1 //===- ConvertLaunchFuncToLLVMCalls.cpp - MLIR GPU launch to LLVM pass ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements passes to convert `gpu.launch_func` op into a sequence
10 // of LLVM calls that emulate the host and device sides.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "../PassDetail.h"
15 #include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
16 #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
17 #include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
18 #include "mlir/Conversion/LLVMCommon/Pattern.h"
19 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
20 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
21 #include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVM.h"
22 #include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVMPass.h"
23 #include "mlir/Dialect/Func/IR/FuncOps.h"
24 #include "mlir/Dialect/GPU/IR/GPUDialect.h"
25 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
26 #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
27 #include "mlir/IR/BuiltinOps.h"
28 #include "mlir/IR/SymbolTable.h"
29 #include "mlir/Transforms/DialectConversion.h"
30
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Support/FormatVariadic.h"
34
35 using namespace mlir;
36
37 static constexpr const char kSPIRVModule[] = "__spv__";
38
39 //===----------------------------------------------------------------------===//
40 // Utility functions
41 //===----------------------------------------------------------------------===//
42
43 /// Returns the string name of the `DescriptorSet` decoration.
descriptorSetName()44 static std::string descriptorSetName() {
45 return llvm::convertToSnakeFromCamelCase(
46 stringifyDecoration(spirv::Decoration::DescriptorSet));
47 }
48
49 /// Returns the string name of the `Binding` decoration.
bindingName()50 static std::string bindingName() {
51 return llvm::convertToSnakeFromCamelCase(
52 stringifyDecoration(spirv::Decoration::Binding));
53 }
54
55 /// Calculates the index of the kernel's operand that is represented by the
56 /// given global variable with the `bind` attribute. We assume that the index of
57 /// each kernel's operand is mapped to (descriptorSet, binding) by the map:
58 /// i -> (0, i)
59 /// which is implemented under `LowerABIAttributesPass`.
calculateGlobalIndex(spirv::GlobalVariableOp op)60 static unsigned calculateGlobalIndex(spirv::GlobalVariableOp op) {
61 IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
62 return binding.getInt();
63 }
64
65 /// Copies the given number of bytes from src to dst pointers.
copy(Location loc,Value dst,Value src,Value size,OpBuilder & builder)66 static void copy(Location loc, Value dst, Value src, Value size,
67 OpBuilder &builder) {
68 MLIRContext *context = builder.getContext();
69 auto llvmI1Type = IntegerType::get(context, 1);
70 Value isVolatile = builder.create<LLVM::ConstantOp>(
71 loc, llvmI1Type, builder.getBoolAttr(false));
72 builder.create<LLVM::MemcpyOp>(loc, dst, src, size, isVolatile);
73 }
74
75 /// Encodes the binding and descriptor set numbers into a new symbolic name.
76 /// The name is specified by
77 /// {kernel_module_name}_{variable_name}_descriptor_set{ds}_binding{b}
78 /// to avoid symbolic conflicts, where 'ds' and 'b' are descriptor set and
79 /// binding numbers.
80 static std::string
createGlobalVariableWithBindName(spirv::GlobalVariableOp op,StringRef kernelModuleName)81 createGlobalVariableWithBindName(spirv::GlobalVariableOp op,
82 StringRef kernelModuleName) {
83 IntegerAttr descriptorSet =
84 op->getAttrOfType<IntegerAttr>(descriptorSetName());
85 IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
86 return llvm::formatv("{0}_{1}_descriptor_set{2}_binding{3}",
87 kernelModuleName.str(), op.sym_name().str(),
88 std::to_string(descriptorSet.getInt()),
89 std::to_string(binding.getInt()));
90 }
91
92 /// Returns true if the given global variable has both a descriptor set number
93 /// and a binding number.
hasDescriptorSetAndBinding(spirv::GlobalVariableOp op)94 static bool hasDescriptorSetAndBinding(spirv::GlobalVariableOp op) {
95 IntegerAttr descriptorSet =
96 op->getAttrOfType<IntegerAttr>(descriptorSetName());
97 IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
98 return descriptorSet && binding;
99 }
100
101 /// Fills `globalVariableMap` with SPIR-V global variables that represent kernel
102 /// arguments from the given SPIR-V module. We assume that the module contains a
103 /// single entry point function. Hence, all `spv.GlobalVariable`s with a bind
104 /// attribute are kernel arguments.
getKernelGlobalVariables(spirv::ModuleOp module,DenseMap<uint32_t,spirv::GlobalVariableOp> & globalVariableMap)105 static LogicalResult getKernelGlobalVariables(
106 spirv::ModuleOp module,
107 DenseMap<uint32_t, spirv::GlobalVariableOp> &globalVariableMap) {
108 auto entryPoints = module.getOps<spirv::EntryPointOp>();
109 if (!llvm::hasSingleElement(entryPoints)) {
110 return module.emitError(
111 "The module must contain exactly one entry point function");
112 }
113 auto globalVariables = module.getOps<spirv::GlobalVariableOp>();
114 for (auto globalOp : globalVariables) {
115 if (hasDescriptorSetAndBinding(globalOp))
116 globalVariableMap[calculateGlobalIndex(globalOp)] = globalOp;
117 }
118 return success();
119 }
120
121 /// Encodes the SPIR-V module's symbolic name into the name of the entry point
122 /// function.
encodeKernelName(spirv::ModuleOp module)123 static LogicalResult encodeKernelName(spirv::ModuleOp module) {
124 StringRef spvModuleName = *module.sym_name();
125 // We already know that the module contains exactly one entry point function
126 // based on `getKernelGlobalVariables()` call. Update this function's name
127 // to:
128 // {spv_module_name}_{function_name}
129 auto entryPoint = *module.getOps<spirv::EntryPointOp>().begin();
130 StringRef funcName = entryPoint.fn();
131 auto funcOp = module.lookupSymbol<spirv::FuncOp>(entryPoint.fnAttr());
132 StringAttr newFuncName =
133 StringAttr::get(module->getContext(), spvModuleName + "_" + funcName);
134 if (failed(SymbolTable::replaceAllSymbolUses(funcOp, newFuncName, module)))
135 return failure();
136 SymbolTable::setSymbolName(funcOp, newFuncName);
137 return success();
138 }
139
140 //===----------------------------------------------------------------------===//
141 // Conversion patterns
142 //===----------------------------------------------------------------------===//
143
144 namespace {
145
146 /// Structure to group information about the variables being copied.
147 struct CopyInfo {
148 Value dst;
149 Value src;
150 Value size;
151 };
152
153 /// This pattern emulates a call to the kernel in LLVM dialect. For that, we
154 /// copy the data to the global variable (emulating device side), call the
155 /// kernel as a normal void LLVM function, and copy the data back (emulating the
156 /// host side).
157 class GPULaunchLowering : public ConvertOpToLLVMPattern<gpu::LaunchFuncOp> {
158 using ConvertOpToLLVMPattern<gpu::LaunchFuncOp>::ConvertOpToLLVMPattern;
159
160 LogicalResult
matchAndRewrite(gpu::LaunchFuncOp launchOp,OpAdaptor adaptor,ConversionPatternRewriter & rewriter) const161 matchAndRewrite(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
162 ConversionPatternRewriter &rewriter) const override {
163 auto *op = launchOp.getOperation();
164 MLIRContext *context = rewriter.getContext();
165 auto module = launchOp->getParentOfType<ModuleOp>();
166
167 // Get the SPIR-V module that represents the gpu kernel module. The module
168 // is named:
169 // __spv__{kernel_module_name}
170 // based on GPU to SPIR-V conversion.
171 StringRef kernelModuleName = launchOp.getKernelModuleName().getValue();
172 std::string spvModuleName = kSPIRVModule + kernelModuleName.str();
173 auto spvModule = module.lookupSymbol<spirv::ModuleOp>(
174 StringAttr::get(context, spvModuleName));
175 if (!spvModule) {
176 return launchOp.emitOpError("SPIR-V kernel module '")
177 << spvModuleName << "' is not found";
178 }
179
180 // Declare kernel function in the main module so that it later can be linked
181 // with its definition from the kernel module. We know that the kernel
182 // function would have no arguments and the data is passed via global
183 // variables. The name of the kernel will be
184 // {spv_module_name}_{kernel_function_name}
185 // to avoid symbolic name conflicts.
186 StringRef kernelFuncName = launchOp.getKernelName().getValue();
187 std::string newKernelFuncName = spvModuleName + "_" + kernelFuncName.str();
188 auto kernelFunc = module.lookupSymbol<LLVM::LLVMFuncOp>(
189 StringAttr::get(context, newKernelFuncName));
190 if (!kernelFunc) {
191 OpBuilder::InsertionGuard guard(rewriter);
192 rewriter.setInsertionPointToStart(module.getBody());
193 kernelFunc = rewriter.create<LLVM::LLVMFuncOp>(
194 rewriter.getUnknownLoc(), newKernelFuncName,
195 LLVM::LLVMFunctionType::get(LLVM::LLVMVoidType::get(context),
196 ArrayRef<Type>()));
197 rewriter.setInsertionPoint(launchOp);
198 }
199
200 // Get all global variables associated with the kernel operands.
201 DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;
202 if (failed(getKernelGlobalVariables(spvModule, globalVariableMap)))
203 return failure();
204
205 // Traverse kernel operands that were converted to MemRefDescriptors. For
206 // each operand, create a global variable and copy data from operand to it.
207 Location loc = launchOp.getLoc();
208 SmallVector<CopyInfo, 4> copyInfo;
209 auto numKernelOperands = launchOp.getNumKernelOperands();
210 auto kernelOperands = adaptor.getOperands().take_back(numKernelOperands);
211 for (const auto &operand : llvm::enumerate(kernelOperands)) {
212 // Check if the kernel's operand is a ranked memref.
213 auto memRefType = launchOp.getKernelOperand(operand.index())
214 .getType()
215 .dyn_cast<MemRefType>();
216 if (!memRefType)
217 return failure();
218
219 // Calculate the size of the memref and get the pointer to the allocated
220 // buffer.
221 SmallVector<Value, 4> sizes;
222 SmallVector<Value, 4> strides;
223 Value sizeBytes;
224 getMemRefDescriptorSizes(loc, memRefType, {}, rewriter, sizes, strides,
225 sizeBytes);
226 MemRefDescriptor descriptor(operand.value());
227 Value src = descriptor.allocatedPtr(rewriter, loc);
228
229 // Get the global variable in the SPIR-V module that is associated with
230 // the kernel operand. Construct its new name and create a corresponding
231 // LLVM dialect global variable.
232 spirv::GlobalVariableOp spirvGlobal = globalVariableMap[operand.index()];
233 auto pointeeType =
234 spirvGlobal.type().cast<spirv::PointerType>().getPointeeType();
235 auto dstGlobalType = typeConverter->convertType(pointeeType);
236 if (!dstGlobalType)
237 return failure();
238 std::string name =
239 createGlobalVariableWithBindName(spirvGlobal, spvModuleName);
240 // Check if this variable has already been created.
241 auto dstGlobal = module.lookupSymbol<LLVM::GlobalOp>(name);
242 if (!dstGlobal) {
243 OpBuilder::InsertionGuard guard(rewriter);
244 rewriter.setInsertionPointToStart(module.getBody());
245 dstGlobal = rewriter.create<LLVM::GlobalOp>(
246 loc, dstGlobalType,
247 /*isConstant=*/false, LLVM::Linkage::Linkonce, name, Attribute(),
248 /*alignment=*/0);
249 rewriter.setInsertionPoint(launchOp);
250 }
251
252 // Copy the data from src operand pointer to dst global variable. Save
253 // src, dst and size so that we can copy data back after emulating the
254 // kernel call.
255 Value dst = rewriter.create<LLVM::AddressOfOp>(loc, dstGlobal);
256 copy(loc, dst, src, sizeBytes, rewriter);
257
258 CopyInfo info;
259 info.dst = dst;
260 info.src = src;
261 info.size = sizeBytes;
262 copyInfo.push_back(info);
263 }
264 // Create a call to the kernel and copy the data back.
265 rewriter.replaceOpWithNewOp<LLVM::CallOp>(op, kernelFunc,
266 ArrayRef<Value>());
267 for (CopyInfo info : copyInfo)
268 copy(loc, info.src, info.dst, info.size, rewriter);
269 return success();
270 }
271 };
272
273 class LowerHostCodeToLLVM
274 : public LowerHostCodeToLLVMBase<LowerHostCodeToLLVM> {
275 public:
runOnOperation()276 void runOnOperation() override {
277 ModuleOp module = getOperation();
278
279 // Erase the GPU module.
280 for (auto gpuModule :
281 llvm::make_early_inc_range(module.getOps<gpu::GPUModuleOp>()))
282 gpuModule.erase();
283
284 // Request C wrapper emission.
285 for (auto func : module.getOps<func::FuncOp>()) {
286 func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(),
287 UnitAttr::get(&getContext()));
288 }
289
290 // Specify options to lower to LLVM and pull in the conversion patterns.
291 LowerToLLVMOptions options(module.getContext());
292 auto *context = module.getContext();
293 RewritePatternSet patterns(context);
294 LLVMTypeConverter typeConverter(context, options);
295 mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
296 patterns);
297 populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
298 populateFuncToLLVMConversionPatterns(typeConverter, patterns);
299 patterns.add<GPULaunchLowering>(typeConverter);
300
301 // Pull in SPIR-V type conversion patterns to convert SPIR-V global
302 // variable's type to LLVM dialect type.
303 populateSPIRVToLLVMTypeConversion(typeConverter);
304
305 ConversionTarget target(*context);
306 target.addLegalDialect<LLVM::LLVMDialect>();
307 if (failed(applyPartialConversion(module, target, std::move(patterns))))
308 signalPassFailure();
309
310 // Finally, modify the kernel function in SPIR-V modules to avoid symbolic
311 // conflicts.
312 for (auto spvModule : module.getOps<spirv::ModuleOp>())
313 (void)encodeKernelName(spvModule);
314 }
315 };
316 } // namespace
317
318 std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
createLowerHostCodeToLLVMPass()319 mlir::createLowerHostCodeToLLVMPass() {
320 return std::make_unique<LowerHostCodeToLLVM>();
321 }
322