1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate information gleaned from the
10 // target register and register class definitions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenRegisters.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IntEqClasses.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/TableGen/Error.h"
29 #include "llvm/TableGen/Record.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <queue>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <utility>
40 #include <vector>
41
42 using namespace llvm;
43
44 #define DEBUG_TYPE "regalloc-emitter"
45
46 //===----------------------------------------------------------------------===//
47 // CodeGenSubRegIndex
48 //===----------------------------------------------------------------------===//
49
CodeGenSubRegIndex(Record * R,unsigned Enum)50 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
51 : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
52 Name = std::string(R->getName());
53 if (R->getValue("Namespace"))
54 Namespace = std::string(R->getValueAsString("Namespace"));
55 Size = R->getValueAsInt("Size");
56 Offset = R->getValueAsInt("Offset");
57 }
58
CodeGenSubRegIndex(StringRef N,StringRef Nspace,unsigned Enum)59 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
60 unsigned Enum)
61 : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
62 Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
63 Artificial(true) {}
64
getQualifiedName() const65 std::string CodeGenSubRegIndex::getQualifiedName() const {
66 std::string N = getNamespace();
67 if (!N.empty())
68 N += "::";
69 N += getName();
70 return N;
71 }
72
updateComponents(CodeGenRegBank & RegBank)73 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
74 if (!TheDef)
75 return;
76
77 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
78 if (!Comps.empty()) {
79 if (Comps.size() != 2)
80 PrintFatalError(TheDef->getLoc(),
81 "ComposedOf must have exactly two entries");
82 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
83 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
84 CodeGenSubRegIndex *X = A->addComposite(B, this);
85 if (X)
86 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
87 }
88
89 std::vector<Record*> Parts =
90 TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
91 if (!Parts.empty()) {
92 if (Parts.size() < 2)
93 PrintFatalError(TheDef->getLoc(),
94 "CoveredBySubRegs must have two or more entries");
95 SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
96 for (Record *Part : Parts)
97 IdxParts.push_back(RegBank.getSubRegIdx(Part));
98 setConcatenationOf(IdxParts);
99 }
100 }
101
computeLaneMask() const102 LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
103 // Already computed?
104 if (LaneMask.any())
105 return LaneMask;
106
107 // Recursion guard, shouldn't be required.
108 LaneMask = LaneBitmask::getAll();
109
110 // The lane mask is simply the union of all sub-indices.
111 LaneBitmask M;
112 for (const auto &C : Composed)
113 M |= C.second->computeLaneMask();
114 assert(M.any() && "Missing lane mask, sub-register cycle?");
115 LaneMask = M;
116 return LaneMask;
117 }
118
setConcatenationOf(ArrayRef<CodeGenSubRegIndex * > Parts)119 void CodeGenSubRegIndex::setConcatenationOf(
120 ArrayRef<CodeGenSubRegIndex*> Parts) {
121 if (ConcatenationOf.empty())
122 ConcatenationOf.assign(Parts.begin(), Parts.end());
123 else
124 assert(std::equal(Parts.begin(), Parts.end(),
125 ConcatenationOf.begin()) && "parts consistent");
126 }
127
computeConcatTransitiveClosure()128 void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
129 for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
130 I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
131 CodeGenSubRegIndex *SubIdx = *I;
132 SubIdx->computeConcatTransitiveClosure();
133 #ifndef NDEBUG
134 for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
135 assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
136 #endif
137
138 if (SubIdx->ConcatenationOf.empty()) {
139 ++I;
140 } else {
141 I = ConcatenationOf.erase(I);
142 I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
143 SubIdx->ConcatenationOf.end());
144 I += SubIdx->ConcatenationOf.size();
145 }
146 }
147 }
148
149 //===----------------------------------------------------------------------===//
150 // CodeGenRegister
151 //===----------------------------------------------------------------------===//
152
CodeGenRegister(Record * R,unsigned Enum)153 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
154 : TheDef(R), EnumValue(Enum),
155 CostPerUse(R->getValueAsListOfInts("CostPerUse")),
156 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
157 HasDisjunctSubRegs(false), SubRegsComplete(false),
158 SuperRegsComplete(false), TopoSig(~0u) {
159 Artificial = R->getValueAsBit("isArtificial");
160 }
161
buildObjectGraph(CodeGenRegBank & RegBank)162 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
163 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
164 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
165
166 if (SRIs.size() != SRs.size())
167 PrintFatalError(TheDef->getLoc(),
168 "SubRegs and SubRegIndices must have the same size");
169
170 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
171 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
172 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
173 }
174
175 // Also compute leading super-registers. Each register has a list of
176 // covered-by-subregs super-registers where it appears as the first explicit
177 // sub-register.
178 //
179 // This is used by computeSecondarySubRegs() to find candidates.
180 if (CoveredBySubRegs && !ExplicitSubRegs.empty())
181 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
182
183 // Add ad hoc alias links. This is a symmetric relationship between two
184 // registers, so build a symmetric graph by adding links in both ends.
185 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
186 for (Record *Alias : Aliases) {
187 CodeGenRegister *Reg = RegBank.getReg(Alias);
188 ExplicitAliases.push_back(Reg);
189 Reg->ExplicitAliases.push_back(this);
190 }
191 }
192
getName() const193 StringRef CodeGenRegister::getName() const {
194 assert(TheDef && "no def");
195 return TheDef->getName();
196 }
197
198 namespace {
199
200 // Iterate over all register units in a set of registers.
201 class RegUnitIterator {
202 CodeGenRegister::Vec::const_iterator RegI, RegE;
203 CodeGenRegister::RegUnitList::iterator UnitI, UnitE;
204 static CodeGenRegister::RegUnitList Sentinel;
205
206 public:
RegUnitIterator(const CodeGenRegister::Vec & Regs)207 RegUnitIterator(const CodeGenRegister::Vec &Regs):
208 RegI(Regs.begin()), RegE(Regs.end()) {
209
210 if (RegI == RegE) {
211 UnitI = Sentinel.end();
212 UnitE = Sentinel.end();
213 } else {
214 UnitI = (*RegI)->getRegUnits().begin();
215 UnitE = (*RegI)->getRegUnits().end();
216 advance();
217 }
218 }
219
isValid() const220 bool isValid() const { return UnitI != UnitE; }
221
operator *() const222 unsigned operator* () const { assert(isValid()); return *UnitI; }
223
getReg() const224 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
225
226 /// Preincrement. Move to the next unit.
operator ++()227 void operator++() {
228 assert(isValid() && "Cannot advance beyond the last operand");
229 ++UnitI;
230 advance();
231 }
232
233 protected:
advance()234 void advance() {
235 while (UnitI == UnitE) {
236 if (++RegI == RegE)
237 break;
238 UnitI = (*RegI)->getRegUnits().begin();
239 UnitE = (*RegI)->getRegUnits().end();
240 }
241 }
242 };
243
244 CodeGenRegister::RegUnitList RegUnitIterator::Sentinel;
245
246 } // end anonymous namespace
247
248 // Return true of this unit appears in RegUnits.
hasRegUnit(CodeGenRegister::RegUnitList & RegUnits,unsigned Unit)249 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
250 return RegUnits.test(Unit);
251 }
252
253 // Inherit register units from subregisters.
254 // Return true if the RegUnits changed.
inheritRegUnits(CodeGenRegBank & RegBank)255 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
256 bool changed = false;
257 for (const auto &SubReg : SubRegs) {
258 CodeGenRegister *SR = SubReg.second;
259 // Merge the subregister's units into this register's RegUnits.
260 changed |= (RegUnits |= SR->RegUnits);
261 }
262
263 return changed;
264 }
265
266 const CodeGenRegister::SubRegMap &
computeSubRegs(CodeGenRegBank & RegBank)267 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
268 // Only compute this map once.
269 if (SubRegsComplete)
270 return SubRegs;
271 SubRegsComplete = true;
272
273 HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;
274
275 // First insert the explicit subregs and make sure they are fully indexed.
276 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
277 CodeGenRegister *SR = ExplicitSubRegs[i];
278 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
279 if (!SR->Artificial)
280 Idx->Artificial = false;
281 if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
282 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
283 " appears twice in Register " + getName());
284 // Map explicit sub-registers first, so the names take precedence.
285 // The inherited sub-registers are mapped below.
286 SubReg2Idx.insert(std::make_pair(SR, Idx));
287 }
288
289 // Keep track of inherited subregs and how they can be reached.
290 SmallPtrSet<CodeGenRegister*, 8> Orphans;
291
292 // Clone inherited subregs and place duplicate entries in Orphans.
293 // Here the order is important - earlier subregs take precedence.
294 for (CodeGenRegister *ESR : ExplicitSubRegs) {
295 const SubRegMap &Map = ESR->computeSubRegs(RegBank);
296 HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;
297
298 for (const auto &SR : Map) {
299 if (!SubRegs.insert(SR).second)
300 Orphans.insert(SR.second);
301 }
302 }
303
304 // Expand any composed subreg indices.
305 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
306 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process
307 // expanded subreg indices recursively.
308 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
309 for (unsigned i = 0; i != Indices.size(); ++i) {
310 CodeGenSubRegIndex *Idx = Indices[i];
311 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
312 CodeGenRegister *SR = SubRegs[Idx];
313 const SubRegMap &Map = SR->computeSubRegs(RegBank);
314
315 // Look at the possible compositions of Idx.
316 // They may not all be supported by SR.
317 for (auto Comp : Comps) {
318 SubRegMap::const_iterator SRI = Map.find(Comp.first);
319 if (SRI == Map.end())
320 continue; // Idx + I->first doesn't exist in SR.
321 // Add I->second as a name for the subreg SRI->second, assuming it is
322 // orphaned, and the name isn't already used for something else.
323 if (SubRegs.count(Comp.second) || !Orphans.erase(SRI->second))
324 continue;
325 // We found a new name for the orphaned sub-register.
326 SubRegs.insert(std::make_pair(Comp.second, SRI->second));
327 Indices.push_back(Comp.second);
328 }
329 }
330
331 // Now Orphans contains the inherited subregisters without a direct index.
332 // Create inferred indexes for all missing entries.
333 // Work backwards in the Indices vector in order to compose subregs bottom-up.
334 // Consider this subreg sequence:
335 //
336 // qsub_1 -> dsub_0 -> ssub_0
337 //
338 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
339 // can be reached in two different ways:
340 //
341 // qsub_1 -> ssub_0
342 // dsub_2 -> ssub_0
343 //
344 // We pick the latter composition because another register may have [dsub_0,
345 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The
346 // dsub_2 -> ssub_0 composition can be shared.
347 while (!Indices.empty() && !Orphans.empty()) {
348 CodeGenSubRegIndex *Idx = Indices.pop_back_val();
349 CodeGenRegister *SR = SubRegs[Idx];
350 const SubRegMap &Map = SR->computeSubRegs(RegBank);
351 for (const auto &SubReg : Map)
352 if (Orphans.erase(SubReg.second))
353 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
354 }
355
356 // Compute the inverse SubReg -> Idx map.
357 for (const auto &SubReg : SubRegs) {
358 if (SubReg.second == this) {
359 ArrayRef<SMLoc> Loc;
360 if (TheDef)
361 Loc = TheDef->getLoc();
362 PrintFatalError(Loc, "Register " + getName() +
363 " has itself as a sub-register");
364 }
365
366 // Compute AllSuperRegsCovered.
367 if (!CoveredBySubRegs)
368 SubReg.first->AllSuperRegsCovered = false;
369
370 // Ensure that every sub-register has a unique name.
371 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
372 SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
373 if (Ins->second == SubReg.first)
374 continue;
375 // Trouble: Two different names for SubReg.second.
376 ArrayRef<SMLoc> Loc;
377 if (TheDef)
378 Loc = TheDef->getLoc();
379 PrintFatalError(Loc, "Sub-register can't have two names: " +
380 SubReg.second->getName() + " available as " +
381 SubReg.first->getName() + " and " + Ins->second->getName());
382 }
383
384 // Derive possible names for sub-register concatenations from any explicit
385 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
386 // that getConcatSubRegIndex() won't invent any concatenated indices that the
387 // user already specified.
388 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
389 CodeGenRegister *SR = ExplicitSubRegs[i];
390 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
391 SR->Artificial)
392 continue;
393
394 // SR is composed of multiple sub-regs. Find their names in this register.
395 SmallVector<CodeGenSubRegIndex*, 8> Parts;
396 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
397 CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
398 if (!I.Artificial)
399 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
400 }
401
402 // Offer this as an existing spelling for the concatenation of Parts.
403 CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
404 Idx.setConcatenationOf(Parts);
405 }
406
407 // Initialize RegUnitList. Because getSubRegs is called recursively, this
408 // processes the register hierarchy in postorder.
409 //
410 // Inherit all sub-register units. It is good enough to look at the explicit
411 // sub-registers, the other registers won't contribute any more units.
412 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
413 CodeGenRegister *SR = ExplicitSubRegs[i];
414 RegUnits |= SR->RegUnits;
415 }
416
417 // Absent any ad hoc aliasing, we create one register unit per leaf register.
418 // These units correspond to the maximal cliques in the register overlap
419 // graph which is optimal.
420 //
421 // When there is ad hoc aliasing, we simply create one unit per edge in the
422 // undirected ad hoc aliasing graph. Technically, we could do better by
423 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
424 // are extremely rare anyway (I've never seen one), so we don't bother with
425 // the added complexity.
426 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
427 CodeGenRegister *AR = ExplicitAliases[i];
428 // Only visit each edge once.
429 if (AR->SubRegsComplete)
430 continue;
431 // Create a RegUnit representing this alias edge, and add it to both
432 // registers.
433 unsigned Unit = RegBank.newRegUnit(this, AR);
434 RegUnits.set(Unit);
435 AR->RegUnits.set(Unit);
436 }
437
438 // Finally, create units for leaf registers without ad hoc aliases. Note that
439 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
440 // necessary. This means the aliasing leaf registers can share a single unit.
441 if (RegUnits.empty())
442 RegUnits.set(RegBank.newRegUnit(this));
443
444 // We have now computed the native register units. More may be adopted later
445 // for balancing purposes.
446 NativeRegUnits = RegUnits;
447
448 return SubRegs;
449 }
450
451 // In a register that is covered by its sub-registers, try to find redundant
452 // sub-registers. For example:
453 //
454 // QQ0 = {Q0, Q1}
455 // Q0 = {D0, D1}
456 // Q1 = {D2, D3}
457 //
458 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
459 // the register definition.
460 //
461 // The explicitly specified registers form a tree. This function discovers
462 // sub-register relationships that would force a DAG.
463 //
computeSecondarySubRegs(CodeGenRegBank & RegBank)464 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
465 SmallVector<SubRegMap::value_type, 8> NewSubRegs;
466
467 std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
468 for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
469 SubRegQueue.push(P);
470
471 // Look at the leading super-registers of each sub-register. Those are the
472 // candidates for new sub-registers, assuming they are fully contained in
473 // this register.
474 while (!SubRegQueue.empty()) {
475 CodeGenSubRegIndex *SubRegIdx;
476 const CodeGenRegister *SubReg;
477 std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
478 SubRegQueue.pop();
479
480 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
481 for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
482 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
483 // Already got this sub-register?
484 if (Cand == this || getSubRegIndex(Cand))
485 continue;
486 // Check if each component of Cand is already a sub-register.
487 assert(!Cand->ExplicitSubRegs.empty() &&
488 "Super-register has no sub-registers");
489 if (Cand->ExplicitSubRegs.size() == 1)
490 continue;
491 SmallVector<CodeGenSubRegIndex*, 8> Parts;
492 // We know that the first component is (SubRegIdx,SubReg). However we
493 // may still need to split it into smaller subregister parts.
494 assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
495 assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
496 for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
497 if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
498 if (SubRegIdx->ConcatenationOf.empty())
499 Parts.push_back(SubRegIdx);
500 else
501 append_range(Parts, SubRegIdx->ConcatenationOf);
502 } else {
503 // Sub-register doesn't exist.
504 Parts.clear();
505 break;
506 }
507 }
508 // There is nothing to do if some Cand sub-register is not part of this
509 // register.
510 if (Parts.empty())
511 continue;
512
513 // Each part of Cand is a sub-register of this. Make the full Cand also
514 // a sub-register with a concatenated sub-register index.
515 CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
516 std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
517 std::make_pair(Concat, Cand);
518
519 if (!SubRegs.insert(NewSubReg).second)
520 continue;
521
522 // We inserted a new subregister.
523 NewSubRegs.push_back(NewSubReg);
524 SubRegQueue.push(NewSubReg);
525 SubReg2Idx.insert(std::make_pair(Cand, Concat));
526 }
527 }
528
529 // Create sub-register index composition maps for the synthesized indices.
530 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
531 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
532 CodeGenRegister *NewSubReg = NewSubRegs[i].second;
533 for (auto SubReg : NewSubReg->SubRegs) {
534 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SubReg.second);
535 if (!SubIdx)
536 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
537 SubReg.second->getName() +
538 " in " + getName());
539 NewIdx->addComposite(SubReg.first, SubIdx);
540 }
541 }
542 }
543
computeSuperRegs(CodeGenRegBank & RegBank)544 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
545 // Only visit each register once.
546 if (SuperRegsComplete)
547 return;
548 SuperRegsComplete = true;
549
550 // Make sure all sub-registers have been visited first, so the super-reg
551 // lists will be topologically ordered.
552 for (auto SubReg : SubRegs)
553 SubReg.second->computeSuperRegs(RegBank);
554
555 // Now add this as a super-register on all sub-registers.
556 // Also compute the TopoSigId in post-order.
557 TopoSigId Id;
558 for (auto SubReg : SubRegs) {
559 // Topological signature computed from SubIdx, TopoId(SubReg).
560 // Loops and idempotent indices have TopoSig = ~0u.
561 Id.push_back(SubReg.first->EnumValue);
562 Id.push_back(SubReg.second->TopoSig);
563
564 // Don't add duplicate entries.
565 if (!SubReg.second->SuperRegs.empty() &&
566 SubReg.second->SuperRegs.back() == this)
567 continue;
568 SubReg.second->SuperRegs.push_back(this);
569 }
570 TopoSig = RegBank.getTopoSig(Id);
571 }
572
573 void
addSubRegsPreOrder(SetVector<const CodeGenRegister * > & OSet,CodeGenRegBank & RegBank) const574 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
575 CodeGenRegBank &RegBank) const {
576 assert(SubRegsComplete && "Must precompute sub-registers");
577 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
578 CodeGenRegister *SR = ExplicitSubRegs[i];
579 if (OSet.insert(SR))
580 SR->addSubRegsPreOrder(OSet, RegBank);
581 }
582 // Add any secondary sub-registers that weren't part of the explicit tree.
583 for (auto SubReg : SubRegs)
584 OSet.insert(SubReg.second);
585 }
586
587 // Get the sum of this register's unit weights.
getWeight(const CodeGenRegBank & RegBank) const588 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
589 unsigned Weight = 0;
590 for (unsigned RegUnit : RegUnits) {
591 Weight += RegBank.getRegUnit(RegUnit).Weight;
592 }
593 return Weight;
594 }
595
596 //===----------------------------------------------------------------------===//
597 // RegisterTuples
598 //===----------------------------------------------------------------------===//
599
600 // A RegisterTuples def is used to generate pseudo-registers from lists of
601 // sub-registers. We provide a SetTheory expander class that returns the new
602 // registers.
603 namespace {
604
605 struct TupleExpander : SetTheory::Expander {
606 // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
607 // the synthesized definitions for their lifetime.
608 std::vector<std::unique_ptr<Record>> &SynthDefs;
609
TupleExpander__anoncff4b8180211::TupleExpander610 TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
611 : SynthDefs(SynthDefs) {}
612
expand__anoncff4b8180211::TupleExpander613 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
614 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
615 unsigned Dim = Indices.size();
616 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
617 if (Dim != SubRegs->size())
618 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
619 if (Dim < 2)
620 PrintFatalError(Def->getLoc(),
621 "Tuples must have at least 2 sub-registers");
622
623 // Evaluate the sub-register lists to be zipped.
624 unsigned Length = ~0u;
625 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
626 for (unsigned i = 0; i != Dim; ++i) {
627 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
628 Length = std::min(Length, unsigned(Lists[i].size()));
629 }
630
631 if (Length == 0)
632 return;
633
634 // Precompute some types.
635 Record *RegisterCl = Def->getRecords().getClass("Register");
636 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
637 std::vector<StringRef> RegNames =
638 Def->getValueAsListOfStrings("RegAsmNames");
639
640 // Zip them up.
641 RecordKeeper &RK = Def->getRecords();
642 for (unsigned n = 0; n != Length; ++n) {
643 std::string Name;
644 Record *Proto = Lists[0][n];
645 std::vector<Init*> Tuple;
646 for (unsigned i = 0; i != Dim; ++i) {
647 Record *Reg = Lists[i][n];
648 if (i) Name += '_';
649 Name += Reg->getName();
650 Tuple.push_back(DefInit::get(Reg));
651 }
652
653 // Take the cost list of the first register in the tuple.
654 ListInit *CostList = Proto->getValueAsListInit("CostPerUse");
655 SmallVector<Init *, 2> CostPerUse;
656 CostPerUse.insert(CostPerUse.end(), CostList->begin(), CostList->end());
657
658 StringInit *AsmName = StringInit::get(RK, "");
659 if (!RegNames.empty()) {
660 if (RegNames.size() <= n)
661 PrintFatalError(Def->getLoc(),
662 "Register tuple definition missing name for '" +
663 Name + "'.");
664 AsmName = StringInit::get(RK, RegNames[n]);
665 }
666
667 // Create a new Record representing the synthesized register. This record
668 // is only for consumption by CodeGenRegister, it is not added to the
669 // RecordKeeper.
670 SynthDefs.emplace_back(
671 std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
672 Record *NewReg = SynthDefs.back().get();
673 Elts.insert(NewReg);
674
675 // Copy Proto super-classes.
676 ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
677 for (const auto &SuperPair : Supers)
678 NewReg->addSuperClass(SuperPair.first, SuperPair.second);
679
680 // Copy Proto fields.
681 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
682 RecordVal RV = Proto->getValues()[i];
683
684 // Skip existing fields, like NAME.
685 if (NewReg->getValue(RV.getNameInit()))
686 continue;
687
688 StringRef Field = RV.getName();
689
690 // Replace the sub-register list with Tuple.
691 if (Field == "SubRegs")
692 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
693
694 if (Field == "AsmName")
695 RV.setValue(AsmName);
696
697 // CostPerUse is aggregated from all Tuple members.
698 if (Field == "CostPerUse")
699 RV.setValue(ListInit::get(CostPerUse, CostList->getElementType()));
700
701 // Composite registers are always covered by sub-registers.
702 if (Field == "CoveredBySubRegs")
703 RV.setValue(BitInit::get(RK, true));
704
705 // Copy fields from the RegisterTuples def.
706 if (Field == "SubRegIndices" ||
707 Field == "CompositeIndices") {
708 NewReg->addValue(*Def->getValue(Field));
709 continue;
710 }
711
712 // Some fields get their default uninitialized value.
713 if (Field == "DwarfNumbers" ||
714 Field == "DwarfAlias" ||
715 Field == "Aliases") {
716 if (const RecordVal *DefRV = RegisterCl->getValue(Field))
717 NewReg->addValue(*DefRV);
718 continue;
719 }
720
721 // Everything else is copied from Proto.
722 NewReg->addValue(RV);
723 }
724 }
725 }
726 };
727
728 } // end anonymous namespace
729
730 //===----------------------------------------------------------------------===//
731 // CodeGenRegisterClass
732 //===----------------------------------------------------------------------===//
733
sortAndUniqueRegisters(CodeGenRegister::Vec & M)734 static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
735 llvm::sort(M, deref<std::less<>>());
736 M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
737 }
738
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)739 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
740 : TheDef(R), Name(std::string(R->getName())),
741 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), TSFlags(0) {
742 GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
743 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
744 if (TypeList.empty())
745 PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
746 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
747 Record *Type = TypeList[i];
748 if (!Type->isSubClassOf("ValueType"))
749 PrintFatalError(R->getLoc(),
750 "RegTypes list member '" + Type->getName() +
751 "' does not derive from the ValueType class!");
752 VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
753 }
754
755 // Allocation order 0 is the full set. AltOrders provides others.
756 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
757 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
758 Orders.resize(1 + AltOrders->size());
759
760 // Default allocation order always contains all registers.
761 Artificial = true;
762 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
763 Orders[0].push_back((*Elements)[i]);
764 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
765 Members.push_back(Reg);
766 Artificial &= Reg->Artificial;
767 TopoSigs.set(Reg->getTopoSig());
768 }
769 sortAndUniqueRegisters(Members);
770
771 // Alternative allocation orders may be subsets.
772 SetTheory::RecSet Order;
773 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
774 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
775 Orders[1 + i].append(Order.begin(), Order.end());
776 // Verify that all altorder members are regclass members.
777 while (!Order.empty()) {
778 CodeGenRegister *Reg = RegBank.getReg(Order.back());
779 Order.pop_back();
780 if (!contains(Reg))
781 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
782 " is not a class member");
783 }
784 }
785
786 Namespace = R->getValueAsString("Namespace");
787
788 if (const RecordVal *RV = R->getValue("RegInfos"))
789 if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
790 RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
791 unsigned Size = R->getValueAsInt("Size");
792 assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
793 "Impossible to determine register size");
794 if (!RSI.hasDefault()) {
795 RegSizeInfo RI;
796 RI.RegSize = RI.SpillSize = Size ? Size
797 : VTs[0].getSimple().getSizeInBits();
798 RI.SpillAlignment = R->getValueAsInt("Alignment");
799 RSI.insertRegSizeForMode(DefaultMode, RI);
800 }
801
802 CopyCost = R->getValueAsInt("CopyCost");
803 Allocatable = R->getValueAsBit("isAllocatable");
804 AltOrderSelect = R->getValueAsString("AltOrderSelect");
805 int AllocationPriority = R->getValueAsInt("AllocationPriority");
806 if (AllocationPriority < 0 || AllocationPriority > 63)
807 PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
808 this->AllocationPriority = AllocationPriority;
809
810 BitsInit *TSF = R->getValueAsBitsInit("TSFlags");
811 for (unsigned I = 0, E = TSF->getNumBits(); I != E; ++I) {
812 BitInit *Bit = cast<BitInit>(TSF->getBit(I));
813 TSFlags |= uint8_t(Bit->getValue()) << I;
814 }
815 }
816
817 // Create an inferred register class that was missing from the .td files.
818 // Most properties will be inherited from the closest super-class after the
819 // class structure has been computed.
CodeGenRegisterClass(CodeGenRegBank & RegBank,StringRef Name,Key Props)820 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
821 StringRef Name, Key Props)
822 : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
823 TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
824 CopyCost(0), Allocatable(true), AllocationPriority(0), TSFlags(0) {
825 Artificial = true;
826 GeneratePressureSet = false;
827 for (const auto R : Members) {
828 TopoSigs.set(R->getTopoSig());
829 Artificial &= R->Artificial;
830 }
831 }
832
833 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)834 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
835 assert(!getDef() && "Only synthesized classes can inherit properties");
836 assert(!SuperClasses.empty() && "Synthesized class without super class");
837
838 // The last super-class is the smallest one.
839 CodeGenRegisterClass &Super = *SuperClasses.back();
840
841 // Most properties are copied directly.
842 // Exceptions are members, size, and alignment
843 Namespace = Super.Namespace;
844 VTs = Super.VTs;
845 CopyCost = Super.CopyCost;
846 // Check for allocatable superclasses.
847 Allocatable = any_of(SuperClasses, [&](const CodeGenRegisterClass *S) {
848 return S->Allocatable;
849 });
850 AltOrderSelect = Super.AltOrderSelect;
851 AllocationPriority = Super.AllocationPriority;
852 TSFlags = Super.TSFlags;
853 GeneratePressureSet |= Super.GeneratePressureSet;
854
855 // Copy all allocation orders, filter out foreign registers from the larger
856 // super-class.
857 Orders.resize(Super.Orders.size());
858 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
859 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
860 if (contains(RegBank.getReg(Super.Orders[i][j])))
861 Orders[i].push_back(Super.Orders[i][j]);
862 }
863
hasType(const ValueTypeByHwMode & VT) const864 bool CodeGenRegisterClass::hasType(const ValueTypeByHwMode &VT) const {
865 if (llvm::is_contained(VTs, VT))
866 return true;
867
868 // If VT is not identical to any of this class's types, but is a simple
869 // type, check if any of the types for this class contain it under some
870 // mode.
871 // The motivating example came from RISCV, where (likely because of being
872 // guarded by "64-bit" predicate), the type of X5 was {*:[i64]}, but the
873 // type in GRC was {*:[i32], m1:[i64]}.
874 if (VT.isSimple()) {
875 MVT T = VT.getSimple();
876 for (const ValueTypeByHwMode &OurVT : VTs) {
877 if (llvm::count_if(OurVT, [T](auto &&P) { return P.second == T; }))
878 return true;
879 }
880 }
881 return false;
882 }
883
contains(const CodeGenRegister * Reg) const884 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
885 return std::binary_search(Members.begin(), Members.end(), Reg,
886 deref<std::less<>>());
887 }
888
getWeight(const CodeGenRegBank & RegBank) const889 unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
890 if (TheDef && !TheDef->isValueUnset("Weight"))
891 return TheDef->getValueAsInt("Weight");
892
893 if (Members.empty() || Artificial)
894 return 0;
895
896 return (*Members.begin())->getWeight(RegBank);
897 }
898
899 namespace llvm {
900
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)901 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
902 OS << "{ " << K.RSI;
903 for (const auto R : *K.Members)
904 OS << ", " << R->getName();
905 return OS << " }";
906 }
907
908 } // end namespace llvm
909
910 // This is a simple lexicographical order that can be used to search for sets.
911 // It is not the same as the topological order provided by TopoOrderRC.
912 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const913 operator<(const CodeGenRegisterClass::Key &B) const {
914 assert(Members && B.Members);
915 return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
916 }
917
918 // Returns true if RC is a strict subclass.
919 // RC is a sub-class of this class if it is a valid replacement for any
920 // instruction operand where a register of this classis required. It must
921 // satisfy these conditions:
922 //
923 // 1. All RC registers are also in this.
924 // 2. The RC spill size must not be smaller than our spill size.
925 // 3. RC spill alignment must be compatible with ours.
926 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)927 static bool testSubClass(const CodeGenRegisterClass *A,
928 const CodeGenRegisterClass *B) {
929 return A->RSI.isSubClassOf(B->RSI) &&
930 std::includes(A->getMembers().begin(), A->getMembers().end(),
931 B->getMembers().begin(), B->getMembers().end(),
932 deref<std::less<>>());
933 }
934
935 /// Sorting predicate for register classes. This provides a topological
936 /// ordering that arranges all register classes before their sub-classes.
937 ///
938 /// Register classes with the same registers, spill size, and alignment form a
939 /// clique. They will be ordered alphabetically.
940 ///
TopoOrderRC(const CodeGenRegisterClass & PA,const CodeGenRegisterClass & PB)941 static bool TopoOrderRC(const CodeGenRegisterClass &PA,
942 const CodeGenRegisterClass &PB) {
943 auto *A = &PA;
944 auto *B = &PB;
945 if (A == B)
946 return false;
947
948 if (A->RSI < B->RSI)
949 return true;
950 if (A->RSI != B->RSI)
951 return false;
952
953 // Order by descending set size. Note that the classes' allocation order may
954 // not have been computed yet. The Members set is always vaild.
955 if (A->getMembers().size() > B->getMembers().size())
956 return true;
957 if (A->getMembers().size() < B->getMembers().size())
958 return false;
959
960 // Finally order by name as a tie breaker.
961 return StringRef(A->getName()) < B->getName();
962 }
963
getQualifiedName() const964 std::string CodeGenRegisterClass::getQualifiedName() const {
965 if (Namespace.empty())
966 return getName();
967 else
968 return (Namespace + "::" + getName()).str();
969 }
970
971 // Compute sub-classes of all register classes.
972 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)973 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
974 auto &RegClasses = RegBank.getRegClasses();
975
976 // Visit backwards so sub-classes are seen first.
977 for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
978 CodeGenRegisterClass &RC = *I;
979 RC.SubClasses.resize(RegClasses.size());
980 RC.SubClasses.set(RC.EnumValue);
981 if (RC.Artificial)
982 continue;
983
984 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
985 for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
986 CodeGenRegisterClass &SubRC = *I2;
987 if (RC.SubClasses.test(SubRC.EnumValue))
988 continue;
989 if (!testSubClass(&RC, &SubRC))
990 continue;
991 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
992 // check them again.
993 RC.SubClasses |= SubRC.SubClasses;
994 }
995
996 // Sweep up missed clique members. They will be immediately preceding RC.
997 for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
998 RC.SubClasses.set(I2->EnumValue);
999 }
1000
1001 // Compute the SuperClasses lists from the SubClasses vectors.
1002 for (auto &RC : RegClasses) {
1003 const BitVector &SC = RC.getSubClasses();
1004 auto I = RegClasses.begin();
1005 for (int s = 0, next_s = SC.find_first(); next_s != -1;
1006 next_s = SC.find_next(s)) {
1007 std::advance(I, next_s - s);
1008 s = next_s;
1009 if (&*I == &RC)
1010 continue;
1011 I->SuperClasses.push_back(&RC);
1012 }
1013 }
1014
1015 // With the class hierarchy in place, let synthesized register classes inherit
1016 // properties from their closest super-class. The iteration order here can
1017 // propagate properties down multiple levels.
1018 for (auto &RC : RegClasses)
1019 if (!RC.getDef())
1020 RC.inheritProperties(RegBank);
1021 }
1022
1023 Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
getMatchingSubClassWithSubRegs(CodeGenRegBank & RegBank,const CodeGenSubRegIndex * SubIdx) const1024 CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
1025 CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
1026 auto SizeOrder = [this](const CodeGenRegisterClass *A,
1027 const CodeGenRegisterClass *B) {
1028 // If there are multiple, identical register classes, prefer the original
1029 // register class.
1030 if (A == B)
1031 return false;
1032 if (A->getMembers().size() == B->getMembers().size())
1033 return A == this;
1034 return A->getMembers().size() > B->getMembers().size();
1035 };
1036
1037 auto &RegClasses = RegBank.getRegClasses();
1038
1039 // Find all the subclasses of this one that fully support the sub-register
1040 // index and order them by size. BiggestSuperRC should always be first.
1041 CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
1042 if (!BiggestSuperRegRC)
1043 return None;
1044 BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
1045 std::vector<CodeGenRegisterClass *> SuperRegRCs;
1046 for (auto &RC : RegClasses)
1047 if (SuperRegRCsBV[RC.EnumValue])
1048 SuperRegRCs.emplace_back(&RC);
1049 llvm::stable_sort(SuperRegRCs, SizeOrder);
1050
1051 assert(SuperRegRCs.front() == BiggestSuperRegRC &&
1052 "Biggest class wasn't first");
1053
1054 // Find all the subreg classes and order them by size too.
1055 std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
1056 for (auto &RC: RegClasses) {
1057 BitVector SuperRegClassesBV(RegClasses.size());
1058 RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
1059 if (SuperRegClassesBV.any())
1060 SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
1061 }
1062 llvm::sort(SuperRegClasses,
1063 [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
1064 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
1065 return SizeOrder(A.first, B.first);
1066 });
1067
1068 // Find the biggest subclass and subreg class such that R:subidx is in the
1069 // subreg class for all R in subclass.
1070 //
1071 // For example:
1072 // All registers in X86's GR64 have a sub_32bit subregister but no class
1073 // exists that contains all the 32-bit subregisters because GR64 contains RIP
1074 // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
1075 // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
1076 // having excluded RIP, we are able to find a SubRegRC (GR32).
1077 CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
1078 CodeGenRegisterClass *SubRegRC = nullptr;
1079 for (auto *SuperRegRC : SuperRegRCs) {
1080 for (const auto &SuperRegClassPair : SuperRegClasses) {
1081 const BitVector &SuperRegClassBV = SuperRegClassPair.second;
1082 if (SuperRegClassBV[SuperRegRC->EnumValue]) {
1083 SubRegRC = SuperRegClassPair.first;
1084 ChosenSuperRegClass = SuperRegRC;
1085
1086 // If SubRegRC is bigger than SuperRegRC then there are members of
1087 // SubRegRC that don't have super registers via SubIdx. Keep looking to
1088 // find a better fit and fall back on this one if there isn't one.
1089 //
1090 // This is intended to prevent X86 from making odd choices such as
1091 // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
1092 // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
1093 // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
1094 // mapping.
1095 if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
1096 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1097 }
1098 }
1099
1100 // If we found a fit but it wasn't quite ideal because SubRegRC had excess
1101 // registers, then we're done.
1102 if (ChosenSuperRegClass)
1103 return std::make_pair(ChosenSuperRegClass, SubRegRC);
1104 }
1105
1106 return None;
1107 }
1108
getSuperRegClasses(const CodeGenSubRegIndex * SubIdx,BitVector & Out) const1109 void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
1110 BitVector &Out) const {
1111 auto FindI = SuperRegClasses.find(SubIdx);
1112 if (FindI == SuperRegClasses.end())
1113 return;
1114 for (CodeGenRegisterClass *RC : FindI->second)
1115 Out.set(RC->EnumValue);
1116 }
1117
1118 // Populate a unique sorted list of units from a register set.
buildRegUnitSet(const CodeGenRegBank & RegBank,std::vector<unsigned> & RegUnits) const1119 void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
1120 std::vector<unsigned> &RegUnits) const {
1121 std::vector<unsigned> TmpUnits;
1122 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
1123 const RegUnit &RU = RegBank.getRegUnit(*UnitI);
1124 if (!RU.Artificial)
1125 TmpUnits.push_back(*UnitI);
1126 }
1127 llvm::sort(TmpUnits);
1128 std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
1129 std::back_inserter(RegUnits));
1130 }
1131
1132 //===----------------------------------------------------------------------===//
1133 // CodeGenRegisterCategory
1134 //===----------------------------------------------------------------------===//
1135
CodeGenRegisterCategory(CodeGenRegBank & RegBank,Record * R)1136 CodeGenRegisterCategory::CodeGenRegisterCategory(CodeGenRegBank &RegBank,
1137 Record *R)
1138 : TheDef(R), Name(std::string(R->getName())) {
1139 for (Record *RegClass : R->getValueAsListOfDefs("Classes"))
1140 Classes.push_back(RegBank.getRegClass(RegClass));
1141 }
1142
1143 //===----------------------------------------------------------------------===//
1144 // CodeGenRegBank
1145 //===----------------------------------------------------------------------===//
1146
CodeGenRegBank(RecordKeeper & Records,const CodeGenHwModes & Modes)1147 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
1148 const CodeGenHwModes &Modes) : CGH(Modes) {
1149 // Configure register Sets to understand register classes and tuples.
1150 Sets.addFieldExpander("RegisterClass", "MemberList");
1151 Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
1152 Sets.addExpander("RegisterTuples",
1153 std::make_unique<TupleExpander>(SynthDefs));
1154
1155 // Read in the user-defined (named) sub-register indices.
1156 // More indices will be synthesized later.
1157 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
1158 llvm::sort(SRIs, LessRecord());
1159 for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
1160 getSubRegIdx(SRIs[i]);
1161 // Build composite maps from ComposedOf fields.
1162 for (auto &Idx : SubRegIndices)
1163 Idx.updateComponents(*this);
1164
1165 // Read in the register definitions.
1166 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
1167 llvm::sort(Regs, LessRecordRegister());
1168 // Assign the enumeration values.
1169 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
1170 getReg(Regs[i]);
1171
1172 // Expand tuples and number the new registers.
1173 std::vector<Record*> Tups =
1174 Records.getAllDerivedDefinitions("RegisterTuples");
1175
1176 for (Record *R : Tups) {
1177 std::vector<Record *> TupRegs = *Sets.expand(R);
1178 llvm::sort(TupRegs, LessRecordRegister());
1179 for (Record *RC : TupRegs)
1180 getReg(RC);
1181 }
1182
1183 // Now all the registers are known. Build the object graph of explicit
1184 // register-register references.
1185 for (auto &Reg : Registers)
1186 Reg.buildObjectGraph(*this);
1187
1188 // Compute register name map.
1189 for (auto &Reg : Registers)
1190 // FIXME: This could just be RegistersByName[name] = register, except that
1191 // causes some failures in MIPS - perhaps they have duplicate register name
1192 // entries? (or maybe there's a reason for it - I don't know much about this
1193 // code, just drive-by refactoring)
1194 RegistersByName.insert(
1195 std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));
1196
1197 // Precompute all sub-register maps.
1198 // This will create Composite entries for all inferred sub-register indices.
1199 for (auto &Reg : Registers)
1200 Reg.computeSubRegs(*this);
1201
1202 // Compute transitive closure of subregister index ConcatenationOf vectors
1203 // and initialize ConcatIdx map.
1204 for (CodeGenSubRegIndex &SRI : SubRegIndices) {
1205 SRI.computeConcatTransitiveClosure();
1206 if (!SRI.ConcatenationOf.empty())
1207 ConcatIdx.insert(std::make_pair(
1208 SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
1209 SRI.ConcatenationOf.end()), &SRI));
1210 }
1211
1212 // Infer even more sub-registers by combining leading super-registers.
1213 for (auto &Reg : Registers)
1214 if (Reg.CoveredBySubRegs)
1215 Reg.computeSecondarySubRegs(*this);
1216
1217 // After the sub-register graph is complete, compute the topologically
1218 // ordered SuperRegs list.
1219 for (auto &Reg : Registers)
1220 Reg.computeSuperRegs(*this);
1221
1222 // For each pair of Reg:SR, if both are non-artificial, mark the
1223 // corresponding sub-register index as non-artificial.
1224 for (auto &Reg : Registers) {
1225 if (Reg.Artificial)
1226 continue;
1227 for (auto P : Reg.getSubRegs()) {
1228 const CodeGenRegister *SR = P.second;
1229 if (!SR->Artificial)
1230 P.first->Artificial = false;
1231 }
1232 }
1233
1234 // Native register units are associated with a leaf register. They've all been
1235 // discovered now.
1236 NumNativeRegUnits = RegUnits.size();
1237
1238 // Read in register class definitions.
1239 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
1240 if (RCs.empty())
1241 PrintFatalError("No 'RegisterClass' subclasses defined!");
1242
1243 // Allocate user-defined register classes.
1244 for (auto *R : RCs) {
1245 RegClasses.emplace_back(*this, R);
1246 CodeGenRegisterClass &RC = RegClasses.back();
1247 if (!RC.Artificial)
1248 addToMaps(&RC);
1249 }
1250
1251 // Infer missing classes to create a full algebra.
1252 computeInferredRegisterClasses();
1253
1254 // Order register classes topologically and assign enum values.
1255 RegClasses.sort(TopoOrderRC);
1256 unsigned i = 0;
1257 for (auto &RC : RegClasses)
1258 RC.EnumValue = i++;
1259 CodeGenRegisterClass::computeSubClasses(*this);
1260
1261 // Read in the register category definitions.
1262 std::vector<Record *> RCats =
1263 Records.getAllDerivedDefinitions("RegisterCategory");
1264 for (auto *R : RCats)
1265 RegCategories.emplace_back(*this, R);
1266 }
1267
1268 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
1269 CodeGenSubRegIndex*
createSubRegIndex(StringRef Name,StringRef Namespace)1270 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
1271 SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
1272 return &SubRegIndices.back();
1273 }
1274
getSubRegIdx(Record * Def)1275 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
1276 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
1277 if (Idx)
1278 return Idx;
1279 SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
1280 Idx = &SubRegIndices.back();
1281 return Idx;
1282 }
1283
1284 const CodeGenSubRegIndex *
findSubRegIdx(const Record * Def) const1285 CodeGenRegBank::findSubRegIdx(const Record* Def) const {
1286 return Def2SubRegIdx.lookup(Def);
1287 }
1288
getReg(Record * Def)1289 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
1290 CodeGenRegister *&Reg = Def2Reg[Def];
1291 if (Reg)
1292 return Reg;
1293 Registers.emplace_back(Def, Registers.size() + 1);
1294 Reg = &Registers.back();
1295 return Reg;
1296 }
1297
addToMaps(CodeGenRegisterClass * RC)1298 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
1299 if (Record *Def = RC->getDef())
1300 Def2RC.insert(std::make_pair(Def, RC));
1301
1302 // Duplicate classes are rejected by insert().
1303 // That's OK, we only care about the properties handled by CGRC::Key.
1304 CodeGenRegisterClass::Key K(*RC);
1305 Key2RC.insert(std::make_pair(K, RC));
1306 }
1307
1308 // Create a synthetic sub-class if it is missing.
1309 CodeGenRegisterClass*
getOrCreateSubClass(const CodeGenRegisterClass * RC,const CodeGenRegister::Vec * Members,StringRef Name)1310 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
1311 const CodeGenRegister::Vec *Members,
1312 StringRef Name) {
1313 // Synthetic sub-class has the same size and alignment as RC.
1314 CodeGenRegisterClass::Key K(Members, RC->RSI);
1315 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
1316 if (FoundI != Key2RC.end())
1317 return FoundI->second;
1318
1319 // Sub-class doesn't exist, create a new one.
1320 RegClasses.emplace_back(*this, Name, K);
1321 addToMaps(&RegClasses.back());
1322 return &RegClasses.back();
1323 }
1324
getRegClass(const Record * Def) const1325 CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
1326 if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
1327 return RC;
1328
1329 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
1330 }
1331
1332 CodeGenSubRegIndex*
getCompositeSubRegIndex(CodeGenSubRegIndex * A,CodeGenSubRegIndex * B)1333 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
1334 CodeGenSubRegIndex *B) {
1335 // Look for an existing entry.
1336 CodeGenSubRegIndex *Comp = A->compose(B);
1337 if (Comp)
1338 return Comp;
1339
1340 // None exists, synthesize one.
1341 std::string Name = A->getName() + "_then_" + B->getName();
1342 Comp = createSubRegIndex(Name, A->getNamespace());
1343 A->addComposite(B, Comp);
1344 return Comp;
1345 }
1346
1347 CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *,8> & Parts)1348 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
1349 assert(Parts.size() > 1 && "Need two parts to concatenate");
1350 #ifndef NDEBUG
1351 for (CodeGenSubRegIndex *Idx : Parts) {
1352 assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
1353 }
1354 #endif
1355
1356 // Look for an existing entry.
1357 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
1358 if (Idx)
1359 return Idx;
1360
1361 // None exists, synthesize one.
1362 std::string Name = Parts.front()->getName();
1363 // Determine whether all parts are contiguous.
1364 bool isContinuous = true;
1365 unsigned Size = Parts.front()->Size;
1366 unsigned LastOffset = Parts.front()->Offset;
1367 unsigned LastSize = Parts.front()->Size;
1368 for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
1369 Name += '_';
1370 Name += Parts[i]->getName();
1371 Size += Parts[i]->Size;
1372 if (Parts[i]->Offset != (LastOffset + LastSize))
1373 isContinuous = false;
1374 LastOffset = Parts[i]->Offset;
1375 LastSize = Parts[i]->Size;
1376 }
1377 Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
1378 Idx->Size = Size;
1379 Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
1380 Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
1381 return Idx;
1382 }
1383
computeComposites()1384 void CodeGenRegBank::computeComposites() {
1385 using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;
1386
1387 // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
1388 // register to (sub)register associated with the action of the left-hand
1389 // side subregister.
1390 std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
1391 for (const CodeGenRegister &R : Registers) {
1392 const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
1393 for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
1394 SubRegAction[P.first].insert({&R, P.second});
1395 }
1396
1397 // Calculate the composition of two subregisters as compositions of their
1398 // associated actions.
1399 auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
1400 const CodeGenSubRegIndex *Sub2) {
1401 RegMap C;
1402 const RegMap &Img1 = SubRegAction.at(Sub1);
1403 const RegMap &Img2 = SubRegAction.at(Sub2);
1404 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
1405 auto F = Img2.find(P.second);
1406 if (F != Img2.end())
1407 C.insert({P.first, F->second});
1408 }
1409 return C;
1410 };
1411
1412 // Check if the two maps agree on the intersection of their domains.
1413 auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
1414 // Technically speaking, an empty map agrees with any other map, but
1415 // this could flag false positives. We're interested in non-vacuous
1416 // agreements.
1417 if (Map1.empty() || Map2.empty())
1418 return false;
1419 for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
1420 auto F = Map2.find(P.first);
1421 if (F == Map2.end() || P.second != F->second)
1422 return false;
1423 }
1424 return true;
1425 };
1426
1427 using CompositePair = std::pair<const CodeGenSubRegIndex*,
1428 const CodeGenSubRegIndex*>;
1429 SmallSet<CompositePair,4> UserDefined;
1430 for (const CodeGenSubRegIndex &Idx : SubRegIndices)
1431 for (auto P : Idx.getComposites())
1432 UserDefined.insert(std::make_pair(&Idx, P.first));
1433
1434 // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
1435 // and many registers will share TopoSigs on regular architectures.
1436 BitVector TopoSigs(getNumTopoSigs());
1437
1438 for (const auto &Reg1 : Registers) {
1439 // Skip identical subreg structures already processed.
1440 if (TopoSigs.test(Reg1.getTopoSig()))
1441 continue;
1442 TopoSigs.set(Reg1.getTopoSig());
1443
1444 const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
1445 for (auto I1 : SRM1) {
1446 CodeGenSubRegIndex *Idx1 = I1.first;
1447 CodeGenRegister *Reg2 = I1.second;
1448 // Ignore identity compositions.
1449 if (&Reg1 == Reg2)
1450 continue;
1451 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
1452 // Try composing Idx1 with another SubRegIndex.
1453 for (auto I2 : SRM2) {
1454 CodeGenSubRegIndex *Idx2 = I2.first;
1455 CodeGenRegister *Reg3 = I2.second;
1456 // Ignore identity compositions.
1457 if (Reg2 == Reg3)
1458 continue;
1459 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
1460 CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
1461 assert(Idx3 && "Sub-register doesn't have an index");
1462
1463 // Conflicting composition? Emit a warning but allow it.
1464 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
1465 // If the composition was not user-defined, always emit a warning.
1466 if (!UserDefined.count({Idx1, Idx2}) ||
1467 agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
1468 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
1469 " and " + Idx2->getQualifiedName() +
1470 " compose ambiguously as " + Prev->getQualifiedName() +
1471 " or " + Idx3->getQualifiedName());
1472 }
1473 }
1474 }
1475 }
1476 }
1477
1478 // Compute lane masks. This is similar to register units, but at the
1479 // sub-register index level. Each bit in the lane mask is like a register unit
1480 // class, and two lane masks will have a bit in common if two sub-register
1481 // indices overlap in some register.
1482 //
1483 // Conservatively share a lane mask bit if two sub-register indices overlap in
1484 // some registers, but not in others. That shouldn't happen a lot.
computeSubRegLaneMasks()1485 void CodeGenRegBank::computeSubRegLaneMasks() {
1486 // First assign individual bits to all the leaf indices.
1487 unsigned Bit = 0;
1488 // Determine mask of lanes that cover their registers.
1489 CoveringLanes = LaneBitmask::getAll();
1490 for (auto &Idx : SubRegIndices) {
1491 if (Idx.getComposites().empty()) {
1492 if (Bit > LaneBitmask::BitWidth) {
1493 PrintFatalError(
1494 Twine("Ran out of lanemask bits to represent subregister ")
1495 + Idx.getName());
1496 }
1497 Idx.LaneMask = LaneBitmask::getLane(Bit);
1498 ++Bit;
1499 } else {
1500 Idx.LaneMask = LaneBitmask::getNone();
1501 }
1502 }
1503
1504 // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
1505 // here is that for each possible target subregister we look at the leafs
1506 // in the subregister graph that compose for this target and create
1507 // transformation sequences for the lanemasks. Each step in the sequence
1508 // consists of a bitmask and a bitrotate operation. As the rotation amounts
1509 // are usually the same for many subregisters we can easily combine the steps
1510 // by combining the masks.
1511 for (const auto &Idx : SubRegIndices) {
1512 const auto &Composites = Idx.getComposites();
1513 auto &LaneTransforms = Idx.CompositionLaneMaskTransform;
1514
1515 if (Composites.empty()) {
1516 // Moving from a class with no subregisters we just had a single lane:
1517 // The subregister must be a leaf subregister and only occupies 1 bit.
1518 // Move the bit from the class without subregisters into that position.
1519 unsigned DstBit = Idx.LaneMask.getHighestLane();
1520 assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
1521 "Must be a leaf subregister");
1522 MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
1523 LaneTransforms.push_back(MaskRol);
1524 } else {
1525 // Go through all leaf subregisters and find the ones that compose with
1526 // Idx. These make out all possible valid bits in the lane mask we want to
1527 // transform. Looking only at the leafs ensure that only a single bit in
1528 // the mask is set.
1529 unsigned NextBit = 0;
1530 for (auto &Idx2 : SubRegIndices) {
1531 // Skip non-leaf subregisters.
1532 if (!Idx2.getComposites().empty())
1533 continue;
1534 // Replicate the behaviour from the lane mask generation loop above.
1535 unsigned SrcBit = NextBit;
1536 LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
1537 if (NextBit < LaneBitmask::BitWidth-1)
1538 ++NextBit;
1539 assert(Idx2.LaneMask == SrcMask);
1540
1541 // Get the composed subregister if there is any.
1542 auto C = Composites.find(&Idx2);
1543 if (C == Composites.end())
1544 continue;
1545 const CodeGenSubRegIndex *Composite = C->second;
1546 // The Composed subreg should be a leaf subreg too
1547 assert(Composite->getComposites().empty());
1548
1549 // Create Mask+Rotate operation and merge with existing ops if possible.
1550 unsigned DstBit = Composite->LaneMask.getHighestLane();
1551 int Shift = DstBit - SrcBit;
1552 uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
1553 : LaneBitmask::BitWidth + Shift;
1554 for (auto &I : LaneTransforms) {
1555 if (I.RotateLeft == RotateLeft) {
1556 I.Mask |= SrcMask;
1557 SrcMask = LaneBitmask::getNone();
1558 }
1559 }
1560 if (SrcMask.any()) {
1561 MaskRolPair MaskRol = { SrcMask, RotateLeft };
1562 LaneTransforms.push_back(MaskRol);
1563 }
1564 }
1565 }
1566
1567 // Optimize if the transformation consists of one step only: Set mask to
1568 // 0xffffffff (including some irrelevant invalid bits) so that it should
1569 // merge with more entries later while compressing the table.
1570 if (LaneTransforms.size() == 1)
1571 LaneTransforms[0].Mask = LaneBitmask::getAll();
1572
1573 // Further compression optimization: For invalid compositions resulting
1574 // in a sequence with 0 entries we can just pick any other. Choose
1575 // Mask 0xffffffff with Rotation 0.
1576 if (LaneTransforms.size() == 0) {
1577 MaskRolPair P = { LaneBitmask::getAll(), 0 };
1578 LaneTransforms.push_back(P);
1579 }
1580 }
1581
1582 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
1583 // by the sub-register graph? This doesn't occur in any known targets.
1584
1585 // Inherit lanes from composites.
1586 for (const auto &Idx : SubRegIndices) {
1587 LaneBitmask Mask = Idx.computeLaneMask();
1588 // If some super-registers without CoveredBySubRegs use this index, we can
1589 // no longer assume that the lanes are covering their registers.
1590 if (!Idx.AllSuperRegsCovered)
1591 CoveringLanes &= ~Mask;
1592 }
1593
1594 // Compute lane mask combinations for register classes.
1595 for (auto &RegClass : RegClasses) {
1596 LaneBitmask LaneMask;
1597 for (const auto &SubRegIndex : SubRegIndices) {
1598 if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
1599 continue;
1600 LaneMask |= SubRegIndex.LaneMask;
1601 }
1602
1603 // For classes without any subregisters set LaneMask to 1 instead of 0.
1604 // This makes it easier for client code to handle classes uniformly.
1605 if (LaneMask.none())
1606 LaneMask = LaneBitmask::getLane(0);
1607
1608 RegClass.LaneMask = LaneMask;
1609 }
1610 }
1611
1612 namespace {
1613
1614 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
1615 // the transitive closure of the union of overlapping register
1616 // classes. Together, the UberRegSets form a partition of the registers. If we
1617 // consider overlapping register classes to be connected, then each UberRegSet
1618 // is a set of connected components.
1619 //
1620 // An UberRegSet will likely be a horizontal slice of register names of
1621 // the same width. Nontrivial subregisters should then be in a separate
1622 // UberRegSet. But this property isn't required for valid computation of
1623 // register unit weights.
1624 //
1625 // A Weight field caches the max per-register unit weight in each UberRegSet.
1626 //
1627 // A set of SingularDeterminants flags single units of some register in this set
1628 // for which the unit weight equals the set weight. These units should not have
1629 // their weight increased.
1630 struct UberRegSet {
1631 CodeGenRegister::Vec Regs;
1632 unsigned Weight = 0;
1633 CodeGenRegister::RegUnitList SingularDeterminants;
1634
1635 UberRegSet() = default;
1636 };
1637
1638 } // end anonymous namespace
1639
1640 // Partition registers into UberRegSets, where each set is the transitive
1641 // closure of the union of overlapping register classes.
1642 //
1643 // UberRegSets[0] is a special non-allocatable set.
computeUberSets(std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,CodeGenRegBank & RegBank)1644 static void computeUberSets(std::vector<UberRegSet> &UberSets,
1645 std::vector<UberRegSet*> &RegSets,
1646 CodeGenRegBank &RegBank) {
1647 const auto &Registers = RegBank.getRegisters();
1648
1649 // The Register EnumValue is one greater than its index into Registers.
1650 assert(Registers.size() == Registers.back().EnumValue &&
1651 "register enum value mismatch");
1652
1653 // For simplicitly make the SetID the same as EnumValue.
1654 IntEqClasses UberSetIDs(Registers.size()+1);
1655 std::set<unsigned> AllocatableRegs;
1656 for (auto &RegClass : RegBank.getRegClasses()) {
1657 if (!RegClass.Allocatable)
1658 continue;
1659
1660 const CodeGenRegister::Vec &Regs = RegClass.getMembers();
1661 if (Regs.empty())
1662 continue;
1663
1664 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
1665 assert(USetID && "register number 0 is invalid");
1666
1667 AllocatableRegs.insert((*Regs.begin())->EnumValue);
1668 for (const CodeGenRegister *CGR : llvm::drop_begin(Regs)) {
1669 AllocatableRegs.insert(CGR->EnumValue);
1670 UberSetIDs.join(USetID, CGR->EnumValue);
1671 }
1672 }
1673 // Combine non-allocatable regs.
1674 for (const auto &Reg : Registers) {
1675 unsigned RegNum = Reg.EnumValue;
1676 if (AllocatableRegs.count(RegNum))
1677 continue;
1678
1679 UberSetIDs.join(0, RegNum);
1680 }
1681 UberSetIDs.compress();
1682
1683 // Make the first UberSet a special unallocatable set.
1684 unsigned ZeroID = UberSetIDs[0];
1685
1686 // Insert Registers into the UberSets formed by union-find.
1687 // Do not resize after this.
1688 UberSets.resize(UberSetIDs.getNumClasses());
1689 unsigned i = 0;
1690 for (const CodeGenRegister &Reg : Registers) {
1691 unsigned USetID = UberSetIDs[Reg.EnumValue];
1692 if (!USetID)
1693 USetID = ZeroID;
1694 else if (USetID == ZeroID)
1695 USetID = 0;
1696
1697 UberRegSet *USet = &UberSets[USetID];
1698 USet->Regs.push_back(&Reg);
1699 sortAndUniqueRegisters(USet->Regs);
1700 RegSets[i++] = USet;
1701 }
1702 }
1703
1704 // Recompute each UberSet weight after changing unit weights.
computeUberWeights(std::vector<UberRegSet> & UberSets,CodeGenRegBank & RegBank)1705 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
1706 CodeGenRegBank &RegBank) {
1707 // Skip the first unallocatable set.
1708 for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
1709 E = UberSets.end(); I != E; ++I) {
1710
1711 // Initialize all unit weights in this set, and remember the max units/reg.
1712 const CodeGenRegister *Reg = nullptr;
1713 unsigned MaxWeight = 0, Weight = 0;
1714 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
1715 if (Reg != UnitI.getReg()) {
1716 if (Weight > MaxWeight)
1717 MaxWeight = Weight;
1718 Reg = UnitI.getReg();
1719 Weight = 0;
1720 }
1721 if (!RegBank.getRegUnit(*UnitI).Artificial) {
1722 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
1723 if (!UWeight) {
1724 UWeight = 1;
1725 RegBank.increaseRegUnitWeight(*UnitI, UWeight);
1726 }
1727 Weight += UWeight;
1728 }
1729 }
1730 if (Weight > MaxWeight)
1731 MaxWeight = Weight;
1732 if (I->Weight != MaxWeight) {
1733 LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
1734 << MaxWeight;
1735 for (auto &Unit
1736 : I->Regs) dbgs()
1737 << " " << Unit->getName();
1738 dbgs() << "\n");
1739 // Update the set weight.
1740 I->Weight = MaxWeight;
1741 }
1742
1743 // Find singular determinants.
1744 for (const auto R : I->Regs) {
1745 if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
1746 I->SingularDeterminants |= R->getRegUnits();
1747 }
1748 }
1749 }
1750 }
1751
1752 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
1753 // a register and its subregisters so that they have the same weight as their
1754 // UberSet. Self-recursion processes the subregister tree in postorder so
1755 // subregisters are normalized first.
1756 //
1757 // Side effects:
1758 // - creates new adopted register units
1759 // - causes superregisters to inherit adopted units
1760 // - increases the weight of "singular" units
1761 // - induces recomputation of UberWeights.
normalizeWeight(CodeGenRegister * Reg,std::vector<UberRegSet> & UberSets,std::vector<UberRegSet * > & RegSets,BitVector & NormalRegs,CodeGenRegister::RegUnitList & NormalUnits,CodeGenRegBank & RegBank)1762 static bool normalizeWeight(CodeGenRegister *Reg,
1763 std::vector<UberRegSet> &UberSets,
1764 std::vector<UberRegSet*> &RegSets,
1765 BitVector &NormalRegs,
1766 CodeGenRegister::RegUnitList &NormalUnits,
1767 CodeGenRegBank &RegBank) {
1768 NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
1769 if (NormalRegs.test(Reg->EnumValue))
1770 return false;
1771 NormalRegs.set(Reg->EnumValue);
1772
1773 bool Changed = false;
1774 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
1775 for (auto SRI : SRM) {
1776 if (SRI.second == Reg)
1777 continue; // self-cycles happen
1778
1779 Changed |= normalizeWeight(SRI.second, UberSets, RegSets, NormalRegs,
1780 NormalUnits, RegBank);
1781 }
1782 // Postorder register normalization.
1783
1784 // Inherit register units newly adopted by subregisters.
1785 if (Reg->inheritRegUnits(RegBank))
1786 computeUberWeights(UberSets, RegBank);
1787
1788 // Check if this register is too skinny for its UberRegSet.
1789 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
1790
1791 unsigned RegWeight = Reg->getWeight(RegBank);
1792 if (UberSet->Weight > RegWeight) {
1793 // A register unit's weight can be adjusted only if it is the singular unit
1794 // for this register, has not been used to normalize a subregister's set,
1795 // and has not already been used to singularly determine this UberRegSet.
1796 unsigned AdjustUnit = *Reg->getRegUnits().begin();
1797 if (Reg->getRegUnits().count() != 1
1798 || hasRegUnit(NormalUnits, AdjustUnit)
1799 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
1800 // We don't have an adjustable unit, so adopt a new one.
1801 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
1802 Reg->adoptRegUnit(AdjustUnit);
1803 // Adopting a unit does not immediately require recomputing set weights.
1804 }
1805 else {
1806 // Adjust the existing single unit.
1807 if (!RegBank.getRegUnit(AdjustUnit).Artificial)
1808 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
1809 // The unit may be shared among sets and registers within this set.
1810 computeUberWeights(UberSets, RegBank);
1811 }
1812 Changed = true;
1813 }
1814
1815 // Mark these units normalized so superregisters can't change their weights.
1816 NormalUnits |= Reg->getRegUnits();
1817
1818 return Changed;
1819 }
1820
1821 // Compute a weight for each register unit created during getSubRegs.
1822 //
1823 // The goal is that two registers in the same class will have the same weight,
1824 // where each register's weight is defined as sum of its units' weights.
computeRegUnitWeights()1825 void CodeGenRegBank::computeRegUnitWeights() {
1826 std::vector<UberRegSet> UberSets;
1827 std::vector<UberRegSet*> RegSets(Registers.size());
1828 computeUberSets(UberSets, RegSets, *this);
1829 // UberSets and RegSets are now immutable.
1830
1831 computeUberWeights(UberSets, *this);
1832
1833 // Iterate over each Register, normalizing the unit weights until reaching
1834 // a fix point.
1835 unsigned NumIters = 0;
1836 for (bool Changed = true; Changed; ++NumIters) {
1837 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
1838 (void) NumIters;
1839 Changed = false;
1840 for (auto &Reg : Registers) {
1841 CodeGenRegister::RegUnitList NormalUnits;
1842 BitVector NormalRegs;
1843 Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
1844 NormalUnits, *this);
1845 }
1846 }
1847 }
1848
1849 // Find a set in UniqueSets with the same elements as Set.
1850 // Return an iterator into UniqueSets.
1851 static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> & UniqueSets,const RegUnitSet & Set)1852 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
1853 const RegUnitSet &Set) {
1854 std::vector<RegUnitSet>::const_iterator
1855 I = UniqueSets.begin(), E = UniqueSets.end();
1856 for(;I != E; ++I) {
1857 if (I->Units == Set.Units)
1858 break;
1859 }
1860 return I;
1861 }
1862
1863 // Return true if the RUSubSet is a subset of RUSuperSet.
isRegUnitSubSet(const std::vector<unsigned> & RUSubSet,const std::vector<unsigned> & RUSuperSet)1864 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
1865 const std::vector<unsigned> &RUSuperSet) {
1866 return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
1867 RUSubSet.begin(), RUSubSet.end());
1868 }
1869
1870 /// Iteratively prune unit sets. Prune subsets that are close to the superset,
1871 /// but with one or two registers removed. We occasionally have registers like
1872 /// APSR and PC thrown in with the general registers. We also see many
1873 /// special-purpose register subsets, such as tail-call and Thumb
1874 /// encodings. Generating all possible overlapping sets is combinatorial and
1875 /// overkill for modeling pressure. Ideally we could fix this statically in
1876 /// tablegen by (1) having the target define register classes that only include
1877 /// the allocatable registers and marking other classes as non-allocatable and
1878 /// (2) having a way to mark special purpose classes as "don't-care" classes for
1879 /// the purpose of pressure. However, we make an attempt to handle targets that
1880 /// are not nicely defined by merging nearly identical register unit sets
1881 /// statically. This generates smaller tables. Then, dynamically, we adjust the
1882 /// set limit by filtering the reserved registers.
1883 ///
1884 /// Merge sets only if the units have the same weight. For example, on ARM,
1885 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We
1886 /// should not expand the S set to include D regs.
pruneUnitSets()1887 void CodeGenRegBank::pruneUnitSets() {
1888 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
1889
1890 // Form an equivalence class of UnitSets with no significant difference.
1891 std::vector<unsigned> SuperSetIDs;
1892 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
1893 SubIdx != EndIdx; ++SubIdx) {
1894 const RegUnitSet &SubSet = RegUnitSets[SubIdx];
1895 unsigned SuperIdx = 0;
1896 for (; SuperIdx != EndIdx; ++SuperIdx) {
1897 if (SuperIdx == SubIdx)
1898 continue;
1899
1900 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
1901 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
1902 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
1903 && (SubSet.Units.size() + 3 > SuperSet.Units.size())
1904 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
1905 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
1906 LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
1907 << "\n");
1908 // We can pick any of the set names for the merged set. Go for the
1909 // shortest one to avoid picking the name of one of the classes that are
1910 // artificially created by tablegen. So "FPR128_lo" instead of
1911 // "QQQQ_with_qsub3_in_FPR128_lo".
1912 if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
1913 RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
1914 break;
1915 }
1916 }
1917 if (SuperIdx == EndIdx)
1918 SuperSetIDs.push_back(SubIdx);
1919 }
1920 // Populate PrunedUnitSets with each equivalence class's superset.
1921 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
1922 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
1923 unsigned SuperIdx = SuperSetIDs[i];
1924 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
1925 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
1926 }
1927 RegUnitSets.swap(PrunedUnitSets);
1928 }
1929
1930 // Create a RegUnitSet for each RegClass that contains all units in the class
1931 // including adopted units that are necessary to model register pressure. Then
1932 // iteratively compute RegUnitSets such that the union of any two overlapping
1933 // RegUnitSets is repreresented.
1934 //
1935 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
1936 // RegUnitSet that is a superset of that RegUnitClass.
computeRegUnitSets()1937 void CodeGenRegBank::computeRegUnitSets() {
1938 assert(RegUnitSets.empty() && "dirty RegUnitSets");
1939
1940 // Compute a unique RegUnitSet for each RegClass.
1941 auto &RegClasses = getRegClasses();
1942 for (auto &RC : RegClasses) {
1943 if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
1944 continue;
1945
1946 // Speculatively grow the RegUnitSets to hold the new set.
1947 RegUnitSets.resize(RegUnitSets.size() + 1);
1948 RegUnitSets.back().Name = RC.getName();
1949
1950 // Compute a sorted list of units in this class.
1951 RC.buildRegUnitSet(*this, RegUnitSets.back().Units);
1952
1953 // Find an existing RegUnitSet.
1954 std::vector<RegUnitSet>::const_iterator SetI =
1955 findRegUnitSet(RegUnitSets, RegUnitSets.back());
1956 if (SetI != std::prev(RegUnitSets.end()))
1957 RegUnitSets.pop_back();
1958 }
1959
1960 if (RegUnitSets.empty())
1961 PrintFatalError("RegUnitSets cannot be empty!");
1962
1963 LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
1964 USEnd = RegUnitSets.size();
1965 USIdx < USEnd; ++USIdx) {
1966 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1967 for (auto &U : RegUnitSets[USIdx].Units)
1968 printRegUnitName(U);
1969 dbgs() << "\n";
1970 });
1971
1972 // Iteratively prune unit sets.
1973 pruneUnitSets();
1974
1975 LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
1976 USEnd = RegUnitSets.size();
1977 USIdx < USEnd; ++USIdx) {
1978 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
1979 for (auto &U : RegUnitSets[USIdx].Units)
1980 printRegUnitName(U);
1981 dbgs() << "\n";
1982 } dbgs() << "\nUnion sets:\n");
1983
1984 // Iterate over all unit sets, including new ones added by this loop.
1985 unsigned NumRegUnitSubSets = RegUnitSets.size();
1986 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
1987 // In theory, this is combinatorial. In practice, it needs to be bounded
1988 // by a small number of sets for regpressure to be efficient.
1989 // If the assert is hit, we need to implement pruning.
1990 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
1991
1992 // Compare new sets with all original classes.
1993 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
1994 SearchIdx != EndIdx; ++SearchIdx) {
1995 std::set<unsigned> Intersection;
1996 std::set_intersection(RegUnitSets[Idx].Units.begin(),
1997 RegUnitSets[Idx].Units.end(),
1998 RegUnitSets[SearchIdx].Units.begin(),
1999 RegUnitSets[SearchIdx].Units.end(),
2000 std::inserter(Intersection, Intersection.begin()));
2001 if (Intersection.empty())
2002 continue;
2003
2004 // Speculatively grow the RegUnitSets to hold the new set.
2005 RegUnitSets.resize(RegUnitSets.size() + 1);
2006 RegUnitSets.back().Name =
2007 RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;
2008
2009 std::set_union(RegUnitSets[Idx].Units.begin(),
2010 RegUnitSets[Idx].Units.end(),
2011 RegUnitSets[SearchIdx].Units.begin(),
2012 RegUnitSets[SearchIdx].Units.end(),
2013 std::inserter(RegUnitSets.back().Units,
2014 RegUnitSets.back().Units.begin()));
2015
2016 // Find an existing RegUnitSet, or add the union to the unique sets.
2017 std::vector<RegUnitSet>::const_iterator SetI =
2018 findRegUnitSet(RegUnitSets, RegUnitSets.back());
2019 if (SetI != std::prev(RegUnitSets.end()))
2020 RegUnitSets.pop_back();
2021 else {
2022 LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
2023 << RegUnitSets.back().Name << ":";
2024 for (auto &U
2025 : RegUnitSets.back().Units) printRegUnitName(U);
2026 dbgs() << "\n";);
2027 }
2028 }
2029 }
2030
2031 // Iteratively prune unit sets after inferring supersets.
2032 pruneUnitSets();
2033
2034 LLVM_DEBUG(
2035 dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2036 USIdx < USEnd; ++USIdx) {
2037 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
2038 for (auto &U : RegUnitSets[USIdx].Units)
2039 printRegUnitName(U);
2040 dbgs() << "\n";
2041 });
2042
2043 // For each register class, list the UnitSets that are supersets.
2044 RegClassUnitSets.resize(RegClasses.size());
2045 int RCIdx = -1;
2046 for (auto &RC : RegClasses) {
2047 ++RCIdx;
2048 if (!RC.Allocatable)
2049 continue;
2050
2051 // Recompute the sorted list of units in this class.
2052 std::vector<unsigned> RCRegUnits;
2053 RC.buildRegUnitSet(*this, RCRegUnits);
2054
2055 // Don't increase pressure for unallocatable regclasses.
2056 if (RCRegUnits.empty())
2057 continue;
2058
2059 LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units:\n";
2060 for (auto U
2061 : RCRegUnits) printRegUnitName(U);
2062 dbgs() << "\n UnitSetIDs:");
2063
2064 // Find all supersets.
2065 for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
2066 USIdx != USEnd; ++USIdx) {
2067 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
2068 LLVM_DEBUG(dbgs() << " " << USIdx);
2069 RegClassUnitSets[RCIdx].push_back(USIdx);
2070 }
2071 }
2072 LLVM_DEBUG(dbgs() << "\n");
2073 assert((!RegClassUnitSets[RCIdx].empty() || !RC.GeneratePressureSet) &&
2074 "missing unit set for regclass");
2075 }
2076
2077 // For each register unit, ensure that we have the list of UnitSets that
2078 // contain the unit. Normally, this matches an existing list of UnitSets for a
2079 // register class. If not, we create a new entry in RegClassUnitSets as a
2080 // "fake" register class.
2081 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
2082 UnitIdx < UnitEnd; ++UnitIdx) {
2083 std::vector<unsigned> RUSets;
2084 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
2085 RegUnitSet &RUSet = RegUnitSets[i];
2086 if (!is_contained(RUSet.Units, UnitIdx))
2087 continue;
2088 RUSets.push_back(i);
2089 }
2090 unsigned RCUnitSetsIdx = 0;
2091 for (unsigned e = RegClassUnitSets.size();
2092 RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
2093 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
2094 break;
2095 }
2096 }
2097 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
2098 if (RCUnitSetsIdx == RegClassUnitSets.size()) {
2099 // Create a new list of UnitSets as a "fake" register class.
2100 RegClassUnitSets.resize(RCUnitSetsIdx + 1);
2101 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
2102 }
2103 }
2104 }
2105
computeRegUnitLaneMasks()2106 void CodeGenRegBank::computeRegUnitLaneMasks() {
2107 for (auto &Register : Registers) {
2108 // Create an initial lane mask for all register units.
2109 const auto &RegUnits = Register.getRegUnits();
2110 CodeGenRegister::RegUnitLaneMaskList
2111 RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
2112 // Iterate through SubRegisters.
2113 typedef CodeGenRegister::SubRegMap SubRegMap;
2114 const SubRegMap &SubRegs = Register.getSubRegs();
2115 for (auto S : SubRegs) {
2116 CodeGenRegister *SubReg = S.second;
2117 // Ignore non-leaf subregisters, their lane masks are fully covered by
2118 // the leaf subregisters anyway.
2119 if (!SubReg->getSubRegs().empty())
2120 continue;
2121 CodeGenSubRegIndex *SubRegIndex = S.first;
2122 const CodeGenRegister *SubRegister = S.second;
2123 LaneBitmask LaneMask = SubRegIndex->LaneMask;
2124 // Distribute LaneMask to Register Units touched.
2125 for (unsigned SUI : SubRegister->getRegUnits()) {
2126 bool Found = false;
2127 unsigned u = 0;
2128 for (unsigned RU : RegUnits) {
2129 if (SUI == RU) {
2130 RegUnitLaneMasks[u] |= LaneMask;
2131 assert(!Found);
2132 Found = true;
2133 }
2134 ++u;
2135 }
2136 (void)Found;
2137 assert(Found);
2138 }
2139 }
2140 Register.setRegUnitLaneMasks(RegUnitLaneMasks);
2141 }
2142 }
2143
computeDerivedInfo()2144 void CodeGenRegBank::computeDerivedInfo() {
2145 computeComposites();
2146 computeSubRegLaneMasks();
2147
2148 // Compute a weight for each register unit created during getSubRegs.
2149 // This may create adopted register units (with unit # >= NumNativeRegUnits).
2150 computeRegUnitWeights();
2151
2152 // Compute a unique set of RegUnitSets. One for each RegClass and inferred
2153 // supersets for the union of overlapping sets.
2154 computeRegUnitSets();
2155
2156 computeRegUnitLaneMasks();
2157
2158 // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
2159 for (CodeGenRegisterClass &RC : RegClasses) {
2160 RC.HasDisjunctSubRegs = false;
2161 RC.CoveredBySubRegs = true;
2162 for (const CodeGenRegister *Reg : RC.getMembers()) {
2163 RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
2164 RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
2165 }
2166 }
2167
2168 // Get the weight of each set.
2169 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2170 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);
2171
2172 // Find the order of each set.
2173 RegUnitSetOrder.reserve(RegUnitSets.size());
2174 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
2175 RegUnitSetOrder.push_back(Idx);
2176
2177 llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
2178 return getRegPressureSet(ID1).Units.size() <
2179 getRegPressureSet(ID2).Units.size();
2180 });
2181 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
2182 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
2183 }
2184 }
2185
2186 //
2187 // Synthesize missing register class intersections.
2188 //
2189 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
2190 // returns a maximal register class for all X.
2191 //
inferCommonSubClass(CodeGenRegisterClass * RC)2192 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
2193 assert(!RegClasses.empty());
2194 // Stash the iterator to the last element so that this loop doesn't visit
2195 // elements added by the getOrCreateSubClass call within it.
2196 for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
2197 I != std::next(E); ++I) {
2198 CodeGenRegisterClass *RC1 = RC;
2199 CodeGenRegisterClass *RC2 = &*I;
2200 if (RC1 == RC2)
2201 continue;
2202
2203 // Compute the set intersection of RC1 and RC2.
2204 const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
2205 const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
2206 CodeGenRegister::Vec Intersection;
2207 std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
2208 Memb2.end(),
2209 std::inserter(Intersection, Intersection.begin()),
2210 deref<std::less<>>());
2211
2212 // Skip disjoint class pairs.
2213 if (Intersection.empty())
2214 continue;
2215
2216 // If RC1 and RC2 have different spill sizes or alignments, use the
2217 // stricter one for sub-classing. If they are equal, prefer RC1.
2218 if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
2219 std::swap(RC1, RC2);
2220
2221 getOrCreateSubClass(RC1, &Intersection,
2222 RC1->getName() + "_and_" + RC2->getName());
2223 }
2224 }
2225
2226 //
2227 // Synthesize missing sub-classes for getSubClassWithSubReg().
2228 //
2229 // Make sure that the set of registers in RC with a given SubIdx sub-register
2230 // form a register class. Update RC->SubClassWithSubReg.
2231 //
inferSubClassWithSubReg(CodeGenRegisterClass * RC)2232 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
2233 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
2234 typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
2235 deref<std::less<>>>
2236 SubReg2SetMap;
2237
2238 // Compute the set of registers supporting each SubRegIndex.
2239 SubReg2SetMap SRSets;
2240 for (const auto R : RC->getMembers()) {
2241 if (R->Artificial)
2242 continue;
2243 const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
2244 for (auto I : SRM) {
2245 if (!I.first->Artificial)
2246 SRSets[I.first].push_back(R);
2247 }
2248 }
2249
2250 for (auto I : SRSets)
2251 sortAndUniqueRegisters(I.second);
2252
2253 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
2254 // numerical order to visit synthetic indices last.
2255 for (const auto &SubIdx : SubRegIndices) {
2256 if (SubIdx.Artificial)
2257 continue;
2258 SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
2259 // Unsupported SubRegIndex. Skip it.
2260 if (I == SRSets.end())
2261 continue;
2262 // In most cases, all RC registers support the SubRegIndex.
2263 if (I->second.size() == RC->getMembers().size()) {
2264 RC->setSubClassWithSubReg(&SubIdx, RC);
2265 continue;
2266 }
2267 // This is a real subset. See if we have a matching class.
2268 CodeGenRegisterClass *SubRC =
2269 getOrCreateSubClass(RC, &I->second,
2270 RC->getName() + "_with_" + I->first->getName());
2271 RC->setSubClassWithSubReg(&SubIdx, SubRC);
2272 }
2273 }
2274
2275 //
2276 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
2277 //
2278 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
2279 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
2280 //
2281
inferMatchingSuperRegClass(CodeGenRegisterClass * RC,std::list<CodeGenRegisterClass>::iterator FirstSubRegRC)2282 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
2283 std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
2284 SmallVector<std::pair<const CodeGenRegister*,
2285 const CodeGenRegister*>, 16> SSPairs;
2286 BitVector TopoSigs(getNumTopoSigs());
2287
2288 // Iterate in SubRegIndex numerical order to visit synthetic indices last.
2289 for (auto &SubIdx : SubRegIndices) {
2290 // Skip indexes that aren't fully supported by RC's registers. This was
2291 // computed by inferSubClassWithSubReg() above which should have been
2292 // called first.
2293 if (RC->getSubClassWithSubReg(&SubIdx) != RC)
2294 continue;
2295
2296 // Build list of (Super, Sub) pairs for this SubIdx.
2297 SSPairs.clear();
2298 TopoSigs.reset();
2299 for (const auto Super : RC->getMembers()) {
2300 const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
2301 assert(Sub && "Missing sub-register");
2302 SSPairs.push_back(std::make_pair(Super, Sub));
2303 TopoSigs.set(Sub->getTopoSig());
2304 }
2305
2306 // Iterate over sub-register class candidates. Ignore classes created by
2307 // this loop. They will never be useful.
2308 // Store an iterator to the last element (not end) so that this loop doesn't
2309 // visit newly inserted elements.
2310 assert(!RegClasses.empty());
2311 for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
2312 I != std::next(E); ++I) {
2313 CodeGenRegisterClass &SubRC = *I;
2314 if (SubRC.Artificial)
2315 continue;
2316 // Topological shortcut: SubRC members have the wrong shape.
2317 if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
2318 continue;
2319 // Compute the subset of RC that maps into SubRC.
2320 CodeGenRegister::Vec SubSetVec;
2321 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
2322 if (SubRC.contains(SSPairs[i].second))
2323 SubSetVec.push_back(SSPairs[i].first);
2324
2325 if (SubSetVec.empty())
2326 continue;
2327
2328 // RC injects completely into SubRC.
2329 sortAndUniqueRegisters(SubSetVec);
2330 if (SubSetVec.size() == SSPairs.size()) {
2331 SubRC.addSuperRegClass(&SubIdx, RC);
2332 continue;
2333 }
2334
2335 // Only a subset of RC maps into SubRC. Make sure it is represented by a
2336 // class.
2337 getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
2338 SubIdx.getName() + "_in_" +
2339 SubRC.getName());
2340 }
2341 }
2342 }
2343
2344 //
2345 // Infer missing register classes.
2346 //
computeInferredRegisterClasses()2347 void CodeGenRegBank::computeInferredRegisterClasses() {
2348 assert(!RegClasses.empty());
2349 // When this function is called, the register classes have not been sorted
2350 // and assigned EnumValues yet. That means getSubClasses(),
2351 // getSuperClasses(), and hasSubClass() functions are defunct.
2352
2353 // Use one-before-the-end so it doesn't move forward when new elements are
2354 // added.
2355 auto FirstNewRC = std::prev(RegClasses.end());
2356
2357 // Visit all register classes, including the ones being added by the loop.
2358 // Watch out for iterator invalidation here.
2359 for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
2360 CodeGenRegisterClass *RC = &*I;
2361 if (RC->Artificial)
2362 continue;
2363
2364 // Synthesize answers for getSubClassWithSubReg().
2365 inferSubClassWithSubReg(RC);
2366
2367 // Synthesize answers for getCommonSubClass().
2368 inferCommonSubClass(RC);
2369
2370 // Synthesize answers for getMatchingSuperRegClass().
2371 inferMatchingSuperRegClass(RC);
2372
2373 // New register classes are created while this loop is running, and we need
2374 // to visit all of them. I particular, inferMatchingSuperRegClass needs
2375 // to match old super-register classes with sub-register classes created
2376 // after inferMatchingSuperRegClass was called. At this point,
2377 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
2378 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci].
2379 if (I == FirstNewRC) {
2380 auto NextNewRC = std::prev(RegClasses.end());
2381 for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
2382 ++I2)
2383 inferMatchingSuperRegClass(&*I2, E2);
2384 FirstNewRC = NextNewRC;
2385 }
2386 }
2387 }
2388
2389 /// getRegisterClassForRegister - Find the register class that contains the
2390 /// specified physical register. If the register is not in a register class,
2391 /// return null. If the register is in multiple classes, and the classes have a
2392 /// superset-subset relationship and the same set of types, return the
2393 /// superclass. Otherwise return null.
2394 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)2395 CodeGenRegBank::getRegClassForRegister(Record *R) {
2396 const CodeGenRegister *Reg = getReg(R);
2397 const CodeGenRegisterClass *FoundRC = nullptr;
2398 for (const auto &RC : getRegClasses()) {
2399 if (!RC.contains(Reg))
2400 continue;
2401
2402 // If this is the first class that contains the register,
2403 // make a note of it and go on to the next class.
2404 if (!FoundRC) {
2405 FoundRC = &RC;
2406 continue;
2407 }
2408
2409 // If a register's classes have different types, return null.
2410 if (RC.getValueTypes() != FoundRC->getValueTypes())
2411 return nullptr;
2412
2413 // Check to see if the previously found class that contains
2414 // the register is a subclass of the current class. If so,
2415 // prefer the superclass.
2416 if (RC.hasSubClass(FoundRC)) {
2417 FoundRC = &RC;
2418 continue;
2419 }
2420
2421 // Check to see if the previously found class that contains
2422 // the register is a superclass of the current class. If so,
2423 // prefer the superclass.
2424 if (FoundRC->hasSubClass(&RC))
2425 continue;
2426
2427 // Multiple classes, and neither is a superclass of the other.
2428 // Return null.
2429 return nullptr;
2430 }
2431 return FoundRC;
2432 }
2433
2434 const CodeGenRegisterClass *
getMinimalPhysRegClass(Record * RegRecord,ValueTypeByHwMode * VT)2435 CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
2436 ValueTypeByHwMode *VT) {
2437 const CodeGenRegister *Reg = getReg(RegRecord);
2438 const CodeGenRegisterClass *BestRC = nullptr;
2439 for (const auto &RC : getRegClasses()) {
2440 if ((!VT || RC.hasType(*VT)) &&
2441 RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
2442 BestRC = &RC;
2443 }
2444
2445 assert(BestRC && "Couldn't find the register class");
2446 return BestRC;
2447 }
2448
computeCoveredRegisters(ArrayRef<Record * > Regs)2449 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
2450 SetVector<const CodeGenRegister*> Set;
2451
2452 // First add Regs with all sub-registers.
2453 for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2454 CodeGenRegister *Reg = getReg(Regs[i]);
2455 if (Set.insert(Reg))
2456 // Reg is new, add all sub-registers.
2457 // The pre-ordering is not important here.
2458 Reg->addSubRegsPreOrder(Set, *this);
2459 }
2460
2461 // Second, find all super-registers that are completely covered by the set.
2462 for (unsigned i = 0; i != Set.size(); ++i) {
2463 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
2464 for (unsigned j = 0, e = SR.size(); j != e; ++j) {
2465 const CodeGenRegister *Super = SR[j];
2466 if (!Super->CoveredBySubRegs || Set.count(Super))
2467 continue;
2468 // This new super-register is covered by its sub-registers.
2469 bool AllSubsInSet = true;
2470 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
2471 for (auto I : SRM)
2472 if (!Set.count(I.second)) {
2473 AllSubsInSet = false;
2474 break;
2475 }
2476 // All sub-registers in Set, add Super as well.
2477 // We will visit Super later to recheck its super-registers.
2478 if (AllSubsInSet)
2479 Set.insert(Super);
2480 }
2481 }
2482
2483 // Convert to BitVector.
2484 BitVector BV(Registers.size() + 1);
2485 for (unsigned i = 0, e = Set.size(); i != e; ++i)
2486 BV.set(Set[i]->EnumValue);
2487 return BV;
2488 }
2489
printRegUnitName(unsigned Unit) const2490 void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
2491 if (Unit < NumNativeRegUnits)
2492 dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
2493 else
2494 dbgs() << " #" << Unit;
2495 }
2496