1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/StringSwitch.h"
51 #include "llvm/ADT/Triple.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
54 #include "llvm/IR/CallingConv.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/LLVMContext.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ProfileSummary.h"
60 #include "llvm/ProfileData/InstrProfReader.h"
61 #include "llvm/Support/CRC.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/ConvertUTF.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MD5.h"
67 #include "llvm/Support/TimeProfiler.h"
68 #include "llvm/Support/X86TargetParser.h"
69
70 using namespace clang;
71 using namespace CodeGen;
72
73 static llvm::cl::opt<bool> LimitedCoverage(
74 "limited-coverage-experimental", llvm::cl::Hidden,
75 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
76
77 static const char AnnotationSection[] = "llvm.metadata";
78
createCXXABI(CodeGenModule & CGM)79 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
80 switch (CGM.getContext().getCXXABIKind()) {
81 case TargetCXXABI::AppleARM64:
82 case TargetCXXABI::Fuchsia:
83 case TargetCXXABI::GenericAArch64:
84 case TargetCXXABI::GenericARM:
85 case TargetCXXABI::iOS:
86 case TargetCXXABI::WatchOS:
87 case TargetCXXABI::GenericMIPS:
88 case TargetCXXABI::GenericItanium:
89 case TargetCXXABI::WebAssembly:
90 case TargetCXXABI::XL:
91 return CreateItaniumCXXABI(CGM);
92 case TargetCXXABI::Microsoft:
93 return CreateMicrosoftCXXABI(CGM);
94 }
95
96 llvm_unreachable("invalid C++ ABI kind");
97 }
98
CodeGenModule(ASTContext & C,IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,const HeaderSearchOptions & HSO,const PreprocessorOptions & PPO,const CodeGenOptions & CGO,llvm::Module & M,DiagnosticsEngine & diags,CoverageSourceInfo * CoverageInfo)99 CodeGenModule::CodeGenModule(ASTContext &C,
100 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
101 const HeaderSearchOptions &HSO,
102 const PreprocessorOptions &PPO,
103 const CodeGenOptions &CGO, llvm::Module &M,
104 DiagnosticsEngine &diags,
105 CoverageSourceInfo *CoverageInfo)
106 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
107 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
108 TheModule(M), Diags(diags), Target(C.getTargetInfo()),
109 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
110 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
111
112 // Initialize the type cache.
113 llvm::LLVMContext &LLVMContext = M.getContext();
114 VoidTy = llvm::Type::getVoidTy(LLVMContext);
115 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
116 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
117 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
118 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
119 HalfTy = llvm::Type::getHalfTy(LLVMContext);
120 BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
121 FloatTy = llvm::Type::getFloatTy(LLVMContext);
122 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
123 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
124 PointerAlignInBytes =
125 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
126 SizeSizeInBytes =
127 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
128 IntAlignInBytes =
129 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
130 CharTy =
131 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
132 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
133 IntPtrTy = llvm::IntegerType::get(LLVMContext,
134 C.getTargetInfo().getMaxPointerWidth());
135 Int8PtrTy = Int8Ty->getPointerTo(0);
136 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
137 const llvm::DataLayout &DL = M.getDataLayout();
138 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
139 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
140 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
141
142 // Build C++20 Module initializers.
143 // TODO: Add Microsoft here once we know the mangling required for the
144 // initializers.
145 CXX20ModuleInits =
146 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
147 ItaniumMangleContext::MK_Itanium;
148
149 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
150
151 if (LangOpts.ObjC)
152 createObjCRuntime();
153 if (LangOpts.OpenCL)
154 createOpenCLRuntime();
155 if (LangOpts.OpenMP)
156 createOpenMPRuntime();
157 if (LangOpts.CUDA)
158 createCUDARuntime();
159 if (LangOpts.HLSL)
160 createHLSLRuntime();
161
162 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
163 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
164 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
165 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
166 getCXXABI().getMangleContext()));
167
168 // If debug info or coverage generation is enabled, create the CGDebugInfo
169 // object.
170 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
171 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
172 DebugInfo.reset(new CGDebugInfo(*this));
173
174 Block.GlobalUniqueCount = 0;
175
176 if (C.getLangOpts().ObjC)
177 ObjCData.reset(new ObjCEntrypoints());
178
179 if (CodeGenOpts.hasProfileClangUse()) {
180 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
181 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
182 if (auto E = ReaderOrErr.takeError()) {
183 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
184 "Could not read profile %0: %1");
185 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
186 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
187 << EI.message();
188 });
189 } else
190 PGOReader = std::move(ReaderOrErr.get());
191 }
192
193 // If coverage mapping generation is enabled, create the
194 // CoverageMappingModuleGen object.
195 if (CodeGenOpts.CoverageMapping)
196 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
197
198 // Generate the module name hash here if needed.
199 if (CodeGenOpts.UniqueInternalLinkageNames &&
200 !getModule().getSourceFileName().empty()) {
201 std::string Path = getModule().getSourceFileName();
202 // Check if a path substitution is needed from the MacroPrefixMap.
203 for (const auto &Entry : LangOpts.MacroPrefixMap)
204 if (Path.rfind(Entry.first, 0) != std::string::npos) {
205 Path = Entry.second + Path.substr(Entry.first.size());
206 break;
207 }
208 llvm::MD5 Md5;
209 Md5.update(Path);
210 llvm::MD5::MD5Result R;
211 Md5.final(R);
212 SmallString<32> Str;
213 llvm::MD5::stringifyResult(R, Str);
214 // Convert MD5hash to Decimal. Demangler suffixes can either contain
215 // numbers or characters but not both.
216 llvm::APInt IntHash(128, Str.str(), 16);
217 // Prepend "__uniq" before the hash for tools like profilers to understand
218 // that this symbol is of internal linkage type. The "__uniq" is the
219 // pre-determined prefix that is used to tell tools that this symbol was
220 // created with -funique-internal-linakge-symbols and the tools can strip or
221 // keep the prefix as needed.
222 ModuleNameHash = (Twine(".__uniq.") +
223 Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
224 }
225 }
226
~CodeGenModule()227 CodeGenModule::~CodeGenModule() {}
228
createObjCRuntime()229 void CodeGenModule::createObjCRuntime() {
230 // This is just isGNUFamily(), but we want to force implementors of
231 // new ABIs to decide how best to do this.
232 switch (LangOpts.ObjCRuntime.getKind()) {
233 case ObjCRuntime::GNUstep:
234 case ObjCRuntime::GCC:
235 case ObjCRuntime::ObjFW:
236 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
237 return;
238
239 case ObjCRuntime::FragileMacOSX:
240 case ObjCRuntime::MacOSX:
241 case ObjCRuntime::iOS:
242 case ObjCRuntime::WatchOS:
243 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
244 return;
245 }
246 llvm_unreachable("bad runtime kind");
247 }
248
createOpenCLRuntime()249 void CodeGenModule::createOpenCLRuntime() {
250 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
251 }
252
createOpenMPRuntime()253 void CodeGenModule::createOpenMPRuntime() {
254 // Select a specialized code generation class based on the target, if any.
255 // If it does not exist use the default implementation.
256 switch (getTriple().getArch()) {
257 case llvm::Triple::nvptx:
258 case llvm::Triple::nvptx64:
259 case llvm::Triple::amdgcn:
260 assert(getLangOpts().OpenMPIsDevice &&
261 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
262 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
263 break;
264 default:
265 if (LangOpts.OpenMPSimd)
266 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
267 else
268 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
269 break;
270 }
271 }
272
createCUDARuntime()273 void CodeGenModule::createCUDARuntime() {
274 CUDARuntime.reset(CreateNVCUDARuntime(*this));
275 }
276
createHLSLRuntime()277 void CodeGenModule::createHLSLRuntime() {
278 HLSLRuntime.reset(new CGHLSLRuntime(*this));
279 }
280
addReplacement(StringRef Name,llvm::Constant * C)281 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
282 Replacements[Name] = C;
283 }
284
applyReplacements()285 void CodeGenModule::applyReplacements() {
286 for (auto &I : Replacements) {
287 StringRef MangledName = I.first();
288 llvm::Constant *Replacement = I.second;
289 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
290 if (!Entry)
291 continue;
292 auto *OldF = cast<llvm::Function>(Entry);
293 auto *NewF = dyn_cast<llvm::Function>(Replacement);
294 if (!NewF) {
295 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
296 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
297 } else {
298 auto *CE = cast<llvm::ConstantExpr>(Replacement);
299 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
300 CE->getOpcode() == llvm::Instruction::GetElementPtr);
301 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
302 }
303 }
304
305 // Replace old with new, but keep the old order.
306 OldF->replaceAllUsesWith(Replacement);
307 if (NewF) {
308 NewF->removeFromParent();
309 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
310 NewF);
311 }
312 OldF->eraseFromParent();
313 }
314 }
315
addGlobalValReplacement(llvm::GlobalValue * GV,llvm::Constant * C)316 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
317 GlobalValReplacements.push_back(std::make_pair(GV, C));
318 }
319
applyGlobalValReplacements()320 void CodeGenModule::applyGlobalValReplacements() {
321 for (auto &I : GlobalValReplacements) {
322 llvm::GlobalValue *GV = I.first;
323 llvm::Constant *C = I.second;
324
325 GV->replaceAllUsesWith(C);
326 GV->eraseFromParent();
327 }
328 }
329
330 // This is only used in aliases that we created and we know they have a
331 // linear structure.
getAliasedGlobal(const llvm::GlobalValue * GV)332 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
333 const llvm::Constant *C;
334 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
335 C = GA->getAliasee();
336 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
337 C = GI->getResolver();
338 else
339 return GV;
340
341 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
342 if (!AliaseeGV)
343 return nullptr;
344
345 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
346 if (FinalGV == GV)
347 return nullptr;
348
349 return FinalGV;
350 }
351
checkAliasedGlobal(DiagnosticsEngine & Diags,SourceLocation Location,bool IsIFunc,const llvm::GlobalValue * Alias,const llvm::GlobalValue * & GV)352 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
353 SourceLocation Location, bool IsIFunc,
354 const llvm::GlobalValue *Alias,
355 const llvm::GlobalValue *&GV) {
356 GV = getAliasedGlobal(Alias);
357 if (!GV) {
358 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
359 return false;
360 }
361
362 if (GV->isDeclaration()) {
363 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
364 return false;
365 }
366
367 if (IsIFunc) {
368 // Check resolver function type.
369 const auto *F = dyn_cast<llvm::Function>(GV);
370 if (!F) {
371 Diags.Report(Location, diag::err_alias_to_undefined)
372 << IsIFunc << IsIFunc;
373 return false;
374 }
375
376 llvm::FunctionType *FTy = F->getFunctionType();
377 if (!FTy->getReturnType()->isPointerTy()) {
378 Diags.Report(Location, diag::err_ifunc_resolver_return);
379 return false;
380 }
381 }
382
383 return true;
384 }
385
checkAliases()386 void CodeGenModule::checkAliases() {
387 // Check if the constructed aliases are well formed. It is really unfortunate
388 // that we have to do this in CodeGen, but we only construct mangled names
389 // and aliases during codegen.
390 bool Error = false;
391 DiagnosticsEngine &Diags = getDiags();
392 for (const GlobalDecl &GD : Aliases) {
393 const auto *D = cast<ValueDecl>(GD.getDecl());
394 SourceLocation Location;
395 bool IsIFunc = D->hasAttr<IFuncAttr>();
396 if (const Attr *A = D->getDefiningAttr())
397 Location = A->getLocation();
398 else
399 llvm_unreachable("Not an alias or ifunc?");
400
401 StringRef MangledName = getMangledName(GD);
402 llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
403 const llvm::GlobalValue *GV = nullptr;
404 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
405 Error = true;
406 continue;
407 }
408
409 llvm::Constant *Aliasee =
410 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
411 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
412
413 llvm::GlobalValue *AliaseeGV;
414 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
415 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
416 else
417 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
418
419 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
420 StringRef AliasSection = SA->getName();
421 if (AliasSection != AliaseeGV->getSection())
422 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
423 << AliasSection << IsIFunc << IsIFunc;
424 }
425
426 // We have to handle alias to weak aliases in here. LLVM itself disallows
427 // this since the object semantics would not match the IL one. For
428 // compatibility with gcc we implement it by just pointing the alias
429 // to its aliasee's aliasee. We also warn, since the user is probably
430 // expecting the link to be weak.
431 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
432 if (GA->isInterposable()) {
433 Diags.Report(Location, diag::warn_alias_to_weak_alias)
434 << GV->getName() << GA->getName() << IsIFunc;
435 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
436 GA->getAliasee(), Alias->getType());
437
438 if (IsIFunc)
439 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
440 else
441 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
442 }
443 }
444 }
445 if (!Error)
446 return;
447
448 for (const GlobalDecl &GD : Aliases) {
449 StringRef MangledName = getMangledName(GD);
450 llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
451 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
452 Alias->eraseFromParent();
453 }
454 }
455
clear()456 void CodeGenModule::clear() {
457 DeferredDeclsToEmit.clear();
458 EmittedDeferredDecls.clear();
459 if (OpenMPRuntime)
460 OpenMPRuntime->clear();
461 }
462
reportDiagnostics(DiagnosticsEngine & Diags,StringRef MainFile)463 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
464 StringRef MainFile) {
465 if (!hasDiagnostics())
466 return;
467 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
468 if (MainFile.empty())
469 MainFile = "<stdin>";
470 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
471 } else {
472 if (Mismatched > 0)
473 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
474
475 if (Missing > 0)
476 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
477 }
478 }
479
setVisibilityFromDLLStorageClass(const clang::LangOptions & LO,llvm::Module & M)480 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
481 llvm::Module &M) {
482 if (!LO.VisibilityFromDLLStorageClass)
483 return;
484
485 llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
486 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
487 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
488 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
489 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
490 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
491 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
492 CodeGenModule::GetLLVMVisibility(
493 LO.getExternDeclNoDLLStorageClassVisibility());
494
495 for (llvm::GlobalValue &GV : M.global_values()) {
496 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
497 continue;
498
499 // Reset DSO locality before setting the visibility. This removes
500 // any effects that visibility options and annotations may have
501 // had on the DSO locality. Setting the visibility will implicitly set
502 // appropriate globals to DSO Local; however, this will be pessimistic
503 // w.r.t. to the normal compiler IRGen.
504 GV.setDSOLocal(false);
505
506 if (GV.isDeclarationForLinker()) {
507 GV.setVisibility(GV.getDLLStorageClass() ==
508 llvm::GlobalValue::DLLImportStorageClass
509 ? ExternDeclDLLImportVisibility
510 : ExternDeclNoDLLStorageClassVisibility);
511 } else {
512 GV.setVisibility(GV.getDLLStorageClass() ==
513 llvm::GlobalValue::DLLExportStorageClass
514 ? DLLExportVisibility
515 : NoDLLStorageClassVisibility);
516 }
517
518 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
519 }
520 }
521
Release()522 void CodeGenModule::Release() {
523 Module *Primary = getContext().getModuleForCodeGen();
524 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
525 EmitModuleInitializers(Primary);
526 EmitDeferred();
527 DeferredDecls.insert(EmittedDeferredDecls.begin(),
528 EmittedDeferredDecls.end());
529 EmittedDeferredDecls.clear();
530 EmitVTablesOpportunistically();
531 applyGlobalValReplacements();
532 applyReplacements();
533 emitMultiVersionFunctions();
534 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
535 EmitCXXModuleInitFunc(Primary);
536 else
537 EmitCXXGlobalInitFunc();
538 EmitCXXGlobalCleanUpFunc();
539 registerGlobalDtorsWithAtExit();
540 EmitCXXThreadLocalInitFunc();
541 if (ObjCRuntime)
542 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
543 AddGlobalCtor(ObjCInitFunction);
544 if (Context.getLangOpts().CUDA && CUDARuntime) {
545 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
546 AddGlobalCtor(CudaCtorFunction);
547 }
548 if (OpenMPRuntime) {
549 if (llvm::Function *OpenMPRequiresDirectiveRegFun =
550 OpenMPRuntime->emitRequiresDirectiveRegFun()) {
551 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
552 }
553 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
554 OpenMPRuntime->clear();
555 }
556 if (PGOReader) {
557 getModule().setProfileSummary(
558 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
559 llvm::ProfileSummary::PSK_Instr);
560 if (PGOStats.hasDiagnostics())
561 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
562 }
563 EmitCtorList(GlobalCtors, "llvm.global_ctors");
564 EmitCtorList(GlobalDtors, "llvm.global_dtors");
565 EmitGlobalAnnotations();
566 EmitStaticExternCAliases();
567 checkAliases();
568 EmitDeferredUnusedCoverageMappings();
569 CodeGenPGO(*this).setValueProfilingFlag(getModule());
570 if (CoverageMapping)
571 CoverageMapping->emit();
572 if (CodeGenOpts.SanitizeCfiCrossDso) {
573 CodeGenFunction(*this).EmitCfiCheckFail();
574 CodeGenFunction(*this).EmitCfiCheckStub();
575 }
576 emitAtAvailableLinkGuard();
577 if (Context.getTargetInfo().getTriple().isWasm())
578 EmitMainVoidAlias();
579
580 if (getTriple().isAMDGPU()) {
581 // Emit reference of __amdgpu_device_library_preserve_asan_functions to
582 // preserve ASAN functions in bitcode libraries.
583 if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
584 auto *FT = llvm::FunctionType::get(VoidTy, {});
585 auto *F = llvm::Function::Create(
586 FT, llvm::GlobalValue::ExternalLinkage,
587 "__amdgpu_device_library_preserve_asan_functions", &getModule());
588 auto *Var = new llvm::GlobalVariable(
589 getModule(), FT->getPointerTo(),
590 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
591 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
592 llvm::GlobalVariable::NotThreadLocal);
593 addCompilerUsedGlobal(Var);
594 }
595 // Emit amdgpu_code_object_version module flag, which is code object version
596 // times 100.
597 // ToDo: Enable module flag for all code object version when ROCm device
598 // library is ready.
599 if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
600 getModule().addModuleFlag(llvm::Module::Error,
601 "amdgpu_code_object_version",
602 getTarget().getTargetOpts().CodeObjectVersion);
603 }
604 }
605
606 // Emit a global array containing all external kernels or device variables
607 // used by host functions and mark it as used for CUDA/HIP. This is necessary
608 // to get kernels or device variables in archives linked in even if these
609 // kernels or device variables are only used in host functions.
610 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
611 SmallVector<llvm::Constant *, 8> UsedArray;
612 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
613 GlobalDecl GD;
614 if (auto *FD = dyn_cast<FunctionDecl>(D))
615 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
616 else
617 GD = GlobalDecl(D);
618 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
619 GetAddrOfGlobal(GD), Int8PtrTy));
620 }
621
622 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
623
624 auto *GV = new llvm::GlobalVariable(
625 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
626 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
627 addCompilerUsedGlobal(GV);
628 }
629
630 emitLLVMUsed();
631 if (SanStats)
632 SanStats->finish();
633
634 if (CodeGenOpts.Autolink &&
635 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
636 EmitModuleLinkOptions();
637 }
638
639 // On ELF we pass the dependent library specifiers directly to the linker
640 // without manipulating them. This is in contrast to other platforms where
641 // they are mapped to a specific linker option by the compiler. This
642 // difference is a result of the greater variety of ELF linkers and the fact
643 // that ELF linkers tend to handle libraries in a more complicated fashion
644 // than on other platforms. This forces us to defer handling the dependent
645 // libs to the linker.
646 //
647 // CUDA/HIP device and host libraries are different. Currently there is no
648 // way to differentiate dependent libraries for host or device. Existing
649 // usage of #pragma comment(lib, *) is intended for host libraries on
650 // Windows. Therefore emit llvm.dependent-libraries only for host.
651 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
652 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
653 for (auto *MD : ELFDependentLibraries)
654 NMD->addOperand(MD);
655 }
656
657 // Record mregparm value now so it is visible through rest of codegen.
658 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
659 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
660 CodeGenOpts.NumRegisterParameters);
661
662 if (CodeGenOpts.DwarfVersion) {
663 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
664 CodeGenOpts.DwarfVersion);
665 }
666
667 if (CodeGenOpts.Dwarf64)
668 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
669
670 if (Context.getLangOpts().SemanticInterposition)
671 // Require various optimization to respect semantic interposition.
672 getModule().setSemanticInterposition(true);
673
674 if (CodeGenOpts.EmitCodeView) {
675 // Indicate that we want CodeView in the metadata.
676 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
677 }
678 if (CodeGenOpts.CodeViewGHash) {
679 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
680 }
681 if (CodeGenOpts.ControlFlowGuard) {
682 // Function ID tables and checks for Control Flow Guard (cfguard=2).
683 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
684 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
685 // Function ID tables for Control Flow Guard (cfguard=1).
686 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
687 }
688 if (CodeGenOpts.EHContGuard) {
689 // Function ID tables for EH Continuation Guard.
690 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
691 }
692 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
693 // We don't support LTO with 2 with different StrictVTablePointers
694 // FIXME: we could support it by stripping all the information introduced
695 // by StrictVTablePointers.
696
697 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
698
699 llvm::Metadata *Ops[2] = {
700 llvm::MDString::get(VMContext, "StrictVTablePointers"),
701 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
702 llvm::Type::getInt32Ty(VMContext), 1))};
703
704 getModule().addModuleFlag(llvm::Module::Require,
705 "StrictVTablePointersRequirement",
706 llvm::MDNode::get(VMContext, Ops));
707 }
708 if (getModuleDebugInfo())
709 // We support a single version in the linked module. The LLVM
710 // parser will drop debug info with a different version number
711 // (and warn about it, too).
712 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
713 llvm::DEBUG_METADATA_VERSION);
714
715 // We need to record the widths of enums and wchar_t, so that we can generate
716 // the correct build attributes in the ARM backend. wchar_size is also used by
717 // TargetLibraryInfo.
718 uint64_t WCharWidth =
719 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
720 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
721
722 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
723 if ( Arch == llvm::Triple::arm
724 || Arch == llvm::Triple::armeb
725 || Arch == llvm::Triple::thumb
726 || Arch == llvm::Triple::thumbeb) {
727 // The minimum width of an enum in bytes
728 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
729 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
730 }
731
732 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
733 StringRef ABIStr = Target.getABI();
734 llvm::LLVMContext &Ctx = TheModule.getContext();
735 getModule().addModuleFlag(llvm::Module::Error, "target-abi",
736 llvm::MDString::get(Ctx, ABIStr));
737 }
738
739 if (CodeGenOpts.SanitizeCfiCrossDso) {
740 // Indicate that we want cross-DSO control flow integrity checks.
741 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
742 }
743
744 if (CodeGenOpts.WholeProgramVTables) {
745 // Indicate whether VFE was enabled for this module, so that the
746 // vcall_visibility metadata added under whole program vtables is handled
747 // appropriately in the optimizer.
748 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
749 CodeGenOpts.VirtualFunctionElimination);
750 }
751
752 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
753 getModule().addModuleFlag(llvm::Module::Override,
754 "CFI Canonical Jump Tables",
755 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
756 }
757
758 if (CodeGenOpts.CFProtectionReturn &&
759 Target.checkCFProtectionReturnSupported(getDiags())) {
760 // Indicate that we want to instrument return control flow protection.
761 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
762 1);
763 }
764
765 if (CodeGenOpts.CFProtectionBranch &&
766 Target.checkCFProtectionBranchSupported(getDiags())) {
767 // Indicate that we want to instrument branch control flow protection.
768 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
769 1);
770 }
771
772 if (CodeGenOpts.IBTSeal)
773 getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
774
775 if (CodeGenOpts.FunctionReturnThunks)
776 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
777
778 // Add module metadata for return address signing (ignoring
779 // non-leaf/all) and stack tagging. These are actually turned on by function
780 // attributes, but we use module metadata to emit build attributes. This is
781 // needed for LTO, where the function attributes are inside bitcode
782 // serialised into a global variable by the time build attributes are
783 // emitted, so we can't access them. LTO objects could be compiled with
784 // different flags therefore module flags are set to "Min" behavior to achieve
785 // the same end result of the normal build where e.g BTI is off if any object
786 // doesn't support it.
787 if (Context.getTargetInfo().hasFeature("ptrauth") &&
788 LangOpts.getSignReturnAddressScope() !=
789 LangOptions::SignReturnAddressScopeKind::None)
790 getModule().addModuleFlag(llvm::Module::Override,
791 "sign-return-address-buildattr", 1);
792 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
793 getModule().addModuleFlag(llvm::Module::Override,
794 "tag-stack-memory-buildattr", 1);
795
796 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
797 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
798 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
799 Arch == llvm::Triple::aarch64_be) {
800 if (LangOpts.BranchTargetEnforcement)
801 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
802 1);
803 if (LangOpts.hasSignReturnAddress())
804 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
805 if (LangOpts.isSignReturnAddressScopeAll())
806 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
807 1);
808 if (!LangOpts.isSignReturnAddressWithAKey())
809 getModule().addModuleFlag(llvm::Module::Min,
810 "sign-return-address-with-bkey", 1);
811 }
812
813 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
814 llvm::LLVMContext &Ctx = TheModule.getContext();
815 getModule().addModuleFlag(
816 llvm::Module::Error, "MemProfProfileFilename",
817 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
818 }
819
820 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
821 // Indicate whether __nvvm_reflect should be configured to flush denormal
822 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
823 // property.)
824 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
825 CodeGenOpts.FP32DenormalMode.Output !=
826 llvm::DenormalMode::IEEE);
827 }
828
829 if (LangOpts.EHAsynch)
830 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
831
832 // Indicate whether this Module was compiled with -fopenmp
833 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
834 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
835 if (getLangOpts().OpenMPIsDevice)
836 getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
837 LangOpts.OpenMP);
838
839 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
840 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
841 EmitOpenCLMetadata();
842 // Emit SPIR version.
843 if (getTriple().isSPIR()) {
844 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
845 // opencl.spir.version named metadata.
846 // C++ for OpenCL has a distinct mapping for version compatibility with
847 // OpenCL.
848 auto Version = LangOpts.getOpenCLCompatibleVersion();
849 llvm::Metadata *SPIRVerElts[] = {
850 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
851 Int32Ty, Version / 100)),
852 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
853 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
854 llvm::NamedMDNode *SPIRVerMD =
855 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
856 llvm::LLVMContext &Ctx = TheModule.getContext();
857 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
858 }
859 }
860
861 // HLSL related end of code gen work items.
862 if (LangOpts.HLSL)
863 getHLSLRuntime().finishCodeGen();
864
865 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
866 assert(PLevel < 3 && "Invalid PIC Level");
867 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
868 if (Context.getLangOpts().PIE)
869 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
870 }
871
872 if (getCodeGenOpts().CodeModel.size() > 0) {
873 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
874 .Case("tiny", llvm::CodeModel::Tiny)
875 .Case("small", llvm::CodeModel::Small)
876 .Case("kernel", llvm::CodeModel::Kernel)
877 .Case("medium", llvm::CodeModel::Medium)
878 .Case("large", llvm::CodeModel::Large)
879 .Default(~0u);
880 if (CM != ~0u) {
881 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
882 getModule().setCodeModel(codeModel);
883 }
884 }
885
886 if (CodeGenOpts.NoPLT)
887 getModule().setRtLibUseGOT();
888 if (CodeGenOpts.UnwindTables)
889 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
890
891 switch (CodeGenOpts.getFramePointer()) {
892 case CodeGenOptions::FramePointerKind::None:
893 // 0 ("none") is the default.
894 break;
895 case CodeGenOptions::FramePointerKind::NonLeaf:
896 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
897 break;
898 case CodeGenOptions::FramePointerKind::All:
899 getModule().setFramePointer(llvm::FramePointerKind::All);
900 break;
901 }
902
903 SimplifyPersonality();
904
905 if (getCodeGenOpts().EmitDeclMetadata)
906 EmitDeclMetadata();
907
908 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
909 EmitCoverageFile();
910
911 if (CGDebugInfo *DI = getModuleDebugInfo())
912 DI->finalize();
913
914 if (getCodeGenOpts().EmitVersionIdentMetadata)
915 EmitVersionIdentMetadata();
916
917 if (!getCodeGenOpts().RecordCommandLine.empty())
918 EmitCommandLineMetadata();
919
920 if (!getCodeGenOpts().StackProtectorGuard.empty())
921 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
922 if (!getCodeGenOpts().StackProtectorGuardReg.empty())
923 getModule().setStackProtectorGuardReg(
924 getCodeGenOpts().StackProtectorGuardReg);
925 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
926 getModule().setStackProtectorGuardSymbol(
927 getCodeGenOpts().StackProtectorGuardSymbol);
928 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
929 getModule().setStackProtectorGuardOffset(
930 getCodeGenOpts().StackProtectorGuardOffset);
931 if (getCodeGenOpts().StackAlignment)
932 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
933 if (getCodeGenOpts().SkipRaxSetup)
934 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
935
936 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
937
938 EmitBackendOptionsMetadata(getCodeGenOpts());
939
940 // If there is device offloading code embed it in the host now.
941 EmbedObject(&getModule(), CodeGenOpts, getDiags());
942
943 // Set visibility from DLL storage class
944 // We do this at the end of LLVM IR generation; after any operation
945 // that might affect the DLL storage class or the visibility, and
946 // before anything that might act on these.
947 setVisibilityFromDLLStorageClass(LangOpts, getModule());
948 }
949
EmitOpenCLMetadata()950 void CodeGenModule::EmitOpenCLMetadata() {
951 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
952 // opencl.ocl.version named metadata node.
953 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
954 auto Version = LangOpts.getOpenCLCompatibleVersion();
955 llvm::Metadata *OCLVerElts[] = {
956 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
957 Int32Ty, Version / 100)),
958 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
959 Int32Ty, (Version % 100) / 10))};
960 llvm::NamedMDNode *OCLVerMD =
961 TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
962 llvm::LLVMContext &Ctx = TheModule.getContext();
963 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
964 }
965
EmitBackendOptionsMetadata(const CodeGenOptions CodeGenOpts)966 void CodeGenModule::EmitBackendOptionsMetadata(
967 const CodeGenOptions CodeGenOpts) {
968 switch (getTriple().getArch()) {
969 default:
970 break;
971 case llvm::Triple::riscv32:
972 case llvm::Triple::riscv64:
973 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
974 CodeGenOpts.SmallDataLimit);
975 break;
976 }
977 }
978
UpdateCompletedType(const TagDecl * TD)979 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
980 // Make sure that this type is translated.
981 Types.UpdateCompletedType(TD);
982 }
983
RefreshTypeCacheForClass(const CXXRecordDecl * RD)984 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
985 // Make sure that this type is translated.
986 Types.RefreshTypeCacheForClass(RD);
987 }
988
getTBAATypeInfo(QualType QTy)989 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
990 if (!TBAA)
991 return nullptr;
992 return TBAA->getTypeInfo(QTy);
993 }
994
getTBAAAccessInfo(QualType AccessType)995 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
996 if (!TBAA)
997 return TBAAAccessInfo();
998 if (getLangOpts().CUDAIsDevice) {
999 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1000 // access info.
1001 if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1002 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1003 nullptr)
1004 return TBAAAccessInfo();
1005 } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1006 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1007 nullptr)
1008 return TBAAAccessInfo();
1009 }
1010 }
1011 return TBAA->getAccessInfo(AccessType);
1012 }
1013
1014 TBAAAccessInfo
getTBAAVTablePtrAccessInfo(llvm::Type * VTablePtrType)1015 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1016 if (!TBAA)
1017 return TBAAAccessInfo();
1018 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1019 }
1020
getTBAAStructInfo(QualType QTy)1021 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1022 if (!TBAA)
1023 return nullptr;
1024 return TBAA->getTBAAStructInfo(QTy);
1025 }
1026
getTBAABaseTypeInfo(QualType QTy)1027 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1028 if (!TBAA)
1029 return nullptr;
1030 return TBAA->getBaseTypeInfo(QTy);
1031 }
1032
getTBAAAccessTagInfo(TBAAAccessInfo Info)1033 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1034 if (!TBAA)
1035 return nullptr;
1036 return TBAA->getAccessTagInfo(Info);
1037 }
1038
mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,TBAAAccessInfo TargetInfo)1039 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1040 TBAAAccessInfo TargetInfo) {
1041 if (!TBAA)
1042 return TBAAAccessInfo();
1043 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1044 }
1045
1046 TBAAAccessInfo
mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,TBAAAccessInfo InfoB)1047 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1048 TBAAAccessInfo InfoB) {
1049 if (!TBAA)
1050 return TBAAAccessInfo();
1051 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1052 }
1053
1054 TBAAAccessInfo
mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,TBAAAccessInfo SrcInfo)1055 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1056 TBAAAccessInfo SrcInfo) {
1057 if (!TBAA)
1058 return TBAAAccessInfo();
1059 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1060 }
1061
DecorateInstructionWithTBAA(llvm::Instruction * Inst,TBAAAccessInfo TBAAInfo)1062 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1063 TBAAAccessInfo TBAAInfo) {
1064 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1065 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1066 }
1067
DecorateInstructionWithInvariantGroup(llvm::Instruction * I,const CXXRecordDecl * RD)1068 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1069 llvm::Instruction *I, const CXXRecordDecl *RD) {
1070 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1071 llvm::MDNode::get(getLLVMContext(), {}));
1072 }
1073
Error(SourceLocation loc,StringRef message)1074 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1075 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1076 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1077 }
1078
1079 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1080 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1081 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1082 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1083 "cannot compile this %0 yet");
1084 std::string Msg = Type;
1085 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1086 << Msg << S->getSourceRange();
1087 }
1088
1089 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1090 /// specified decl yet.
ErrorUnsupported(const Decl * D,const char * Type)1091 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1092 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1093 "cannot compile this %0 yet");
1094 std::string Msg = Type;
1095 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1096 }
1097
getSize(CharUnits size)1098 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1099 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1100 }
1101
setGlobalVisibility(llvm::GlobalValue * GV,const NamedDecl * D) const1102 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1103 const NamedDecl *D) const {
1104 if (GV->hasDLLImportStorageClass())
1105 return;
1106 // Internal definitions always have default visibility.
1107 if (GV->hasLocalLinkage()) {
1108 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1109 return;
1110 }
1111 if (!D)
1112 return;
1113 // Set visibility for definitions, and for declarations if requested globally
1114 // or set explicitly.
1115 LinkageInfo LV = D->getLinkageAndVisibility();
1116 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1117 !GV->isDeclarationForLinker())
1118 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1119 }
1120
shouldAssumeDSOLocal(const CodeGenModule & CGM,llvm::GlobalValue * GV)1121 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1122 llvm::GlobalValue *GV) {
1123 if (GV->hasLocalLinkage())
1124 return true;
1125
1126 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1127 return true;
1128
1129 // DLLImport explicitly marks the GV as external.
1130 if (GV->hasDLLImportStorageClass())
1131 return false;
1132
1133 const llvm::Triple &TT = CGM.getTriple();
1134 if (TT.isWindowsGNUEnvironment()) {
1135 // In MinGW, variables without DLLImport can still be automatically
1136 // imported from a DLL by the linker; don't mark variables that
1137 // potentially could come from another DLL as DSO local.
1138
1139 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1140 // (and this actually happens in the public interface of libstdc++), so
1141 // such variables can't be marked as DSO local. (Native TLS variables
1142 // can't be dllimported at all, though.)
1143 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1144 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1145 return false;
1146 }
1147
1148 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1149 // remain unresolved in the link, they can be resolved to zero, which is
1150 // outside the current DSO.
1151 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1152 return false;
1153
1154 // Every other GV is local on COFF.
1155 // Make an exception for windows OS in the triple: Some firmware builds use
1156 // *-win32-macho triples. This (accidentally?) produced windows relocations
1157 // without GOT tables in older clang versions; Keep this behaviour.
1158 // FIXME: even thread local variables?
1159 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1160 return true;
1161
1162 // Only handle COFF and ELF for now.
1163 if (!TT.isOSBinFormatELF())
1164 return false;
1165
1166 // If this is not an executable, don't assume anything is local.
1167 const auto &CGOpts = CGM.getCodeGenOpts();
1168 llvm::Reloc::Model RM = CGOpts.RelocationModel;
1169 const auto &LOpts = CGM.getLangOpts();
1170 if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1171 // On ELF, if -fno-semantic-interposition is specified and the target
1172 // supports local aliases, there will be neither CC1
1173 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1174 // dso_local on the function if using a local alias is preferable (can avoid
1175 // PLT indirection).
1176 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1177 return false;
1178 return !(CGM.getLangOpts().SemanticInterposition ||
1179 CGM.getLangOpts().HalfNoSemanticInterposition);
1180 }
1181
1182 // A definition cannot be preempted from an executable.
1183 if (!GV->isDeclarationForLinker())
1184 return true;
1185
1186 // Most PIC code sequences that assume that a symbol is local cannot produce a
1187 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1188 // depended, it seems worth it to handle it here.
1189 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1190 return false;
1191
1192 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1193 if (TT.isPPC64())
1194 return false;
1195
1196 if (CGOpts.DirectAccessExternalData) {
1197 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1198 // for non-thread-local variables. If the symbol is not defined in the
1199 // executable, a copy relocation will be needed at link time. dso_local is
1200 // excluded for thread-local variables because they generally don't support
1201 // copy relocations.
1202 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1203 if (!Var->isThreadLocal())
1204 return true;
1205
1206 // -fno-pic sets dso_local on a function declaration to allow direct
1207 // accesses when taking its address (similar to a data symbol). If the
1208 // function is not defined in the executable, a canonical PLT entry will be
1209 // needed at link time. -fno-direct-access-external-data can avoid the
1210 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1211 // it could just cause trouble without providing perceptible benefits.
1212 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1213 return true;
1214 }
1215
1216 // If we can use copy relocations we can assume it is local.
1217
1218 // Otherwise don't assume it is local.
1219 return false;
1220 }
1221
setDSOLocal(llvm::GlobalValue * GV) const1222 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1223 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1224 }
1225
setDLLImportDLLExport(llvm::GlobalValue * GV,GlobalDecl GD) const1226 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1227 GlobalDecl GD) const {
1228 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1229 // C++ destructors have a few C++ ABI specific special cases.
1230 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1231 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1232 return;
1233 }
1234 setDLLImportDLLExport(GV, D);
1235 }
1236
setDLLImportDLLExport(llvm::GlobalValue * GV,const NamedDecl * D) const1237 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1238 const NamedDecl *D) const {
1239 if (D && D->isExternallyVisible()) {
1240 if (D->hasAttr<DLLImportAttr>())
1241 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1242 else if ((D->hasAttr<DLLExportAttr>() ||
1243 shouldMapVisibilityToDLLExport(D)) &&
1244 !GV->isDeclarationForLinker())
1245 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1246 }
1247 }
1248
setGVProperties(llvm::GlobalValue * GV,GlobalDecl GD) const1249 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1250 GlobalDecl GD) const {
1251 setDLLImportDLLExport(GV, GD);
1252 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1253 }
1254
setGVProperties(llvm::GlobalValue * GV,const NamedDecl * D) const1255 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1256 const NamedDecl *D) const {
1257 setDLLImportDLLExport(GV, D);
1258 setGVPropertiesAux(GV, D);
1259 }
1260
setGVPropertiesAux(llvm::GlobalValue * GV,const NamedDecl * D) const1261 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1262 const NamedDecl *D) const {
1263 setGlobalVisibility(GV, D);
1264 setDSOLocal(GV);
1265 GV->setPartition(CodeGenOpts.SymbolPartition);
1266 }
1267
GetLLVMTLSModel(StringRef S)1268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1269 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1270 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1271 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1272 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1273 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1274 }
1275
1276 llvm::GlobalVariable::ThreadLocalMode
GetDefaultLLVMTLSModel() const1277 CodeGenModule::GetDefaultLLVMTLSModel() const {
1278 switch (CodeGenOpts.getDefaultTLSModel()) {
1279 case CodeGenOptions::GeneralDynamicTLSModel:
1280 return llvm::GlobalVariable::GeneralDynamicTLSModel;
1281 case CodeGenOptions::LocalDynamicTLSModel:
1282 return llvm::GlobalVariable::LocalDynamicTLSModel;
1283 case CodeGenOptions::InitialExecTLSModel:
1284 return llvm::GlobalVariable::InitialExecTLSModel;
1285 case CodeGenOptions::LocalExecTLSModel:
1286 return llvm::GlobalVariable::LocalExecTLSModel;
1287 }
1288 llvm_unreachable("Invalid TLS model!");
1289 }
1290
setTLSMode(llvm::GlobalValue * GV,const VarDecl & D) const1291 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1292 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1293
1294 llvm::GlobalValue::ThreadLocalMode TLM;
1295 TLM = GetDefaultLLVMTLSModel();
1296
1297 // Override the TLS model if it is explicitly specified.
1298 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1299 TLM = GetLLVMTLSModel(Attr->getModel());
1300 }
1301
1302 GV->setThreadLocalMode(TLM);
1303 }
1304
getCPUSpecificMangling(const CodeGenModule & CGM,StringRef Name)1305 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1306 StringRef Name) {
1307 const TargetInfo &Target = CGM.getTarget();
1308 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1309 }
1310
AppendCPUSpecificCPUDispatchMangling(const CodeGenModule & CGM,const CPUSpecificAttr * Attr,unsigned CPUIndex,raw_ostream & Out)1311 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1312 const CPUSpecificAttr *Attr,
1313 unsigned CPUIndex,
1314 raw_ostream &Out) {
1315 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1316 // supported.
1317 if (Attr)
1318 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1319 else if (CGM.getTarget().supportsIFunc())
1320 Out << ".resolver";
1321 }
1322
AppendTargetMangling(const CodeGenModule & CGM,const TargetAttr * Attr,raw_ostream & Out)1323 static void AppendTargetMangling(const CodeGenModule &CGM,
1324 const TargetAttr *Attr, raw_ostream &Out) {
1325 if (Attr->isDefaultVersion())
1326 return;
1327
1328 Out << '.';
1329 const TargetInfo &Target = CGM.getTarget();
1330 ParsedTargetAttr Info =
1331 Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1332 // Multiversioning doesn't allow "no-${feature}", so we can
1333 // only have "+" prefixes here.
1334 assert(LHS.startswith("+") && RHS.startswith("+") &&
1335 "Features should always have a prefix.");
1336 return Target.multiVersionSortPriority(LHS.substr(1)) >
1337 Target.multiVersionSortPriority(RHS.substr(1));
1338 });
1339
1340 bool IsFirst = true;
1341
1342 if (!Info.Architecture.empty()) {
1343 IsFirst = false;
1344 Out << "arch_" << Info.Architecture;
1345 }
1346
1347 for (StringRef Feat : Info.Features) {
1348 if (!IsFirst)
1349 Out << '_';
1350 IsFirst = false;
1351 Out << Feat.substr(1);
1352 }
1353 }
1354
1355 // Returns true if GD is a function decl with internal linkage and
1356 // needs a unique suffix after the mangled name.
isUniqueInternalLinkageDecl(GlobalDecl GD,CodeGenModule & CGM)1357 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1358 CodeGenModule &CGM) {
1359 const Decl *D = GD.getDecl();
1360 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1361 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1362 }
1363
AppendTargetClonesMangling(const CodeGenModule & CGM,const TargetClonesAttr * Attr,unsigned VersionIndex,raw_ostream & Out)1364 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1365 const TargetClonesAttr *Attr,
1366 unsigned VersionIndex,
1367 raw_ostream &Out) {
1368 Out << '.';
1369 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1370 if (FeatureStr.startswith("arch="))
1371 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1372 else
1373 Out << FeatureStr;
1374
1375 Out << '.' << Attr->getMangledIndex(VersionIndex);
1376 }
1377
getMangledNameImpl(CodeGenModule & CGM,GlobalDecl GD,const NamedDecl * ND,bool OmitMultiVersionMangling=false)1378 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1379 const NamedDecl *ND,
1380 bool OmitMultiVersionMangling = false) {
1381 SmallString<256> Buffer;
1382 llvm::raw_svector_ostream Out(Buffer);
1383 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1384 if (!CGM.getModuleNameHash().empty())
1385 MC.needsUniqueInternalLinkageNames();
1386 bool ShouldMangle = MC.shouldMangleDeclName(ND);
1387 if (ShouldMangle)
1388 MC.mangleName(GD.getWithDecl(ND), Out);
1389 else {
1390 IdentifierInfo *II = ND->getIdentifier();
1391 assert(II && "Attempt to mangle unnamed decl.");
1392 const auto *FD = dyn_cast<FunctionDecl>(ND);
1393
1394 if (FD &&
1395 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1396 Out << "__regcall3__" << II->getName();
1397 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1398 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1399 Out << "__device_stub__" << II->getName();
1400 } else {
1401 Out << II->getName();
1402 }
1403 }
1404
1405 // Check if the module name hash should be appended for internal linkage
1406 // symbols. This should come before multi-version target suffixes are
1407 // appended. This is to keep the name and module hash suffix of the
1408 // internal linkage function together. The unique suffix should only be
1409 // added when name mangling is done to make sure that the final name can
1410 // be properly demangled. For example, for C functions without prototypes,
1411 // name mangling is not done and the unique suffix should not be appeneded
1412 // then.
1413 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1414 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1415 "Hash computed when not explicitly requested");
1416 Out << CGM.getModuleNameHash();
1417 }
1418
1419 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1420 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1421 switch (FD->getMultiVersionKind()) {
1422 case MultiVersionKind::CPUDispatch:
1423 case MultiVersionKind::CPUSpecific:
1424 AppendCPUSpecificCPUDispatchMangling(CGM,
1425 FD->getAttr<CPUSpecificAttr>(),
1426 GD.getMultiVersionIndex(), Out);
1427 break;
1428 case MultiVersionKind::Target:
1429 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1430 break;
1431 case MultiVersionKind::TargetClones:
1432 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1433 GD.getMultiVersionIndex(), Out);
1434 break;
1435 case MultiVersionKind::None:
1436 llvm_unreachable("None multiversion type isn't valid here");
1437 }
1438 }
1439
1440 // Make unique name for device side static file-scope variable for HIP.
1441 if (CGM.getContext().shouldExternalize(ND) &&
1442 CGM.getLangOpts().GPURelocatableDeviceCode &&
1443 CGM.getLangOpts().CUDAIsDevice)
1444 CGM.printPostfixForExternalizedDecl(Out, ND);
1445
1446 return std::string(Out.str());
1447 }
1448
UpdateMultiVersionNames(GlobalDecl GD,const FunctionDecl * FD,StringRef & CurName)1449 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1450 const FunctionDecl *FD,
1451 StringRef &CurName) {
1452 if (!FD->isMultiVersion())
1453 return;
1454
1455 // Get the name of what this would be without the 'target' attribute. This
1456 // allows us to lookup the version that was emitted when this wasn't a
1457 // multiversion function.
1458 std::string NonTargetName =
1459 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1460 GlobalDecl OtherGD;
1461 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1462 assert(OtherGD.getCanonicalDecl()
1463 .getDecl()
1464 ->getAsFunction()
1465 ->isMultiVersion() &&
1466 "Other GD should now be a multiversioned function");
1467 // OtherFD is the version of this function that was mangled BEFORE
1468 // becoming a MultiVersion function. It potentially needs to be updated.
1469 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1470 .getDecl()
1471 ->getAsFunction()
1472 ->getMostRecentDecl();
1473 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1474 // This is so that if the initial version was already the 'default'
1475 // version, we don't try to update it.
1476 if (OtherName != NonTargetName) {
1477 // Remove instead of erase, since others may have stored the StringRef
1478 // to this.
1479 const auto ExistingRecord = Manglings.find(NonTargetName);
1480 if (ExistingRecord != std::end(Manglings))
1481 Manglings.remove(&(*ExistingRecord));
1482 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1483 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1484 Result.first->first();
1485 // If this is the current decl is being created, make sure we update the name.
1486 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1487 CurName = OtherNameRef;
1488 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1489 Entry->setName(OtherName);
1490 }
1491 }
1492 }
1493
getMangledName(GlobalDecl GD)1494 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1495 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1496
1497 // Some ABIs don't have constructor variants. Make sure that base and
1498 // complete constructors get mangled the same.
1499 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1500 if (!getTarget().getCXXABI().hasConstructorVariants()) {
1501 CXXCtorType OrigCtorType = GD.getCtorType();
1502 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1503 if (OrigCtorType == Ctor_Base)
1504 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1505 }
1506 }
1507
1508 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1509 // static device variable depends on whether the variable is referenced by
1510 // a host or device host function. Therefore the mangled name cannot be
1511 // cached.
1512 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1513 auto FoundName = MangledDeclNames.find(CanonicalGD);
1514 if (FoundName != MangledDeclNames.end())
1515 return FoundName->second;
1516 }
1517
1518 // Keep the first result in the case of a mangling collision.
1519 const auto *ND = cast<NamedDecl>(GD.getDecl());
1520 std::string MangledName = getMangledNameImpl(*this, GD, ND);
1521
1522 // Ensure either we have different ABIs between host and device compilations,
1523 // says host compilation following MSVC ABI but device compilation follows
1524 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1525 // mangling should be the same after name stubbing. The later checking is
1526 // very important as the device kernel name being mangled in host-compilation
1527 // is used to resolve the device binaries to be executed. Inconsistent naming
1528 // result in undefined behavior. Even though we cannot check that naming
1529 // directly between host- and device-compilations, the host- and
1530 // device-mangling in host compilation could help catching certain ones.
1531 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1532 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1533 (getContext().getAuxTargetInfo() &&
1534 (getContext().getAuxTargetInfo()->getCXXABI() !=
1535 getContext().getTargetInfo().getCXXABI())) ||
1536 getCUDARuntime().getDeviceSideName(ND) ==
1537 getMangledNameImpl(
1538 *this,
1539 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1540 ND));
1541
1542 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1543 return MangledDeclNames[CanonicalGD] = Result.first->first();
1544 }
1545
getBlockMangledName(GlobalDecl GD,const BlockDecl * BD)1546 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1547 const BlockDecl *BD) {
1548 MangleContext &MangleCtx = getCXXABI().getMangleContext();
1549 const Decl *D = GD.getDecl();
1550
1551 SmallString<256> Buffer;
1552 llvm::raw_svector_ostream Out(Buffer);
1553 if (!D)
1554 MangleCtx.mangleGlobalBlock(BD,
1555 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1556 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1557 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1558 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1559 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1560 else
1561 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1562
1563 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1564 return Result.first->first();
1565 }
1566
getMangledNameDecl(StringRef Name)1567 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1568 auto it = MangledDeclNames.begin();
1569 while (it != MangledDeclNames.end()) {
1570 if (it->second == Name)
1571 return it->first;
1572 it++;
1573 }
1574 return GlobalDecl();
1575 }
1576
GetGlobalValue(StringRef Name)1577 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1578 return getModule().getNamedValue(Name);
1579 }
1580
1581 /// AddGlobalCtor - Add a function to the list that will be called before
1582 /// main() runs.
AddGlobalCtor(llvm::Function * Ctor,int Priority,llvm::Constant * AssociatedData)1583 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1584 llvm::Constant *AssociatedData) {
1585 // FIXME: Type coercion of void()* types.
1586 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1587 }
1588
1589 /// AddGlobalDtor - Add a function to the list that will be called
1590 /// when the module is unloaded.
AddGlobalDtor(llvm::Function * Dtor,int Priority,bool IsDtorAttrFunc)1591 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1592 bool IsDtorAttrFunc) {
1593 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1594 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1595 DtorsUsingAtExit[Priority].push_back(Dtor);
1596 return;
1597 }
1598
1599 // FIXME: Type coercion of void()* types.
1600 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1601 }
1602
EmitCtorList(CtorList & Fns,const char * GlobalName)1603 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1604 if (Fns.empty()) return;
1605
1606 // Ctor function type is void()*.
1607 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1608 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1609 TheModule.getDataLayout().getProgramAddressSpace());
1610
1611 // Get the type of a ctor entry, { i32, void ()*, i8* }.
1612 llvm::StructType *CtorStructTy = llvm::StructType::get(
1613 Int32Ty, CtorPFTy, VoidPtrTy);
1614
1615 // Construct the constructor and destructor arrays.
1616 ConstantInitBuilder builder(*this);
1617 auto ctors = builder.beginArray(CtorStructTy);
1618 for (const auto &I : Fns) {
1619 auto ctor = ctors.beginStruct(CtorStructTy);
1620 ctor.addInt(Int32Ty, I.Priority);
1621 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1622 if (I.AssociatedData)
1623 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1624 else
1625 ctor.addNullPointer(VoidPtrTy);
1626 ctor.finishAndAddTo(ctors);
1627 }
1628
1629 auto list =
1630 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1631 /*constant*/ false,
1632 llvm::GlobalValue::AppendingLinkage);
1633
1634 // The LTO linker doesn't seem to like it when we set an alignment
1635 // on appending variables. Take it off as a workaround.
1636 list->setAlignment(llvm::None);
1637
1638 Fns.clear();
1639 }
1640
1641 llvm::GlobalValue::LinkageTypes
getFunctionLinkage(GlobalDecl GD)1642 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1643 const auto *D = cast<FunctionDecl>(GD.getDecl());
1644
1645 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1646
1647 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1648 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1649
1650 if (isa<CXXConstructorDecl>(D) &&
1651 cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1652 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1653 // Our approach to inheriting constructors is fundamentally different from
1654 // that used by the MS ABI, so keep our inheriting constructor thunks
1655 // internal rather than trying to pick an unambiguous mangling for them.
1656 return llvm::GlobalValue::InternalLinkage;
1657 }
1658
1659 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1660 }
1661
CreateCrossDsoCfiTypeId(llvm::Metadata * MD)1662 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1663 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1664 if (!MDS) return nullptr;
1665
1666 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1667 }
1668
SetLLVMFunctionAttributes(GlobalDecl GD,const CGFunctionInfo & Info,llvm::Function * F,bool IsThunk)1669 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1670 const CGFunctionInfo &Info,
1671 llvm::Function *F, bool IsThunk) {
1672 unsigned CallingConv;
1673 llvm::AttributeList PAL;
1674 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1675 /*AttrOnCallSite=*/false, IsThunk);
1676 F->setAttributes(PAL);
1677 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1678 }
1679
removeImageAccessQualifier(std::string & TyName)1680 static void removeImageAccessQualifier(std::string& TyName) {
1681 std::string ReadOnlyQual("__read_only");
1682 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1683 if (ReadOnlyPos != std::string::npos)
1684 // "+ 1" for the space after access qualifier.
1685 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1686 else {
1687 std::string WriteOnlyQual("__write_only");
1688 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1689 if (WriteOnlyPos != std::string::npos)
1690 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1691 else {
1692 std::string ReadWriteQual("__read_write");
1693 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1694 if (ReadWritePos != std::string::npos)
1695 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1696 }
1697 }
1698 }
1699
1700 // Returns the address space id that should be produced to the
1701 // kernel_arg_addr_space metadata. This is always fixed to the ids
1702 // as specified in the SPIR 2.0 specification in order to differentiate
1703 // for example in clGetKernelArgInfo() implementation between the address
1704 // spaces with targets without unique mapping to the OpenCL address spaces
1705 // (basically all single AS CPUs).
ArgInfoAddressSpace(LangAS AS)1706 static unsigned ArgInfoAddressSpace(LangAS AS) {
1707 switch (AS) {
1708 case LangAS::opencl_global:
1709 return 1;
1710 case LangAS::opencl_constant:
1711 return 2;
1712 case LangAS::opencl_local:
1713 return 3;
1714 case LangAS::opencl_generic:
1715 return 4; // Not in SPIR 2.0 specs.
1716 case LangAS::opencl_global_device:
1717 return 5;
1718 case LangAS::opencl_global_host:
1719 return 6;
1720 default:
1721 return 0; // Assume private.
1722 }
1723 }
1724
GenKernelArgMetadata(llvm::Function * Fn,const FunctionDecl * FD,CodeGenFunction * CGF)1725 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1726 const FunctionDecl *FD,
1727 CodeGenFunction *CGF) {
1728 assert(((FD && CGF) || (!FD && !CGF)) &&
1729 "Incorrect use - FD and CGF should either be both null or not!");
1730 // Create MDNodes that represent the kernel arg metadata.
1731 // Each MDNode is a list in the form of "key", N number of values which is
1732 // the same number of values as their are kernel arguments.
1733
1734 const PrintingPolicy &Policy = Context.getPrintingPolicy();
1735
1736 // MDNode for the kernel argument address space qualifiers.
1737 SmallVector<llvm::Metadata *, 8> addressQuals;
1738
1739 // MDNode for the kernel argument access qualifiers (images only).
1740 SmallVector<llvm::Metadata *, 8> accessQuals;
1741
1742 // MDNode for the kernel argument type names.
1743 SmallVector<llvm::Metadata *, 8> argTypeNames;
1744
1745 // MDNode for the kernel argument base type names.
1746 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1747
1748 // MDNode for the kernel argument type qualifiers.
1749 SmallVector<llvm::Metadata *, 8> argTypeQuals;
1750
1751 // MDNode for the kernel argument names.
1752 SmallVector<llvm::Metadata *, 8> argNames;
1753
1754 if (FD && CGF)
1755 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1756 const ParmVarDecl *parm = FD->getParamDecl(i);
1757 // Get argument name.
1758 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1759
1760 if (!getLangOpts().OpenCL)
1761 continue;
1762 QualType ty = parm->getType();
1763 std::string typeQuals;
1764
1765 // Get image and pipe access qualifier:
1766 if (ty->isImageType() || ty->isPipeType()) {
1767 const Decl *PDecl = parm;
1768 if (auto *TD = dyn_cast<TypedefType>(ty))
1769 PDecl = TD->getDecl();
1770 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1771 if (A && A->isWriteOnly())
1772 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1773 else if (A && A->isReadWrite())
1774 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1775 else
1776 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1777 } else
1778 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1779
1780 auto getTypeSpelling = [&](QualType Ty) {
1781 auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1782
1783 if (Ty.isCanonical()) {
1784 StringRef typeNameRef = typeName;
1785 // Turn "unsigned type" to "utype"
1786 if (typeNameRef.consume_front("unsigned "))
1787 return std::string("u") + typeNameRef.str();
1788 if (typeNameRef.consume_front("signed "))
1789 return typeNameRef.str();
1790 }
1791
1792 return typeName;
1793 };
1794
1795 if (ty->isPointerType()) {
1796 QualType pointeeTy = ty->getPointeeType();
1797
1798 // Get address qualifier.
1799 addressQuals.push_back(
1800 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1801 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1802
1803 // Get argument type name.
1804 std::string typeName = getTypeSpelling(pointeeTy) + "*";
1805 std::string baseTypeName =
1806 getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1807 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1808 argBaseTypeNames.push_back(
1809 llvm::MDString::get(VMContext, baseTypeName));
1810
1811 // Get argument type qualifiers:
1812 if (ty.isRestrictQualified())
1813 typeQuals = "restrict";
1814 if (pointeeTy.isConstQualified() ||
1815 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1816 typeQuals += typeQuals.empty() ? "const" : " const";
1817 if (pointeeTy.isVolatileQualified())
1818 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1819 } else {
1820 uint32_t AddrSpc = 0;
1821 bool isPipe = ty->isPipeType();
1822 if (ty->isImageType() || isPipe)
1823 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1824
1825 addressQuals.push_back(
1826 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1827
1828 // Get argument type name.
1829 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1830 std::string typeName = getTypeSpelling(ty);
1831 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1832
1833 // Remove access qualifiers on images
1834 // (as they are inseparable from type in clang implementation,
1835 // but OpenCL spec provides a special query to get access qualifier
1836 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1837 if (ty->isImageType()) {
1838 removeImageAccessQualifier(typeName);
1839 removeImageAccessQualifier(baseTypeName);
1840 }
1841
1842 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1843 argBaseTypeNames.push_back(
1844 llvm::MDString::get(VMContext, baseTypeName));
1845
1846 if (isPipe)
1847 typeQuals = "pipe";
1848 }
1849 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1850 }
1851
1852 if (getLangOpts().OpenCL) {
1853 Fn->setMetadata("kernel_arg_addr_space",
1854 llvm::MDNode::get(VMContext, addressQuals));
1855 Fn->setMetadata("kernel_arg_access_qual",
1856 llvm::MDNode::get(VMContext, accessQuals));
1857 Fn->setMetadata("kernel_arg_type",
1858 llvm::MDNode::get(VMContext, argTypeNames));
1859 Fn->setMetadata("kernel_arg_base_type",
1860 llvm::MDNode::get(VMContext, argBaseTypeNames));
1861 Fn->setMetadata("kernel_arg_type_qual",
1862 llvm::MDNode::get(VMContext, argTypeQuals));
1863 }
1864 if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1865 getCodeGenOpts().HIPSaveKernelArgName)
1866 Fn->setMetadata("kernel_arg_name",
1867 llvm::MDNode::get(VMContext, argNames));
1868 }
1869
1870 /// Determines whether the language options require us to model
1871 /// unwind exceptions. We treat -fexceptions as mandating this
1872 /// except under the fragile ObjC ABI with only ObjC exceptions
1873 /// enabled. This means, for example, that C with -fexceptions
1874 /// enables this.
hasUnwindExceptions(const LangOptions & LangOpts)1875 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1876 // If exceptions are completely disabled, obviously this is false.
1877 if (!LangOpts.Exceptions) return false;
1878
1879 // If C++ exceptions are enabled, this is true.
1880 if (LangOpts.CXXExceptions) return true;
1881
1882 // If ObjC exceptions are enabled, this depends on the ABI.
1883 if (LangOpts.ObjCExceptions) {
1884 return LangOpts.ObjCRuntime.hasUnwindExceptions();
1885 }
1886
1887 return true;
1888 }
1889
requiresMemberFunctionPointerTypeMetadata(CodeGenModule & CGM,const CXXMethodDecl * MD)1890 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1891 const CXXMethodDecl *MD) {
1892 // Check that the type metadata can ever actually be used by a call.
1893 if (!CGM.getCodeGenOpts().LTOUnit ||
1894 !CGM.HasHiddenLTOVisibility(MD->getParent()))
1895 return false;
1896
1897 // Only functions whose address can be taken with a member function pointer
1898 // need this sort of type metadata.
1899 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1900 !isa<CXXDestructorDecl>(MD);
1901 }
1902
1903 std::vector<const CXXRecordDecl *>
getMostBaseClasses(const CXXRecordDecl * RD)1904 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1905 llvm::SetVector<const CXXRecordDecl *> MostBases;
1906
1907 std::function<void (const CXXRecordDecl *)> CollectMostBases;
1908 CollectMostBases = [&](const CXXRecordDecl *RD) {
1909 if (RD->getNumBases() == 0)
1910 MostBases.insert(RD);
1911 for (const CXXBaseSpecifier &B : RD->bases())
1912 CollectMostBases(B.getType()->getAsCXXRecordDecl());
1913 };
1914 CollectMostBases(RD);
1915 return MostBases.takeVector();
1916 }
1917
1918 llvm::GlobalVariable *
GetOrCreateRTTIProxyGlobalVariable(llvm::Constant * Addr)1919 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1920 auto It = RTTIProxyMap.find(Addr);
1921 if (It != RTTIProxyMap.end())
1922 return It->second;
1923
1924 auto *FTRTTIProxy = new llvm::GlobalVariable(
1925 TheModule, Addr->getType(),
1926 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1927 "__llvm_rtti_proxy");
1928 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1929
1930 RTTIProxyMap[Addr] = FTRTTIProxy;
1931 return FTRTTIProxy;
1932 }
1933
SetLLVMFunctionAttributesForDefinition(const Decl * D,llvm::Function * F)1934 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1935 llvm::Function *F) {
1936 llvm::AttrBuilder B(F->getContext());
1937
1938 if (CodeGenOpts.UnwindTables)
1939 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1940
1941 if (CodeGenOpts.StackClashProtector)
1942 B.addAttribute("probe-stack", "inline-asm");
1943
1944 if (!hasUnwindExceptions(LangOpts))
1945 B.addAttribute(llvm::Attribute::NoUnwind);
1946
1947 if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1948 if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1949 B.addAttribute(llvm::Attribute::StackProtect);
1950 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1951 B.addAttribute(llvm::Attribute::StackProtectStrong);
1952 else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1953 B.addAttribute(llvm::Attribute::StackProtectReq);
1954 }
1955
1956 if (!D) {
1957 // If we don't have a declaration to control inlining, the function isn't
1958 // explicitly marked as alwaysinline for semantic reasons, and inlining is
1959 // disabled, mark the function as noinline.
1960 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1961 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1962 B.addAttribute(llvm::Attribute::NoInline);
1963
1964 F->addFnAttrs(B);
1965 return;
1966 }
1967
1968 // Track whether we need to add the optnone LLVM attribute,
1969 // starting with the default for this optimization level.
1970 bool ShouldAddOptNone =
1971 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1972 // We can't add optnone in the following cases, it won't pass the verifier.
1973 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1974 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1975
1976 // Add optnone, but do so only if the function isn't always_inline.
1977 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1978 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1979 B.addAttribute(llvm::Attribute::OptimizeNone);
1980
1981 // OptimizeNone implies noinline; we should not be inlining such functions.
1982 B.addAttribute(llvm::Attribute::NoInline);
1983
1984 // We still need to handle naked functions even though optnone subsumes
1985 // much of their semantics.
1986 if (D->hasAttr<NakedAttr>())
1987 B.addAttribute(llvm::Attribute::Naked);
1988
1989 // OptimizeNone wins over OptimizeForSize and MinSize.
1990 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1991 F->removeFnAttr(llvm::Attribute::MinSize);
1992 } else if (D->hasAttr<NakedAttr>()) {
1993 // Naked implies noinline: we should not be inlining such functions.
1994 B.addAttribute(llvm::Attribute::Naked);
1995 B.addAttribute(llvm::Attribute::NoInline);
1996 } else if (D->hasAttr<NoDuplicateAttr>()) {
1997 B.addAttribute(llvm::Attribute::NoDuplicate);
1998 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1999 // Add noinline if the function isn't always_inline.
2000 B.addAttribute(llvm::Attribute::NoInline);
2001 } else if (D->hasAttr<AlwaysInlineAttr>() &&
2002 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2003 // (noinline wins over always_inline, and we can't specify both in IR)
2004 B.addAttribute(llvm::Attribute::AlwaysInline);
2005 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2006 // If we're not inlining, then force everything that isn't always_inline to
2007 // carry an explicit noinline attribute.
2008 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2009 B.addAttribute(llvm::Attribute::NoInline);
2010 } else {
2011 // Otherwise, propagate the inline hint attribute and potentially use its
2012 // absence to mark things as noinline.
2013 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2014 // Search function and template pattern redeclarations for inline.
2015 auto CheckForInline = [](const FunctionDecl *FD) {
2016 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2017 return Redecl->isInlineSpecified();
2018 };
2019 if (any_of(FD->redecls(), CheckRedeclForInline))
2020 return true;
2021 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2022 if (!Pattern)
2023 return false;
2024 return any_of(Pattern->redecls(), CheckRedeclForInline);
2025 };
2026 if (CheckForInline(FD)) {
2027 B.addAttribute(llvm::Attribute::InlineHint);
2028 } else if (CodeGenOpts.getInlining() ==
2029 CodeGenOptions::OnlyHintInlining &&
2030 !FD->isInlined() &&
2031 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2032 B.addAttribute(llvm::Attribute::NoInline);
2033 }
2034 }
2035 }
2036
2037 // Add other optimization related attributes if we are optimizing this
2038 // function.
2039 if (!D->hasAttr<OptimizeNoneAttr>()) {
2040 if (D->hasAttr<ColdAttr>()) {
2041 if (!ShouldAddOptNone)
2042 B.addAttribute(llvm::Attribute::OptimizeForSize);
2043 B.addAttribute(llvm::Attribute::Cold);
2044 }
2045 if (D->hasAttr<HotAttr>())
2046 B.addAttribute(llvm::Attribute::Hot);
2047 if (D->hasAttr<MinSizeAttr>())
2048 B.addAttribute(llvm::Attribute::MinSize);
2049 }
2050
2051 F->addFnAttrs(B);
2052
2053 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2054 if (alignment)
2055 F->setAlignment(llvm::Align(alignment));
2056
2057 if (!D->hasAttr<AlignedAttr>())
2058 if (LangOpts.FunctionAlignment)
2059 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2060
2061 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2062 // reserve a bit for differentiating between virtual and non-virtual member
2063 // functions. If the current target's C++ ABI requires this and this is a
2064 // member function, set its alignment accordingly.
2065 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2066 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2067 F->setAlignment(llvm::Align(2));
2068 }
2069
2070 // In the cross-dso CFI mode with canonical jump tables, we want !type
2071 // attributes on definitions only.
2072 if (CodeGenOpts.SanitizeCfiCrossDso &&
2073 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2074 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2075 // Skip available_externally functions. They won't be codegen'ed in the
2076 // current module anyway.
2077 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2078 CreateFunctionTypeMetadataForIcall(FD, F);
2079 }
2080 }
2081
2082 // Emit type metadata on member functions for member function pointer checks.
2083 // These are only ever necessary on definitions; we're guaranteed that the
2084 // definition will be present in the LTO unit as a result of LTO visibility.
2085 auto *MD = dyn_cast<CXXMethodDecl>(D);
2086 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2087 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2088 llvm::Metadata *Id =
2089 CreateMetadataIdentifierForType(Context.getMemberPointerType(
2090 MD->getType(), Context.getRecordType(Base).getTypePtr()));
2091 F->addTypeMetadata(0, Id);
2092 }
2093 }
2094 }
2095
setLLVMFunctionFEnvAttributes(const FunctionDecl * D,llvm::Function * F)2096 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2097 llvm::Function *F) {
2098 if (D->hasAttr<StrictFPAttr>()) {
2099 llvm::AttrBuilder FuncAttrs(F->getContext());
2100 FuncAttrs.addAttribute("strictfp");
2101 F->addFnAttrs(FuncAttrs);
2102 }
2103 }
2104
SetCommonAttributes(GlobalDecl GD,llvm::GlobalValue * GV)2105 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2106 const Decl *D = GD.getDecl();
2107 if (isa_and_nonnull<NamedDecl>(D))
2108 setGVProperties(GV, GD);
2109 else
2110 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2111
2112 if (D && D->hasAttr<UsedAttr>())
2113 addUsedOrCompilerUsedGlobal(GV);
2114
2115 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2116 const auto *VD = cast<VarDecl>(D);
2117 if (VD->getType().isConstQualified() &&
2118 VD->getStorageDuration() == SD_Static)
2119 addUsedOrCompilerUsedGlobal(GV);
2120 }
2121 }
2122
GetCPUAndFeaturesAttributes(GlobalDecl GD,llvm::AttrBuilder & Attrs)2123 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2124 llvm::AttrBuilder &Attrs) {
2125 // Add target-cpu and target-features attributes to functions. If
2126 // we have a decl for the function and it has a target attribute then
2127 // parse that and add it to the feature set.
2128 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2129 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2130 std::vector<std::string> Features;
2131 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2132 FD = FD ? FD->getMostRecentDecl() : FD;
2133 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2134 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2135 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2136 bool AddedAttr = false;
2137 if (TD || SD || TC) {
2138 llvm::StringMap<bool> FeatureMap;
2139 getContext().getFunctionFeatureMap(FeatureMap, GD);
2140
2141 // Produce the canonical string for this set of features.
2142 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2143 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2144
2145 // Now add the target-cpu and target-features to the function.
2146 // While we populated the feature map above, we still need to
2147 // get and parse the target attribute so we can get the cpu for
2148 // the function.
2149 if (TD) {
2150 ParsedTargetAttr ParsedAttr = TD->parse();
2151 if (!ParsedAttr.Architecture.empty() &&
2152 getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2153 TargetCPU = ParsedAttr.Architecture;
2154 TuneCPU = ""; // Clear the tune CPU.
2155 }
2156 if (!ParsedAttr.Tune.empty() &&
2157 getTarget().isValidCPUName(ParsedAttr.Tune))
2158 TuneCPU = ParsedAttr.Tune;
2159 }
2160
2161 if (SD) {
2162 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2163 // favor this processor.
2164 TuneCPU = getTarget().getCPUSpecificTuneName(
2165 SD->getCPUName(GD.getMultiVersionIndex())->getName());
2166 }
2167 } else {
2168 // Otherwise just add the existing target cpu and target features to the
2169 // function.
2170 Features = getTarget().getTargetOpts().Features;
2171 }
2172
2173 if (!TargetCPU.empty()) {
2174 Attrs.addAttribute("target-cpu", TargetCPU);
2175 AddedAttr = true;
2176 }
2177 if (!TuneCPU.empty()) {
2178 Attrs.addAttribute("tune-cpu", TuneCPU);
2179 AddedAttr = true;
2180 }
2181 if (!Features.empty()) {
2182 llvm::sort(Features);
2183 Attrs.addAttribute("target-features", llvm::join(Features, ","));
2184 AddedAttr = true;
2185 }
2186
2187 return AddedAttr;
2188 }
2189
setNonAliasAttributes(GlobalDecl GD,llvm::GlobalObject * GO)2190 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2191 llvm::GlobalObject *GO) {
2192 const Decl *D = GD.getDecl();
2193 SetCommonAttributes(GD, GO);
2194
2195 if (D) {
2196 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2197 if (D->hasAttr<RetainAttr>())
2198 addUsedGlobal(GV);
2199 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2200 GV->addAttribute("bss-section", SA->getName());
2201 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2202 GV->addAttribute("data-section", SA->getName());
2203 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2204 GV->addAttribute("rodata-section", SA->getName());
2205 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2206 GV->addAttribute("relro-section", SA->getName());
2207 }
2208
2209 if (auto *F = dyn_cast<llvm::Function>(GO)) {
2210 if (D->hasAttr<RetainAttr>())
2211 addUsedGlobal(F);
2212 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2213 if (!D->getAttr<SectionAttr>())
2214 F->addFnAttr("implicit-section-name", SA->getName());
2215
2216 llvm::AttrBuilder Attrs(F->getContext());
2217 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2218 // We know that GetCPUAndFeaturesAttributes will always have the
2219 // newest set, since it has the newest possible FunctionDecl, so the
2220 // new ones should replace the old.
2221 llvm::AttributeMask RemoveAttrs;
2222 RemoveAttrs.addAttribute("target-cpu");
2223 RemoveAttrs.addAttribute("target-features");
2224 RemoveAttrs.addAttribute("tune-cpu");
2225 F->removeFnAttrs(RemoveAttrs);
2226 F->addFnAttrs(Attrs);
2227 }
2228 }
2229
2230 if (const auto *CSA = D->getAttr<CodeSegAttr>())
2231 GO->setSection(CSA->getName());
2232 else if (const auto *SA = D->getAttr<SectionAttr>())
2233 GO->setSection(SA->getName());
2234 }
2235
2236 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2237 }
2238
SetInternalFunctionAttributes(GlobalDecl GD,llvm::Function * F,const CGFunctionInfo & FI)2239 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2240 llvm::Function *F,
2241 const CGFunctionInfo &FI) {
2242 const Decl *D = GD.getDecl();
2243 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2244 SetLLVMFunctionAttributesForDefinition(D, F);
2245
2246 F->setLinkage(llvm::Function::InternalLinkage);
2247
2248 setNonAliasAttributes(GD, F);
2249 }
2250
setLinkageForGV(llvm::GlobalValue * GV,const NamedDecl * ND)2251 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2252 // Set linkage and visibility in case we never see a definition.
2253 LinkageInfo LV = ND->getLinkageAndVisibility();
2254 // Don't set internal linkage on declarations.
2255 // "extern_weak" is overloaded in LLVM; we probably should have
2256 // separate linkage types for this.
2257 if (isExternallyVisible(LV.getLinkage()) &&
2258 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2259 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2260 }
2261
CreateFunctionTypeMetadataForIcall(const FunctionDecl * FD,llvm::Function * F)2262 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2263 llvm::Function *F) {
2264 // Only if we are checking indirect calls.
2265 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2266 return;
2267
2268 // Non-static class methods are handled via vtable or member function pointer
2269 // checks elsewhere.
2270 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2271 return;
2272
2273 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2274 F->addTypeMetadata(0, MD);
2275 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2276
2277 // Emit a hash-based bit set entry for cross-DSO calls.
2278 if (CodeGenOpts.SanitizeCfiCrossDso)
2279 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2280 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2281 }
2282
SetFunctionAttributes(GlobalDecl GD,llvm::Function * F,bool IsIncompleteFunction,bool IsThunk)2283 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2284 bool IsIncompleteFunction,
2285 bool IsThunk) {
2286
2287 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2288 // If this is an intrinsic function, set the function's attributes
2289 // to the intrinsic's attributes.
2290 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2291 return;
2292 }
2293
2294 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2295
2296 if (!IsIncompleteFunction)
2297 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2298 IsThunk);
2299
2300 // Add the Returned attribute for "this", except for iOS 5 and earlier
2301 // where substantial code, including the libstdc++ dylib, was compiled with
2302 // GCC and does not actually return "this".
2303 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2304 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2305 assert(!F->arg_empty() &&
2306 F->arg_begin()->getType()
2307 ->canLosslesslyBitCastTo(F->getReturnType()) &&
2308 "unexpected this return");
2309 F->addParamAttr(0, llvm::Attribute::Returned);
2310 }
2311
2312 // Only a few attributes are set on declarations; these may later be
2313 // overridden by a definition.
2314
2315 setLinkageForGV(F, FD);
2316 setGVProperties(F, FD);
2317
2318 // Setup target-specific attributes.
2319 if (!IsIncompleteFunction && F->isDeclaration())
2320 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2321
2322 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2323 F->setSection(CSA->getName());
2324 else if (const auto *SA = FD->getAttr<SectionAttr>())
2325 F->setSection(SA->getName());
2326
2327 if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2328 if (EA->isError())
2329 F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2330 else if (EA->isWarning())
2331 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2332 }
2333
2334 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2335 if (FD->isInlineBuiltinDeclaration()) {
2336 const FunctionDecl *FDBody;
2337 bool HasBody = FD->hasBody(FDBody);
2338 (void)HasBody;
2339 assert(HasBody && "Inline builtin declarations should always have an "
2340 "available body!");
2341 if (shouldEmitFunction(FDBody))
2342 F->addFnAttr(llvm::Attribute::NoBuiltin);
2343 }
2344
2345 if (FD->isReplaceableGlobalAllocationFunction()) {
2346 // A replaceable global allocation function does not act like a builtin by
2347 // default, only if it is invoked by a new-expression or delete-expression.
2348 F->addFnAttr(llvm::Attribute::NoBuiltin);
2349 }
2350
2351 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2352 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2353 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2354 if (MD->isVirtual())
2355 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2356
2357 // Don't emit entries for function declarations in the cross-DSO mode. This
2358 // is handled with better precision by the receiving DSO. But if jump tables
2359 // are non-canonical then we need type metadata in order to produce the local
2360 // jump table.
2361 if (!CodeGenOpts.SanitizeCfiCrossDso ||
2362 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2363 CreateFunctionTypeMetadataForIcall(FD, F);
2364
2365 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2366 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2367
2368 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2369 // Annotate the callback behavior as metadata:
2370 // - The callback callee (as argument number).
2371 // - The callback payloads (as argument numbers).
2372 llvm::LLVMContext &Ctx = F->getContext();
2373 llvm::MDBuilder MDB(Ctx);
2374
2375 // The payload indices are all but the first one in the encoding. The first
2376 // identifies the callback callee.
2377 int CalleeIdx = *CB->encoding_begin();
2378 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2379 F->addMetadata(llvm::LLVMContext::MD_callback,
2380 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2381 CalleeIdx, PayloadIndices,
2382 /* VarArgsArePassed */ false)}));
2383 }
2384 }
2385
addUsedGlobal(llvm::GlobalValue * GV)2386 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2387 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2388 "Only globals with definition can force usage.");
2389 LLVMUsed.emplace_back(GV);
2390 }
2391
addCompilerUsedGlobal(llvm::GlobalValue * GV)2392 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2393 assert(!GV->isDeclaration() &&
2394 "Only globals with definition can force usage.");
2395 LLVMCompilerUsed.emplace_back(GV);
2396 }
2397
addUsedOrCompilerUsedGlobal(llvm::GlobalValue * GV)2398 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2399 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2400 "Only globals with definition can force usage.");
2401 if (getTriple().isOSBinFormatELF())
2402 LLVMCompilerUsed.emplace_back(GV);
2403 else
2404 LLVMUsed.emplace_back(GV);
2405 }
2406
emitUsed(CodeGenModule & CGM,StringRef Name,std::vector<llvm::WeakTrackingVH> & List)2407 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2408 std::vector<llvm::WeakTrackingVH> &List) {
2409 // Don't create llvm.used if there is no need.
2410 if (List.empty())
2411 return;
2412
2413 // Convert List to what ConstantArray needs.
2414 SmallVector<llvm::Constant*, 8> UsedArray;
2415 UsedArray.resize(List.size());
2416 for (unsigned i = 0, e = List.size(); i != e; ++i) {
2417 UsedArray[i] =
2418 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2419 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2420 }
2421
2422 if (UsedArray.empty())
2423 return;
2424 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2425
2426 auto *GV = new llvm::GlobalVariable(
2427 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2428 llvm::ConstantArray::get(ATy, UsedArray), Name);
2429
2430 GV->setSection("llvm.metadata");
2431 }
2432
emitLLVMUsed()2433 void CodeGenModule::emitLLVMUsed() {
2434 emitUsed(*this, "llvm.used", LLVMUsed);
2435 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2436 }
2437
AppendLinkerOptions(StringRef Opts)2438 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2439 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2440 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2441 }
2442
AddDetectMismatch(StringRef Name,StringRef Value)2443 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2444 llvm::SmallString<32> Opt;
2445 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2446 if (Opt.empty())
2447 return;
2448 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2449 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2450 }
2451
AddDependentLib(StringRef Lib)2452 void CodeGenModule::AddDependentLib(StringRef Lib) {
2453 auto &C = getLLVMContext();
2454 if (getTarget().getTriple().isOSBinFormatELF()) {
2455 ELFDependentLibraries.push_back(
2456 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2457 return;
2458 }
2459
2460 llvm::SmallString<24> Opt;
2461 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2462 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2463 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2464 }
2465
2466 /// Add link options implied by the given module, including modules
2467 /// it depends on, using a postorder walk.
addLinkOptionsPostorder(CodeGenModule & CGM,Module * Mod,SmallVectorImpl<llvm::MDNode * > & Metadata,llvm::SmallPtrSet<Module *,16> & Visited)2468 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2469 SmallVectorImpl<llvm::MDNode *> &Metadata,
2470 llvm::SmallPtrSet<Module *, 16> &Visited) {
2471 // Import this module's parent.
2472 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2473 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2474 }
2475
2476 // Import this module's dependencies.
2477 for (Module *Import : llvm::reverse(Mod->Imports)) {
2478 if (Visited.insert(Import).second)
2479 addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2480 }
2481
2482 // Add linker options to link against the libraries/frameworks
2483 // described by this module.
2484 llvm::LLVMContext &Context = CGM.getLLVMContext();
2485 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2486
2487 // For modules that use export_as for linking, use that module
2488 // name instead.
2489 if (Mod->UseExportAsModuleLinkName)
2490 return;
2491
2492 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2493 // Link against a framework. Frameworks are currently Darwin only, so we
2494 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2495 if (LL.IsFramework) {
2496 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2497 llvm::MDString::get(Context, LL.Library)};
2498
2499 Metadata.push_back(llvm::MDNode::get(Context, Args));
2500 continue;
2501 }
2502
2503 // Link against a library.
2504 if (IsELF) {
2505 llvm::Metadata *Args[2] = {
2506 llvm::MDString::get(Context, "lib"),
2507 llvm::MDString::get(Context, LL.Library),
2508 };
2509 Metadata.push_back(llvm::MDNode::get(Context, Args));
2510 } else {
2511 llvm::SmallString<24> Opt;
2512 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2513 auto *OptString = llvm::MDString::get(Context, Opt);
2514 Metadata.push_back(llvm::MDNode::get(Context, OptString));
2515 }
2516 }
2517 }
2518
EmitModuleInitializers(clang::Module * Primary)2519 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2520 // Emit the initializers in the order that sub-modules appear in the
2521 // source, first Global Module Fragments, if present.
2522 if (auto GMF = Primary->getGlobalModuleFragment()) {
2523 for (Decl *D : getContext().getModuleInitializers(GMF)) {
2524 if (isa<ImportDecl>(D))
2525 continue;
2526 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2527 EmitTopLevelDecl(D);
2528 }
2529 }
2530 // Second any associated with the module, itself.
2531 for (Decl *D : getContext().getModuleInitializers(Primary)) {
2532 // Skip import decls, the inits for those are called explicitly.
2533 if (isa<ImportDecl>(D))
2534 continue;
2535 EmitTopLevelDecl(D);
2536 }
2537 // Third any associated with the Privat eMOdule Fragment, if present.
2538 if (auto PMF = Primary->getPrivateModuleFragment()) {
2539 for (Decl *D : getContext().getModuleInitializers(PMF)) {
2540 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2541 EmitTopLevelDecl(D);
2542 }
2543 }
2544 }
2545
EmitModuleLinkOptions()2546 void CodeGenModule::EmitModuleLinkOptions() {
2547 // Collect the set of all of the modules we want to visit to emit link
2548 // options, which is essentially the imported modules and all of their
2549 // non-explicit child modules.
2550 llvm::SetVector<clang::Module *> LinkModules;
2551 llvm::SmallPtrSet<clang::Module *, 16> Visited;
2552 SmallVector<clang::Module *, 16> Stack;
2553
2554 // Seed the stack with imported modules.
2555 for (Module *M : ImportedModules) {
2556 // Do not add any link flags when an implementation TU of a module imports
2557 // a header of that same module.
2558 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2559 !getLangOpts().isCompilingModule())
2560 continue;
2561 if (Visited.insert(M).second)
2562 Stack.push_back(M);
2563 }
2564
2565 // Find all of the modules to import, making a little effort to prune
2566 // non-leaf modules.
2567 while (!Stack.empty()) {
2568 clang::Module *Mod = Stack.pop_back_val();
2569
2570 bool AnyChildren = false;
2571
2572 // Visit the submodules of this module.
2573 for (const auto &SM : Mod->submodules()) {
2574 // Skip explicit children; they need to be explicitly imported to be
2575 // linked against.
2576 if (SM->IsExplicit)
2577 continue;
2578
2579 if (Visited.insert(SM).second) {
2580 Stack.push_back(SM);
2581 AnyChildren = true;
2582 }
2583 }
2584
2585 // We didn't find any children, so add this module to the list of
2586 // modules to link against.
2587 if (!AnyChildren) {
2588 LinkModules.insert(Mod);
2589 }
2590 }
2591
2592 // Add link options for all of the imported modules in reverse topological
2593 // order. We don't do anything to try to order import link flags with respect
2594 // to linker options inserted by things like #pragma comment().
2595 SmallVector<llvm::MDNode *, 16> MetadataArgs;
2596 Visited.clear();
2597 for (Module *M : LinkModules)
2598 if (Visited.insert(M).second)
2599 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2600 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2601 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2602
2603 // Add the linker options metadata flag.
2604 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2605 for (auto *MD : LinkerOptionsMetadata)
2606 NMD->addOperand(MD);
2607 }
2608
EmitDeferred()2609 void CodeGenModule::EmitDeferred() {
2610 // Emit deferred declare target declarations.
2611 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2612 getOpenMPRuntime().emitDeferredTargetDecls();
2613
2614 // Emit code for any potentially referenced deferred decls. Since a
2615 // previously unused static decl may become used during the generation of code
2616 // for a static function, iterate until no changes are made.
2617
2618 if (!DeferredVTables.empty()) {
2619 EmitDeferredVTables();
2620
2621 // Emitting a vtable doesn't directly cause more vtables to
2622 // become deferred, although it can cause functions to be
2623 // emitted that then need those vtables.
2624 assert(DeferredVTables.empty());
2625 }
2626
2627 // Emit CUDA/HIP static device variables referenced by host code only.
2628 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2629 // needed for further handling.
2630 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2631 llvm::append_range(DeferredDeclsToEmit,
2632 getContext().CUDADeviceVarODRUsedByHost);
2633
2634 // Stop if we're out of both deferred vtables and deferred declarations.
2635 if (DeferredDeclsToEmit.empty())
2636 return;
2637
2638 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2639 // work, it will not interfere with this.
2640 std::vector<GlobalDecl> CurDeclsToEmit;
2641 CurDeclsToEmit.swap(DeferredDeclsToEmit);
2642
2643 for (GlobalDecl &D : CurDeclsToEmit) {
2644 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2645 // to get GlobalValue with exactly the type we need, not something that
2646 // might had been created for another decl with the same mangled name but
2647 // different type.
2648 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2649 GetAddrOfGlobal(D, ForDefinition));
2650
2651 // In case of different address spaces, we may still get a cast, even with
2652 // IsForDefinition equal to true. Query mangled names table to get
2653 // GlobalValue.
2654 if (!GV)
2655 GV = GetGlobalValue(getMangledName(D));
2656
2657 // Make sure GetGlobalValue returned non-null.
2658 assert(GV);
2659
2660 // Check to see if we've already emitted this. This is necessary
2661 // for a couple of reasons: first, decls can end up in the
2662 // deferred-decls queue multiple times, and second, decls can end
2663 // up with definitions in unusual ways (e.g. by an extern inline
2664 // function acquiring a strong function redefinition). Just
2665 // ignore these cases.
2666 if (!GV->isDeclaration())
2667 continue;
2668
2669 // If this is OpenMP, check if it is legal to emit this global normally.
2670 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2671 continue;
2672
2673 // Otherwise, emit the definition and move on to the next one.
2674 EmitGlobalDefinition(D, GV);
2675
2676 // If we found out that we need to emit more decls, do that recursively.
2677 // This has the advantage that the decls are emitted in a DFS and related
2678 // ones are close together, which is convenient for testing.
2679 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2680 EmitDeferred();
2681 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2682 }
2683 }
2684 }
2685
EmitVTablesOpportunistically()2686 void CodeGenModule::EmitVTablesOpportunistically() {
2687 // Try to emit external vtables as available_externally if they have emitted
2688 // all inlined virtual functions. It runs after EmitDeferred() and therefore
2689 // is not allowed to create new references to things that need to be emitted
2690 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2691
2692 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2693 && "Only emit opportunistic vtables with optimizations");
2694
2695 for (const CXXRecordDecl *RD : OpportunisticVTables) {
2696 assert(getVTables().isVTableExternal(RD) &&
2697 "This queue should only contain external vtables");
2698 if (getCXXABI().canSpeculativelyEmitVTable(RD))
2699 VTables.GenerateClassData(RD);
2700 }
2701 OpportunisticVTables.clear();
2702 }
2703
EmitGlobalAnnotations()2704 void CodeGenModule::EmitGlobalAnnotations() {
2705 if (Annotations.empty())
2706 return;
2707
2708 // Create a new global variable for the ConstantStruct in the Module.
2709 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2710 Annotations[0]->getType(), Annotations.size()), Annotations);
2711 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2712 llvm::GlobalValue::AppendingLinkage,
2713 Array, "llvm.global.annotations");
2714 gv->setSection(AnnotationSection);
2715 }
2716
EmitAnnotationString(StringRef Str)2717 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2718 llvm::Constant *&AStr = AnnotationStrings[Str];
2719 if (AStr)
2720 return AStr;
2721
2722 // Not found yet, create a new global.
2723 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2724 auto *gv =
2725 new llvm::GlobalVariable(getModule(), s->getType(), true,
2726 llvm::GlobalValue::PrivateLinkage, s, ".str");
2727 gv->setSection(AnnotationSection);
2728 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2729 AStr = gv;
2730 return gv;
2731 }
2732
EmitAnnotationUnit(SourceLocation Loc)2733 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2734 SourceManager &SM = getContext().getSourceManager();
2735 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2736 if (PLoc.isValid())
2737 return EmitAnnotationString(PLoc.getFilename());
2738 return EmitAnnotationString(SM.getBufferName(Loc));
2739 }
2740
EmitAnnotationLineNo(SourceLocation L)2741 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2742 SourceManager &SM = getContext().getSourceManager();
2743 PresumedLoc PLoc = SM.getPresumedLoc(L);
2744 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2745 SM.getExpansionLineNumber(L);
2746 return llvm::ConstantInt::get(Int32Ty, LineNo);
2747 }
2748
EmitAnnotationArgs(const AnnotateAttr * Attr)2749 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2750 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2751 if (Exprs.empty())
2752 return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2753
2754 llvm::FoldingSetNodeID ID;
2755 for (Expr *E : Exprs) {
2756 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2757 }
2758 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2759 if (Lookup)
2760 return Lookup;
2761
2762 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2763 LLVMArgs.reserve(Exprs.size());
2764 ConstantEmitter ConstEmiter(*this);
2765 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2766 const auto *CE = cast<clang::ConstantExpr>(E);
2767 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2768 CE->getType());
2769 });
2770 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2771 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2772 llvm::GlobalValue::PrivateLinkage, Struct,
2773 ".args");
2774 GV->setSection(AnnotationSection);
2775 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2776 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2777
2778 Lookup = Bitcasted;
2779 return Bitcasted;
2780 }
2781
EmitAnnotateAttr(llvm::GlobalValue * GV,const AnnotateAttr * AA,SourceLocation L)2782 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2783 const AnnotateAttr *AA,
2784 SourceLocation L) {
2785 // Get the globals for file name, annotation, and the line number.
2786 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2787 *UnitGV = EmitAnnotationUnit(L),
2788 *LineNoCst = EmitAnnotationLineNo(L),
2789 *Args = EmitAnnotationArgs(AA);
2790
2791 llvm::Constant *GVInGlobalsAS = GV;
2792 if (GV->getAddressSpace() !=
2793 getDataLayout().getDefaultGlobalsAddressSpace()) {
2794 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2795 GV, GV->getValueType()->getPointerTo(
2796 getDataLayout().getDefaultGlobalsAddressSpace()));
2797 }
2798
2799 // Create the ConstantStruct for the global annotation.
2800 llvm::Constant *Fields[] = {
2801 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2802 llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2803 llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2804 LineNoCst,
2805 Args,
2806 };
2807 return llvm::ConstantStruct::getAnon(Fields);
2808 }
2809
AddGlobalAnnotations(const ValueDecl * D,llvm::GlobalValue * GV)2810 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2811 llvm::GlobalValue *GV) {
2812 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2813 // Get the struct elements for these annotations.
2814 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2815 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2816 }
2817
isInNoSanitizeList(SanitizerMask Kind,llvm::Function * Fn,SourceLocation Loc) const2818 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2819 SourceLocation Loc) const {
2820 const auto &NoSanitizeL = getContext().getNoSanitizeList();
2821 // NoSanitize by function name.
2822 if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2823 return true;
2824 // NoSanitize by location. Check "mainfile" prefix.
2825 auto &SM = Context.getSourceManager();
2826 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2827 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2828 return true;
2829
2830 // Check "src" prefix.
2831 if (Loc.isValid())
2832 return NoSanitizeL.containsLocation(Kind, Loc);
2833 // If location is unknown, this may be a compiler-generated function. Assume
2834 // it's located in the main file.
2835 return NoSanitizeL.containsFile(Kind, MainFile.getName());
2836 }
2837
isInNoSanitizeList(SanitizerMask Kind,llvm::GlobalVariable * GV,SourceLocation Loc,QualType Ty,StringRef Category) const2838 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2839 llvm::GlobalVariable *GV,
2840 SourceLocation Loc, QualType Ty,
2841 StringRef Category) const {
2842 const auto &NoSanitizeL = getContext().getNoSanitizeList();
2843 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2844 return true;
2845 auto &SM = Context.getSourceManager();
2846 if (NoSanitizeL.containsMainFile(
2847 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2848 return true;
2849 if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2850 return true;
2851
2852 // Check global type.
2853 if (!Ty.isNull()) {
2854 // Drill down the array types: if global variable of a fixed type is
2855 // not sanitized, we also don't instrument arrays of them.
2856 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2857 Ty = AT->getElementType();
2858 Ty = Ty.getCanonicalType().getUnqualifiedType();
2859 // Only record types (classes, structs etc.) are ignored.
2860 if (Ty->isRecordType()) {
2861 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2862 if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2863 return true;
2864 }
2865 }
2866 return false;
2867 }
2868
imbueXRayAttrs(llvm::Function * Fn,SourceLocation Loc,StringRef Category) const2869 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2870 StringRef Category) const {
2871 const auto &XRayFilter = getContext().getXRayFilter();
2872 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2873 auto Attr = ImbueAttr::NONE;
2874 if (Loc.isValid())
2875 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2876 if (Attr == ImbueAttr::NONE)
2877 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2878 switch (Attr) {
2879 case ImbueAttr::NONE:
2880 return false;
2881 case ImbueAttr::ALWAYS:
2882 Fn->addFnAttr("function-instrument", "xray-always");
2883 break;
2884 case ImbueAttr::ALWAYS_ARG1:
2885 Fn->addFnAttr("function-instrument", "xray-always");
2886 Fn->addFnAttr("xray-log-args", "1");
2887 break;
2888 case ImbueAttr::NEVER:
2889 Fn->addFnAttr("function-instrument", "xray-never");
2890 break;
2891 }
2892 return true;
2893 }
2894
isFunctionBlockedByProfileList(llvm::Function * Fn,SourceLocation Loc) const2895 bool CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2896 SourceLocation Loc) const {
2897 const auto &ProfileList = getContext().getProfileList();
2898 // If the profile list is empty, then instrument everything.
2899 if (ProfileList.isEmpty())
2900 return false;
2901 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2902 // First, check the function name.
2903 Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2904 if (V)
2905 return *V;
2906 // Next, check the source location.
2907 if (Loc.isValid()) {
2908 Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2909 if (V)
2910 return *V;
2911 }
2912 // If location is unknown, this may be a compiler-generated function. Assume
2913 // it's located in the main file.
2914 auto &SM = Context.getSourceManager();
2915 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2916 Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2917 if (V)
2918 return *V;
2919 }
2920 return ProfileList.getDefault();
2921 }
2922
isFunctionBlockedFromProfileInstr(llvm::Function * Fn,SourceLocation Loc) const2923 bool CodeGenModule::isFunctionBlockedFromProfileInstr(
2924 llvm::Function *Fn, SourceLocation Loc) const {
2925 if (isFunctionBlockedByProfileList(Fn, Loc))
2926 return true;
2927
2928 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
2929 if (NumGroups > 1) {
2930 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
2931 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
2932 return true;
2933 }
2934 return false;
2935 }
2936
MustBeEmitted(const ValueDecl * Global)2937 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2938 // Never defer when EmitAllDecls is specified.
2939 if (LangOpts.EmitAllDecls)
2940 return true;
2941
2942 if (CodeGenOpts.KeepStaticConsts) {
2943 const auto *VD = dyn_cast<VarDecl>(Global);
2944 if (VD && VD->getType().isConstQualified() &&
2945 VD->getStorageDuration() == SD_Static)
2946 return true;
2947 }
2948
2949 return getContext().DeclMustBeEmitted(Global);
2950 }
2951
MayBeEmittedEagerly(const ValueDecl * Global)2952 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2953 // In OpenMP 5.0 variables and function may be marked as
2954 // device_type(host/nohost) and we should not emit them eagerly unless we sure
2955 // that they must be emitted on the host/device. To be sure we need to have
2956 // seen a declare target with an explicit mentioning of the function, we know
2957 // we have if the level of the declare target attribute is -1. Note that we
2958 // check somewhere else if we should emit this at all.
2959 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2960 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2961 OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2962 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2963 return false;
2964 }
2965
2966 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2967 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2968 // Implicit template instantiations may change linkage if they are later
2969 // explicitly instantiated, so they should not be emitted eagerly.
2970 return false;
2971 }
2972 if (const auto *VD = dyn_cast<VarDecl>(Global)) {
2973 if (Context.getInlineVariableDefinitionKind(VD) ==
2974 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2975 // A definition of an inline constexpr static data member may change
2976 // linkage later if it's redeclared outside the class.
2977 return false;
2978 if (CXX20ModuleInits && VD->getOwningModule() &&
2979 !VD->getOwningModule()->isModuleMapModule()) {
2980 // For CXX20, module-owned initializers need to be deferred, since it is
2981 // not known at this point if they will be run for the current module or
2982 // as part of the initializer for an imported one.
2983 return false;
2984 }
2985 }
2986 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2987 // codegen for global variables, because they may be marked as threadprivate.
2988 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2989 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2990 !isTypeConstant(Global->getType(), false) &&
2991 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2992 return false;
2993
2994 return true;
2995 }
2996
GetAddrOfMSGuidDecl(const MSGuidDecl * GD)2997 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2998 StringRef Name = getMangledName(GD);
2999
3000 // The UUID descriptor should be pointer aligned.
3001 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3002
3003 // Look for an existing global.
3004 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3005 return ConstantAddress(GV, GV->getValueType(), Alignment);
3006
3007 ConstantEmitter Emitter(*this);
3008 llvm::Constant *Init;
3009
3010 APValue &V = GD->getAsAPValue();
3011 if (!V.isAbsent()) {
3012 // If possible, emit the APValue version of the initializer. In particular,
3013 // this gets the type of the constant right.
3014 Init = Emitter.emitForInitializer(
3015 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3016 } else {
3017 // As a fallback, directly construct the constant.
3018 // FIXME: This may get padding wrong under esoteric struct layout rules.
3019 // MSVC appears to create a complete type 'struct __s_GUID' that it
3020 // presumably uses to represent these constants.
3021 MSGuidDecl::Parts Parts = GD->getParts();
3022 llvm::Constant *Fields[4] = {
3023 llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3024 llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3025 llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3026 llvm::ConstantDataArray::getRaw(
3027 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3028 Int8Ty)};
3029 Init = llvm::ConstantStruct::getAnon(Fields);
3030 }
3031
3032 auto *GV = new llvm::GlobalVariable(
3033 getModule(), Init->getType(),
3034 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3035 if (supportsCOMDAT())
3036 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3037 setDSOLocal(GV);
3038
3039 if (!V.isAbsent()) {
3040 Emitter.finalize(GV);
3041 return ConstantAddress(GV, GV->getValueType(), Alignment);
3042 }
3043
3044 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3045 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3046 GV, Ty->getPointerTo(GV->getAddressSpace()));
3047 return ConstantAddress(Addr, Ty, Alignment);
3048 }
3049
GetAddrOfUnnamedGlobalConstantDecl(const UnnamedGlobalConstantDecl * GCD)3050 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3051 const UnnamedGlobalConstantDecl *GCD) {
3052 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3053
3054 llvm::GlobalVariable **Entry = nullptr;
3055 Entry = &UnnamedGlobalConstantDeclMap[GCD];
3056 if (*Entry)
3057 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3058
3059 ConstantEmitter Emitter(*this);
3060 llvm::Constant *Init;
3061
3062 const APValue &V = GCD->getValue();
3063
3064 assert(!V.isAbsent());
3065 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3066 GCD->getType());
3067
3068 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3069 /*isConstant=*/true,
3070 llvm::GlobalValue::PrivateLinkage, Init,
3071 ".constant");
3072 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3073 GV->setAlignment(Alignment.getAsAlign());
3074
3075 Emitter.finalize(GV);
3076
3077 *Entry = GV;
3078 return ConstantAddress(GV, GV->getValueType(), Alignment);
3079 }
3080
GetAddrOfTemplateParamObject(const TemplateParamObjectDecl * TPO)3081 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3082 const TemplateParamObjectDecl *TPO) {
3083 StringRef Name = getMangledName(TPO);
3084 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3085
3086 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3087 return ConstantAddress(GV, GV->getValueType(), Alignment);
3088
3089 ConstantEmitter Emitter(*this);
3090 llvm::Constant *Init = Emitter.emitForInitializer(
3091 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3092
3093 if (!Init) {
3094 ErrorUnsupported(TPO, "template parameter object");
3095 return ConstantAddress::invalid();
3096 }
3097
3098 auto *GV = new llvm::GlobalVariable(
3099 getModule(), Init->getType(),
3100 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3101 if (supportsCOMDAT())
3102 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3103 Emitter.finalize(GV);
3104
3105 return ConstantAddress(GV, GV->getValueType(), Alignment);
3106 }
3107
GetWeakRefReference(const ValueDecl * VD)3108 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3109 const AliasAttr *AA = VD->getAttr<AliasAttr>();
3110 assert(AA && "No alias?");
3111
3112 CharUnits Alignment = getContext().getDeclAlign(VD);
3113 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3114
3115 // See if there is already something with the target's name in the module.
3116 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3117 if (Entry) {
3118 unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3119 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3120 return ConstantAddress(Ptr, DeclTy, Alignment);
3121 }
3122
3123 llvm::Constant *Aliasee;
3124 if (isa<llvm::FunctionType>(DeclTy))
3125 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3126 GlobalDecl(cast<FunctionDecl>(VD)),
3127 /*ForVTable=*/false);
3128 else
3129 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3130 nullptr);
3131
3132 auto *F = cast<llvm::GlobalValue>(Aliasee);
3133 F->setLinkage(llvm::Function::ExternalWeakLinkage);
3134 WeakRefReferences.insert(F);
3135
3136 return ConstantAddress(Aliasee, DeclTy, Alignment);
3137 }
3138
EmitGlobal(GlobalDecl GD)3139 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3140 const auto *Global = cast<ValueDecl>(GD.getDecl());
3141
3142 // Weak references don't produce any output by themselves.
3143 if (Global->hasAttr<WeakRefAttr>())
3144 return;
3145
3146 // If this is an alias definition (which otherwise looks like a declaration)
3147 // emit it now.
3148 if (Global->hasAttr<AliasAttr>())
3149 return EmitAliasDefinition(GD);
3150
3151 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3152 if (Global->hasAttr<IFuncAttr>())
3153 return emitIFuncDefinition(GD);
3154
3155 // If this is a cpu_dispatch multiversion function, emit the resolver.
3156 if (Global->hasAttr<CPUDispatchAttr>())
3157 return emitCPUDispatchDefinition(GD);
3158
3159 // If this is CUDA, be selective about which declarations we emit.
3160 if (LangOpts.CUDA) {
3161 if (LangOpts.CUDAIsDevice) {
3162 if (!Global->hasAttr<CUDADeviceAttr>() &&
3163 !Global->hasAttr<CUDAGlobalAttr>() &&
3164 !Global->hasAttr<CUDAConstantAttr>() &&
3165 !Global->hasAttr<CUDASharedAttr>() &&
3166 !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3167 !Global->getType()->isCUDADeviceBuiltinTextureType())
3168 return;
3169 } else {
3170 // We need to emit host-side 'shadows' for all global
3171 // device-side variables because the CUDA runtime needs their
3172 // size and host-side address in order to provide access to
3173 // their device-side incarnations.
3174
3175 // So device-only functions are the only things we skip.
3176 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3177 Global->hasAttr<CUDADeviceAttr>())
3178 return;
3179
3180 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3181 "Expected Variable or Function");
3182 }
3183 }
3184
3185 if (LangOpts.OpenMP) {
3186 // If this is OpenMP, check if it is legal to emit this global normally.
3187 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3188 return;
3189 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3190 if (MustBeEmitted(Global))
3191 EmitOMPDeclareReduction(DRD);
3192 return;
3193 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3194 if (MustBeEmitted(Global))
3195 EmitOMPDeclareMapper(DMD);
3196 return;
3197 }
3198 }
3199
3200 // Ignore declarations, they will be emitted on their first use.
3201 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3202 // Forward declarations are emitted lazily on first use.
3203 if (!FD->doesThisDeclarationHaveABody()) {
3204 if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3205 return;
3206
3207 StringRef MangledName = getMangledName(GD);
3208
3209 // Compute the function info and LLVM type.
3210 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3211 llvm::Type *Ty = getTypes().GetFunctionType(FI);
3212
3213 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3214 /*DontDefer=*/false);
3215 return;
3216 }
3217 } else {
3218 const auto *VD = cast<VarDecl>(Global);
3219 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3220 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3221 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3222 if (LangOpts.OpenMP) {
3223 // Emit declaration of the must-be-emitted declare target variable.
3224 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3225 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3226 bool UnifiedMemoryEnabled =
3227 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3228 if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3229 !UnifiedMemoryEnabled) {
3230 (void)GetAddrOfGlobalVar(VD);
3231 } else {
3232 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3233 (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3234 UnifiedMemoryEnabled)) &&
3235 "Link clause or to clause with unified memory expected.");
3236 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3237 }
3238
3239 return;
3240 }
3241 }
3242 // If this declaration may have caused an inline variable definition to
3243 // change linkage, make sure that it's emitted.
3244 if (Context.getInlineVariableDefinitionKind(VD) ==
3245 ASTContext::InlineVariableDefinitionKind::Strong)
3246 GetAddrOfGlobalVar(VD);
3247 return;
3248 }
3249 }
3250
3251 // Defer code generation to first use when possible, e.g. if this is an inline
3252 // function. If the global must always be emitted, do it eagerly if possible
3253 // to benefit from cache locality.
3254 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3255 // Emit the definition if it can't be deferred.
3256 EmitGlobalDefinition(GD);
3257 return;
3258 }
3259
3260 // If we're deferring emission of a C++ variable with an
3261 // initializer, remember the order in which it appeared in the file.
3262 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3263 cast<VarDecl>(Global)->hasInit()) {
3264 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3265 CXXGlobalInits.push_back(nullptr);
3266 }
3267
3268 StringRef MangledName = getMangledName(GD);
3269 if (GetGlobalValue(MangledName) != nullptr) {
3270 // The value has already been used and should therefore be emitted.
3271 addDeferredDeclToEmit(GD);
3272 } else if (MustBeEmitted(Global)) {
3273 // The value must be emitted, but cannot be emitted eagerly.
3274 assert(!MayBeEmittedEagerly(Global));
3275 addDeferredDeclToEmit(GD);
3276 } else {
3277 // Otherwise, remember that we saw a deferred decl with this name. The
3278 // first use of the mangled name will cause it to move into
3279 // DeferredDeclsToEmit.
3280 DeferredDecls[MangledName] = GD;
3281 }
3282 }
3283
3284 // Check if T is a class type with a destructor that's not dllimport.
HasNonDllImportDtor(QualType T)3285 static bool HasNonDllImportDtor(QualType T) {
3286 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3287 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3288 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3289 return true;
3290
3291 return false;
3292 }
3293
3294 namespace {
3295 struct FunctionIsDirectlyRecursive
3296 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3297 const StringRef Name;
3298 const Builtin::Context &BI;
FunctionIsDirectlyRecursive__anon003481a90811::FunctionIsDirectlyRecursive3299 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3300 : Name(N), BI(C) {}
3301
VisitCallExpr__anon003481a90811::FunctionIsDirectlyRecursive3302 bool VisitCallExpr(const CallExpr *E) {
3303 const FunctionDecl *FD = E->getDirectCallee();
3304 if (!FD)
3305 return false;
3306 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3307 if (Attr && Name == Attr->getLabel())
3308 return true;
3309 unsigned BuiltinID = FD->getBuiltinID();
3310 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3311 return false;
3312 StringRef BuiltinName = BI.getName(BuiltinID);
3313 if (BuiltinName.startswith("__builtin_") &&
3314 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3315 return true;
3316 }
3317 return false;
3318 }
3319
VisitStmt__anon003481a90811::FunctionIsDirectlyRecursive3320 bool VisitStmt(const Stmt *S) {
3321 for (const Stmt *Child : S->children())
3322 if (Child && this->Visit(Child))
3323 return true;
3324 return false;
3325 }
3326 };
3327
3328 // Make sure we're not referencing non-imported vars or functions.
3329 struct DLLImportFunctionVisitor
3330 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3331 bool SafeToInline = true;
3332
shouldVisitImplicitCode__anon003481a90811::DLLImportFunctionVisitor3333 bool shouldVisitImplicitCode() const { return true; }
3334
VisitVarDecl__anon003481a90811::DLLImportFunctionVisitor3335 bool VisitVarDecl(VarDecl *VD) {
3336 if (VD->getTLSKind()) {
3337 // A thread-local variable cannot be imported.
3338 SafeToInline = false;
3339 return SafeToInline;
3340 }
3341
3342 // A variable definition might imply a destructor call.
3343 if (VD->isThisDeclarationADefinition())
3344 SafeToInline = !HasNonDllImportDtor(VD->getType());
3345
3346 return SafeToInline;
3347 }
3348
VisitCXXBindTemporaryExpr__anon003481a90811::DLLImportFunctionVisitor3349 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3350 if (const auto *D = E->getTemporary()->getDestructor())
3351 SafeToInline = D->hasAttr<DLLImportAttr>();
3352 return SafeToInline;
3353 }
3354
VisitDeclRefExpr__anon003481a90811::DLLImportFunctionVisitor3355 bool VisitDeclRefExpr(DeclRefExpr *E) {
3356 ValueDecl *VD = E->getDecl();
3357 if (isa<FunctionDecl>(VD))
3358 SafeToInline = VD->hasAttr<DLLImportAttr>();
3359 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3360 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3361 return SafeToInline;
3362 }
3363
VisitCXXConstructExpr__anon003481a90811::DLLImportFunctionVisitor3364 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3365 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3366 return SafeToInline;
3367 }
3368
VisitCXXMemberCallExpr__anon003481a90811::DLLImportFunctionVisitor3369 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3370 CXXMethodDecl *M = E->getMethodDecl();
3371 if (!M) {
3372 // Call through a pointer to member function. This is safe to inline.
3373 SafeToInline = true;
3374 } else {
3375 SafeToInline = M->hasAttr<DLLImportAttr>();
3376 }
3377 return SafeToInline;
3378 }
3379
VisitCXXDeleteExpr__anon003481a90811::DLLImportFunctionVisitor3380 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3381 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3382 return SafeToInline;
3383 }
3384
VisitCXXNewExpr__anon003481a90811::DLLImportFunctionVisitor3385 bool VisitCXXNewExpr(CXXNewExpr *E) {
3386 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3387 return SafeToInline;
3388 }
3389 };
3390 }
3391
3392 // isTriviallyRecursive - Check if this function calls another
3393 // decl that, because of the asm attribute or the other decl being a builtin,
3394 // ends up pointing to itself.
3395 bool
isTriviallyRecursive(const FunctionDecl * FD)3396 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3397 StringRef Name;
3398 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3399 // asm labels are a special kind of mangling we have to support.
3400 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3401 if (!Attr)
3402 return false;
3403 Name = Attr->getLabel();
3404 } else {
3405 Name = FD->getName();
3406 }
3407
3408 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3409 const Stmt *Body = FD->getBody();
3410 return Body ? Walker.Visit(Body) : false;
3411 }
3412
shouldEmitFunction(GlobalDecl GD)3413 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3414 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3415 return true;
3416 const auto *F = cast<FunctionDecl>(GD.getDecl());
3417 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3418 return false;
3419
3420 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3421 // Check whether it would be safe to inline this dllimport function.
3422 DLLImportFunctionVisitor Visitor;
3423 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3424 if (!Visitor.SafeToInline)
3425 return false;
3426
3427 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3428 // Implicit destructor invocations aren't captured in the AST, so the
3429 // check above can't see them. Check for them manually here.
3430 for (const Decl *Member : Dtor->getParent()->decls())
3431 if (isa<FieldDecl>(Member))
3432 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3433 return false;
3434 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3435 if (HasNonDllImportDtor(B.getType()))
3436 return false;
3437 }
3438 }
3439
3440 // Inline builtins declaration must be emitted. They often are fortified
3441 // functions.
3442 if (F->isInlineBuiltinDeclaration())
3443 return true;
3444
3445 // PR9614. Avoid cases where the source code is lying to us. An available
3446 // externally function should have an equivalent function somewhere else,
3447 // but a function that calls itself through asm label/`__builtin_` trickery is
3448 // clearly not equivalent to the real implementation.
3449 // This happens in glibc's btowc and in some configure checks.
3450 return !isTriviallyRecursive(F);
3451 }
3452
shouldOpportunisticallyEmitVTables()3453 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3454 return CodeGenOpts.OptimizationLevel > 0;
3455 }
3456
EmitMultiVersionFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)3457 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3458 llvm::GlobalValue *GV) {
3459 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3460
3461 if (FD->isCPUSpecificMultiVersion()) {
3462 auto *Spec = FD->getAttr<CPUSpecificAttr>();
3463 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3464 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3465 } else if (FD->isTargetClonesMultiVersion()) {
3466 auto *Clone = FD->getAttr<TargetClonesAttr>();
3467 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3468 if (Clone->isFirstOfVersion(I))
3469 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3470 // Ensure that the resolver function is also emitted.
3471 GetOrCreateMultiVersionResolver(GD);
3472 } else
3473 EmitGlobalFunctionDefinition(GD, GV);
3474 }
3475
EmitGlobalDefinition(GlobalDecl GD,llvm::GlobalValue * GV)3476 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3477 const auto *D = cast<ValueDecl>(GD.getDecl());
3478
3479 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3480 Context.getSourceManager(),
3481 "Generating code for declaration");
3482
3483 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3484 // At -O0, don't generate IR for functions with available_externally
3485 // linkage.
3486 if (!shouldEmitFunction(GD))
3487 return;
3488
3489 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3490 std::string Name;
3491 llvm::raw_string_ostream OS(Name);
3492 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3493 /*Qualified=*/true);
3494 return Name;
3495 });
3496
3497 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3498 // Make sure to emit the definition(s) before we emit the thunks.
3499 // This is necessary for the generation of certain thunks.
3500 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3501 ABI->emitCXXStructor(GD);
3502 else if (FD->isMultiVersion())
3503 EmitMultiVersionFunctionDefinition(GD, GV);
3504 else
3505 EmitGlobalFunctionDefinition(GD, GV);
3506
3507 if (Method->isVirtual())
3508 getVTables().EmitThunks(GD);
3509
3510 return;
3511 }
3512
3513 if (FD->isMultiVersion())
3514 return EmitMultiVersionFunctionDefinition(GD, GV);
3515 return EmitGlobalFunctionDefinition(GD, GV);
3516 }
3517
3518 if (const auto *VD = dyn_cast<VarDecl>(D))
3519 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3520
3521 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3522 }
3523
3524 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3525 llvm::Function *NewFn);
3526
3527 static unsigned
TargetMVPriority(const TargetInfo & TI,const CodeGenFunction::MultiVersionResolverOption & RO)3528 TargetMVPriority(const TargetInfo &TI,
3529 const CodeGenFunction::MultiVersionResolverOption &RO) {
3530 unsigned Priority = 0;
3531 for (StringRef Feat : RO.Conditions.Features)
3532 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3533
3534 if (!RO.Conditions.Architecture.empty())
3535 Priority = std::max(
3536 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3537 return Priority;
3538 }
3539
3540 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3541 // TU can forward declare the function without causing problems. Particularly
3542 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3543 // work with internal linkage functions, so that the same function name can be
3544 // used with internal linkage in multiple TUs.
getMultiversionLinkage(CodeGenModule & CGM,GlobalDecl GD)3545 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3546 GlobalDecl GD) {
3547 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3548 if (FD->getFormalLinkage() == InternalLinkage)
3549 return llvm::GlobalValue::InternalLinkage;
3550 return llvm::GlobalValue::WeakODRLinkage;
3551 }
3552
emitMultiVersionFunctions()3553 void CodeGenModule::emitMultiVersionFunctions() {
3554 std::vector<GlobalDecl> MVFuncsToEmit;
3555 MultiVersionFuncs.swap(MVFuncsToEmit);
3556 for (GlobalDecl GD : MVFuncsToEmit) {
3557 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3558 assert(FD && "Expected a FunctionDecl");
3559
3560 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3561 if (FD->isTargetMultiVersion()) {
3562 getContext().forEachMultiversionedFunctionVersion(
3563 FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3564 GlobalDecl CurGD{
3565 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3566 StringRef MangledName = getMangledName(CurGD);
3567 llvm::Constant *Func = GetGlobalValue(MangledName);
3568 if (!Func) {
3569 if (CurFD->isDefined()) {
3570 EmitGlobalFunctionDefinition(CurGD, nullptr);
3571 Func = GetGlobalValue(MangledName);
3572 } else {
3573 const CGFunctionInfo &FI =
3574 getTypes().arrangeGlobalDeclaration(GD);
3575 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3576 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3577 /*DontDefer=*/false, ForDefinition);
3578 }
3579 assert(Func && "This should have just been created");
3580 }
3581
3582 const auto *TA = CurFD->getAttr<TargetAttr>();
3583 llvm::SmallVector<StringRef, 8> Feats;
3584 TA->getAddedFeatures(Feats);
3585
3586 Options.emplace_back(cast<llvm::Function>(Func),
3587 TA->getArchitecture(), Feats);
3588 });
3589 } else if (FD->isTargetClonesMultiVersion()) {
3590 const auto *TC = FD->getAttr<TargetClonesAttr>();
3591 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3592 ++VersionIndex) {
3593 if (!TC->isFirstOfVersion(VersionIndex))
3594 continue;
3595 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3596 VersionIndex};
3597 StringRef Version = TC->getFeatureStr(VersionIndex);
3598 StringRef MangledName = getMangledName(CurGD);
3599 llvm::Constant *Func = GetGlobalValue(MangledName);
3600 if (!Func) {
3601 if (FD->isDefined()) {
3602 EmitGlobalFunctionDefinition(CurGD, nullptr);
3603 Func = GetGlobalValue(MangledName);
3604 } else {
3605 const CGFunctionInfo &FI =
3606 getTypes().arrangeGlobalDeclaration(CurGD);
3607 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3608 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3609 /*DontDefer=*/false, ForDefinition);
3610 }
3611 assert(Func && "This should have just been created");
3612 }
3613
3614 StringRef Architecture;
3615 llvm::SmallVector<StringRef, 1> Feature;
3616
3617 if (Version.startswith("arch="))
3618 Architecture = Version.drop_front(sizeof("arch=") - 1);
3619 else if (Version != "default")
3620 Feature.push_back(Version);
3621
3622 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3623 }
3624 } else {
3625 assert(0 && "Expected a target or target_clones multiversion function");
3626 continue;
3627 }
3628
3629 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3630 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3631 ResolverConstant = IFunc->getResolver();
3632 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3633
3634 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3635
3636 if (supportsCOMDAT())
3637 ResolverFunc->setComdat(
3638 getModule().getOrInsertComdat(ResolverFunc->getName()));
3639
3640 const TargetInfo &TI = getTarget();
3641 llvm::stable_sort(
3642 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3643 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3644 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3645 });
3646 CodeGenFunction CGF(*this);
3647 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3648 }
3649
3650 // Ensure that any additions to the deferred decls list caused by emitting a
3651 // variant are emitted. This can happen when the variant itself is inline and
3652 // calls a function without linkage.
3653 if (!MVFuncsToEmit.empty())
3654 EmitDeferred();
3655
3656 // Ensure that any additions to the multiversion funcs list from either the
3657 // deferred decls or the multiversion functions themselves are emitted.
3658 if (!MultiVersionFuncs.empty())
3659 emitMultiVersionFunctions();
3660 }
3661
emitCPUDispatchDefinition(GlobalDecl GD)3662 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3663 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3664 assert(FD && "Not a FunctionDecl?");
3665 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3666 const auto *DD = FD->getAttr<CPUDispatchAttr>();
3667 assert(DD && "Not a cpu_dispatch Function?");
3668
3669 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3670 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3671
3672 StringRef ResolverName = getMangledName(GD);
3673 UpdateMultiVersionNames(GD, FD, ResolverName);
3674
3675 llvm::Type *ResolverType;
3676 GlobalDecl ResolverGD;
3677 if (getTarget().supportsIFunc()) {
3678 ResolverType = llvm::FunctionType::get(
3679 llvm::PointerType::get(DeclTy,
3680 Context.getTargetAddressSpace(FD->getType())),
3681 false);
3682 }
3683 else {
3684 ResolverType = DeclTy;
3685 ResolverGD = GD;
3686 }
3687
3688 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3689 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3690 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3691 if (supportsCOMDAT())
3692 ResolverFunc->setComdat(
3693 getModule().getOrInsertComdat(ResolverFunc->getName()));
3694
3695 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3696 const TargetInfo &Target = getTarget();
3697 unsigned Index = 0;
3698 for (const IdentifierInfo *II : DD->cpus()) {
3699 // Get the name of the target function so we can look it up/create it.
3700 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3701 getCPUSpecificMangling(*this, II->getName());
3702
3703 llvm::Constant *Func = GetGlobalValue(MangledName);
3704
3705 if (!Func) {
3706 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3707 if (ExistingDecl.getDecl() &&
3708 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3709 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3710 Func = GetGlobalValue(MangledName);
3711 } else {
3712 if (!ExistingDecl.getDecl())
3713 ExistingDecl = GD.getWithMultiVersionIndex(Index);
3714
3715 Func = GetOrCreateLLVMFunction(
3716 MangledName, DeclTy, ExistingDecl,
3717 /*ForVTable=*/false, /*DontDefer=*/true,
3718 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3719 }
3720 }
3721
3722 llvm::SmallVector<StringRef, 32> Features;
3723 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3724 llvm::transform(Features, Features.begin(),
3725 [](StringRef Str) { return Str.substr(1); });
3726 llvm::erase_if(Features, [&Target](StringRef Feat) {
3727 return !Target.validateCpuSupports(Feat);
3728 });
3729 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3730 ++Index;
3731 }
3732
3733 llvm::stable_sort(
3734 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3735 const CodeGenFunction::MultiVersionResolverOption &RHS) {
3736 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3737 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3738 });
3739
3740 // If the list contains multiple 'default' versions, such as when it contains
3741 // 'pentium' and 'generic', don't emit the call to the generic one (since we
3742 // always run on at least a 'pentium'). We do this by deleting the 'least
3743 // advanced' (read, lowest mangling letter).
3744 while (Options.size() > 1 &&
3745 llvm::X86::getCpuSupportsMask(
3746 (Options.end() - 2)->Conditions.Features) == 0) {
3747 StringRef LHSName = (Options.end() - 2)->Function->getName();
3748 StringRef RHSName = (Options.end() - 1)->Function->getName();
3749 if (LHSName.compare(RHSName) < 0)
3750 Options.erase(Options.end() - 2);
3751 else
3752 Options.erase(Options.end() - 1);
3753 }
3754
3755 CodeGenFunction CGF(*this);
3756 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3757
3758 if (getTarget().supportsIFunc()) {
3759 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3760 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3761
3762 // Fix up function declarations that were created for cpu_specific before
3763 // cpu_dispatch was known
3764 if (!isa<llvm::GlobalIFunc>(IFunc)) {
3765 assert(cast<llvm::Function>(IFunc)->isDeclaration());
3766 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3767 &getModule());
3768 GI->takeName(IFunc);
3769 IFunc->replaceAllUsesWith(GI);
3770 IFunc->eraseFromParent();
3771 IFunc = GI;
3772 }
3773
3774 std::string AliasName = getMangledNameImpl(
3775 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3776 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3777 if (!AliasFunc) {
3778 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3779 &getModule());
3780 SetCommonAttributes(GD, GA);
3781 }
3782 }
3783 }
3784
3785 /// If a dispatcher for the specified mangled name is not in the module, create
3786 /// and return an llvm Function with the specified type.
GetOrCreateMultiVersionResolver(GlobalDecl GD)3787 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3788 const auto *FD = cast<FunctionDecl>(GD.getDecl());
3789 assert(FD && "Not a FunctionDecl?");
3790
3791 std::string MangledName =
3792 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3793
3794 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3795 // a separate resolver).
3796 std::string ResolverName = MangledName;
3797 if (getTarget().supportsIFunc())
3798 ResolverName += ".ifunc";
3799 else if (FD->isTargetMultiVersion())
3800 ResolverName += ".resolver";
3801
3802 // If the resolver has already been created, just return it.
3803 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3804 return ResolverGV;
3805
3806 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3807 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3808
3809 // The resolver needs to be created. For target and target_clones, defer
3810 // creation until the end of the TU.
3811 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3812 MultiVersionFuncs.push_back(GD);
3813
3814 // For cpu_specific, don't create an ifunc yet because we don't know if the
3815 // cpu_dispatch will be emitted in this translation unit.
3816 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3817 llvm::Type *ResolverType = llvm::FunctionType::get(
3818 llvm::PointerType::get(
3819 DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3820 false);
3821 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3822 MangledName + ".resolver", ResolverType, GlobalDecl{},
3823 /*ForVTable=*/false);
3824 llvm::GlobalIFunc *GIF =
3825 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3826 "", Resolver, &getModule());
3827 GIF->setName(ResolverName);
3828 SetCommonAttributes(FD, GIF);
3829
3830 return GIF;
3831 }
3832
3833 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3834 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3835 assert(isa<llvm::GlobalValue>(Resolver) &&
3836 "Resolver should be created for the first time");
3837 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3838 return Resolver;
3839 }
3840
3841 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3842 /// module, create and return an llvm Function with the specified type. If there
3843 /// is something in the module with the specified name, return it potentially
3844 /// bitcasted to the right type.
3845 ///
3846 /// If D is non-null, it specifies a decl that correspond to this. This is used
3847 /// to set the attributes on the function when it is first created.
GetOrCreateLLVMFunction(StringRef MangledName,llvm::Type * Ty,GlobalDecl GD,bool ForVTable,bool DontDefer,bool IsThunk,llvm::AttributeList ExtraAttrs,ForDefinition_t IsForDefinition)3848 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3849 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3850 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3851 ForDefinition_t IsForDefinition) {
3852 const Decl *D = GD.getDecl();
3853
3854 // Any attempts to use a MultiVersion function should result in retrieving
3855 // the iFunc instead. Name Mangling will handle the rest of the changes.
3856 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3857 // For the device mark the function as one that should be emitted.
3858 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3859 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3860 !DontDefer && !IsForDefinition) {
3861 if (const FunctionDecl *FDDef = FD->getDefinition()) {
3862 GlobalDecl GDDef;
3863 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3864 GDDef = GlobalDecl(CD, GD.getCtorType());
3865 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3866 GDDef = GlobalDecl(DD, GD.getDtorType());
3867 else
3868 GDDef = GlobalDecl(FDDef);
3869 EmitGlobal(GDDef);
3870 }
3871 }
3872
3873 if (FD->isMultiVersion()) {
3874 UpdateMultiVersionNames(GD, FD, MangledName);
3875 if (!IsForDefinition)
3876 return GetOrCreateMultiVersionResolver(GD);
3877 }
3878 }
3879
3880 // Lookup the entry, lazily creating it if necessary.
3881 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3882 if (Entry) {
3883 if (WeakRefReferences.erase(Entry)) {
3884 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3885 if (FD && !FD->hasAttr<WeakAttr>())
3886 Entry->setLinkage(llvm::Function::ExternalLinkage);
3887 }
3888
3889 // Handle dropped DLL attributes.
3890 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3891 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3892 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3893 setDSOLocal(Entry);
3894 }
3895
3896 // If there are two attempts to define the same mangled name, issue an
3897 // error.
3898 if (IsForDefinition && !Entry->isDeclaration()) {
3899 GlobalDecl OtherGD;
3900 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3901 // to make sure that we issue an error only once.
3902 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3903 (GD.getCanonicalDecl().getDecl() !=
3904 OtherGD.getCanonicalDecl().getDecl()) &&
3905 DiagnosedConflictingDefinitions.insert(GD).second) {
3906 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3907 << MangledName;
3908 getDiags().Report(OtherGD.getDecl()->getLocation(),
3909 diag::note_previous_definition);
3910 }
3911 }
3912
3913 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3914 (Entry->getValueType() == Ty)) {
3915 return Entry;
3916 }
3917
3918 // Make sure the result is of the correct type.
3919 // (If function is requested for a definition, we always need to create a new
3920 // function, not just return a bitcast.)
3921 if (!IsForDefinition)
3922 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3923 }
3924
3925 // This function doesn't have a complete type (for example, the return
3926 // type is an incomplete struct). Use a fake type instead, and make
3927 // sure not to try to set attributes.
3928 bool IsIncompleteFunction = false;
3929
3930 llvm::FunctionType *FTy;
3931 if (isa<llvm::FunctionType>(Ty)) {
3932 FTy = cast<llvm::FunctionType>(Ty);
3933 } else {
3934 FTy = llvm::FunctionType::get(VoidTy, false);
3935 IsIncompleteFunction = true;
3936 }
3937
3938 llvm::Function *F =
3939 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3940 Entry ? StringRef() : MangledName, &getModule());
3941
3942 // If we already created a function with the same mangled name (but different
3943 // type) before, take its name and add it to the list of functions to be
3944 // replaced with F at the end of CodeGen.
3945 //
3946 // This happens if there is a prototype for a function (e.g. "int f()") and
3947 // then a definition of a different type (e.g. "int f(int x)").
3948 if (Entry) {
3949 F->takeName(Entry);
3950
3951 // This might be an implementation of a function without a prototype, in
3952 // which case, try to do special replacement of calls which match the new
3953 // prototype. The really key thing here is that we also potentially drop
3954 // arguments from the call site so as to make a direct call, which makes the
3955 // inliner happier and suppresses a number of optimizer warnings (!) about
3956 // dropping arguments.
3957 if (!Entry->use_empty()) {
3958 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3959 Entry->removeDeadConstantUsers();
3960 }
3961
3962 llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3963 F, Entry->getValueType()->getPointerTo());
3964 addGlobalValReplacement(Entry, BC);
3965 }
3966
3967 assert(F->getName() == MangledName && "name was uniqued!");
3968 if (D)
3969 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3970 if (ExtraAttrs.hasFnAttrs()) {
3971 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3972 F->addFnAttrs(B);
3973 }
3974
3975 if (!DontDefer) {
3976 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3977 // each other bottoming out with the base dtor. Therefore we emit non-base
3978 // dtors on usage, even if there is no dtor definition in the TU.
3979 if (D && isa<CXXDestructorDecl>(D) &&
3980 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3981 GD.getDtorType()))
3982 addDeferredDeclToEmit(GD);
3983
3984 // This is the first use or definition of a mangled name. If there is a
3985 // deferred decl with this name, remember that we need to emit it at the end
3986 // of the file.
3987 auto DDI = DeferredDecls.find(MangledName);
3988 if (DDI != DeferredDecls.end()) {
3989 // Move the potentially referenced deferred decl to the
3990 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3991 // don't need it anymore).
3992 addDeferredDeclToEmit(DDI->second);
3993 DeferredDecls.erase(DDI);
3994
3995 // Otherwise, there are cases we have to worry about where we're
3996 // using a declaration for which we must emit a definition but where
3997 // we might not find a top-level definition:
3998 // - member functions defined inline in their classes
3999 // - friend functions defined inline in some class
4000 // - special member functions with implicit definitions
4001 // If we ever change our AST traversal to walk into class methods,
4002 // this will be unnecessary.
4003 //
4004 // We also don't emit a definition for a function if it's going to be an
4005 // entry in a vtable, unless it's already marked as used.
4006 } else if (getLangOpts().CPlusPlus && D) {
4007 // Look for a declaration that's lexically in a record.
4008 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4009 FD = FD->getPreviousDecl()) {
4010 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4011 if (FD->doesThisDeclarationHaveABody()) {
4012 addDeferredDeclToEmit(GD.getWithDecl(FD));
4013 break;
4014 }
4015 }
4016 }
4017 }
4018 }
4019
4020 // Make sure the result is of the requested type.
4021 if (!IsIncompleteFunction) {
4022 assert(F->getFunctionType() == Ty);
4023 return F;
4024 }
4025
4026 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4027 return llvm::ConstantExpr::getBitCast(F, PTy);
4028 }
4029
4030 /// GetAddrOfFunction - Return the address of the given function. If Ty is
4031 /// non-null, then this function will use the specified type if it has to
4032 /// create it (this occurs when we see a definition of the function).
GetAddrOfFunction(GlobalDecl GD,llvm::Type * Ty,bool ForVTable,bool DontDefer,ForDefinition_t IsForDefinition)4033 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4034 llvm::Type *Ty,
4035 bool ForVTable,
4036 bool DontDefer,
4037 ForDefinition_t IsForDefinition) {
4038 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4039 "consteval function should never be emitted");
4040 // If there was no specific requested type, just convert it now.
4041 if (!Ty) {
4042 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4043 Ty = getTypes().ConvertType(FD->getType());
4044 }
4045
4046 // Devirtualized destructor calls may come through here instead of via
4047 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4048 // of the complete destructor when necessary.
4049 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4050 if (getTarget().getCXXABI().isMicrosoft() &&
4051 GD.getDtorType() == Dtor_Complete &&
4052 DD->getParent()->getNumVBases() == 0)
4053 GD = GlobalDecl(DD, Dtor_Base);
4054 }
4055
4056 StringRef MangledName = getMangledName(GD);
4057 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4058 /*IsThunk=*/false, llvm::AttributeList(),
4059 IsForDefinition);
4060 // Returns kernel handle for HIP kernel stub function.
4061 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4062 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4063 auto *Handle = getCUDARuntime().getKernelHandle(
4064 cast<llvm::Function>(F->stripPointerCasts()), GD);
4065 if (IsForDefinition)
4066 return F;
4067 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4068 }
4069 return F;
4070 }
4071
GetFunctionStart(const ValueDecl * Decl)4072 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4073 llvm::GlobalValue *F =
4074 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4075
4076 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4077 llvm::Type::getInt8PtrTy(VMContext));
4078 }
4079
4080 static const FunctionDecl *
GetRuntimeFunctionDecl(ASTContext & C,StringRef Name)4081 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4082 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4083 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4084
4085 IdentifierInfo &CII = C.Idents.get(Name);
4086 for (const auto *Result : DC->lookup(&CII))
4087 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4088 return FD;
4089
4090 if (!C.getLangOpts().CPlusPlus)
4091 return nullptr;
4092
4093 // Demangle the premangled name from getTerminateFn()
4094 IdentifierInfo &CXXII =
4095 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4096 ? C.Idents.get("terminate")
4097 : C.Idents.get(Name);
4098
4099 for (const auto &N : {"__cxxabiv1", "std"}) {
4100 IdentifierInfo &NS = C.Idents.get(N);
4101 for (const auto *Result : DC->lookup(&NS)) {
4102 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4103 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4104 for (const auto *Result : LSD->lookup(&NS))
4105 if ((ND = dyn_cast<NamespaceDecl>(Result)))
4106 break;
4107
4108 if (ND)
4109 for (const auto *Result : ND->lookup(&CXXII))
4110 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4111 return FD;
4112 }
4113 }
4114
4115 return nullptr;
4116 }
4117
4118 /// CreateRuntimeFunction - Create a new runtime function with the specified
4119 /// type and name.
4120 llvm::FunctionCallee
CreateRuntimeFunction(llvm::FunctionType * FTy,StringRef Name,llvm::AttributeList ExtraAttrs,bool Local,bool AssumeConvergent)4121 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4122 llvm::AttributeList ExtraAttrs, bool Local,
4123 bool AssumeConvergent) {
4124 if (AssumeConvergent) {
4125 ExtraAttrs =
4126 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4127 }
4128
4129 llvm::Constant *C =
4130 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4131 /*DontDefer=*/false, /*IsThunk=*/false,
4132 ExtraAttrs);
4133
4134 if (auto *F = dyn_cast<llvm::Function>(C)) {
4135 if (F->empty()) {
4136 F->setCallingConv(getRuntimeCC());
4137
4138 // In Windows Itanium environments, try to mark runtime functions
4139 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4140 // will link their standard library statically or dynamically. Marking
4141 // functions imported when they are not imported can cause linker errors
4142 // and warnings.
4143 if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4144 !getCodeGenOpts().LTOVisibilityPublicStd) {
4145 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4146 if (!FD || FD->hasAttr<DLLImportAttr>()) {
4147 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4148 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4149 }
4150 }
4151 setDSOLocal(F);
4152 }
4153 }
4154
4155 return {FTy, C};
4156 }
4157
4158 /// isTypeConstant - Determine whether an object of this type can be emitted
4159 /// as a constant.
4160 ///
4161 /// If ExcludeCtor is true, the duration when the object's constructor runs
4162 /// will not be considered. The caller will need to verify that the object is
4163 /// not written to during its construction.
isTypeConstant(QualType Ty,bool ExcludeCtor)4164 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4165 if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4166 return false;
4167
4168 if (Context.getLangOpts().CPlusPlus) {
4169 if (const CXXRecordDecl *Record
4170 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4171 return ExcludeCtor && !Record->hasMutableFields() &&
4172 Record->hasTrivialDestructor();
4173 }
4174
4175 return true;
4176 }
4177
4178 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4179 /// create and return an llvm GlobalVariable with the specified type and address
4180 /// space. If there is something in the module with the specified name, return
4181 /// it potentially bitcasted to the right type.
4182 ///
4183 /// If D is non-null, it specifies a decl that correspond to this. This is used
4184 /// to set the attributes on the global when it is first created.
4185 ///
4186 /// If IsForDefinition is true, it is guaranteed that an actual global with
4187 /// type Ty will be returned, not conversion of a variable with the same
4188 /// mangled name but some other type.
4189 llvm::Constant *
GetOrCreateLLVMGlobal(StringRef MangledName,llvm::Type * Ty,LangAS AddrSpace,const VarDecl * D,ForDefinition_t IsForDefinition)4190 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4191 LangAS AddrSpace, const VarDecl *D,
4192 ForDefinition_t IsForDefinition) {
4193 // Lookup the entry, lazily creating it if necessary.
4194 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4195 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4196 if (Entry) {
4197 if (WeakRefReferences.erase(Entry)) {
4198 if (D && !D->hasAttr<WeakAttr>())
4199 Entry->setLinkage(llvm::Function::ExternalLinkage);
4200 }
4201
4202 // Handle dropped DLL attributes.
4203 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4204 !shouldMapVisibilityToDLLExport(D))
4205 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4206
4207 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4208 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4209
4210 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4211 return Entry;
4212
4213 // If there are two attempts to define the same mangled name, issue an
4214 // error.
4215 if (IsForDefinition && !Entry->isDeclaration()) {
4216 GlobalDecl OtherGD;
4217 const VarDecl *OtherD;
4218
4219 // Check that D is not yet in DiagnosedConflictingDefinitions is required
4220 // to make sure that we issue an error only once.
4221 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4222 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4223 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4224 OtherD->hasInit() &&
4225 DiagnosedConflictingDefinitions.insert(D).second) {
4226 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4227 << MangledName;
4228 getDiags().Report(OtherGD.getDecl()->getLocation(),
4229 diag::note_previous_definition);
4230 }
4231 }
4232
4233 // Make sure the result is of the correct type.
4234 if (Entry->getType()->getAddressSpace() != TargetAS) {
4235 return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4236 Ty->getPointerTo(TargetAS));
4237 }
4238
4239 // (If global is requested for a definition, we always need to create a new
4240 // global, not just return a bitcast.)
4241 if (!IsForDefinition)
4242 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4243 }
4244
4245 auto DAddrSpace = GetGlobalVarAddressSpace(D);
4246
4247 auto *GV = new llvm::GlobalVariable(
4248 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4249 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4250 getContext().getTargetAddressSpace(DAddrSpace));
4251
4252 // If we already created a global with the same mangled name (but different
4253 // type) before, take its name and remove it from its parent.
4254 if (Entry) {
4255 GV->takeName(Entry);
4256
4257 if (!Entry->use_empty()) {
4258 llvm::Constant *NewPtrForOldDecl =
4259 llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4260 Entry->replaceAllUsesWith(NewPtrForOldDecl);
4261 }
4262
4263 Entry->eraseFromParent();
4264 }
4265
4266 // This is the first use or definition of a mangled name. If there is a
4267 // deferred decl with this name, remember that we need to emit it at the end
4268 // of the file.
4269 auto DDI = DeferredDecls.find(MangledName);
4270 if (DDI != DeferredDecls.end()) {
4271 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4272 // list, and remove it from DeferredDecls (since we don't need it anymore).
4273 addDeferredDeclToEmit(DDI->second);
4274 DeferredDecls.erase(DDI);
4275 }
4276
4277 // Handle things which are present even on external declarations.
4278 if (D) {
4279 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4280 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4281
4282 // FIXME: This code is overly simple and should be merged with other global
4283 // handling.
4284 GV->setConstant(isTypeConstant(D->getType(), false));
4285
4286 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4287
4288 setLinkageForGV(GV, D);
4289
4290 if (D->getTLSKind()) {
4291 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4292 CXXThreadLocals.push_back(D);
4293 setTLSMode(GV, *D);
4294 }
4295
4296 setGVProperties(GV, D);
4297
4298 // If required by the ABI, treat declarations of static data members with
4299 // inline initializers as definitions.
4300 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4301 EmitGlobalVarDefinition(D);
4302 }
4303
4304 // Emit section information for extern variables.
4305 if (D->hasExternalStorage()) {
4306 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4307 GV->setSection(SA->getName());
4308 }
4309
4310 // Handle XCore specific ABI requirements.
4311 if (getTriple().getArch() == llvm::Triple::xcore &&
4312 D->getLanguageLinkage() == CLanguageLinkage &&
4313 D->getType().isConstant(Context) &&
4314 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4315 GV->setSection(".cp.rodata");
4316
4317 // Check if we a have a const declaration with an initializer, we may be
4318 // able to emit it as available_externally to expose it's value to the
4319 // optimizer.
4320 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4321 D->getType().isConstQualified() && !GV->hasInitializer() &&
4322 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4323 const auto *Record =
4324 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4325 bool HasMutableFields = Record && Record->hasMutableFields();
4326 if (!HasMutableFields) {
4327 const VarDecl *InitDecl;
4328 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4329 if (InitExpr) {
4330 ConstantEmitter emitter(*this);
4331 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4332 if (Init) {
4333 auto *InitType = Init->getType();
4334 if (GV->getValueType() != InitType) {
4335 // The type of the initializer does not match the definition.
4336 // This happens when an initializer has a different type from
4337 // the type of the global (because of padding at the end of a
4338 // structure for instance).
4339 GV->setName(StringRef());
4340 // Make a new global with the correct type, this is now guaranteed
4341 // to work.
4342 auto *NewGV = cast<llvm::GlobalVariable>(
4343 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4344 ->stripPointerCasts());
4345
4346 // Erase the old global, since it is no longer used.
4347 GV->eraseFromParent();
4348 GV = NewGV;
4349 } else {
4350 GV->setInitializer(Init);
4351 GV->setConstant(true);
4352 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4353 }
4354 emitter.finalize(GV);
4355 }
4356 }
4357 }
4358 }
4359 }
4360
4361 if (GV->isDeclaration()) {
4362 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4363 // External HIP managed variables needed to be recorded for transformation
4364 // in both device and host compilations.
4365 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4366 D->hasExternalStorage())
4367 getCUDARuntime().handleVarRegistration(D, *GV);
4368 }
4369
4370 if (D)
4371 SanitizerMD->reportGlobal(GV, *D);
4372
4373 LangAS ExpectedAS =
4374 D ? D->getType().getAddressSpace()
4375 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4376 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4377 if (DAddrSpace != ExpectedAS) {
4378 return getTargetCodeGenInfo().performAddrSpaceCast(
4379 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4380 }
4381
4382 return GV;
4383 }
4384
4385 llvm::Constant *
GetAddrOfGlobal(GlobalDecl GD,ForDefinition_t IsForDefinition)4386 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4387 const Decl *D = GD.getDecl();
4388
4389 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4390 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4391 /*DontDefer=*/false, IsForDefinition);
4392
4393 if (isa<CXXMethodDecl>(D)) {
4394 auto FInfo =
4395 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4396 auto Ty = getTypes().GetFunctionType(*FInfo);
4397 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4398 IsForDefinition);
4399 }
4400
4401 if (isa<FunctionDecl>(D)) {
4402 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4403 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4404 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4405 IsForDefinition);
4406 }
4407
4408 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4409 }
4410
CreateOrReplaceCXXRuntimeVariable(StringRef Name,llvm::Type * Ty,llvm::GlobalValue::LinkageTypes Linkage,unsigned Alignment)4411 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4412 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4413 unsigned Alignment) {
4414 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4415 llvm::GlobalVariable *OldGV = nullptr;
4416
4417 if (GV) {
4418 // Check if the variable has the right type.
4419 if (GV->getValueType() == Ty)
4420 return GV;
4421
4422 // Because C++ name mangling, the only way we can end up with an already
4423 // existing global with the same name is if it has been declared extern "C".
4424 assert(GV->isDeclaration() && "Declaration has wrong type!");
4425 OldGV = GV;
4426 }
4427
4428 // Create a new variable.
4429 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4430 Linkage, nullptr, Name);
4431
4432 if (OldGV) {
4433 // Replace occurrences of the old variable if needed.
4434 GV->takeName(OldGV);
4435
4436 if (!OldGV->use_empty()) {
4437 llvm::Constant *NewPtrForOldDecl =
4438 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4439 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4440 }
4441
4442 OldGV->eraseFromParent();
4443 }
4444
4445 if (supportsCOMDAT() && GV->isWeakForLinker() &&
4446 !GV->hasAvailableExternallyLinkage())
4447 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4448
4449 GV->setAlignment(llvm::MaybeAlign(Alignment));
4450
4451 return GV;
4452 }
4453
4454 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4455 /// given global variable. If Ty is non-null and if the global doesn't exist,
4456 /// then it will be created with the specified type instead of whatever the
4457 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4458 /// that an actual global with type Ty will be returned, not conversion of a
4459 /// variable with the same mangled name but some other type.
GetAddrOfGlobalVar(const VarDecl * D,llvm::Type * Ty,ForDefinition_t IsForDefinition)4460 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4461 llvm::Type *Ty,
4462 ForDefinition_t IsForDefinition) {
4463 assert(D->hasGlobalStorage() && "Not a global variable");
4464 QualType ASTTy = D->getType();
4465 if (!Ty)
4466 Ty = getTypes().ConvertTypeForMem(ASTTy);
4467
4468 StringRef MangledName = getMangledName(D);
4469 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4470 IsForDefinition);
4471 }
4472
4473 /// CreateRuntimeVariable - Create a new runtime global variable with the
4474 /// specified type and name.
4475 llvm::Constant *
CreateRuntimeVariable(llvm::Type * Ty,StringRef Name)4476 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4477 StringRef Name) {
4478 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4479 : LangAS::Default;
4480 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4481 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4482 return Ret;
4483 }
4484
EmitTentativeDefinition(const VarDecl * D)4485 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4486 assert(!D->getInit() && "Cannot emit definite definitions here!");
4487
4488 StringRef MangledName = getMangledName(D);
4489 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4490
4491 // We already have a definition, not declaration, with the same mangled name.
4492 // Emitting of declaration is not required (and actually overwrites emitted
4493 // definition).
4494 if (GV && !GV->isDeclaration())
4495 return;
4496
4497 // If we have not seen a reference to this variable yet, place it into the
4498 // deferred declarations table to be emitted if needed later.
4499 if (!MustBeEmitted(D) && !GV) {
4500 DeferredDecls[MangledName] = D;
4501 return;
4502 }
4503
4504 // The tentative definition is the only definition.
4505 EmitGlobalVarDefinition(D);
4506 }
4507
EmitExternalDeclaration(const VarDecl * D)4508 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4509 EmitExternalVarDeclaration(D);
4510 }
4511
GetTargetTypeStoreSize(llvm::Type * Ty) const4512 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4513 return Context.toCharUnitsFromBits(
4514 getDataLayout().getTypeStoreSizeInBits(Ty));
4515 }
4516
GetGlobalVarAddressSpace(const VarDecl * D)4517 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4518 if (LangOpts.OpenCL) {
4519 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4520 assert(AS == LangAS::opencl_global ||
4521 AS == LangAS::opencl_global_device ||
4522 AS == LangAS::opencl_global_host ||
4523 AS == LangAS::opencl_constant ||
4524 AS == LangAS::opencl_local ||
4525 AS >= LangAS::FirstTargetAddressSpace);
4526 return AS;
4527 }
4528
4529 if (LangOpts.SYCLIsDevice &&
4530 (!D || D->getType().getAddressSpace() == LangAS::Default))
4531 return LangAS::sycl_global;
4532
4533 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4534 if (D && D->hasAttr<CUDAConstantAttr>())
4535 return LangAS::cuda_constant;
4536 else if (D && D->hasAttr<CUDASharedAttr>())
4537 return LangAS::cuda_shared;
4538 else if (D && D->hasAttr<CUDADeviceAttr>())
4539 return LangAS::cuda_device;
4540 else if (D && D->getType().isConstQualified())
4541 return LangAS::cuda_constant;
4542 else
4543 return LangAS::cuda_device;
4544 }
4545
4546 if (LangOpts.OpenMP) {
4547 LangAS AS;
4548 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4549 return AS;
4550 }
4551 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4552 }
4553
GetGlobalConstantAddressSpace() const4554 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4555 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4556 if (LangOpts.OpenCL)
4557 return LangAS::opencl_constant;
4558 if (LangOpts.SYCLIsDevice)
4559 return LangAS::sycl_global;
4560 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4561 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4562 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4563 // with OpVariable instructions with Generic storage class which is not
4564 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4565 // UniformConstant storage class is not viable as pointers to it may not be
4566 // casted to Generic pointers which are used to model HIP's "flat" pointers.
4567 return LangAS::cuda_device;
4568 if (auto AS = getTarget().getConstantAddressSpace())
4569 return *AS;
4570 return LangAS::Default;
4571 }
4572
4573 // In address space agnostic languages, string literals are in default address
4574 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4575 // emitted in constant address space in LLVM IR. To be consistent with other
4576 // parts of AST, string literal global variables in constant address space
4577 // need to be casted to default address space before being put into address
4578 // map and referenced by other part of CodeGen.
4579 // In OpenCL, string literals are in constant address space in AST, therefore
4580 // they should not be casted to default address space.
4581 static llvm::Constant *
castStringLiteralToDefaultAddressSpace(CodeGenModule & CGM,llvm::GlobalVariable * GV)4582 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4583 llvm::GlobalVariable *GV) {
4584 llvm::Constant *Cast = GV;
4585 if (!CGM.getLangOpts().OpenCL) {
4586 auto AS = CGM.GetGlobalConstantAddressSpace();
4587 if (AS != LangAS::Default)
4588 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4589 CGM, GV, AS, LangAS::Default,
4590 GV->getValueType()->getPointerTo(
4591 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4592 }
4593 return Cast;
4594 }
4595
4596 template<typename SomeDecl>
MaybeHandleStaticInExternC(const SomeDecl * D,llvm::GlobalValue * GV)4597 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4598 llvm::GlobalValue *GV) {
4599 if (!getLangOpts().CPlusPlus)
4600 return;
4601
4602 // Must have 'used' attribute, or else inline assembly can't rely on
4603 // the name existing.
4604 if (!D->template hasAttr<UsedAttr>())
4605 return;
4606
4607 // Must have internal linkage and an ordinary name.
4608 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4609 return;
4610
4611 // Must be in an extern "C" context. Entities declared directly within
4612 // a record are not extern "C" even if the record is in such a context.
4613 const SomeDecl *First = D->getFirstDecl();
4614 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4615 return;
4616
4617 // OK, this is an internal linkage entity inside an extern "C" linkage
4618 // specification. Make a note of that so we can give it the "expected"
4619 // mangled name if nothing else is using that name.
4620 std::pair<StaticExternCMap::iterator, bool> R =
4621 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4622
4623 // If we have multiple internal linkage entities with the same name
4624 // in extern "C" regions, none of them gets that name.
4625 if (!R.second)
4626 R.first->second = nullptr;
4627 }
4628
shouldBeInCOMDAT(CodeGenModule & CGM,const Decl & D)4629 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4630 if (!CGM.supportsCOMDAT())
4631 return false;
4632
4633 if (D.hasAttr<SelectAnyAttr>())
4634 return true;
4635
4636 GVALinkage Linkage;
4637 if (auto *VD = dyn_cast<VarDecl>(&D))
4638 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4639 else
4640 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4641
4642 switch (Linkage) {
4643 case GVA_Internal:
4644 case GVA_AvailableExternally:
4645 case GVA_StrongExternal:
4646 return false;
4647 case GVA_DiscardableODR:
4648 case GVA_StrongODR:
4649 return true;
4650 }
4651 llvm_unreachable("No such linkage");
4652 }
4653
maybeSetTrivialComdat(const Decl & D,llvm::GlobalObject & GO)4654 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4655 llvm::GlobalObject &GO) {
4656 if (!shouldBeInCOMDAT(*this, D))
4657 return;
4658 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4659 }
4660
4661 /// Pass IsTentative as true if you want to create a tentative definition.
EmitGlobalVarDefinition(const VarDecl * D,bool IsTentative)4662 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4663 bool IsTentative) {
4664 // OpenCL global variables of sampler type are translated to function calls,
4665 // therefore no need to be translated.
4666 QualType ASTTy = D->getType();
4667 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4668 return;
4669
4670 // If this is OpenMP device, check if it is legal to emit this global
4671 // normally.
4672 if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4673 OpenMPRuntime->emitTargetGlobalVariable(D))
4674 return;
4675
4676 llvm::TrackingVH<llvm::Constant> Init;
4677 bool NeedsGlobalCtor = false;
4678 bool NeedsGlobalDtor =
4679 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4680
4681 const VarDecl *InitDecl;
4682 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4683
4684 Optional<ConstantEmitter> emitter;
4685
4686 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4687 // as part of their declaration." Sema has already checked for
4688 // error cases, so we just need to set Init to UndefValue.
4689 bool IsCUDASharedVar =
4690 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4691 // Shadows of initialized device-side global variables are also left
4692 // undefined.
4693 // Managed Variables should be initialized on both host side and device side.
4694 bool IsCUDAShadowVar =
4695 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4696 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4697 D->hasAttr<CUDASharedAttr>());
4698 bool IsCUDADeviceShadowVar =
4699 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4700 (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4701 D->getType()->isCUDADeviceBuiltinTextureType());
4702 if (getLangOpts().CUDA &&
4703 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4704 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4705 else if (D->hasAttr<LoaderUninitializedAttr>())
4706 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4707 else if (!InitExpr) {
4708 // This is a tentative definition; tentative definitions are
4709 // implicitly initialized with { 0 }.
4710 //
4711 // Note that tentative definitions are only emitted at the end of
4712 // a translation unit, so they should never have incomplete
4713 // type. In addition, EmitTentativeDefinition makes sure that we
4714 // never attempt to emit a tentative definition if a real one
4715 // exists. A use may still exists, however, so we still may need
4716 // to do a RAUW.
4717 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4718 Init = EmitNullConstant(D->getType());
4719 } else {
4720 initializedGlobalDecl = GlobalDecl(D);
4721 emitter.emplace(*this);
4722 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4723 if (!Initializer) {
4724 QualType T = InitExpr->getType();
4725 if (D->getType()->isReferenceType())
4726 T = D->getType();
4727
4728 if (getLangOpts().CPlusPlus) {
4729 if (InitDecl->hasFlexibleArrayInit(getContext()))
4730 ErrorUnsupported(D, "flexible array initializer");
4731 Init = EmitNullConstant(T);
4732 NeedsGlobalCtor = true;
4733 } else {
4734 ErrorUnsupported(D, "static initializer");
4735 Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4736 }
4737 } else {
4738 Init = Initializer;
4739 // We don't need an initializer, so remove the entry for the delayed
4740 // initializer position (just in case this entry was delayed) if we
4741 // also don't need to register a destructor.
4742 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4743 DelayedCXXInitPosition.erase(D);
4744
4745 #ifndef NDEBUG
4746 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4747 InitDecl->getFlexibleArrayInitChars(getContext());
4748 CharUnits CstSize = CharUnits::fromQuantity(
4749 getDataLayout().getTypeAllocSize(Init->getType()));
4750 assert(VarSize == CstSize && "Emitted constant has unexpected size");
4751 #endif
4752 }
4753 }
4754
4755 llvm::Type* InitType = Init->getType();
4756 llvm::Constant *Entry =
4757 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4758
4759 // Strip off pointer casts if we got them.
4760 Entry = Entry->stripPointerCasts();
4761
4762 // Entry is now either a Function or GlobalVariable.
4763 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4764
4765 // We have a definition after a declaration with the wrong type.
4766 // We must make a new GlobalVariable* and update everything that used OldGV
4767 // (a declaration or tentative definition) with the new GlobalVariable*
4768 // (which will be a definition).
4769 //
4770 // This happens if there is a prototype for a global (e.g.
4771 // "extern int x[];") and then a definition of a different type (e.g.
4772 // "int x[10];"). This also happens when an initializer has a different type
4773 // from the type of the global (this happens with unions).
4774 if (!GV || GV->getValueType() != InitType ||
4775 GV->getType()->getAddressSpace() !=
4776 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4777
4778 // Move the old entry aside so that we'll create a new one.
4779 Entry->setName(StringRef());
4780
4781 // Make a new global with the correct type, this is now guaranteed to work.
4782 GV = cast<llvm::GlobalVariable>(
4783 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4784 ->stripPointerCasts());
4785
4786 // Replace all uses of the old global with the new global
4787 llvm::Constant *NewPtrForOldDecl =
4788 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4789 Entry->getType());
4790 Entry->replaceAllUsesWith(NewPtrForOldDecl);
4791
4792 // Erase the old global, since it is no longer used.
4793 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4794 }
4795
4796 MaybeHandleStaticInExternC(D, GV);
4797
4798 if (D->hasAttr<AnnotateAttr>())
4799 AddGlobalAnnotations(D, GV);
4800
4801 // Set the llvm linkage type as appropriate.
4802 llvm::GlobalValue::LinkageTypes Linkage =
4803 getLLVMLinkageVarDefinition(D, GV->isConstant());
4804
4805 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4806 // the device. [...]"
4807 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4808 // __device__, declares a variable that: [...]
4809 // Is accessible from all the threads within the grid and from the host
4810 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4811 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4812 if (GV && LangOpts.CUDA) {
4813 if (LangOpts.CUDAIsDevice) {
4814 if (Linkage != llvm::GlobalValue::InternalLinkage &&
4815 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4816 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4817 D->getType()->isCUDADeviceBuiltinTextureType()))
4818 GV->setExternallyInitialized(true);
4819 } else {
4820 getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4821 }
4822 getCUDARuntime().handleVarRegistration(D, *GV);
4823 }
4824
4825 GV->setInitializer(Init);
4826 if (emitter)
4827 emitter->finalize(GV);
4828
4829 // If it is safe to mark the global 'constant', do so now.
4830 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4831 isTypeConstant(D->getType(), true));
4832
4833 // If it is in a read-only section, mark it 'constant'.
4834 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4835 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4836 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4837 GV->setConstant(true);
4838 }
4839
4840 CharUnits AlignVal = getContext().getDeclAlign(D);
4841 // Check for alignment specifed in an 'omp allocate' directive.
4842 if (llvm::Optional<CharUnits> AlignValFromAllocate =
4843 getOMPAllocateAlignment(D))
4844 AlignVal = *AlignValFromAllocate;
4845 GV->setAlignment(AlignVal.getAsAlign());
4846
4847 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4848 // function is only defined alongside the variable, not also alongside
4849 // callers. Normally, all accesses to a thread_local go through the
4850 // thread-wrapper in order to ensure initialization has occurred, underlying
4851 // variable will never be used other than the thread-wrapper, so it can be
4852 // converted to internal linkage.
4853 //
4854 // However, if the variable has the 'constinit' attribute, it _can_ be
4855 // referenced directly, without calling the thread-wrapper, so the linkage
4856 // must not be changed.
4857 //
4858 // Additionally, if the variable isn't plain external linkage, e.g. if it's
4859 // weak or linkonce, the de-duplication semantics are important to preserve,
4860 // so we don't change the linkage.
4861 if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4862 Linkage == llvm::GlobalValue::ExternalLinkage &&
4863 Context.getTargetInfo().getTriple().isOSDarwin() &&
4864 !D->hasAttr<ConstInitAttr>())
4865 Linkage = llvm::GlobalValue::InternalLinkage;
4866
4867 GV->setLinkage(Linkage);
4868 if (D->hasAttr<DLLImportAttr>())
4869 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4870 else if (D->hasAttr<DLLExportAttr>())
4871 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4872 else
4873 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4874
4875 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4876 // common vars aren't constant even if declared const.
4877 GV->setConstant(false);
4878 // Tentative definition of global variables may be initialized with
4879 // non-zero null pointers. In this case they should have weak linkage
4880 // since common linkage must have zero initializer and must not have
4881 // explicit section therefore cannot have non-zero initial value.
4882 if (!GV->getInitializer()->isNullValue())
4883 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4884 }
4885
4886 setNonAliasAttributes(D, GV);
4887
4888 if (D->getTLSKind() && !GV->isThreadLocal()) {
4889 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4890 CXXThreadLocals.push_back(D);
4891 setTLSMode(GV, *D);
4892 }
4893
4894 maybeSetTrivialComdat(*D, *GV);
4895
4896 // Emit the initializer function if necessary.
4897 if (NeedsGlobalCtor || NeedsGlobalDtor)
4898 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4899
4900 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4901
4902 // Emit global variable debug information.
4903 if (CGDebugInfo *DI = getModuleDebugInfo())
4904 if (getCodeGenOpts().hasReducedDebugInfo())
4905 DI->EmitGlobalVariable(GV, D);
4906 }
4907
EmitExternalVarDeclaration(const VarDecl * D)4908 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4909 if (CGDebugInfo *DI = getModuleDebugInfo())
4910 if (getCodeGenOpts().hasReducedDebugInfo()) {
4911 QualType ASTTy = D->getType();
4912 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4913 llvm::Constant *GV =
4914 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4915 DI->EmitExternalVariable(
4916 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4917 }
4918 }
4919
isVarDeclStrongDefinition(const ASTContext & Context,CodeGenModule & CGM,const VarDecl * D,bool NoCommon)4920 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4921 CodeGenModule &CGM, const VarDecl *D,
4922 bool NoCommon) {
4923 // Don't give variables common linkage if -fno-common was specified unless it
4924 // was overridden by a NoCommon attribute.
4925 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4926 return true;
4927
4928 // C11 6.9.2/2:
4929 // A declaration of an identifier for an object that has file scope without
4930 // an initializer, and without a storage-class specifier or with the
4931 // storage-class specifier static, constitutes a tentative definition.
4932 if (D->getInit() || D->hasExternalStorage())
4933 return true;
4934
4935 // A variable cannot be both common and exist in a section.
4936 if (D->hasAttr<SectionAttr>())
4937 return true;
4938
4939 // A variable cannot be both common and exist in a section.
4940 // We don't try to determine which is the right section in the front-end.
4941 // If no specialized section name is applicable, it will resort to default.
4942 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4943 D->hasAttr<PragmaClangDataSectionAttr>() ||
4944 D->hasAttr<PragmaClangRelroSectionAttr>() ||
4945 D->hasAttr<PragmaClangRodataSectionAttr>())
4946 return true;
4947
4948 // Thread local vars aren't considered common linkage.
4949 if (D->getTLSKind())
4950 return true;
4951
4952 // Tentative definitions marked with WeakImportAttr are true definitions.
4953 if (D->hasAttr<WeakImportAttr>())
4954 return true;
4955
4956 // A variable cannot be both common and exist in a comdat.
4957 if (shouldBeInCOMDAT(CGM, *D))
4958 return true;
4959
4960 // Declarations with a required alignment do not have common linkage in MSVC
4961 // mode.
4962 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4963 if (D->hasAttr<AlignedAttr>())
4964 return true;
4965 QualType VarType = D->getType();
4966 if (Context.isAlignmentRequired(VarType))
4967 return true;
4968
4969 if (const auto *RT = VarType->getAs<RecordType>()) {
4970 const RecordDecl *RD = RT->getDecl();
4971 for (const FieldDecl *FD : RD->fields()) {
4972 if (FD->isBitField())
4973 continue;
4974 if (FD->hasAttr<AlignedAttr>())
4975 return true;
4976 if (Context.isAlignmentRequired(FD->getType()))
4977 return true;
4978 }
4979 }
4980 }
4981
4982 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4983 // common symbols, so symbols with greater alignment requirements cannot be
4984 // common.
4985 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4986 // alignments for common symbols via the aligncomm directive, so this
4987 // restriction only applies to MSVC environments.
4988 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4989 Context.getTypeAlignIfKnown(D->getType()) >
4990 Context.toBits(CharUnits::fromQuantity(32)))
4991 return true;
4992
4993 return false;
4994 }
4995
getLLVMLinkageForDeclarator(const DeclaratorDecl * D,GVALinkage Linkage,bool IsConstantVariable)4996 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4997 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4998 if (Linkage == GVA_Internal)
4999 return llvm::Function::InternalLinkage;
5000
5001 if (D->hasAttr<WeakAttr>())
5002 return llvm::GlobalVariable::WeakAnyLinkage;
5003
5004 if (const auto *FD = D->getAsFunction())
5005 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5006 return llvm::GlobalVariable::LinkOnceAnyLinkage;
5007
5008 // We are guaranteed to have a strong definition somewhere else,
5009 // so we can use available_externally linkage.
5010 if (Linkage == GVA_AvailableExternally)
5011 return llvm::GlobalValue::AvailableExternallyLinkage;
5012
5013 // Note that Apple's kernel linker doesn't support symbol
5014 // coalescing, so we need to avoid linkonce and weak linkages there.
5015 // Normally, this means we just map to internal, but for explicit
5016 // instantiations we'll map to external.
5017
5018 // In C++, the compiler has to emit a definition in every translation unit
5019 // that references the function. We should use linkonce_odr because
5020 // a) if all references in this translation unit are optimized away, we
5021 // don't need to codegen it. b) if the function persists, it needs to be
5022 // merged with other definitions. c) C++ has the ODR, so we know the
5023 // definition is dependable.
5024 if (Linkage == GVA_DiscardableODR)
5025 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5026 : llvm::Function::InternalLinkage;
5027
5028 // An explicit instantiation of a template has weak linkage, since
5029 // explicit instantiations can occur in multiple translation units
5030 // and must all be equivalent. However, we are not allowed to
5031 // throw away these explicit instantiations.
5032 //
5033 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5034 // so say that CUDA templates are either external (for kernels) or internal.
5035 // This lets llvm perform aggressive inter-procedural optimizations. For
5036 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5037 // therefore we need to follow the normal linkage paradigm.
5038 if (Linkage == GVA_StrongODR) {
5039 if (getLangOpts().AppleKext)
5040 return llvm::Function::ExternalLinkage;
5041 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5042 !getLangOpts().GPURelocatableDeviceCode)
5043 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5044 : llvm::Function::InternalLinkage;
5045 return llvm::Function::WeakODRLinkage;
5046 }
5047
5048 // C++ doesn't have tentative definitions and thus cannot have common
5049 // linkage.
5050 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5051 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5052 CodeGenOpts.NoCommon))
5053 return llvm::GlobalVariable::CommonLinkage;
5054
5055 // selectany symbols are externally visible, so use weak instead of
5056 // linkonce. MSVC optimizes away references to const selectany globals, so
5057 // all definitions should be the same and ODR linkage should be used.
5058 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5059 if (D->hasAttr<SelectAnyAttr>())
5060 return llvm::GlobalVariable::WeakODRLinkage;
5061
5062 // Otherwise, we have strong external linkage.
5063 assert(Linkage == GVA_StrongExternal);
5064 return llvm::GlobalVariable::ExternalLinkage;
5065 }
5066
getLLVMLinkageVarDefinition(const VarDecl * VD,bool IsConstant)5067 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5068 const VarDecl *VD, bool IsConstant) {
5069 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5070 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5071 }
5072
5073 /// Replace the uses of a function that was declared with a non-proto type.
5074 /// We want to silently drop extra arguments from call sites
replaceUsesOfNonProtoConstant(llvm::Constant * old,llvm::Function * newFn)5075 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5076 llvm::Function *newFn) {
5077 // Fast path.
5078 if (old->use_empty()) return;
5079
5080 llvm::Type *newRetTy = newFn->getReturnType();
5081 SmallVector<llvm::Value*, 4> newArgs;
5082
5083 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5084 ui != ue; ) {
5085 llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5086 llvm::User *user = use->getUser();
5087
5088 // Recognize and replace uses of bitcasts. Most calls to
5089 // unprototyped functions will use bitcasts.
5090 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5091 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5092 replaceUsesOfNonProtoConstant(bitcast, newFn);
5093 continue;
5094 }
5095
5096 // Recognize calls to the function.
5097 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5098 if (!callSite) continue;
5099 if (!callSite->isCallee(&*use))
5100 continue;
5101
5102 // If the return types don't match exactly, then we can't
5103 // transform this call unless it's dead.
5104 if (callSite->getType() != newRetTy && !callSite->use_empty())
5105 continue;
5106
5107 // Get the call site's attribute list.
5108 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5109 llvm::AttributeList oldAttrs = callSite->getAttributes();
5110
5111 // If the function was passed too few arguments, don't transform.
5112 unsigned newNumArgs = newFn->arg_size();
5113 if (callSite->arg_size() < newNumArgs)
5114 continue;
5115
5116 // If extra arguments were passed, we silently drop them.
5117 // If any of the types mismatch, we don't transform.
5118 unsigned argNo = 0;
5119 bool dontTransform = false;
5120 for (llvm::Argument &A : newFn->args()) {
5121 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5122 dontTransform = true;
5123 break;
5124 }
5125
5126 // Add any parameter attributes.
5127 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5128 argNo++;
5129 }
5130 if (dontTransform)
5131 continue;
5132
5133 // Okay, we can transform this. Create the new call instruction and copy
5134 // over the required information.
5135 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5136
5137 // Copy over any operand bundles.
5138 SmallVector<llvm::OperandBundleDef, 1> newBundles;
5139 callSite->getOperandBundlesAsDefs(newBundles);
5140
5141 llvm::CallBase *newCall;
5142 if (isa<llvm::CallInst>(callSite)) {
5143 newCall =
5144 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5145 } else {
5146 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5147 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5148 oldInvoke->getUnwindDest(), newArgs,
5149 newBundles, "", callSite);
5150 }
5151 newArgs.clear(); // for the next iteration
5152
5153 if (!newCall->getType()->isVoidTy())
5154 newCall->takeName(callSite);
5155 newCall->setAttributes(
5156 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5157 oldAttrs.getRetAttrs(), newArgAttrs));
5158 newCall->setCallingConv(callSite->getCallingConv());
5159
5160 // Finally, remove the old call, replacing any uses with the new one.
5161 if (!callSite->use_empty())
5162 callSite->replaceAllUsesWith(newCall);
5163
5164 // Copy debug location attached to CI.
5165 if (callSite->getDebugLoc())
5166 newCall->setDebugLoc(callSite->getDebugLoc());
5167
5168 callSite->eraseFromParent();
5169 }
5170 }
5171
5172 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5173 /// implement a function with no prototype, e.g. "int foo() {}". If there are
5174 /// existing call uses of the old function in the module, this adjusts them to
5175 /// call the new function directly.
5176 ///
5177 /// This is not just a cleanup: the always_inline pass requires direct calls to
5178 /// functions to be able to inline them. If there is a bitcast in the way, it
5179 /// won't inline them. Instcombine normally deletes these calls, but it isn't
5180 /// run at -O0.
ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue * Old,llvm::Function * NewFn)5181 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5182 llvm::Function *NewFn) {
5183 // If we're redefining a global as a function, don't transform it.
5184 if (!isa<llvm::Function>(Old)) return;
5185
5186 replaceUsesOfNonProtoConstant(Old, NewFn);
5187 }
5188
HandleCXXStaticMemberVarInstantiation(VarDecl * VD)5189 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5190 auto DK = VD->isThisDeclarationADefinition();
5191 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5192 return;
5193
5194 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5195 // If we have a definition, this might be a deferred decl. If the
5196 // instantiation is explicit, make sure we emit it at the end.
5197 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5198 GetAddrOfGlobalVar(VD);
5199
5200 EmitTopLevelDecl(VD);
5201 }
5202
EmitGlobalFunctionDefinition(GlobalDecl GD,llvm::GlobalValue * GV)5203 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5204 llvm::GlobalValue *GV) {
5205 const auto *D = cast<FunctionDecl>(GD.getDecl());
5206
5207 // Compute the function info and LLVM type.
5208 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5209 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5210
5211 // Get or create the prototype for the function.
5212 if (!GV || (GV->getValueType() != Ty))
5213 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5214 /*DontDefer=*/true,
5215 ForDefinition));
5216
5217 // Already emitted.
5218 if (!GV->isDeclaration())
5219 return;
5220
5221 // We need to set linkage and visibility on the function before
5222 // generating code for it because various parts of IR generation
5223 // want to propagate this information down (e.g. to local static
5224 // declarations).
5225 auto *Fn = cast<llvm::Function>(GV);
5226 setFunctionLinkage(GD, Fn);
5227
5228 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5229 setGVProperties(Fn, GD);
5230
5231 MaybeHandleStaticInExternC(D, Fn);
5232
5233 maybeSetTrivialComdat(*D, *Fn);
5234
5235 // Set CodeGen attributes that represent floating point environment.
5236 setLLVMFunctionFEnvAttributes(D, Fn);
5237
5238 CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5239
5240 setNonAliasAttributes(GD, Fn);
5241 SetLLVMFunctionAttributesForDefinition(D, Fn);
5242
5243 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5244 AddGlobalCtor(Fn, CA->getPriority());
5245 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5246 AddGlobalDtor(Fn, DA->getPriority(), true);
5247 if (D->hasAttr<AnnotateAttr>())
5248 AddGlobalAnnotations(D, Fn);
5249 }
5250
EmitAliasDefinition(GlobalDecl GD)5251 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5252 const auto *D = cast<ValueDecl>(GD.getDecl());
5253 const AliasAttr *AA = D->getAttr<AliasAttr>();
5254 assert(AA && "Not an alias?");
5255
5256 StringRef MangledName = getMangledName(GD);
5257
5258 if (AA->getAliasee() == MangledName) {
5259 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5260 return;
5261 }
5262
5263 // If there is a definition in the module, then it wins over the alias.
5264 // This is dubious, but allow it to be safe. Just ignore the alias.
5265 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5266 if (Entry && !Entry->isDeclaration())
5267 return;
5268
5269 Aliases.push_back(GD);
5270
5271 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5272
5273 // Create a reference to the named value. This ensures that it is emitted
5274 // if a deferred decl.
5275 llvm::Constant *Aliasee;
5276 llvm::GlobalValue::LinkageTypes LT;
5277 if (isa<llvm::FunctionType>(DeclTy)) {
5278 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5279 /*ForVTable=*/false);
5280 LT = getFunctionLinkage(GD);
5281 } else {
5282 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5283 /*D=*/nullptr);
5284 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5285 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5286 else
5287 LT = getFunctionLinkage(GD);
5288 }
5289
5290 // Create the new alias itself, but don't set a name yet.
5291 unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5292 auto *GA =
5293 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5294
5295 if (Entry) {
5296 if (GA->getAliasee() == Entry) {
5297 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5298 return;
5299 }
5300
5301 assert(Entry->isDeclaration());
5302
5303 // If there is a declaration in the module, then we had an extern followed
5304 // by the alias, as in:
5305 // extern int test6();
5306 // ...
5307 // int test6() __attribute__((alias("test7")));
5308 //
5309 // Remove it and replace uses of it with the alias.
5310 GA->takeName(Entry);
5311
5312 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5313 Entry->getType()));
5314 Entry->eraseFromParent();
5315 } else {
5316 GA->setName(MangledName);
5317 }
5318
5319 // Set attributes which are particular to an alias; this is a
5320 // specialization of the attributes which may be set on a global
5321 // variable/function.
5322 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5323 D->isWeakImported()) {
5324 GA->setLinkage(llvm::Function::WeakAnyLinkage);
5325 }
5326
5327 if (const auto *VD = dyn_cast<VarDecl>(D))
5328 if (VD->getTLSKind())
5329 setTLSMode(GA, *VD);
5330
5331 SetCommonAttributes(GD, GA);
5332
5333 // Emit global alias debug information.
5334 if (isa<VarDecl>(D))
5335 if (CGDebugInfo *DI = getModuleDebugInfo())
5336 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()), GD);
5337 }
5338
emitIFuncDefinition(GlobalDecl GD)5339 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5340 const auto *D = cast<ValueDecl>(GD.getDecl());
5341 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5342 assert(IFA && "Not an ifunc?");
5343
5344 StringRef MangledName = getMangledName(GD);
5345
5346 if (IFA->getResolver() == MangledName) {
5347 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5348 return;
5349 }
5350
5351 // Report an error if some definition overrides ifunc.
5352 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5353 if (Entry && !Entry->isDeclaration()) {
5354 GlobalDecl OtherGD;
5355 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5356 DiagnosedConflictingDefinitions.insert(GD).second) {
5357 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5358 << MangledName;
5359 Diags.Report(OtherGD.getDecl()->getLocation(),
5360 diag::note_previous_definition);
5361 }
5362 return;
5363 }
5364
5365 Aliases.push_back(GD);
5366
5367 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5368 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5369 llvm::Constant *Resolver =
5370 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5371 /*ForVTable=*/false);
5372 llvm::GlobalIFunc *GIF =
5373 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5374 "", Resolver, &getModule());
5375 if (Entry) {
5376 if (GIF->getResolver() == Entry) {
5377 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5378 return;
5379 }
5380 assert(Entry->isDeclaration());
5381
5382 // If there is a declaration in the module, then we had an extern followed
5383 // by the ifunc, as in:
5384 // extern int test();
5385 // ...
5386 // int test() __attribute__((ifunc("resolver")));
5387 //
5388 // Remove it and replace uses of it with the ifunc.
5389 GIF->takeName(Entry);
5390
5391 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5392 Entry->getType()));
5393 Entry->eraseFromParent();
5394 } else
5395 GIF->setName(MangledName);
5396
5397 SetCommonAttributes(GD, GIF);
5398 }
5399
getIntrinsic(unsigned IID,ArrayRef<llvm::Type * > Tys)5400 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5401 ArrayRef<llvm::Type*> Tys) {
5402 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5403 Tys);
5404 }
5405
5406 static llvm::StringMapEntry<llvm::GlobalVariable *> &
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable * > & Map,const StringLiteral * Literal,bool TargetIsLSB,bool & IsUTF16,unsigned & StringLength)5407 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5408 const StringLiteral *Literal, bool TargetIsLSB,
5409 bool &IsUTF16, unsigned &StringLength) {
5410 StringRef String = Literal->getString();
5411 unsigned NumBytes = String.size();
5412
5413 // Check for simple case.
5414 if (!Literal->containsNonAsciiOrNull()) {
5415 StringLength = NumBytes;
5416 return *Map.insert(std::make_pair(String, nullptr)).first;
5417 }
5418
5419 // Otherwise, convert the UTF8 literals into a string of shorts.
5420 IsUTF16 = true;
5421
5422 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5423 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5424 llvm::UTF16 *ToPtr = &ToBuf[0];
5425
5426 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5427 ToPtr + NumBytes, llvm::strictConversion);
5428
5429 // ConvertUTF8toUTF16 returns the length in ToPtr.
5430 StringLength = ToPtr - &ToBuf[0];
5431
5432 // Add an explicit null.
5433 *ToPtr = 0;
5434 return *Map.insert(std::make_pair(
5435 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5436 (StringLength + 1) * 2),
5437 nullptr)).first;
5438 }
5439
5440 ConstantAddress
GetAddrOfConstantCFString(const StringLiteral * Literal)5441 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5442 unsigned StringLength = 0;
5443 bool isUTF16 = false;
5444 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5445 GetConstantCFStringEntry(CFConstantStringMap, Literal,
5446 getDataLayout().isLittleEndian(), isUTF16,
5447 StringLength);
5448
5449 if (auto *C = Entry.second)
5450 return ConstantAddress(
5451 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5452
5453 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5454 llvm::Constant *Zeros[] = { Zero, Zero };
5455
5456 const ASTContext &Context = getContext();
5457 const llvm::Triple &Triple = getTriple();
5458
5459 const auto CFRuntime = getLangOpts().CFRuntime;
5460 const bool IsSwiftABI =
5461 static_cast<unsigned>(CFRuntime) >=
5462 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5463 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5464
5465 // If we don't already have it, get __CFConstantStringClassReference.
5466 if (!CFConstantStringClassRef) {
5467 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5468 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5469 Ty = llvm::ArrayType::get(Ty, 0);
5470
5471 switch (CFRuntime) {
5472 default: break;
5473 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5474 case LangOptions::CoreFoundationABI::Swift5_0:
5475 CFConstantStringClassName =
5476 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5477 : "$s10Foundation19_NSCFConstantStringCN";
5478 Ty = IntPtrTy;
5479 break;
5480 case LangOptions::CoreFoundationABI::Swift4_2:
5481 CFConstantStringClassName =
5482 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5483 : "$S10Foundation19_NSCFConstantStringCN";
5484 Ty = IntPtrTy;
5485 break;
5486 case LangOptions::CoreFoundationABI::Swift4_1:
5487 CFConstantStringClassName =
5488 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5489 : "__T010Foundation19_NSCFConstantStringCN";
5490 Ty = IntPtrTy;
5491 break;
5492 }
5493
5494 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5495
5496 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5497 llvm::GlobalValue *GV = nullptr;
5498
5499 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5500 IdentifierInfo &II = Context.Idents.get(GV->getName());
5501 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5502 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5503
5504 const VarDecl *VD = nullptr;
5505 for (const auto *Result : DC->lookup(&II))
5506 if ((VD = dyn_cast<VarDecl>(Result)))
5507 break;
5508
5509 if (Triple.isOSBinFormatELF()) {
5510 if (!VD)
5511 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5512 } else {
5513 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5514 if (!VD || !VD->hasAttr<DLLExportAttr>())
5515 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5516 else
5517 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5518 }
5519
5520 setDSOLocal(GV);
5521 }
5522 }
5523
5524 // Decay array -> ptr
5525 CFConstantStringClassRef =
5526 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5527 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5528 }
5529
5530 QualType CFTy = Context.getCFConstantStringType();
5531
5532 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5533
5534 ConstantInitBuilder Builder(*this);
5535 auto Fields = Builder.beginStruct(STy);
5536
5537 // Class pointer.
5538 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5539
5540 // Flags.
5541 if (IsSwiftABI) {
5542 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5543 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5544 } else {
5545 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5546 }
5547
5548 // String pointer.
5549 llvm::Constant *C = nullptr;
5550 if (isUTF16) {
5551 auto Arr = llvm::makeArrayRef(
5552 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5553 Entry.first().size() / 2);
5554 C = llvm::ConstantDataArray::get(VMContext, Arr);
5555 } else {
5556 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5557 }
5558
5559 // Note: -fwritable-strings doesn't make the backing store strings of
5560 // CFStrings writable. (See <rdar://problem/10657500>)
5561 auto *GV =
5562 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5563 llvm::GlobalValue::PrivateLinkage, C, ".str");
5564 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5565 // Don't enforce the target's minimum global alignment, since the only use
5566 // of the string is via this class initializer.
5567 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5568 : Context.getTypeAlignInChars(Context.CharTy);
5569 GV->setAlignment(Align.getAsAlign());
5570
5571 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5572 // Without it LLVM can merge the string with a non unnamed_addr one during
5573 // LTO. Doing that changes the section it ends in, which surprises ld64.
5574 if (Triple.isOSBinFormatMachO())
5575 GV->setSection(isUTF16 ? "__TEXT,__ustring"
5576 : "__TEXT,__cstring,cstring_literals");
5577 // Make sure the literal ends up in .rodata to allow for safe ICF and for
5578 // the static linker to adjust permissions to read-only later on.
5579 else if (Triple.isOSBinFormatELF())
5580 GV->setSection(".rodata");
5581
5582 // String.
5583 llvm::Constant *Str =
5584 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5585
5586 if (isUTF16)
5587 // Cast the UTF16 string to the correct type.
5588 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5589 Fields.add(Str);
5590
5591 // String length.
5592 llvm::IntegerType *LengthTy =
5593 llvm::IntegerType::get(getModule().getContext(),
5594 Context.getTargetInfo().getLongWidth());
5595 if (IsSwiftABI) {
5596 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5597 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5598 LengthTy = Int32Ty;
5599 else
5600 LengthTy = IntPtrTy;
5601 }
5602 Fields.addInt(LengthTy, StringLength);
5603
5604 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5605 // properly aligned on 32-bit platforms.
5606 CharUnits Alignment =
5607 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5608
5609 // The struct.
5610 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5611 /*isConstant=*/false,
5612 llvm::GlobalVariable::PrivateLinkage);
5613 GV->addAttribute("objc_arc_inert");
5614 switch (Triple.getObjectFormat()) {
5615 case llvm::Triple::UnknownObjectFormat:
5616 llvm_unreachable("unknown file format");
5617 case llvm::Triple::DXContainer:
5618 case llvm::Triple::GOFF:
5619 case llvm::Triple::SPIRV:
5620 case llvm::Triple::XCOFF:
5621 llvm_unreachable("unimplemented");
5622 case llvm::Triple::COFF:
5623 case llvm::Triple::ELF:
5624 case llvm::Triple::Wasm:
5625 GV->setSection("cfstring");
5626 break;
5627 case llvm::Triple::MachO:
5628 GV->setSection("__DATA,__cfstring");
5629 break;
5630 }
5631 Entry.second = GV;
5632
5633 return ConstantAddress(GV, GV->getValueType(), Alignment);
5634 }
5635
getExpressionLocationsEnabled() const5636 bool CodeGenModule::getExpressionLocationsEnabled() const {
5637 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5638 }
5639
getObjCFastEnumerationStateType()5640 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5641 if (ObjCFastEnumerationStateType.isNull()) {
5642 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5643 D->startDefinition();
5644
5645 QualType FieldTypes[] = {
5646 Context.UnsignedLongTy,
5647 Context.getPointerType(Context.getObjCIdType()),
5648 Context.getPointerType(Context.UnsignedLongTy),
5649 Context.getConstantArrayType(Context.UnsignedLongTy,
5650 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5651 };
5652
5653 for (size_t i = 0; i < 4; ++i) {
5654 FieldDecl *Field = FieldDecl::Create(Context,
5655 D,
5656 SourceLocation(),
5657 SourceLocation(), nullptr,
5658 FieldTypes[i], /*TInfo=*/nullptr,
5659 /*BitWidth=*/nullptr,
5660 /*Mutable=*/false,
5661 ICIS_NoInit);
5662 Field->setAccess(AS_public);
5663 D->addDecl(Field);
5664 }
5665
5666 D->completeDefinition();
5667 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5668 }
5669
5670 return ObjCFastEnumerationStateType;
5671 }
5672
5673 llvm::Constant *
GetConstantArrayFromStringLiteral(const StringLiteral * E)5674 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5675 assert(!E->getType()->isPointerType() && "Strings are always arrays");
5676
5677 // Don't emit it as the address of the string, emit the string data itself
5678 // as an inline array.
5679 if (E->getCharByteWidth() == 1) {
5680 SmallString<64> Str(E->getString());
5681
5682 // Resize the string to the right size, which is indicated by its type.
5683 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5684 Str.resize(CAT->getSize().getZExtValue());
5685 return llvm::ConstantDataArray::getString(VMContext, Str, false);
5686 }
5687
5688 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5689 llvm::Type *ElemTy = AType->getElementType();
5690 unsigned NumElements = AType->getNumElements();
5691
5692 // Wide strings have either 2-byte or 4-byte elements.
5693 if (ElemTy->getPrimitiveSizeInBits() == 16) {
5694 SmallVector<uint16_t, 32> Elements;
5695 Elements.reserve(NumElements);
5696
5697 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5698 Elements.push_back(E->getCodeUnit(i));
5699 Elements.resize(NumElements);
5700 return llvm::ConstantDataArray::get(VMContext, Elements);
5701 }
5702
5703 assert(ElemTy->getPrimitiveSizeInBits() == 32);
5704 SmallVector<uint32_t, 32> Elements;
5705 Elements.reserve(NumElements);
5706
5707 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5708 Elements.push_back(E->getCodeUnit(i));
5709 Elements.resize(NumElements);
5710 return llvm::ConstantDataArray::get(VMContext, Elements);
5711 }
5712
5713 static llvm::GlobalVariable *
GenerateStringLiteral(llvm::Constant * C,llvm::GlobalValue::LinkageTypes LT,CodeGenModule & CGM,StringRef GlobalName,CharUnits Alignment)5714 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5715 CodeGenModule &CGM, StringRef GlobalName,
5716 CharUnits Alignment) {
5717 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5718 CGM.GetGlobalConstantAddressSpace());
5719
5720 llvm::Module &M = CGM.getModule();
5721 // Create a global variable for this string
5722 auto *GV = new llvm::GlobalVariable(
5723 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5724 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5725 GV->setAlignment(Alignment.getAsAlign());
5726 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5727 if (GV->isWeakForLinker()) {
5728 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5729 GV->setComdat(M.getOrInsertComdat(GV->getName()));
5730 }
5731 CGM.setDSOLocal(GV);
5732
5733 return GV;
5734 }
5735
5736 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5737 /// constant array for the given string literal.
5738 ConstantAddress
GetAddrOfConstantStringFromLiteral(const StringLiteral * S,StringRef Name)5739 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5740 StringRef Name) {
5741 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5742
5743 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5744 llvm::GlobalVariable **Entry = nullptr;
5745 if (!LangOpts.WritableStrings) {
5746 Entry = &ConstantStringMap[C];
5747 if (auto GV = *Entry) {
5748 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5749 GV->setAlignment(Alignment.getAsAlign());
5750 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5751 GV->getValueType(), Alignment);
5752 }
5753 }
5754
5755 SmallString<256> MangledNameBuffer;
5756 StringRef GlobalVariableName;
5757 llvm::GlobalValue::LinkageTypes LT;
5758
5759 // Mangle the string literal if that's how the ABI merges duplicate strings.
5760 // Don't do it if they are writable, since we don't want writes in one TU to
5761 // affect strings in another.
5762 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5763 !LangOpts.WritableStrings) {
5764 llvm::raw_svector_ostream Out(MangledNameBuffer);
5765 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5766 LT = llvm::GlobalValue::LinkOnceODRLinkage;
5767 GlobalVariableName = MangledNameBuffer;
5768 } else {
5769 LT = llvm::GlobalValue::PrivateLinkage;
5770 GlobalVariableName = Name;
5771 }
5772
5773 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5774
5775 CGDebugInfo *DI = getModuleDebugInfo();
5776 if (DI && getCodeGenOpts().hasReducedDebugInfo())
5777 DI->AddStringLiteralDebugInfo(GV, S);
5778
5779 if (Entry)
5780 *Entry = GV;
5781
5782 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5783
5784 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5785 GV->getValueType(), Alignment);
5786 }
5787
5788 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5789 /// array for the given ObjCEncodeExpr node.
5790 ConstantAddress
GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr * E)5791 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5792 std::string Str;
5793 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5794
5795 return GetAddrOfConstantCString(Str);
5796 }
5797
5798 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5799 /// the literal and a terminating '\0' character.
5800 /// The result has pointer to array type.
GetAddrOfConstantCString(const std::string & Str,const char * GlobalName)5801 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5802 const std::string &Str, const char *GlobalName) {
5803 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5804 CharUnits Alignment =
5805 getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5806
5807 llvm::Constant *C =
5808 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5809
5810 // Don't share any string literals if strings aren't constant.
5811 llvm::GlobalVariable **Entry = nullptr;
5812 if (!LangOpts.WritableStrings) {
5813 Entry = &ConstantStringMap[C];
5814 if (auto GV = *Entry) {
5815 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5816 GV->setAlignment(Alignment.getAsAlign());
5817 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5818 GV->getValueType(), Alignment);
5819 }
5820 }
5821
5822 // Get the default prefix if a name wasn't specified.
5823 if (!GlobalName)
5824 GlobalName = ".str";
5825 // Create a global variable for this.
5826 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5827 GlobalName, Alignment);
5828 if (Entry)
5829 *Entry = GV;
5830
5831 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5832 GV->getValueType(), Alignment);
5833 }
5834
GetAddrOfGlobalTemporary(const MaterializeTemporaryExpr * E,const Expr * Init)5835 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5836 const MaterializeTemporaryExpr *E, const Expr *Init) {
5837 assert((E->getStorageDuration() == SD_Static ||
5838 E->getStorageDuration() == SD_Thread) && "not a global temporary");
5839 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5840
5841 // If we're not materializing a subobject of the temporary, keep the
5842 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5843 QualType MaterializedType = Init->getType();
5844 if (Init == E->getSubExpr())
5845 MaterializedType = E->getType();
5846
5847 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5848
5849 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5850 if (!InsertResult.second) {
5851 // We've seen this before: either we already created it or we're in the
5852 // process of doing so.
5853 if (!InsertResult.first->second) {
5854 // We recursively re-entered this function, probably during emission of
5855 // the initializer. Create a placeholder. We'll clean this up in the
5856 // outer call, at the end of this function.
5857 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5858 InsertResult.first->second = new llvm::GlobalVariable(
5859 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5860 nullptr);
5861 }
5862 return ConstantAddress(InsertResult.first->second,
5863 llvm::cast<llvm::GlobalVariable>(
5864 InsertResult.first->second->stripPointerCasts())
5865 ->getValueType(),
5866 Align);
5867 }
5868
5869 // FIXME: If an externally-visible declaration extends multiple temporaries,
5870 // we need to give each temporary the same name in every translation unit (and
5871 // we also need to make the temporaries externally-visible).
5872 SmallString<256> Name;
5873 llvm::raw_svector_ostream Out(Name);
5874 getCXXABI().getMangleContext().mangleReferenceTemporary(
5875 VD, E->getManglingNumber(), Out);
5876
5877 APValue *Value = nullptr;
5878 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5879 // If the initializer of the extending declaration is a constant
5880 // initializer, we should have a cached constant initializer for this
5881 // temporary. Note that this might have a different value from the value
5882 // computed by evaluating the initializer if the surrounding constant
5883 // expression modifies the temporary.
5884 Value = E->getOrCreateValue(false);
5885 }
5886
5887 // Try evaluating it now, it might have a constant initializer.
5888 Expr::EvalResult EvalResult;
5889 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5890 !EvalResult.hasSideEffects())
5891 Value = &EvalResult.Val;
5892
5893 LangAS AddrSpace =
5894 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5895
5896 Optional<ConstantEmitter> emitter;
5897 llvm::Constant *InitialValue = nullptr;
5898 bool Constant = false;
5899 llvm::Type *Type;
5900 if (Value) {
5901 // The temporary has a constant initializer, use it.
5902 emitter.emplace(*this);
5903 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5904 MaterializedType);
5905 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5906 Type = InitialValue->getType();
5907 } else {
5908 // No initializer, the initialization will be provided when we
5909 // initialize the declaration which performed lifetime extension.
5910 Type = getTypes().ConvertTypeForMem(MaterializedType);
5911 }
5912
5913 // Create a global variable for this lifetime-extended temporary.
5914 llvm::GlobalValue::LinkageTypes Linkage =
5915 getLLVMLinkageVarDefinition(VD, Constant);
5916 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5917 const VarDecl *InitVD;
5918 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5919 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5920 // Temporaries defined inside a class get linkonce_odr linkage because the
5921 // class can be defined in multiple translation units.
5922 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5923 } else {
5924 // There is no need for this temporary to have external linkage if the
5925 // VarDecl has external linkage.
5926 Linkage = llvm::GlobalVariable::InternalLinkage;
5927 }
5928 }
5929 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5930 auto *GV = new llvm::GlobalVariable(
5931 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5932 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5933 if (emitter) emitter->finalize(GV);
5934 setGVProperties(GV, VD);
5935 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5936 // The reference temporary should never be dllexport.
5937 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5938 GV->setAlignment(Align.getAsAlign());
5939 if (supportsCOMDAT() && GV->isWeakForLinker())
5940 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5941 if (VD->getTLSKind())
5942 setTLSMode(GV, *VD);
5943 llvm::Constant *CV = GV;
5944 if (AddrSpace != LangAS::Default)
5945 CV = getTargetCodeGenInfo().performAddrSpaceCast(
5946 *this, GV, AddrSpace, LangAS::Default,
5947 Type->getPointerTo(
5948 getContext().getTargetAddressSpace(LangAS::Default)));
5949
5950 // Update the map with the new temporary. If we created a placeholder above,
5951 // replace it with the new global now.
5952 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5953 if (Entry) {
5954 Entry->replaceAllUsesWith(
5955 llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5956 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5957 }
5958 Entry = CV;
5959
5960 return ConstantAddress(CV, Type, Align);
5961 }
5962
5963 /// EmitObjCPropertyImplementations - Emit information for synthesized
5964 /// properties for an implementation.
EmitObjCPropertyImplementations(const ObjCImplementationDecl * D)5965 void CodeGenModule::EmitObjCPropertyImplementations(const
5966 ObjCImplementationDecl *D) {
5967 for (const auto *PID : D->property_impls()) {
5968 // Dynamic is just for type-checking.
5969 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5970 ObjCPropertyDecl *PD = PID->getPropertyDecl();
5971
5972 // Determine which methods need to be implemented, some may have
5973 // been overridden. Note that ::isPropertyAccessor is not the method
5974 // we want, that just indicates if the decl came from a
5975 // property. What we want to know is if the method is defined in
5976 // this implementation.
5977 auto *Getter = PID->getGetterMethodDecl();
5978 if (!Getter || Getter->isSynthesizedAccessorStub())
5979 CodeGenFunction(*this).GenerateObjCGetter(
5980 const_cast<ObjCImplementationDecl *>(D), PID);
5981 auto *Setter = PID->getSetterMethodDecl();
5982 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5983 CodeGenFunction(*this).GenerateObjCSetter(
5984 const_cast<ObjCImplementationDecl *>(D), PID);
5985 }
5986 }
5987 }
5988
needsDestructMethod(ObjCImplementationDecl * impl)5989 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5990 const ObjCInterfaceDecl *iface = impl->getClassInterface();
5991 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5992 ivar; ivar = ivar->getNextIvar())
5993 if (ivar->getType().isDestructedType())
5994 return true;
5995
5996 return false;
5997 }
5998
AllTrivialInitializers(CodeGenModule & CGM,ObjCImplementationDecl * D)5999 static bool AllTrivialInitializers(CodeGenModule &CGM,
6000 ObjCImplementationDecl *D) {
6001 CodeGenFunction CGF(CGM);
6002 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6003 E = D->init_end(); B != E; ++B) {
6004 CXXCtorInitializer *CtorInitExp = *B;
6005 Expr *Init = CtorInitExp->getInit();
6006 if (!CGF.isTrivialInitializer(Init))
6007 return false;
6008 }
6009 return true;
6010 }
6011
6012 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6013 /// for an implementation.
EmitObjCIvarInitializations(ObjCImplementationDecl * D)6014 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6015 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6016 if (needsDestructMethod(D)) {
6017 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6018 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6019 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6020 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6021 getContext().VoidTy, nullptr, D,
6022 /*isInstance=*/true, /*isVariadic=*/false,
6023 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6024 /*isImplicitlyDeclared=*/true,
6025 /*isDefined=*/false, ObjCMethodDecl::Required);
6026 D->addInstanceMethod(DTORMethod);
6027 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6028 D->setHasDestructors(true);
6029 }
6030
6031 // If the implementation doesn't have any ivar initializers, we don't need
6032 // a .cxx_construct.
6033 if (D->getNumIvarInitializers() == 0 ||
6034 AllTrivialInitializers(*this, D))
6035 return;
6036
6037 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6038 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6039 // The constructor returns 'self'.
6040 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6041 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6042 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6043 /*isVariadic=*/false,
6044 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6045 /*isImplicitlyDeclared=*/true,
6046 /*isDefined=*/false, ObjCMethodDecl::Required);
6047 D->addInstanceMethod(CTORMethod);
6048 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6049 D->setHasNonZeroConstructors(true);
6050 }
6051
6052 // EmitLinkageSpec - Emit all declarations in a linkage spec.
EmitLinkageSpec(const LinkageSpecDecl * LSD)6053 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6054 if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6055 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6056 ErrorUnsupported(LSD, "linkage spec");
6057 return;
6058 }
6059
6060 EmitDeclContext(LSD);
6061 }
6062
EmitDeclContext(const DeclContext * DC)6063 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6064 for (auto *I : DC->decls()) {
6065 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6066 // are themselves considered "top-level", so EmitTopLevelDecl on an
6067 // ObjCImplDecl does not recursively visit them. We need to do that in
6068 // case they're nested inside another construct (LinkageSpecDecl /
6069 // ExportDecl) that does stop them from being considered "top-level".
6070 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6071 for (auto *M : OID->methods())
6072 EmitTopLevelDecl(M);
6073 }
6074
6075 EmitTopLevelDecl(I);
6076 }
6077 }
6078
6079 /// EmitTopLevelDecl - Emit code for a single top level declaration.
EmitTopLevelDecl(Decl * D)6080 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6081 // Ignore dependent declarations.
6082 if (D->isTemplated())
6083 return;
6084
6085 // Consteval function shouldn't be emitted.
6086 if (auto *FD = dyn_cast<FunctionDecl>(D))
6087 if (FD->isConsteval())
6088 return;
6089
6090 switch (D->getKind()) {
6091 case Decl::CXXConversion:
6092 case Decl::CXXMethod:
6093 case Decl::Function:
6094 EmitGlobal(cast<FunctionDecl>(D));
6095 // Always provide some coverage mapping
6096 // even for the functions that aren't emitted.
6097 AddDeferredUnusedCoverageMapping(D);
6098 break;
6099
6100 case Decl::CXXDeductionGuide:
6101 // Function-like, but does not result in code emission.
6102 break;
6103
6104 case Decl::Var:
6105 case Decl::Decomposition:
6106 case Decl::VarTemplateSpecialization:
6107 EmitGlobal(cast<VarDecl>(D));
6108 if (auto *DD = dyn_cast<DecompositionDecl>(D))
6109 for (auto *B : DD->bindings())
6110 if (auto *HD = B->getHoldingVar())
6111 EmitGlobal(HD);
6112 break;
6113
6114 // Indirect fields from global anonymous structs and unions can be
6115 // ignored; only the actual variable requires IR gen support.
6116 case Decl::IndirectField:
6117 break;
6118
6119 // C++ Decls
6120 case Decl::Namespace:
6121 EmitDeclContext(cast<NamespaceDecl>(D));
6122 break;
6123 case Decl::ClassTemplateSpecialization: {
6124 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6125 if (CGDebugInfo *DI = getModuleDebugInfo())
6126 if (Spec->getSpecializationKind() ==
6127 TSK_ExplicitInstantiationDefinition &&
6128 Spec->hasDefinition())
6129 DI->completeTemplateDefinition(*Spec);
6130 } LLVM_FALLTHROUGH;
6131 case Decl::CXXRecord: {
6132 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6133 if (CGDebugInfo *DI = getModuleDebugInfo()) {
6134 if (CRD->hasDefinition())
6135 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6136 if (auto *ES = D->getASTContext().getExternalSource())
6137 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6138 DI->completeUnusedClass(*CRD);
6139 }
6140 // Emit any static data members, they may be definitions.
6141 for (auto *I : CRD->decls())
6142 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6143 EmitTopLevelDecl(I);
6144 break;
6145 }
6146 // No code generation needed.
6147 case Decl::UsingShadow:
6148 case Decl::ClassTemplate:
6149 case Decl::VarTemplate:
6150 case Decl::Concept:
6151 case Decl::VarTemplatePartialSpecialization:
6152 case Decl::FunctionTemplate:
6153 case Decl::TypeAliasTemplate:
6154 case Decl::Block:
6155 case Decl::Empty:
6156 case Decl::Binding:
6157 break;
6158 case Decl::Using: // using X; [C++]
6159 if (CGDebugInfo *DI = getModuleDebugInfo())
6160 DI->EmitUsingDecl(cast<UsingDecl>(*D));
6161 break;
6162 case Decl::UsingEnum: // using enum X; [C++]
6163 if (CGDebugInfo *DI = getModuleDebugInfo())
6164 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6165 break;
6166 case Decl::NamespaceAlias:
6167 if (CGDebugInfo *DI = getModuleDebugInfo())
6168 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6169 break;
6170 case Decl::UsingDirective: // using namespace X; [C++]
6171 if (CGDebugInfo *DI = getModuleDebugInfo())
6172 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6173 break;
6174 case Decl::CXXConstructor:
6175 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6176 break;
6177 case Decl::CXXDestructor:
6178 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6179 break;
6180
6181 case Decl::StaticAssert:
6182 // Nothing to do.
6183 break;
6184
6185 // Objective-C Decls
6186
6187 // Forward declarations, no (immediate) code generation.
6188 case Decl::ObjCInterface:
6189 case Decl::ObjCCategory:
6190 break;
6191
6192 case Decl::ObjCProtocol: {
6193 auto *Proto = cast<ObjCProtocolDecl>(D);
6194 if (Proto->isThisDeclarationADefinition())
6195 ObjCRuntime->GenerateProtocol(Proto);
6196 break;
6197 }
6198
6199 case Decl::ObjCCategoryImpl:
6200 // Categories have properties but don't support synthesize so we
6201 // can ignore them here.
6202 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6203 break;
6204
6205 case Decl::ObjCImplementation: {
6206 auto *OMD = cast<ObjCImplementationDecl>(D);
6207 EmitObjCPropertyImplementations(OMD);
6208 EmitObjCIvarInitializations(OMD);
6209 ObjCRuntime->GenerateClass(OMD);
6210 // Emit global variable debug information.
6211 if (CGDebugInfo *DI = getModuleDebugInfo())
6212 if (getCodeGenOpts().hasReducedDebugInfo())
6213 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6214 OMD->getClassInterface()), OMD->getLocation());
6215 break;
6216 }
6217 case Decl::ObjCMethod: {
6218 auto *OMD = cast<ObjCMethodDecl>(D);
6219 // If this is not a prototype, emit the body.
6220 if (OMD->getBody())
6221 CodeGenFunction(*this).GenerateObjCMethod(OMD);
6222 break;
6223 }
6224 case Decl::ObjCCompatibleAlias:
6225 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6226 break;
6227
6228 case Decl::PragmaComment: {
6229 const auto *PCD = cast<PragmaCommentDecl>(D);
6230 switch (PCD->getCommentKind()) {
6231 case PCK_Unknown:
6232 llvm_unreachable("unexpected pragma comment kind");
6233 case PCK_Linker:
6234 AppendLinkerOptions(PCD->getArg());
6235 break;
6236 case PCK_Lib:
6237 AddDependentLib(PCD->getArg());
6238 break;
6239 case PCK_Compiler:
6240 case PCK_ExeStr:
6241 case PCK_User:
6242 break; // We ignore all of these.
6243 }
6244 break;
6245 }
6246
6247 case Decl::PragmaDetectMismatch: {
6248 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6249 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6250 break;
6251 }
6252
6253 case Decl::LinkageSpec:
6254 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6255 break;
6256
6257 case Decl::FileScopeAsm: {
6258 // File-scope asm is ignored during device-side CUDA compilation.
6259 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6260 break;
6261 // File-scope asm is ignored during device-side OpenMP compilation.
6262 if (LangOpts.OpenMPIsDevice)
6263 break;
6264 // File-scope asm is ignored during device-side SYCL compilation.
6265 if (LangOpts.SYCLIsDevice)
6266 break;
6267 auto *AD = cast<FileScopeAsmDecl>(D);
6268 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6269 break;
6270 }
6271
6272 case Decl::Import: {
6273 auto *Import = cast<ImportDecl>(D);
6274
6275 // If we've already imported this module, we're done.
6276 if (!ImportedModules.insert(Import->getImportedModule()))
6277 break;
6278
6279 // Emit debug information for direct imports.
6280 if (!Import->getImportedOwningModule()) {
6281 if (CGDebugInfo *DI = getModuleDebugInfo())
6282 DI->EmitImportDecl(*Import);
6283 }
6284
6285 // For C++ standard modules we are done - we will call the module
6286 // initializer for imported modules, and that will likewise call those for
6287 // any imports it has.
6288 if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6289 !Import->getImportedOwningModule()->isModuleMapModule())
6290 break;
6291
6292 // For clang C++ module map modules the initializers for sub-modules are
6293 // emitted here.
6294
6295 // Find all of the submodules and emit the module initializers.
6296 llvm::SmallPtrSet<clang::Module *, 16> Visited;
6297 SmallVector<clang::Module *, 16> Stack;
6298 Visited.insert(Import->getImportedModule());
6299 Stack.push_back(Import->getImportedModule());
6300
6301 while (!Stack.empty()) {
6302 clang::Module *Mod = Stack.pop_back_val();
6303 if (!EmittedModuleInitializers.insert(Mod).second)
6304 continue;
6305
6306 for (auto *D : Context.getModuleInitializers(Mod))
6307 EmitTopLevelDecl(D);
6308
6309 // Visit the submodules of this module.
6310 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6311 SubEnd = Mod->submodule_end();
6312 Sub != SubEnd; ++Sub) {
6313 // Skip explicit children; they need to be explicitly imported to emit
6314 // the initializers.
6315 if ((*Sub)->IsExplicit)
6316 continue;
6317
6318 if (Visited.insert(*Sub).second)
6319 Stack.push_back(*Sub);
6320 }
6321 }
6322 break;
6323 }
6324
6325 case Decl::Export:
6326 EmitDeclContext(cast<ExportDecl>(D));
6327 break;
6328
6329 case Decl::OMPThreadPrivate:
6330 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6331 break;
6332
6333 case Decl::OMPAllocate:
6334 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6335 break;
6336
6337 case Decl::OMPDeclareReduction:
6338 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6339 break;
6340
6341 case Decl::OMPDeclareMapper:
6342 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6343 break;
6344
6345 case Decl::OMPRequires:
6346 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6347 break;
6348
6349 case Decl::Typedef:
6350 case Decl::TypeAlias: // using foo = bar; [C++11]
6351 if (CGDebugInfo *DI = getModuleDebugInfo())
6352 DI->EmitAndRetainType(
6353 getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6354 break;
6355
6356 case Decl::Record:
6357 if (CGDebugInfo *DI = getModuleDebugInfo())
6358 if (cast<RecordDecl>(D)->getDefinition())
6359 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6360 break;
6361
6362 case Decl::Enum:
6363 if (CGDebugInfo *DI = getModuleDebugInfo())
6364 if (cast<EnumDecl>(D)->getDefinition())
6365 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6366 break;
6367
6368 default:
6369 // Make sure we handled everything we should, every other kind is a
6370 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
6371 // function. Need to recode Decl::Kind to do that easily.
6372 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6373 break;
6374 }
6375 }
6376
AddDeferredUnusedCoverageMapping(Decl * D)6377 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6378 // Do we need to generate coverage mapping?
6379 if (!CodeGenOpts.CoverageMapping)
6380 return;
6381 switch (D->getKind()) {
6382 case Decl::CXXConversion:
6383 case Decl::CXXMethod:
6384 case Decl::Function:
6385 case Decl::ObjCMethod:
6386 case Decl::CXXConstructor:
6387 case Decl::CXXDestructor: {
6388 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6389 break;
6390 SourceManager &SM = getContext().getSourceManager();
6391 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6392 break;
6393 auto I = DeferredEmptyCoverageMappingDecls.find(D);
6394 if (I == DeferredEmptyCoverageMappingDecls.end())
6395 DeferredEmptyCoverageMappingDecls[D] = true;
6396 break;
6397 }
6398 default:
6399 break;
6400 };
6401 }
6402
ClearUnusedCoverageMapping(const Decl * D)6403 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6404 // Do we need to generate coverage mapping?
6405 if (!CodeGenOpts.CoverageMapping)
6406 return;
6407 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6408 if (Fn->isTemplateInstantiation())
6409 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6410 }
6411 auto I = DeferredEmptyCoverageMappingDecls.find(D);
6412 if (I == DeferredEmptyCoverageMappingDecls.end())
6413 DeferredEmptyCoverageMappingDecls[D] = false;
6414 else
6415 I->second = false;
6416 }
6417
EmitDeferredUnusedCoverageMappings()6418 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6419 // We call takeVector() here to avoid use-after-free.
6420 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6421 // we deserialize function bodies to emit coverage info for them, and that
6422 // deserializes more declarations. How should we handle that case?
6423 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6424 if (!Entry.second)
6425 continue;
6426 const Decl *D = Entry.first;
6427 switch (D->getKind()) {
6428 case Decl::CXXConversion:
6429 case Decl::CXXMethod:
6430 case Decl::Function:
6431 case Decl::ObjCMethod: {
6432 CodeGenPGO PGO(*this);
6433 GlobalDecl GD(cast<FunctionDecl>(D));
6434 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6435 getFunctionLinkage(GD));
6436 break;
6437 }
6438 case Decl::CXXConstructor: {
6439 CodeGenPGO PGO(*this);
6440 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6441 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6442 getFunctionLinkage(GD));
6443 break;
6444 }
6445 case Decl::CXXDestructor: {
6446 CodeGenPGO PGO(*this);
6447 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6448 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6449 getFunctionLinkage(GD));
6450 break;
6451 }
6452 default:
6453 break;
6454 };
6455 }
6456 }
6457
EmitMainVoidAlias()6458 void CodeGenModule::EmitMainVoidAlias() {
6459 // In order to transition away from "__original_main" gracefully, emit an
6460 // alias for "main" in the no-argument case so that libc can detect when
6461 // new-style no-argument main is in used.
6462 if (llvm::Function *F = getModule().getFunction("main")) {
6463 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6464 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6465 auto *GA = llvm::GlobalAlias::create("__main_void", F);
6466 GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6467 }
6468 }
6469 }
6470
6471 /// Turns the given pointer into a constant.
GetPointerConstant(llvm::LLVMContext & Context,const void * Ptr)6472 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6473 const void *Ptr) {
6474 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6475 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6476 return llvm::ConstantInt::get(i64, PtrInt);
6477 }
6478
EmitGlobalDeclMetadata(CodeGenModule & CGM,llvm::NamedMDNode * & GlobalMetadata,GlobalDecl D,llvm::GlobalValue * Addr)6479 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6480 llvm::NamedMDNode *&GlobalMetadata,
6481 GlobalDecl D,
6482 llvm::GlobalValue *Addr) {
6483 if (!GlobalMetadata)
6484 GlobalMetadata =
6485 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6486
6487 // TODO: should we report variant information for ctors/dtors?
6488 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6489 llvm::ConstantAsMetadata::get(GetPointerConstant(
6490 CGM.getLLVMContext(), D.getDecl()))};
6491 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6492 }
6493
CheckAndReplaceExternCIFuncs(llvm::GlobalValue * Elem,llvm::GlobalValue * CppFunc)6494 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6495 llvm::GlobalValue *CppFunc) {
6496 // Store the list of ifuncs we need to replace uses in.
6497 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6498 // List of ConstantExprs that we should be able to delete when we're done
6499 // here.
6500 llvm::SmallVector<llvm::ConstantExpr *> CEs;
6501
6502 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6503 if (Elem == CppFunc)
6504 return false;
6505
6506 // First make sure that all users of this are ifuncs (or ifuncs via a
6507 // bitcast), and collect the list of ifuncs and CEs so we can work on them
6508 // later.
6509 for (llvm::User *User : Elem->users()) {
6510 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6511 // ifunc directly. In any other case, just give up, as we don't know what we
6512 // could break by changing those.
6513 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6514 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6515 return false;
6516
6517 for (llvm::User *CEUser : ConstExpr->users()) {
6518 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6519 IFuncs.push_back(IFunc);
6520 } else {
6521 return false;
6522 }
6523 }
6524 CEs.push_back(ConstExpr);
6525 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6526 IFuncs.push_back(IFunc);
6527 } else {
6528 // This user is one we don't know how to handle, so fail redirection. This
6529 // will result in an ifunc retaining a resolver name that will ultimately
6530 // fail to be resolved to a defined function.
6531 return false;
6532 }
6533 }
6534
6535 // Now we know this is a valid case where we can do this alias replacement, we
6536 // need to remove all of the references to Elem (and the bitcasts!) so we can
6537 // delete it.
6538 for (llvm::GlobalIFunc *IFunc : IFuncs)
6539 IFunc->setResolver(nullptr);
6540 for (llvm::ConstantExpr *ConstExpr : CEs)
6541 ConstExpr->destroyConstant();
6542
6543 // We should now be out of uses for the 'old' version of this function, so we
6544 // can erase it as well.
6545 Elem->eraseFromParent();
6546
6547 for (llvm::GlobalIFunc *IFunc : IFuncs) {
6548 // The type of the resolver is always just a function-type that returns the
6549 // type of the IFunc, so create that here. If the type of the actual
6550 // resolver doesn't match, it just gets bitcast to the right thing.
6551 auto *ResolverTy =
6552 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6553 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6554 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6555 IFunc->setResolver(Resolver);
6556 }
6557 return true;
6558 }
6559
6560 /// For each function which is declared within an extern "C" region and marked
6561 /// as 'used', but has internal linkage, create an alias from the unmangled
6562 /// name to the mangled name if possible. People expect to be able to refer
6563 /// to such functions with an unmangled name from inline assembly within the
6564 /// same translation unit.
EmitStaticExternCAliases()6565 void CodeGenModule::EmitStaticExternCAliases() {
6566 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6567 return;
6568 for (auto &I : StaticExternCValues) {
6569 IdentifierInfo *Name = I.first;
6570 llvm::GlobalValue *Val = I.second;
6571
6572 // If Val is null, that implies there were multiple declarations that each
6573 // had a claim to the unmangled name. In this case, generation of the alias
6574 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6575 if (!Val)
6576 break;
6577
6578 llvm::GlobalValue *ExistingElem =
6579 getModule().getNamedValue(Name->getName());
6580
6581 // If there is either not something already by this name, or we were able to
6582 // replace all uses from IFuncs, create the alias.
6583 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6584 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6585 }
6586 }
6587
lookupRepresentativeDecl(StringRef MangledName,GlobalDecl & Result) const6588 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6589 GlobalDecl &Result) const {
6590 auto Res = Manglings.find(MangledName);
6591 if (Res == Manglings.end())
6592 return false;
6593 Result = Res->getValue();
6594 return true;
6595 }
6596
6597 /// Emits metadata nodes associating all the global values in the
6598 /// current module with the Decls they came from. This is useful for
6599 /// projects using IR gen as a subroutine.
6600 ///
6601 /// Since there's currently no way to associate an MDNode directly
6602 /// with an llvm::GlobalValue, we create a global named metadata
6603 /// with the name 'clang.global.decl.ptrs'.
EmitDeclMetadata()6604 void CodeGenModule::EmitDeclMetadata() {
6605 llvm::NamedMDNode *GlobalMetadata = nullptr;
6606
6607 for (auto &I : MangledDeclNames) {
6608 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6609 // Some mangled names don't necessarily have an associated GlobalValue
6610 // in this module, e.g. if we mangled it for DebugInfo.
6611 if (Addr)
6612 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6613 }
6614 }
6615
6616 /// Emits metadata nodes for all the local variables in the current
6617 /// function.
EmitDeclMetadata()6618 void CodeGenFunction::EmitDeclMetadata() {
6619 if (LocalDeclMap.empty()) return;
6620
6621 llvm::LLVMContext &Context = getLLVMContext();
6622
6623 // Find the unique metadata ID for this name.
6624 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6625
6626 llvm::NamedMDNode *GlobalMetadata = nullptr;
6627
6628 for (auto &I : LocalDeclMap) {
6629 const Decl *D = I.first;
6630 llvm::Value *Addr = I.second.getPointer();
6631 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6632 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6633 Alloca->setMetadata(
6634 DeclPtrKind, llvm::MDNode::get(
6635 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6636 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6637 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6638 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6639 }
6640 }
6641 }
6642
EmitVersionIdentMetadata()6643 void CodeGenModule::EmitVersionIdentMetadata() {
6644 llvm::NamedMDNode *IdentMetadata =
6645 TheModule.getOrInsertNamedMetadata("llvm.ident");
6646 std::string Version = getClangFullVersion();
6647 llvm::LLVMContext &Ctx = TheModule.getContext();
6648
6649 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6650 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6651 }
6652
EmitCommandLineMetadata()6653 void CodeGenModule::EmitCommandLineMetadata() {
6654 llvm::NamedMDNode *CommandLineMetadata =
6655 TheModule.getOrInsertNamedMetadata("llvm.commandline");
6656 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6657 llvm::LLVMContext &Ctx = TheModule.getContext();
6658
6659 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6660 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6661 }
6662
EmitCoverageFile()6663 void CodeGenModule::EmitCoverageFile() {
6664 if (getCodeGenOpts().CoverageDataFile.empty() &&
6665 getCodeGenOpts().CoverageNotesFile.empty())
6666 return;
6667
6668 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6669 if (!CUNode)
6670 return;
6671
6672 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6673 llvm::LLVMContext &Ctx = TheModule.getContext();
6674 auto *CoverageDataFile =
6675 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6676 auto *CoverageNotesFile =
6677 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6678 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6679 llvm::MDNode *CU = CUNode->getOperand(i);
6680 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6681 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6682 }
6683 }
6684
GetAddrOfRTTIDescriptor(QualType Ty,bool ForEH)6685 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6686 bool ForEH) {
6687 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6688 // FIXME: should we even be calling this method if RTTI is disabled
6689 // and it's not for EH?
6690 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6691 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6692 getTriple().isNVPTX()))
6693 return llvm::Constant::getNullValue(Int8PtrTy);
6694
6695 if (ForEH && Ty->isObjCObjectPointerType() &&
6696 LangOpts.ObjCRuntime.isGNUFamily())
6697 return ObjCRuntime->GetEHType(Ty);
6698
6699 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6700 }
6701
EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl * D)6702 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6703 // Do not emit threadprivates in simd-only mode.
6704 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6705 return;
6706 for (auto RefExpr : D->varlists()) {
6707 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6708 bool PerformInit =
6709 VD->getAnyInitializer() &&
6710 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6711 /*ForRef=*/false);
6712
6713 Address Addr(GetAddrOfGlobalVar(VD),
6714 getTypes().ConvertTypeForMem(VD->getType()),
6715 getContext().getDeclAlign(VD));
6716 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6717 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6718 CXXGlobalInits.push_back(InitFunction);
6719 }
6720 }
6721
6722 llvm::Metadata *
CreateMetadataIdentifierImpl(QualType T,MetadataTypeMap & Map,StringRef Suffix)6723 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6724 StringRef Suffix) {
6725 if (auto *FnType = T->getAs<FunctionProtoType>())
6726 T = getContext().getFunctionType(
6727 FnType->getReturnType(), FnType->getParamTypes(),
6728 FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6729
6730 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6731 if (InternalId)
6732 return InternalId;
6733
6734 if (isExternallyVisible(T->getLinkage())) {
6735 std::string OutName;
6736 llvm::raw_string_ostream Out(OutName);
6737 getCXXABI().getMangleContext().mangleTypeName(T, Out);
6738 Out << Suffix;
6739
6740 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6741 } else {
6742 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6743 llvm::ArrayRef<llvm::Metadata *>());
6744 }
6745
6746 return InternalId;
6747 }
6748
CreateMetadataIdentifierForType(QualType T)6749 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6750 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6751 }
6752
6753 llvm::Metadata *
CreateMetadataIdentifierForVirtualMemPtrType(QualType T)6754 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6755 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6756 }
6757
6758 // Generalize pointer types to a void pointer with the qualifiers of the
6759 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6760 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6761 // 'void *'.
GeneralizeType(ASTContext & Ctx,QualType Ty)6762 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6763 if (!Ty->isPointerType())
6764 return Ty;
6765
6766 return Ctx.getPointerType(
6767 QualType(Ctx.VoidTy).withCVRQualifiers(
6768 Ty->getPointeeType().getCVRQualifiers()));
6769 }
6770
6771 // Apply type generalization to a FunctionType's return and argument types
GeneralizeFunctionType(ASTContext & Ctx,QualType Ty)6772 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6773 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6774 SmallVector<QualType, 8> GeneralizedParams;
6775 for (auto &Param : FnType->param_types())
6776 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6777
6778 return Ctx.getFunctionType(
6779 GeneralizeType(Ctx, FnType->getReturnType()),
6780 GeneralizedParams, FnType->getExtProtoInfo());
6781 }
6782
6783 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6784 return Ctx.getFunctionNoProtoType(
6785 GeneralizeType(Ctx, FnType->getReturnType()));
6786
6787 llvm_unreachable("Encountered unknown FunctionType");
6788 }
6789
CreateMetadataIdentifierGeneralized(QualType T)6790 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6791 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6792 GeneralizedMetadataIdMap, ".generalized");
6793 }
6794
6795 /// Returns whether this module needs the "all-vtables" type identifier.
NeedAllVtablesTypeId() const6796 bool CodeGenModule::NeedAllVtablesTypeId() const {
6797 // Returns true if at least one of vtable-based CFI checkers is enabled and
6798 // is not in the trapping mode.
6799 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6800 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6801 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6802 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6803 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6804 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6805 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6806 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6807 }
6808
AddVTableTypeMetadata(llvm::GlobalVariable * VTable,CharUnits Offset,const CXXRecordDecl * RD)6809 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6810 CharUnits Offset,
6811 const CXXRecordDecl *RD) {
6812 llvm::Metadata *MD =
6813 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6814 VTable->addTypeMetadata(Offset.getQuantity(), MD);
6815
6816 if (CodeGenOpts.SanitizeCfiCrossDso)
6817 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6818 VTable->addTypeMetadata(Offset.getQuantity(),
6819 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6820
6821 if (NeedAllVtablesTypeId()) {
6822 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6823 VTable->addTypeMetadata(Offset.getQuantity(), MD);
6824 }
6825 }
6826
getSanStats()6827 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6828 if (!SanStats)
6829 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6830
6831 return *SanStats;
6832 }
6833
6834 llvm::Value *
createOpenCLIntToSamplerConversion(const Expr * E,CodeGenFunction & CGF)6835 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6836 CodeGenFunction &CGF) {
6837 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6838 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6839 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6840 auto *Call = CGF.EmitRuntimeCall(
6841 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6842 return Call;
6843 }
6844
getNaturalPointeeTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)6845 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6846 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6847 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6848 /* forPointeeType= */ true);
6849 }
6850
getNaturalTypeAlignment(QualType T,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo,bool forPointeeType)6851 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6852 LValueBaseInfo *BaseInfo,
6853 TBAAAccessInfo *TBAAInfo,
6854 bool forPointeeType) {
6855 if (TBAAInfo)
6856 *TBAAInfo = getTBAAAccessInfo(T);
6857
6858 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6859 // that doesn't return the information we need to compute BaseInfo.
6860
6861 // Honor alignment typedef attributes even on incomplete types.
6862 // We also honor them straight for C++ class types, even as pointees;
6863 // there's an expressivity gap here.
6864 if (auto TT = T->getAs<TypedefType>()) {
6865 if (auto Align = TT->getDecl()->getMaxAlignment()) {
6866 if (BaseInfo)
6867 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6868 return getContext().toCharUnitsFromBits(Align);
6869 }
6870 }
6871
6872 bool AlignForArray = T->isArrayType();
6873
6874 // Analyze the base element type, so we don't get confused by incomplete
6875 // array types.
6876 T = getContext().getBaseElementType(T);
6877
6878 if (T->isIncompleteType()) {
6879 // We could try to replicate the logic from
6880 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6881 // type is incomplete, so it's impossible to test. We could try to reuse
6882 // getTypeAlignIfKnown, but that doesn't return the information we need
6883 // to set BaseInfo. So just ignore the possibility that the alignment is
6884 // greater than one.
6885 if (BaseInfo)
6886 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6887 return CharUnits::One();
6888 }
6889
6890 if (BaseInfo)
6891 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6892
6893 CharUnits Alignment;
6894 const CXXRecordDecl *RD;
6895 if (T.getQualifiers().hasUnaligned()) {
6896 Alignment = CharUnits::One();
6897 } else if (forPointeeType && !AlignForArray &&
6898 (RD = T->getAsCXXRecordDecl())) {
6899 // For C++ class pointees, we don't know whether we're pointing at a
6900 // base or a complete object, so we generally need to use the
6901 // non-virtual alignment.
6902 Alignment = getClassPointerAlignment(RD);
6903 } else {
6904 Alignment = getContext().getTypeAlignInChars(T);
6905 }
6906
6907 // Cap to the global maximum type alignment unless the alignment
6908 // was somehow explicit on the type.
6909 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6910 if (Alignment.getQuantity() > MaxAlign &&
6911 !getContext().isAlignmentRequired(T))
6912 Alignment = CharUnits::fromQuantity(MaxAlign);
6913 }
6914 return Alignment;
6915 }
6916
stopAutoInit()6917 bool CodeGenModule::stopAutoInit() {
6918 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6919 if (StopAfter) {
6920 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6921 // used
6922 if (NumAutoVarInit >= StopAfter) {
6923 return true;
6924 }
6925 if (!NumAutoVarInit) {
6926 unsigned DiagID = getDiags().getCustomDiagID(
6927 DiagnosticsEngine::Warning,
6928 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6929 "number of times ftrivial-auto-var-init=%1 gets applied.");
6930 getDiags().Report(DiagID)
6931 << StopAfter
6932 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6933 LangOptions::TrivialAutoVarInitKind::Zero
6934 ? "zero"
6935 : "pattern");
6936 }
6937 ++NumAutoVarInit;
6938 }
6939 return false;
6940 }
6941
printPostfixForExternalizedDecl(llvm::raw_ostream & OS,const Decl * D) const6942 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
6943 const Decl *D) const {
6944 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
6945 // postfix beginning with '.' since the symbol name can be demangled.
6946 if (LangOpts.HIP)
6947 OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
6948 else
6949 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
6950
6951 // If the CUID is not specified we try to generate a unique postfix.
6952 if (getLangOpts().CUID.empty()) {
6953 SourceManager &SM = getContext().getSourceManager();
6954 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
6955 assert(PLoc.isValid() && "Source location is expected to be valid.");
6956
6957 // Get the hash of the user defined macros.
6958 llvm::MD5 Hash;
6959 llvm::MD5::MD5Result Result;
6960 for (const auto &Arg : PreprocessorOpts.Macros)
6961 Hash.update(Arg.first);
6962 Hash.final(Result);
6963
6964 // Get the UniqueID for the file containing the decl.
6965 llvm::sys::fs::UniqueID ID;
6966 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
6967 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
6968 assert(PLoc.isValid() && "Source location is expected to be valid.");
6969 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
6970 SM.getDiagnostics().Report(diag::err_cannot_open_file)
6971 << PLoc.getFilename() << EC.message();
6972 }
6973 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
6974 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
6975 } else {
6976 OS << getContext().getCUIDHash();
6977 }
6978 }
6979
moveLazyEmissionStates(CodeGenModule * NewBuilder)6980 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
6981 assert(DeferredDeclsToEmit.empty() &&
6982 "Should have emitted all decls deferred to emit.");
6983 assert(NewBuilder->DeferredDecls.empty() &&
6984 "Newly created module should not have deferred decls");
6985 NewBuilder->DeferredDecls = std::move(DeferredDecls);
6986
6987 assert(NewBuilder->DeferredVTables.empty() &&
6988 "Newly created module should not have deferred vtables");
6989 NewBuilder->DeferredVTables = std::move(DeferredVTables);
6990
6991 assert(NewBuilder->MangledDeclNames.empty() &&
6992 "Newly created module should not have mangled decl names");
6993 assert(NewBuilder->Manglings.empty() &&
6994 "Newly created module should not have manglings");
6995 NewBuilder->Manglings = std::move(Manglings);
6996
6997 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
6998 NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
6999
7000 NewBuilder->TBAA = std::move(TBAA);
7001
7002 assert(NewBuilder->EmittedDeferredDecls.empty() &&
7003 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7004
7005 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7006
7007 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7008 }
7009