1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-function state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeGenFunction.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCleanup.h"
18 #include "CGDebugInfo.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenPGO.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/ASTLambda.h"
25 #include "clang/AST/Attr.h"
26 #include "clang/AST/Decl.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/Expr.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/StmtObjC.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/CodeGenOptions.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/CodeGen/CGFunctionInfo.h"
35 #include "clang/Frontend/FrontendDiagnostic.h"
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Dominators.h"
40 #include "llvm/IR/FPEnv.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/MDBuilder.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/Support/CRC.h"
46 #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48
49 using namespace clang;
50 using namespace CodeGen;
51
52 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
53 /// markers.
shouldEmitLifetimeMarkers(const CodeGenOptions & CGOpts,const LangOptions & LangOpts)54 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
55 const LangOptions &LangOpts) {
56 if (CGOpts.DisableLifetimeMarkers)
57 return false;
58
59 // Sanitizers may use markers.
60 if (CGOpts.SanitizeAddressUseAfterScope ||
61 LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
62 LangOpts.Sanitize.has(SanitizerKind::Memory))
63 return true;
64
65 // For now, only in optimized builds.
66 return CGOpts.OptimizationLevel != 0;
67 }
68
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)69 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
70 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
71 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
72 CGBuilderInserterTy(this)),
73 SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
74 DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
75 ShouldEmitLifetimeMarkers(
76 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
77 if (!suppressNewContext)
78 CGM.getCXXABI().getMangleContext().startNewFunction();
79 EHStack.setCGF(this);
80
81 SetFastMathFlags(CurFPFeatures);
82 }
83
~CodeGenFunction()84 CodeGenFunction::~CodeGenFunction() {
85 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
86
87 if (getLangOpts().OpenMP && CurFn)
88 CGM.getOpenMPRuntime().functionFinished(*this);
89
90 // If we have an OpenMPIRBuilder we want to finalize functions (incl.
91 // outlining etc) at some point. Doing it once the function codegen is done
92 // seems to be a reasonable spot. We do it here, as opposed to the deletion
93 // time of the CodeGenModule, because we have to ensure the IR has not yet
94 // been "emitted" to the outside, thus, modifications are still sensible.
95 if (CGM.getLangOpts().OpenMPIRBuilder && CurFn)
96 CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn);
97 }
98
99 // Map the LangOption for exception behavior into
100 // the corresponding enum in the IR.
101 llvm::fp::ExceptionBehavior
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind)102 clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {
103
104 switch (Kind) {
105 case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore;
106 case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
107 case LangOptions::FPE_Strict: return llvm::fp::ebStrict;
108 default:
109 llvm_unreachable("Unsupported FP Exception Behavior");
110 }
111 }
112
SetFastMathFlags(FPOptions FPFeatures)113 void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
114 llvm::FastMathFlags FMF;
115 FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
116 FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
117 FMF.setNoInfs(FPFeatures.getNoHonorInfs());
118 FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
119 FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
120 FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
121 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
122 Builder.setFastMathFlags(FMF);
123 }
124
CGFPOptionsRAII(CodeGenFunction & CGF,const Expr * E)125 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
126 const Expr *E)
127 : CGF(CGF) {
128 ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts()));
129 }
130
CGFPOptionsRAII(CodeGenFunction & CGF,FPOptions FPFeatures)131 CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
132 FPOptions FPFeatures)
133 : CGF(CGF) {
134 ConstructorHelper(FPFeatures);
135 }
136
ConstructorHelper(FPOptions FPFeatures)137 void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) {
138 OldFPFeatures = CGF.CurFPFeatures;
139 CGF.CurFPFeatures = FPFeatures;
140
141 OldExcept = CGF.Builder.getDefaultConstrainedExcept();
142 OldRounding = CGF.Builder.getDefaultConstrainedRounding();
143
144 if (OldFPFeatures == FPFeatures)
145 return;
146
147 FMFGuard.emplace(CGF.Builder);
148
149 llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode();
150 CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
151 auto NewExceptionBehavior =
152 ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
153 FPFeatures.getExceptionMode()));
154 CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);
155
156 CGF.SetFastMathFlags(FPFeatures);
157
158 assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
159 isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
160 isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
161 (NewExceptionBehavior == llvm::fp::ebIgnore &&
162 NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
163 "FPConstrained should be enabled on entire function");
164
165 auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
166 auto OldValue =
167 CGF.CurFn->getFnAttribute(Name).getValueAsBool();
168 auto NewValue = OldValue & Value;
169 if (OldValue != NewValue)
170 CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
171 };
172 mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
173 mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
174 mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
175 mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
176 FPFeatures.getAllowReciprocal() &&
177 FPFeatures.getAllowApproxFunc() &&
178 FPFeatures.getNoSignedZero());
179 }
180
~CGFPOptionsRAII()181 CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
182 CGF.CurFPFeatures = OldFPFeatures;
183 CGF.Builder.setDefaultConstrainedExcept(OldExcept);
184 CGF.Builder.setDefaultConstrainedRounding(OldRounding);
185 }
186
MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)187 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
188 LValueBaseInfo BaseInfo;
189 TBAAAccessInfo TBAAInfo;
190 CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
191 Address Addr(V, ConvertTypeForMem(T), Alignment);
192 return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
193 }
194
195 /// Given a value of type T* that may not be to a complete object,
196 /// construct an l-value with the natural pointee alignment of T.
197 LValue
MakeNaturalAlignPointeeAddrLValue(llvm::Value * V,QualType T)198 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
199 LValueBaseInfo BaseInfo;
200 TBAAAccessInfo TBAAInfo;
201 CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
202 /* forPointeeType= */ true);
203 Address Addr(V, ConvertTypeForMem(T), Align);
204 return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
205 }
206
207
ConvertTypeForMem(QualType T)208 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
209 return CGM.getTypes().ConvertTypeForMem(T);
210 }
211
ConvertType(QualType T)212 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
213 return CGM.getTypes().ConvertType(T);
214 }
215
getEvaluationKind(QualType type)216 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
217 type = type.getCanonicalType();
218 while (true) {
219 switch (type->getTypeClass()) {
220 #define TYPE(name, parent)
221 #define ABSTRACT_TYPE(name, parent)
222 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
223 #define DEPENDENT_TYPE(name, parent) case Type::name:
224 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
225 #include "clang/AST/TypeNodes.inc"
226 llvm_unreachable("non-canonical or dependent type in IR-generation");
227
228 case Type::Auto:
229 case Type::DeducedTemplateSpecialization:
230 llvm_unreachable("undeduced type in IR-generation");
231
232 // Various scalar types.
233 case Type::Builtin:
234 case Type::Pointer:
235 case Type::BlockPointer:
236 case Type::LValueReference:
237 case Type::RValueReference:
238 case Type::MemberPointer:
239 case Type::Vector:
240 case Type::ExtVector:
241 case Type::ConstantMatrix:
242 case Type::FunctionProto:
243 case Type::FunctionNoProto:
244 case Type::Enum:
245 case Type::ObjCObjectPointer:
246 case Type::Pipe:
247 case Type::BitInt:
248 return TEK_Scalar;
249
250 // Complexes.
251 case Type::Complex:
252 return TEK_Complex;
253
254 // Arrays, records, and Objective-C objects.
255 case Type::ConstantArray:
256 case Type::IncompleteArray:
257 case Type::VariableArray:
258 case Type::Record:
259 case Type::ObjCObject:
260 case Type::ObjCInterface:
261 return TEK_Aggregate;
262
263 // We operate on atomic values according to their underlying type.
264 case Type::Atomic:
265 type = cast<AtomicType>(type)->getValueType();
266 continue;
267 }
268 llvm_unreachable("unknown type kind!");
269 }
270 }
271
EmitReturnBlock()272 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
273 // For cleanliness, we try to avoid emitting the return block for
274 // simple cases.
275 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
276
277 if (CurBB) {
278 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
279
280 // We have a valid insert point, reuse it if it is empty or there are no
281 // explicit jumps to the return block.
282 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
283 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
284 delete ReturnBlock.getBlock();
285 ReturnBlock = JumpDest();
286 } else
287 EmitBlock(ReturnBlock.getBlock());
288 return llvm::DebugLoc();
289 }
290
291 // Otherwise, if the return block is the target of a single direct
292 // branch then we can just put the code in that block instead. This
293 // cleans up functions which started with a unified return block.
294 if (ReturnBlock.getBlock()->hasOneUse()) {
295 llvm::BranchInst *BI =
296 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
297 if (BI && BI->isUnconditional() &&
298 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
299 // Record/return the DebugLoc of the simple 'return' expression to be used
300 // later by the actual 'ret' instruction.
301 llvm::DebugLoc Loc = BI->getDebugLoc();
302 Builder.SetInsertPoint(BI->getParent());
303 BI->eraseFromParent();
304 delete ReturnBlock.getBlock();
305 ReturnBlock = JumpDest();
306 return Loc;
307 }
308 }
309
310 // FIXME: We are at an unreachable point, there is no reason to emit the block
311 // unless it has uses. However, we still need a place to put the debug
312 // region.end for now.
313
314 EmitBlock(ReturnBlock.getBlock());
315 return llvm::DebugLoc();
316 }
317
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)318 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
319 if (!BB) return;
320 if (!BB->use_empty())
321 return CGF.CurFn->getBasicBlockList().push_back(BB);
322 delete BB;
323 }
324
FinishFunction(SourceLocation EndLoc)325 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
326 assert(BreakContinueStack.empty() &&
327 "mismatched push/pop in break/continue stack!");
328
329 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
330 && NumSimpleReturnExprs == NumReturnExprs
331 && ReturnBlock.getBlock()->use_empty();
332 // Usually the return expression is evaluated before the cleanup
333 // code. If the function contains only a simple return statement,
334 // such as a constant, the location before the cleanup code becomes
335 // the last useful breakpoint in the function, because the simple
336 // return expression will be evaluated after the cleanup code. To be
337 // safe, set the debug location for cleanup code to the location of
338 // the return statement. Otherwise the cleanup code should be at the
339 // end of the function's lexical scope.
340 //
341 // If there are multiple branches to the return block, the branch
342 // instructions will get the location of the return statements and
343 // all will be fine.
344 if (CGDebugInfo *DI = getDebugInfo()) {
345 if (OnlySimpleReturnStmts)
346 DI->EmitLocation(Builder, LastStopPoint);
347 else
348 DI->EmitLocation(Builder, EndLoc);
349 }
350
351 // Pop any cleanups that might have been associated with the
352 // parameters. Do this in whatever block we're currently in; it's
353 // important to do this before we enter the return block or return
354 // edges will be *really* confused.
355 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
356 bool HasOnlyLifetimeMarkers =
357 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
358 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
359 if (HasCleanups) {
360 // Make sure the line table doesn't jump back into the body for
361 // the ret after it's been at EndLoc.
362 Optional<ApplyDebugLocation> AL;
363 if (CGDebugInfo *DI = getDebugInfo()) {
364 if (OnlySimpleReturnStmts)
365 DI->EmitLocation(Builder, EndLoc);
366 else
367 // We may not have a valid end location. Try to apply it anyway, and
368 // fall back to an artificial location if needed.
369 AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
370 }
371
372 PopCleanupBlocks(PrologueCleanupDepth);
373 }
374
375 // Emit function epilog (to return).
376 llvm::DebugLoc Loc = EmitReturnBlock();
377
378 if (ShouldInstrumentFunction()) {
379 if (CGM.getCodeGenOpts().InstrumentFunctions)
380 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
381 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
382 CurFn->addFnAttr("instrument-function-exit-inlined",
383 "__cyg_profile_func_exit");
384 }
385
386 // Emit debug descriptor for function end.
387 if (CGDebugInfo *DI = getDebugInfo())
388 DI->EmitFunctionEnd(Builder, CurFn);
389
390 // Reset the debug location to that of the simple 'return' expression, if any
391 // rather than that of the end of the function's scope '}'.
392 ApplyDebugLocation AL(*this, Loc);
393 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
394 EmitEndEHSpec(CurCodeDecl);
395
396 assert(EHStack.empty() &&
397 "did not remove all scopes from cleanup stack!");
398
399 // If someone did an indirect goto, emit the indirect goto block at the end of
400 // the function.
401 if (IndirectBranch) {
402 EmitBlock(IndirectBranch->getParent());
403 Builder.ClearInsertionPoint();
404 }
405
406 // If some of our locals escaped, insert a call to llvm.localescape in the
407 // entry block.
408 if (!EscapedLocals.empty()) {
409 // Invert the map from local to index into a simple vector. There should be
410 // no holes.
411 SmallVector<llvm::Value *, 4> EscapeArgs;
412 EscapeArgs.resize(EscapedLocals.size());
413 for (auto &Pair : EscapedLocals)
414 EscapeArgs[Pair.second] = Pair.first;
415 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
416 &CGM.getModule(), llvm::Intrinsic::localescape);
417 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
418 }
419
420 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
421 llvm::Instruction *Ptr = AllocaInsertPt;
422 AllocaInsertPt = nullptr;
423 Ptr->eraseFromParent();
424
425 // PostAllocaInsertPt, if created, was lazily created when it was required,
426 // remove it now since it was just created for our own convenience.
427 if (PostAllocaInsertPt) {
428 llvm::Instruction *PostPtr = PostAllocaInsertPt;
429 PostAllocaInsertPt = nullptr;
430 PostPtr->eraseFromParent();
431 }
432
433 // If someone took the address of a label but never did an indirect goto, we
434 // made a zero entry PHI node, which is illegal, zap it now.
435 if (IndirectBranch) {
436 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
437 if (PN->getNumIncomingValues() == 0) {
438 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
439 PN->eraseFromParent();
440 }
441 }
442
443 EmitIfUsed(*this, EHResumeBlock);
444 EmitIfUsed(*this, TerminateLandingPad);
445 EmitIfUsed(*this, TerminateHandler);
446 EmitIfUsed(*this, UnreachableBlock);
447
448 for (const auto &FuncletAndParent : TerminateFunclets)
449 EmitIfUsed(*this, FuncletAndParent.second);
450
451 if (CGM.getCodeGenOpts().EmitDeclMetadata)
452 EmitDeclMetadata();
453
454 for (const auto &R : DeferredReplacements) {
455 if (llvm::Value *Old = R.first) {
456 Old->replaceAllUsesWith(R.second);
457 cast<llvm::Instruction>(Old)->eraseFromParent();
458 }
459 }
460 DeferredReplacements.clear();
461
462 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
463 // PHIs if the current function is a coroutine. We don't do it for all
464 // functions as it may result in slight increase in numbers of instructions
465 // if compiled with no optimizations. We do it for coroutine as the lifetime
466 // of CleanupDestSlot alloca make correct coroutine frame building very
467 // difficult.
468 if (NormalCleanupDest.isValid() && isCoroutine()) {
469 llvm::DominatorTree DT(*CurFn);
470 llvm::PromoteMemToReg(
471 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
472 NormalCleanupDest = Address::invalid();
473 }
474
475 // Scan function arguments for vector width.
476 for (llvm::Argument &A : CurFn->args())
477 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
478 LargestVectorWidth =
479 std::max((uint64_t)LargestVectorWidth,
480 VT->getPrimitiveSizeInBits().getKnownMinSize());
481
482 // Update vector width based on return type.
483 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
484 LargestVectorWidth =
485 std::max((uint64_t)LargestVectorWidth,
486 VT->getPrimitiveSizeInBits().getKnownMinSize());
487
488 if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth)
489 LargestVectorWidth = CurFnInfo->getMaxVectorWidth();
490
491 // Add the required-vector-width attribute. This contains the max width from:
492 // 1. min-vector-width attribute used in the source program.
493 // 2. Any builtins used that have a vector width specified.
494 // 3. Values passed in and out of inline assembly.
495 // 4. Width of vector arguments and return types for this function.
496 // 5. Width of vector aguments and return types for functions called by this
497 // function.
498 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));
499
500 // Add vscale_range attribute if appropriate.
501 Optional<std::pair<unsigned, unsigned>> VScaleRange =
502 getContext().getTargetInfo().getVScaleRange(getLangOpts());
503 if (VScaleRange) {
504 CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
505 getLLVMContext(), VScaleRange->first, VScaleRange->second));
506 }
507
508 // If we generated an unreachable return block, delete it now.
509 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
510 Builder.ClearInsertionPoint();
511 ReturnBlock.getBlock()->eraseFromParent();
512 }
513 if (ReturnValue.isValid()) {
514 auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
515 if (RetAlloca && RetAlloca->use_empty()) {
516 RetAlloca->eraseFromParent();
517 ReturnValue = Address::invalid();
518 }
519 }
520 }
521
522 /// ShouldInstrumentFunction - Return true if the current function should be
523 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()524 bool CodeGenFunction::ShouldInstrumentFunction() {
525 if (!CGM.getCodeGenOpts().InstrumentFunctions &&
526 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
527 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
528 return false;
529 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
530 return false;
531 return true;
532 }
533
ShouldSkipSanitizerInstrumentation()534 bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() {
535 if (!CurFuncDecl)
536 return false;
537 return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>();
538 }
539
540 /// ShouldXRayInstrument - Return true if the current function should be
541 /// instrumented with XRay nop sleds.
ShouldXRayInstrumentFunction() const542 bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
543 return CGM.getCodeGenOpts().XRayInstrumentFunctions;
544 }
545
546 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
547 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
AlwaysEmitXRayCustomEvents() const548 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
549 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
550 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
551 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
552 XRayInstrKind::Custom);
553 }
554
AlwaysEmitXRayTypedEvents() const555 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
556 return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
557 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
558 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
559 XRayInstrKind::Typed);
560 }
561
562 llvm::Value *
DecodeAddrUsedInPrologue(llvm::Value * F,llvm::Value * EncodedAddr)563 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
564 llvm::Value *EncodedAddr) {
565 // Reconstruct the address of the global.
566 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
567 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
568 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
569 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");
570
571 // Load the original pointer through the global.
572 return Builder.CreateLoad(Address(GOTAddr, Int8PtrTy, getPointerAlign()),
573 "decoded_addr");
574 }
575
EmitKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)576 void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD,
577 llvm::Function *Fn) {
578 if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>())
579 return;
580
581 llvm::LLVMContext &Context = getLLVMContext();
582
583 CGM.GenKernelArgMetadata(Fn, FD, this);
584
585 if (!getLangOpts().OpenCL)
586 return;
587
588 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
589 QualType HintQTy = A->getTypeHint();
590 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
591 bool IsSignedInteger =
592 HintQTy->isSignedIntegerType() ||
593 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
594 llvm::Metadata *AttrMDArgs[] = {
595 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
596 CGM.getTypes().ConvertType(A->getTypeHint()))),
597 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
598 llvm::IntegerType::get(Context, 32),
599 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
600 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
601 }
602
603 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
604 llvm::Metadata *AttrMDArgs[] = {
605 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
606 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
607 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
608 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
609 }
610
611 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
612 llvm::Metadata *AttrMDArgs[] = {
613 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
614 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
615 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
616 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
617 }
618
619 if (const OpenCLIntelReqdSubGroupSizeAttr *A =
620 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
621 llvm::Metadata *AttrMDArgs[] = {
622 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
623 Fn->setMetadata("intel_reqd_sub_group_size",
624 llvm::MDNode::get(Context, AttrMDArgs));
625 }
626 }
627
628 /// Determine whether the function F ends with a return stmt.
endsWithReturn(const Decl * F)629 static bool endsWithReturn(const Decl* F) {
630 const Stmt *Body = nullptr;
631 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
632 Body = FD->getBody();
633 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
634 Body = OMD->getBody();
635
636 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
637 auto LastStmt = CS->body_rbegin();
638 if (LastStmt != CS->body_rend())
639 return isa<ReturnStmt>(*LastStmt);
640 }
641 return false;
642 }
643
markAsIgnoreThreadCheckingAtRuntime(llvm::Function * Fn)644 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
645 if (SanOpts.has(SanitizerKind::Thread)) {
646 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
647 Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
648 }
649 }
650
651 /// Check if the return value of this function requires sanitization.
requiresReturnValueCheck() const652 bool CodeGenFunction::requiresReturnValueCheck() const {
653 return requiresReturnValueNullabilityCheck() ||
654 (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
655 CurCodeDecl->getAttr<ReturnsNonNullAttr>());
656 }
657
matchesStlAllocatorFn(const Decl * D,const ASTContext & Ctx)658 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
659 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
660 if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
661 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
662 (MD->getNumParams() != 1 && MD->getNumParams() != 2))
663 return false;
664
665 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
666 return false;
667
668 if (MD->getNumParams() == 2) {
669 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
670 if (!PT || !PT->isVoidPointerType() ||
671 !PT->getPointeeType().isConstQualified())
672 return false;
673 }
674
675 return true;
676 }
677
678 /// Return the UBSan prologue signature for \p FD if one is available.
getPrologueSignature(CodeGenModule & CGM,const FunctionDecl * FD)679 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
680 const FunctionDecl *FD) {
681 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
682 if (!MD->isStatic())
683 return nullptr;
684 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
685 }
686
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation Loc,SourceLocation StartLoc)687 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
688 llvm::Function *Fn,
689 const CGFunctionInfo &FnInfo,
690 const FunctionArgList &Args,
691 SourceLocation Loc,
692 SourceLocation StartLoc) {
693 assert(!CurFn &&
694 "Do not use a CodeGenFunction object for more than one function");
695
696 const Decl *D = GD.getDecl();
697
698 DidCallStackSave = false;
699 CurCodeDecl = D;
700 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
701 if (FD && FD->usesSEHTry())
702 CurSEHParent = FD;
703 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
704 FnRetTy = RetTy;
705 CurFn = Fn;
706 CurFnInfo = &FnInfo;
707 assert(CurFn->isDeclaration() && "Function already has body?");
708
709 // If this function is ignored for any of the enabled sanitizers,
710 // disable the sanitizer for the function.
711 do {
712 #define SANITIZER(NAME, ID) \
713 if (SanOpts.empty()) \
714 break; \
715 if (SanOpts.has(SanitizerKind::ID)) \
716 if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \
717 SanOpts.set(SanitizerKind::ID, false);
718
719 #include "clang/Basic/Sanitizers.def"
720 #undef SANITIZER
721 } while (false);
722
723 if (D) {
724 const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds);
725 bool NoSanitizeCoverage = false;
726
727 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
728 // Apply the no_sanitize* attributes to SanOpts.
729 SanitizerMask mask = Attr->getMask();
730 SanOpts.Mask &= ~mask;
731 if (mask & SanitizerKind::Address)
732 SanOpts.set(SanitizerKind::KernelAddress, false);
733 if (mask & SanitizerKind::KernelAddress)
734 SanOpts.set(SanitizerKind::Address, false);
735 if (mask & SanitizerKind::HWAddress)
736 SanOpts.set(SanitizerKind::KernelHWAddress, false);
737 if (mask & SanitizerKind::KernelHWAddress)
738 SanOpts.set(SanitizerKind::HWAddress, false);
739
740 // SanitizeCoverage is not handled by SanOpts.
741 if (Attr->hasCoverage())
742 NoSanitizeCoverage = true;
743 }
744
745 if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds))
746 Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds);
747
748 if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage())
749 Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage);
750 }
751
752 if (ShouldSkipSanitizerInstrumentation()) {
753 CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
754 } else {
755 // Apply sanitizer attributes to the function.
756 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
757 Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
758 if (SanOpts.hasOneOf(SanitizerKind::HWAddress |
759 SanitizerKind::KernelHWAddress))
760 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
761 if (SanOpts.has(SanitizerKind::MemtagStack))
762 Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
763 if (SanOpts.has(SanitizerKind::Thread))
764 Fn->addFnAttr(llvm::Attribute::SanitizeThread);
765 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
766 Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
767 }
768 if (SanOpts.has(SanitizerKind::SafeStack))
769 Fn->addFnAttr(llvm::Attribute::SafeStack);
770 if (SanOpts.has(SanitizerKind::ShadowCallStack))
771 Fn->addFnAttr(llvm::Attribute::ShadowCallStack);
772
773 // Apply fuzzing attribute to the function.
774 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
775 Fn->addFnAttr(llvm::Attribute::OptForFuzzing);
776
777 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
778 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
779 if (SanOpts.has(SanitizerKind::Thread)) {
780 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
781 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
782 if (OMD->getMethodFamily() == OMF_dealloc ||
783 OMD->getMethodFamily() == OMF_initialize ||
784 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
785 markAsIgnoreThreadCheckingAtRuntime(Fn);
786 }
787 }
788 }
789
790 // Ignore unrelated casts in STL allocate() since the allocator must cast
791 // from void* to T* before object initialization completes. Don't match on the
792 // namespace because not all allocators are in std::
793 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
794 if (matchesStlAllocatorFn(D, getContext()))
795 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
796 }
797
798 // Ignore null checks in coroutine functions since the coroutines passes
799 // are not aware of how to move the extra UBSan instructions across the split
800 // coroutine boundaries.
801 if (D && SanOpts.has(SanitizerKind::Null))
802 if (FD && FD->getBody() &&
803 FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
804 SanOpts.Mask &= ~SanitizerKind::Null;
805
806 // Apply xray attributes to the function (as a string, for now)
807 bool AlwaysXRayAttr = false;
808 if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
809 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
810 XRayInstrKind::FunctionEntry) ||
811 CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
812 XRayInstrKind::FunctionExit)) {
813 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
814 Fn->addFnAttr("function-instrument", "xray-always");
815 AlwaysXRayAttr = true;
816 }
817 if (XRayAttr->neverXRayInstrument())
818 Fn->addFnAttr("function-instrument", "xray-never");
819 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
820 if (ShouldXRayInstrumentFunction())
821 Fn->addFnAttr("xray-log-args",
822 llvm::utostr(LogArgs->getArgumentCount()));
823 }
824 } else {
825 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
826 Fn->addFnAttr(
827 "xray-instruction-threshold",
828 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
829 }
830
831 if (ShouldXRayInstrumentFunction()) {
832 if (CGM.getCodeGenOpts().XRayIgnoreLoops)
833 Fn->addFnAttr("xray-ignore-loops");
834
835 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
836 XRayInstrKind::FunctionExit))
837 Fn->addFnAttr("xray-skip-exit");
838
839 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
840 XRayInstrKind::FunctionEntry))
841 Fn->addFnAttr("xray-skip-entry");
842
843 auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
844 if (FuncGroups > 1) {
845 auto FuncName = llvm::makeArrayRef<uint8_t>(
846 CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
847 auto Group = crc32(FuncName) % FuncGroups;
848 if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
849 !AlwaysXRayAttr)
850 Fn->addFnAttr("function-instrument", "xray-never");
851 }
852 }
853
854 if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone)
855 if (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc))
856 Fn->addFnAttr(llvm::Attribute::NoProfile);
857
858 unsigned Count, Offset;
859 if (const auto *Attr =
860 D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
861 Count = Attr->getCount();
862 Offset = Attr->getOffset();
863 } else {
864 Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
865 Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
866 }
867 if (Count && Offset <= Count) {
868 Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
869 if (Offset)
870 Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
871 }
872 // Instruct that functions for COFF/CodeView targets should start with a
873 // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64
874 // backends as they don't need it -- instructions on these architectures are
875 // always atomically patchable at runtime.
876 if (CGM.getCodeGenOpts().HotPatch &&
877 getContext().getTargetInfo().getTriple().isX86())
878 Fn->addFnAttr("patchable-function", "prologue-short-redirect");
879
880 // Add no-jump-tables value.
881 if (CGM.getCodeGenOpts().NoUseJumpTables)
882 Fn->addFnAttr("no-jump-tables", "true");
883
884 // Add no-inline-line-tables value.
885 if (CGM.getCodeGenOpts().NoInlineLineTables)
886 Fn->addFnAttr("no-inline-line-tables");
887
888 // Add profile-sample-accurate value.
889 if (CGM.getCodeGenOpts().ProfileSampleAccurate)
890 Fn->addFnAttr("profile-sample-accurate");
891
892 if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
893 Fn->addFnAttr("use-sample-profile");
894
895 if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
896 Fn->addFnAttr("cfi-canonical-jump-table");
897
898 if (D && D->hasAttr<NoProfileFunctionAttr>())
899 Fn->addFnAttr(llvm::Attribute::NoProfile);
900
901 if (D) {
902 // Function attributes take precedence over command line flags.
903 if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) {
904 switch (A->getThunkType()) {
905 case FunctionReturnThunksAttr::Kind::Keep:
906 break;
907 case FunctionReturnThunksAttr::Kind::Extern:
908 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
909 break;
910 }
911 } else if (CGM.getCodeGenOpts().FunctionReturnThunks)
912 Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern);
913 }
914
915 if (FD && (getLangOpts().OpenCL ||
916 (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) {
917 // Add metadata for a kernel function.
918 EmitKernelMetadata(FD, Fn);
919 }
920
921 // If we are checking function types, emit a function type signature as
922 // prologue data.
923 if (FD && getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
924 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
925 // Remove any (C++17) exception specifications, to allow calling e.g. a
926 // noexcept function through a non-noexcept pointer.
927 auto ProtoTy = getContext().getFunctionTypeWithExceptionSpec(
928 FD->getType(), EST_None);
929 llvm::Constant *FTRTTIConst =
930 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
931 llvm::GlobalVariable *FTRTTIProxy =
932 CGM.GetOrCreateRTTIProxyGlobalVariable(FTRTTIConst);
933 llvm::LLVMContext &Ctx = Fn->getContext();
934 llvm::MDBuilder MDB(Ctx);
935 Fn->setMetadata(llvm::LLVMContext::MD_func_sanitize,
936 MDB.createRTTIPointerPrologue(PrologueSig, FTRTTIProxy));
937 CGM.addCompilerUsedGlobal(FTRTTIProxy);
938 }
939 }
940
941 // If we're checking nullability, we need to know whether we can check the
942 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
943 if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
944 auto Nullability = FnRetTy->getNullability(getContext());
945 if (Nullability && *Nullability == NullabilityKind::NonNull) {
946 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
947 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
948 RetValNullabilityPrecondition =
949 llvm::ConstantInt::getTrue(getLLVMContext());
950 }
951 }
952
953 // If we're in C++ mode and the function name is "main", it is guaranteed
954 // to be norecurse by the standard (3.6.1.3 "The function main shall not be
955 // used within a program").
956 //
957 // OpenCL C 2.0 v2.2-11 s6.9.i:
958 // Recursion is not supported.
959 //
960 // SYCL v1.2.1 s3.10:
961 // kernels cannot include RTTI information, exception classes,
962 // recursive code, virtual functions or make use of C++ libraries that
963 // are not compiled for the device.
964 if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) ||
965 getLangOpts().OpenCL || getLangOpts().SYCLIsDevice ||
966 (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>())))
967 Fn->addFnAttr(llvm::Attribute::NoRecurse);
968
969 llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode();
970 llvm::fp::ExceptionBehavior FPExceptionBehavior =
971 ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode());
972 Builder.setDefaultConstrainedRounding(RM);
973 Builder.setDefaultConstrainedExcept(FPExceptionBehavior);
974 if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) ||
975 (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore ||
976 RM != llvm::RoundingMode::NearestTiesToEven))) {
977 Builder.setIsFPConstrained(true);
978 Fn->addFnAttr(llvm::Attribute::StrictFP);
979 }
980
981 // If a custom alignment is used, force realigning to this alignment on
982 // any main function which certainly will need it.
983 if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
984 CGM.getCodeGenOpts().StackAlignment))
985 Fn->addFnAttr("stackrealign");
986
987 // "main" doesn't need to zero out call-used registers.
988 if (FD && FD->isMain())
989 Fn->removeFnAttr("zero-call-used-regs");
990
991 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
992
993 // Create a marker to make it easy to insert allocas into the entryblock
994 // later. Don't create this with the builder, because we don't want it
995 // folded.
996 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
997 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);
998
999 ReturnBlock = getJumpDestInCurrentScope("return");
1000
1001 Builder.SetInsertPoint(EntryBB);
1002
1003 // If we're checking the return value, allocate space for a pointer to a
1004 // precise source location of the checked return statement.
1005 if (requiresReturnValueCheck()) {
1006 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
1007 Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy),
1008 ReturnLocation);
1009 }
1010
1011 // Emit subprogram debug descriptor.
1012 if (CGDebugInfo *DI = getDebugInfo()) {
1013 // Reconstruct the type from the argument list so that implicit parameters,
1014 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
1015 // convention.
1016 DI->emitFunctionStart(GD, Loc, StartLoc,
1017 DI->getFunctionType(FD, RetTy, Args), CurFn,
1018 CurFuncIsThunk);
1019 }
1020
1021 if (ShouldInstrumentFunction()) {
1022 if (CGM.getCodeGenOpts().InstrumentFunctions)
1023 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
1024 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
1025 CurFn->addFnAttr("instrument-function-entry-inlined",
1026 "__cyg_profile_func_enter");
1027 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
1028 CurFn->addFnAttr("instrument-function-entry-inlined",
1029 "__cyg_profile_func_enter_bare");
1030 }
1031
1032 // Since emitting the mcount call here impacts optimizations such as function
1033 // inlining, we just add an attribute to insert a mcount call in backend.
1034 // The attribute "counting-function" is set to mcount function name which is
1035 // architecture dependent.
1036 if (CGM.getCodeGenOpts().InstrumentForProfiling) {
1037 // Calls to fentry/mcount should not be generated if function has
1038 // the no_instrument_function attribute.
1039 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
1040 if (CGM.getCodeGenOpts().CallFEntry)
1041 Fn->addFnAttr("fentry-call", "true");
1042 else {
1043 Fn->addFnAttr("instrument-function-entry-inlined",
1044 getTarget().getMCountName());
1045 }
1046 if (CGM.getCodeGenOpts().MNopMCount) {
1047 if (!CGM.getCodeGenOpts().CallFEntry)
1048 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1049 << "-mnop-mcount" << "-mfentry";
1050 Fn->addFnAttr("mnop-mcount");
1051 }
1052
1053 if (CGM.getCodeGenOpts().RecordMCount) {
1054 if (!CGM.getCodeGenOpts().CallFEntry)
1055 CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
1056 << "-mrecord-mcount" << "-mfentry";
1057 Fn->addFnAttr("mrecord-mcount");
1058 }
1059 }
1060 }
1061
1062 if (CGM.getCodeGenOpts().PackedStack) {
1063 if (getContext().getTargetInfo().getTriple().getArch() !=
1064 llvm::Triple::systemz)
1065 CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
1066 << "-mpacked-stack";
1067 Fn->addFnAttr("packed-stack");
1068 }
1069
1070 if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX &&
1071 !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc))
1072 Fn->addFnAttr("warn-stack-size",
1073 std::to_string(CGM.getCodeGenOpts().WarnStackSize));
1074
1075 if (RetTy->isVoidType()) {
1076 // Void type; nothing to return.
1077 ReturnValue = Address::invalid();
1078
1079 // Count the implicit return.
1080 if (!endsWithReturn(D))
1081 ++NumReturnExprs;
1082 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
1083 // Indirect return; emit returned value directly into sret slot.
1084 // This reduces code size, and affects correctness in C++.
1085 auto AI = CurFn->arg_begin();
1086 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
1087 ++AI;
1088 ReturnValue = Address(&*AI, ConvertType(RetTy),
1089 CurFnInfo->getReturnInfo().getIndirectAlign());
1090 if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
1091 ReturnValuePointer =
1092 CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
1093 Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
1094 ReturnValue.getPointer(), Int8PtrTy),
1095 ReturnValuePointer);
1096 }
1097 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
1098 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
1099 // Load the sret pointer from the argument struct and return into that.
1100 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
1101 llvm::Function::arg_iterator EI = CurFn->arg_end();
1102 --EI;
1103 llvm::Value *Addr = Builder.CreateStructGEP(
1104 CurFnInfo->getArgStruct(), &*EI, Idx);
1105 llvm::Type *Ty =
1106 cast<llvm::GetElementPtrInst>(Addr)->getResultElementType();
1107 ReturnValuePointer = Address(Addr, Ty, getPointerAlign());
1108 Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result");
1109 ReturnValue =
1110 Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy));
1111 } else {
1112 ReturnValue = CreateIRTemp(RetTy, "retval");
1113
1114 // Tell the epilog emitter to autorelease the result. We do this
1115 // now so that various specialized functions can suppress it
1116 // during their IR-generation.
1117 if (getLangOpts().ObjCAutoRefCount &&
1118 !CurFnInfo->isReturnsRetained() &&
1119 RetTy->isObjCRetainableType())
1120 AutoreleaseResult = true;
1121 }
1122
1123 EmitStartEHSpec(CurCodeDecl);
1124
1125 PrologueCleanupDepth = EHStack.stable_begin();
1126
1127 // Emit OpenMP specific initialization of the device functions.
1128 if (getLangOpts().OpenMP && CurCodeDecl)
1129 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);
1130
1131 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
1132
1133 if (isa_and_nonnull<CXXMethodDecl>(D) &&
1134 cast<CXXMethodDecl>(D)->isInstance()) {
1135 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
1136 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
1137 if (MD->getParent()->isLambda() &&
1138 MD->getOverloadedOperator() == OO_Call) {
1139 // We're in a lambda; figure out the captures.
1140 MD->getParent()->getCaptureFields(LambdaCaptureFields,
1141 LambdaThisCaptureField);
1142 if (LambdaThisCaptureField) {
1143 // If the lambda captures the object referred to by '*this' - either by
1144 // value or by reference, make sure CXXThisValue points to the correct
1145 // object.
1146
1147 // Get the lvalue for the field (which is a copy of the enclosing object
1148 // or contains the address of the enclosing object).
1149 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
1150 if (!LambdaThisCaptureField->getType()->isPointerType()) {
1151 // If the enclosing object was captured by value, just use its address.
1152 CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
1153 } else {
1154 // Load the lvalue pointed to by the field, since '*this' was captured
1155 // by reference.
1156 CXXThisValue =
1157 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
1158 }
1159 }
1160 for (auto *FD : MD->getParent()->fields()) {
1161 if (FD->hasCapturedVLAType()) {
1162 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
1163 SourceLocation()).getScalarVal();
1164 auto VAT = FD->getCapturedVLAType();
1165 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
1166 }
1167 }
1168 } else {
1169 // Not in a lambda; just use 'this' from the method.
1170 // FIXME: Should we generate a new load for each use of 'this'? The
1171 // fast register allocator would be happier...
1172 CXXThisValue = CXXABIThisValue;
1173 }
1174
1175 // Check the 'this' pointer once per function, if it's available.
1176 if (CXXABIThisValue) {
1177 SanitizerSet SkippedChecks;
1178 SkippedChecks.set(SanitizerKind::ObjectSize, true);
1179 QualType ThisTy = MD->getThisType();
1180
1181 // If this is the call operator of a lambda with no capture-default, it
1182 // may have a static invoker function, which may call this operator with
1183 // a null 'this' pointer.
1184 if (isLambdaCallOperator(MD) &&
1185 MD->getParent()->getLambdaCaptureDefault() == LCD_None)
1186 SkippedChecks.set(SanitizerKind::Null, true);
1187
1188 EmitTypeCheck(
1189 isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall,
1190 Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks);
1191 }
1192 }
1193
1194 // If any of the arguments have a variably modified type, make sure to
1195 // emit the type size, but only if the function is not naked. Naked functions
1196 // have no prolog to run this evaluation.
1197 if (!FD || !FD->hasAttr<NakedAttr>()) {
1198 for (const VarDecl *VD : Args) {
1199 // Dig out the type as written from ParmVarDecls; it's unclear whether
1200 // the standard (C99 6.9.1p10) requires this, but we're following the
1201 // precedent set by gcc.
1202 QualType Ty;
1203 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
1204 Ty = PVD->getOriginalType();
1205 else
1206 Ty = VD->getType();
1207
1208 if (Ty->isVariablyModifiedType())
1209 EmitVariablyModifiedType(Ty);
1210 }
1211 }
1212 // Emit a location at the end of the prologue.
1213 if (CGDebugInfo *DI = getDebugInfo())
1214 DI->EmitLocation(Builder, StartLoc);
1215 // TODO: Do we need to handle this in two places like we do with
1216 // target-features/target-cpu?
1217 if (CurFuncDecl)
1218 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
1219 LargestVectorWidth = VecWidth->getVectorWidth();
1220 }
1221
EmitFunctionBody(const Stmt * Body)1222 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
1223 incrementProfileCounter(Body);
1224 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
1225 EmitCompoundStmtWithoutScope(*S);
1226 else
1227 EmitStmt(Body);
1228
1229 // This is checked after emitting the function body so we know if there
1230 // are any permitted infinite loops.
1231 if (checkIfFunctionMustProgress())
1232 CurFn->addFnAttr(llvm::Attribute::MustProgress);
1233 }
1234
1235 /// When instrumenting to collect profile data, the counts for some blocks
1236 /// such as switch cases need to not include the fall-through counts, so
1237 /// emit a branch around the instrumentation code. When not instrumenting,
1238 /// this just calls EmitBlock().
EmitBlockWithFallThrough(llvm::BasicBlock * BB,const Stmt * S)1239 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
1240 const Stmt *S) {
1241 llvm::BasicBlock *SkipCountBB = nullptr;
1242 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
1243 // When instrumenting for profiling, the fallthrough to certain
1244 // statements needs to skip over the instrumentation code so that we
1245 // get an accurate count.
1246 SkipCountBB = createBasicBlock("skipcount");
1247 EmitBranch(SkipCountBB);
1248 }
1249 EmitBlock(BB);
1250 uint64_t CurrentCount = getCurrentProfileCount();
1251 incrementProfileCounter(S);
1252 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
1253 if (SkipCountBB)
1254 EmitBlock(SkipCountBB);
1255 }
1256
1257 /// Tries to mark the given function nounwind based on the
1258 /// non-existence of any throwing calls within it. We believe this is
1259 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)1260 static void TryMarkNoThrow(llvm::Function *F) {
1261 // LLVM treats 'nounwind' on a function as part of the type, so we
1262 // can't do this on functions that can be overwritten.
1263 if (F->isInterposable()) return;
1264
1265 for (llvm::BasicBlock &BB : *F)
1266 for (llvm::Instruction &I : BB)
1267 if (I.mayThrow())
1268 return;
1269
1270 F->setDoesNotThrow();
1271 }
1272
BuildFunctionArgList(GlobalDecl GD,FunctionArgList & Args)1273 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
1274 FunctionArgList &Args) {
1275 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1276 QualType ResTy = FD->getReturnType();
1277
1278 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1279 if (MD && MD->isInstance()) {
1280 if (CGM.getCXXABI().HasThisReturn(GD))
1281 ResTy = MD->getThisType();
1282 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
1283 ResTy = CGM.getContext().VoidPtrTy;
1284 CGM.getCXXABI().buildThisParam(*this, Args);
1285 }
1286
1287 // The base version of an inheriting constructor whose constructed base is a
1288 // virtual base is not passed any arguments (because it doesn't actually call
1289 // the inherited constructor).
1290 bool PassedParams = true;
1291 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
1292 if (auto Inherited = CD->getInheritedConstructor())
1293 PassedParams =
1294 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());
1295
1296 if (PassedParams) {
1297 for (auto *Param : FD->parameters()) {
1298 Args.push_back(Param);
1299 if (!Param->hasAttr<PassObjectSizeAttr>())
1300 continue;
1301
1302 auto *Implicit = ImplicitParamDecl::Create(
1303 getContext(), Param->getDeclContext(), Param->getLocation(),
1304 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
1305 SizeArguments[Param] = Implicit;
1306 Args.push_back(Implicit);
1307 }
1308 }
1309
1310 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
1311 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
1312
1313 return ResTy;
1314 }
1315
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)1316 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1317 const CGFunctionInfo &FnInfo) {
1318 assert(Fn && "generating code for null Function");
1319 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
1320 CurGD = GD;
1321
1322 FunctionArgList Args;
1323 QualType ResTy = BuildFunctionArgList(GD, Args);
1324
1325 if (FD->isInlineBuiltinDeclaration()) {
1326 // When generating code for a builtin with an inline declaration, use a
1327 // mangled name to hold the actual body, while keeping an external
1328 // definition in case the function pointer is referenced somewhere.
1329 std::string FDInlineName = (Fn->getName() + ".inline").str();
1330 llvm::Module *M = Fn->getParent();
1331 llvm::Function *Clone = M->getFunction(FDInlineName);
1332 if (!Clone) {
1333 Clone = llvm::Function::Create(Fn->getFunctionType(),
1334 llvm::GlobalValue::InternalLinkage,
1335 Fn->getAddressSpace(), FDInlineName, M);
1336 Clone->addFnAttr(llvm::Attribute::AlwaysInline);
1337 }
1338 Fn->setLinkage(llvm::GlobalValue::ExternalLinkage);
1339 Fn = Clone;
1340 } else {
1341 // Detect the unusual situation where an inline version is shadowed by a
1342 // non-inline version. In that case we should pick the external one
1343 // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way
1344 // to detect that situation before we reach codegen, so do some late
1345 // replacement.
1346 for (const FunctionDecl *PD = FD->getPreviousDecl(); PD;
1347 PD = PD->getPreviousDecl()) {
1348 if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) {
1349 std::string FDInlineName = (Fn->getName() + ".inline").str();
1350 llvm::Module *M = Fn->getParent();
1351 if (llvm::Function *Clone = M->getFunction(FDInlineName)) {
1352 Clone->replaceAllUsesWith(Fn);
1353 Clone->eraseFromParent();
1354 }
1355 break;
1356 }
1357 }
1358 }
1359
1360 // Check if we should generate debug info for this function.
1361 if (FD->hasAttr<NoDebugAttr>()) {
1362 // Clear non-distinct debug info that was possibly attached to the function
1363 // due to an earlier declaration without the nodebug attribute
1364 Fn->setSubprogram(nullptr);
1365 // Disable debug info indefinitely for this function
1366 DebugInfo = nullptr;
1367 }
1368
1369 // The function might not have a body if we're generating thunks for a
1370 // function declaration.
1371 SourceRange BodyRange;
1372 if (Stmt *Body = FD->getBody())
1373 BodyRange = Body->getSourceRange();
1374 else
1375 BodyRange = FD->getLocation();
1376 CurEHLocation = BodyRange.getEnd();
1377
1378 // Use the location of the start of the function to determine where
1379 // the function definition is located. By default use the location
1380 // of the declaration as the location for the subprogram. A function
1381 // may lack a declaration in the source code if it is created by code
1382 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
1383 SourceLocation Loc = FD->getLocation();
1384
1385 // If this is a function specialization then use the pattern body
1386 // as the location for the function.
1387 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
1388 if (SpecDecl->hasBody(SpecDecl))
1389 Loc = SpecDecl->getLocation();
1390
1391 Stmt *Body = FD->getBody();
1392
1393 if (Body) {
1394 // Coroutines always emit lifetime markers.
1395 if (isa<CoroutineBodyStmt>(Body))
1396 ShouldEmitLifetimeMarkers = true;
1397
1398 // Initialize helper which will detect jumps which can cause invalid
1399 // lifetime markers.
1400 if (ShouldEmitLifetimeMarkers)
1401 Bypasses.Init(Body);
1402 }
1403
1404 // Emit the standard function prologue.
1405 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
1406
1407 // Save parameters for coroutine function.
1408 if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body))
1409 llvm::append_range(FnArgs, FD->parameters());
1410
1411 // Generate the body of the function.
1412 PGO.assignRegionCounters(GD, CurFn);
1413 if (isa<CXXDestructorDecl>(FD))
1414 EmitDestructorBody(Args);
1415 else if (isa<CXXConstructorDecl>(FD))
1416 EmitConstructorBody(Args);
1417 else if (getLangOpts().CUDA &&
1418 !getLangOpts().CUDAIsDevice &&
1419 FD->hasAttr<CUDAGlobalAttr>())
1420 CGM.getCUDARuntime().emitDeviceStub(*this, Args);
1421 else if (isa<CXXMethodDecl>(FD) &&
1422 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
1423 // The lambda static invoker function is special, because it forwards or
1424 // clones the body of the function call operator (but is actually static).
1425 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
1426 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
1427 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
1428 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
1429 // Implicit copy-assignment gets the same special treatment as implicit
1430 // copy-constructors.
1431 emitImplicitAssignmentOperatorBody(Args);
1432 } else if (Body) {
1433 EmitFunctionBody(Body);
1434 } else
1435 llvm_unreachable("no definition for emitted function");
1436
1437 // C++11 [stmt.return]p2:
1438 // Flowing off the end of a function [...] results in undefined behavior in
1439 // a value-returning function.
1440 // C11 6.9.1p12:
1441 // If the '}' that terminates a function is reached, and the value of the
1442 // function call is used by the caller, the behavior is undefined.
1443 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
1444 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
1445 bool ShouldEmitUnreachable =
1446 CGM.getCodeGenOpts().StrictReturn ||
1447 !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType());
1448 if (SanOpts.has(SanitizerKind::Return)) {
1449 SanitizerScope SanScope(this);
1450 llvm::Value *IsFalse = Builder.getFalse();
1451 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
1452 SanitizerHandler::MissingReturn,
1453 EmitCheckSourceLocation(FD->getLocation()), None);
1454 } else if (ShouldEmitUnreachable) {
1455 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1456 EmitTrapCall(llvm::Intrinsic::trap);
1457 }
1458 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
1459 Builder.CreateUnreachable();
1460 Builder.ClearInsertionPoint();
1461 }
1462 }
1463
1464 // Emit the standard function epilogue.
1465 FinishFunction(BodyRange.getEnd());
1466
1467 // If we haven't marked the function nothrow through other means, do
1468 // a quick pass now to see if we can.
1469 if (!CurFn->doesNotThrow())
1470 TryMarkNoThrow(CurFn);
1471 }
1472
1473 /// ContainsLabel - Return true if the statement contains a label in it. If
1474 /// this statement is not executed normally, it not containing a label means
1475 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)1476 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
1477 // Null statement, not a label!
1478 if (!S) return false;
1479
1480 // If this is a label, we have to emit the code, consider something like:
1481 // if (0) { ... foo: bar(); } goto foo;
1482 //
1483 // TODO: If anyone cared, we could track __label__'s, since we know that you
1484 // can't jump to one from outside their declared region.
1485 if (isa<LabelStmt>(S))
1486 return true;
1487
1488 // If this is a case/default statement, and we haven't seen a switch, we have
1489 // to emit the code.
1490 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
1491 return true;
1492
1493 // If this is a switch statement, we want to ignore cases below it.
1494 if (isa<SwitchStmt>(S))
1495 IgnoreCaseStmts = true;
1496
1497 // Scan subexpressions for verboten labels.
1498 for (const Stmt *SubStmt : S->children())
1499 if (ContainsLabel(SubStmt, IgnoreCaseStmts))
1500 return true;
1501
1502 return false;
1503 }
1504
1505 /// containsBreak - Return true if the statement contains a break out of it.
1506 /// If the statement (recursively) contains a switch or loop with a break
1507 /// inside of it, this is fine.
containsBreak(const Stmt * S)1508 bool CodeGenFunction::containsBreak(const Stmt *S) {
1509 // Null statement, not a label!
1510 if (!S) return false;
1511
1512 // If this is a switch or loop that defines its own break scope, then we can
1513 // include it and anything inside of it.
1514 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
1515 isa<ForStmt>(S))
1516 return false;
1517
1518 if (isa<BreakStmt>(S))
1519 return true;
1520
1521 // Scan subexpressions for verboten breaks.
1522 for (const Stmt *SubStmt : S->children())
1523 if (containsBreak(SubStmt))
1524 return true;
1525
1526 return false;
1527 }
1528
mightAddDeclToScope(const Stmt * S)1529 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
1530 if (!S) return false;
1531
1532 // Some statement kinds add a scope and thus never add a decl to the current
1533 // scope. Note, this list is longer than the list of statements that might
1534 // have an unscoped decl nested within them, but this way is conservatively
1535 // correct even if more statement kinds are added.
1536 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
1537 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
1538 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
1539 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
1540 return false;
1541
1542 if (isa<DeclStmt>(S))
1543 return true;
1544
1545 for (const Stmt *SubStmt : S->children())
1546 if (mightAddDeclToScope(SubStmt))
1547 return true;
1548
1549 return false;
1550 }
1551
1552 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1553 /// to a constant, or if it does but contains a label, return false. If it
1554 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool,bool AllowLabels)1555 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1556 bool &ResultBool,
1557 bool AllowLabels) {
1558 llvm::APSInt ResultInt;
1559 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
1560 return false;
1561
1562 ResultBool = ResultInt.getBoolValue();
1563 return true;
1564 }
1565
1566 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1567 /// to a constant, or if it does but contains a label, return false. If it
1568 /// constant folds return true and set the folded value.
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt,bool AllowLabels)1569 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
1570 llvm::APSInt &ResultInt,
1571 bool AllowLabels) {
1572 // FIXME: Rename and handle conversion of other evaluatable things
1573 // to bool.
1574 Expr::EvalResult Result;
1575 if (!Cond->EvaluateAsInt(Result, getContext()))
1576 return false; // Not foldable, not integer or not fully evaluatable.
1577
1578 llvm::APSInt Int = Result.Val.getInt();
1579 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
1580 return false; // Contains a label.
1581
1582 ResultInt = Int;
1583 return true;
1584 }
1585
1586 /// Determine whether the given condition is an instrumentable condition
1587 /// (i.e. no "&&" or "||").
isInstrumentedCondition(const Expr * C)1588 bool CodeGenFunction::isInstrumentedCondition(const Expr *C) {
1589 // Bypass simplistic logical-NOT operator before determining whether the
1590 // condition contains any other logical operator.
1591 if (const UnaryOperator *UnOp = dyn_cast<UnaryOperator>(C->IgnoreParens()))
1592 if (UnOp->getOpcode() == UO_LNot)
1593 C = UnOp->getSubExpr();
1594
1595 const BinaryOperator *BOp = dyn_cast<BinaryOperator>(C->IgnoreParens());
1596 return (!BOp || !BOp->isLogicalOp());
1597 }
1598
1599 /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
1600 /// increments a profile counter based on the semantics of the given logical
1601 /// operator opcode. This is used to instrument branch condition coverage for
1602 /// logical operators.
EmitBranchToCounterBlock(const Expr * Cond,BinaryOperator::Opcode LOp,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount,Stmt::Likelihood LH,const Expr * CntrIdx)1603 void CodeGenFunction::EmitBranchToCounterBlock(
1604 const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock,
1605 llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */,
1606 Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) {
1607 // If not instrumenting, just emit a branch.
1608 bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr();
1609 if (!InstrumentRegions || !isInstrumentedCondition(Cond))
1610 return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH);
1611
1612 llvm::BasicBlock *ThenBlock = nullptr;
1613 llvm::BasicBlock *ElseBlock = nullptr;
1614 llvm::BasicBlock *NextBlock = nullptr;
1615
1616 // Create the block we'll use to increment the appropriate counter.
1617 llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt");
1618
1619 // Set block pointers according to Logical-AND (BO_LAnd) semantics. This
1620 // means we need to evaluate the condition and increment the counter on TRUE:
1621 //
1622 // if (Cond)
1623 // goto CounterIncrBlock;
1624 // else
1625 // goto FalseBlock;
1626 //
1627 // CounterIncrBlock:
1628 // Counter++;
1629 // goto TrueBlock;
1630
1631 if (LOp == BO_LAnd) {
1632 ThenBlock = CounterIncrBlock;
1633 ElseBlock = FalseBlock;
1634 NextBlock = TrueBlock;
1635 }
1636
1637 // Set block pointers according to Logical-OR (BO_LOr) semantics. This means
1638 // we need to evaluate the condition and increment the counter on FALSE:
1639 //
1640 // if (Cond)
1641 // goto TrueBlock;
1642 // else
1643 // goto CounterIncrBlock;
1644 //
1645 // CounterIncrBlock:
1646 // Counter++;
1647 // goto FalseBlock;
1648
1649 else if (LOp == BO_LOr) {
1650 ThenBlock = TrueBlock;
1651 ElseBlock = CounterIncrBlock;
1652 NextBlock = FalseBlock;
1653 } else {
1654 llvm_unreachable("Expected Opcode must be that of a Logical Operator");
1655 }
1656
1657 // Emit Branch based on condition.
1658 EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH);
1659
1660 // Emit the block containing the counter increment(s).
1661 EmitBlock(CounterIncrBlock);
1662
1663 // Increment corresponding counter; if index not provided, use Cond as index.
1664 incrementProfileCounter(CntrIdx ? CntrIdx : Cond);
1665
1666 // Go to the next block.
1667 EmitBranch(NextBlock);
1668 }
1669
1670 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1671 /// statement) to the specified blocks. Based on the condition, this might try
1672 /// to simplify the codegen of the conditional based on the branch.
1673 /// \param LH The value of the likelihood attribute on the True branch.
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount,Stmt::Likelihood LH)1674 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1675 llvm::BasicBlock *TrueBlock,
1676 llvm::BasicBlock *FalseBlock,
1677 uint64_t TrueCount,
1678 Stmt::Likelihood LH) {
1679 Cond = Cond->IgnoreParens();
1680
1681 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1682
1683 // Handle X && Y in a condition.
1684 if (CondBOp->getOpcode() == BO_LAnd) {
1685 // If we have "1 && X", simplify the code. "0 && X" would have constant
1686 // folded if the case was simple enough.
1687 bool ConstantBool = false;
1688 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1689 ConstantBool) {
1690 // br(1 && X) -> br(X).
1691 incrementProfileCounter(CondBOp);
1692 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1693 FalseBlock, TrueCount, LH);
1694 }
1695
1696 // If we have "X && 1", simplify the code to use an uncond branch.
1697 // "X && 0" would have been constant folded to 0.
1698 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1699 ConstantBool) {
1700 // br(X && 1) -> br(X).
1701 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock,
1702 FalseBlock, TrueCount, LH, CondBOp);
1703 }
1704
1705 // Emit the LHS as a conditional. If the LHS conditional is false, we
1706 // want to jump to the FalseBlock.
1707 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1708 // The counter tells us how often we evaluate RHS, and all of TrueCount
1709 // can be propagated to that branch.
1710 uint64_t RHSCount = getProfileCount(CondBOp->getRHS());
1711
1712 ConditionalEvaluation eval(*this);
1713 {
1714 ApplyDebugLocation DL(*this, Cond);
1715 // Propagate the likelihood attribute like __builtin_expect
1716 // __builtin_expect(X && Y, 1) -> X and Y are likely
1717 // __builtin_expect(X && Y, 0) -> only Y is unlikely
1718 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
1719 LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
1720 EmitBlock(LHSTrue);
1721 }
1722
1723 incrementProfileCounter(CondBOp);
1724 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1725
1726 // Any temporaries created here are conditional.
1727 eval.begin(*this);
1728 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock,
1729 FalseBlock, TrueCount, LH);
1730 eval.end(*this);
1731
1732 return;
1733 }
1734
1735 if (CondBOp->getOpcode() == BO_LOr) {
1736 // If we have "0 || X", simplify the code. "1 || X" would have constant
1737 // folded if the case was simple enough.
1738 bool ConstantBool = false;
1739 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1740 !ConstantBool) {
1741 // br(0 || X) -> br(X).
1742 incrementProfileCounter(CondBOp);
1743 return EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock,
1744 FalseBlock, TrueCount, LH);
1745 }
1746
1747 // If we have "X || 0", simplify the code to use an uncond branch.
1748 // "X || 1" would have been constant folded to 1.
1749 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1750 !ConstantBool) {
1751 // br(X || 0) -> br(X).
1752 return EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock,
1753 FalseBlock, TrueCount, LH, CondBOp);
1754 }
1755
1756 // Emit the LHS as a conditional. If the LHS conditional is true, we
1757 // want to jump to the TrueBlock.
1758 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1759 // We have the count for entry to the RHS and for the whole expression
1760 // being true, so we can divy up True count between the short circuit and
1761 // the RHS.
1762 uint64_t LHSCount =
1763 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
1764 uint64_t RHSCount = TrueCount - LHSCount;
1765
1766 ConditionalEvaluation eval(*this);
1767 {
1768 // Propagate the likelihood attribute like __builtin_expect
1769 // __builtin_expect(X || Y, 1) -> only Y is likely
1770 // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
1771 ApplyDebugLocation DL(*this, Cond);
1772 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
1773 LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
1774 EmitBlock(LHSFalse);
1775 }
1776
1777 incrementProfileCounter(CondBOp);
1778 setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));
1779
1780 // Any temporaries created here are conditional.
1781 eval.begin(*this);
1782 EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock,
1783 RHSCount, LH);
1784
1785 eval.end(*this);
1786
1787 return;
1788 }
1789 }
1790
1791 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1792 // br(!x, t, f) -> br(x, f, t)
1793 if (CondUOp->getOpcode() == UO_LNot) {
1794 // Negate the count.
1795 uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
1796 // The values of the enum are chosen to make this negation possible.
1797 LH = static_cast<Stmt::Likelihood>(-LH);
1798 // Negate the condition and swap the destination blocks.
1799 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1800 FalseCount, LH);
1801 }
1802 }
1803
1804 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1805 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1806 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1807 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1808
1809 // The ConditionalOperator itself has no likelihood information for its
1810 // true and false branches. This matches the behavior of __builtin_expect.
1811 ConditionalEvaluation cond(*this);
1812 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
1813 getProfileCount(CondOp), Stmt::LH_None);
1814
1815 // When computing PGO branch weights, we only know the overall count for
1816 // the true block. This code is essentially doing tail duplication of the
1817 // naive code-gen, introducing new edges for which counts are not
1818 // available. Divide the counts proportionally between the LHS and RHS of
1819 // the conditional operator.
1820 uint64_t LHSScaledTrueCount = 0;
1821 if (TrueCount) {
1822 double LHSRatio =
1823 getProfileCount(CondOp) / (double)getCurrentProfileCount();
1824 LHSScaledTrueCount = TrueCount * LHSRatio;
1825 }
1826
1827 cond.begin(*this);
1828 EmitBlock(LHSBlock);
1829 incrementProfileCounter(CondOp);
1830 {
1831 ApplyDebugLocation DL(*this, Cond);
1832 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1833 LHSScaledTrueCount, LH);
1834 }
1835 cond.end(*this);
1836
1837 cond.begin(*this);
1838 EmitBlock(RHSBlock);
1839 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1840 TrueCount - LHSScaledTrueCount, LH);
1841 cond.end(*this);
1842
1843 return;
1844 }
1845
1846 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1847 // Conditional operator handling can give us a throw expression as a
1848 // condition for a case like:
1849 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1850 // Fold this to:
1851 // br(c, throw x, br(y, t, f))
1852 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1853 return;
1854 }
1855
1856 // Emit the code with the fully general case.
1857 llvm::Value *CondV;
1858 {
1859 ApplyDebugLocation DL(*this, Cond);
1860 CondV = EvaluateExprAsBool(Cond);
1861 }
1862
1863 llvm::MDNode *Weights = nullptr;
1864 llvm::MDNode *Unpredictable = nullptr;
1865
1866 // If the branch has a condition wrapped by __builtin_unpredictable,
1867 // create metadata that specifies that the branch is unpredictable.
1868 // Don't bother if not optimizing because that metadata would not be used.
1869 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
1870 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1871 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1872 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1873 llvm::MDBuilder MDHelper(getLLVMContext());
1874 Unpredictable = MDHelper.createUnpredictable();
1875 }
1876 }
1877
1878 // If there is a Likelihood knowledge for the cond, lower it.
1879 // Note that if not optimizing this won't emit anything.
1880 llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH);
1881 if (CondV != NewCondV)
1882 CondV = NewCondV;
1883 else {
1884 // Otherwise, lower profile counts. Note that we do this even at -O0.
1885 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
1886 Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
1887 }
1888
1889 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
1890 }
1891
1892 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1893 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1894 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1895 CGM.ErrorUnsupported(S, Type);
1896 }
1897
1898 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1899 /// variable-length array whose elements have a non-zero bit-pattern.
1900 ///
1901 /// \param baseType the inner-most element type of the array
1902 /// \param src - a char* pointing to the bit-pattern for a single
1903 /// base element of the array
1904 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,Address dest,Address src,llvm::Value * sizeInChars)1905 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1906 Address dest, Address src,
1907 llvm::Value *sizeInChars) {
1908 CGBuilderTy &Builder = CGF.Builder;
1909
1910 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
1911 llvm::Value *baseSizeInChars
1912 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());
1913
1914 Address begin =
1915 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
1916 llvm::Value *end = Builder.CreateInBoundsGEP(
1917 begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end");
1918
1919 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1920 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1921 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1922
1923 // Make a loop over the VLA. C99 guarantees that the VLA element
1924 // count must be nonzero.
1925 CGF.EmitBlock(loopBB);
1926
1927 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
1928 cur->addIncoming(begin.getPointer(), originBB);
1929
1930 CharUnits curAlign =
1931 dest.getAlignment().alignmentOfArrayElement(baseSize);
1932
1933 // memcpy the individual element bit-pattern.
1934 Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars,
1935 /*volatile*/ false);
1936
1937 // Go to the next element.
1938 llvm::Value *next =
1939 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");
1940
1941 // Leave if that's the end of the VLA.
1942 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1943 Builder.CreateCondBr(done, contBB, loopBB);
1944 cur->addIncoming(next, loopBB);
1945
1946 CGF.EmitBlock(contBB);
1947 }
1948
1949 void
EmitNullInitialization(Address DestPtr,QualType Ty)1950 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
1951 // Ignore empty classes in C++.
1952 if (getLangOpts().CPlusPlus) {
1953 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1954 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1955 return;
1956 }
1957 }
1958
1959 // Cast the dest ptr to the appropriate i8 pointer type.
1960 if (DestPtr.getElementType() != Int8Ty)
1961 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1962
1963 // Get size and alignment info for this aggregate.
1964 CharUnits size = getContext().getTypeSizeInChars(Ty);
1965
1966 llvm::Value *SizeVal;
1967 const VariableArrayType *vla;
1968
1969 // Don't bother emitting a zero-byte memset.
1970 if (size.isZero()) {
1971 // But note that getTypeInfo returns 0 for a VLA.
1972 if (const VariableArrayType *vlaType =
1973 dyn_cast_or_null<VariableArrayType>(
1974 getContext().getAsArrayType(Ty))) {
1975 auto VlaSize = getVLASize(vlaType);
1976 SizeVal = VlaSize.NumElts;
1977 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1978 if (!eltSize.isOne())
1979 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1980 vla = vlaType;
1981 } else {
1982 return;
1983 }
1984 } else {
1985 SizeVal = CGM.getSize(size);
1986 vla = nullptr;
1987 }
1988
1989 // If the type contains a pointer to data member we can't memset it to zero.
1990 // Instead, create a null constant and copy it to the destination.
1991 // TODO: there are other patterns besides zero that we can usefully memset,
1992 // like -1, which happens to be the pattern used by member-pointers.
1993 if (!CGM.getTypes().isZeroInitializable(Ty)) {
1994 // For a VLA, emit a single element, then splat that over the VLA.
1995 if (vla) Ty = getContext().getBaseElementType(vla);
1996
1997 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1998
1999 llvm::GlobalVariable *NullVariable =
2000 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
2001 /*isConstant=*/true,
2002 llvm::GlobalVariable::PrivateLinkage,
2003 NullConstant, Twine());
2004 CharUnits NullAlign = DestPtr.getAlignment();
2005 NullVariable->setAlignment(NullAlign.getAsAlign());
2006 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
2007 Builder.getInt8Ty(), NullAlign);
2008
2009 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
2010
2011 // Get and call the appropriate llvm.memcpy overload.
2012 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
2013 return;
2014 }
2015
2016 // Otherwise, just memset the whole thing to zero. This is legal
2017 // because in LLVM, all default initializers (other than the ones we just
2018 // handled above) are guaranteed to have a bit pattern of all zeros.
2019 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
2020 }
2021
GetAddrOfLabel(const LabelDecl * L)2022 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
2023 // Make sure that there is a block for the indirect goto.
2024 if (!IndirectBranch)
2025 GetIndirectGotoBlock();
2026
2027 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
2028
2029 // Make sure the indirect branch includes all of the address-taken blocks.
2030 IndirectBranch->addDestination(BB);
2031 return llvm::BlockAddress::get(CurFn, BB);
2032 }
2033
GetIndirectGotoBlock()2034 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
2035 // If we already made the indirect branch for indirect goto, return its block.
2036 if (IndirectBranch) return IndirectBranch->getParent();
2037
2038 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));
2039
2040 // Create the PHI node that indirect gotos will add entries to.
2041 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
2042 "indirect.goto.dest");
2043
2044 // Create the indirect branch instruction.
2045 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
2046 return IndirectBranch->getParent();
2047 }
2048
2049 /// Computes the length of an array in elements, as well as the base
2050 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,Address & addr)2051 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
2052 QualType &baseType,
2053 Address &addr) {
2054 const ArrayType *arrayType = origArrayType;
2055
2056 // If it's a VLA, we have to load the stored size. Note that
2057 // this is the size of the VLA in bytes, not its size in elements.
2058 llvm::Value *numVLAElements = nullptr;
2059 if (isa<VariableArrayType>(arrayType)) {
2060 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;
2061
2062 // Walk into all VLAs. This doesn't require changes to addr,
2063 // which has type T* where T is the first non-VLA element type.
2064 do {
2065 QualType elementType = arrayType->getElementType();
2066 arrayType = getContext().getAsArrayType(elementType);
2067
2068 // If we only have VLA components, 'addr' requires no adjustment.
2069 if (!arrayType) {
2070 baseType = elementType;
2071 return numVLAElements;
2072 }
2073 } while (isa<VariableArrayType>(arrayType));
2074
2075 // We get out here only if we find a constant array type
2076 // inside the VLA.
2077 }
2078
2079 // We have some number of constant-length arrays, so addr should
2080 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
2081 // down to the first element of addr.
2082 SmallVector<llvm::Value*, 8> gepIndices;
2083
2084 // GEP down to the array type.
2085 llvm::ConstantInt *zero = Builder.getInt32(0);
2086 gepIndices.push_back(zero);
2087
2088 uint64_t countFromCLAs = 1;
2089 QualType eltType;
2090
2091 llvm::ArrayType *llvmArrayType =
2092 dyn_cast<llvm::ArrayType>(addr.getElementType());
2093 while (llvmArrayType) {
2094 assert(isa<ConstantArrayType>(arrayType));
2095 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
2096 == llvmArrayType->getNumElements());
2097
2098 gepIndices.push_back(zero);
2099 countFromCLAs *= llvmArrayType->getNumElements();
2100 eltType = arrayType->getElementType();
2101
2102 llvmArrayType =
2103 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
2104 arrayType = getContext().getAsArrayType(arrayType->getElementType());
2105 assert((!llvmArrayType || arrayType) &&
2106 "LLVM and Clang types are out-of-synch");
2107 }
2108
2109 if (arrayType) {
2110 // From this point onwards, the Clang array type has been emitted
2111 // as some other type (probably a packed struct). Compute the array
2112 // size, and just emit the 'begin' expression as a bitcast.
2113 while (arrayType) {
2114 countFromCLAs *=
2115 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
2116 eltType = arrayType->getElementType();
2117 arrayType = getContext().getAsArrayType(eltType);
2118 }
2119
2120 llvm::Type *baseType = ConvertType(eltType);
2121 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
2122 } else {
2123 // Create the actual GEP.
2124 addr = Address(Builder.CreateInBoundsGEP(
2125 addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"),
2126 ConvertTypeForMem(eltType),
2127 addr.getAlignment());
2128 }
2129
2130 baseType = eltType;
2131
2132 llvm::Value *numElements
2133 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
2134
2135 // If we had any VLA dimensions, factor them in.
2136 if (numVLAElements)
2137 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
2138
2139 return numElements;
2140 }
2141
getVLASize(QualType type)2142 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
2143 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2144 assert(vla && "type was not a variable array type!");
2145 return getVLASize(vla);
2146 }
2147
2148 CodeGenFunction::VlaSizePair
getVLASize(const VariableArrayType * type)2149 CodeGenFunction::getVLASize(const VariableArrayType *type) {
2150 // The number of elements so far; always size_t.
2151 llvm::Value *numElements = nullptr;
2152
2153 QualType elementType;
2154 do {
2155 elementType = type->getElementType();
2156 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
2157 assert(vlaSize && "no size for VLA!");
2158 assert(vlaSize->getType() == SizeTy);
2159
2160 if (!numElements) {
2161 numElements = vlaSize;
2162 } else {
2163 // It's undefined behavior if this wraps around, so mark it that way.
2164 // FIXME: Teach -fsanitize=undefined to trap this.
2165 numElements = Builder.CreateNUWMul(numElements, vlaSize);
2166 }
2167 } while ((type = getContext().getAsVariableArrayType(elementType)));
2168
2169 return { numElements, elementType };
2170 }
2171
2172 CodeGenFunction::VlaSizePair
getVLAElements1D(QualType type)2173 CodeGenFunction::getVLAElements1D(QualType type) {
2174 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
2175 assert(vla && "type was not a variable array type!");
2176 return getVLAElements1D(vla);
2177 }
2178
2179 CodeGenFunction::VlaSizePair
getVLAElements1D(const VariableArrayType * Vla)2180 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
2181 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
2182 assert(VlaSize && "no size for VLA!");
2183 assert(VlaSize->getType() == SizeTy);
2184 return { VlaSize, Vla->getElementType() };
2185 }
2186
EmitVariablyModifiedType(QualType type)2187 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
2188 assert(type->isVariablyModifiedType() &&
2189 "Must pass variably modified type to EmitVLASizes!");
2190
2191 EnsureInsertPoint();
2192
2193 // We're going to walk down into the type and look for VLA
2194 // expressions.
2195 do {
2196 assert(type->isVariablyModifiedType());
2197
2198 const Type *ty = type.getTypePtr();
2199 switch (ty->getTypeClass()) {
2200
2201 #define TYPE(Class, Base)
2202 #define ABSTRACT_TYPE(Class, Base)
2203 #define NON_CANONICAL_TYPE(Class, Base)
2204 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
2205 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
2206 #include "clang/AST/TypeNodes.inc"
2207 llvm_unreachable("unexpected dependent type!");
2208
2209 // These types are never variably-modified.
2210 case Type::Builtin:
2211 case Type::Complex:
2212 case Type::Vector:
2213 case Type::ExtVector:
2214 case Type::ConstantMatrix:
2215 case Type::Record:
2216 case Type::Enum:
2217 case Type::Elaborated:
2218 case Type::Using:
2219 case Type::TemplateSpecialization:
2220 case Type::ObjCTypeParam:
2221 case Type::ObjCObject:
2222 case Type::ObjCInterface:
2223 case Type::ObjCObjectPointer:
2224 case Type::BitInt:
2225 llvm_unreachable("type class is never variably-modified!");
2226
2227 case Type::Adjusted:
2228 type = cast<AdjustedType>(ty)->getAdjustedType();
2229 break;
2230
2231 case Type::Decayed:
2232 type = cast<DecayedType>(ty)->getPointeeType();
2233 break;
2234
2235 case Type::Pointer:
2236 type = cast<PointerType>(ty)->getPointeeType();
2237 break;
2238
2239 case Type::BlockPointer:
2240 type = cast<BlockPointerType>(ty)->getPointeeType();
2241 break;
2242
2243 case Type::LValueReference:
2244 case Type::RValueReference:
2245 type = cast<ReferenceType>(ty)->getPointeeType();
2246 break;
2247
2248 case Type::MemberPointer:
2249 type = cast<MemberPointerType>(ty)->getPointeeType();
2250 break;
2251
2252 case Type::ConstantArray:
2253 case Type::IncompleteArray:
2254 // Losing element qualification here is fine.
2255 type = cast<ArrayType>(ty)->getElementType();
2256 break;
2257
2258 case Type::VariableArray: {
2259 // Losing element qualification here is fine.
2260 const VariableArrayType *vat = cast<VariableArrayType>(ty);
2261
2262 // Unknown size indication requires no size computation.
2263 // Otherwise, evaluate and record it.
2264 if (const Expr *sizeExpr = vat->getSizeExpr()) {
2265 // It's possible that we might have emitted this already,
2266 // e.g. with a typedef and a pointer to it.
2267 llvm::Value *&entry = VLASizeMap[sizeExpr];
2268 if (!entry) {
2269 llvm::Value *size = EmitScalarExpr(sizeExpr);
2270
2271 // C11 6.7.6.2p5:
2272 // If the size is an expression that is not an integer constant
2273 // expression [...] each time it is evaluated it shall have a value
2274 // greater than zero.
2275 if (SanOpts.has(SanitizerKind::VLABound)) {
2276 SanitizerScope SanScope(this);
2277 llvm::Value *Zero = llvm::Constant::getNullValue(size->getType());
2278 clang::QualType SEType = sizeExpr->getType();
2279 llvm::Value *CheckCondition =
2280 SEType->isSignedIntegerType()
2281 ? Builder.CreateICmpSGT(size, Zero)
2282 : Builder.CreateICmpUGT(size, Zero);
2283 llvm::Constant *StaticArgs[] = {
2284 EmitCheckSourceLocation(sizeExpr->getBeginLoc()),
2285 EmitCheckTypeDescriptor(SEType)};
2286 EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound),
2287 SanitizerHandler::VLABoundNotPositive, StaticArgs, size);
2288 }
2289
2290 // Always zexting here would be wrong if it weren't
2291 // undefined behavior to have a negative bound.
2292 // FIXME: What about when size's type is larger than size_t?
2293 entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false);
2294 }
2295 }
2296 type = vat->getElementType();
2297 break;
2298 }
2299
2300 case Type::FunctionProto:
2301 case Type::FunctionNoProto:
2302 type = cast<FunctionType>(ty)->getReturnType();
2303 break;
2304
2305 case Type::Paren:
2306 case Type::TypeOf:
2307 case Type::UnaryTransform:
2308 case Type::Attributed:
2309 case Type::BTFTagAttributed:
2310 case Type::SubstTemplateTypeParm:
2311 case Type::MacroQualified:
2312 // Keep walking after single level desugaring.
2313 type = type.getSingleStepDesugaredType(getContext());
2314 break;
2315
2316 case Type::Typedef:
2317 case Type::Decltype:
2318 case Type::Auto:
2319 case Type::DeducedTemplateSpecialization:
2320 // Stop walking: nothing to do.
2321 return;
2322
2323 case Type::TypeOfExpr:
2324 // Stop walking: emit typeof expression.
2325 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
2326 return;
2327
2328 case Type::Atomic:
2329 type = cast<AtomicType>(ty)->getValueType();
2330 break;
2331
2332 case Type::Pipe:
2333 type = cast<PipeType>(ty)->getElementType();
2334 break;
2335 }
2336 } while (type->isVariablyModifiedType());
2337 }
2338
EmitVAListRef(const Expr * E)2339 Address CodeGenFunction::EmitVAListRef(const Expr* E) {
2340 if (getContext().getBuiltinVaListType()->isArrayType())
2341 return EmitPointerWithAlignment(E);
2342 return EmitLValue(E).getAddress(*this);
2343 }
2344
EmitMSVAListRef(const Expr * E)2345 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
2346 return EmitLValue(E).getAddress(*this);
2347 }
2348
EmitDeclRefExprDbgValue(const DeclRefExpr * E,const APValue & Init)2349 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
2350 const APValue &Init) {
2351 assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
2352 if (CGDebugInfo *Dbg = getDebugInfo())
2353 if (CGM.getCodeGenOpts().hasReducedDebugInfo())
2354 Dbg->EmitGlobalVariable(E->getDecl(), Init);
2355 }
2356
2357 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)2358 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
2359 // At the moment, the only aggressive peephole we do in IR gen
2360 // is trunc(zext) folding, but if we add more, we can easily
2361 // extend this protection.
2362
2363 if (!rvalue.isScalar()) return PeepholeProtection();
2364 llvm::Value *value = rvalue.getScalarVal();
2365 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
2366
2367 // Just make an extra bitcast.
2368 assert(HaveInsertPoint());
2369 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
2370 Builder.GetInsertBlock());
2371
2372 PeepholeProtection protection;
2373 protection.Inst = inst;
2374 return protection;
2375 }
2376
unprotectFromPeepholes(PeepholeProtection protection)2377 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
2378 if (!protection.Inst) return;
2379
2380 // In theory, we could try to duplicate the peepholes now, but whatever.
2381 protection.Inst->eraseFromParent();
2382 }
2383
emitAlignmentAssumption(llvm::Value * PtrValue,QualType Ty,SourceLocation Loc,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2384 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2385 QualType Ty, SourceLocation Loc,
2386 SourceLocation AssumptionLoc,
2387 llvm::Value *Alignment,
2388 llvm::Value *OffsetValue) {
2389 if (Alignment->getType() != IntPtrTy)
2390 Alignment =
2391 Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
2392 if (OffsetValue && OffsetValue->getType() != IntPtrTy)
2393 OffsetValue =
2394 Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
2395 llvm::Value *TheCheck = nullptr;
2396 if (SanOpts.has(SanitizerKind::Alignment)) {
2397 llvm::Value *PtrIntValue =
2398 Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
2399
2400 if (OffsetValue) {
2401 bool IsOffsetZero = false;
2402 if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
2403 IsOffsetZero = CI->isZero();
2404
2405 if (!IsOffsetZero)
2406 PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
2407 }
2408
2409 llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
2410 llvm::Value *Mask =
2411 Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
2412 llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
2413 TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
2414 }
2415 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
2416 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);
2417
2418 if (!SanOpts.has(SanitizerKind::Alignment))
2419 return;
2420 emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2421 OffsetValue, TheCheck, Assumption);
2422 }
2423
emitAlignmentAssumption(llvm::Value * PtrValue,const Expr * E,SourceLocation AssumptionLoc,llvm::Value * Alignment,llvm::Value * OffsetValue)2424 void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
2425 const Expr *E,
2426 SourceLocation AssumptionLoc,
2427 llvm::Value *Alignment,
2428 llvm::Value *OffsetValue) {
2429 if (auto *CE = dyn_cast<CastExpr>(E))
2430 E = CE->getSubExprAsWritten();
2431 QualType Ty = E->getType();
2432 SourceLocation Loc = E->getExprLoc();
2433
2434 emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
2435 OffsetValue);
2436 }
2437
EmitAnnotationCall(llvm::Function * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location,const AnnotateAttr * Attr)2438 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
2439 llvm::Value *AnnotatedVal,
2440 StringRef AnnotationStr,
2441 SourceLocation Location,
2442 const AnnotateAttr *Attr) {
2443 SmallVector<llvm::Value *, 5> Args = {
2444 AnnotatedVal,
2445 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
2446 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
2447 CGM.EmitAnnotationLineNo(Location),
2448 };
2449 if (Attr)
2450 Args.push_back(CGM.EmitAnnotationArgs(Attr));
2451 return Builder.CreateCall(AnnotationFn, Args);
2452 }
2453
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)2454 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
2455 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2456 // FIXME We create a new bitcast for every annotation because that's what
2457 // llvm-gcc was doing.
2458 for (const auto *I : D->specific_attrs<AnnotateAttr>())
2459 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
2460 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
2461 I->getAnnotation(), D->getLocation(), I);
2462 }
2463
EmitFieldAnnotations(const FieldDecl * D,Address Addr)2464 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
2465 Address Addr) {
2466 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2467 llvm::Value *V = Addr.getPointer();
2468 llvm::Type *VTy = V->getType();
2469 auto *PTy = dyn_cast<llvm::PointerType>(VTy);
2470 unsigned AS = PTy ? PTy->getAddressSpace() : 0;
2471 llvm::PointerType *IntrinTy =
2472 llvm::PointerType::getWithSamePointeeType(CGM.Int8PtrTy, AS);
2473 llvm::Function *F =
2474 CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, IntrinTy);
2475
2476 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
2477 // FIXME Always emit the cast inst so we can differentiate between
2478 // annotation on the first field of a struct and annotation on the struct
2479 // itself.
2480 if (VTy != IntrinTy)
2481 V = Builder.CreateBitCast(V, IntrinTy);
2482 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I);
2483 V = Builder.CreateBitCast(V, VTy);
2484 }
2485
2486 return Address(V, Addr.getElementType(), Addr.getAlignment());
2487 }
2488
~CGCapturedStmtInfo()2489 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
2490
SanitizerScope(CodeGenFunction * CGF)2491 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
2492 : CGF(CGF) {
2493 assert(!CGF->IsSanitizerScope);
2494 CGF->IsSanitizerScope = true;
2495 }
2496
~SanitizerScope()2497 CodeGenFunction::SanitizerScope::~SanitizerScope() {
2498 CGF->IsSanitizerScope = false;
2499 }
2500
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2501 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
2502 const llvm::Twine &Name,
2503 llvm::BasicBlock *BB,
2504 llvm::BasicBlock::iterator InsertPt) const {
2505 LoopStack.InsertHelper(I);
2506 if (IsSanitizerScope)
2507 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
2508 }
2509
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const2510 void CGBuilderInserter::InsertHelper(
2511 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
2512 llvm::BasicBlock::iterator InsertPt) const {
2513 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
2514 if (CGF)
2515 CGF->InsertHelper(I, Name, BB, InsertPt);
2516 }
2517
2518 // Emits an error if we don't have a valid set of target features for the
2519 // called function.
checkTargetFeatures(const CallExpr * E,const FunctionDecl * TargetDecl)2520 void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
2521 const FunctionDecl *TargetDecl) {
2522 return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
2523 }
2524
2525 // Emits an error if we don't have a valid set of target features for the
2526 // called function.
checkTargetFeatures(SourceLocation Loc,const FunctionDecl * TargetDecl)2527 void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
2528 const FunctionDecl *TargetDecl) {
2529 // Early exit if this is an indirect call.
2530 if (!TargetDecl)
2531 return;
2532
2533 // Get the current enclosing function if it exists. If it doesn't
2534 // we can't check the target features anyhow.
2535 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
2536 if (!FD)
2537 return;
2538
2539 // Grab the required features for the call. For a builtin this is listed in
2540 // the td file with the default cpu, for an always_inline function this is any
2541 // listed cpu and any listed features.
2542 unsigned BuiltinID = TargetDecl->getBuiltinID();
2543 std::string MissingFeature;
2544 llvm::StringMap<bool> CallerFeatureMap;
2545 CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);
2546 if (BuiltinID) {
2547 StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID));
2548 if (!Builtin::evaluateRequiredTargetFeatures(
2549 FeatureList, CallerFeatureMap)) {
2550 CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
2551 << TargetDecl->getDeclName()
2552 << FeatureList;
2553 }
2554 } else if (!TargetDecl->isMultiVersion() &&
2555 TargetDecl->hasAttr<TargetAttr>()) {
2556 // Get the required features for the callee.
2557
2558 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
2559 ParsedTargetAttr ParsedAttr =
2560 CGM.getContext().filterFunctionTargetAttrs(TD);
2561
2562 SmallVector<StringRef, 1> ReqFeatures;
2563 llvm::StringMap<bool> CalleeFeatureMap;
2564 CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);
2565
2566 for (const auto &F : ParsedAttr.Features) {
2567 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
2568 ReqFeatures.push_back(StringRef(F).substr(1));
2569 }
2570
2571 for (const auto &F : CalleeFeatureMap) {
2572 // Only positive features are "required".
2573 if (F.getValue())
2574 ReqFeatures.push_back(F.getKey());
2575 }
2576 if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) {
2577 if (!CallerFeatureMap.lookup(Feature)) {
2578 MissingFeature = Feature.str();
2579 return false;
2580 }
2581 return true;
2582 }))
2583 CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
2584 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
2585 }
2586 }
2587
EmitSanitizerStatReport(llvm::SanitizerStatKind SSK)2588 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
2589 if (!CGM.getCodeGenOpts().SanitizeStats)
2590 return;
2591
2592 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
2593 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
2594 CGM.getSanStats().create(IRB, SSK);
2595 }
2596
2597 llvm::Value *
FormResolverCondition(const MultiVersionResolverOption & RO)2598 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
2599 llvm::Value *Condition = nullptr;
2600
2601 if (!RO.Conditions.Architecture.empty())
2602 Condition = EmitX86CpuIs(RO.Conditions.Architecture);
2603
2604 if (!RO.Conditions.Features.empty()) {
2605 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
2606 Condition =
2607 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
2608 }
2609 return Condition;
2610 }
2611
CreateMultiVersionResolverReturn(CodeGenModule & CGM,llvm::Function * Resolver,CGBuilderTy & Builder,llvm::Function * FuncToReturn,bool SupportsIFunc)2612 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
2613 llvm::Function *Resolver,
2614 CGBuilderTy &Builder,
2615 llvm::Function *FuncToReturn,
2616 bool SupportsIFunc) {
2617 if (SupportsIFunc) {
2618 Builder.CreateRet(FuncToReturn);
2619 return;
2620 }
2621
2622 llvm::SmallVector<llvm::Value *, 10> Args(
2623 llvm::make_pointer_range(Resolver->args()));
2624
2625 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
2626 Result->setTailCallKind(llvm::CallInst::TCK_MustTail);
2627
2628 if (Resolver->getReturnType()->isVoidTy())
2629 Builder.CreateRetVoid();
2630 else
2631 Builder.CreateRet(Result);
2632 }
2633
EmitMultiVersionResolver(llvm::Function * Resolver,ArrayRef<MultiVersionResolverOption> Options)2634 void CodeGenFunction::EmitMultiVersionResolver(
2635 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
2636 assert(getContext().getTargetInfo().getTriple().isX86() &&
2637 "Only implemented for x86 targets");
2638
2639 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();
2640
2641 // Main function's basic block.
2642 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
2643 Builder.SetInsertPoint(CurBlock);
2644 EmitX86CpuInit();
2645
2646 for (const MultiVersionResolverOption &RO : Options) {
2647 Builder.SetInsertPoint(CurBlock);
2648 llvm::Value *Condition = FormResolverCondition(RO);
2649
2650 // The 'default' or 'generic' case.
2651 if (!Condition) {
2652 assert(&RO == Options.end() - 1 &&
2653 "Default or Generic case must be last");
2654 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
2655 SupportsIFunc);
2656 return;
2657 }
2658
2659 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
2660 CGBuilderTy RetBuilder(*this, RetBlock);
2661 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
2662 SupportsIFunc);
2663 CurBlock = createBasicBlock("resolver_else", Resolver);
2664 Builder.CreateCondBr(Condition, RetBlock, CurBlock);
2665 }
2666
2667 // If no generic/default, emit an unreachable.
2668 Builder.SetInsertPoint(CurBlock);
2669 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2670 TrapCall->setDoesNotReturn();
2671 TrapCall->setDoesNotThrow();
2672 Builder.CreateUnreachable();
2673 Builder.ClearInsertionPoint();
2674 }
2675
2676 // Loc - where the diagnostic will point, where in the source code this
2677 // alignment has failed.
2678 // SecondaryLoc - if present (will be present if sufficiently different from
2679 // Loc), the diagnostic will additionally point a "Note:" to this location.
2680 // It should be the location where the __attribute__((assume_aligned))
2681 // was written e.g.
emitAlignmentAssumptionCheck(llvm::Value * Ptr,QualType Ty,SourceLocation Loc,SourceLocation SecondaryLoc,llvm::Value * Alignment,llvm::Value * OffsetValue,llvm::Value * TheCheck,llvm::Instruction * Assumption)2682 void CodeGenFunction::emitAlignmentAssumptionCheck(
2683 llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
2684 SourceLocation SecondaryLoc, llvm::Value *Alignment,
2685 llvm::Value *OffsetValue, llvm::Value *TheCheck,
2686 llvm::Instruction *Assumption) {
2687 assert(Assumption && isa<llvm::CallInst>(Assumption) &&
2688 cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
2689 llvm::Intrinsic::getDeclaration(
2690 Builder.GetInsertBlock()->getParent()->getParent(),
2691 llvm::Intrinsic::assume) &&
2692 "Assumption should be a call to llvm.assume().");
2693 assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
2694 "Assumption should be the last instruction of the basic block, "
2695 "since the basic block is still being generated.");
2696
2697 if (!SanOpts.has(SanitizerKind::Alignment))
2698 return;
2699
2700 // Don't check pointers to volatile data. The behavior here is implementation-
2701 // defined.
2702 if (Ty->getPointeeType().isVolatileQualified())
2703 return;
2704
2705 // We need to temorairly remove the assumption so we can insert the
2706 // sanitizer check before it, else the check will be dropped by optimizations.
2707 Assumption->removeFromParent();
2708
2709 {
2710 SanitizerScope SanScope(this);
2711
2712 if (!OffsetValue)
2713 OffsetValue = Builder.getInt1(false); // no offset.
2714
2715 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
2716 EmitCheckSourceLocation(SecondaryLoc),
2717 EmitCheckTypeDescriptor(Ty)};
2718 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
2719 EmitCheckValue(Alignment),
2720 EmitCheckValue(OffsetValue)};
2721 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
2722 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
2723 }
2724
2725 // We are now in the (new, empty) "cont" basic block.
2726 // Reintroduce the assumption.
2727 Builder.Insert(Assumption);
2728 // FIXME: Assumption still has it's original basic block as it's Parent.
2729 }
2730
SourceLocToDebugLoc(SourceLocation Location)2731 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
2732 if (CGDebugInfo *DI = getDebugInfo())
2733 return DI->SourceLocToDebugLoc(Location);
2734
2735 return llvm::DebugLoc();
2736 }
2737
2738 llvm::Value *
emitCondLikelihoodViaExpectIntrinsic(llvm::Value * Cond,Stmt::Likelihood LH)2739 CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
2740 Stmt::Likelihood LH) {
2741 switch (LH) {
2742 case Stmt::LH_None:
2743 return Cond;
2744 case Stmt::LH_Likely:
2745 case Stmt::LH_Unlikely:
2746 // Don't generate llvm.expect on -O0 as the backend won't use it for
2747 // anything.
2748 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2749 return Cond;
2750 llvm::Type *CondTy = Cond->getType();
2751 assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean");
2752 llvm::Function *FnExpect =
2753 CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy);
2754 llvm::Value *ExpectedValueOfCond =
2755 llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely);
2756 return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond},
2757 Cond->getName() + ".expval");
2758 }
2759 llvm_unreachable("Unknown Likelihood");
2760 }
2761
emitBoolVecConversion(llvm::Value * SrcVec,unsigned NumElementsDst,const llvm::Twine & Name)2762 llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec,
2763 unsigned NumElementsDst,
2764 const llvm::Twine &Name) {
2765 auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType());
2766 unsigned NumElementsSrc = SrcTy->getNumElements();
2767 if (NumElementsSrc == NumElementsDst)
2768 return SrcVec;
2769
2770 std::vector<int> ShuffleMask(NumElementsDst, -1);
2771 for (unsigned MaskIdx = 0;
2772 MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx)
2773 ShuffleMask[MaskIdx] = MaskIdx;
2774
2775 return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name);
2776 }
2777