 }
645
646 if (ShndxType == SYMBOL_SIMPLE_INDEX) {
647 // This means that we don't have a defined section but we do need to
648 // output a legitimate section index.
649 return SHN_UNDEF;
650 }
651
652 assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
653 (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
654 (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
655 return static_cast<uint16_t>(ShndxType);
656 }
657
isCommon() const658 bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
659
assignIndices()660 void SymbolTableSection::assignIndices() {
661 uint32_t Index = 0;
662 for (auto &Sym : Symbols)
663 Sym->Index = Index++;
664 }
665
addSymbol(Twine Name,uint8_t Bind,uint8_t Type,SectionBase * DefinedIn,uint64_t Value,uint8_t Visibility,uint16_t Shndx,uint64_t SymbolSize)666 void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
667 SectionBase *DefinedIn, uint64_t Value,
668 uint8_t Visibility, uint16_t Shndx,
669 uint64_t SymbolSize) {
670 Symbol Sym;
671 Sym.Name = Name.str();
672 Sym.Binding = Bind;
673 Sym.Type = Type;
674 Sym.DefinedIn = DefinedIn;
675 if (DefinedIn != nullptr)
676 DefinedIn->HasSymbol = true;
677 if (DefinedIn == nullptr) {
678 if (Shndx >= SHN_LORESERVE)
679 Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
680 else
681 Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
682 }
683 Sym.Value = Value;
684 Sym.Visibility = Visibility;
685 Sym.Size = SymbolSize;
686 Sym.Index = Symbols.size();
687 Symbols.emplace_back(std::make_unique<Symbol>(Sym));
688 Size += this->EntrySize;
689 }
690
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)691 Error SymbolTableSection::removeSectionReferences(
692 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
693 if (ToRemove(SectionIndexTable))
694 SectionIndexTable = nullptr;
695 if (ToRemove(SymbolNames)) {
696 if (!AllowBrokenLinks)
697 return createStringError(
698 llvm::errc::invalid_argument,
699 "string table '%s' cannot be removed because it is "
700 "referenced by the symbol table '%s'",
701 SymbolNames->Name.data(), this->Name.data());
702 SymbolNames = nullptr;
703 }
704 return removeSymbols(
705 [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
706 }
707
updateSymbols(function_ref<void (Symbol &)> Callable)708 void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
709 for (SymPtr &Sym : llvm::drop_begin(Symbols))
710 Callable(*Sym);
711 std::stable_partition(
712 std::begin(Symbols), std::end(Symbols),
713 [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
714 assignIndices();
715 }
716
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)717 Error SymbolTableSection::removeSymbols(
718 function_ref<bool(const Symbol &)> ToRemove) {
719 Symbols.erase(
720 std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
721 [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
722 std::end(Symbols));
723 Size = Symbols.size() * EntrySize;
724 assignIndices();
725 return Error::success();
726 }
727
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)728 void SymbolTableSection::replaceSectionReferences(
729 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
730 for (std::unique_ptr<Symbol> &Sym : Symbols)
731 if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
732 Sym->DefinedIn = To;
733 }
734
initialize(SectionTableRef SecTable)735 Error SymbolTableSection::initialize(SectionTableRef SecTable) {
736 Size = 0;
737 Expected<StringTableSection *> Sec =
738 SecTable.getSectionOfType<StringTableSection>(
739 Link,
740 "Symbol table has link index of " + Twine(Link) +
741 " which is not a valid index",
742 "Symbol table has link index of " + Twine(Link) +
743 " which is not a string table");
744 if (!Sec)
745 return Sec.takeError();
746
747 setStrTab(*Sec);
748 return Error::success();
749 }
750
finalize()751 void SymbolTableSection::finalize() {
752 uint32_t MaxLocalIndex = 0;
753 for (std::unique_ptr<Symbol> &Sym : Symbols) {
754 Sym->NameIndex =
755 SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
756 if (Sym->Binding == STB_LOCAL)
757 MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
758 }
759 // Now we need to set the Link and Info fields.
760 Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
761 Info = MaxLocalIndex + 1;
762 }
763
prepareForLayout()764 void SymbolTableSection::prepareForLayout() {
765 // Reserve proper amount of space in section index table, so we can
766 // layout sections correctly. We will fill the table with correct
767 // indexes later in fillShdnxTable.
768 if (SectionIndexTable)
769 SectionIndexTable->reserve(Symbols.size());
770
771 // Add all of our strings to SymbolNames so that SymbolNames has the right
772 // size before layout is decided.
773 // If the symbol names section has been removed, don't try to add strings to
774 // the table.
775 if (SymbolNames != nullptr)
776 for (std::unique_ptr<Symbol> &Sym : Symbols)
777 SymbolNames->addString(Sym->Name);
778 }
779
fillShndxTable()780 void SymbolTableSection::fillShndxTable() {
781 if (SectionIndexTable == nullptr)
782 return;
783 // Fill section index table with real section indexes. This function must
784 // be called after assignOffsets.
785 for (const std::unique_ptr<Symbol> &Sym : Symbols) {
786 if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
787 SectionIndexTable->addIndex(Sym->DefinedIn->Index);
788 else
789 SectionIndexTable->addIndex(SHN_UNDEF);
790 }
791 }
792
793 Expected<const Symbol *>
getSymbolByIndex(uint32_t Index) const794 SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
795 if (Symbols.size() <= Index)
796 return createStringError(errc::invalid_argument,
797 "invalid symbol index: " + Twine(Index));
798 return Symbols[Index].get();
799 }
800
getSymbolByIndex(uint32_t Index)801 Expected<Symbol *> SymbolTableSection::getSymbolByIndex(uint32_t Index) {
802 Expected<const Symbol *> Sym =
803 static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index);
804 if (!Sym)
805 return Sym.takeError();
806
807 return const_cast<Symbol *>(*Sym);
808 }
809
810 template <class ELFT>
visit(const SymbolTableSection & Sec)811 Error ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
812 Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
813 // Loop though symbols setting each entry of the symbol table.
814 for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
815 Sym->st_name = Symbol->NameIndex;
816 Sym->st_value = Symbol->Value;
817 Sym->st_size = Symbol->Size;
818 Sym->st_other = Symbol->Visibility;
819 Sym->setBinding(Symbol->Binding);
820 Sym->setType(Symbol->Type);
821 Sym->st_shndx = Symbol->getShndx();
822 ++Sym;
823 }
824 return Error::success();
825 }
826
accept(SectionVisitor & Visitor) const827 Error SymbolTableSection::accept(SectionVisitor &Visitor) const {
828 return Visitor.visit(*this);
829 }
830
accept(MutableSectionVisitor & Visitor)831 Error SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
832 return Visitor.visit(*this);
833 }
834
getNamePrefix() const835 StringRef RelocationSectionBase::getNamePrefix() const {
836 switch (Type) {
837 case SHT_REL:
838 return ".rel";
839 case SHT_RELA:
840 return ".rela";
841 default:
842 llvm_unreachable("not a relocation section");
843 }
844 }
845
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)846 Error RelocationSection::removeSectionReferences(
847 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
848 if (ToRemove(Symbols)) {
849 if (!AllowBrokenLinks)
850 return createStringError(
851 llvm::errc::invalid_argument,
852 "symbol table '%s' cannot be removed because it is "
853 "referenced by the relocation section '%s'",
854 Symbols->Name.data(), this->Name.data());
855 Symbols = nullptr;
856 }
857
858 for (const Relocation &R : Relocations) {
859 if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
860 !ToRemove(R.RelocSymbol->DefinedIn))
861 continue;
862 return createStringError(llvm::errc::invalid_argument,
863 "section '%s' cannot be removed: (%s+0x%" PRIx64
864 ") has relocation against symbol '%s'",
865 R.RelocSymbol->DefinedIn->Name.data(),
866 SecToApplyRel->Name.data(), R.Offset,
867 R.RelocSymbol->Name.c_str());
868 }
869
870 return Error::success();
871 }
872
873 template <class SymTabType>
initialize(SectionTableRef SecTable)874 Error RelocSectionWithSymtabBase<SymTabType>::initialize(
875 SectionTableRef SecTable) {
876 if (Link != SHN_UNDEF) {
877 Expected<SymTabType *> Sec = SecTable.getSectionOfType<SymTabType>(
878 Link,
879 "Link field value " + Twine(Link) + " in section " + Name +
880 " is invalid",
881 "Link field value " + Twine(Link) + " in section " + Name +
882 " is not a symbol table");
883 if (!Sec)
884 return Sec.takeError();
885
886 setSymTab(*Sec);
887 }
888
889 if (Info != SHN_UNDEF) {
890 Expected<SectionBase *> Sec =
891 SecTable.getSection(Info, "Info field value " + Twine(Info) +
892 " in section " + Name + " is invalid");
893 if (!Sec)
894 return Sec.takeError();
895
896 setSection(*Sec);
897 } else
898 setSection(nullptr);
899
900 return Error::success();
901 }
902
903 template <class SymTabType>
finalize()904 void RelocSectionWithSymtabBase<SymTabType>::finalize() {
905 this->Link = Symbols ? Symbols->Index : 0;
906
907 if (SecToApplyRel != nullptr)
908 this->Info = SecToApplyRel->Index;
909 }
910
911 template <class ELFT>
setAddend(Elf_Rel_Impl<ELFT,false> &,uint64_t)912 static void setAddend(Elf_Rel_Impl<ELFT, false> &, uint64_t) {}
913
914 template <class ELFT>
setAddend(Elf_Rel_Impl<ELFT,true> & Rela,uint64_t Addend)915 static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
916 Rela.r_addend = Addend;
917 }
918
919 template <class RelRange, class T>
writeRel(const RelRange & Relocations,T * Buf,bool IsMips64EL)920 static void writeRel(const RelRange &Relocations, T *Buf, bool IsMips64EL) {
921 for (const auto &Reloc : Relocations) {
922 Buf->r_offset = Reloc.Offset;
923 setAddend(*Buf, Reloc.Addend);
924 Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
925 Reloc.Type, IsMips64EL);
926 ++Buf;
927 }
928 }
929
930 template <class ELFT>
visit(const RelocationSection & Sec)931 Error ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
932 uint8_t *Buf = reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
933 if (Sec.Type == SHT_REL)
934 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf),
935 Sec.getObject().IsMips64EL);
936 else
937 writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf),
938 Sec.getObject().IsMips64EL);
939 return Error::success();
940 }
941
accept(SectionVisitor & Visitor) const942 Error RelocationSection::accept(SectionVisitor &Visitor) const {
943 return Visitor.visit(*this);
944 }
945
accept(MutableSectionVisitor & Visitor)946 Error RelocationSection::accept(MutableSectionVisitor &Visitor) {
947 return Visitor.visit(*this);
948 }
949
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)950 Error RelocationSection::removeSymbols(
951 function_ref<bool(const Symbol &)> ToRemove) {
952 for (const Relocation &Reloc : Relocations)
953 if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
954 return createStringError(
955 llvm::errc::invalid_argument,
956 "not stripping symbol '%s' because it is named in a relocation",
957 Reloc.RelocSymbol->Name.data());
958 return Error::success();
959 }
960
markSymbols()961 void RelocationSection::markSymbols() {
962 for (const Relocation &Reloc : Relocations)
963 if (Reloc.RelocSymbol)
964 Reloc.RelocSymbol->Referenced = true;
965 }
966
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)967 void RelocationSection::replaceSectionReferences(
968 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
969 // Update the target section if it was replaced.
970 if (SectionBase *To = FromTo.lookup(SecToApplyRel))
971 SecToApplyRel = To;
972 }
973
visit(const DynamicRelocationSection & Sec)974 Error SectionWriter::visit(const DynamicRelocationSection &Sec) {
975 llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
976 return Error::success();
977 }
978
accept(SectionVisitor & Visitor) const979 Error DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
980 return Visitor.visit(*this);
981 }
982
accept(MutableSectionVisitor & Visitor)983 Error DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
984 return Visitor.visit(*this);
985 }
986
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)987 Error DynamicRelocationSection::removeSectionReferences(
988 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
989 if (ToRemove(Symbols)) {
990 if (!AllowBrokenLinks)
991 return createStringError(
992 llvm::errc::invalid_argument,
993 "symbol table '%s' cannot be removed because it is "
994 "referenced by the relocation section '%s'",
995 Symbols->Name.data(), this->Name.data());
996 Symbols = nullptr;
997 }
998
999 // SecToApplyRel contains a section referenced by sh_info field. It keeps
1000 // a section to which the relocation section applies. When we remove any
1001 // sections we also remove their relocation sections. Since we do that much
1002 // earlier, this assert should never be triggered.
1003 assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
1004 return Error::success();
1005 }
1006
removeSectionReferences(bool AllowBrokenDependency,function_ref<bool (const SectionBase *)> ToRemove)1007 Error Section::removeSectionReferences(
1008 bool AllowBrokenDependency,
1009 function_ref<bool(const SectionBase *)> ToRemove) {
1010 if (ToRemove(LinkSection)) {
1011 if (!AllowBrokenDependency)
1012 return createStringError(llvm::errc::invalid_argument,
1013 "section '%s' cannot be removed because it is "
1014 "referenced by the section '%s'",
1015 LinkSection->Name.data(), this->Name.data());
1016 LinkSection = nullptr;
1017 }
1018 return Error::success();
1019 }
1020
finalize()1021 void GroupSection::finalize() {
1022 this->Info = Sym ? Sym->Index : 0;
1023 this->Link = SymTab ? SymTab->Index : 0;
1024 // Linker deduplication for GRP_COMDAT is based on Sym->Name. The local/global
1025 // status is not part of the equation. If Sym is localized, the intention is
1026 // likely to make the group fully localized. Drop GRP_COMDAT to suppress
1027 // deduplication. See https://groups.google.com/g/generic-abi/c/2X6mR-s2zoc
1028 if ((FlagWord & GRP_COMDAT) && Sym && Sym->Binding == STB_LOCAL)
1029 this->FlagWord &= ~GRP_COMDAT;
1030 }
1031
removeSectionReferences(bool AllowBrokenLinks,function_ref<bool (const SectionBase *)> ToRemove)1032 Error GroupSection::removeSectionReferences(
1033 bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
1034 if (ToRemove(SymTab)) {
1035 if (!AllowBrokenLinks)
1036 return createStringError(
1037 llvm::errc::invalid_argument,
1038 "section '.symtab' cannot be removed because it is "
1039 "referenced by the group section '%s'",
1040 this->Name.data());
1041 SymTab = nullptr;
1042 Sym = nullptr;
1043 }
1044 llvm::erase_if(GroupMembers, ToRemove);
1045 return Error::success();
1046 }
1047
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)1048 Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
1049 if (ToRemove(*Sym))
1050 return createStringError(llvm::errc::invalid_argument,
1051 "symbol '%s' cannot be removed because it is "
1052 "referenced by the section '%s[%d]'",
1053 Sym->Name.data(), this->Name.data(), this->Index);
1054 return Error::success();
1055 }
1056
markSymbols()1057 void GroupSection::markSymbols() {
1058 if (Sym)
1059 Sym->Referenced = true;
1060 }
1061
replaceSectionReferences(const DenseMap<SectionBase *,SectionBase * > & FromTo)1062 void GroupSection::replaceSectionReferences(
1063 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
1064 for (SectionBase *&Sec : GroupMembers)
1065 if (SectionBase *To = FromTo.lookup(Sec))
1066 Sec = To;
1067 }
1068
onRemove()1069 void GroupSection::onRemove() {
1070 // As the header section of the group is removed, drop the Group flag in its
1071 // former members.
1072 for (SectionBase *Sec : GroupMembers)
1073 Sec->Flags &= ~SHF_GROUP;
1074 }
1075
initialize(SectionTableRef SecTable)1076 Error Section::initialize(SectionTableRef SecTable) {
1077 if (Link == ELF::SHN_UNDEF)
1078 return Error::success();
1079
1080 Expected<SectionBase *> Sec =
1081 SecTable.getSection(Link, "Link field value " + Twine(Link) +
1082 " in section " + Name + " is invalid");
1083 if (!Sec)
1084 return Sec.takeError();
1085
1086 LinkSection = *Sec;
1087
1088 if (LinkSection->Type == ELF::SHT_SYMTAB)
1089 LinkSection = nullptr;
1090
1091 return Error::success();
1092 }
1093
finalize()1094 void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
1095
init(StringRef File)1096 void GnuDebugLinkSection::init(StringRef File) {
1097 FileName = sys::path::filename(File);
1098 // The format for the .gnu_debuglink starts with the file name and is
1099 // followed by a null terminator and then the CRC32 of the file. The CRC32
1100 // should be 4 byte aligned. So we add the FileName size, a 1 for the null
1101 // byte, and then finally push the size to alignment and add 4.
1102 Size = alignTo(FileName.size() + 1, 4) + 4;
1103 // The CRC32 will only be aligned if we align the whole section.
1104 Align = 4;
1105 Type = OriginalType = ELF::SHT_PROGBITS;
1106 Name = ".gnu_debuglink";
1107 // For sections not found in segments, OriginalOffset is only used to
1108 // establish the order that sections should go in. By using the maximum
1109 // possible offset we cause this section to wind up at the end.
1110 OriginalOffset = std::numeric_limits<uint64_t>::max();
1111 }
1112
GnuDebugLinkSection(StringRef File,uint32_t PrecomputedCRC)1113 GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
1114 uint32_t PrecomputedCRC)
1115 : FileName(File), CRC32(PrecomputedCRC) {
1116 init(File);
1117 }
1118
1119 template <class ELFT>
visit(const GnuDebugLinkSection & Sec)1120 Error ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
1121 unsigned char *Buf =
1122 reinterpret_cast<uint8_t *>(Out.getBufferStart()) + Sec.Offset;
1123 Elf_Word *CRC =
1124 reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
1125 *CRC = Sec.CRC32;
1126 llvm::copy(Sec.FileName, Buf);
1127 return Error::success();
1128 }
1129
accept(SectionVisitor & Visitor) const1130 Error GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
1131 return Visitor.visit(*this);
1132 }
1133
accept(MutableSectionVisitor & Visitor)1134 Error GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
1135 return Visitor.visit(*this);
1136 }
1137
1138 template <class ELFT>
visit(const GroupSection & Sec)1139 Error ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
1140 ELF::Elf32_Word *Buf =
1141 reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
1142 support::endian::write32<ELFT::TargetEndianness>(Buf++, Sec.FlagWord);
1143 for (SectionBase *S : Sec.GroupMembers)
1144 support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
1145 return Error::success();
1146 }
1147
accept(SectionVisitor & Visitor) const1148 Error GroupSection::accept(SectionVisitor &Visitor) const {
1149 return Visitor.visit(*this);
1150 }
1151
accept(MutableSectionVisitor & Visitor)1152 Error GroupSection::accept(MutableSectionVisitor &Visitor) {
1153 return Visitor.visit(*this);
1154 }
1155
1156 // Returns true IFF a section is wholly inside the range of a segment
sectionWithinSegment(const SectionBase & Sec,const Segment & Seg)1157 static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
1158 // If a section is empty it should be treated like it has a size of 1. This is
1159 // to clarify the case when an empty section lies on a boundary between two
1160 // segments and ensures that the section "belongs" to the second segment and
1161 // not the first.
1162 uint64_t SecSize = Sec.Size ? Sec.Size : 1;
1163
1164 // Ignore just added sections.
1165 if (Sec.OriginalOffset == std::numeric_limits<uint64_t>::max())
1166 return false;
1167
1168 if (Sec.Type == SHT_NOBITS) {
1169 if (!(Sec.Flags & SHF_ALLOC))
1170 return false;
1171
1172 bool SectionIsTLS = Sec.Flags & SHF_TLS;
1173 bool SegmentIsTLS = Seg.Type == PT_TLS;
1174 if (SectionIsTLS != SegmentIsTLS)
1175 return false;
1176
1177 return Seg.VAddr <= Sec.Addr &&
1178 Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
1179 }
1180
1181 return Seg.Offset <= Sec.OriginalOffset &&
1182 Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
1183 }
1184
1185 // Returns true IFF a segment's original offset is inside of another segment's
1186 // range.
segmentOverlapsSegment(const Segment & Child,const Segment & Parent)1187 static bool segmentOverlapsSegment(const Segment &Child,
1188 const Segment &Parent) {
1189
1190 return Parent.OriginalOffset <= Child.OriginalOffset &&
1191 Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
1192 }
1193
compareSegmentsByOffset(const Segment * A,const Segment * B)1194 static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
1195 // Any segment without a parent segment should come before a segment
1196 // that has a parent segment.
1197 if (A->OriginalOffset < B->OriginalOffset)
1198 return true;
1199 if (A->OriginalOffset > B->OriginalOffset)
1200 return false;
1201 return A->Index < B->Index;
1202 }
1203
initFileHeader()1204 void BasicELFBuilder::initFileHeader() {
1205 Obj->Flags = 0x0;
1206 Obj->Type = ET_REL;
1207 Obj->OSABI = ELFOSABI_NONE;
1208 Obj->ABIVersion = 0;
1209 Obj->Entry = 0x0;
1210 Obj->Machine = EM_NONE;
1211 Obj->Version = 1;
1212 }
1213
initHeaderSegment()1214 void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
1215
addStrTab()1216 StringTableSection *BasicELFBuilder::addStrTab() {
1217 auto &StrTab = Obj->addSection<StringTableSection>();
1218 StrTab.Name = ".strtab";
1219
1220 Obj->SectionNames = &StrTab;
1221 return &StrTab;
1222 }
1223
addSymTab(StringTableSection * StrTab)1224 SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
1225 auto &SymTab = Obj->addSection<SymbolTableSection>();
1226
1227 SymTab.Name = ".symtab";
1228 SymTab.Link = StrTab->Index;
1229
1230 // The symbol table always needs a null symbol
1231 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
1232
1233 Obj->SymbolTable = &SymTab;
1234 return &SymTab;
1235 }
1236
initSections()1237 Error BasicELFBuilder::initSections() {
1238 for (SectionBase &Sec : Obj->sections())
1239 if (Error Err = Sec.initialize(Obj->sections()))
1240 return Err;
1241
1242 return Error::success();
1243 }
1244
addData(SymbolTableSection * SymTab)1245 void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
1246 auto Data = ArrayRef<uint8_t>(
1247 reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
1248 MemBuf->getBufferSize());
1249 auto &DataSection = Obj->addSection<Section>(Data);
1250 DataSection.Name = ".data";
1251 DataSection.Type = ELF::SHT_PROGBITS;
1252 DataSection.Size = Data.size();
1253 DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1254
1255 std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
1256 std::replace_if(
1257 std::begin(SanitizedFilename), std::end(SanitizedFilename),
1258 [](char C) { return !isAlnum(C); }, '_');
1259 Twine Prefix = Twine("_binary_") + SanitizedFilename;
1260
1261 SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
1262 /*Value=*/0, NewSymbolVisibility, 0, 0);
1263 SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
1264 /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
1265 SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
1266 /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
1267 0);
1268 }
1269
build()1270 Expected<std::unique_ptr<Object>> BinaryELFBuilder::build() {
1271 initFileHeader();
1272 initHeaderSegment();
1273
1274 SymbolTableSection *SymTab = addSymTab(addStrTab());
1275 if (Error Err = initSections())
1276 return std::move(Err);
1277 addData(SymTab);
1278
1279 return std::move(Obj);
1280 }
1281
1282 // Adds sections from IHEX data file. Data should have been
1283 // fully validated by this time.
addDataSections()1284 void IHexELFBuilder::addDataSections() {
1285 OwnedDataSection *Section = nullptr;
1286 uint64_t SegmentAddr = 0, BaseAddr = 0;
1287 uint32_t SecNo = 1;
1288
1289 for (const IHexRecord &R : Records) {
1290 uint64_t RecAddr;
1291 switch (R.Type) {
1292 case IHexRecord::Data:
1293 // Ignore empty data records
1294 if (R.HexData.empty())
1295 continue;
1296 RecAddr = R.Addr + SegmentAddr + BaseAddr;
1297 if (!Section || Section->Addr + Section->Size != RecAddr) {
1298 // OriginalOffset field is only used to sort sections before layout, so
1299 // instead of keeping track of real offsets in IHEX file, and as
1300 // layoutSections() and layoutSectionsForOnlyKeepDebug() use
1301 // llvm::stable_sort(), we can just set it to a constant (zero).
1302 Section = &Obj->addSection<OwnedDataSection>(
1303 ".sec" + std::to_string(SecNo), RecAddr,
1304 ELF::SHF_ALLOC | ELF::SHF_WRITE, 0);
1305 SecNo++;
1306 }
1307 Section->appendHexData(R.HexData);
1308 break;
1309 case IHexRecord::EndOfFile:
1310 break;
1311 case IHexRecord::SegmentAddr:
1312 // 20-bit segment address.
1313 SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
1314 break;
1315 case IHexRecord::StartAddr80x86:
1316 case IHexRecord::StartAddr:
1317 Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
1318 assert(Obj->Entry <= 0xFFFFFU);
1319 break;
1320 case IHexRecord::ExtendedAddr:
1321 // 16-31 bits of linear base address
1322 BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
1323 break;
1324 default:
1325 llvm_unreachable("unknown record type");
1326 }
1327 }
1328 }
1329
build()1330 Expected<std::unique_ptr<Object>> IHexELFBuilder::build() {
1331 initFileHeader();
1332 initHeaderSegment();
1333 StringTableSection *StrTab = addStrTab();
1334 addSymTab(StrTab);
1335 if (Error Err = initSections())
1336 return std::move(Err);
1337 addDataSections();
1338
1339 return std::move(Obj);
1340 }
1341
1342 template <class ELFT>
ELFBuilder(const ELFObjectFile<ELFT> & ElfObj,Object & Obj,Optional<StringRef> ExtractPartition)1343 ELFBuilder<ELFT>::ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj,
1344 Optional<StringRef> ExtractPartition)
1345 : ElfFile(ElfObj.getELFFile()), Obj(Obj),
1346 ExtractPartition(ExtractPartition) {
1347 Obj.IsMips64EL = ElfFile.isMips64EL();
1348 }
1349
setParentSegment(Segment & Child)1350 template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
1351 for (Segment &Parent : Obj.segments()) {
1352 // Every segment will overlap with itself but we don't want a segment to
1353 // be its own parent so we avoid that situation.
1354 if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
1355 // We want a canonical "most parental" segment but this requires
1356 // inspecting the ParentSegment.
1357 if (compareSegmentsByOffset(&Parent, &Child))
1358 if (Child.ParentSegment == nullptr ||
1359 compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
1360 Child.ParentSegment = &Parent;
1361 }
1362 }
1363 }
1364 }
1365
findEhdrOffset()1366 template <class ELFT> Error ELFBuilder<ELFT>::findEhdrOffset() {
1367 if (!ExtractPartition)
1368 return Error::success();
1369
1370 for (const SectionBase &Sec : Obj.sections()) {
1371 if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
1372 EhdrOffset = Sec.Offset;
1373 return Error::success();
1374 }
1375 }
1376 return createStringError(errc::invalid_argument,
1377 "could not find partition named '" +
1378 *ExtractPartition + "'");
1379 }
1380
1381 template <class ELFT>
readProgramHeaders(const ELFFile<ELFT> & HeadersFile)1382 Error ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
1383 uint32_t Index = 0;
1384
1385 Expected<typename ELFFile<ELFT>::Elf_Phdr_Range> Headers =
1386 HeadersFile.program_headers();
1387 if (!Headers)
1388 return Headers.takeError();
1389
1390 for (const typename ELFFile<ELFT>::Elf_Phdr &Phdr : *Headers) {
1391 if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
1392 return createStringError(
1393 errc::invalid_argument,
1394 "program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
1395 " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
1396 " goes past the end of the file");
1397
1398 ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
1399 (size_t)Phdr.p_filesz};
1400 Segment &Seg = Obj.addSegment(Data);
1401 Seg.Type = Phdr.p_type;
1402 Seg.Flags = Phdr.p_flags;
1403 Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
1404 Seg.Offset = Phdr.p_offset + EhdrOffset;
1405 Seg.VAddr = Phdr.p_vaddr;
1406 Seg.PAddr = Phdr.p_paddr;
1407 Seg.FileSize = Phdr.p_filesz;
1408 Seg.MemSize = Phdr.p_memsz;
1409 Seg.Align = Phdr.p_align;
1410 Seg.Index = Index++;
1411 for (SectionBase &Sec : Obj.sections())
1412 if (sectionWithinSegment(Sec, Seg)) {
1413 Seg.addSection(&Sec);
1414 if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
1415 Sec.ParentSegment = &Seg;
1416 }
1417 }
1418
1419 auto &ElfHdr = Obj.ElfHdrSegment;
1420 ElfHdr.Index = Index++;
1421 ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
1422
1423 const typename ELFT::Ehdr &Ehdr = HeadersFile.getHeader();
1424 auto &PrHdr = Obj.ProgramHdrSegment;
1425 PrHdr.Type = PT_PHDR;
1426 PrHdr.Flags = 0;
1427 // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
1428 // Whereas this works automatically for ElfHdr, here OriginalOffset is
1429 // always non-zero and to ensure the equation we assign the same value to
1430 // VAddr as well.
1431 PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
1432 PrHdr.PAddr = 0;
1433 PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
1434 // The spec requires us to naturally align all the fields.
1435 PrHdr.Align = sizeof(Elf_Addr);
1436 PrHdr.Index = Index++;
1437
1438 // Now we do an O(n^2) loop through the segments in order to match up
1439 // segments.
1440 for (Segment &Child : Obj.segments())
1441 setParentSegment(Child);
1442 setParentSegment(ElfHdr);
1443 setParentSegment(PrHdr);
1444
1445 return Error::success();
1446 }
1447
1448 template <class ELFT>
initGroupSection(GroupSection * GroupSec)1449 Error ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
1450 if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
1451 return createStringError(errc::invalid_argument,
1452 "invalid alignment " + Twine(GroupSec->Align) +
1453 " of group section '" + GroupSec->Name + "'");
1454 SectionTableRef SecTable = Obj.sections();
1455 if (GroupSec->Link != SHN_UNDEF) {
1456 auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
1457 GroupSec->Link,
1458 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1459 GroupSec->Name + "' is invalid",
1460 "link field value '" + Twine(GroupSec->Link) + "' in section '" +
1461 GroupSec->Name + "' is not a symbol table");
1462 if (!SymTab)
1463 return SymTab.takeError();
1464
1465 Expected<Symbol *> Sym = (*SymTab)->getSymbolByIndex(GroupSec->Info);
1466 if (!Sym)
1467 return createStringError(errc::invalid_argument,
1468 "info field value '" + Twine(GroupSec->Info) +
1469 "' in section '" + GroupSec->Name +
1470 "' is not a valid symbol index");
1471 GroupSec->setSymTab(*SymTab);
1472 GroupSec->setSymbol(*Sym);
1473 }
1474 if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
1475 GroupSec->Contents.empty())
1476 return createStringError(errc::invalid_argument,
1477 "the content of the section " + GroupSec->Name +
1478 " is malformed");
1479 const ELF::Elf32_Word *Word =
1480 reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
1481 const ELF::Elf32_Word *End =
1482 Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
1483 GroupSec->setFlagWord(
1484 support::endian::read32<ELFT::TargetEndianness>(Word++));
1485 for (; Word != End; ++Word) {
1486 uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
1487 Expected<SectionBase *> Sec = SecTable.getSection(
1488 Index, "group member index " + Twine(Index) + " in section '" +
1489 GroupSec->Name + "' is invalid");
1490 if (!Sec)
1491 return Sec.takeError();
1492
1493 GroupSec->addMember(*Sec);
1494 }
1495
1496 return Error::success();
1497 }
1498
1499 template <class ELFT>
initSymbolTable(SymbolTableSection * SymTab)1500 Error ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
1501 Expected<const Elf_Shdr *> Shdr = ElfFile.getSection(SymTab->Index);
1502 if (!Shdr)
1503 return Shdr.takeError();
1504
1505 Expected<StringRef> StrTabData = ElfFile.getStringTableForSymtab(**Shdr);
1506 if (!StrTabData)
1507 return StrTabData.takeError();
1508
1509 ArrayRef<Elf_Word> ShndxData;
1510
1511 Expected<typename ELFFile<ELFT>::Elf_Sym_Range> Symbols =
1512 ElfFile.symbols(*Shdr);
1513 if (!Symbols)
1514 return Symbols.takeError();
1515
1516 for (const typename ELFFile<ELFT>::Elf_Sym &Sym : *Symbols) {
1517 SectionBase *DefSection = nullptr;
1518
1519 Expected<StringRef> Name = Sym.getName(*StrTabData);
1520 if (!Name)
1521 return Name.takeError();
1522
1523 if (Sym.st_shndx == SHN_XINDEX) {
1524 if (SymTab->getShndxTable() == nullptr)
1525 return createStringError(errc::invalid_argument,
1526 "symbol '" + *Name +
1527 "' has index SHN_XINDEX but no "
1528 "SHT_SYMTAB_SHNDX section exists");
1529 if (ShndxData.data() == nullptr) {
1530 Expected<const Elf_Shdr *> ShndxSec =
1531 ElfFile.getSection(SymTab->getShndxTable()->Index);
1532 if (!ShndxSec)
1533 return ShndxSec.takeError();
1534
1535 Expected<ArrayRef<Elf_Word>> Data =
1536 ElfFile.template getSectionContentsAsArray<Elf_Word>(**ShndxSec);
1537 if (!Data)
1538 return Data.takeError();
1539
1540 ShndxData = *Data;
1541 if (ShndxData.size() != Symbols->size())
1542 return createStringError(
1543 errc::invalid_argument,
1544 "symbol section index table does not have the same number of "
1545 "entries as the symbol table");
1546 }
1547 Elf_Word Index = ShndxData[&Sym - Symbols->begin()];
1548 Expected<SectionBase *> Sec = Obj.sections().getSection(
1549 Index,
1550 "symbol '" + *Name + "' has invalid section index " + Twine(Index));
1551 if (!Sec)
1552 return Sec.takeError();
1553
1554 DefSection = *Sec;
1555 } else if (Sym.st_shndx >= SHN_LORESERVE) {
1556 if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
1557 return createStringError(
1558 errc::invalid_argument,
1559 "symbol '" + *Name +
1560 "' has unsupported value greater than or equal "
1561 "to SHN_LORESERVE: " +
1562 Twine(Sym.st_shndx));
1563 }
1564 } else if (Sym.st_shndx != SHN_UNDEF) {
1565 Expected<SectionBase *> Sec = Obj.sections().getSection(
1566 Sym.st_shndx, "symbol '" + *Name +
1567 "' is defined has invalid section index " +
1568 Twine(Sym.st_shndx));
1569 if (!Sec)
1570 return Sec.takeError();
1571
1572 DefSection = *Sec;
1573 }
1574
1575 SymTab->addSymbol(*Name, Sym.getBinding(), Sym.getType(), DefSection,
1576 Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
1577 }
1578
1579 return Error::success();
1580 }
1581
1582 template <class ELFT>
getAddend(uint64_t &,const Elf_Rel_Impl<ELFT,false> &)1583 static void getAddend(uint64_t &, const Elf_Rel_Impl<ELFT, false> &) {}
1584
1585 template <class ELFT>
getAddend(uint64_t & ToSet,const Elf_Rel_Impl<ELFT,true> & Rela)1586 static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
1587 ToSet = Rela.r_addend;
1588 }
1589
1590 template <class T>
initRelocations(RelocationSection * Relocs,T RelRange)1591 static Error initRelocations(RelocationSection *Relocs, T RelRange) {
1592 for (const auto &Rel : RelRange) {
1593 Relocation ToAdd;
1594 ToAdd.Offset = Rel.r_offset;
1595 getAddend(ToAdd.Addend, Rel);
1596 ToAdd.Type = Rel.getType(Relocs->getObject().IsMips64EL);
1597
1598 if (uint32_t Sym = Rel.getSymbol(Relocs->getObject().IsMips64EL)) {
1599 if (!Relocs->getObject().SymbolTable)
1600 return createStringError(
1601 errc::invalid_argument,
1602 "'" + Relocs->Name + "': relocation references symbol with index " +
1603 Twine(Sym) + ", but there is no symbol table");
1604 Expected<Symbol *> SymByIndex =
1605 Relocs->getObject().SymbolTable->getSymbolByIndex(Sym);
1606 if (!SymByIndex)
1607 return SymByIndex.takeError();
1608
1609 ToAdd.RelocSymbol = *SymByIndex;
1610 }
1611
1612 Relocs->addRelocation(ToAdd);
1613 }
1614
1615 return Error::success();
1616 }
1617
getSection(uint32_t Index,Twine ErrMsg)1618 Expected<SectionBase *> SectionTableRef::getSection(uint32_t Index,
1619 Twine ErrMsg) {
1620 if (Index == SHN_UNDEF || Index > Sections.size())
1621 return createStringError(errc::invalid_argument, ErrMsg);
1622 return Sections[Index - 1].get();
1623 }
1624
1625 template <class T>
getSectionOfType(uint32_t Index,Twine IndexErrMsg,Twine TypeErrMsg)1626 Expected<T *> SectionTableRef::getSectionOfType(uint32_t Index,
1627 Twine IndexErrMsg,
1628 Twine TypeErrMsg) {
1629 Expected<SectionBase *> BaseSec = getSection(Index, IndexErrMsg);
1630 if (!BaseSec)
1631 return BaseSec.takeError();
1632
1633 if (T *Sec = dyn_cast<T>(*BaseSec))
1634 return Sec;
1635
1636 return createStringError(errc::invalid_argument, TypeErrMsg);
1637 }
1638
1639 template <class ELFT>
makeSection(const Elf_Shdr & Shdr)1640 Expected<SectionBase &> ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
1641 switch (Shdr.sh_type) {
1642 case SHT_REL:
1643 case SHT_RELA:
1644 if (Shdr.sh_flags & SHF_ALLOC) {
1645 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1646 return Obj.addSection<DynamicRelocationSection>(*Data);
1647 else
1648 return Data.takeError();
1649 }
1650 return Obj.addSection<RelocationSection>(Obj);
1651 case SHT_STRTAB:
1652 // If a string table is allocated we don't want to mess with it. That would
1653 // mean altering the memory image. There are no special link types or
1654 // anything so we can just use a Section.
1655 if (Shdr.sh_flags & SHF_ALLOC) {
1656 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1657 return Obj.addSection<Section>(*Data);
1658 else
1659 return Data.takeError();
1660 }
1661 return Obj.addSection<StringTableSection>();
1662 case SHT_HASH:
1663 case SHT_GNU_HASH:
1664 // Hash tables should refer to SHT_DYNSYM which we're not going to change.
1665 // Because of this we don't need to mess with the hash tables either.
1666 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1667 return Obj.addSection<Section>(*Data);
1668 else
1669 return Data.takeError();
1670 case SHT_GROUP:
1671 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1672 return Obj.addSection<GroupSection>(*Data);
1673 else
1674 return Data.takeError();
1675 case SHT_DYNSYM:
1676 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1677 return Obj.addSection<DynamicSymbolTableSection>(*Data);
1678 else
1679 return Data.takeError();
1680 case SHT_DYNAMIC:
1681 if (Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr))
1682 return Obj.addSection<DynamicSection>(*Data);
1683 else
1684 return Data.takeError();
1685 case SHT_SYMTAB: {
1686 auto &SymTab = Obj.addSection<SymbolTableSection>();
1687 Obj.SymbolTable = &SymTab;
1688 return SymTab;
1689 }
1690 case SHT_SYMTAB_SHNDX: {
1691 auto &ShndxSection = Obj.addSection<SectionIndexSection>();
1692 Obj.SectionIndexTable = &ShndxSection;
1693 return ShndxSection;
1694 }
1695 case SHT_NOBITS:
1696 return Obj.addSection<Section>(ArrayRef<uint8_t>());
1697 default: {
1698 Expected<ArrayRef<uint8_t>> Data = ElfFile.getSectionContents(Shdr);
1699 if (!Data)
1700 return Data.takeError();
1701
1702 Expected<StringRef> Name = ElfFile.getSectionName(Shdr);
1703 if (!Name)
1704 return Name.takeError();
1705
1706 if (!(Shdr.sh_flags & ELF::SHF_COMPRESSED))
1707 return Obj.addSection<Section>(*Data);
1708 auto *Chdr = reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data->data());
1709 return Obj.addSection<CompressedSection>(
1710 CompressedSection(*Data, Chdr->ch_size, Chdr->ch_addralign));
1711 }
1712 }
1713 }
1714
readSectionHeaders()1715 template <class ELFT> Error ELFBuilder<ELFT>::readSectionHeaders() {
1716 uint32_t Index = 0;
1717 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1718 ElfFile.sections();
1719 if (!Sections)
1720 return Sections.takeError();
1721
1722 for (const typename ELFFile<ELFT>::Elf_Shdr &Shdr : *Sections) {
1723 if (Index == 0) {
1724 ++Index;
1725 continue;
1726 }
1727 Expected<SectionBase &> Sec = makeSection(Shdr);
1728 if (!Sec)
1729 return Sec.takeError();
1730
1731 Expected<StringRef> SecName = ElfFile.getSectionName(Shdr);
1732 if (!SecName)
1733 return SecName.takeError();
1734 Sec->Name = SecName->str();
1735 Sec->Type = Sec->OriginalType = Shdr.sh_type;
1736 Sec->Flags = Sec->OriginalFlags = Shdr.sh_flags;
1737 Sec->Addr = Shdr.sh_addr;
1738 Sec->Offset = Shdr.sh_offset;
1739 Sec->OriginalOffset = Shdr.sh_offset;
1740 Sec->Size = Shdr.sh_size;
1741 Sec->Link = Shdr.sh_link;
1742 Sec->Info = Shdr.sh_info;
1743 Sec->Align = Shdr.sh_addralign;
1744 Sec->EntrySize = Shdr.sh_entsize;
1745 Sec->Index = Index++;
1746 Sec->OriginalIndex = Sec->Index;
1747 Sec->OriginalData = ArrayRef<uint8_t>(
1748 ElfFile.base() + Shdr.sh_offset,
1749 (Shdr.sh_type == SHT_NOBITS) ? (size_t)0 : Shdr.sh_size);
1750 }
1751
1752 return Error::success();
1753 }
1754
readSections(bool EnsureSymtab)1755 template <class ELFT> Error ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
1756 uint32_t ShstrIndex = ElfFile.getHeader().e_shstrndx;
1757 if (ShstrIndex == SHN_XINDEX) {
1758 Expected<const Elf_Shdr *> Sec = ElfFile.getSection(0);
1759 if (!Sec)
1760 return Sec.takeError();
1761
1762 ShstrIndex = (*Sec)->sh_link;
1763 }
1764
1765 if (ShstrIndex == SHN_UNDEF)
1766 Obj.HadShdrs = false;
1767 else {
1768 Expected<StringTableSection *> Sec =
1769 Obj.sections().template getSectionOfType<StringTableSection>(
1770 ShstrIndex,
1771 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1772 " is invalid",
1773 "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
1774 " does not reference a string table");
1775 if (!Sec)
1776 return Sec.takeError();
1777
1778 Obj.SectionNames = *Sec;
1779 }
1780
1781 // If a section index table exists we'll need to initialize it before we
1782 // initialize the symbol table because the symbol table might need to
1783 // reference it.
1784 if (Obj.SectionIndexTable)
1785 if (Error Err = Obj.SectionIndexTable->initialize(Obj.sections()))
1786 return Err;
1787
1788 // Now that all of the sections have been added we can fill out some extra
1789 // details about symbol tables. We need the symbol table filled out before
1790 // any relocations.
1791 if (Obj.SymbolTable) {
1792 if (Error Err = Obj.SymbolTable->initialize(Obj.sections()))
1793 return Err;
1794 if (Error Err = initSymbolTable(Obj.SymbolTable))
1795 return Err;
1796 } else if (EnsureSymtab) {
1797 if (Error Err = Obj.addNewSymbolTable())
1798 return Err;
1799 }
1800
1801 // Now that all sections and symbols have been added we can add
1802 // relocations that reference symbols and set the link and info fields for
1803 // relocation sections.
1804 for (SectionBase &Sec : Obj.sections()) {
1805 if (&Sec == Obj.SymbolTable)
1806 continue;
1807 if (Error Err = Sec.initialize(Obj.sections()))
1808 return Err;
1809 if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
1810 Expected<typename ELFFile<ELFT>::Elf_Shdr_Range> Sections =
1811 ElfFile.sections();
1812 if (!Sections)
1813 return Sections.takeError();
1814
1815 const typename ELFFile<ELFT>::Elf_Shdr *Shdr =
1816 Sections->begin() + RelSec->Index;
1817 if (RelSec->Type == SHT_REL) {
1818 Expected<typename ELFFile<ELFT>::Elf_Rel_Range> Rels =
1819 ElfFile.rels(*Shdr);
1820 if (!Rels)
1821 return Rels.takeError();
1822
1823 if (Error Err = initRelocations(RelSec, *Rels))
1824 return Err;
1825 } else {
1826 Expected<typename ELFFile<ELFT>::Elf_Rela_Range> Relas =
1827 ElfFile.relas(*Shdr);
1828 if (!Relas)
1829 return Relas.takeError();
1830
1831 if (Error Err = initRelocations(RelSec, *Relas))
1832 return Err;
1833 }
1834 } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
1835 if (Error Err = initGroupSection(GroupSec))
1836 return Err;
1837 }
1838 }
1839
1840 return Error::success();
1841 }
1842
build(bool EnsureSymtab)1843 template <class ELFT> Error ELFBuilder<ELFT>::build(bool EnsureSymtab) {
1844 if (Error E = readSectionHeaders())
1845 return E;
1846 if (Error E = findEhdrOffset())
1847 return E;
1848
1849 // The ELFFile whose ELF headers and program headers are copied into the
1850 // output file. Normally the same as ElfFile, but if we're extracting a
1851 // loadable partition it will point to the partition's headers.
1852 Expected<ELFFile<ELFT>> HeadersFile = ELFFile<ELFT>::create(toStringRef(
1853 {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset}));
1854 if (!HeadersFile)
1855 return HeadersFile.takeError();
1856
1857 const typename ELFFile<ELFT>::Elf_Ehdr &Ehdr = HeadersFile->getHeader();
1858 Obj.OSABI = Ehdr.e_ident[EI_OSABI];
1859 Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
1860 Obj.Type = Ehdr.e_type;
1861 Obj.Machine = Ehdr.e_machine;
1862 Obj.Version = Ehdr.e_version;
1863 Obj.Entry = Ehdr.e_entry;
1864 Obj.Flags = Ehdr.e_flags;
1865
1866 if (Error E = readSections(EnsureSymtab))
1867 return E;
1868 return readProgramHeaders(*HeadersFile);
1869 }
1870
1871 Writer::~Writer() = default;
1872
1873 Reader::~Reader() = default;
1874
1875 Expected<std::unique_ptr<Object>>
create(bool) const1876 BinaryReader::create(bool /*EnsureSymtab*/) const {
1877 return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
1878 }
1879
parse() const1880 Expected<std::vector<IHexRecord>> IHexReader::parse() const {
1881 SmallVector<StringRef, 16> Lines;
1882 std::vector<IHexRecord> Records;
1883 bool HasSections = false;
1884
1885 MemBuf->getBuffer().split(Lines, '\n');
1886 Records.reserve(Lines.size());
1887 for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
1888 StringRef Line = Lines[LineNo - 1].trim();
1889 if (Line.empty())
1890 continue;
1891
1892 Expected<IHexRecord> R = IHexRecord::parse(Line);
1893 if (!R)
1894 return parseError(LineNo, R.takeError());
1895 if (R->Type == IHexRecord::EndOfFile)
1896 break;
1897 HasSections |= (R->Type == IHexRecord::Data);
1898 Records.push_back(*R);
1899 }
1900 if (!HasSections)
1901 return parseError(-1U, "no sections");
1902
1903 return std::move(Records);
1904 }
1905
1906 Expected<std::unique_ptr<Object>>
create(bool) const1907 IHexReader::create(bool /*EnsureSymtab*/) const {
1908 Expected<std::vector<IHexRecord>> Records = parse();
1909 if (!Records)
1910 return Records.takeError();
1911
1912 return IHexELFBuilder(*Records).build();
1913 }
1914
create(bool EnsureSymtab) const1915 Expected<std::unique_ptr<Object>> ELFReader::create(bool EnsureSymtab) const {
1916 auto Obj = std::make_unique<Object>();
1917 if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
1918 ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
1919 if (Error Err = Builder.build(EnsureSymtab))
1920 return std::move(Err);
1921 return std::move(Obj);
1922 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
1923 ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
1924 if (Error Err = Builder.build(EnsureSymtab))
1925 return std::move(Err);
1926 return std::move(Obj);
1927 } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
1928 ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
1929 if (Error Err = Builder.build(EnsureSymtab))
1930 return std::move(Err);
1931 return std::move(Obj);
1932 } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
1933 ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
1934 if (Error Err = Builder.build(EnsureSymtab))
1935 return std::move(Err);
1936 return std::move(Obj);
1937 }
1938 return createStringError(errc::invalid_argument, "invalid file type");
1939 }
1940
writeEhdr()1941 template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
1942 Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf->getBufferStart());
1943 std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
1944 Ehdr.e_ident[EI_MAG0] = 0x7f;
1945 Ehdr.e_ident[EI_MAG1] = 'E';
1946 Ehdr.e_ident[EI_MAG2] = 'L';
1947 Ehdr.e_ident[EI_MAG3] = 'F';
1948 Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
1949 Ehdr.e_ident[EI_DATA] =
1950 ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
1951 Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
1952 Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
1953 Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
1954
1955 Ehdr.e_type = Obj.Type;
1956 Ehdr.e_machine = Obj.Machine;
1957 Ehdr.e_version = Obj.Version;
1958 Ehdr.e_entry = Obj.Entry;
1959 // We have to use the fully-qualified name llvm::size
1960 // since some compilers complain on ambiguous resolution.
1961 Ehdr.e_phnum = llvm::size(Obj.segments());
1962 Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
1963 Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
1964 Ehdr.e_flags = Obj.Flags;
1965 Ehdr.e_ehsize = sizeof(Elf_Ehdr);
1966 if (WriteSectionHeaders && Obj.sections().size() != 0) {
1967 Ehdr.e_shentsize = sizeof(Elf_Shdr);
1968 Ehdr.e_shoff = Obj.SHOff;
1969 // """
1970 // If the number of sections is greater than or equal to
1971 // SHN_LORESERVE (0xff00), this member has the value zero and the actual
1972 // number of section header table entries is contained in the sh_size field
1973 // of the section header at index 0.
1974 // """
1975 auto Shnum = Obj.sections().size() + 1;
1976 if (Shnum >= SHN_LORESERVE)
1977 Ehdr.e_shnum = 0;
1978 else
1979 Ehdr.e_shnum = Shnum;
1980 // """
1981 // If the section name string table section index is greater than or equal
1982 // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
1983 // and the actual index of the section name string table section is
1984 // contained in the sh_link field of the section header at index 0.
1985 // """
1986 if (Obj.SectionNames->Index >= SHN_LORESERVE)
1987 Ehdr.e_shstrndx = SHN_XINDEX;
1988 else
1989 Ehdr.e_shstrndx = Obj.SectionNames->Index;
1990 } else {
1991 Ehdr.e_shentsize = 0;
1992 Ehdr.e_shoff = 0;
1993 Ehdr.e_shnum = 0;
1994 Ehdr.e_shstrndx = 0;
1995 }
1996 }
1997
writePhdrs()1998 template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
1999 for (auto &Seg : Obj.segments())
2000 writePhdr(Seg);
2001 }
2002
writeShdrs()2003 template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
2004 // This reference serves to write the dummy section header at the begining
2005 // of the file. It is not used for anything else
2006 Elf_Shdr &Shdr =
2007 *reinterpret_cast<Elf_Shdr *>(Buf->getBufferStart() + Obj.SHOff);
2008 Shdr.sh_name = 0;
2009 Shdr.sh_type = SHT_NULL;
2010 Shdr.sh_flags = 0;
2011 Shdr.sh_addr = 0;
2012 Shdr.sh_offset = 0;
2013 // See writeEhdr for why we do this.
2014 uint64_t Shnum = Obj.sections().size() + 1;
2015 if (Shnum >= SHN_LORESERVE)
2016 Shdr.sh_size = Shnum;
2017 else
2018 Shdr.sh_size = 0;
2019 // See writeEhdr for why we do this.
2020 if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
2021 Shdr.sh_link = Obj.SectionNames->Index;
2022 else
2023 Shdr.sh_link = 0;
2024 Shdr.sh_info = 0;
2025 Shdr.sh_addralign = 0;
2026 Shdr.sh_entsize = 0;
2027
2028 for (SectionBase &Sec : Obj.sections())
2029 writeShdr(Sec);
2030 }
2031
writeSectionData()2032 template <class ELFT> Error ELFWriter<ELFT>::writeSectionData() {
2033 for (SectionBase &Sec : Obj.sections())
2034 // Segments are responsible for writing their contents, so only write the
2035 // section data if the section is not in a segment. Note that this renders
2036 // sections in segments effectively immutable.
2037 if (Sec.ParentSegment == nullptr)
2038 if (Error Err = Sec.accept(*SecWriter))
2039 return Err;
2040
2041 return Error::success();
2042 }
2043
writeSegmentData()2044 template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
2045 for (Segment &Seg : Obj.segments()) {
2046 size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
2047 std::memcpy(Buf->getBufferStart() + Seg.Offset, Seg.getContents().data(),
2048 Size);
2049 }
2050
2051 for (auto it : Obj.getUpdatedSections()) {
2052 SectionBase *Sec = it.first;
2053 ArrayRef<uint8_t> Data = it.second;
2054
2055 auto *Parent = Sec->ParentSegment;
2056 assert(Parent && "This section should've been part of a segment.");
2057 uint64_t Offset =
2058 Sec->OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2059 llvm::copy(Data, Buf->getBufferStart() + Offset);
2060 }
2061
2062 // Iterate over removed sections and overwrite their old data with zeroes.
2063 for (auto &Sec : Obj.removedSections()) {
2064 Segment *Parent = Sec.ParentSegment;
2065 if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
2066 continue;
2067 uint64_t Offset =
2068 Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
2069 std::memset(Buf->getBufferStart() + Offset, 0, Sec.Size);
2070 }
2071 }
2072
2073 template <class ELFT>
ELFWriter(Object & Obj,raw_ostream & Buf,bool WSH,bool OnlyKeepDebug)2074 ELFWriter<ELFT>::ELFWriter(Object &Obj, raw_ostream &Buf, bool WSH,
2075 bool OnlyKeepDebug)
2076 : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
2077 OnlyKeepDebug(OnlyKeepDebug) {}
2078
updateSection(StringRef Name,ArrayRef<uint8_t> Data)2079 Error Object::updateSection(StringRef Name, ArrayRef<uint8_t> Data) {
2080 auto It = llvm::find_if(Sections,
2081 [&](const SecPtr &Sec) { return Sec->Name == Name; });
2082 if (It == Sections.end())
2083 return createStringError(errc::invalid_argument, "section '%s' not found",
2084 Name.str().c_str());
2085
2086 auto *OldSec = It->get();
2087 if (!OldSec->hasContents())
2088 return createStringError(
2089 errc::invalid_argument,
2090 "section '%s' cannot be updated because it does not have contents",
2091 Name.str().c_str());
2092
2093 if (Data.size() > OldSec->Size && OldSec->ParentSegment)
2094 return createStringError(errc::invalid_argument,
2095 "cannot fit data of size %zu into section '%s' "
2096 "with size %zu that is part of a segment",
2097 Data.size(), Name.str().c_str(), OldSec->Size);
2098
2099 if (!OldSec->ParentSegment) {
2100 *It = std::make_unique<OwnedDataSection>(*OldSec, Data);
2101 } else {
2102 // The segment writer will be in charge of updating these contents.
2103 OldSec->Size = Data.size();
2104 UpdatedSections[OldSec] = Data;
2105 }
2106
2107 return Error::success();
2108 }
2109
removeSections(bool AllowBrokenLinks,std::function<bool (const SectionBase &)> ToRemove)2110 Error Object::removeSections(
2111 bool AllowBrokenLinks, std::function<bool(const SectionBase &)> ToRemove) {
2112
2113 auto Iter = std::stable_partition(
2114 std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
2115 if (ToRemove(*Sec))
2116 return false;
2117 if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
2118 if (auto ToRelSec = RelSec->getSection())
2119 return !ToRemove(*ToRelSec);
2120 }
2121 return true;
2122 });
2123 if (SymbolTable != nullptr && ToRemove(*SymbolTable))
2124 SymbolTable = nullptr;
2125 if (SectionNames != nullptr && ToRemove(*SectionNames))
2126 SectionNames = nullptr;
2127 if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
2128 SectionIndexTable = nullptr;
2129 // Now make sure there are no remaining references to the sections that will
2130 // be removed. Sometimes it is impossible to remove a reference so we emit
2131 // an error here instead.
2132 std::unordered_set<const SectionBase *> RemoveSections;
2133 RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
2134 for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
2135 for (auto &Segment : Segments)
2136 Segment->removeSection(RemoveSec.get());
2137 RemoveSec->onRemove();
2138 RemoveSections.insert(RemoveSec.get());
2139 }
2140
2141 // For each section that remains alive, we want to remove the dead references.
2142 // This either might update the content of the section (e.g. remove symbols
2143 // from symbol table that belongs to removed section) or trigger an error if
2144 // a live section critically depends on a section being removed somehow
2145 // (e.g. the removed section is referenced by a relocation).
2146 for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
2147 if (Error E = KeepSec->removeSectionReferences(
2148 AllowBrokenLinks, [&RemoveSections](const SectionBase *Sec) {
2149 return RemoveSections.find(Sec) != RemoveSections.end();
2150 }))
2151 return E;
2152 }
2153
2154 // Transfer removed sections into the Object RemovedSections container for use
2155 // later.
2156 std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
2157 // Now finally get rid of them all together.
2158 Sections.erase(Iter, std::end(Sections));
2159 return Error::success();
2160 }
2161
replaceSections(const DenseMap<SectionBase *,SectionBase * > & FromTo)2162 Error Object::replaceSections(
2163 const DenseMap<SectionBase *, SectionBase *> &FromTo) {
2164 auto SectionIndexLess = [](const SecPtr &Lhs, const SecPtr &Rhs) {
2165 return Lhs->Index < Rhs->Index;
2166 };
2167 assert(llvm::is_sorted(Sections, SectionIndexLess) &&
2168 "Sections are expected to be sorted by Index");
2169 // Set indices of new sections so that they can be later sorted into positions
2170 // of removed ones.
2171 for (auto &I : FromTo)
2172 I.second->Index = I.first->Index;
2173
2174 // Notify all sections about the replacement.
2175 for (auto &Sec : Sections)
2176 Sec->replaceSectionReferences(FromTo);
2177
2178 if (Error E = removeSections(
2179 /*AllowBrokenLinks=*/false,
2180 [=](const SectionBase &Sec) { return FromTo.count(&Sec) > 0; }))
2181 return E;
2182 llvm::sort(Sections, SectionIndexLess);
2183 return Error::success();
2184 }
2185
removeSymbols(function_ref<bool (const Symbol &)> ToRemove)2186 Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
2187 if (SymbolTable)
2188 for (const SecPtr &Sec : Sections)
2189 if (Error E = Sec->removeSymbols(ToRemove))
2190 return E;
2191 return Error::success();
2192 }
2193
addNewSymbolTable()2194 Error Object::addNewSymbolTable() {
2195 assert(!SymbolTable && "Object must not has a SymbolTable.");
2196
2197 // Reuse an existing SHT_STRTAB section if it exists.
2198 StringTableSection *StrTab = nullptr;
2199 for (SectionBase &Sec : sections()) {
2200 if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
2201 StrTab = static_cast<StringTableSection *>(&Sec);
2202
2203 // Prefer a string table that is not the section header string table, if
2204 // such a table exists.
2205 if (SectionNames != &Sec)
2206 break;
2207 }
2208 }
2209 if (!StrTab)
2210 StrTab = &addSection<StringTableSection>();
2211
2212 SymbolTableSection &SymTab = addSection<SymbolTableSection>();
2213 SymTab.Name = ".symtab";
2214 SymTab.Link = StrTab->Index;
2215 if (Error Err = SymTab.initialize(sections()))
2216 return Err;
2217 SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
2218
2219 SymbolTable = &SymTab;
2220
2221 return Error::success();
2222 }
2223
2224 // Orders segments such that if x = y->ParentSegment then y comes before x.
orderSegments(std::vector<Segment * > & Segments)2225 static void orderSegments(std::vector<Segment *> &Segments) {
2226 llvm::stable_sort(Segments, compareSegmentsByOffset);
2227 }
2228
2229 // This function finds a consistent layout for a list of segments starting from
2230 // an Offset. It assumes that Segments have been sorted by orderSegments and
2231 // returns an Offset one past the end of the last segment.
layoutSegments(std::vector<Segment * > & Segments,uint64_t Offset)2232 static uint64_t layoutSegments(std::vector<Segment *> &Segments,
2233 uint64_t Offset) {
2234 assert(llvm::is_sorted(Segments, compareSegmentsByOffset));
2235 // The only way a segment should move is if a section was between two
2236 // segments and that section was removed. If that section isn't in a segment
2237 // then it's acceptable, but not ideal, to simply move it to after the
2238 // segments. So we can simply layout segments one after the other accounting
2239 // for alignment.
2240 for (Segment *Seg : Segments) {
2241 // We assume that segments have been ordered by OriginalOffset and Index
2242 // such that a parent segment will always come before a child segment in
2243 // OrderedSegments. This means that the Offset of the ParentSegment should
2244 // already be set and we can set our offset relative to it.
2245 if (Seg->ParentSegment != nullptr) {
2246 Segment *Parent = Seg->ParentSegment;
2247 Seg->Offset =
2248 Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
2249 } else {
2250 Seg->Offset =
2251 alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
2252 }
2253 Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
2254 }
2255 return Offset;
2256 }
2257
2258 // This function finds a consistent layout for a list of sections. It assumes
2259 // that the ->ParentSegment of each section has already been laid out. The
2260 // supplied starting Offset is used for the starting offset of any section that
2261 // does not have a ParentSegment. It returns either the offset given if all
2262 // sections had a ParentSegment or an offset one past the last section if there
2263 // was a section that didn't have a ParentSegment.
2264 template <class Range>
layoutSections(Range Sections,uint64_t Offset)2265 static uint64_t layoutSections(Range Sections, uint64_t Offset) {
2266 // Now the offset of every segment has been set we can assign the offsets
2267 // of each section. For sections that are covered by a segment we should use
2268 // the segment's original offset and the section's original offset to compute
2269 // the offset from the start of the segment. Using the offset from the start
2270 // of the segment we can assign a new offset to the section. For sections not
2271 // covered by segments we can just bump Offset to the next valid location.
2272 // While it is not necessary, layout the sections in the order based on their
2273 // original offsets to resemble the input file as close as possible.
2274 std::vector<SectionBase *> OutOfSegmentSections;
2275 uint32_t Index = 1;
2276 for (auto &Sec : Sections) {
2277 Sec.Index = Index++;
2278 if (Sec.ParentSegment != nullptr) {
2279 auto Segment = *Sec.ParentSegment;
2280 Sec.Offset =
2281 Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
2282 } else
2283 OutOfSegmentSections.push_back(&Sec);
2284 }
2285
2286 llvm::stable_sort(OutOfSegmentSections,
2287 [](const SectionBase *Lhs, const SectionBase *Rhs) {
2288 return Lhs->OriginalOffset < Rhs->OriginalOffset;
2289 });
2290 for (auto *Sec : OutOfSegmentSections) {
2291 Offset = alignTo(Offset, Sec->Align == 0 ? 1 : Sec->Align);
2292 Sec->Offset = Offset;
2293 if (Sec->Type != SHT_NOBITS)
2294 Offset += Sec->Size;
2295 }
2296 return Offset;
2297 }
2298
2299 // Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
2300 // occupy no space in the file.
layoutSectionsForOnlyKeepDebug(Object & Obj,uint64_t Off)2301 static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
2302 // The layout algorithm requires the sections to be handled in the order of
2303 // their offsets in the input file, at least inside segments.
2304 std::vector<SectionBase *> Sections;
2305 Sections.reserve(Obj.sections().size());
2306 uint32_t Index = 1;
2307 for (auto &Sec : Obj.sections()) {
2308 Sec.Index = Index++;
2309 Sections.push_back(&Sec);
2310 }
2311 llvm::stable_sort(Sections,
2312 [](const SectionBase *Lhs, const SectionBase *Rhs) {
2313 return Lhs->OriginalOffset < Rhs->OriginalOffset;
2314 });
2315
2316 for (auto *Sec : Sections) {
2317 auto *FirstSec = Sec->ParentSegment && Sec->ParentSegment->Type == PT_LOAD
2318 ? Sec->ParentSegment->firstSection()
2319 : nullptr;
2320
2321 // The first section in a PT_LOAD has to have congruent offset and address
2322 // modulo the alignment, which usually equals the maximum page size.
2323 if (FirstSec && FirstSec == Sec)
2324 Off = alignTo(Off, Sec->ParentSegment->Align, Sec->Addr);
2325
2326 // sh_offset is not significant for SHT_NOBITS sections, but the congruence
2327 // rule must be followed if it is the first section in a PT_LOAD. Do not
2328 // advance Off.
2329 if (Sec->Type == SHT_NOBITS) {
2330 Sec->Offset = Off;
2331 continue;
2332 }
2333
2334 if (!FirstSec) {
2335 // FirstSec being nullptr generally means that Sec does not have the
2336 // SHF_ALLOC flag.
2337 Off = Sec->Align ? alignTo(Off, Sec->Align) : Off;
2338 } else if (FirstSec != Sec) {
2339 // The offset is relative to the first section in the PT_LOAD segment. Use
2340 // sh_offset for non-SHF_ALLOC sections.
2341 Off = Sec->OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
2342 }
2343 Sec->Offset = Off;
2344 Off += Sec->Size;
2345 }
2346 return Off;
2347 }
2348
2349 // Rewrite p_offset and p_filesz of non-PT_PHDR segments after sh_offset values
2350 // have been updated.
layoutSegmentsForOnlyKeepDebug(std::vector<Segment * > & Segments,uint64_t HdrEnd)2351 static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
2352 uint64_t HdrEnd) {
2353 uint64_t MaxOffset = 0;
2354 for (Segment *Seg : Segments) {
2355 if (Seg->Type == PT_PHDR)
2356 continue;
2357
2358 // The segment offset is generally the offset of the first section.
2359 //
2360 // For a segment containing no section (see sectionWithinSegment), if it has
2361 // a parent segment, copy the parent segment's offset field. This works for
2362 // empty PT_TLS. If no parent segment, use 0: the segment is not useful for
2363 // debugging anyway.
2364 const SectionBase *FirstSec = Seg->firstSection();
2365 uint64_t Offset =
2366 FirstSec ? FirstSec->Offset
2367 : (Seg->ParentSegment ? Seg->ParentSegment->Offset : 0);
2368 uint64_t FileSize = 0;
2369 for (const SectionBase *Sec : Seg->Sections) {
2370 uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
2371 if (Sec->Offset + Size > Offset)
2372 FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
2373 }
2374
2375 // If the segment includes EHDR and program headers, don't make it smaller
2376 // than the headers.
2377 if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
2378 FileSize += Offset - Seg->Offset;
2379 Offset = Seg->Offset;
2380 FileSize = std::max(FileSize, HdrEnd - Offset);
2381 }
2382
2383 Seg->Offset = Offset;
2384 Seg->FileSize = FileSize;
2385 MaxOffset = std::max(MaxOffset, Offset + FileSize);
2386 }
2387 return MaxOffset;
2388 }
2389
initEhdrSegment()2390 template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
2391 Segment &ElfHdr = Obj.ElfHdrSegment;
2392 ElfHdr.Type = PT_PHDR;
2393 ElfHdr.Flags = 0;
2394 ElfHdr.VAddr = 0;
2395 ElfHdr.PAddr = 0;
2396 ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
2397 ElfHdr.Align = 0;
2398 }
2399
assignOffsets()2400 template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
2401 // We need a temporary list of segments that has a special order to it
2402 // so that we know that anytime ->ParentSegment is set that segment has
2403 // already had its offset properly set.
2404 std::vector<Segment *> OrderedSegments;
2405 for (Segment &Segment : Obj.segments())
2406 OrderedSegments.push_back(&Segment);
2407 OrderedSegments.push_back(&Obj.ElfHdrSegment);
2408 OrderedSegments.push_back(&Obj.ProgramHdrSegment);
2409 orderSegments(OrderedSegments);
2410
2411 uint64_t Offset;
2412 if (OnlyKeepDebug) {
2413 // For --only-keep-debug, the sections that did not preserve contents were
2414 // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
2415 // then rewrite p_offset/p_filesz of program headers.
2416 uint64_t HdrEnd =
2417 sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
2418 Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
2419 Offset = std::max(Offset,
2420 layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
2421 } else {
2422 // Offset is used as the start offset of the first segment to be laid out.
2423 // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
2424 // we start at offset 0.
2425 Offset = layoutSegments(OrderedSegments, 0);
2426 Offset = layoutSections(Obj.sections(), Offset);
2427 }
2428 // If we need to write the section header table out then we need to align the
2429 // Offset so that SHOffset is valid.
2430 if (WriteSectionHeaders)
2431 Offset = alignTo(Offset, sizeof(Elf_Addr));
2432 Obj.SHOff = Offset;
2433 }
2434
totalSize() const2435 template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
2436 // We already have the section header offset so we can calculate the total
2437 // size by just adding up the size of each section header.
2438 if (!WriteSectionHeaders)
2439 return Obj.SHOff;
2440 size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
2441 return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
2442 }
2443
write()2444 template <class ELFT> Error ELFWriter<ELFT>::write() {
2445 // Segment data must be written first, so that the ELF header and program
2446 // header tables can overwrite it, if covered by a segment.
2447 writeSegmentData();
2448 writeEhdr();
2449 writePhdrs();
2450 if (Error E = writeSectionData())
2451 return E;
2452 if (WriteSectionHeaders)
2453 writeShdrs();
2454
2455 // TODO: Implement direct writing to the output stream (without intermediate
2456 // memory buffer Buf).
2457 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2458 return Error::success();
2459 }
2460
removeUnneededSections(Object & Obj)2461 static Error removeUnneededSections(Object &Obj) {
2462 // We can remove an empty symbol table from non-relocatable objects.
2463 // Relocatable objects typically have relocation sections whose
2464 // sh_link field points to .symtab, so we can't remove .symtab
2465 // even if it is empty.
2466 if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
2467 !Obj.SymbolTable->empty())
2468 return Error::success();
2469
2470 // .strtab can be used for section names. In such a case we shouldn't
2471 // remove it.
2472 auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
2473 ? nullptr
2474 : Obj.SymbolTable->getStrTab();
2475 return Obj.removeSections(false, [&](const SectionBase &Sec) {
2476 return &Sec == Obj.SymbolTable || &Sec == StrTab;
2477 });
2478 }
2479
finalize()2480 template <class ELFT> Error ELFWriter<ELFT>::finalize() {
2481 // It could happen that SectionNames has been removed and yet the user wants
2482 // a section header table output. We need to throw an error if a user tries
2483 // to do that.
2484 if (Obj.SectionNames == nullptr && WriteSectionHeaders)
2485 return createStringError(llvm::errc::invalid_argument,
2486 "cannot write section header table because "
2487 "section header string table was removed");
2488
2489 if (Error E = removeUnneededSections(Obj))
2490 return E;
2491
2492 // We need to assign indexes before we perform layout because we need to know
2493 // if we need large indexes or not. We can assign indexes first and check as
2494 // we go to see if we will actully need large indexes.
2495 bool NeedsLargeIndexes = false;
2496 if (Obj.sections().size() >= SHN_LORESERVE) {
2497 SectionTableRef Sections = Obj.sections();
2498 // Sections doesn't include the null section header, so account for this
2499 // when skipping the first N sections.
2500 NeedsLargeIndexes =
2501 any_of(drop_begin(Sections, SHN_LORESERVE - 1),
2502 [](const SectionBase &Sec) { return Sec.HasSymbol; });
2503 // TODO: handle case where only one section needs the large index table but
2504 // only needs it because the large index table hasn't been removed yet.
2505 }
2506
2507 if (NeedsLargeIndexes) {
2508 // This means we definitely need to have a section index table but if we
2509 // already have one then we should use it instead of making a new one.
2510 if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
2511 // Addition of a section to the end does not invalidate the indexes of
2512 // other sections and assigns the correct index to the new section.
2513 auto &Shndx = Obj.addSection<SectionIndexSection>();
2514 Obj.SymbolTable->setShndxTable(&Shndx);
2515 Shndx.setSymTab(Obj.SymbolTable);
2516 }
2517 } else {
2518 // Since we don't need SectionIndexTable we should remove it and all
2519 // references to it.
2520 if (Obj.SectionIndexTable != nullptr) {
2521 // We do not support sections referring to the section index table.
2522 if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
2523 [this](const SectionBase &Sec) {
2524 return &Sec == Obj.SectionIndexTable;
2525 }))
2526 return E;
2527 }
2528 }
2529
2530 // Make sure we add the names of all the sections. Importantly this must be
2531 // done after we decide to add or remove SectionIndexes.
2532 if (Obj.SectionNames != nullptr)
2533 for (const SectionBase &Sec : Obj.sections())
2534 Obj.SectionNames->addString(Sec.Name);
2535
2536 initEhdrSegment();
2537
2538 // Before we can prepare for layout the indexes need to be finalized.
2539 // Also, the output arch may not be the same as the input arch, so fix up
2540 // size-related fields before doing layout calculations.
2541 uint64_t Index = 0;
2542 auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
2543 for (SectionBase &Sec : Obj.sections()) {
2544 Sec.Index = Index++;
2545 if (Error Err = Sec.accept(*SecSizer))
2546 return Err;
2547 }
2548
2549 // The symbol table does not update all other sections on update. For
2550 // instance, symbol names are not added as new symbols are added. This means
2551 // that some sections, like .strtab, don't yet have their final size.
2552 if (Obj.SymbolTable != nullptr)
2553 Obj.SymbolTable->prepareForLayout();
2554
2555 // Now that all strings are added we want to finalize string table builders,
2556 // because that affects section sizes which in turn affects section offsets.
2557 for (SectionBase &Sec : Obj.sections())
2558 if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
2559 StrTab->prepareForLayout();
2560
2561 assignOffsets();
2562
2563 // layoutSections could have modified section indexes, so we need
2564 // to fill the index table after assignOffsets.
2565 if (Obj.SymbolTable != nullptr)
2566 Obj.SymbolTable->fillShndxTable();
2567
2568 // Finally now that all offsets and indexes have been set we can finalize any
2569 // remaining issues.
2570 uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
2571 for (SectionBase &Sec : Obj.sections()) {
2572 Sec.HeaderOffset = Offset;
2573 Offset += sizeof(Elf_Shdr);
2574 if (WriteSectionHeaders)
2575 Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
2576 Sec.finalize();
2577 }
2578
2579 size_t TotalSize = totalSize();
2580 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2581 if (!Buf)
2582 return createStringError(errc::not_enough_memory,
2583 "failed to allocate memory buffer of " +
2584 Twine::utohexstr(TotalSize) + " bytes");
2585
2586 SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(*Buf);
2587 return Error::success();
2588 }
2589
write()2590 Error BinaryWriter::write() {
2591 for (const SectionBase &Sec : Obj.allocSections())
2592 if (Error Err = Sec.accept(*SecWriter))
2593 return Err;
2594
2595 // TODO: Implement direct writing to the output stream (without intermediate
2596 // memory buffer Buf).
2597 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2598 return Error::success();
2599 }
2600
finalize()2601 Error BinaryWriter::finalize() {
2602 // Compute the section LMA based on its sh_offset and the containing segment's
2603 // p_offset and p_paddr. Also compute the minimum LMA of all non-empty
2604 // sections as MinAddr. In the output, the contents between address 0 and
2605 // MinAddr will be skipped.
2606 uint64_t MinAddr = UINT64_MAX;
2607 for (SectionBase &Sec : Obj.allocSections()) {
2608 // If Sec's type is changed from SHT_NOBITS due to --set-section-flags,
2609 // Offset may not be aligned. Align it to max(Align, 1).
2610 if (Sec.ParentSegment != nullptr)
2611 Sec.Addr = alignTo(Sec.Offset - Sec.ParentSegment->Offset +
2612 Sec.ParentSegment->PAddr,
2613 std::max(Sec.Align, uint64_t(1)));
2614 if (Sec.Type != SHT_NOBITS && Sec.Size > 0)
2615 MinAddr = std::min(MinAddr, Sec.Addr);
2616 }
2617
2618 // Now that every section has been laid out we just need to compute the total
2619 // file size. This might not be the same as the offset returned by
2620 // layoutSections, because we want to truncate the last segment to the end of
2621 // its last non-empty section, to match GNU objcopy's behaviour.
2622 TotalSize = 0;
2623 for (SectionBase &Sec : Obj.allocSections())
2624 if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
2625 Sec.Offset = Sec.Addr - MinAddr;
2626 TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
2627 }
2628
2629 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2630 if (!Buf)
2631 return createStringError(errc::not_enough_memory,
2632 "failed to allocate memory buffer of " +
2633 Twine::utohexstr(TotalSize) + " bytes");
2634 SecWriter = std::make_unique<BinarySectionWriter>(*Buf);
2635 return Error::success();
2636 }
2637
operator ()(const SectionBase * Lhs,const SectionBase * Rhs) const2638 bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
2639 const SectionBase *Rhs) const {
2640 return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
2641 (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
2642 }
2643
writeEntryPointRecord(uint8_t * Buf)2644 uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
2645 IHexLineData HexData;
2646 uint8_t Data[4] = {};
2647 // We don't write entry point record if entry is zero.
2648 if (Obj.Entry == 0)
2649 return 0;
2650
2651 if (Obj.Entry <= 0xFFFFFU) {
2652 Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
2653 support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
2654 support::big);
2655 HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
2656 } else {
2657 support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
2658 support::big);
2659 HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
2660 }
2661 memcpy(Buf, HexData.data(), HexData.size());
2662 return HexData.size();
2663 }
2664
writeEndOfFileRecord(uint8_t * Buf)2665 uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
2666 IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
2667 memcpy(Buf, HexData.data(), HexData.size());
2668 return HexData.size();
2669 }
2670
write()2671 Error IHexWriter::write() {
2672 IHexSectionWriter Writer(*Buf);
2673 // Write sections.
2674 for (const SectionBase *Sec : Sections)
2675 if (Error Err = Sec->accept(Writer))
2676 return Err;
2677
2678 uint64_t Offset = Writer.getBufferOffset();
2679 // Write entry point address.
2680 Offset += writeEntryPointRecord(
2681 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2682 // Write EOF.
2683 Offset += writeEndOfFileRecord(
2684 reinterpret_cast<uint8_t *>(Buf->getBufferStart()) + Offset);
2685 assert(Offset == TotalSize);
2686
2687 // TODO: Implement direct writing to the output stream (without intermediate
2688 // memory buffer Buf).
2689 Out.write(Buf->getBufferStart(), Buf->getBufferSize());
2690 return Error::success();
2691 }
2692
checkSection(const SectionBase & Sec)2693 Error IHexWriter::checkSection(const SectionBase &Sec) {
2694 uint64_t Addr = sectionPhysicalAddr(&Sec);
2695 if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
2696 return createStringError(
2697 errc::invalid_argument,
2698 "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit",
2699 Sec.Name.c_str(), Addr, Addr + Sec.Size - 1);
2700 return Error::success();
2701 }
2702
finalize()2703 Error IHexWriter::finalize() {
2704 // We can't write 64-bit addresses.
2705 if (addressOverflows32bit(Obj.Entry))
2706 return createStringError(errc::invalid_argument,
2707 "Entry point address 0x%llx overflows 32 bits",
2708 Obj.Entry);
2709
2710 for (const SectionBase &Sec : Obj.sections())
2711 if ((Sec.Flags & ELF::SHF_ALLOC) && Sec.Type != ELF::SHT_NOBITS &&
2712 Sec.Size > 0) {
2713 if (Error E = checkSection(Sec))
2714 return E;
2715 Sections.insert(&Sec);
2716 }
2717
2718 std::unique_ptr<WritableMemoryBuffer> EmptyBuffer =
2719 WritableMemoryBuffer::getNewMemBuffer(0);
2720 if (!EmptyBuffer)
2721 return createStringError(errc::not_enough_memory,
2722 "failed to allocate memory buffer of 0 bytes");
2723
2724 IHexSectionWriterBase LengthCalc(*EmptyBuffer);
2725 for (const SectionBase *Sec : Sections)
2726 if (Error Err = Sec->accept(LengthCalc))
2727 return Err;
2728
2729 // We need space to write section records + StartAddress record
2730 // (if start adress is not zero) + EndOfFile record.
2731 TotalSize = LengthCalc.getBufferOffset() +
2732 (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
2733 IHexRecord::getLineLength(0);
2734
2735 Buf = WritableMemoryBuffer::getNewMemBuffer(TotalSize);
2736 if (!Buf)
2737 return createStringError(errc::not_enough_memory,
2738 "failed to allocate memory buffer of " +
2739 Twine::utohexstr(TotalSize) + " bytes");
2740
2741 return Error::success();
2742 }
2743
2744 namespace llvm {
2745 namespace objcopy {
2746 namespace elf {
2747
2748 template class ELFBuilder<ELF64LE>;
2749 template class ELFBuilder<ELF64BE>;
2750 template class ELFBuilder<ELF32LE>;
2751 template class ELFBuilder<ELF32BE>;
2752
2753 template class ELFWriter<ELF64LE>;
2754 template class ELFWriter<ELF64BE>;
2755 template class ELFWriter<ELF32LE>;
2756 template class ELFWriter<ELF32BE>;
2757
2758 } // end namespace elf
2759 } // end namespace objcopy
2760 } // end namespace llvm
2761