1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
16 
17 #include "CGCall.h"
18 #include "clang/Basic/ABI.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/IR/Module.h"
22 
23 namespace llvm {
24 class FunctionType;
25 class DataLayout;
26 class Type;
27 class LLVMContext;
28 class StructType;
29 }
30 
31 namespace clang {
32 class ASTContext;
33 template <typename> class CanQual;
34 class CXXConstructorDecl;
35 class CXXDestructorDecl;
36 class CXXMethodDecl;
37 class CodeGenOptions;
38 class FieldDecl;
39 class FunctionProtoType;
40 class ObjCInterfaceDecl;
41 class ObjCIvarDecl;
42 class PointerType;
43 class QualType;
44 class RecordDecl;
45 class TagDecl;
46 class TargetInfo;
47 class Type;
48 typedef CanQual<Type> CanQualType;
49 class GlobalDecl;
50 
51 namespace CodeGen {
52 class ABIInfo;
53 class CGCXXABI;
54 class CGRecordLayout;
55 class CodeGenModule;
56 class RequiredArgs;
57 
58 enum class StructorType {
59   Complete, // constructor or destructor
60   Base,     // constructor or destructor
61   Deleting  // destructor only
62 };
63 
toCXXCtorType(StructorType T)64 inline CXXCtorType toCXXCtorType(StructorType T) {
65   switch (T) {
66   case StructorType::Complete:
67     return Ctor_Complete;
68   case StructorType::Base:
69     return Ctor_Base;
70   case StructorType::Deleting:
71     llvm_unreachable("cannot have a deleting ctor");
72   }
73   llvm_unreachable("not a StructorType");
74 }
75 
getFromCtorType(CXXCtorType T)76 inline StructorType getFromCtorType(CXXCtorType T) {
77   switch (T) {
78   case Ctor_Complete:
79     return StructorType::Complete;
80   case Ctor_Base:
81     return StructorType::Base;
82   case Ctor_Comdat:
83     llvm_unreachable("not expecting a COMDAT");
84   case Ctor_CopyingClosure:
85   case Ctor_DefaultClosure:
86     llvm_unreachable("not expecting a closure");
87   }
88   llvm_unreachable("not a CXXCtorType");
89 }
90 
toCXXDtorType(StructorType T)91 inline CXXDtorType toCXXDtorType(StructorType T) {
92   switch (T) {
93   case StructorType::Complete:
94     return Dtor_Complete;
95   case StructorType::Base:
96     return Dtor_Base;
97   case StructorType::Deleting:
98     return Dtor_Deleting;
99   }
100   llvm_unreachable("not a StructorType");
101 }
102 
getFromDtorType(CXXDtorType T)103 inline StructorType getFromDtorType(CXXDtorType T) {
104   switch (T) {
105   case Dtor_Deleting:
106     return StructorType::Deleting;
107   case Dtor_Complete:
108     return StructorType::Complete;
109   case Dtor_Base:
110     return StructorType::Base;
111   case Dtor_Comdat:
112     llvm_unreachable("not expecting a COMDAT");
113   }
114   llvm_unreachable("not a CXXDtorType");
115 }
116 
117 /// This class organizes the cross-module state that is used while lowering
118 /// AST types to LLVM types.
119 class CodeGenTypes {
120   CodeGenModule &CGM;
121   // Some of this stuff should probably be left on the CGM.
122   ASTContext &Context;
123   llvm::Module &TheModule;
124   const TargetInfo &Target;
125   CGCXXABI &TheCXXABI;
126 
127   // This should not be moved earlier, since its initialization depends on some
128   // of the previous reference members being already initialized
129   const ABIInfo &TheABIInfo;
130 
131   /// The opaque type map for Objective-C interfaces. All direct
132   /// manipulation is done by the runtime interfaces, which are
133   /// responsible for coercing to the appropriate type; these opaque
134   /// types are never refined.
135   llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
136 
137   /// Maps clang struct type with corresponding record layout info.
138   llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
139 
140   /// Contains the LLVM IR type for any converted RecordDecl.
141   llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
142 
143   /// Hold memoized CGFunctionInfo results.
144   llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
145 
146   /// This set keeps track of records that we're currently converting
147   /// to an IR type.  For example, when converting:
148   /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
149   /// types will be in this set.
150   llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
151 
152   llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
153 
154   /// True if we didn't layout a function due to a being inside
155   /// a recursive struct conversion, set this to true.
156   bool SkippedLayout;
157 
158   SmallVector<const RecordDecl *, 8> DeferredRecords;
159 
160   /// This map keeps cache of llvm::Types and maps clang::Type to
161   /// corresponding llvm::Type.
162   llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
163 
164   llvm::SmallSet<const Type *, 8> RecordsWithOpaqueMemberPointers;
165 
166 public:
167   CodeGenTypes(CodeGenModule &cgm);
168   ~CodeGenTypes();
169 
getDataLayout()170   const llvm::DataLayout &getDataLayout() const {
171     return TheModule.getDataLayout();
172   }
getContext()173   ASTContext &getContext() const { return Context; }
getABIInfo()174   const ABIInfo &getABIInfo() const { return TheABIInfo; }
getTarget()175   const TargetInfo &getTarget() const { return Target; }
getCXXABI()176   CGCXXABI &getCXXABI() const { return TheCXXABI; }
getLLVMContext()177   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
178   const CodeGenOptions &getCodeGenOpts() const;
179 
180   /// Convert clang calling convention to LLVM callilng convention.
181   unsigned ClangCallConvToLLVMCallConv(CallingConv CC);
182 
183   /// ConvertType - Convert type T into a llvm::Type.
184   llvm::Type *ConvertType(QualType T);
185 
186   /// Converts the GlobalDecl into an llvm::Type. This should be used
187   /// when we know the target of the function we want to convert.  This is
188   /// because some functions (explicitly, those with pass_object_size
189   /// parameters) may not have the same signature as their type portrays, and
190   /// can only be called directly.
191   llvm::Type *ConvertFunctionType(QualType FT,
192                                   const FunctionDecl *FD = nullptr);
193 
194   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
195   /// ConvertType in that it is used to convert to the memory representation for
196   /// a type.  For example, the scalar representation for _Bool is i1, but the
197   /// memory representation is usually i8 or i32, depending on the target.
198   llvm::Type *ConvertTypeForMem(QualType T);
199 
200   /// GetFunctionType - Get the LLVM function type for \arg Info.
201   llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
202 
203   llvm::FunctionType *GetFunctionType(GlobalDecl GD);
204 
205   /// isFuncTypeConvertible - Utility to check whether a function type can
206   /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
207   /// type).
208   bool isFuncTypeConvertible(const FunctionType *FT);
209   bool isFuncParamTypeConvertible(QualType Ty);
210 
211   /// Determine if a C++ inheriting constructor should have parameters matching
212   /// those of its inherited constructor.
213   bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
214                                CXXCtorType Type);
215 
216   /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
217   /// given a CXXMethodDecl. If the method to has an incomplete return type,
218   /// and/or incomplete argument types, this will return the opaque type.
219   llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
220 
221   const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
222 
223   /// UpdateCompletedType - When we find the full definition for a TagDecl,
224   /// replace the 'opaque' type we previously made for it if applicable.
225   void UpdateCompletedType(const TagDecl *TD);
226 
227   /// Remove stale types from the type cache when an inheritance model
228   /// gets assigned to a class.
229   void RefreshTypeCacheForClass(const CXXRecordDecl *RD);
230 
231   // The arrangement methods are split into three families:
232   //   - those meant to drive the signature and prologue/epilogue
233   //     of a function declaration or definition,
234   //   - those meant for the computation of the LLVM type for an abstract
235   //     appearance of a function, and
236   //   - those meant for performing the IR-generation of a call.
237   // They differ mainly in how they deal with optional (i.e. variadic)
238   // arguments, as well as unprototyped functions.
239   //
240   // Key points:
241   // - The CGFunctionInfo for emitting a specific call site must include
242   //   entries for the optional arguments.
243   // - The function type used at the call site must reflect the formal
244   //   signature of the declaration being called, or else the call will
245   //   go awry.
246   // - For the most part, unprototyped functions are called by casting to
247   //   a formal signature inferred from the specific argument types used
248   //   at the call-site.  However, some targets (e.g. x86-64) screw with
249   //   this for compatibility reasons.
250 
251   const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
252 
253   /// Given a function info for a declaration, return the function info
254   /// for a call with the given arguments.
255   ///
256   /// Often this will be able to simply return the declaration info.
257   const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
258                                     const CallArgList &args);
259 
260   /// Free functions are functions that are compatible with an ordinary
261   /// C function pointer type.
262   const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
263   const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
264                                                 const FunctionType *Ty,
265                                                 bool ChainCall);
266   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty,
267                                                 const FunctionDecl *FD);
268   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
269 
270   /// A nullary function is a freestanding function of type 'void ()'.
271   /// This method works for both calls and declarations.
272   const CGFunctionInfo &arrangeNullaryFunction();
273 
274   /// A builtin function is a freestanding function using the default
275   /// C conventions.
276   const CGFunctionInfo &
277   arrangeBuiltinFunctionDeclaration(QualType resultType,
278                                     const FunctionArgList &args);
279   const CGFunctionInfo &
280   arrangeBuiltinFunctionDeclaration(CanQualType resultType,
281                                     ArrayRef<CanQualType> argTypes);
282   const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
283                                                    const CallArgList &args);
284 
285   /// Objective-C methods are C functions with some implicit parameters.
286   const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
287   const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
288                                                         QualType receiverType);
289   const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
290                                                      QualType returnType,
291                                                      const CallArgList &args);
292 
293   /// Block invocation functions are C functions with an implicit parameter.
294   const CGFunctionInfo &arrangeBlockFunctionDeclaration(
295                                                  const FunctionProtoType *type,
296                                                  const FunctionArgList &args);
297   const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
298                                                  const FunctionType *type);
299 
300   /// C++ methods have some special rules and also have implicit parameters.
301   const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
302   const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
303                                                       StructorType Type);
304   const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
305                                                   const CXXConstructorDecl *D,
306                                                   CXXCtorType CtorKind,
307                                                   unsigned ExtraPrefixArgs,
308                                                   unsigned ExtraSuffixArgs,
309                                                   bool PassProtoArgs = true);
310 
311   const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
312                                              const FunctionProtoType *type,
313                                              RequiredArgs required,
314                                              unsigned numPrefixArgs);
315   const CGFunctionInfo &
316   arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD);
317   const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
318                                                  CXXCtorType CT);
319   const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
320                                              const FunctionProtoType *FTP,
321                                              const CXXMethodDecl *MD);
322 
323   /// "Arrange" the LLVM information for a call or type with the given
324   /// signature.  This is largely an internal method; other clients
325   /// should use one of the above routines, which ultimately defer to
326   /// this.
327   ///
328   /// \param argTypes - must all actually be canonical as params
329   const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
330                                                 bool instanceMethod,
331                                                 bool chainCall,
332                                                 ArrayRef<CanQualType> argTypes,
333                                                 FunctionType::ExtInfo info,
334                     ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
335                                                 RequiredArgs args);
336 
337   /// Compute a new LLVM record layout object for the given record.
338   CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
339                                       llvm::StructType *Ty);
340 
341   /// addRecordTypeName - Compute a name from the given record decl with an
342   /// optional suffix and name the given LLVM type using it.
343   void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
344                          StringRef suffix);
345 
346 
347 public:  // These are internal details of CGT that shouldn't be used externally.
348   /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
349   llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
350 
351   /// getExpandedTypes - Expand the type \arg Ty into the LLVM
352   /// argument types it would be passed as. See ABIArgInfo::Expand.
353   void getExpandedTypes(QualType Ty,
354                         SmallVectorImpl<llvm::Type *>::iterator &TI);
355 
356   /// IsZeroInitializable - Return whether a type can be
357   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
358   bool isZeroInitializable(QualType T);
359 
360   /// Check if the pointer type can be zero-initialized (in the C++ sense)
361   /// with an LLVM zeroinitializer.
362   bool isPointerZeroInitializable(QualType T);
363 
364   /// IsZeroInitializable - Return whether a record type can be
365   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
366   bool isZeroInitializable(const RecordDecl *RD);
367 
368   bool isRecordLayoutComplete(const Type *Ty) const;
noRecordsBeingLaidOut()369   bool noRecordsBeingLaidOut() const {
370     return RecordsBeingLaidOut.empty();
371   }
isRecordBeingLaidOut(const Type * Ty)372   bool isRecordBeingLaidOut(const Type *Ty) const {
373     return RecordsBeingLaidOut.count(Ty);
374   }
375 
376 };
377 
378 }  // end namespace CodeGen
379 }  // end namespace clang
380 
381 #endif
382